]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/gvt/cmd_parser.c
Merge tag 'v4.10-rc8' into drm-next
[karo-tx-linux.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42
43 #define INVALID_OP    (~0U)
44
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX        16
50
51 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
52
53 struct sub_op_bits {
54         int hi;
55         int low;
56 };
57 struct decode_info {
58         char *name;
59         int op_len;
60         int nr_sub_op;
61         struct sub_op_bits *sub_op;
62 };
63
64 #define   MAX_CMD_BUDGET                        0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72
73 /* Render Command Map */
74
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
100
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E                            0x2E  /* BDW+ */
115 #define OP_MI_2F                            0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
120
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
165
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175
176 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
177 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
178 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
179 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
180
181 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
182 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
183 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
184 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
185 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
186 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
187 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
188 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
189 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
190 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
192 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
193 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
194 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
195 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
196 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
197 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
198 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
199 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
200 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
201 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
202 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
203 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
204 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
205 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
206 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
207 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
208 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
211 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
223 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
224 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
225 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
226 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
227 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
232 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
247
248 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
249 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
250 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
251 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
252 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
253 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
254 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
255 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
256 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
257 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
258 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
259
260 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
262 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
263 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
266 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
267 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
268 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
270 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
271 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
273 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
274 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
280 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
281 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
283 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
285 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
286 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
287 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
288
289 /* VCCP Command Parser */
290
291 /*
292  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
293  * git://anongit.freedesktop.org/vaapi/intel-driver
294  * src/i965_defines.h
295  *
296  */
297
298 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
299         (3 << 13 | \
300          (pipeline) << 11 | \
301          (op) << 8 | \
302          (sub_opa) << 5 | \
303          (sub_opb))
304
305 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
306 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
307 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
310 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
311 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
312 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
313 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
314 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
315 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
316
317 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
318
319 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
320 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
321 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
322 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
323 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
324 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
326 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
327 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
328 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
329 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
330 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
331
332 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
333 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
334 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
335 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
336 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
337
338 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
339 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
340 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
341 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
342 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
343
344 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
345 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
346 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
347
348 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
349 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
350 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
351
352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
353         (3 << 13 | \
354          (pipeline) << 11 | \
355          (op) << 8 | \
356          (sub_opa) << 5 | \
357          (sub_opb))
358
359 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
360 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
361 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
362
363 struct parser_exec_state;
364
365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
366
367 #define GVT_CMD_HASH_BITS   7
368
369 /* which DWords need address fix */
370 #define ADDR_FIX_1(x1)                  (1 << (x1))
371 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
372 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
373 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
374 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
375
376 struct cmd_info {
377         char *name;
378         u32 opcode;
379
380 #define F_LEN_MASK      (1U<<0)
381 #define F_LEN_CONST  1U
382 #define F_LEN_VAR    0U
383
384 /*
385  * command has its own ip advance logic
386  * e.g. MI_BATCH_START, MI_BATCH_END
387  */
388 #define F_IP_ADVANCE_CUSTOM (1<<1)
389
390 #define F_POST_HANDLE   (1<<2)
391         u32 flag;
392
393 #define R_RCS   (1 << RCS)
394 #define R_VCS1  (1 << VCS)
395 #define R_VCS2  (1 << VCS2)
396 #define R_VCS   (R_VCS1 | R_VCS2)
397 #define R_BCS   (1 << BCS)
398 #define R_VECS  (1 << VECS)
399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
400         /* rings that support this cmd: BLT/RCS/VCS/VECS */
401         uint16_t rings;
402
403         /* devices that support this cmd: SNB/IVB/HSW/... */
404         uint16_t devices;
405
406         /* which DWords are address that need fix up.
407          * bit 0 means a 32-bit non address operand in command
408          * bit 1 means address operand, which could be 32-bit
409          * or 64-bit depending on different architectures.(
410          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
411          * No matter the address length, each address only takes
412          * one bit in the bitmap.
413          */
414         uint16_t addr_bitmap;
415
416         /* flag == F_LEN_CONST : command length
417          * flag == F_LEN_VAR : length bias bits
418          * Note: length is in DWord
419          */
420         uint8_t len;
421
422         parser_cmd_handler handler;
423 };
424
425 struct cmd_entry {
426         struct hlist_node hlist;
427         struct cmd_info *info;
428 };
429
430 enum {
431         RING_BUFFER_INSTRUCTION,
432         BATCH_BUFFER_INSTRUCTION,
433         BATCH_BUFFER_2ND_LEVEL,
434 };
435
436 enum {
437         GTT_BUFFER,
438         PPGTT_BUFFER
439 };
440
441 struct parser_exec_state {
442         struct intel_vgpu *vgpu;
443         int ring_id;
444
445         int buf_type;
446
447         /* batch buffer address type */
448         int buf_addr_type;
449
450         /* graphics memory address of ring buffer start */
451         unsigned long ring_start;
452         unsigned long ring_size;
453         unsigned long ring_head;
454         unsigned long ring_tail;
455
456         /* instruction graphics memory address */
457         unsigned long ip_gma;
458
459         /* mapped va of the instr_gma */
460         void *ip_va;
461         void *rb_va;
462
463         void *ret_bb_va;
464         /* next instruction when return from  batch buffer to ring buffer */
465         unsigned long ret_ip_gma_ring;
466
467         /* next instruction when return from 2nd batch buffer to batch buffer */
468         unsigned long ret_ip_gma_bb;
469
470         /* batch buffer address type (GTT or PPGTT)
471          * used when ret from 2nd level batch buffer
472          */
473         int saved_buf_addr_type;
474
475         struct cmd_info *info;
476
477         struct intel_vgpu_workload *workload;
478 };
479
480 #define gmadr_dw_number(s)      \
481         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
482
483 static unsigned long bypass_scan_mask = 0;
484
485 /* ring ALL, type = 0 */
486 static struct sub_op_bits sub_op_mi[] = {
487         {31, 29},
488         {28, 23},
489 };
490
491 static struct decode_info decode_info_mi = {
492         "MI",
493         OP_LEN_MI,
494         ARRAY_SIZE(sub_op_mi),
495         sub_op_mi,
496 };
497
498 /* ring RCS, command type 2 */
499 static struct sub_op_bits sub_op_2d[] = {
500         {31, 29},
501         {28, 22},
502 };
503
504 static struct decode_info decode_info_2d = {
505         "2D",
506         OP_LEN_2D,
507         ARRAY_SIZE(sub_op_2d),
508         sub_op_2d,
509 };
510
511 /* ring RCS, command type 3 */
512 static struct sub_op_bits sub_op_3d_media[] = {
513         {31, 29},
514         {28, 27},
515         {26, 24},
516         {23, 16},
517 };
518
