]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
0b3550f050262265d68d971d1279f53889d741aa
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->pin_display)
95                 return "p";
96         else
97                 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (obj->tiling_mode) {
103         default:
104         case I915_TILING_NONE: return " ";
105         case I915_TILING_X: return "X";
106         case I915_TILING_Y: return "Y";
107         }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117         u64 size = 0;
118         struct i915_vma *vma;
119
120         list_for_each_entry(vma, &obj->vma_list, vma_link) {
121                 if (i915_is_ggtt(vma->vm) &&
122                     drm_mm_node_allocated(&vma->node))
123                         size += vma->node.size;
124         }
125
126         return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133         struct intel_engine_cs *ring;
134         struct i915_vma *vma;
135         int pin_count = 0;
136         int i;
137
138         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139                    &obj->base,
140                    obj->active ? "*" : " ",
141                    get_pin_flag(obj),
142                    get_tiling_flag(obj),
143                    get_global_flag(obj),
144                    obj->base.size / 1024,
145                    obj->base.read_domains,
146                    obj->base.write_domain);
147         for_each_ring(ring, dev_priv, i)
148                 seq_printf(m, "%x ",
149                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
150         seq_printf(m, "] %x %x%s%s%s",
151                    i915_gem_request_get_seqno(obj->last_write_req),
152                    i915_gem_request_get_seqno(obj->last_fenced_req),
153                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154                    obj->dirty ? " dirty" : "",
155                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156         if (obj->base.name)
157                 seq_printf(m, " (name: %d)", obj->base.name);
158         list_for_each_entry(vma, &obj->vma_list, vma_link) {
159                 if (vma->pin_count > 0)
160                         pin_count++;
161         }
162         seq_printf(m, " (pinned x %d)", pin_count);
163         if (obj->pin_display)
164                 seq_printf(m, " (display)");
165         if (obj->fence_reg != I915_FENCE_REG_NONE)
166                 seq_printf(m, " (fence: %d)", obj->fence_reg);
167         list_for_each_entry(vma, &obj->vma_list, vma_link) {
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_is_ggtt(vma->vm) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_is_ggtt(vma->vm))
172                         seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173                 else
174                         seq_puts(m, ")");
175         }
176         if (obj->stolen)
177                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178         if (obj->pin_display || obj->fault_mappable) {
179                 char s[3], *t = s;
180                 if (obj->pin_display)
181                         *t++ = 'p';
182                 if (obj->fault_mappable)
183                         *t++ = 'f';
184                 *t = '\0';
185                 seq_printf(m, " (%s mappable)", s);
186         }
187         if (obj->last_write_req != NULL)
188                 seq_printf(m, " (%s)",
189                            i915_gem_request_get_ring(obj->last_write_req)->name);
190         if (obj->frontbuffer_bits)
191                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198         seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203         struct drm_info_node *node = m->private;
204         uintptr_t list = (uintptr_t) node->info_ent->data;
205         struct list_head *head;
206         struct drm_device *dev = node->minor->dev;
207         struct drm_i915_private *dev_priv = dev->dev_private;
208         struct i915_address_space *vm = &dev_priv->gtt.base;
209         struct i915_vma *vma;
210         u64 total_obj_size, total_gtt_size;
211         int count, ret;
212
213         ret = mutex_lock_interruptible(&dev->struct_mutex);
214         if (ret)
215                 return ret;
216
217         /* FIXME: the user of this interface might want more than just GGTT */
218         switch (list) {
219         case ACTIVE_LIST:
220                 seq_puts(m, "Active:\n");
221                 head = &vm->active_list;
222                 break;
223         case INACTIVE_LIST:
224                 seq_puts(m, "Inactive:\n");
225                 head = &vm->inactive_list;
226                 break;
227         default:
228                 mutex_unlock(&dev->struct_mutex);
229                 return -EINVAL;
230         }
231
232         total_obj_size = total_gtt_size = count = 0;
233         list_for_each_entry(vma, head, mm_list) {
234                 seq_printf(m, "   ");
235                 describe_obj(m, vma->obj);
236                 seq_printf(m, "\n");
237                 total_obj_size += vma->obj->base.size;
238                 total_gtt_size += vma->node.size;
239                 count++;
240         }
241         mutex_unlock(&dev->struct_mutex);
242
243         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244                    count, total_obj_size, total_gtt_size);
245         return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249                               struct list_head *A, struct list_head *B)
250 {
251         struct drm_i915_gem_object *a =
252                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253         struct drm_i915_gem_object *b =
254                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256         if (a->stolen->start < b->stolen->start)
257                 return -1;
258         if (a->stolen->start > b->stolen->start)
259                 return 1;
260         return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265         struct drm_info_node *node = m->private;
266         struct drm_device *dev = node->minor->dev;
267         struct drm_i915_private *dev_priv = dev->dev_private;
268         struct drm_i915_gem_object *obj;
269         u64 total_obj_size, total_gtt_size;
270         LIST_HEAD(stolen);
271         int count, ret;
272
273         ret = mutex_lock_interruptible(&dev->struct_mutex);
274         if (ret)
275                 return ret;
276
277         total_obj_size = total_gtt_size = count = 0;
278         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279                 if (obj->stolen == NULL)
280                         continue;
281
282                 list_add(&obj->obj_exec_link, &stolen);
283
284                 total_obj_size += obj->base.size;
285                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286                 count++;
287         }
288         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289                 if (obj->stolen == NULL)
290                         continue;
291
292                 list_add(&obj->obj_exec_link, &stolen);
293
294                 total_obj_size += obj->base.size;
295                 count++;
296         }
297         list_sort(NULL, &stolen, obj_rank_by_stolen);
298         seq_puts(m, "Stolen:\n");
299         while (!list_empty(&stolen)) {
300                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301                 seq_puts(m, "   ");
302                 describe_obj(m, obj);
303                 seq_putc(m, '\n');
304                 list_del_init(&obj->obj_exec_link);
305         }
306         mutex_unlock(&dev->struct_mutex);
307
308         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309                    count, total_obj_size, total_gtt_size);
310         return 0;
311 }
312
313 #define count_objects(list, member) do { \
314         list_for_each_entry(obj, list, member) { \
315                 size += i915_gem_obj_total_ggtt_size(obj); \
316                 ++count; \
317                 if (obj->map_and_fenceable) { \
318                         mappable_size += i915_gem_obj_ggtt_size(obj); \
319                         ++mappable_count; \
320                 } \
321         } \
322 } while (0)
323
324 struct file_stats {
325         struct drm_i915_file_private *file_priv;
326         unsigned long count;
327         u64 total, unbound;
328         u64 global, shared;
329         u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334         struct drm_i915_gem_object *obj = ptr;
335         struct file_stats *stats = data;
336         struct i915_vma *vma;
337
338         stats->count++;
339         stats->total += obj->base.size;
340
341         if (obj->base.name || obj->base.dma_buf)
342                 stats->shared += obj->base.size;
343
344         if (USES_FULL_PPGTT(obj->base.dev)) {
345                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346                         struct i915_hw_ppgtt *ppgtt;
347
348                         if (!drm_mm_node_allocated(&vma->node))
349                                 continue;
350
351                         if (i915_is_ggtt(vma->vm)) {
352                                 stats->global += obj->base.size;
353                                 continue;
354                         }
355
356                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357                         if (ppgtt->file_priv != stats->file_priv)
358                                 continue;
359
360                         if (obj->active) /* XXX per-vma statistic */
361                                 stats->active += obj->base.size;
362                         else
363                                 stats->inactive += obj->base.size;
364
365                         return 0;
366                 }
367         } else {
368                 if (i915_gem_obj_ggtt_bound(obj)) {
369                         stats->global += obj->base.size;
370                         if (obj->active)
371                                 stats->active += obj->base.size;
372                         else
373                                 stats->inactive += obj->base.size;
374                         return 0;
375                 }
376         }
377
378         if (!list_empty(&obj->global_list))
379                 stats->unbound += obj->base.size;
380
381         return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385         if (stats.count) \
386                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387                            name, \
388                            stats.count, \
389                            stats.total, \
390                            stats.active, \
391                            stats.inactive, \
392                            stats.global, \
393                            stats.shared, \
394                            stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398                                    struct drm_i915_private *dev_priv)
399 {
400         struct drm_i915_gem_object *obj;
401         struct file_stats stats;
402         struct intel_engine_cs *ring;
403         int i, j;
404
405         memset(&stats, 0, sizeof(stats));
406
407         for_each_ring(ring, dev_priv, i) {
408                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409                         list_for_each_entry(obj,
410                                             &ring->batch_pool.cache_list[j],
411                                             batch_pool_link)
412                                 per_file_stats(0, obj, &stats);
413                 }
414         }
415
416         print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420         list_for_each_entry(vma, list, member) { \
421                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422                 ++count; \
423                 if (vma->obj->map_and_fenceable) { \
424                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425                         ++mappable_count; \
426                 } \
427         } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432         struct drm_info_node *node = m->private;
433         struct drm_device *dev = node->minor->dev;
434         struct drm_i915_private *dev_priv = dev->dev_private;
435         u32 count, mappable_count, purgeable_count;
436         u64 size, mappable_size, purgeable_size;
437         struct drm_i915_gem_object *obj;
438         struct i915_address_space *vm = &dev_priv->gtt.base;
439         struct drm_file *file;
440         struct i915_vma *vma;
441         int ret;
442
443         ret = mutex_lock_interruptible(&dev->struct_mutex);
444         if (ret)
445                 return ret;
446
447         seq_printf(m, "%u objects, %zu bytes\n",
448                    dev_priv->mm.object_count,
449                    dev_priv->mm.object_memory);
450
451         size = count = mappable_size = mappable_count = 0;
452         count_objects(&dev_priv->mm.bound_list, global_list);
453         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454                    count, mappable_count, size, mappable_size);
455
456         size = count = mappable_size = mappable_count = 0;
457         count_vmas(&vm->active_list, mm_list);
458         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459                    count, mappable_count, size, mappable_size);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_vmas(&vm->inactive_list, mm_list);
463         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = purgeable_size = purgeable_count = 0;
467         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468                 size += obj->base.size, ++count;
469                 if (obj->madv == I915_MADV_DONTNEED)
470                         purgeable_size += obj->base.size, ++purgeable_count;
471         }
472         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474         size = count = mappable_size = mappable_count = 0;
475         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476                 if (obj->fault_mappable) {
477                         size += i915_gem_obj_ggtt_size(obj);
478                         ++count;
479                 }
480                 if (obj->pin_display) {
481                         mappable_size += i915_gem_obj_ggtt_size(obj);
482                         ++mappable_count;
483                 }
484                 if (obj->madv == I915_MADV_DONTNEED) {
485                         purgeable_size += obj->base.size;
486                         ++purgeable_count;
487                 }
488         }
489         seq_printf(m, "%u purgeable objects, %llu bytes\n",
490                    purgeable_count, purgeable_size);
491         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492                    mappable_count, mappable_size);
493         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494                    count, size);
495
496         seq_printf(m, "%llu [%llu] gtt total\n",
497                    dev_priv->gtt.base.total,
498                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500         seq_putc(m, '\n');
501         print_batch_pool_stats(m, dev_priv);
502         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503                 struct file_stats stats;
504                 struct task_struct *task;
505
506                 memset(&stats, 0, sizeof(stats));
507                 stats.file_priv = file->driver_priv;
508                 spin_lock(&file->table_lock);
509                 idr_for_each(&file->object_idr, per_file_stats, &stats);
510                 spin_unlock(&file->table_lock);
511                 /*
512                  * Although we have a valid reference on file->pid, that does
513                  * not guarantee that the task_struct who called get_pid() is
514                  * still alive (e.g. get_pid(current) => fork() => exit()).
515                  * Therefore, we need to protect this ->comm access using RCU.
516                  */
517                 rcu_read_lock();
518                 task = pid_task(file->pid, PIDTYPE_PID);
519                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520                 rcu_read_unlock();
521         }
522
523         mutex_unlock(&dev->struct_mutex);
524
525         return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530         struct drm_info_node *node = m->private;
531         struct drm_device *dev = node->minor->dev;
532         uintptr_t list = (uintptr_t) node->info_ent->data;
533         struct drm_i915_private *dev_priv = dev->dev_private;
534         struct drm_i915_gem_object *obj;
535         u64 total_obj_size, total_gtt_size;
536         int count, ret;
537
538         ret = mutex_lock_interruptible(&dev->struct_mutex);
539         if (ret)
540                 return ret;
541
542         total_obj_size = total_gtt_size = count = 0;
543         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545                         continue;
546
547                 seq_puts(m, "   ");
548                 describe_obj(m, obj);
549                 seq_putc(m, '\n');
550                 total_obj_size += obj->base.size;
551                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552                 count++;
553         }
554
555         mutex_unlock(&dev->struct_mutex);
556
557         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558                    count, total_obj_size, total_gtt_size);
559
560         return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565         struct drm_info_node *node = m->private;
566         struct drm_device *dev = node->minor->dev;
567         struct drm_i915_private *dev_priv = dev->dev_private;
568         struct intel_crtc *crtc;
569         int ret;
570
571         ret = mutex_lock_interruptible(&dev->struct_mutex);
572         if (ret)
573                 return ret;
574
575         for_each_intel_crtc(dev, crtc) {
576                 const char pipe = pipe_name(crtc->pipe);
577                 const char plane = plane_name(crtc->plane);
578                 struct intel_unpin_work *work;
579
580                 spin_lock_irq(&dev->event_lock);
581                 work = crtc->unpin_work;
582                 if (work == NULL) {
583                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584                                    pipe, plane);
585                 } else {
586                         u32 addr;
587
588                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590                                            pipe, plane);
591                         } else {
592                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593                                            pipe, plane);
594                         }
595                         if (work->flip_queued_req) {
596                                 struct intel_engine_cs *ring =
597                                         i915_gem_request_get_ring(work->flip_queued_req);
598
599                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600                                            ring->name,
601                                            i915_gem_request_get_seqno(work->flip_queued_req),
602                                            dev_priv->next_seqno,
603                                            ring->get_seqno(ring, true),
604                                            i915_gem_request_completed(work->flip_queued_req, true));
605                         } else
606                                 seq_printf(m, "Flip not associated with any ring\n");
607                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608                                    work->flip_queued_vblank,
609                                    work->flip_ready_vblank,
610                                    drm_crtc_vblank_count(&crtc->base));
611                         if (work->enable_stall_check)
612                                 seq_puts(m, "Stall check enabled, ");
613                         else
614                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617                         if (INTEL_INFO(dev)->gen >= 4)
618                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619                         else
620                                 addr = I915_READ(DSPADDR(crtc->plane));
621                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623                         if (work->pending_flip_obj) {
624                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626                         }
627                 }
628                 spin_unlock_irq(&dev->event_lock);
629         }
630
631         mutex_unlock(&dev->struct_mutex);
632
633         return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638         struct drm_info_node *node = m->private;
639         struct drm_device *dev = node->minor->dev;
640         struct drm_i915_private *dev_priv = dev->dev_private;
641         struct drm_i915_gem_object *obj;
642         struct intel_engine_cs *ring;
643         int total = 0;
644         int ret, i, j;
645
646         ret = mutex_lock_interruptible(&dev->struct_mutex);
647         if (ret)
648                 return ret;
649
650         for_each_ring(ring, dev_priv, i) {
651                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652                         int count;
653
654                         count = 0;
655                         list_for_each_entry(obj,
656                                             &ring->batch_pool.cache_list[j],
657                                             batch_pool_link)
658                                 count++;
659                         seq_printf(m, "%s cache[%d]: %d objects\n",
660                                    ring->name, j, count);
661
662                         list_for_each_entry(obj,
663                                             &ring->batch_pool.cache_list[j],
664                                             batch_pool_link) {
665                                 seq_puts(m, "   ");
666                                 describe_obj(m, obj);
667                                 seq_putc(m, '\n');
668                         }
669
670                         total += count;
671                 }
672         }
673
674         seq_printf(m, "total: %d\n", total);
675
676         mutex_unlock(&dev->struct_mutex);
677
678         return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683         struct drm_info_node *node = m->private;
684         struct drm_device *dev = node->minor->dev;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct intel_engine_cs *ring;
687         struct drm_i915_gem_request *req;
688         int ret, any, i;
689
690         ret = mutex_lock_interruptible(&dev->struct_mutex);
691         if (ret)
692                 return ret;
693
694         any = 0;
695         for_each_ring(ring, dev_priv, i) {
696                 int count;
697
698                 count = 0;
699                 list_for_each_entry(req, &ring->request_list, list)
700                         count++;
701                 if (count == 0)
702                         continue;
703
704                 seq_printf(m, "%s requests: %d\n", ring->name, count);
705                 list_for_each_entry(req, &ring->request_list, list) {
706                         struct task_struct *task;
707
708                         rcu_read_lock();
709                         task = NULL;
710                         if (req->pid)
711                                 task = pid_task(req->pid, PIDTYPE_PID);
712                         seq_printf(m, "    %x @ %d: %s [%d]\n",
713                                    req->seqno,
714                                    (int) (jiffies - req->emitted_jiffies),
715                                    task ? task->comm : "<unknown>",
716                                    task ? task->pid : -1);
717                         rcu_read_unlock();
718                 }
719
720                 any++;
721         }
722         mutex_unlock(&dev->struct_mutex);
723
724         if (any == 0)
725                 seq_puts(m, "No requests\n");
726
727         return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731                                  struct intel_engine_cs *ring)
732 {
733         if (ring->get_seqno) {
734                 seq_printf(m, "Current sequence (%s): %x\n",
735                            ring->name, ring->get_seqno(ring, false));
736         }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741         struct drm_info_node *node = m->private;
742         struct drm_device *dev = node->minor->dev;
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         struct intel_engine_cs *ring;
745         int ret, i;
746
747         ret = mutex_lock_interruptible(&dev->struct_mutex);
748         if (ret)
749                 return ret;
750         intel_runtime_pm_get(dev_priv);
751
752         for_each_ring(ring, dev_priv, i)
753                 i915_ring_seqno_info(m, ring);
754
755         intel_runtime_pm_put(dev_priv);
756         mutex_unlock(&dev->struct_mutex);
757
758         return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764         struct drm_info_node *node = m->private;
765         struct drm_device *dev = node->minor->dev;
766         struct drm_i915_private *dev_priv = dev->dev_private;
767         struct intel_engine_cs *ring;
768         int ret, i, pipe;
769
770         ret = mutex_lock_interruptible(&dev->struct_mutex);
771         if (ret)
772                 return ret;
773         intel_runtime_pm_get(dev_priv);
774
775         if (IS_CHERRYVIEW(dev)) {
776                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777                            I915_READ(GEN8_MASTER_IRQ));
778
779                 seq_printf(m, "Display IER:\t%08x\n",
780                            I915_READ(VLV_IER));
781                 seq_printf(m, "Display IIR:\t%08x\n",
782                            I915_READ(VLV_IIR));
783                 seq_printf(m, "Display IIR_RW:\t%08x\n",
784                            I915_READ(VLV_IIR_RW));
785                 seq_printf(m, "Display IMR:\t%08x\n",
786                            I915_READ(VLV_IMR));
787                 for_each_pipe(dev_priv, pipe)
788                         seq_printf(m, "Pipe %c stat:\t%08x\n",
789                                    pipe_name(pipe),
790                                    I915_READ(PIPESTAT(pipe)));
791
792                 seq_printf(m, "Port hotplug:\t%08x\n",
793                            I915_READ(PORT_HOTPLUG_EN));
794                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795                            I915_READ(VLV_DPFLIPSTAT));
796                 seq_printf(m, "DPINVGTT:\t%08x\n",
797                            I915_READ(DPINVGTT));
798
799                 for (i = 0; i < 4; i++) {
800                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801                                    i, I915_READ(GEN8_GT_IMR(i)));
802                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803                                    i, I915_READ(GEN8_GT_IIR(i)));
804                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805                                    i, I915_READ(GEN8_GT_IER(i)));
806                 }
807
808                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809                            I915_READ(GEN8_PCU_IMR));
810                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811                            I915_READ(GEN8_PCU_IIR));
812                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813                            I915_READ(GEN8_PCU_IER));
814         } else if (INTEL_INFO(dev)->gen >= 8) {
815                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816                            I915_READ(GEN8_MASTER_IRQ));
817
818                 for (i = 0; i < 4; i++) {
819                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820                                    i, I915_READ(GEN8_GT_IMR(i)));
821                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822                                    i, I915_READ(GEN8_GT_IIR(i)));
823                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824                                    i, I915_READ(GEN8_GT_IER(i)));
825                 }
826
827                 for_each_pipe(dev_priv, pipe) {
828                         if (!intel_display_power_is_enabled(dev_priv,
829                                                 POWER_DOMAIN_PIPE(pipe))) {
830                                 seq_printf(m, "Pipe %c power disabled\n",
831                                            pipe_name(pipe));
832                                 continue;
833                         }
834                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
835                                    pipe_name(pipe),
836                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
838                                    pipe_name(pipe),
839                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840                         seq_printf(m, "Pipe %c IER:\t%08x\n",
841                                    pipe_name(pipe),
842                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
843                 }
844
845                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846                            I915_READ(GEN8_DE_PORT_IMR));
847                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848                            I915_READ(GEN8_DE_PORT_IIR));
849                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850                            I915_READ(GEN8_DE_PORT_IER));
851
852                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853                            I915_READ(GEN8_DE_MISC_IMR));
854                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855                            I915_READ(GEN8_DE_MISC_IIR));
856                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857                            I915_READ(GEN8_DE_MISC_IER));
858
859                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
860                            I915_READ(GEN8_PCU_IMR));
861                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
862                            I915_READ(GEN8_PCU_IIR));
863                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
864                            I915_READ(GEN8_PCU_IER));
865         } else if (IS_VALLEYVIEW(dev)) {
866                 seq_printf(m, "Display IER:\t%08x\n",
867                            I915_READ(VLV_IER));
868                 seq_printf(m, "Display IIR:\t%08x\n",
869                            I915_READ(VLV_IIR));
870                 seq_printf(m, "Display IIR_RW:\t%08x\n",
871                            I915_READ(VLV_IIR_RW));
872                 seq_printf(m, "Display IMR:\t%08x\n",
873                            I915_READ(VLV_IMR));
874                 for_each_pipe(dev_priv, pipe)
875                         seq_printf(m, "Pipe %c stat:\t%08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878
879                 seq_printf(m, "Master IER:\t%08x\n",
880                            I915_READ(VLV_MASTER_IER));
881
882                 seq_printf(m, "Render IER:\t%08x\n",
883                            I915_READ(GTIER));
884                 seq_printf(m, "Render IIR:\t%08x\n",
885                            I915_READ(GTIIR));
886                 seq_printf(m, "Render IMR:\t%08x\n",
887                            I915_READ(GTIMR));
888
889                 seq_printf(m, "PM IER:\t\t%08x\n",
890                            I915_READ(GEN6_PMIER));
891                 seq_printf(m, "PM IIR:\t\t%08x\n",
892                            I915_READ(GEN6_PMIIR));
893                 seq_printf(m, "PM IMR:\t\t%08x\n",
894                            I915_READ(GEN6_PMIMR));
895
896                 seq_printf(m, "Port hotplug:\t%08x\n",
897                            I915_READ(PORT_HOTPLUG_EN));
898                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899                            I915_READ(VLV_DPFLIPSTAT));
900                 seq_printf(m, "DPINVGTT:\t%08x\n",
901                            I915_READ(DPINVGTT));
902
903         } else if (!HAS_PCH_SPLIT(dev)) {
904                 seq_printf(m, "Interrupt enable:    %08x\n",
905                            I915_READ(IER));
906                 seq_printf(m, "Interrupt identity:  %08x\n",
907                            I915_READ(IIR));
908                 seq_printf(m, "Interrupt mask:      %08x\n",
909                            I915_READ(IMR));
910                 for_each_pipe(dev_priv, pipe)
911                         seq_printf(m, "Pipe %c stat:         %08x\n",
912                                    pipe_name(pipe),
913                                    I915_READ(PIPESTAT(pipe)));
914         } else {
915                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
916                            I915_READ(DEIER));
917                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
918                            I915_READ(DEIIR));
919                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
920                            I915_READ(DEIMR));
921                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
922                            I915_READ(SDEIER));
923                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
924                            I915_READ(SDEIIR));
925                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
926                            I915_READ(SDEIMR));
927                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
928                            I915_READ(GTIER));
929                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
930                            I915_READ(GTIIR));
931                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
932                            I915_READ(GTIMR));
933         }
934         for_each_ring(ring, dev_priv, i) {
935                 if (INTEL_INFO(dev)->gen >= 6) {
936                         seq_printf(m,
937                                    "Graphics Interrupt mask (%s):       %08x\n",
938                                    ring->name, I915_READ_IMR(ring));
939                 }
940                 i915_ring_seqno_info(m, ring);
941         }
942         intel_runtime_pm_put(dev_priv);
943         mutex_unlock(&dev->struct_mutex);
944
945         return 0;
946 }
947
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950         struct drm_info_node *node = m->private;
951         struct drm_device *dev = node->minor->dev;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953         int i, ret;
954
955         ret = mutex_lock_interruptible(&dev->struct_mutex);
956         if (ret)
957                 return ret;
958
959         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960         for (i = 0; i < dev_priv->num_fence_regs; i++) {
961                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962
963                 seq_printf(m, "Fence %d, pin count = %d, object = ",
964                            i, dev_priv->fence_regs[i].pin_count);
965                 if (obj == NULL)
966                         seq_puts(m, "unused");
967                 else
968                         describe_obj(m, obj);
969                 seq_putc(m, '\n');
970         }
971
972         mutex_unlock(&dev->struct_mutex);
973         return 0;
974 }
975
976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978         struct drm_info_node *node = m->private;
979         struct drm_device *dev = node->minor->dev;
980         struct drm_i915_private *dev_priv = dev->dev_private;
981         struct intel_engine_cs *ring;
982         const u32 *hws;
983         int i;
984
985         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986         hws = ring->status_page.page_addr;
987         if (hws == NULL)
988                 return 0;
989
990         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992                            i * 4,
993                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994         }
995         return 0;
996 }
997
998 static ssize_t
999 i915_error_state_write(struct file *filp,
1000                        const char __user *ubuf,
1001                        size_t cnt,
1002                        loff_t *ppos)
1003 {
1004         struct i915_error_state_file_priv *error_priv = filp->private_data;
1005         struct drm_device *dev = error_priv->dev;
1006         int ret;
1007
1008         DRM_DEBUG_DRIVER("Resetting error state\n");
1009
1010         ret = mutex_lock_interruptible(&dev->struct_mutex);
1011         if (ret)
1012                 return ret;
1013
1014         i915_destroy_error_state(dev);
1015         mutex_unlock(&dev->struct_mutex);
1016
1017         return cnt;
1018 }
1019
1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022         struct drm_device *dev = inode->i_private;
1023         struct i915_error_state_file_priv *error_priv;
1024
1025         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026         if (!error_priv)
1027                 return -ENOMEM;
1028
1029         error_priv->dev = dev;
1030
1031         i915_error_state_get(dev, error_priv);
1032
1033         file->private_data = error_priv;
1034
1035         return 0;
1036 }
1037
1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040         struct i915_error_state_file_priv *error_priv = file->private_data;
1041
1042         i915_error_state_put(error_priv);
1043         kfree(error_priv);
1044
1045         return 0;
1046 }
1047
1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049                                      size_t count, loff_t *pos)
1050 {
1051         struct i915_error_state_file_priv *error_priv = file->private_data;
1052         struct drm_i915_error_state_buf error_str;
1053         loff_t tmp_pos = 0;
1054         ssize_t ret_count = 0;
1055         int ret;
1056
1057         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058         if (ret)
1059                 return ret;
1060
1061         ret = i915_error_state_to_str(&error_str, error_priv);
1062         if (ret)
1063                 goto out;
1064
1065         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066                                             error_str.buf,
1067                                             error_str.bytes);
1068
1069         if (ret_count < 0)
1070                 ret = ret_count;
1071         else
1072                 *pos = error_str.start + ret_count;
1073 out:
1074         i915_error_state_buf_release(&error_str);
1075         return ret ?: ret_count;
1076 }
1077
1078 static const struct file_operations i915_error_state_fops = {
1079         .owner = THIS_MODULE,
1080         .open = i915_error_state_open,
1081         .read = i915_error_state_read,
1082         .write = i915_error_state_write,
1083         .llseek = default_llseek,
1084         .release = i915_error_state_release,
1085 };
1086
1087 static int
1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090         struct drm_device *dev = data;
1091         struct drm_i915_private *dev_priv = dev->dev_private;
1092         int ret;
1093
1094         ret = mutex_lock_interruptible(&dev->struct_mutex);
1095         if (ret)
1096                 return ret;
1097
1098         *val = dev_priv->next_seqno;
1099         mutex_unlock(&dev->struct_mutex);
1100
1101         return 0;
1102 }
1103
1104 static int
1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107         struct drm_device *dev = data;
1108         int ret;
1109
1110         ret = mutex_lock_interruptible(&dev->struct_mutex);
1111         if (ret)
1112                 return ret;
1113
1114         ret = i915_gem_set_seqno(dev, val);
1115         mutex_unlock(&dev->struct_mutex);
1116
1117         return ret;
1118 }
1119
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121                         i915_next_seqno_get, i915_next_seqno_set,
1122                         "0x%llx\n");
1123
1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126         struct drm_info_node *node = m->private;
1127         struct drm_device *dev = node->minor->dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         int ret = 0;
1130
1131         intel_runtime_pm_get(dev_priv);
1132
1133         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134
1135         if (IS_GEN5(dev)) {
1136                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1137                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138
1139                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142                            MEMSTAT_VID_SHIFT);
1143                 seq_printf(m, "Current P-state: %d\n",
1144                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1146                 u32 freq_sts;
1147
1148                 mutex_lock(&dev_priv->rps.hw_lock);