519 static struct decode_info decode_info_3d_media = {
520         "3D_Media",
521         OP_LEN_3D_MEDIA,
522         ARRAY_SIZE(sub_op_3d_media),
523         sub_op_3d_media,
524 };
525
526 /* ring VCS, command type 3 */
527 static struct sub_op_bits sub_op_mfx_vc[] = {
528         {31, 29},
529         {28, 27},
530         {26, 24},
531         {23, 21},
532         {20, 16},
533 };
534
535 static struct decode_info decode_info_mfx_vc = {
536         "MFX_VC",
537         OP_LEN_MFX_VC,
538         ARRAY_SIZE(sub_op_mfx_vc),
539         sub_op_mfx_vc,
540 };
541
542 /* ring VECS, command type 3 */
543 static struct sub_op_bits sub_op_vebox[] = {
544         {31, 29},
545         {28, 27},
546         {26, 24},
547         {23, 21},
548         {20, 16},
549 };
550
551 static struct decode_info decode_info_vebox = {
552         "VEBOX",
553         OP_LEN_VEBOX,
554         ARRAY_SIZE(sub_op_vebox),
555         sub_op_vebox,
556 };
557
558 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
559         [RCS] = {
560                 &decode_info_mi,
561                 NULL,
562                 NULL,
563                 &decode_info_3d_media,
564                 NULL,
565                 NULL,
566                 NULL,
567                 NULL,
568         },
569
570         [VCS] = {
571                 &decode_info_mi,
572                 NULL,
573                 NULL,
574                 &decode_info_mfx_vc,
575                 NULL,
576                 NULL,
577                 NULL,
578                 NULL,
579         },
580
581         [BCS] = {
582                 &decode_info_mi,
583                 NULL,
584                 &decode_info_2d,
585                 NULL,
586                 NULL,
587                 NULL,
588                 NULL,
589                 NULL,
590         },
591
592         [VECS] = {
593                 &decode_info_mi,
594                 NULL,
595                 NULL,
596                 &decode_info_vebox,
597                 NULL,
598                 NULL,
599                 NULL,
600                 NULL,
601         },
602
603         [VCS2] = {
604                 &decode_info_mi,
605                 NULL,
606                 NULL,
607                 &decode_info_mfx_vc,
608                 NULL,
609                 NULL,
610                 NULL,
611                 NULL,
612         },
613 };
614
615 static inline u32 get_opcode(u32 cmd, int ring_id)
616 {
617         struct decode_info *d_info;
618
619         if (ring_id >= I915_NUM_ENGINES)
620                 return INVALID_OP;
621
622         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
623         if (d_info == NULL)
624                 return INVALID_OP;
625
626         return cmd >> (32 - d_info->op_len);
627 }
628
629 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
630                 unsigned int opcode, int ring_id)
631 {
632         struct cmd_entry *e;
633
634         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
635                 if ((opcode == e->info->opcode) &&
636                                 (e->info->rings & (1 << ring_id)))
637                         return e->info;
638         }
639         return NULL;
640 }
641
642 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
643                 u32 cmd, int ring_id)
644 {
645         u32 opcode;
646
647         opcode = get_opcode(cmd, ring_id);
648         if (opcode == INVALID_OP)
649                 return NULL;
650
651         return find_cmd_entry(gvt, opcode, ring_id);
652 }
653
654 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
655 {
656         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
657 }
658
659 static inline void print_opcode(u32 cmd, int ring_id)
660 {
661         struct decode_info *d_info;
662         int i;
663
664         if (ring_id >= I915_NUM_ENGINES)
665                 return;
666
667         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
668         if (d_info == NULL)
669                 return;
670
671         gvt_err("opcode=0x%x %s sub_ops:",
672                         cmd >> (32 - d_info->op_len), d_info->name);
673
674         for (i = 0; i < d_info->nr_sub_op; i++)
675                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
676                                         d_info->sub_op[i].low));
677
678         pr_err("\n");
679 }
680
681 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
682 {
683         return s->ip_va + (index << 2);
684 }
685
686 static inline u32 cmd_val(struct parser_exec_state *s, int index)
687 {
688         return *cmd_ptr(s, index);
689 }
690
691 static void parser_exec_state_dump(struct parser_exec_state *s)
692 {
693         int cnt = 0;
694         int i;
695
696         gvt_err("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
697                         " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
698                         s->ring_id, s->ring_start, s->ring_start + s->ring_size,
699                         s->ring_head, s->ring_tail);
700
701         gvt_err("  %s %s ip_gma(%08lx) ",
702                         s->buf_type == RING_BUFFER_INSTRUCTION ?
703                         "RING_BUFFER" : "BATCH_BUFFER",
704                         s->buf_addr_type == GTT_BUFFER ?
705                         "GTT" : "PPGTT", s->ip_gma);
706
707         if (s->ip_va == NULL) {
708                 gvt_err(" ip_va(NULL)");
709                 return;
710         }
711
712         gvt_err("  ip_va=%p: %08x %08x %08x %08x\n",
713                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
714                         cmd_val(s, 2), cmd_val(s, 3));
715
716         print_opcode(cmd_val(s, 0), s->ring_id);
717
718         /* print the whole page to trace */
719         pr_err("    ip_va=%p: %08x %08x %08x %08x\n",
720                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
721                         cmd_val(s, 2), cmd_val(s, 3));
722
723         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
724
725         while (cnt < 1024) {
726                 pr_err("ip_va=%p: ", s->ip_va);
727                 for (i = 0; i < 8; i++)
728                         pr_err("%08x ", cmd_val(s, i));
729                 pr_err("\n");
730
731                 s->ip_va += 8 * sizeof(u32);
732                 cnt += 8;
733         }
734 }
735
736 static inline void update_ip_va(struct parser_exec_state *s)
737 {
738         unsigned long len = 0;
739
740         if (WARN_ON(s->ring_head == s->ring_tail))
741                 return;
742
743         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
744                 unsigned long ring_top = s->ring_start + s->ring_size;
745
746                 if (s->ring_head > s->ring_tail) {
747                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
748                                 len = (s->ip_gma - s->ring_head);
749                         else if (s->ip_gma >= s->ring_start &&
750                                         s->ip_gma <= s->ring_tail)
751                                 len = (ring_top - s->ring_head) +
752                                         (s->ip_gma - s->ring_start);
753                 } else
754                         len = (s->ip_gma - s->ring_head);
755
756                 s->ip_va = s->rb_va + len;
757         } else {/* shadow batch buffer */
758                 s->ip_va = s->ret_bb_va;
759         }
760 }
761
762 static inline int ip_gma_set(struct parser_exec_state *s,
763                 unsigned long ip_gma)
764 {
765         WARN_ON(!IS_ALIGNED(ip_gma, 4));
766
767         s->ip_gma = ip_gma;
768         update_ip_va(s);
769         return 0;
770 }
771
772 static inline int ip_gma_advance(struct parser_exec_state *s,
773                 unsigned int dw_len)
774 {
775         s->ip_gma += (dw_len << 2);
776
777         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
778                 if (s->ip_gma >= s->ring_start + s->ring_size)
779                         s->ip_gma -= s->ring_size;
780                 update_ip_va(s);
781         } else {
782                 s->ip_va += (dw_len << 2);
783         }
784
785         return 0;
786 }
787
788 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
789 {
790         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
791                 return info->len;
792         else
793                 return (cmd & ((1U << info->len) - 1)) + 2;
794         return 0;
795 }
796
797 static inline int cmd_length(struct parser_exec_state *s)
798 {
799         return get_cmd_length(s->info, cmd_val(s, 0));
800 }
801
802 /* do not remove this, some platform may need clflush here */
803 #define patch_value(s, addr, val) do { \
804         *addr = val; \
805 } while (0)
806
807 static bool is_shadowed_mmio(unsigned int offset)
808 {
809         bool ret = false;
810
811         if ((offset == 0x2168) || /*BB current head register UDW */
812             (offset == 0x2140) || /*BB current header register */
813             (offset == 0x211c) || /*second BB header register UDW */
814             (offset == 0x2114)) { /*second BB header register UDW */
815                 ret = true;
816         }
817         return ret;
818 }
819
820 static int cmd_reg_handler(struct parser_exec_state *s,
821         unsigned int offset, unsigned int index, char *cmd)
822 {
823         struct intel_vgpu *vgpu = s->vgpu;
824         struct intel_gvt *gvt = vgpu->gvt;
825
826         if (offset + 4 > gvt->device_info.mmio_size) {
827                 gvt_err("%s access to (%x) outside of MMIO range\n",
828                                 cmd, offset);
829                 return -EINVAL;
830         }
831
832         if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
833                 gvt_err("vgpu%d: %s access to non-render register (%x)\n",
834                                 s->vgpu->id, cmd, offset);
835                 return 0;
836         }
837
838         if (is_shadowed_mmio(offset)) {
839                 gvt_err("vgpu%d: found access of shadowed MMIO %x\n",
840                                 s->vgpu->id, offset);
841                 return 0;
842         }
843
844         if (offset == i915_mmio_reg_offset(DERRMR) ||
845                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
846                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
847                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
848         }
849
850         /* TODO: Update the global mask if this MMIO is a masked-MMIO */
851         intel_gvt_mmio_set_cmd_accessed(gvt, offset);
852         return 0;
853 }
854
855 #define cmd_reg(s, i) \
856         (cmd_val(s, i) & GENMASK(22, 2))
857
858 #define cmd_reg_inhibit(s, i) \
859         (cmd_val(s, i) & GENMASK(22, 18))
860
861 #define cmd_gma(s, i) \
862         (cmd_val(s, i) & GENMASK(31, 2))
863
864 #define cmd_gma_hi(s, i) \
865         (cmd_val(s, i) & GENMASK(15, 0))
866
867 static int cmd_handler_lri(struct parser_exec_state *s)
868 {
869         int i, ret = 0;
870         int cmd_len = cmd_length(s);
871         struct intel_gvt *gvt = s->vgpu->gvt;
872
873         for (i = 1; i < cmd_len; i += 2) {
874                 if (IS_BROADWELL(gvt->dev_priv) &&
875                                 (s->ring_id != RCS)) {
876                         if (s->ring_id == BCS &&
877                                         cmd_reg(s, i) ==
878                                         i915_mmio_reg_offset(DERRMR))
879                                 ret |= 0;
880                         else
881                                 ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
882                 }
883                 if (ret)
884                         break;
885                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
886         }
887         return ret;
888 }
889
890 static int cmd_handler_lrr(struct parser_exec_state *s)
891 {
892         int i, ret = 0;
893         int cmd_len = cmd_length(s);
894
895         for (i = 1; i < cmd_len; i += 2) {
896                 if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
897                         ret |= ((cmd_reg_inhibit(s, i) ||
898                                         (cmd_reg_inhibit(s, i + 1)))) ?
899                                 -EINVAL : 0;
900                 if (ret)
901                         break;
902                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
903                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
904         }
905         return ret;
906 }
907
908 static inline int cmd_address_audit(struct parser_exec_state *s,
909                 unsigned long guest_gma, int op_size, bool index_mode);
910
911 static int cmd_handler_lrm(struct parser_exec_state *s)
912 {
913         struct intel_gvt *gvt = s->vgpu->gvt;
914         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
915         unsigned long gma;
916         int i, ret = 0;
917         int cmd_len = cmd_length(s);
918
919         for (i = 1; i < cmd_len;) {
920                 if (IS_BROADWELL(gvt->dev_priv))
921                         ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
922                 if (ret)
923                         break;
924                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
925                 if (cmd_val(s, 0) & (1 << 22)) {
926                         gma = cmd_gma(s, i + 1);
927                         if (gmadr_bytes == 8)
928                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
929                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
930                 }
931                 i += gmadr_dw_number(s) + 1;
932         }
933         return ret;
934 }
935
936 static int cmd_handler_srm(struct parser_exec_state *s)
937 {
938         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
939         unsigned long gma;
940         int i, ret = 0;
941         int cmd_len = cmd_length(s);
942
943         for (i = 1; i < cmd_len;) {
944                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
945                 if (cmd_val(s, 0) & (1 << 22)) {
946                         gma = cmd_gma(s, i + 1);
947                         if (gmadr_bytes == 8)
948                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
949                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
950                 }
951                 i += gmadr_dw_number(s) + 1;
952         }
953         return ret;
954 }
955
956 struct cmd_interrupt_event {
957         int pipe_control_notify;
958         int mi_flush_dw;
959         int mi_user_interrupt;
960 };
961
962 static struct cmd_interrupt_event cmd_interrupt_events[] = {
963         [RCS] = {
964                 .pipe_control_notify = RCS_PIPE_CONTROL,
965                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
966                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
967         },
968         [BCS] = {
969                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
970                 .mi_flush_dw = BCS_MI_FLUSH_DW,
971                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
972         },
973         [VCS] = {
974                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
975                 .mi_flush_dw = VCS_MI_FLUSH_DW,
976                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
977         },
978         [VCS2] = {
979                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
980                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
981                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
982         },
983         [VECS] = {
984                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
985                 .mi_flush_dw = VECS_MI_FLUSH_DW,
986                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
987         },
988 };
989
990 static int cmd_handler_pipe_control(struct parser_exec_state *s)
991 {
992         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
993         unsigned long gma;
994         bool index_mode = false;
995         unsigned int post_sync;
996         int ret = 0;
997
998         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
999
1000         /* LRI post sync */
1001         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1002                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1003         /* post sync */
1004         else if (post_sync) {
1005                 if (post_sync == 2)
1006                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1007                 else if (post_sync == 3)
1008                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1009                 else if (post_sync == 1) {
1010                         /* check ggtt*/
1011                         if ((cmd_val(s, 2) & (1 << 2))) {
1012                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1013                                 if (gmadr_bytes == 8)
1014                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1015                                 /* Store Data Index */
1016                                 if (cmd_val(s, 1) & (1 << 21))
1017                                         index_mode = true;
1018                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1019                                                 index_mode);
1020                         }
1021                 }
1022         }
1023
1024         if (ret)
1025                 return ret;
1026
1027         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1028                 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1029                                 s->workload->pending_events);
1030         return 0;
1031 }
1032
1033 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1034 {
1035         set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1036                         s->workload->pending_events);
1037         return 0;
1038 }
1039
1040 static int cmd_advance_default(struct parser_exec_state *s)
1041 {
1042         return ip_gma_advance(s, cmd_length(s));
1043 }
1044
1045 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1046 {
1047         int ret;
1048
1049         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1050                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1051                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1052                 s->buf_addr_type = s->saved_buf_addr_type;
1053         } else {
1054                 s->buf_type = RING_BUFFER_INSTRUCTION;
1055                 s->buf_addr_type = GTT_BUFFER;
1056                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1057                         s->ret_ip_gma_ring -= s->ring_size;
1058                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1059         }
1060         return ret;
1061 }
1062
1063 struct mi_display_flip_command_info {
1064         int pipe;
1065         int plane;
1066         int event;
1067         i915_reg_t stride_reg;
1068         i915_reg_t ctrl_reg;
1069         i915_reg_t surf_reg;
1070         u64 stride_val;
1071         u64 tile_val;
1072         u64 surf_val;
1073         bool async_flip;
1074 };
1075
1076 struct plane_code_mapping {
1077         int pipe;
1078         int plane;
1079         int event;
1080 };
1081
1082 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1083                 struct mi_display_flip_command_info *info)
1084 {
1085         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1086         struct plane_code_mapping gen8_plane_code[] = {
1087                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1088                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1089                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1090                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1091                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1092                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1093         };
1094         u32 dword0, dword1, dword2;
1095         u32 v;
1096
1097         dword0 = cmd_val(s, 0);
1098         dword1 = cmd_val(s, 1);
1099         dword2 = cmd_val(s, 2);
1100
1101         v = (dword0 & GENMASK(21, 19)) >> 19;
1102         if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1103                 return -EINVAL;
1104
1105         info->pipe = gen8_plane_code[v].pipe;
1106         info->plane = gen8_plane_code[v].plane;
1107         info->event = gen8_plane_code[v].event;
1108         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1109         info->tile_val = (dword1 & 0x1);
1110         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1111         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1112
1113         if (info->plane == PLANE_A) {
1114                 info->ctrl_reg = DSPCNTR(info->pipe);
1115                 info->stride_reg = DSPSTRIDE(info->pipe);
1116                 info->surf_reg = DSPSURF(info->pipe);
1117         } else if (info->plane == PLANE_B) {
1118                 info->ctrl_reg = SPRCTL(info->pipe);
1119                 info->stride_reg = SPRSTRIDE(info->pipe);
1120                 info->surf_reg = SPRSURF(info->pipe);
1121         } else {
1122                 WARN_ON(1);
1123                 return -EINVAL;
1124         }
1125         return 0;
1126 }
1127
1128 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1129                 struct mi_display_flip_command_info *info)
1130 {
1131         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1132         u32 dword0 = cmd_val(s, 0);
1133         u32 dword1 = cmd_val(s, 1);
1134         u32 dword2 = cmd_val(s, 2);
1135         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1136
1137         info->plane = PRIMARY_PLANE;
1138
1139         switch (plane) {
1140         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1141                 info->pipe = PIPE_A;
1142                 info->event = PRIMARY_A_FLIP_DONE;
1143                 break;
1144         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1145                 info->pipe = PIPE_B;
1146                 info->event = PRIMARY_B_FLIP_DONE;
1147                 break;
1148         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1149                 info->pipe = PIPE_C;
1150                 info->event = PRIMARY_C_FLIP_DONE;
1151                 break;
1152
1153         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1154                 info->pipe = PIPE_A;
1155                 info->event = SPRITE_A_FLIP_DONE;
1156                 info->plane = SPRITE_PLANE;
1157                 break;
1158         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1159                 info->pipe = PIPE_B;
1160                 info->event = SPRITE_B_FLIP_DONE;
1161                 info->plane = SPRITE_PLANE;
1162                 break;
1163         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1164                 info->pipe = PIPE_C;
1165                 info->event = SPRITE_C_FLIP_DONE;
1166                 info->plane = SPRITE_PLANE;
1167                 break;
1168
1169         default:
1170                 gvt_err("unknown plane code %d\n", plane);
1171                 return -EINVAL;
1172         }
1173
1174         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1175         info->tile_val = (dword1 & GENMASK(2, 0));
1176         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1177         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1178
1179         info->ctrl_reg = DSPCNTR(info->pipe);
1180         info->stride_reg = DSPSTRIDE(info->pipe);
1181         info->surf_reg = DSPSURF(info->pipe);
1182
1183         return 0;
1184 }
1185
1186 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1187                 struct mi_display_flip_command_info *info)
1188 {
1189         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1190         u32 stride, tile;
1191
1192         if (!info->async_flip)
1193                 return 0;
1194
1195         if (IS_SKYLAKE(dev_priv)) {
1196                 stride = vgpu_vreg(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1197                 tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) &
1198                                 GENMASK(12, 10)) >> 10;
1199         } else {