1149                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1150                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1151                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1152
1153                 seq_printf(m, "actual GPU freq: %d MHz\n",
1154                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1155
1156                 seq_printf(m, "current GPU freq: %d MHz\n",
1157                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1158
1159                 seq_printf(m, "max GPU freq: %d MHz\n",
1160                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1161
1162                 seq_printf(m, "min GPU freq: %d MHz\n",
1163                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1164
1165                 seq_printf(m, "idle GPU freq: %d MHz\n",
1166                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1167
1168                 seq_printf(m,
1169                            "efficient (RPe) frequency: %d MHz\n",
1170                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1171                 mutex_unlock(&dev_priv->rps.hw_lock);
1172         } else if (INTEL_INFO(dev)->gen >= 6) {
1173                 u32 rp_state_limits;
1174                 u32 gt_perf_status;
1175                 u32 rp_state_cap;
1176                 u32 rpmodectl, rpinclimit, rpdeclimit;
1177                 u32 rpstat, cagf, reqf;
1178                 u32 rpupei, rpcurup, rpprevup;
1179                 u32 rpdownei, rpcurdown, rpprevdown;
1180                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1181                 int max_freq;
1182
1183                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1184                 if (IS_BROXTON(dev)) {
1185                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1186                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1187                 } else {
1188                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1189                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1190                 }
1191
1192                 /* RPSTAT1 is in the GT power well */
1193                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1194                 if (ret)
1195                         goto out;
1196
1197                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1198
1199                 reqf = I915_READ(GEN6_RPNSWREQ);
1200                 if (IS_GEN9(dev))
1201                         reqf >>= 23;
1202                 else {
1203                         reqf &= ~GEN6_TURBO_DISABLE;
1204                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1205                                 reqf >>= 24;
1206                         else
1207                                 reqf >>= 25;
1208                 }
1209                 reqf = intel_gpu_freq(dev_priv, reqf);
1210
1211                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1212                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1213                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1214
1215                 rpstat = I915_READ(GEN6_RPSTAT1);
1216                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1217                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1218                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1219                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1220                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1221                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1222                 if (IS_GEN9(dev))
1223                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1224                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1225                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1226                 else
1227                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1228                 cagf = intel_gpu_freq(dev_priv, cagf);
1229
1230                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1231                 mutex_unlock(&dev->struct_mutex);
1232
1233                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1234                         pm_ier = I915_READ(GEN6_PMIER);
1235                         pm_imr = I915_READ(GEN6_PMIMR);
1236                         pm_isr = I915_READ(GEN6_PMISR);
1237                         pm_iir = I915_READ(GEN6_PMIIR);
1238                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1239                 } else {
1240                         pm_ier = I915_READ(GEN8_GT_IER(2));
1241                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1242                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1243                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1244                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1245                 }
1246                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1247                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1248                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1249                 seq_printf(m, "Render p-state ratio: %d\n",
1250                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1251                 seq_printf(m, "Render p-state VID: %d\n",
1252                            gt_perf_status & 0xff);
1253                 seq_printf(m, "Render p-state limit: %d\n",
1254                            rp_state_limits & 0xff);
1255                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1256                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1257                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1258                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1259                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1260                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1261                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1262                            GEN6_CURICONT_MASK);
1263                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1264                            GEN6_CURBSYTAVG_MASK);
1265                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1266                            GEN6_CURBSYTAVG_MASK);
1267                 seq_printf(m, "Up threshold: %d%%\n",
1268                            dev_priv->rps.up_threshold);
1269
1270                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1271                            GEN6_CURIAVG_MASK);
1272                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1273                            GEN6_CURBSYTAVG_MASK);
1274                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1275                            GEN6_CURBSYTAVG_MASK);
1276                 seq_printf(m, "Down threshold: %d%%\n",
1277                            dev_priv->rps.down_threshold);
1278
1279                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1280                             rp_state_cap >> 16) & 0xff;
1281                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1282                              GEN9_FREQ_SCALER : 1);
1283                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1284                            intel_gpu_freq(dev_priv, max_freq));
1285
1286                 max_freq = (rp_state_cap & 0xff00) >> 8;
1287                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1288                              GEN9_FREQ_SCALER : 1);
1289                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1290                            intel_gpu_freq(dev_priv, max_freq));
1291
1292                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1293                             rp_state_cap >> 0) & 0xff;
1294                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1295                              GEN9_FREQ_SCALER : 1);
1296                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1297                            intel_gpu_freq(dev_priv, max_freq));
1298                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1299                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300
1301                 seq_printf(m, "Current freq: %d MHz\n",
1302                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1303                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1304                 seq_printf(m, "Idle freq: %d MHz\n",
1305                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306                 seq_printf(m, "Min freq: %d MHz\n",
1307                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1308                 seq_printf(m, "Max freq: %d MHz\n",
1309                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1310                 seq_printf(m,
1311                            "efficient (RPe) frequency: %d MHz\n",
1312                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1313         } else {
1314                 seq_puts(m, "no P-state info available\n");
1315         }
1316
1317         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1318         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1319         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1320
1321 out:
1322         intel_runtime_pm_put(dev_priv);
1323         return ret;
1324 }
1325
1326 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1327 {
1328         struct drm_info_node *node = m->private;
1329         struct drm_device *dev = node->minor->dev;
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331         struct intel_engine_cs *ring;
1332         u64 acthd[I915_NUM_RINGS];
1333         u32 seqno[I915_NUM_RINGS];
1334         u32 instdone[I915_NUM_INSTDONE_REG];
1335         int i, j;
1336
1337         if (!i915.enable_hangcheck) {
1338                 seq_printf(m, "Hangcheck disabled\n");
1339                 return 0;
1340         }
1341
1342         intel_runtime_pm_get(dev_priv);
1343
1344         for_each_ring(ring, dev_priv, i) {
1345                 seqno[i] = ring->get_seqno(ring, false);
1346                 acthd[i] = intel_ring_get_active_head(ring);
1347         }
1348
1349         i915_get_extra_instdone(dev, instdone);
1350
1351         intel_runtime_pm_put(dev_priv);
1352
1353         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1354                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1355                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1356                                             jiffies));
1357         } else
1358                 seq_printf(m, "Hangcheck inactive\n");
1359
1360         for_each_ring(ring, dev_priv, i) {
1361                 seq_printf(m, "%s:\n", ring->name);
1362                 seq_printf(m, "\tseqno = %x [current %x]\n",
1363                            ring->hangcheck.seqno, seqno[i]);
1364                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1365                            (long long)ring->hangcheck.acthd,
1366                            (long long)acthd[i]);
1367                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1368                            (long long)ring->hangcheck.max_acthd);
1369                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1370                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1371
1372                 if (ring->id == RCS) {
1373                         seq_puts(m, "\tinstdone read =");
1374
1375                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1376                                 seq_printf(m, " 0x%08x", instdone[j]);
1377
1378                         seq_puts(m, "\n\tinstdone accu =");
1379
1380                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1381                                 seq_printf(m, " 0x%08x",
1382                                            ring->hangcheck.instdone[j]);
1383
1384                         seq_puts(m, "\n");
1385                 }
1386         }
1387
1388         return 0;
1389 }
1390
1391 static int ironlake_drpc_info(struct seq_file *m)
1392 {
1393         struct drm_info_node *node = m->private;
1394         struct drm_device *dev = node->minor->dev;
1395         struct drm_i915_private *dev_priv = dev->dev_private;
1396         u32 rgvmodectl, rstdbyctl;
1397         u16 crstandvid;
1398         int ret;
1399
1400         ret = mutex_lock_interruptible(&dev->struct_mutex);
1401         if (ret)
1402                 return ret;
1403         intel_runtime_pm_get(dev_priv);
1404
1405         rgvmodectl = I915_READ(MEMMODECTL);
1406         rstdbyctl = I915_READ(RSTDBYCTL);
1407         crstandvid = I915_READ16(CRSTANDVID);
1408
1409         intel_runtime_pm_put(dev_priv);
1410         mutex_unlock(&dev->struct_mutex);
1411
1412         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1413         seq_printf(m, "Boost freq: %d\n",
1414                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1415                    MEMMODE_BOOST_FREQ_SHIFT);
1416         seq_printf(m, "HW control enabled: %s\n",
1417                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1418         seq_printf(m, "SW control enabled: %s\n",
1419                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1420         seq_printf(m, "Gated voltage change: %s\n",
1421                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1422         seq_printf(m, "Starting frequency: P%d\n",
1423                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1424         seq_printf(m, "Max P-state: P%d\n",
1425                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1426         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1427         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1428         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1429         seq_printf(m, "Render standby enabled: %s\n",
1430                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1431         seq_puts(m, "Current RS state: ");
1432         switch (rstdbyctl & RSX_STATUS_MASK) {
1433         case RSX_STATUS_ON:
1434                 seq_puts(m, "on\n");
1435                 break;
1436         case RSX_STATUS_RC1:
1437                 seq_puts(m, "RC1\n");
1438                 break;
1439         case RSX_STATUS_RC1E:
1440                 seq_puts(m, "RC1E\n");
1441                 break;
1442         case RSX_STATUS_RS1:
1443                 seq_puts(m, "RS1\n");
1444                 break;
1445         case RSX_STATUS_RS2:
1446                 seq_puts(m, "RS2 (RC6)\n");
1447                 break;
1448         case RSX_STATUS_RS3:
1449                 seq_puts(m, "RC3 (RC6+)\n");
1450                 break;
1451         default:
1452                 seq_puts(m, "unknown\n");
1453                 break;
1454         }
1455
1456         return 0;
1457 }
1458
1459 static int i915_forcewake_domains(struct seq_file *m, void *data)
1460 {
1461         struct drm_info_node *node = m->private;
1462         struct drm_device *dev = node->minor->dev;
1463         struct drm_i915_private *dev_priv = dev->dev_private;
1464         struct intel_uncore_forcewake_domain *fw_domain;
1465         int i;
1466
1467         spin_lock_irq(&dev_priv->uncore.lock);
1468         for_each_fw_domain(fw_domain, dev_priv, i) {
1469                 seq_printf(m, "%s.wake_count = %u\n",
1470                            intel_uncore_forcewake_domain_to_str(i),
1471                            fw_domain->wake_count);
1472         }
1473         spin_unlock_irq(&dev_priv->uncore.lock);
1474
1475         return 0;
1476 }
1477
1478 static int vlv_drpc_info(struct seq_file *m)
1479 {
1480         struct drm_info_node *node = m->private;
1481         struct drm_device *dev = node->minor->dev;
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         u32 rpmodectl1, rcctl1, pw_status;
1484
1485         intel_runtime_pm_get(dev_priv);
1486
1487         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1488         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1489         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1490
1491         intel_runtime_pm_put(dev_priv);
1492
1493         seq_printf(m, "Video Turbo Mode: %s\n",
1494                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1495         seq_printf(m, "Turbo enabled: %s\n",
1496                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1497         seq_printf(m, "HW control enabled: %s\n",
1498                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1499         seq_printf(m, "SW control enabled: %s\n",
1500                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1501                           GEN6_RP_MEDIA_SW_MODE));
1502         seq_printf(m, "RC6 Enabled: %s\n",
1503                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1504                                         GEN6_RC_CTL_EI_MODE(1))));
1505         seq_printf(m, "Render Power Well: %s\n",
1506                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1507         seq_printf(m, "Media Power Well: %s\n",
1508                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1509
1510         seq_printf(m, "Render RC6 residency since boot: %u\n",
1511                    I915_READ(VLV_GT_RENDER_RC6));
1512         seq_printf(m, "Media RC6 residency since boot: %u\n",
1513                    I915_READ(VLV_GT_MEDIA_RC6));
1514
1515         return i915_forcewake_domains(m, NULL);
1516 }
1517
1518 static int gen6_drpc_info(struct seq_file *m)
1519 {
1520         struct drm_info_node *node = m->private;
1521         struct drm_device *dev = node->minor->dev;
1522         struct drm_i915_private *dev_priv = dev->dev_private;
1523         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1524         unsigned forcewake_count;
1525         int count = 0, ret;
1526
1527         ret = mutex_lock_interruptible(&dev->struct_mutex);
1528         if (ret)
1529                 return ret;
1530         intel_runtime_pm_get(dev_priv);
1531
1532         spin_lock_irq(&dev_priv->uncore.lock);
1533         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1534         spin_unlock_irq(&dev_priv->uncore.lock);
1535
1536         if (forcewake_count) {
1537                 seq_puts(m, "RC information inaccurate because somebody "
1538                             "holds a forcewake reference \n");
1539         } else {
1540                 /* NB: we cannot use forcewake, else we read the wrong values */
1541                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1542                         udelay(10);
1543                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1544         }
1545
1546         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1547         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1548
1549         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1550         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1551         mutex_unlock(&dev->struct_mutex);
1552         mutex_lock(&dev_priv->rps.hw_lock);
1553         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1554         mutex_unlock(&dev_priv->rps.hw_lock);
1555
1556         intel_runtime_pm_put(dev_priv);
1557
1558         seq_printf(m, "Video Turbo Mode: %s\n",
1559                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1560         seq_printf(m, "HW control enabled: %s\n",
1561                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1562         seq_printf(m, "SW control enabled: %s\n",
1563                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1564                           GEN6_RP_MEDIA_SW_MODE));
1565         seq_printf(m, "RC1e Enabled: %s\n",
1566                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1567         seq_printf(m, "RC6 Enabled: %s\n",
1568                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1569         seq_printf(m, "Deep RC6 Enabled: %s\n",
1570                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1571         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1572                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1573         seq_puts(m, "Current RC state: ");
1574         switch (gt_core_status & GEN6_RCn_MASK) {
1575         case GEN6_RC0:
1576                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1577                         seq_puts(m, "Core Power Down\n");
1578                 else
1579                         seq_puts(m, "on\n");
1580                 break;
1581         case GEN6_RC3:
1582                 seq_puts(m, "RC3\n");
1583                 break;
1584         case GEN6_RC6:
1585                 seq_puts(m, "RC6\n");
1586                 break;
1587         case GEN6_RC7:
1588                 seq_puts(m, "RC7\n");
1589                 break;
1590         default:
1591                 seq_puts(m, "Unknown\n");
1592                 break;
1593         }
1594
1595         seq_printf(m, "Core Power Down: %s\n",
1596                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1597
1598         /* Not exactly sure what this is */
1599         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1600                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1601         seq_printf(m, "RC6 residency since boot: %u\n",
1602                    I915_READ(GEN6_GT_GFX_RC6));
1603         seq_printf(m, "RC6+ residency since boot: %u\n",
1604                    I915_READ(GEN6_GT_GFX_RC6p));
1605         seq_printf(m, "RC6++ residency since boot: %u\n",
1606                    I915_READ(GEN6_GT_GFX_RC6pp));
1607
1608         seq_printf(m, "RC6   voltage: %dmV\n",
1609                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1610         seq_printf(m, "RC6+  voltage: %dmV\n",
1611                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1612         seq_printf(m, "RC6++ voltage: %dmV\n",
1613                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1614         return 0;
1615 }
1616
1617 static int i915_drpc_info(struct seq_file *m, void *unused)
1618 {
1619         struct drm_info_node *node = m->private;
1620         struct drm_device *dev = node->minor->dev;
1621
1622         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1623                 return vlv_drpc_info(m);
1624         else if (INTEL_INFO(dev)->gen >= 6)
1625                 return gen6_drpc_info(m);
1626         else
1627                 return ironlake_drpc_info(m);
1628 }
1629
1630 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1631 {
1632         struct drm_info_node *node = m->private;
1633         struct drm_device *dev = node->minor->dev;
1634         struct drm_i915_private *dev_priv = dev->dev_private;
1635
1636         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1637                    dev_priv->fb_tracking.busy_bits);
1638
1639         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1640                    dev_priv->fb_tracking.flip_bits);
1641
1642         return 0;
1643 }
1644
1645 static int i915_fbc_status(struct seq_file *m, void *unused)
1646 {
1647         struct drm_info_node *node = m->private;
1648         struct drm_device *dev = node->minor->dev;
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650
1651         if (!HAS_FBC(dev)) {
1652                 seq_puts(m, "FBC unsupported on this chipset\n");
1653                 return 0;
1654         }
1655
1656         intel_runtime_pm_get(dev_priv);
1657         mutex_lock(&dev_priv->fbc.lock);
1658
1659         if (intel_fbc_is_active(dev_priv))
1660                 seq_puts(m, "FBC enabled\n");
1661         else
1662                 seq_printf(m, "FBC disabled: %s\n",
1663                            dev_priv->fbc.no_fbc_reason);
1664
1665         if (INTEL_INFO(dev_priv)->gen >= 7)
1666                 seq_printf(m, "Compressing: %s\n",
1667                            yesno(I915_READ(FBC_STATUS2) &
1668                                  FBC_COMPRESSION_MASK));
1669
1670         mutex_unlock(&dev_priv->fbc.lock);
1671         intel_runtime_pm_put(dev_priv);
1672
1673         return 0;
1674 }
1675
1676 static int i915_fbc_fc_get(void *data, u64 *val)
1677 {
1678         struct drm_device *dev = data;
1679         struct drm_i915_private *dev_priv = dev->dev_private;
1680
1681         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1682                 return -ENODEV;
1683
1684         *val = dev_priv->fbc.false_color;
1685
1686         return 0;
1687 }
1688
1689 static int i915_fbc_fc_set(void *data, u64 val)
1690 {
1691         struct drm_device *dev = data;
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         u32 reg;
1694
1695         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1696                 return -ENODEV;
1697
1698         mutex_lock(&dev_priv->fbc.lock);
1699
1700         reg = I915_READ(ILK_DPFC_CONTROL);
1701         dev_priv->fbc.false_color = val;
1702
1703         I915_WRITE(ILK_DPFC_CONTROL, val ?
1704                    (reg | FBC_CTL_FALSE_COLOR) :
1705                    (reg & ~FBC_CTL_FALSE_COLOR));
1706
1707         mutex_unlock(&dev_priv->fbc.lock);
1708         return 0;
1709 }
1710
1711 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1712                         i915_fbc_fc_get, i915_fbc_fc_set,
1713                         "%llu\n");
1714
1715 static int i915_ips_status(struct seq_file *m, void *unused)
1716 {
1717         struct drm_info_node *node = m->private;
1718         struct drm_device *dev = node->minor->dev;
1719         struct drm_i915_private *dev_priv = dev->dev_private;
1720
1721         if (!HAS_IPS(dev)) {
1722                 seq_puts(m, "not supported\n");
1723                 return 0;
1724         }
1725
1726         intel_runtime_pm_get(dev_priv);
1727
1728         seq_printf(m, "Enabled by kernel parameter: %s\n",
1729                    yesno(i915.enable_ips));
1730
1731         if (INTEL_INFO(dev)->gen >= 8) {
1732                 seq_puts(m, "Currently: unknown\n");
1733         } else {
1734                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1735                         seq_puts(m, "Currently: enabled\n");
1736                 else
1737                         seq_puts(m, "Currently: disabled\n");
1738         }
1739
1740         intel_runtime_pm_put(dev_priv);
1741
1742         return 0;
1743 }
1744
1745 static int i915_sr_status(struct seq_file *m, void *unused)
1746 {
1747         struct drm_info_node *node = m->private;
1748         struct drm_device *dev = node->minor->dev;
1749         struct drm_i915_private *dev_priv = dev->dev_private;
1750         bool sr_enabled = false;
1751
1752         intel_runtime_pm_get(dev_priv);
1753
1754         if (HAS_PCH_SPLIT(dev))
1755                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1756         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1757                  IS_I945G(dev) || IS_I945GM(dev))
1758                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1759         else if (IS_I915GM(dev))
1760                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1761         else if (IS_PINEVIEW(dev))
1762                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1763         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1764                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1765
1766         intel_runtime_pm_put(dev_priv);
1767
1768         seq_printf(m, "self-refresh: %s\n",
1769                    sr_enabled ? "enabled" : "disabled");
1770
1771         return 0;
1772 }
1773
1774 static int i915_emon_status(struct seq_file *m, void *unused)
1775 {
1776         struct drm_info_node *node = m->private;
1777         struct drm_device *dev = node->minor->dev;
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         unsigned long temp, chipset, gfx;
1780         int ret;
1781
1782         if (!IS_GEN5(dev))
1783                 return -ENODEV;
1784
1785         ret = mutex_lock_interruptible(&dev->struct_mutex);
1786         if (ret)
1787                 return ret;
1788
1789         temp = i915_mch_val(dev_priv);
1790         chipset = i915_chipset_val(dev_priv);
1791         gfx = i915_gfx_val(dev_priv);
1792         mutex_unlock(&dev->struct_mutex);
1793
1794         seq_printf(m, "GMCH temp: %ld\n", temp);
1795         seq_printf(m, "Chipset power: %ld\n", chipset);
1796         seq_printf(m, "GFX power: %ld\n", gfx);
1797         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1798
1799         return 0;
1800 }
1801
1802 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1803 {
1804         struct drm_info_node *node = m->private;
1805         struct drm_device *dev = node->minor->dev;
1806         struct drm_i915_private *dev_priv = dev->dev_private;
1807         int ret = 0;
1808         int gpu_freq, ia_freq;
1809         unsigned int max_gpu_freq, min_gpu_freq;
1810
1811         if (!HAS_CORE_RING_FREQ(dev)) {
1812                 seq_puts(m, "unsupported on this chipset\n");
1813                 return 0;
1814         }
1815
1816         intel_runtime_pm_get(dev_priv);
1817
1818         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1819
1820         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1821         if (ret)
1822                 goto out;
1823
1824         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1825                 /* Convert GT frequency to 50 HZ units */
1826                 min_gpu_freq =
1827                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1828                 max_gpu_freq =
1829                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1830         } else {
1831                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1832                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1833         }
1834
1835         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1836
1837         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1838                 ia_freq = gpu_freq;
1839                 sandybridge_pcode_read(dev_priv,
1840                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1841                                        &ia_freq);
1842                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1843                            intel_gpu_freq(dev_priv, (gpu_freq *
1844                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1845                                  GEN9_FREQ_SCALER : 1))),
1846                            ((ia_freq >> 0) & 0xff) * 100,
1847                            ((ia_freq >> 8) & 0xff) * 100);
1848         }
1849
1850         mutex_unlock(&dev_priv->rps.hw_lock);
1851
1852 out:
1853         intel_runtime_pm_put(dev_priv);
1854         return ret;
1855 }
1856
1857 static int i915_opregion(struct seq_file *m, void *unused)
1858 {
1859         struct drm_info_node *node = m->private;
1860         struct drm_device *dev = node->minor->dev;
1861         struct drm_i915_private *dev_priv = dev->dev_private;
1862         struct intel_opregion *opregion = &dev_priv->opregion;
1863         int ret;
1864
1865         ret = mutex_lock_interruptible(&dev->struct_mutex);
1866         if (ret)
1867                 goto out;
1868
1869         if (opregion->header)
1870                 seq_write(m, opregion->header, OPREGION_SIZE);
1871
1872         mutex_unlock(&dev->struct_mutex);
1873
1874 out:
1875         return 0;
1876 }
1877
1878 static int i915_vbt(struct seq_file *m, void *unused)
1879 {
1880         struct drm_info_node *node = m->private;
1881         struct drm_device *dev = node->minor->dev;
1882         struct drm_i915_private *dev_priv = dev->dev_private;
1883         struct intel_opregion *opregion = &dev_priv->opregion;
1884
1885         if (opregion->vbt)
1886                 seq_write(m, opregion->vbt, opregion->vbt_size);
1887
1888         return 0;
1889 }
1890
1891 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1892 {
1893         struct drm_info_node *node = m->private;
1894         struct drm_device *dev = node->minor->dev;
1895         struct intel_framebuffer *fbdev_fb = NULL;
1896         struct drm_framebuffer *drm_fb;
1897
1898 #ifdef CONFIG_DRM_FBDEV_EMULATION
1899        if (to_i915(dev)->fbdev) {
1900                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1901
1902                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1903                          fbdev_fb->base.width,
1904                          fbdev_fb->base.height,
1905                          fbdev_fb->base.depth,
1906                          fbdev_fb->base.bits_per_pixel,
1907                          fbdev_fb->base.modifier[0],
1908                          atomic_read(&fbdev_fb->base.refcount.refcount));
1909                describe_obj(m, fbdev_fb->obj);
1910                seq_putc(m, '\n');
1911        }
1912 #endif
1913
1914         mutex_lock(&dev->mode_config.fb_lock);
1915         drm_for_each_fb(drm_fb, dev) {
1916                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1917                 if (fb == fbdev_fb)
1918                         continue;
1919
1920                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1921                            fb->base.width,
1922                            fb->base.height,
1923                            fb->base.depth,
1924                            fb->base.bits_per_pixel,
1925                            fb->base.modifier[0],
1926                            atomic_read(&fb->base.refcount.refcount));
1927                 describe_obj(m, fb->obj);
1928                 seq_putc(m, '\n');
1929         }
1930         mutex_unlock(&dev->mode_config.fb_lock);
1931
1932         return 0;
1933 }
1934
1935 static void describe_ctx_ringbuf(struct seq_file *m,
1936                                  struct intel_ringbuffer *ringbuf)
1937 {
1938         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1939                    ringbuf->space, ringbuf->head, ringbuf->tail,
1940                    ringbuf->last_retired_head);
1941 }
1942
1943 static int i915_context_status(struct seq_file *m, void *unused)
1944 {
1945         struct drm_info_node *node = m->private;
1946         struct drm_device *dev = node->minor->dev;
1947         struct drm_i915_private *dev_priv = dev->dev_private;
1948         struct intel_engine_cs *ring;
1949         struct intel_context *ctx;
1950         int ret, i;
1951
1952         ret = mutex_lock_interruptible(&dev->struct_mutex);
1953         if (ret)
1954                 return ret;
1955
1956         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1957                 if (!i915.enable_execlists &&
1958                     ctx->legacy_hw_ctx.rcs_state == NULL)
1959                         continue;
1960
1961                 seq_puts(m, "HW context ");
1962                 describe_ctx(m, ctx);
1963                 for_each_ring(ring, dev_priv, i) {
1964                         if (ring->default_context == ctx)
1965                                 seq_printf(m, "(default context %s) ",
1966                                            ring->name);
1967                 }
1968
1969                 if (i915.enable_execlists) {
1970                         seq_putc(m, '\n');
1971                         for_each_ring(ring, dev_priv, i) {
1972                                 struct drm_i915_gem_object *ctx_obj =
1973                                         ctx->engine[i].state;
1974                                 struct intel_ringbuffer *ringbuf =
1975                                         ctx->engine[i].ringbuf;
1976
1977                                 seq_printf(m, "%s: ", ring->name);
1978                                 if (ctx_obj)
1979                                         describe_obj(m, ctx_obj);
1980                                 if (ringbuf)
1981                                         describe_ctx_ringbuf(m, ringbuf);
1982                                 seq_putc(m, '\n');
1983                         }
1984                 } else {
1985                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1986                 }
1987
1988                 seq_putc(m, '\n');
1989         }
1990
1991         mutex_unlock(&dev->struct_mutex);
1992
1993         return 0;
1994 }
1995
1996 static void i915_dump_lrc_obj(struct seq_file *m,
1997                               struct intel_context *ctx,
1998                               struct intel_engine_cs *ring)
1999 {
2000         struct page *page;
2001         uint32_t *reg_state;
2002         int j;
2003         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
2004         unsigned long ggtt_offset = 0;
2005
2006         if (ctx_obj == NULL) {
2007                 seq_printf(m, "Context on %s with no gem object\n",
2008                            ring->name);
2009                 return;
2010         }
2011
2012         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
2013                    intel_execlists_ctx_id(ctx, ring));
2014
2015         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2016                 seq_puts(m, "\tNot bound in GGTT\n");
2017         else
2018                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2019
2020         if (i915_gem_object_get_pages(ctx_obj)) {
2021                 seq_puts(m, "\tFailed to get pages for context object\n");
2022                 return;
2023         }
2024
2025         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2026         if (!WARN_ON(page == NULL)) {
2027                 reg_state = kmap_atomic(page);
2028
2029                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2030                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2031                                    ggtt_offset + 4096 + (j * 4),
2032                                    reg_state[j], reg_state[j + 1],
2033                                    reg_state[j + 2], reg_state[j + 3]);
2034                 }
2035                 kunmap_atomic(reg_state);
2036         }
2037
2038         seq_putc(m, '\n');
2039 }
2040
2041 static int i915_dump_lrc(struct seq_file *m, void *unused)
2042 {
2043         struct drm_info_node *node = (struct drm_info_node *) m->private;
2044         struct drm_device *dev = node->minor->dev;
2045         struct drm_i915_private *dev_priv = dev->dev_private;
2046         struct intel_engine_cs *ring;
2047         struct intel_context *ctx;
2048         int ret, i;
2049
2050         if (!i915.enable_execlists) {
2051                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2052                 return 0;
2053         }
2054
2055         ret = mutex_lock_interruptible(&dev->struct_mutex);
2056         if (ret)
2057                 return ret;
2058
2059         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2060                 for_each_ring(ring, dev_priv, i) {
2061                         if (ring->default_context != ctx)
2062                                 i915_dump_lrc_obj(m, ctx, ring);
2063                 }
2064         }
2065
2066         mutex_unlock(&dev->struct_mutex);
2067
2068         return 0;
2069 }
2070
2071 static int i915_execlists(struct seq_file *m, void *data)
2072 {
2073         struct drm_info_node *node = (struct drm_info_node *)m->private;
2074         struct drm_device *dev = node->minor->dev;
2075         struct drm_i915_private *dev_priv = dev->dev_private;
2076         struct intel_engine_cs *ring;
2077         u32 status_pointer;
2078         u8 read_pointer;
2079         u8 write_pointer;
2080         u32 status;
2081         u32 ctx_id;
2082         struct list_head *cursor;
2083         int ring_id, i;
2084         int ret;
2085
2086         if (!i915.enable_execlists) {
2087                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2088                 return 0;
2089         }
2090
2091         ret = mutex_lock_interruptible(&dev->struct_mutex);
2092         if (ret)
2093                 return ret;
2094
2095         intel_runtime_pm_get(dev_priv);
2096
2097         for_each_ring(ring, dev_priv, ring_id) {
2098                 struct drm_i915_gem_request *head_req = NULL;
2099                 int count = 0;
2100                 unsigned long flags;
2101
2102                 seq_printf(m, "%s\n", ring->name);
2103
2104                 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2105                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2106                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2107                            status, ctx_id);
2108
2109                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2110                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2111
2112                 read_pointer = ring->next_context_status_buffer;
2113                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2114                 if (read_pointer > write_pointer)
2115                         write_pointer += GEN8_CSB_ENTRIES;
2116                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2117                            read_pointer, write_pointer);
2118
2119                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2120                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2121                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2122
2123                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2124                                    i, status, ctx_id);
2125                 }
2126
2127                 spin_lock_irqsave(&ring->execlist_lock, flags);
2128                 list_for_each(cursor, &ring->execlist_queue)
2129                         count++;
2130                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2131                                 struct drm_i915_gem_request, execlist_link);
2132                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2133
2134                 seq_printf(m, "\t%d requests in queue\n", count);
2135                 if (head_req) {
2136                         seq_printf(m, "\tHead request id: %u\n",
2137                                    intel_execlists_ctx_id(head_req->ctx, ring));
2138                         seq_printf(m, "\tHead request tail: %u\n",
2139                                    head_req->tail);
2140                 }
2141
2142                 seq_putc(m, '\n');
2143         }
2144
2145         intel_runtime_pm_put(dev_priv);
2146         mutex_unlock(&dev->struct_mutex);
2147
2148         return 0;
2149 }
2150
2151 static const char *swizzle_string(unsigned swizzle)
2152 {
2153         switch (swizzle) {
2154         case I915_BIT_6_SWIZZLE_NONE:
2155                 return "none";
2156         case I915_BIT_6_SWIZZLE_9:
2157                 return "bit9";
2158         case I915_BIT_6_SWIZZLE_9_10:
2159                 return "bit9/bit10";
2160         case I915_BIT_6_SWIZZLE_9_11:
2161                 return "bit9/bit11";
2162         case I915_BIT_6_SWIZZLE_9_10_11:
2163                 return "bit9/bit10/bit11";
2164         case I915_BIT_6_SWIZZLE_9_17:
2165                 return "bit9/bit17";
2166         case I915_BIT_6_SWIZZLE_9_10_17:
2167                 return "bit9/bit10/bit17";
2168         case I915_BIT_6_SWIZZLE_UNKNOWN:
2169                 return "unknown";
2170         }
2171
2172         return "bug";
2173 }
2174
2175 static int i915_swizzle_info(struct seq_file *m, void *data)
2176 {
2177         struct drm_info_node *node = m->private;
2178         struct drm_device *dev = node->minor->dev;
2179         struct drm_i915_private *dev_priv = dev->dev_private;
2180         int ret;
2181
2182         ret = mutex_lock_interruptible(&dev->struct_mutex);
2183         if (ret)
2184                 return ret;
2185         intel_runtime_pm_get(dev_priv);
2186
2187         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2188                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2189         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2190                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2191
2192         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2193                 seq_printf(m, "DDC = 0x%08x\n",
2194                            I915_READ(DCC));
2195                 seq_printf(m, "DDC2 = 0x%08x\n",
2196                            I915_READ(DCC2));
2197                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2198                            I915_READ16(C0DRB3));
2199                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2200                            I915_READ16(C1DRB3));
2201         } else if (INTEL_INFO(dev)->gen >= 6) {
2202                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2203                            I915_READ(MAD_DIMM_C0));
2204                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2205                            I915_READ(MAD_DIMM_C1));
2206                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2207                            I915_READ(MAD_DIMM_C2));
2208                 seq_printf(m, "TILECTL = 0x%08x\n",
2209                            I915_READ(TILECTL));
2210                 if (INTEL_INFO(dev)->gen >= 8)
2211                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2212                                    I915_READ(GAMTARBMODE));
2213                 else
2214                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2215                                    I915_READ(ARB_MODE));
2216                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2217                            I915_READ(DISP_ARB_CTL));
2218         }
2219
2220         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2221                 seq_puts(m, "L-shaped memory detected\n");
2222
2223         intel_runtime_pm_put(dev_priv);
2224         mutex_unlock(&dev->struct_mutex);
2225
2226         return 0;
2227 }
2228
2229 static int per_file_ctx(int id, void *ptr, void *data)
2230 {
2231         struct intel_context *ctx = ptr;
2232         struct seq_file *m = data;
2233         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2234
2235         if (!ppgtt) {
2236                 seq_printf(m, "  no ppgtt for context %d\n",
2237                            ctx->user_handle);
2238                 return 0;
2239         }
2240
2241         if (i915_gem_context_is_default(ctx))
2242                 seq_puts(m, "  default context:\n");
2243         else
2244                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2245         ppgtt->debug_dump(ppgtt, m);
2246
2247         return 0;
2248 }
2249
2250 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2251 {
2252         struct drm_i915_private *dev_priv = dev->dev_private;
2253         struct intel_engine_cs *ring;
2254         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2255         int unused, i;
2256
2257         if (!ppgtt)
2258                 return;
2259
2260         for_each_ring(ring, dev_priv, unused) {
2261                 seq_printf(m, "%s\n", ring->name);
2262                 for (i = 0; i < 4; i++) {
2263                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2264                         pdp <<= 32;
2265                         pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2266                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2267                 }
2268         }
2269 }
2270
2271 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2272 {
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274         struct intel_engine_cs *ring;
2275         int i;
2276
2277         if (INTEL_INFO(dev)->gen == 6)
2278                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2279
2280         for_each_ring(ring, dev_priv, i) {
2281                 seq_printf(m, "%s\n", ring->name);
2282                 if (INTEL_INFO(dev)->gen == 7)
2283                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2284                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2285                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2286                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2287         }
2288         if (dev_priv->mm.aliasing_ppgtt) {
2289                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2290
2291                 seq_puts(m, "aliasing PPGTT:\n");
2292                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2293
2294                 ppgtt->debug_dump(ppgtt, m);
2295         }
2296
2297         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2298 }
2299
2300 static int i915_ppgtt_info(struct seq_file *m, void *data)
2301 {
2302         struct drm_info_node *node = m->private;
2303         struct drm_device *dev = node->minor->dev;
2304         struct drm_i915_private *dev_priv = dev->dev_private;
2305         struct drm_file *file;
2306
2307         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2308         if (ret)
2309                 return ret;
2310         intel_runtime_pm_get(dev_priv);
2311
2312         if (INTEL_INFO(dev)->gen >= 8)
2313                 gen8_ppgtt_info(m, dev);
2314         else if (INTEL_INFO(dev)->gen >= 6)
2315                 gen6_ppgtt_info(m, dev);
2316