1200                 stride = (vgpu_vreg(s->vgpu, info->stride_reg) &
1201                                 GENMASK(15, 6)) >> 6;
1202                 tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1203         }
1204
1205         if (stride != info->stride_val)
1206                 gvt_dbg_cmd("cannot change stride during async flip\n");
1207
1208         if (tile != info->tile_val)
1209                 gvt_dbg_cmd("cannot change tile during async flip\n");
1210
1211         return 0;
1212 }
1213
1214 static int gen8_update_plane_mmio_from_mi_display_flip(
1215                 struct parser_exec_state *s,
1216                 struct mi_display_flip_command_info *info)
1217 {
1218         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1219         struct intel_vgpu *vgpu = s->vgpu;
1220
1221         set_mask_bits(&vgpu_vreg(vgpu, info->surf_reg), GENMASK(31, 12),
1222                       info->surf_val << 12);
1223         if (IS_SKYLAKE(dev_priv)) {
1224                 set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(9, 0),
1225                               info->stride_val);
1226                 set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(12, 10),
1227                               info->tile_val << 10);
1228         } else {
1229                 set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(15, 6),
1230                               info->stride_val << 6);
1231                 set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(10, 10),
1232                               info->tile_val << 10);
1233         }
1234
1235         vgpu_vreg(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1236         intel_vgpu_trigger_virtual_event(vgpu, info->event);
1237         return 0;
1238 }
1239
1240 static int decode_mi_display_flip(struct parser_exec_state *s,
1241                 struct mi_display_flip_command_info *info)
1242 {
1243         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1244
1245         if (IS_BROADWELL(dev_priv))
1246                 return gen8_decode_mi_display_flip(s, info);
1247         if (IS_SKYLAKE(dev_priv))
1248                 return skl_decode_mi_display_flip(s, info);
1249
1250         return -ENODEV;
1251 }
1252
1253 static int check_mi_display_flip(struct parser_exec_state *s,
1254                 struct mi_display_flip_command_info *info)
1255 {
1256         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1257
1258         if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
1259                 return gen8_check_mi_display_flip(s, info);
1260         return -ENODEV;
1261 }
1262
1263 static int update_plane_mmio_from_mi_display_flip(
1264                 struct parser_exec_state *s,
1265                 struct mi_display_flip_command_info *info)
1266 {
1267         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1268
1269         if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
1270                 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1271         return -ENODEV;
1272 }
1273
1274 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1275 {
1276         struct mi_display_flip_command_info info;
1277         int ret;
1278         int i;
1279         int len = cmd_length(s);
1280
1281         ret = decode_mi_display_flip(s, &info);
1282         if (ret) {
1283                 gvt_err("fail to decode MI display flip command\n");
1284                 return ret;
1285         }
1286
1287         ret = check_mi_display_flip(s, &info);
1288         if (ret) {
1289                 gvt_err("invalid MI display flip command\n");
1290                 return ret;
1291         }
1292
1293         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1294         if (ret) {
1295                 gvt_err("fail to update plane mmio\n");
1296                 return ret;
1297         }
1298
1299         for (i = 0; i < len; i++)
1300                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1301         return 0;
1302 }
1303
1304 static bool is_wait_for_flip_pending(u32 cmd)
1305 {
1306         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1307                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1308                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1309                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1310                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1311                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1312 }
1313
1314 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1315 {
1316         u32 cmd = cmd_val(s, 0);
1317
1318         if (!is_wait_for_flip_pending(cmd))
1319                 return 0;
1320
1321         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1322         return 0;
1323 }
1324
1325 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1326 {
1327         unsigned long addr;
1328         unsigned long gma_high, gma_low;
1329         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1330
1331         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8))
1332                 return INTEL_GVT_INVALID_ADDR;
1333
1334         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1335         if (gmadr_bytes == 4) {
1336                 addr = gma_low;
1337         } else {
1338                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1339                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1340         }
1341         return addr;
1342 }
1343
1344 static inline int cmd_address_audit(struct parser_exec_state *s,
1345                 unsigned long guest_gma, int op_size, bool index_mode)
1346 {
1347         struct intel_vgpu *vgpu = s->vgpu;
1348         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1349         int i;
1350         int ret;
1351
1352         if (op_size > max_surface_size) {
1353                 gvt_err("command address audit fail name %s\n", s->info->name);
1354                 return -EINVAL;
1355         }
1356
1357         if (index_mode) {
1358                 if (guest_gma >= GTT_PAGE_SIZE / sizeof(u64)) {
1359                         ret = -EINVAL;
1360                         goto err;
1361                 }
1362         } else if ((!vgpu_gmadr_is_valid(s->vgpu, guest_gma)) ||
1363                         (!vgpu_gmadr_is_valid(s->vgpu,
1364                                               guest_gma + op_size - 1))) {
1365                 ret = -EINVAL;
1366                 goto err;
1367         }
1368         return 0;
1369 err:
1370         gvt_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1371                         s->info->name, guest_gma, op_size);
1372
1373         pr_err("cmd dump: ");
1374         for (i = 0; i < cmd_length(s); i++) {
1375                 if (!(i % 4))
1376                         pr_err("\n%08x ", cmd_val(s, i));
1377                 else
1378                         pr_err("%08x ", cmd_val(s, i));
1379         }
1380         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1381                         vgpu->id,
1382                         vgpu_aperture_gmadr_base(vgpu),
1383                         vgpu_aperture_gmadr_end(vgpu),
1384                         vgpu_hidden_gmadr_base(vgpu),
1385                         vgpu_hidden_gmadr_end(vgpu));
1386         return ret;
1387 }
1388
1389 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1390 {
1391         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1392         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1393         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1394         unsigned long gma, gma_low, gma_high;
1395         int ret = 0;
1396
1397         /* check ppggt */
1398         if (!(cmd_val(s, 0) & (1 << 22)))
1399                 return 0;
1400
1401         gma = cmd_val(s, 2) & GENMASK(31, 2);
1402
1403         if (gmadr_bytes == 8) {
1404                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1405                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1406                 gma = (gma_high << 32) | gma_low;
1407                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1408         }
1409         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1410         return ret;
1411 }
1412
1413 static inline int unexpected_cmd(struct parser_exec_state *s)
1414 {
1415         gvt_err("vgpu%d: Unexpected %s in command buffer!\n",
1416                         s->vgpu->id, s->info->name);
1417         return -EINVAL;
1418 }
1419
1420 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1421 {
1422         return unexpected_cmd(s);
1423 }
1424
1425 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1426 {
1427         return unexpected_cmd(s);
1428 }
1429
1430 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1431 {
1432         return unexpected_cmd(s);
1433 }
1434
1435 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1436 {
1437         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1438         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1439                         sizeof(u32);
1440         unsigned long gma, gma_high;
1441         int ret = 0;
1442
1443         if (!(cmd_val(s, 0) & (1 << 22)))
1444                 return ret;
1445
1446         gma = cmd_val(s, 1) & GENMASK(31, 2);
1447         if (gmadr_bytes == 8) {
1448                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1449                 gma = (gma_high << 32) | gma;
1450         }
1451         ret = cmd_address_audit(s, gma, op_size, false);
1452         return ret;
1453 }
1454
1455 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1456 {
1457         return unexpected_cmd(s);
1458 }
1459
1460 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1461 {
1462         return unexpected_cmd(s);
1463 }
1464
1465 static int cmd_handler_mi_conditional_batch_buffer_end(
1466                 struct parser_exec_state *s)
1467 {
1468         return unexpected_cmd(s);
1469 }
1470
1471 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1472 {
1473         return unexpected_cmd(s);
1474 }
1475
1476 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1477 {
1478         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1479         unsigned long gma;
1480         bool index_mode = false;
1481         int ret = 0;
1482
1483         /* Check post-sync and ppgtt bit */
1484         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1485                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1486                 if (gmadr_bytes == 8)
1487                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1488                 /* Store Data Index */
1489                 if (cmd_val(s, 0) & (1 << 21))
1490                         index_mode = true;
1491                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1492         }
1493         /* Check notify bit */
1494         if ((cmd_val(s, 0) & (1 << 8)))
1495                 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1496                                 s->workload->pending_events);
1497         return ret;
1498 }
1499
1500 static void addr_type_update_snb(struct parser_exec_state *s)
1501 {
1502         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1503                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1504                 s->buf_addr_type = PPGTT_BUFFER;
1505         }
1506 }
1507
1508
1509 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1510                 unsigned long gma, unsigned long end_gma, void *va)
1511 {
1512         unsigned long copy_len, offset;
1513         unsigned long len = 0;
1514         unsigned long gpa;
1515
1516         while (gma != end_gma) {
1517                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1518                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1519                         gvt_err("invalid gma address: %lx\n", gma);
1520                         return -EFAULT;
1521                 }
1522
1523                 offset = gma & (GTT_PAGE_SIZE - 1);
1524
1525                 copy_len = (end_gma - gma) >= (GTT_PAGE_SIZE - offset) ?