2317         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2318                 struct drm_i915_file_private *file_priv = file->driver_priv;
2319                 struct task_struct *task;
2320
2321                 task = get_pid_task(file->pid, PIDTYPE_PID);
2322                 if (!task) {
2323                         ret = -ESRCH;
2324                         goto out_put;
2325                 }
2326                 seq_printf(m, "\nproc: %s\n", task->comm);
2327                 put_task_struct(task);
2328                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2329                              (void *)(unsigned long)m);
2330         }
2331
2332 out_put:
2333         intel_runtime_pm_put(dev_priv);
2334         mutex_unlock(&dev->struct_mutex);
2335
2336         return ret;
2337 }
2338
2339 static int count_irq_waiters(struct drm_i915_private *i915)
2340 {
2341         struct intel_engine_cs *ring;
2342         int count = 0;
2343         int i;
2344
2345         for_each_ring(ring, i915, i)
2346                 count += ring->irq_refcount;
2347
2348         return count;
2349 }
2350
2351 static int i915_rps_boost_info(struct seq_file *m, void *data)
2352 {
2353         struct drm_info_node *node = m->private;
2354         struct drm_device *dev = node->minor->dev;
2355         struct drm_i915_private *dev_priv = dev->dev_private;
2356         struct drm_file *file;
2357
2358         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2359         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2360         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2361         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2362                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2363                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2364                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2365                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2366                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2367         spin_lock(&dev_priv->rps.client_lock);
2368         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2369                 struct drm_i915_file_private *file_priv = file->driver_priv;
2370                 struct task_struct *task;
2371
2372                 rcu_read_lock();
2373                 task = pid_task(file->pid, PIDTYPE_PID);
2374                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2375                            task ? task->comm : "<unknown>",
2376                            task ? task->pid : -1,
2377                            file_priv->rps.boosts,
2378                            list_empty(&file_priv->rps.link) ? "" : ", active");
2379                 rcu_read_unlock();
2380         }
2381         seq_printf(m, "Semaphore boosts: %d%s\n",
2382                    dev_priv->rps.semaphores.boosts,
2383                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2384         seq_printf(m, "MMIO flip boosts: %d%s\n",
2385                    dev_priv->rps.mmioflips.boosts,
2386                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2387         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2388         spin_unlock(&dev_priv->rps.client_lock);
2389
2390         return 0;
2391 }
2392
2393 static int i915_llc(struct seq_file *m, void *data)
2394 {
2395         struct drm_info_node *node = m->private;
2396         struct drm_device *dev = node->minor->dev;
2397         struct drm_i915_private *dev_priv = dev->dev_private;
2398
2399         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2400         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2401         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2402
2403         return 0;
2404 }
2405
2406 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2407 {
2408         struct drm_info_node *node = m->private;
2409         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2410         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2411         u32 tmp, i;
2412
2413         if (!HAS_GUC_UCODE(dev_priv->dev))
2414                 return 0;
2415
2416         seq_printf(m, "GuC firmware status:\n");
2417         seq_printf(m, "\tpath: %s\n",
2418                 guc_fw->guc_fw_path);
2419         seq_printf(m, "\tfetch: %s\n",
2420                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2421         seq_printf(m, "\tload: %s\n",
2422                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2423         seq_printf(m, "\tversion wanted: %d.%d\n",
2424                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2425         seq_printf(m, "\tversion found: %d.%d\n",
2426                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2427         seq_printf(m, "\theader: offset is %d; size = %d\n",
2428                 guc_fw->header_offset, guc_fw->header_size);
2429         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2430                 guc_fw->ucode_offset, guc_fw->ucode_size);
2431         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2432                 guc_fw->rsa_offset, guc_fw->rsa_size);
2433
2434         tmp = I915_READ(GUC_STATUS);
2435
2436         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2437         seq_printf(m, "\tBootrom status = 0x%x\n",
2438                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2439         seq_printf(m, "\tuKernel status = 0x%x\n",
2440                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2441         seq_printf(m, "\tMIA Core status = 0x%x\n",
2442                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2443         seq_puts(m, "\nScratch registers:\n");
2444         for (i = 0; i < 16; i++)
2445                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2446
2447         return 0;
2448 }
2449
2450 static void i915_guc_client_info(struct seq_file *m,
2451                                  struct drm_i915_private *dev_priv,
2452                                  struct i915_guc_client *client)
2453 {
2454         struct intel_engine_cs *ring;
2455         uint64_t tot = 0;
2456         uint32_t i;
2457
2458         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2459                 client->priority, client->ctx_index, client->proc_desc_offset);
2460         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2461                 client->doorbell_id, client->doorbell_offset, client->cookie);
2462         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2463                 client->wq_size, client->wq_offset, client->wq_tail);
2464
2465         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2466         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2467         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2468
2469         for_each_ring(ring, dev_priv, i) {
2470                 seq_printf(m, "\tSubmissions: %llu %s\n",
2471                                 client->submissions[i],
2472                                 ring->name);
2473                 tot += client->submissions[i];
2474         }
2475         seq_printf(m, "\tTotal: %llu\n", tot);
2476 }
2477
2478 static int i915_guc_info(struct seq_file *m, void *data)
2479 {
2480         struct drm_info_node *node = m->private;
2481         struct drm_device *dev = node->minor->dev;
2482         struct drm_i915_private *dev_priv = dev->dev_private;
2483         struct intel_guc guc;
2484         struct i915_guc_client client = {};
2485         struct intel_engine_cs *ring;
2486         enum intel_ring_id i;
2487         u64 total = 0;
2488
2489         if (!HAS_GUC_SCHED(dev_priv->dev))
2490                 return 0;
2491
2492         if (mutex_lock_interruptible(&dev->struct_mutex))
2493                 return 0;
2494
2495         /* Take a local copy of the GuC data, so we can dump it at leisure */
2496         guc = dev_priv->guc;
2497         if (guc.execbuf_client)
2498                 client = *guc.execbuf_client;
2499
2500         mutex_unlock(&dev->struct_mutex);
2501
2502         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2503         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2504         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2505         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2506         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2507
2508         seq_printf(m, "\nGuC submissions:\n");
2509         for_each_ring(ring, dev_priv, i) {
2510                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2511                         ring->name, guc.submissions[i],
2512                         guc.last_seqno[i], guc.last_seqno[i]);
2513                 total += guc.submissions[i];
2514         }
2515         seq_printf(m, "\t%s: %llu\n", "Total", total);
2516
2517         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2518         i915_guc_client_info(m, dev_priv, &client);
2519
2520         /* Add more as required ... */
2521
2522         return 0;
2523 }
2524
2525 static int i915_guc_log_dump(struct seq_file *m, void *data)
2526 {
2527         struct drm_info_node *node = m->private;
2528         struct drm_device *dev = node->minor->dev;
2529         struct drm_i915_private *dev_priv = dev->dev_private;
2530         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2531         u32 *log;
2532         int i = 0, pg;
2533
2534         if (!log_obj)
2535                 return 0;
2536
2537         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2538                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2539
2540                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2541                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2542                                    *(log + i), *(log + i + 1),
2543                                    *(log + i + 2), *(log + i + 3));
2544
2545                 kunmap_atomic(log);
2546         }
2547
2548         seq_putc(m, '\n');
2549
2550         return 0;
2551 }
2552
2553 static int i915_edp_psr_status(struct seq_file *m, void *data)
2554 {
2555         struct drm_info_node *node = m->private;
2556         struct drm_device *dev = node->minor->dev;
2557         struct drm_i915_private *dev_priv = dev->dev_private;
2558         u32 psrperf = 0;
2559         u32 stat[3];
2560         enum pipe pipe;
2561         bool enabled = false;
2562
2563         if (!HAS_PSR(dev)) {
2564                 seq_puts(m, "PSR not supported\n");
2565                 return 0;
2566         }
2567
2568         intel_runtime_pm_get(dev_priv);
2569
2570         mutex_lock(&dev_priv->psr.lock);
2571         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2572         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2573         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2574         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2575         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2576                    dev_priv->psr.busy_frontbuffer_bits);
2577         seq_printf(m, "Re-enable work scheduled: %s\n",
2578                    yesno(work_busy(&dev_priv->psr.work.work)));
2579
2580         if (HAS_DDI(dev))
2581                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2582         else {
2583                 for_each_pipe(dev_priv, pipe) {
2584                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2585                                 VLV_EDP_PSR_CURR_STATE_MASK;
2586                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2587                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2588                                 enabled = true;
2589                 }
2590         }
2591         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2592
2593         if (!HAS_DDI(dev))
2594                 for_each_pipe(dev_priv, pipe) {
2595                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2596                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2597                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2598                 }
2599         seq_puts(m, "\n");
2600
2601         /*
2602          * VLV/CHV PSR has no kind of performance counter
2603          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2604          */
2605         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2606                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2607                         EDP_PSR_PERF_CNT_MASK;
2608
2609                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2610         }
2611         mutex_unlock(&dev_priv->psr.lock);
2612
2613         intel_runtime_pm_put(dev_priv);
2614         return 0;
2615 }
2616
2617 static int i915_sink_crc(struct seq_file *m, void *data)
2618 {
2619         struct drm_info_node *node = m->private;
2620         struct drm_device *dev = node->minor->dev;
2621         struct intel_encoder *encoder;
2622         struct intel_connector *connector;
2623         struct intel_dp *intel_dp = NULL;
2624         int ret;
2625         u8 crc[6];
2626
2627         drm_modeset_lock_all(dev);
2628         for_each_intel_connector(dev, connector) {
2629
2630                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2631                         continue;
2632
2633                 if (!connector->base.encoder)
2634                         continue;
2635
2636                 encoder = to_intel_encoder(connector->base.encoder);
2637                 if (encoder->type != INTEL_OUTPUT_EDP)
2638                         continue;
2639
2640                 intel_dp = enc_to_intel_dp(&encoder->base);
2641
2642                 ret = intel_dp_sink_crc(intel_dp, crc);
2643                 if (ret)
2644                         goto out;
2645
2646                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2647                            crc[0], crc[1], crc[2],
2648                            crc[3], crc[4], crc[5]);
2649                 goto out;
2650         }
2651         ret = -ENODEV;
2652 out:
2653         drm_modeset_unlock_all(dev);
2654         return ret;
2655 }
2656
2657 static int i915_energy_uJ(struct seq_file *m, void *data)
2658 {
2659         struct drm_info_node *node = m->private;
2660         struct drm_device *dev = node->minor->dev;
2661         struct drm_i915_private *dev_priv = dev->dev_private;
2662         u64 power;
2663         u32 units;
2664
2665         if (INTEL_INFO(dev)->gen < 6)
2666                 return -ENODEV;
2667
2668         intel_runtime_pm_get(dev_priv);
2669
2670         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2671         power = (power & 0x1f00) >> 8;
2672         units = 1000000 / (1 << power); /* convert to uJ */
2673         power = I915_READ(MCH_SECP_NRG_STTS);
2674         power *= units;
2675
2676         intel_runtime_pm_put(dev_priv);
2677
2678         seq_printf(m, "%llu", (long long unsigned)power);
2679
2680         return 0;
2681 }
2682
2683 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2684 {
2685         struct drm_info_node *node = m->private;
2686         struct drm_device *dev = node->minor->dev;
2687         struct drm_i915_private *dev_priv = dev->dev_private;
2688
2689         if (!HAS_RUNTIME_PM(dev)) {
2690                 seq_puts(m, "not supported\n");
2691                 return 0;
2692         }
2693
2694         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2695         seq_printf(m, "IRQs disabled: %s\n",
2696                    yesno(!intel_irqs_enabled(dev_priv)));
2697 #ifdef CONFIG_PM
2698         seq_printf(m, "Usage count: %d\n",
2699                    atomic_read(&dev->dev->power.usage_count));
2700 #else
2701         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2702 #endif
2703
2704         return 0;
2705 }
2706
2707 static int i915_power_domain_info(struct seq_file *m, void *unused)
2708 {
2709         struct drm_info_node *node = m->private;
2710         struct drm_device *dev = node->minor->dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2713         int i;
2714
2715         mutex_lock(&power_domains->lock);
2716
2717         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2718         for (i = 0; i < power_domains->power_well_count; i++) {
2719                 struct i915_power_well *power_well;
2720                 enum intel_display_power_domain power_domain;
2721
2722                 power_well = &power_domains->power_wells[i];
2723                 seq_printf(m, "%-25s %d\n", power_well->name,
2724                            power_well->count);
2725
2726                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2727                      power_domain++) {
2728                         if (!(BIT(power_domain) & power_well->domains))
2729                                 continue;
2730
2731                         seq_printf(m, "  %-23s %d\n",
2732                                  intel_display_power_domain_str(power_domain),
2733                                  power_domains->domain_use_count[power_domain]);
2734                 }
2735         }
2736
2737         mutex_unlock(&power_domains->lock);
2738
2739         return 0;
2740 }
2741
2742 static int i915_dmc_info(struct seq_file *m, void *unused)
2743 {
2744         struct drm_info_node *node = m->private;
2745         struct drm_device *dev = node->minor->dev;
2746         struct drm_i915_private *dev_priv = dev->dev_private;
2747         struct intel_csr *csr;
2748
2749         if (!HAS_CSR(dev)) {
2750                 seq_puts(m, "not supported\n");
2751                 return 0;
2752         }
2753
2754         csr = &dev_priv->csr;
2755
2756         intel_runtime_pm_get(dev_priv);
2757
2758         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2759         seq_printf(m, "path: %s\n", csr->fw_path);
2760
2761         if (!csr->dmc_payload)
2762                 goto out;
2763
2764         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2765                    CSR_VERSION_MINOR(csr->version));
2766
2767         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2768                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2769                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2770                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2771                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2772         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2773                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2774                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2775         }
2776
2777 out:
2778         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2779         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2780         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2781
2782         intel_runtime_pm_put(dev_priv);
2783
2784         return 0;
2785 }
2786
2787 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2788                                  struct drm_display_mode *mode)
2789 {
2790         int i;
2791
2792         for (i = 0; i < tabs; i++)
2793                 seq_putc(m, '\t');
2794
2795         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2796                    mode->base.id, mode->name,
2797                    mode->vrefresh, mode->clock,
2798                    mode->hdisplay, mode->hsync_start,
2799                    mode->hsync_end, mode->htotal,
2800                    mode->vdisplay, mode->vsync_start,
2801                    mode->vsync_end, mode->vtotal,
2802                    mode->type, mode->flags);
2803 }
2804
2805 static void intel_encoder_info(struct seq_file *m,
2806                                struct intel_crtc *intel_crtc,
2807                                struct intel_encoder *intel_encoder)
2808 {
2809         struct drm_info_node *node = m->private;
2810         struct drm_device *dev = node->minor->dev;
2811         struct drm_crtc *crtc = &intel_crtc->base;
2812         struct intel_connector *intel_connector;
2813         struct drm_encoder *encoder;
2814
2815         encoder = &intel_encoder->base;
2816         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2817                    encoder->base.id, encoder->name);
2818         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2819                 struct drm_connector *connector = &intel_connector->base;
2820                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2821                            connector->base.id,
2822                            connector->name,
2823                            drm_get_connector_status_name(connector->status));
2824                 if (connector->status == connector_status_connected) {
2825                         struct drm_display_mode *mode = &crtc->mode;
2826                         seq_printf(m, ", mode:\n");
2827                         intel_seq_print_mode(m, 2, mode);
2828                 } else {
2829                         seq_putc(m, '\n');
2830                 }
2831         }
2832 }
2833
2834 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2835 {
2836         struct drm_info_node *node = m->private;
2837         struct drm_device *dev = node->minor->dev;
2838         struct drm_crtc *crtc = &intel_crtc->base;
2839         struct intel_encoder *intel_encoder;
2840         struct drm_plane_state *plane_state = crtc->primary->state;
2841         struct drm_framebuffer *fb = plane_state->fb;
2842
2843         if (fb)
2844                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2845                            fb->base.id, plane_state->src_x >> 16,
2846                            plane_state->src_y >> 16, fb->width, fb->height);
2847         else
2848                 seq_puts(m, "\tprimary plane disabled\n");
2849         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2850                 intel_encoder_info(m, intel_crtc, intel_encoder);
2851 }
2852
2853 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2854 {
2855         struct drm_display_mode *mode = panel->fixed_mode;
2856
2857         seq_printf(m, "\tfixed mode:\n");
2858         intel_seq_print_mode(m, 2, mode);
2859 }
2860
2861 static void intel_dp_info(struct seq_file *m,
2862                           struct intel_connector *intel_connector)
2863 {
2864         struct intel_encoder *intel_encoder = intel_connector->encoder;
2865         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2866
2867         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2868         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2869         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2870                 intel_panel_info(m, &intel_connector->panel);
2871 }
2872
2873 static void intel_dp_mst_info(struct seq_file *m,
2874                           struct intel_connector *intel_connector)
2875 {
2876         struct intel_encoder *intel_encoder = intel_connector->encoder;
2877         struct intel_dp_mst_encoder *intel_mst =
2878                 enc_to_mst(&intel_encoder->base);
2879         struct intel_digital_port *intel_dig_port = intel_mst->primary;
2880         struct intel_dp *intel_dp = &intel_dig_port->dp;
2881         bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2882                                         intel_connector->port);
2883
2884         seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2885 }
2886
2887 static void intel_hdmi_info(struct seq_file *m,
2888                             struct intel_connector *intel_connector)
2889 {
2890         struct intel_encoder *intel_encoder = intel_connector->encoder;
2891         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2892
2893         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2894 }
2895
2896 static void intel_lvds_info(struct seq_file *m,
2897                             struct intel_connector *intel_connector)
2898 {
2899         intel_panel_info(m, &intel_connector->panel);
2900 }
2901
2902 static void intel_connector_info(struct seq_file *m,
2903                                  struct drm_connector *connector)
2904 {
2905         struct intel_connector *intel_connector = to_intel_connector(connector);
2906         struct intel_encoder *intel_encoder = intel_connector->encoder;
2907         struct drm_display_mode *mode;
2908
2909         seq_printf(m, "connector %d: type %s, status: %s\n",
2910                    connector->base.id, connector->name,
2911                    drm_get_connector_status_name(connector->status));
2912         if (connector->status == connector_status_connected) {
2913                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2914                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2915                            connector->display_info.width_mm,
2916                            connector->display_info.height_mm);
2917                 seq_printf(m, "\tsubpixel order: %s\n",
2918                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2919                 seq_printf(m, "\tCEA rev: %d\n",
2920                            connector->display_info.cea_rev);
2921         }
2922         if (intel_encoder) {
2923                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2924                     intel_encoder->type == INTEL_OUTPUT_EDP)
2925                         intel_dp_info(m, intel_connector);
2926                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2927                         intel_hdmi_info(m, intel_connector);
2928                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2929                         intel_lvds_info(m, intel_connector);
2930                 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2931                         intel_dp_mst_info(m, intel_connector);
2932         }
2933
2934         seq_printf(m, "\tmodes:\n");
2935         list_for_each_entry(mode, &connector->modes, head)
2936                 intel_seq_print_mode(m, 2, mode);
2937 }
2938
2939 static bool cursor_active(struct drm_device *dev, int pipe)
2940 {
2941         struct drm_i915_private *dev_priv = dev->dev_private;
2942         u32 state;
2943
2944         if (IS_845G(dev) || IS_I865G(dev))
2945                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2946         else
2947                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2948
2949         return state;
2950 }
2951
2952 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2953 {
2954         struct drm_i915_private *dev_priv = dev->dev_private;
2955         u32 pos;
2956
2957         pos = I915_READ(CURPOS(pipe));
2958
2959         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2960         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2961                 *x = -*x;
2962
2963         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2964         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2965                 *y = -*y;
2966
2967         return cursor_active(dev, pipe);
2968 }
2969
2970 static const char *plane_type(enum drm_plane_type type)
2971 {
2972         switch (type) {
2973         case DRM_PLANE_TYPE_OVERLAY:
2974                 return "OVL";
2975         case DRM_PLANE_TYPE_PRIMARY:
2976                 return "PRI";
2977         case DRM_PLANE_TYPE_CURSOR:
2978                 return "CUR";
2979         /*
2980          * Deliberately omitting default: to generate compiler warnings
2981          * when a new drm_plane_type gets added.
2982          */
2983         }
2984
2985         return "unknown";
2986 }
2987
2988 static const char *plane_rotation(unsigned int rotation)
2989 {
2990         static char buf[48];
2991         /*
2992          * According to doc only one DRM_ROTATE_ is allowed but this
2993          * will print them all to visualize if the values are misused
2994          */
2995         snprintf(buf, sizeof(buf),
2996                  "%s%s%s%s%s%s(0x%08x)",
2997                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2998                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2999                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3000                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3001                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3002                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3003                  rotation);
3004
3005         return buf;
3006 }
3007
3008 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3009 {
3010         struct drm_info_node *node = m->private;
3011         struct drm_device *dev = node->minor->dev;
3012         struct intel_plane *intel_plane;
3013
3014         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3015                 struct drm_plane_state *state;
3016                 struct drm_plane *plane = &intel_plane->base;
3017
3018                 if (!plane->state) {
3019                         seq_puts(m, "plane->state is NULL!\n");
3020                         continue;
3021                 }
3022
3023                 state = plane->state;
3024
3025                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3026                            plane->base.id,
3027                            plane_type(intel_plane->base.type),
3028                            state->crtc_x, state->crtc_y,
3029                            state->crtc_w, state->crtc_h,
3030                            (state->src_x >> 16),
3031                            ((state->src_x & 0xffff) * 15625) >> 10,
3032                            (state->src_y >> 16),
3033                            ((state->src_y & 0xffff) * 15625) >> 10,
3034                            (state->src_w >> 16),
3035                            ((state->src_w & 0xffff) * 15625) >> 10,
3036                            (state->src_h >> 16),
3037                            ((state->src_h & 0xffff) * 15625) >> 10,
3038                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3039                            plane_rotation(state->rotation));
3040         }
3041 }
3042
3043 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3044 {
3045         struct intel_crtc_state *pipe_config;
3046         int num_scalers = intel_crtc->num_scalers;
3047         int i;
3048
3049         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3050
3051         /* Not all platformas have a scaler */
3052         if (num_scalers) {
3053                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3054                            num_scalers,
3055                            pipe_config->scaler_state.scaler_users,
3056                            pipe_config->scaler_state.scaler_id);
3057
3058                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3059                         struct intel_scaler *sc =
3060                                         &pipe_config->scaler_state.scalers[i];
3061
3062                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3063                                    i, yesno(sc->in_use), sc->mode);
3064                 }
3065                 seq_puts(m, "\n");
3066         } else {
3067                 seq_puts(m, "\tNo scalers available on this platform\n");
3068         }
3069 }
3070
3071 static int i915_display_info(struct seq_file *m, void *unused)
3072 {
3073         struct drm_info_node *node = m->private;
3074         struct drm_device *dev = node->minor->dev;
3075         struct drm_i915_private *dev_priv = dev->dev_private;
3076         struct intel_crtc *crtc;
3077         struct drm_connector *connector;
3078
3079         intel_runtime_pm_get(dev_priv);
3080         drm_modeset_lock_all(dev);
3081         seq_printf(m, "CRTC info\n");
3082         seq_printf(m, "---------\n");
3083         for_each_intel_crtc(dev, crtc) {
3084                 bool active;
3085                 struct intel_crtc_state *pipe_config;
3086                 int x, y;
3087
3088                 pipe_config = to_intel_crtc_state(crtc->base.state);
3089
3090                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3091                            crtc->base.base.id, pipe_name(crtc->pipe),
3092                            yesno(pipe_config->base.active),
3093                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3094                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3095
3096                 if (pipe_config->base.active) {
3097                         intel_crtc_info(m, crtc);
3098
3099                         active = cursor_position(dev, crtc->pipe, &x, &y);
3100                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3101                                    yesno(crtc->cursor_base),
3102                                    x, y, crtc->base.cursor->state->crtc_w,
3103                                    crtc->base.cursor->state->crtc_h,
3104                                    crtc->cursor_addr, yesno(active));
3105                         intel_scaler_info(m, crtc);
3106                         intel_plane_info(m, crtc);
3107                 }
3108
3109                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3110                            yesno(!crtc->cpu_fifo_underrun_disabled),
3111                            yesno(!crtc->pch_fifo_underrun_disabled));
3112         }
3113
3114         seq_printf(m, "\n");
3115         seq_printf(m, "Connector info\n");
3116         seq_printf(m, "--------------\n");
3117         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3118                 intel_connector_info(m, connector);
3119         }
3120         drm_modeset_unlock_all(dev);
3121         intel_runtime_pm_put(dev_priv);
3122
3123         return 0;
3124 }
3125
3126 static int i915_semaphore_status(struct seq_file *m, void *unused)
3127 {
3128         struct drm_info_node *node = (struct drm_info_node *) m->private;
3129         struct drm_device *dev = node->minor->dev;
3130         struct drm_i915_private *dev_priv = dev->dev_private;
3131         struct intel_engine_cs *ring;
3132         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3133         int i, j, ret;
3134
3135         if (!i915_semaphore_is_enabled(dev)) {
3136                 seq_puts(m, "Semaphores are disabled\n");
3137                 return 0;
3138         }
3139
3140         ret = mutex_lock_interruptible(&dev->struct_mutex);
3141         if (ret)
3142                 return ret;
3143         intel_runtime_pm_get(dev_priv);
3144
3145         if (IS_BROADWELL(dev)) {
3146                 struct page *page;
3147                 uint64_t *seqno;
3148
3149                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3150
3151                 seqno = (uint64_t *)kmap_atomic(page);
3152                 for_each_ring(ring, dev_priv, i) {
3153                         uint64_t offset;
3154
3155                         seq_printf(m, "%s\n", ring->name);
3156
3157                         seq_puts(m, "  Last signal:");
3158                         for (j = 0; j < num_rings; j++) {
3159                                 offset = i * I915_NUM_RINGS + j;
3160                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3161                                            seqno[offset], offset * 8);
3162                         }
3163                         seq_putc(m, '\n');
3164
3165                         seq_puts(m, "  Last wait:  ");
3166                         for (j = 0; j < num_rings; j++) {
3167                                 offset = i + (j * I915_NUM_RINGS);
3168                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3169                                            seqno[offset], offset * 8);
3170                         }
3171                         seq_putc(m, '\n');
3172
3173                 }
3174                 kunmap_atomic(seqno);
3175         } else {
3176                 seq_puts(m, "  Last signal:");
3177                 for_each_ring(ring, dev_priv, i)
3178                         for (j = 0; j < num_rings; j++)
3179                                 seq_printf(m, "0x%08x\n",
3180                                            I915_READ(ring->semaphore.mbox.signal[j]));
3181                 seq_putc(m, '\n');
3182         }
3183
3184         seq_puts(m, "\nSync seqno:\n");
3185         for_each_ring(ring, dev_priv, i) {
3186                 for (j = 0; j < num_rings; j++) {
3187                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3188                 }
3189                 seq_putc(m, '\n');
3190         }
3191         seq_putc(m, '\n');
3192
3193         intel_runtime_pm_put(dev_priv);
3194         mutex_unlock(&dev->struct_mutex);
3195         return 0;
3196 }
3197
3198 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3199 {
3200         struct drm_info_node *node = (struct drm_info_node *) m->private;
3201         struct drm_device *dev = node->minor->dev;
3202         struct drm_i915_private *dev_priv = dev->dev_private;
3203         int i;
3204
3205         drm_modeset_lock_all(dev);
3206         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3207                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3208
3209                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3210                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3211                            pll->config.crtc_mask, pll->active, yesno(pll->on));
3212                 seq_printf(m, " tracked hardware state:\n");
3213                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3214                 seq_printf(m, " dpll_md: 0x%08x\n",
3215                            pll->config.hw_state.dpll_md);
3216                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3217                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3218                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3219         }
3220         drm_modeset_unlock_all(dev);
3221
3222         return 0;
3223 }
3224
3225 static int i915_wa_registers(struct seq_file *m, void *unused)
3226 {
3227         int i;
3228         int ret;
3229         struct drm_info_node *node = (struct drm_info_node *) m->private;
3230         struct drm_device *dev = node->minor->dev;
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232
3233         ret = mutex_lock_interruptible(&dev->struct_mutex);
3234         if (ret)
3235                 return ret;
3236
3237         intel_runtime_pm_get(dev_priv);
3238
3239         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3240         for (i = 0; i < dev_priv->workarounds.count; ++i) {
3241                 i915_reg_t addr;
3242                 u32 mask, value, read;
3243                 bool ok;
3244
3245                 addr = dev_priv->workarounds.reg[i].addr;
3246                 mask = dev_priv->workarounds.reg[i].mask;
3247                 value = dev_priv->workarounds.reg[i].value;
3248                 read = I915_READ(addr);
3249                 ok = (value & mask) == (read & mask);
3250                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3251                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3252         }
3253
3254         intel_runtime_pm_put(dev_priv);
3255         mutex_unlock(&dev->struct_mutex);
3256
3257         return 0;
3258 }
3259
3260 static int i915_ddb_info(struct seq_file *m, void *unused)
3261 {
3262         struct drm_info_node *node = m->private;
3263         struct drm_device *dev = node->minor->dev;
3264         struct drm_i915_private *dev_priv = dev->dev_private;
3265         struct skl_ddb_allocation *ddb;
3266         struct skl_ddb_entry *entry;
3267         enum pipe pipe;
3268         int plane;
3269
3270         if (INTEL_INFO(dev)->gen < 9)
3271                 return 0;
3272
3273         drm_modeset_lock_all(dev);
3274
3275         ddb = &dev_priv->wm.skl_hw.ddb;
3276
3277         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3278
3279         for_each_pipe(dev_priv, pipe) {
3280                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3281
3282                 for_each_plane(dev_priv, pipe, plane) {
3283                         entry = &ddb->plane[pipe][plane];
3284                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3285                                    entry->start, entry->end,
3286                                    skl_ddb_entry_size(entry));
3287                 }
3288
3289                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3290                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3291                            entry->end, skl_ddb_entry_size(entry));
3292         }
3293
3294         drm_modeset_unlock_all(dev);
3295
3296         return 0;
3297 }
3298
3299 static void drrs_status_per_crtc(struct seq_file *m,
3300                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3301 {
3302         struct intel_encoder *intel_encoder;
3303         struct drm_i915_private *dev_priv = dev->dev_private;
3304         struct i915_drrs *drrs = &dev_priv->drrs;
3305         int vrefresh = 0;
3306
3307         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3308                 /* Encoder connected on this CRTC */
3309                 switch (intel_encoder->type) {
3310                 case INTEL_OUTPUT_EDP:
3311                         seq_puts(m, "eDP:\n");
3312                         break;
3313                 case INTEL_OUTPUT_DSI:
3314                         seq_puts(m, "DSI:\n");
3315                         break;
3316                 case INTEL_OUTPUT_HDMI:
3317                         seq_puts(m, "HDMI:\n");
3318                         break;
3319                 case INTEL_OUTPUT_DISPLAYPORT:
3320                         seq_puts(m, "DP:\n");
3321                         break;
3322                 default:
3323                         seq_printf(m, "Other encoder (id=%d).\n",
3324                                                 intel_encoder->type);
3325                         return;
3326                 }
3327         }
3328
3329         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3330                 seq_puts(m, "\tVBT: DRRS_type: Static");
3331         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3332                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3333         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3334                 seq_puts(m, "\tVBT: DRRS_type: None");
3335         else
3336                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3337
3338         seq_puts(m, "\n\n");
3339
3340         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3341                 struct intel_panel *panel;
3342
3343                 mutex_lock(&drrs->mutex);
3344                 /* DRRS Supported */
3345                 seq_puts(m, "\tDRRS Supported: Yes\n");
3346
3347                 /* disable_drrs() will make drrs->dp NULL */
3348                 if (!drrs->dp) {
3349                         seq_puts(m, "Idleness DRRS: Disabled");
3350                         mutex_unlock(&drrs->mutex);
3351                         return;
3352                 }
3353
3354                 panel = &drrs->dp->attached_connector->panel;
3355                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3356                                         drrs->busy_frontbuffer_bits);
3357
3358                 seq_puts(m, "\n\t\t");
3359                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3360                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3361                         vrefresh = panel->fixed_mode->vrefresh;
3362                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3363                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3364                         vrefresh = panel->downclock_mode->vrefresh;
3365                 } else {
3366                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3367                                                 drrs->refresh_rate_type);
3368                         mutex_unlock(&drrs->mutex);
3369                         return;
3370                 }
3371                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3372
3373                 seq_puts(m, "\n\t\t");
3374                 mutex_unlock(&drrs->mutex);
3375         } else {
3376                 /* DRRS not supported. Print the VBT parameter*/
3377                 seq_puts(m, "\tDRRS Supported : No");
3378         }
3379         seq_puts(m, "\n");
3380 }
3381
3382 static int i915_drrs_status(struct seq_file *m, void *unused)
3383 {
3384         struct drm_info_node *node = m->private;
3385         struct drm_device *dev = node->minor->dev;
3386         struct intel_crtc *intel_crtc;
3387         int active_crtc_cnt = 0;
3388
3389         for_each_intel_crtc(dev, intel_crtc) {
3390                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3391
3392                 if (intel_crtc->base.state->active) {
3393                         active_crtc_cnt++;
3394                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3395
3396                         drrs_status_per_crtc(m, dev, intel_crtc);
3397                 }
3398
3399                 drm_modeset_unlock(&intel_crtc->base.mutex);
3400         }
3401
3402         if (!active_crtc_cnt)
3403                 seq_puts(m, "No active crtc found\n");
3404
3405         return 0;
3406 }
3407
3408 struct pipe_crc_info {
3409         const char *name;
3410         struct drm_device *dev;
3411         enum pipe pipe;
3412 };
3413
3414 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3415 {
3416         struct drm_info_node *node = (struct drm_info_node *) m->private;
3417         struct drm_device *dev = node->minor->dev;
3418         struct drm_encoder *encoder;
3419         struct intel_encoder *intel_encoder;
3420         struct intel_digital_port *intel_dig_port;
3421         drm_modeset_lock_all(dev);
3422         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3423                 intel_encoder = to_intel_encoder(encoder);
3424                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3425                         continue;
3426                 intel_dig_port = enc_to_dig_port(encoder);
3427                 if (!intel_dig_port->dp.can_mst)
3428                         continue;
3429
3430                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3431         }
3432         drm_modeset_unlock_all(dev);
3433         return 0;
3434 }
3435
3436 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3437 {
3438         struct pipe_crc_info *info = inode->i_private;
3439         struct drm_i915_private *dev_priv = info->dev->dev_private;
3440         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3441
3442         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3443                 return -ENODEV;
3444
3445         spin_lock_irq(&pipe_crc->lock);
3446
3447         if (pipe_crc->opened) {
3448                 spin_unlock_irq(&pipe_crc->lock);
3449                 return -EBUSY; /* already open */
3450         }
3451
3452         pipe_crc->opened = true;
3453         filep->private_data = inode->i_private;
3454
3455         spin_unlock_irq(&pipe_crc->lock);
3456
3457         return 0;
3458 }
3459
3460 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3461 {
3462         struct pipe_crc_info *info = inode->i_private;
3463         struct drm_i915_private *dev_priv = info->dev->dev_private;
3464         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3465
3466         spin_lock_irq(&pipe_crc->lock);
3467         pipe_crc->opened = false;
3468         spin_unlock_irq(&pipe_crc->lock);
3469
3470         return 0;
3471 }
3472
3473 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3474 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3475 /* account for \'0' */
3476 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3477
3478 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3479 {
3480         assert_spin_locked(&pipe_crc->lock);
3481         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3482                         INTEL_PIPE_CRC_ENTRIES_NR);
3483 }
3484
3485 static ssize_t
3486 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3487                    loff_t *pos)
3488 {
3489         struct pipe_crc_info *info = filep->private_data;
3490         struct drm_device *dev = info->dev;
3491         struct drm_i915_private *dev_priv = dev->dev_private;
3492         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3493         char buf[PIPE_CRC_BUFFER_LEN];
3494         int n_entries;
3495         ssize_t bytes_read;
3496
3497         /*
3498          * Don't allow user space to provide buffers not big enough to hold
3499          * a line of data.