1526                         GTT_PAGE_SIZE - offset : end_gma - gma;
1527
1528                 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1529
1530                 len += copy_len;
1531                 gma += copy_len;
1532         }
1533         return 0;
1534 }
1535
1536
1537 /*
1538  * Check whether a batch buffer needs to be scanned. Currently
1539  * the only criteria is based on privilege.
1540  */
1541 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1542 {
1543         struct intel_gvt *gvt = s->vgpu->gvt;
1544
1545         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
1546                 /* BDW decides privilege based on address space */
1547                 if (cmd_val(s, 0) & (1 << 8))
1548                         return 0;
1549         }
1550         return 1;
1551 }
1552
1553 static uint32_t find_bb_size(struct parser_exec_state *s)
1554 {
1555         unsigned long gma = 0;
1556         struct cmd_info *info;
1557         uint32_t bb_size = 0;
1558         uint32_t cmd_len = 0;
1559         bool met_bb_end = false;
1560         u32 cmd;
1561
1562         /* get the start gm address of the batch buffer */
1563         gma = get_gma_bb_from_cmd(s, 1);
1564         cmd = cmd_val(s, 0);
1565
1566         info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1567         if (info == NULL) {
1568                 gvt_err("unknown cmd 0x%x, opcode=0x%x\n",
1569                                 cmd, get_opcode(cmd, s->ring_id));
1570                 return -EINVAL;
1571         }
1572         do {
1573                 copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1574                                 gma, gma + 4, &cmd);
1575                 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1576                 if (info == NULL) {
1577                         gvt_err("unknown cmd 0x%x, opcode=0x%x\n",
1578                                 cmd, get_opcode(cmd, s->ring_id));
1579                         return -EINVAL;
1580                 }
1581
1582                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1583                         met_bb_end = true;
1584                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1585                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) {
1586                                 /* chained batch buffer */
1587                                 met_bb_end = true;
1588                         }
1589                 }
1590                 cmd_len = get_cmd_length(info, cmd) << 2;
1591                 bb_size += cmd_len;
1592                 gma += cmd_len;
1593
1594         } while (!met_bb_end);
1595
1596         return bb_size;
1597 }
1598
1599 static int perform_bb_shadow(struct parser_exec_state *s)
1600 {
1601         struct intel_shadow_bb_entry *entry_obj;
1602         unsigned long gma = 0;
1603         uint32_t bb_size;
1604         void *dst = NULL;
1605         int ret = 0;
1606
1607         /* get the start gm address of the batch buffer */
1608         gma = get_gma_bb_from_cmd(s, 1);
1609
1610         /* get the size of the batch buffer */
1611         bb_size = find_bb_size(s);
1612
1613         /* allocate shadow batch buffer */
1614         entry_obj = kmalloc(sizeof(*entry_obj), GFP_KERNEL);
1615         if (entry_obj == NULL)
1616                 return -ENOMEM;
1617
1618         entry_obj->obj =
1619                 i915_gem_object_create(s->vgpu->gvt->dev_priv,
1620                                        roundup(bb_size, PAGE_SIZE));
1621         if (IS_ERR(entry_obj->obj)) {
1622                 ret = PTR_ERR(entry_obj->obj);
1623                 goto free_entry;
1624         }
1625         entry_obj->len = bb_size;
1626         INIT_LIST_HEAD(&entry_obj->list);
1627
1628         dst = i915_gem_object_pin_map(entry_obj->obj, I915_MAP_WB);
1629         if (IS_ERR(dst)) {
1630                 ret = PTR_ERR(dst);
1631                 goto put_obj;
1632         }
1633
1634         ret = i915_gem_object_set_to_cpu_domain(entry_obj->obj, false);
1635         if (ret) {
1636                 gvt_err("failed to set shadow batch to CPU\n");
1637                 goto unmap_src;
1638         }
1639
1640         entry_obj->va = dst;
1641         entry_obj->bb_start_cmd_va = s->ip_va;
1642
1643         /* copy batch buffer to shadow batch buffer*/
1644         ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1645                               gma, gma + bb_size,
1646                               dst);
1647         if (ret) {
1648                 gvt_err("fail to copy guest ring buffer\n");
1649                 goto unmap_src;
1650         }
1651
1652         list_add(&entry_obj->list, &s->workload->shadow_bb);
1653         /*
1654          * ip_va saves the virtual address of the shadow batch buffer, while
1655          * ip_gma saves the graphics address of the original batch buffer.
1656          * As the shadow batch buffer is just a copy from the originial one,
1657          * it should be right to use shadow batch buffer'va and original batch
1658          * buffer's gma in pair. After all, we don't want to pin the shadow
1659          * buffer here (too early).
1660          */
1661         s->ip_va = dst;
1662         s->ip_gma = gma;
1663
1664         return 0;
1665
1666 unmap_src:
1667         i915_gem_object_unpin_map(entry_obj->obj);
1668 put_obj:
1669         i915_gem_object_put(entry_obj->obj);
1670 free_entry:
1671         kfree(entry_obj);
1672         return ret;
1673 }
1674
1675 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1676 {
1677         bool second_level;
1678         int ret = 0;
1679
1680         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1681                 gvt_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1682                 return -EINVAL;
1683         }
1684
1685         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1686         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1687                 gvt_err("Jumping to 2nd level BB from RB is not allowed\n");
1688                 return -EINVAL;
1689         }
1690
1691         s->saved_buf_addr_type = s->buf_addr_type;
1692         addr_type_update_snb(s);
1693         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1694                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1695                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1696         } else if (second_level) {
1697                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1698                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1699                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1700         }
1701
1702         if (batch_buffer_needs_scan(s)) {
1703                 ret = perform_bb_shadow(s);
1704                 if (ret < 0)
1705                         gvt_err("invalid shadow batch buffer\n");
1706         } else {
1707                 /* emulate a batch buffer end to do return right */
1708                 ret = cmd_handler_mi_batch_buffer_end(s);
1709                 if (ret < 0)
1710                         return ret;
1711         }
1712
1713         return ret;
1714 }
1715
1716 static struct cmd_info cmd_info[] = {
1717         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1718
1719         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1720                 0, 1, NULL},
1721
1722         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1723                 0, 1, cmd_handler_mi_user_interrupt},
1724
1725         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1726                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1727
1728         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1729
1730         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1731                 NULL},
1732
1733         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1734                 NULL},
1735
1736         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1737                 NULL},
1738
1739         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1740                 NULL},
1741
1742         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1743                 D_ALL, 0, 1, NULL},
1744
1745         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1746                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1747                 cmd_handler_mi_batch_buffer_end},
1748
1749         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1750                 0, 1, NULL},
1751
1752         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1753                 NULL},
1754
1755         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1756                 D_ALL, 0, 1, NULL},
1757
1758         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1759                 NULL},
1760
1761         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1762                 NULL},
1763
1764         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1765                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1766
1767         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1768                 0, 8, NULL},
1769
1770         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1771
1772         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1773
1774         {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1775                 D_BDW_PLUS, 0, 8, NULL},
1776
1777         {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1778                 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1779
1780         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1781                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1782
1783         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1784                 0, 8, cmd_handler_mi_store_data_index},
1785
1786         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1787                 D_ALL, 0, 8, cmd_handler_lri},
1788
1789         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1790                 cmd_handler_mi_update_gtt},
1791
1792         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1793                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1794
1795         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1796                 cmd_handler_mi_flush_dw},
1797
1798         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1799                 10, cmd_handler_mi_clflush},
1800
1801         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1802                 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1803
1804         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1805                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1806
1807         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1808                 D_ALL, 0, 8, cmd_handler_lrr},
1809
1810         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1811                 D_ALL, 0, 8, NULL},
1812
1813         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1814                 ADDR_FIX_1(2), 8, NULL},
1815
1816         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1817                 ADDR_FIX_1(2), 8, NULL},
1818
1819         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1820                 8, cmd_handler_mi_op_2e},
1821
1822         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1823                 8, cmd_handler_mi_op_2f},
1824
1825         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1826                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1827                 cmd_handler_mi_batch_buffer_start},
1828
1829         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1830                 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1831                 cmd_handler_mi_conditional_batch_buffer_end},
1832
1833         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1834                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1835
1836         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1837                 ADDR_FIX_2(4, 7), 8, NULL},
1838
1839         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1840                 0, 8, NULL},
1841
1842         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1843                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1844
1845         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1846
1847         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1848                 0, 8, NULL},
1849
1850         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1851                 ADDR_FIX_1(3), 8, NULL},
1852
1853         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1854                 D_ALL, 0, 8, NULL},
1855
1856         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1857                 ADDR_FIX_1(4), 8, NULL},
1858
1859         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1860                 ADDR_FIX_2(4, 5), 8, NULL},
1861
1862         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1863                 ADDR_FIX_1(4), 8, NULL},
1864
1865         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1866                 ADDR_FIX_2(4, 7), 8, NULL},
1867
1868         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1869                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1870
1871         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1872