3500          */
3501         if (count < PIPE_CRC_LINE_LEN)
3502                 return -EINVAL;
3503
3504         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3505                 return 0;
3506
3507         /* nothing to read */
3508         spin_lock_irq(&pipe_crc->lock);
3509         while (pipe_crc_data_count(pipe_crc) == 0) {
3510                 int ret;
3511
3512                 if (filep->f_flags & O_NONBLOCK) {
3513                         spin_unlock_irq(&pipe_crc->lock);
3514                         return -EAGAIN;
3515                 }
3516
3517                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3518                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3519                 if (ret) {
3520                         spin_unlock_irq(&pipe_crc->lock);
3521                         return ret;
3522                 }
3523         }
3524
3525         /* We now have one or more entries to read */
3526         n_entries = count / PIPE_CRC_LINE_LEN;
3527
3528         bytes_read = 0;
3529         while (n_entries > 0) {
3530                 struct intel_pipe_crc_entry *entry =
3531                         &pipe_crc->entries[pipe_crc->tail];
3532                 int ret;
3533
3534                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3535                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3536                         break;
3537
3538                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3539                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3540
3541                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3542                                        "%8u %8x %8x %8x %8x %8x\n",
3543                                        entry->frame, entry->crc[0],
3544                                        entry->crc[1], entry->crc[2],
3545                                        entry->crc[3], entry->crc[4]);
3546
3547                 spin_unlock_irq(&pipe_crc->lock);
3548
3549                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3550                 if (ret == PIPE_CRC_LINE_LEN)
3551                         return -EFAULT;
3552
3553                 user_buf += PIPE_CRC_LINE_LEN;
3554                 n_entries--;
3555
3556                 spin_lock_irq(&pipe_crc->lock);
3557         }
3558
3559         spin_unlock_irq(&pipe_crc->lock);
3560
3561         return bytes_read;
3562 }
3563
3564 static const struct file_operations i915_pipe_crc_fops = {
3565         .owner = THIS_MODULE,
3566         .open = i915_pipe_crc_open,
3567         .read = i915_pipe_crc_read,
3568         .release = i915_pipe_crc_release,
3569 };
3570
3571 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3572         {
3573                 .name = "i915_pipe_A_crc",
3574                 .pipe = PIPE_A,
3575         },
3576         {
3577                 .name = "i915_pipe_B_crc",
3578                 .pipe = PIPE_B,
3579         },
3580         {
3581                 .name = "i915_pipe_C_crc",
3582                 .pipe = PIPE_C,
3583         },
3584 };
3585
3586 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3587                                 enum pipe pipe)
3588 {
3589         struct drm_device *dev = minor->dev;
3590         struct dentry *ent;
3591         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3592
3593         info->dev = dev;
3594         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3595                                   &i915_pipe_crc_fops);
3596         if (!ent)
3597                 return -ENOMEM;
3598
3599         return drm_add_fake_info_node(minor, ent, info);
3600 }
3601
3602 static const char * const pipe_crc_sources[] = {
3603         "none",
3604         "plane1",
3605         "plane2",
3606         "pf",
3607         "pipe",
3608         "TV",
3609         "DP-B",
3610         "DP-C",
3611         "DP-D",
3612         "auto",
3613 };
3614
3615 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3616 {
3617         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3618         return pipe_crc_sources[source];
3619 }
3620
3621 static int display_crc_ctl_show(struct seq_file *m, void *data)
3622 {
3623         struct drm_device *dev = m->private;
3624         struct drm_i915_private *dev_priv = dev->dev_private;
3625         int i;
3626
3627         for (i = 0; i < I915_MAX_PIPES; i++)
3628                 seq_printf(m, "%c %s\n", pipe_name(i),
3629                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3630
3631         return 0;
3632 }
3633
3634 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3635 {
3636         struct drm_device *dev = inode->i_private;
3637
3638         return single_open(file, display_crc_ctl_show, dev);
3639 }
3640
3641 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3642                                  uint32_t *val)
3643 {
3644         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3645                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3646
3647         switch (*source) {
3648         case INTEL_PIPE_CRC_SOURCE_PIPE:
3649                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3650                 break;
3651         case INTEL_PIPE_CRC_SOURCE_NONE:
3652                 *val = 0;
3653                 break;
3654         default:
3655                 return -EINVAL;
3656         }
3657
3658         return 0;
3659 }
3660
3661 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3662                                      enum intel_pipe_crc_source *source)
3663 {
3664         struct intel_encoder *encoder;
3665         struct intel_crtc *crtc;
3666         struct intel_digital_port *dig_port;
3667         int ret = 0;
3668
3669         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3670
3671         drm_modeset_lock_all(dev);
3672         for_each_intel_encoder(dev, encoder) {
3673                 if (!encoder->base.crtc)
3674                         continue;
3675
3676                 crtc = to_intel_crtc(encoder->base.crtc);
3677
3678                 if (crtc->pipe != pipe)
3679                         continue;
3680
3681                 switch (encoder->type) {
3682                 case INTEL_OUTPUT_TVOUT:
3683                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3684                         break;
3685                 case INTEL_OUTPUT_DISPLAYPORT:
3686                 case INTEL_OUTPUT_EDP:
3687                         dig_port = enc_to_dig_port(&encoder->base);
3688                         switch (dig_port->port) {
3689                         case PORT_B:
3690                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3691                                 break;
3692                         case PORT_C:
3693                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3694                                 break;
3695                         case PORT_D:
3696                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3697                                 break;
3698                         default:
3699                                 WARN(1, "nonexisting DP port %c\n",
3700                                      port_name(dig_port->port));
3701                                 break;
3702                         }
3703                         break;
3704                 default:
3705                         break;
3706                 }
3707         }
3708         drm_modeset_unlock_all(dev);
3709
3710         return ret;
3711 }
3712
3713 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3714                                 enum pipe pipe,
3715                                 enum intel_pipe_crc_source *source,
3716                                 uint32_t *val)
3717 {
3718         struct drm_i915_private *dev_priv = dev->dev_private;
3719         bool need_stable_symbols = false;
3720
3721         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3722                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3723                 if (ret)
3724                         return ret;
3725         }
3726
3727         switch (*source) {
3728         case INTEL_PIPE_CRC_SOURCE_PIPE:
3729                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3730                 break;
3731         case INTEL_PIPE_CRC_SOURCE_DP_B:
3732                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3733                 need_stable_symbols = true;
3734                 break;
3735         case INTEL_PIPE_CRC_SOURCE_DP_C:
3736                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3737                 need_stable_symbols = true;
3738                 break;
3739         case INTEL_PIPE_CRC_SOURCE_DP_D:
3740                 if (!IS_CHERRYVIEW(dev))
3741                         return -EINVAL;
3742                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3743                 need_stable_symbols = true;
3744                 break;
3745         case INTEL_PIPE_CRC_SOURCE_NONE:
3746                 *val = 0;
3747                 break;
3748         default:
3749                 return -EINVAL;
3750         }
3751
3752         /*
3753          * When the pipe CRC tap point is after the transcoders we need
3754          * to tweak symbol-level features to produce a deterministic series of
3755          * symbols for a given frame. We need to reset those features only once
3756          * a frame (instead of every nth symbol):
3757          *   - DC-balance: used to ensure a better clock recovery from the data
3758          *     link (SDVO)
3759          *   - DisplayPort scrambling: used for EMI reduction
3760          */
3761         if (need_stable_symbols) {
3762                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3763
3764                 tmp |= DC_BALANCE_RESET_VLV;
3765                 switch (pipe) {
3766                 case PIPE_A:
3767                         tmp |= PIPE_A_SCRAMBLE_RESET;
3768                         break;
3769                 case PIPE_B:
3770                         tmp |= PIPE_B_SCRAMBLE_RESET;
3771                         break;
3772                 case PIPE_C:
3773                         tmp |= PIPE_C_SCRAMBLE_RESET;
3774                         break;
3775                 default:
3776                         return -EINVAL;
3777                 }
3778                 I915_WRITE(PORT_DFT2_G4X, tmp);
3779         }
3780
3781         return 0;
3782 }
3783
3784 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3785                                  enum pipe pipe,
3786                                  enum intel_pipe_crc_source *source,
3787                                  uint32_t *val)
3788 {
3789         struct drm_i915_private *dev_priv = dev->dev_private;
3790         bool need_stable_symbols = false;
3791
3792         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3793                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3794                 if (ret)
3795                         return ret;
3796         }
3797
3798         switch (*source) {
3799         case INTEL_PIPE_CRC_SOURCE_PIPE:
3800                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3801                 break;
3802         case INTEL_PIPE_CRC_SOURCE_TV:
3803                 if (!SUPPORTS_TV(dev))
3804                         return -EINVAL;
3805                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3806                 break;
3807         case INTEL_PIPE_CRC_SOURCE_DP_B:
3808                 if (!IS_G4X(dev))
3809                         return -EINVAL;
3810                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3811                 need_stable_symbols = true;
3812                 break;
3813         case INTEL_PIPE_CRC_SOURCE_DP_C:
3814                 if (!IS_G4X(dev))
3815                         return -EINVAL;
3816                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3817                 need_stable_symbols = true;
3818                 break;
3819         case INTEL_PIPE_CRC_SOURCE_DP_D:
3820                 if (!IS_G4X(dev))
3821                         return -EINVAL;
3822                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3823                 need_stable_symbols = true;
3824                 break;
3825         case INTEL_PIPE_CRC_SOURCE_NONE:
3826                 *val = 0;
3827                 break;
3828         default:
3829                 return -EINVAL;
3830         }
3831
3832         /*
3833          * When the pipe CRC tap point is after the transcoders we need
3834          * to tweak symbol-level features to produce a deterministic series of
3835          * symbols for a given frame. We need to reset those features only once
3836          * a frame (instead of every nth symbol):
3837          *   - DC-balance: used to ensure a better clock recovery from the data
3838          *     link (SDVO)
3839          *   - DisplayPort scrambling: used for EMI reduction
3840          */
3841         if (need_stable_symbols) {
3842                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3843
3844                 WARN_ON(!IS_G4X(dev));
3845
3846                 I915_WRITE(PORT_DFT_I9XX,
3847                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3848
3849                 if (pipe == PIPE_A)
3850                         tmp |= PIPE_A_SCRAMBLE_RESET;
3851                 else
3852                         tmp |= PIPE_B_SCRAMBLE_RESET;
3853
3854                 I915_WRITE(PORT_DFT2_G4X, tmp);
3855         }
3856
3857         return 0;
3858 }
3859
3860 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3861                                          enum pipe pipe)
3862 {
3863         struct drm_i915_private *dev_priv = dev->dev_private;
3864         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3865
3866         switch (pipe) {
3867         case PIPE_A:
3868                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3869                 break;
3870         case PIPE_B:
3871                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3872                 break;
3873         case PIPE_C:
3874                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3875                 break;
3876         default:
3877                 return;
3878         }
3879         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3880                 tmp &= ~DC_BALANCE_RESET_VLV;
3881         I915_WRITE(PORT_DFT2_G4X, tmp);
3882
3883 }
3884
3885 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3886                                          enum pipe pipe)
3887 {
3888         struct drm_i915_private *dev_priv = dev->dev_private;
3889         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3890
3891         if (pipe == PIPE_A)
3892                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3893         else
3894                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3895         I915_WRITE(PORT_DFT2_G4X, tmp);
3896
3897         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3898                 I915_WRITE(PORT_DFT_I9XX,
3899                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3900         }
3901 }
3902
3903 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3904                                 uint32_t *val)
3905 {
3906         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3907                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3908
3909         switch (*source) {
3910         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3911                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3912                 break;
3913         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3914                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3915                 break;
3916         case INTEL_PIPE_CRC_SOURCE_PIPE:
3917                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3918                 break;
3919         case INTEL_PIPE_CRC_SOURCE_NONE:
3920                 *val = 0;
3921                 break;
3922         default:
3923                 return -EINVAL;
3924         }
3925
3926         return 0;
3927 }
3928
3929 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3930 {
3931         struct drm_i915_private *dev_priv = dev->dev_private;
3932         struct intel_crtc *crtc =
3933                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3934         struct intel_crtc_state *pipe_config;
3935         struct drm_atomic_state *state;
3936         int ret = 0;
3937
3938         drm_modeset_lock_all(dev);
3939         state = drm_atomic_state_alloc(dev);
3940         if (!state) {
3941                 ret = -ENOMEM;
3942                 goto out;
3943         }
3944
3945         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3946         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3947         if (IS_ERR(pipe_config)) {
3948                 ret = PTR_ERR(pipe_config);
3949                 goto out;
3950         }
3951
3952         pipe_config->pch_pfit.force_thru = enable;
3953         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3954             pipe_config->pch_pfit.enabled != enable)
3955                 pipe_config->base.connectors_changed = true;
3956
3957         ret = drm_atomic_commit(state);
3958 out:
3959         drm_modeset_unlock_all(dev);
3960         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3961         if (ret)
3962                 drm_atomic_state_free(state);
3963 }
3964
3965 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3966                                 enum pipe pipe,
3967                                 enum intel_pipe_crc_source *source,
3968                                 uint32_t *val)
3969 {
3970         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3971                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3972
3973         switch (*source) {
3974         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3975                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3976                 break;
3977         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3978                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3979                 break;
3980         case INTEL_PIPE_CRC_SOURCE_PF:
3981                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3982                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
3983
3984                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3985                 break;
3986         case INTEL_PIPE_CRC_SOURCE_NONE:
3987                 *val = 0;
3988                 break;
3989         default:
3990                 return -EINVAL;
3991         }
3992
3993         return 0;
3994 }
3995
3996 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3997                                enum intel_pipe_crc_source source)
3998 {
3999         struct drm_i915_private *dev_priv = dev->dev_private;
4000         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4001         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4002                                                                         pipe));
4003         u32 val = 0; /* shut up gcc */
4004         int ret;
4005
4006         if (pipe_crc->source == source)
4007                 return 0;
4008
4009         /* forbid changing the source without going back to 'none' */
4010         if (pipe_crc->source && source)
4011                 return -EINVAL;
4012
4013         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
4014                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4015                 return -EIO;
4016         }
4017
4018         if (IS_GEN2(dev))
4019                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4020         else if (INTEL_INFO(dev)->gen < 5)
4021                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4022         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4023                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4024         else if (IS_GEN5(dev) || IS_GEN6(dev))
4025                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4026         else
4027                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4028
4029         if (ret != 0)
4030                 return ret;
4031
4032         /* none -> real source transition */
4033         if (source) {
4034                 struct intel_pipe_crc_entry *entries;
4035
4036                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4037                                  pipe_name(pipe), pipe_crc_source_name(source));
4038
4039                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4040                                   sizeof(pipe_crc->entries[0]),
4041                                   GFP_KERNEL);
4042                 if (!entries)
4043                         return -ENOMEM;
4044
4045                 /*
4046                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4047                  * enabled and disabled dynamically based on package C states,
4048                  * user space can't make reliable use of the CRCs, so let's just
4049                  * completely disable it.