1873         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1874                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1875
1876         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
1877                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1878
1879         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
1880                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
1881                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1882
1883         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
1884                 D_ALL, ADDR_FIX_1(4), 8, NULL},
1885
1886         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
1887                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1888
1889         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
1890                 D_ALL, ADDR_FIX_1(4), 8, NULL},
1891
1892         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
1893                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1894
1895         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
1896                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1897
1898         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
1899                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
1900                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1901
1902         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
1903                 ADDR_FIX_2(4, 5), 8, NULL},
1904
1905         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
1906                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1907
1908         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
1909                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
1910                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1911
1912         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
1913                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
1914                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1915
1916         {"3DSTATE_BLEND_STATE_POINTERS",
1917                 OP_3DSTATE_BLEND_STATE_POINTERS,
1918                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1919
1920         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
1921                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
1922                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1923
1924         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
1925                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
1926                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1927
1928         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
1929                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
1930                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1931
1932         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
1933                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
1934                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1935
1936         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
1937                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
1938                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1939
1940         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
1941                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
1942                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1943
1944         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
1945                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
1946                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1947
1948         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
1949                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
1950                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1951
1952         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
1953                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
1954                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1955
1956         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
1957                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
1958                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1959
1960         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
1961                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
1962                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1963
1964         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
1965                 0, 8, NULL},
1966
1967         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
1968                 0, 8, NULL},
1969
1970         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
1971                 0, 8, NULL},
1972
1973         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
1974                 0, 8, NULL},
1975
1976         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
1977                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1978
1979         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
1980                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1981
1982         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
1983                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1984
1985         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
1986                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1987
1988         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
1989                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1990
1991         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
1992                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
1993
1994         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
1995                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
1996
1997         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
1998                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1999
2000         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2001                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2002
2003         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2004                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2005
2006         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2007                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2008
2009         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2010                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2011
2012         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2013                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2014
2015         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2016                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2017
2018         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2019                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2020
2021         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2022                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2023
2024         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2025                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2026
2027         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2028                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2029
2030         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2031                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2032
2033         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2034                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2035
2036         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2037                 D_BDW_PLUS, 0, 8, NULL},
2038
2039         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2040                 NULL},
2041
2042         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2043                 D_BDW_PLUS, 0, 8, NULL},
2044
2045         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2046                 D_BDW_PLUS, 0, 8, NULL},
2047
2048         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2049                 8, NULL},
2050
2051         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2052                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2053
2054         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2055                 8, NULL},
2056
2057         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2058                 NULL},
2059
2060         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2061                 NULL},
2062
2063         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2064                 NULL},
2065
2066         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2067                 D_BDW_PLUS, 0, 8, NULL},
2068
2069         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2070                 R_RCS, D_ALL, 0, 8, NULL},
2071
2072         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2073                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2074
2075         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2076                 R_RCS, D_ALL, 0, 1, NULL},
2077
2078         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2079
2080         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2081                 R_RCS, D_ALL, 0, 8, NULL},
2082
2083         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2084                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2085
2086         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2087
2088         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2089
2090         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2091
2092         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2093                 D_BDW_PLUS, 0, 8, NULL},
2094
2095         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2096                 D_BDW_PLUS, 0, 8, NULL},
2097
2098         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2099                 D_ALL, 0, 8, NULL},
2100
2101         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2102                 D_BDW_PLUS, 0, 8, NULL},
2103
2104         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2105                 D_BDW_PLUS, 0, 8, NULL},
2106
2107         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2108
2109         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2110
2111         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2112
2113         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2114                 D_ALL, 0, 8, NULL},
2115
2116         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2117
2118         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2119
2120         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2121                 R_RCS, D_ALL, 0, 8, NULL},
2122
2123         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2124                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2125
2126         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2127                 0, 8, NULL},
2128
2129         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2130                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2131
2132         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2133                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2134
2135         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2136                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2137
2138         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2139                 D_ALL, 0, 8, NULL},
2140
2141         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2142                 D_ALL, 0, 8, NULL},
2143
2144         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2145                 D_ALL, 0, 8, NULL},
2146
2147         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2148                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2149
2150         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2151                 D_BDW_PLUS, 0, 8, NULL},
2152
2153         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2154                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2155
2156         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2157                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2158
2159         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2160                 R_RCS, D_ALL, 0, 8, NULL},
2161
2162         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2163                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2164
2165         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2166                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2167
2168         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2169                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2170
2171         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2172                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2173
2174         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2175                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2176
2177         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2178                 R_RCS, D_ALL, 0, 8, NULL},
2179
2180         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2181                 D_ALL, 0, 9, NULL},
2182
2183         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2184                 ADDR_FIX_2(2, 4), 8, NULL},
2185
2186         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2187                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2188                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2189
2190         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2191                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2192
2193         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2194                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2195                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2196
2197         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2198                 D_BDW_PLUS, 0, 8, NULL},
2199
2200         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2201                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2202
2203         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2204
2205         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2206                 1, NULL},
2207
2208         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2209                 ADDR_FIX_1(1), 8, NULL},
2210
2211         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2212
2213         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2214                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2215
2216         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2217                 ADDR_FIX_1(1), 8, NULL},
2218
2219         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2220
2221         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2222
2223         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2224                 0, 8, NULL},
2225
2226         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2227                 D_SKL_PLUS, 0, 8, NULL},
2228
2229         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2230                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2231
2232         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2233                 0, 16, NULL},
2234
2235         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2236                 0, 16, NULL},
2237
2238         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2239
2240         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2241                 0, 16, NULL},
2242
2243         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2244                 0, 16, NULL},
2245
2246         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2247                 0, 16, NULL},
2248
2249         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2250                 0, 8, NULL},
2251
2252         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2253                 NULL},
2254
2255         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2256                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2257
2258         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2259                 R_VCS, D_ALL, 0, 12, NULL},
2260
2261         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2262                 R_VCS, D_ALL, 0, 12, NULL},
2263
2264         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2265                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2266
2267         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2268                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2269
2270         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2271                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2272
2273         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2274
2275         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2276                 R_VCS, D_ALL, 0, 12, NULL},
2277
2278         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2279                 R_VCS, D_ALL, 0, 12, NULL},
2280
2281         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2282                 R_VCS, D_ALL, 0, 12, NULL},
2283
2284         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2285                 R_VCS, D_ALL, 0, 12, NULL},
2286
2287         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2288                 R_VCS, D_ALL, 0, 12, NULL},
2289
2290         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2291                 R_VCS, D_ALL, 0, 12, NULL},
2292
2293         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2294                 R_VCS, D_ALL, 0, 6, NULL},
2295
2296         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2297                 R_VCS, D_ALL, 0, 12, NULL},
2298
2299         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2300                 R_VCS, D_ALL, 0, 12, NULL},
2301
2302         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2303                 R_VCS, D_ALL, 0, 12, NULL},
2304
2305         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2306                 R_VCS, D_ALL, 0, 12, NULL},
2307
2308         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2309                 R_VCS, D_ALL, 0, 12, NULL},
2310
2311         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2312                 R_VCS, D_ALL, 0, 12, NULL},
2313
2314         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2315                 R_VCS, D_ALL, 0, 12, NULL},
2316         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2317                 R_VCS, D_ALL, 0, 12, NULL},
2318
2319         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2320                 R_VCS, D_ALL, 0, 12, NULL},
2321
2322         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2323                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2324
2325         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2326                 R_VCS, D_ALL, 0, 12, NULL},
2327
2328         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2329                 R_VCS, D_ALL, 0, 12, NULL},
2330
2331         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2332                 R_VCS, D_ALL, 0, 12, NULL},
2333
2334         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2335                 R_VCS, D_ALL, 0, 12, NULL},
2336
2337         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2338                 R_VCS, D_ALL, 0, 12, NULL},
2339
2340         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2341                 R_VCS, D_ALL, 0, 12, NULL},
2342
2343         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2344                 R_VCS, D_ALL, 0, 12, NULL},
2345
2346         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2347                 R_VCS, D_ALL, 0, 12, NULL},
2348
2349         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2350                 R_VCS, D_ALL, 0, 12, NULL},
2351
2352         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2353                 R_VCS, D_ALL, 0, 12, NULL},
2354
2355         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2356                 R_VCS, D_ALL, 0, 12, NULL},
2357
2358         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2359                 0, 16, NULL},
2360
2361         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2362
2363         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2364
2365         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2366                 R_VCS, D_ALL, 0, 12, NULL},
2367
2368         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2369                 R_VCS, D_ALL, 0, 12, NULL},
2370
2371         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2372                 R_VCS, D_ALL, 0, 12, NULL},
2373
2374         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2375
2376         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2377                 0, 12, NULL},
2378
2379         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2380                 0, 20, NULL},
2381 };
2382
2383 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2384 {
2385         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2386 }
2387
2388 #define GVT_MAX_CMD_LENGTH     20  /* In Dword */
2389
2390 static void trace_cs_command(struct parser_exec_state *s,
2391                 cycles_t cost_pre_cmd_handler, cycles_t cost_cmd_handler)
2392 {
2393         /* This buffer is used by ftrace to store all commands copied from
2394          * guest gma space. Sometimes commands can cross pages, this should
2395          * not be handled in ftrace logic. So this is just used as a
2396          * 'bounce buffer'
2397          */
2398         u32 cmd_trace_buf[GVT_MAX_CMD_LENGTH];
2399         int i;
2400         u32 cmd_len = cmd_length(s);
2401         /* The chosen value of GVT_MAX_CMD_LENGTH are just based on
2402          * following two considerations:
2403          * 1) From observation, most common ring commands is not that long.
2404          *    But there are execeptions. So it indeed makes sence to observe
2405          *    longer commands.
2406          * 2) From the performance and debugging point of view, dumping all
2407          *    contents of very commands is not necessary.
2408          * We mgith shrink GVT_MAX_CMD_LENGTH or remove this trace event in
2409          * future for performance considerations.
2410          */
2411         if (unlikely(cmd_len > GVT_MAX_CMD_LENGTH)) {
2412                 gvt_dbg_cmd("cmd length exceed tracing limitation!\n");
2413                 cmd_len = GVT_MAX_CMD_LENGTH;
2414         }
2415
2416         for (i = 0; i < cmd_len; i++)
2417                 cmd_trace_buf[i] = cmd_val(s, i);
2418
2419         trace_gvt_command(s->vgpu->id, s->ring_id, s->ip_gma, cmd_trace_buf,
2420                         cmd_len, s->buf_type == RING_BUFFER_INSTRUCTION,
2421                         cost_pre_cmd_handler, cost_cmd_handler);
2422 }
2423
2424 /* call the cmd handler, and advance ip */
2425 static int cmd_parser_exec(struct parser_exec_state *s)
2426 {
2427         struct cmd_info *info;
2428         u32 cmd;
2429         int ret = 0;
2430         cycles_t t0, t1, t2;
2431         struct parser_exec_state s_before_advance_custom;
2432
2433         t0 = get_cycles();
2434
2435         cmd = cmd_val(s, 0);
2436
2437         info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2438         if (info == NULL) {
2439                 gvt_err("unknown cmd 0x%x, opcode=0x%x\n",
2440                                 cmd, get_opcode(cmd, s->ring_id));
2441                 return -EINVAL;
2442         }
2443
2444         gvt_dbg_cmd("%s\n", info->name);
2445
2446         s->info = info;
2447
2448         t1 = get_cycles();
2449
2450         memcpy(&s_before_advance_custom, s, sizeof(struct parser_exec_state));
2451
2452         if (info->handler) {
2453                 ret = info->handler(s);
2454                 if (ret < 0) {
2455                         gvt_err("%s handler error\n", info->name);
2456                         return ret;
2457                 }
2458         }
2459         t2 = get_cycles();
2460
2461         trace_cs_command(&s_before_advance_custom, t1 - t0, t2 - t1);
2462
2463         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2464                 ret = cmd_advance_default(s);
2465                 if (ret) {
2466                         gvt_err("%s IP advance error\n", info->name);
2467                         return ret;
2468                 }
2469         }
2470         return 0;
2471 }
2472
2473 static inline bool gma_out_of_range(unsigned long gma,
2474                 unsigned long gma_head, unsigned int gma_tail)
2475 {
2476         if (gma_tail >= gma_head)
2477                 return (gma < gma_head) || (gma > gma_tail);
2478         else
2479                 return (gma > gma_tail) && (gma < gma_head);
2480 }
2481
2482 static int command_scan(struct parser_exec_state *s,
2483                 unsigned long rb_head, unsigned long rb_tail,
2484                 unsigned long rb_start, unsigned long rb_len)
2485 {
2486
2487         unsigned long gma_head, gma_tail, gma_bottom;
2488         int ret = 0;
2489
2490         gma_head = rb_start + rb_head;
2491         gma_tail = rb_start + rb_tail;
2492         gma_bottom = rb_start +  rb_len;
2493
2494         gvt_dbg_cmd("scan_start: start=%lx end=%lx\n", gma_head, gma_tail);
2495
2496         while (s->ip_gma != gma_tail) {
2497                 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2498                         if (!(s->ip_gma >= rb_start) ||
2499                                 !(s->ip_gma < gma_bottom)) {
2500                                 gvt_err("ip_gma %lx out of ring scope."
2501                                         "(base:0x%lx, bottom: 0x%lx)\n",
2502                                         s->ip_gma, rb_start,
2503                                         gma_bottom);
2504                                 parser_exec_state_dump(s);
2505                                 return -EINVAL;
2506                         }
2507                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2508                                 gvt_err("ip_gma %lx out of range."
2509                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2510                                         s->ip_gma, rb_start,
2511                                         rb_head, rb_tail);
2512                                 parser_exec_state_dump(s);
2513                                 break;
2514                         }
2515                 }
2516                 ret = cmd_parser_exec(s);
2517                 if (ret) {
2518                         gvt_err("cmd parser error\n");
2519                         parser_exec_state_dump(s);
2520                         break;
2521                 }
2522         }
2523
2524         gvt_dbg_cmd("scan_end\n");
2525
2526         return ret;
2527 }
2528
2529 static int scan_workload(struct intel_vgpu_workload *workload)
2530 {
2531         unsigned long gma_head, gma_tail, gma_bottom;
2532         struct parser_exec_state s;
2533         int ret = 0;
2534
2535         /* ring base is page aligned */
2536         if (WARN_ON(!IS_ALIGNED(workload->rb_start, GTT_PAGE_SIZE)))
2537                 return -EINVAL;
2538
2539         gma_head = workload->rb_start + workload->rb_head;
2540         gma_tail = workload->rb_start + workload->rb_tail;
2541         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2542
2543         s.buf_type = RING_BUFFER_INSTRUCTION;
2544         s.buf_addr_type = GTT_BUFFER;
2545         s.vgpu = workload->vgpu;
2546         s.ring_id = workload->ring_id;
2547         s.ring_start = workload->rb_start;
2548         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2549         s.ring_head = gma_head;
2550         s.ring_tail = gma_tail;
2551         s.rb_va = workload->shadow_ring_buffer_va;
2552         s.workload = workload;
2553
2554         if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2555                 gma_head == gma_tail)
2556                 return 0;
2557
2558         ret = ip_gma_set(&s, gma_head);
2559         if (ret)
2560                 goto out;
2561
2562         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2563                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2564
2565 out:
2566         return ret;
2567 }
2568
2569 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2570 {
2571
2572         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2573         struct parser_exec_state s;
2574         int ret = 0;
2575
2576         /* ring base is page aligned */
2577         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, GTT_PAGE_SIZE)))
2578                 return -EINVAL;
2579
2580         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2581         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2582                         PAGE_SIZE);
2583         gma_head = wa_ctx->indirect_ctx.guest_gma;
2584         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2585         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2586
2587         s.buf_type = RING_BUFFER_INSTRUCTION;
2588         s.buf_addr_type = GTT_BUFFER;
2589         s.vgpu = wa_ctx->workload->vgpu;
2590         s.ring_id = wa_ctx->workload->ring_id;
2591         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2592         s.ring_size = ring_size;
2593         s.ring_head = gma_head;
2594         s.ring_tail = gma_tail;
2595         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2596         s.workload = wa_ctx->workload;
2597
2598         ret = ip_gma_set(&s, gma_head);
2599         if (ret)
2600                 goto out;
2601
2602         ret = command_scan(&s, 0, ring_tail,
2603                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2604 out:
2605         return ret;
2606 }
2607
2608 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2609 {
2610         struct intel_vgpu *vgpu = workload->vgpu;
2611         int ring_id = workload->ring_id;
2612         struct i915_gem_context *shadow_ctx = vgpu->shadow_ctx;
2613         struct intel_ring *ring = shadow_ctx->engine[ring_id].ring;
2614         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2615         unsigned int copy_len = 0;
2616         int ret;
2617
2618         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2619
2620         /* calculate workload ring buffer size */
2621         workload->rb_len = (workload->rb_tail + guest_rb_size -
2622                         workload->rb_head) % guest_rb_size;
2623
2624         gma_head = workload->rb_start + workload->rb_head;
2625         gma_tail = workload->rb_start + workload->rb_tail;
2626         gma_top = workload->rb_start + guest_rb_size;
2627
2628         /* allocate shadow ring buffer */
2629         ret = intel_ring_begin(workload->req, workload->rb_len / 4);
2630         if (ret)
2631                 return ret;
2632
2633         /* get shadow ring buffer va */
2634         workload->shadow_ring_buffer_va = ring->vaddr + ring->tail;
2635
2636         /* head > tail --> copy head <-> top */
2637         if (gma_head > gma_tail) {
2638                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2639                                 gma_head, gma_top,
2640                                 workload->shadow_ring_buffer_va);
2641                 if (ret) {
2642                         gvt_err("fail to copy guest ring buffer\n");
2643                         return ret;
2644                 }
2645                 copy_len = gma_top - gma_head;
2646                 gma_head = workload->rb_start;
2647         }
2648
2649         /* copy head or start <-> tail */
2650         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2651                         gma_head, gma_tail,
2652                         workload->shadow_ring_buffer_va + copy_len);
2653         if (ret) {
2654                 gvt_err("fail to copy guest ring buffer\n");
2655                 return ret;
2656         }
2657         ring->tail += workload->rb_len;
2658         intel_ring_advance(ring);
2659         return 0;
2660 }
2661
2662 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
2663 {
2664         int ret;
2665
2666         ret = shadow_workload_ring_buffer(workload);
2667         if (ret) {
2668                 gvt_err("fail to shadow workload ring_buffer\n");
2669                 return ret;
2670         }
2671
2672         ret = scan_workload(workload);
2673         if (ret) {
2674                 gvt_err("scan workload error\n");
2675                 return ret;
2676         }
2677         return 0;
2678 }
2679
2680 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2681 {
2682         int ctx_size = wa_ctx->indirect_ctx.size;
2683         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2684         struct drm_i915_gem_object *obj;
2685         int ret = 0;
2686         void *map;
2687
2688         obj = i915_gem_object_create(wa_ctx->workload->vgpu->gvt->dev_priv,
2689                                      roundup(ctx_size + CACHELINE_BYTES,
2690                                              PAGE_SIZE));
2691         if (IS_ERR(obj))
2692                 return PTR_ERR(obj);
2693
2694         /* get the va of the shadow batch buffer */
2695         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2696         if (IS_ERR(map)) {
2697                 gvt_err("failed to vmap shadow indirect ctx\n");
2698                 ret = PTR_ERR(map);
2699                 goto put_obj;
2700         }
2701
2702         ret = i915_gem_object_set_to_cpu_domain(obj, false);
2703         if (ret) {
2704                 gvt_err("failed to set shadow indirect ctx to CPU\n");
2705                 goto unmap_src;
2706         }
2707
2708         ret = copy_gma_to_hva(wa_ctx->workload->vgpu,
2709                                 wa_ctx->workload->vgpu->gtt.ggtt_mm,
2710                                 guest_gma, guest_gma + ctx_size,
2711                                 map);
2712         if (ret) {
2713                 gvt_err("fail to copy guest indirect ctx\n");
2714                 goto unmap_src;
2715         }
2716
2717         wa_ctx->indirect_ctx.obj = obj;
2718         wa_ctx->indirect_ctx.shadow_va = map;
2719         return 0;
2720
2721 unmap_src:
2722         i915_gem_object_unpin_map(obj);
2723 put_obj:
2724         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
2725         return ret;
2726 }
2727
2728 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2729 {
2730         uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2731         unsigned char *bb_start_sva;
2732
2733         per_ctx_start[0] = 0x18800001;
2734         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2735
2736         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2737                                 wa_ctx->indirect_ctx.size;
2738
2739         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2740
2741         return 0;
2742 }
2743
2744 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2745 {
2746         int ret;
2747
2748         if (wa_ctx->indirect_ctx.size == 0)
2749                 return 0;
2750
2751         ret = shadow_indirect_ctx(wa_ctx);
2752         if (ret) {
2753                 gvt_err("fail to shadow indirect ctx\n");
2754                 return ret;
2755         }
2756
2757         combine_wa_ctx(wa_ctx);
2758
2759         ret = scan_wa_ctx(wa_ctx);
2760         if (ret) {
2761                 gvt_err("scan wa ctx error\n");
2762                 return ret;
2763         }
2764
2765         return 0;
2766 }
2767
2768 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2769                 unsigned int opcode, int rings)
2770 {
2771         struct cmd_info *info = NULL;
2772         unsigned int ring;
2773
2774         for_each_set_bit(ring, (unsigned long *)&rings, I915_NUM_ENGINES) {
2775                 info = find_cmd_entry(gvt, opcode, ring);
2776                 if (info)
2777                         break;
2778         }
2779         return info;
2780 }
2781
2782 static int init_cmd_table(struct intel_gvt *gvt)
2783 {
2784         int i;
2785         struct cmd_entry *e;
2786         struct cmd_info *info;
2787         unsigned int gen_type;
2788
2789         gen_type = intel_gvt_get_device_type(gvt);
2790
2791         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2792                 if (!(cmd_info[i].devices & gen_type))
2793                         continue;
2794
2795                 e = kzalloc(sizeof(*e), GFP_KERNEL);
2796                 if (!e)
2797                         return -ENOMEM;
2798
2799                 e->info = &cmd_info[i];
2800                 info = find_cmd_entry_any_ring(gvt,
2801                                 e->info->opcode, e->info->rings);
2802                 if (info) {
2803                         gvt_err("%s %s duplicated\n", e->info->name,
2804                                         info->name);
2805                         return -EEXIST;
2806                 }
2807
2808                 INIT_HLIST_NODE(&e->hlist);
2809                 add_cmd_entry(gvt, e);
2810                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2811                                 e->info->name, e->info->opcode, e->info->flag,
2812                                 e->info->devices, e->info->rings);
2813         }
2814         return 0;
2815 }
2816
2817 static void clean_cmd_table(struct intel_gvt *gvt)
2818 {
2819         struct hlist_node *tmp;
2820         struct cmd_entry *e;
2821         int i;
2822
2823         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2824                 kfree(e);
2825
2826         hash_init(gvt->cmd_table);
2827 }
2828
2829 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2830 {
2831         clean_cmd_table(gvt);
2832 }
2833
2834 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2835 {
2836         int ret;
2837
2838         ret = init_cmd_table(gvt);
2839         if (ret) {
2840                 intel_gvt_clean_cmd_parser(gvt);
2841                 return ret;
2842         }
2843         return 0;
2844 }