4050                  */
4051                 hsw_disable_ips(crtc);
4052
4053                 spin_lock_irq(&pipe_crc->lock);
4054                 kfree(pipe_crc->entries);
4055                 pipe_crc->entries = entries;
4056                 pipe_crc->head = 0;
4057                 pipe_crc->tail = 0;
4058                 spin_unlock_irq(&pipe_crc->lock);
4059         }
4060
4061         pipe_crc->source = source;
4062
4063         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4064         POSTING_READ(PIPE_CRC_CTL(pipe));
4065
4066         /* real source -> none transition */
4067         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4068                 struct intel_pipe_crc_entry *entries;
4069                 struct intel_crtc *crtc =
4070                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4071
4072                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4073                                  pipe_name(pipe));
4074
4075                 drm_modeset_lock(&crtc->base.mutex, NULL);
4076                 if (crtc->base.state->active)
4077                         intel_wait_for_vblank(dev, pipe);
4078                 drm_modeset_unlock(&crtc->base.mutex);
4079
4080                 spin_lock_irq(&pipe_crc->lock);
4081                 entries = pipe_crc->entries;
4082                 pipe_crc->entries = NULL;
4083                 pipe_crc->head = 0;
4084                 pipe_crc->tail = 0;
4085                 spin_unlock_irq(&pipe_crc->lock);
4086
4087                 kfree(entries);
4088
4089                 if (IS_G4X(dev))
4090                         g4x_undo_pipe_scramble_reset(dev, pipe);
4091                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4092                         vlv_undo_pipe_scramble_reset(dev, pipe);
4093                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4094                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4095
4096                 hsw_enable_ips(crtc);
4097         }
4098
4099         return 0;
4100 }
4101
4102 /*
4103  * Parse pipe CRC command strings:
4104  *   command: wsp* object wsp+ name wsp+ source wsp*
4105  *   object: 'pipe'
4106  *   name: (A | B | C)
4107  *   source: (none | plane1 | plane2 | pf)
4108  *   wsp: (#0x20 | #0x9 | #0xA)+
4109  *
4110  * eg.:
4111  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4112  *  "pipe A none"    ->  Stop CRC
4113  */
4114 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4115 {
4116         int n_words = 0;
4117
4118         while (*buf) {
4119                 char *end;
4120
4121                 /* skip leading white space */
4122                 buf = skip_spaces(buf);
4123                 if (!*buf)
4124                         break;  /* end of buffer */
4125
4126                 /* find end of word */
4127                 for (end = buf; *end && !isspace(*end); end++)
4128                         ;
4129
4130                 if (n_words == max_words) {
4131                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4132                                          max_words);
4133                         return -EINVAL; /* ran out of words[] before bytes */
4134                 }
4135
4136                 if (*end)
4137                         *end++ = '\0';
4138                 words[n_words++] = buf;
4139                 buf = end;
4140         }
4141
4142         return n_words;
4143 }
4144
4145 enum intel_pipe_crc_object {
4146         PIPE_CRC_OBJECT_PIPE,
4147 };
4148
4149 static const char * const pipe_crc_objects[] = {
4150         "pipe",
4151 };
4152
4153 static int
4154 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4155 {
4156         int i;
4157
4158         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4159                 if (!strcmp(buf, pipe_crc_objects[i])) {
4160                         *o = i;
4161                         return 0;
4162                     }
4163
4164         return -EINVAL;
4165 }
4166
4167 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4168 {
4169         const char name = buf[0];
4170
4171         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4172                 return -EINVAL;
4173
4174         *pipe = name - 'A';
4175
4176         return 0;
4177 }
4178
4179 static int
4180 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4181 {
4182         int i;
4183
4184         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4185                 if (!strcmp(buf, pipe_crc_sources[i])) {
4186                         *s = i;
4187                         return 0;
4188                     }
4189
4190         return -EINVAL;
4191 }
4192
4193 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4194 {
4195 #define N_WORDS 3
4196         int n_words;
4197         char *words[N_WORDS];
4198         enum pipe pipe;
4199         enum intel_pipe_crc_object object;
4200         enum intel_pipe_crc_source source;
4201
4202         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4203         if (n_words != N_WORDS) {
4204                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4205                                  N_WORDS);
4206                 return -EINVAL;
4207         }
4208
4209         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4210                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4211                 return -EINVAL;
4212         }
4213
4214         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4215                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4216                 return -EINVAL;
4217         }
4218
4219         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4220                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4221                 return -EINVAL;
4222         }
4223
4224         return pipe_crc_set_source(dev, pipe, source);
4225 }
4226
4227 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4228                                      size_t len, loff_t *offp)
4229 {
4230         struct seq_file *m = file->private_data;
4231         struct drm_device *dev = m->private;
4232         char *tmpbuf;
4233         int ret;
4234
4235         if (len == 0)
4236                 return 0;
4237
4238         if (len > PAGE_SIZE - 1) {
4239                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4240                                  PAGE_SIZE);
4241                 return -E2BIG;
4242         }
4243
4244         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4245         if (!tmpbuf)
4246                 return -ENOMEM;
4247
4248         if (copy_from_user(tmpbuf, ubuf, len)) {
4249                 ret = -EFAULT;
4250                 goto out;
4251         }
4252         tmpbuf[len] = '\0';
4253
4254         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4255
4256 out:
4257         kfree(tmpbuf);
4258         if (ret < 0)
4259                 return ret;
4260
4261         *offp += len;
4262         return len;
4263 }
4264
4265 static const struct file_operations i915_display_crc_ctl_fops = {
4266         .owner = THIS_MODULE,
4267         .open = display_crc_ctl_open,
4268         .read = seq_read,
4269         .llseek = seq_lseek,
4270         .release = single_release,
4271         .write = display_crc_ctl_write
4272 };
4273
4274 static ssize_t i915_displayport_test_active_write(struct file *file,
4275                                             const char __user *ubuf,
4276                                             size_t len, loff_t *offp)
4277 {
4278         char *input_buffer;
4279         int status = 0;
4280         struct drm_device *dev;
4281         struct drm_connector *connector;
4282         struct list_head *connector_list;
4283         struct intel_dp *intel_dp;
4284         int val = 0;
4285
4286         dev = ((struct seq_file *)file->private_data)->private;
4287
4288         connector_list = &dev->mode_config.connector_list;
4289
4290         if (len == 0)
4291                 return 0;
4292
4293         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4294         if (!input_buffer)
4295                 return -ENOMEM;
4296
4297         if (copy_from_user(input_buffer, ubuf, len)) {
4298                 status = -EFAULT;
4299                 goto out;
4300         }
4301
4302         input_buffer[len] = '\0';
4303         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4304
4305         list_for_each_entry(connector, connector_list, head) {
4306
4307                 if (connector->connector_type !=
4308                     DRM_MODE_CONNECTOR_DisplayPort)
4309                         continue;
4310
4311                 if (connector->status == connector_status_connected &&
4312                     connector->encoder != NULL) {
4313                         intel_dp = enc_to_intel_dp(connector->encoder);
4314                         status = kstrtoint(input_buffer, 10, &val);
4315                         if (status < 0)
4316                                 goto out;
4317                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4318                         /* To prevent erroneous activation of the compliance
4319                          * testing code, only accept an actual value of 1 here
4320                          */
4321                         if (val == 1)
4322                                 intel_dp->compliance_test_active = 1;
4323                         else
4324                                 intel_dp->compliance_test_active = 0;
4325                 }
4326         }
4327 out:
4328         kfree(input_buffer);
4329         if (status < 0)
4330                 return status;
4331
4332         *offp += len;
4333         return len;
4334 }
4335
4336 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4337 {
4338         struct drm_device *dev = m->private;
4339         struct drm_connector *connector;
4340         struct list_head *connector_list = &dev->mode_config.connector_list;
4341         struct intel_dp *intel_dp;
4342
4343         list_for_each_entry(connector, connector_list, head) {
4344
4345                 if (connector->connector_type !=
4346                     DRM_MODE_CONNECTOR_DisplayPort)
4347                         continue;
4348
4349                 if (connector->status == connector_status_connected &&
4350                     connector->encoder != NULL) {
4351                         intel_dp = enc_to_intel_dp(connector->encoder);
4352                         if (intel_dp->compliance_test_active)
4353                                 seq_puts(m, "1");
4354                         else
4355                                 seq_puts(m, "0");
4356                 } else
4357                         seq_puts(m, "0");
4358         }
4359
4360         return 0;
4361 }
4362
4363 static int i915_displayport_test_active_open(struct inode *inode,
4364                                        struct file *file)
4365 {
4366         struct drm_device *dev = inode->i_private;
4367
4368         return single_open(file, i915_displayport_test_active_show, dev);
4369 }
4370
4371 static const struct file_operations i915_displayport_test_active_fops = {
4372         .owner = THIS_MODULE,
4373         .open = i915_displayport_test_active_open,
4374         .read = seq_read,
4375         .llseek = seq_lseek,
4376         .release = single_release,
4377         .write = i915_displayport_test_active_write
4378 };
4379
4380 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4381 {
4382         struct drm_device *dev = m->private;
4383         struct drm_connector *connector;
4384         struct list_head *connector_list = &dev->mode_config.connector_list;
4385         struct intel_dp *intel_dp;
4386
4387         list_for_each_entry(connector, connector_list, head) {
4388
4389                 if (connector->connector_type !=
4390                     DRM_MODE_CONNECTOR_DisplayPort)
4391                         continue;
4392
4393                 if (connector->status == connector_status_connected &&
4394                     connector->encoder != NULL) {
4395                         intel_dp = enc_to_intel_dp(connector->encoder);
4396                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4397                 } else
4398                         seq_puts(m, "0");
4399         }
4400
4401         return 0;
4402 }
4403 static int i915_displayport_test_data_open(struct inode *inode,
4404                                        struct file *file)
4405 {
4406         struct drm_device *dev = inode->i_private;
4407
4408         return single_open(file, i915_displayport_test_data_show, dev);
4409 }
4410
4411 static const struct file_operations i915_displayport_test_data_fops = {
4412         .owner = THIS_MODULE,
4413         .open = i915_displayport_test_data_open,
4414         .read = seq_read,
4415         .llseek = seq_lseek,
4416         .release = single_release
4417 };
4418
4419 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4420 {
4421         struct drm_device *dev = m->private;
4422         struct drm_connector *connector;
4423         struct list_head *connector_list = &dev->mode_config.connector_list;
4424         struct intel_dp *intel_dp;
4425
4426         list_for_each_entry(connector, connector_list, head) {
4427
4428                 if (connector->connector_type !=
4429                     DRM_MODE_CONNECTOR_DisplayPort)
4430                         continue;
4431
4432                 if (connector->status == connector_status_connected &&
4433                     connector->encoder != NULL) {
4434                         intel_dp = enc_to_intel_dp(connector->encoder);
4435                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4436                 } else
4437                         seq_puts(m, "0");
4438         }
4439
4440         return 0;
4441 }
4442
4443 static int i915_displayport_test_type_open(struct inode *inode,
4444                                        struct file *file)
4445 {
4446         struct drm_device *dev = inode->i_private;
4447
4448         return single_open(file, i915_displayport_test_type_show, dev);
4449 }
4450
4451 static const struct file_operations i915_displayport_test_type_fops = {
4452         .owner = THIS_MODULE,
4453         .open = i915_displayport_test_type_open,
4454         .read = seq_read,
4455         .llseek = seq_lseek,
4456         .release = single_release
4457 };
4458
4459 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4460 {
4461         struct drm_device *dev = m->private;
4462         int level;
4463         int num_levels;
4464
4465         if (IS_CHERRYVIEW(dev))
4466                 num_levels = 3;
4467         else if (IS_VALLEYVIEW(dev))
4468                 num_levels = 1;
4469         else
4470                 num_levels = ilk_wm_max_level(dev) + 1;
4471
4472         drm_modeset_lock_all(dev);
4473
4474         for (level = 0; level < num_levels; level++) {
4475                 unsigned int latency = wm[level];
4476
4477                 /*
4478                  * - WM1+ latency values in 0.5us units
4479                  * - latencies are in us on gen9/vlv/chv
4480                  */
4481                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4482                     IS_CHERRYVIEW(dev))
4483                         latency *= 10;
4484                 else if (level > 0)
4485                         latency *= 5;
4486
4487                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4488                            level, wm[level], latency / 10, latency % 10);
4489         }
4490
4491         drm_modeset_unlock_all(dev);
4492 }
4493
4494 static int pri_wm_latency_show(struct seq_file *m, void *data)
4495 {
4496         struct drm_device *dev = m->private;
4497         struct drm_i915_private *dev_priv = dev->dev_private;
4498         const uint16_t *latencies;
4499
4500         if (INTEL_INFO(dev)->gen >= 9)
4501                 latencies = dev_priv->wm.skl_latency;
4502         else
4503                 latencies = to_i915(dev)->wm.pri_latency;
4504
4505         wm_latency_show(m, latencies);
4506
4507         return 0;
4508 }
4509
4510 static int spr_wm_latency_show(struct seq_file *m, void *data)
4511 {
4512         struct drm_device *dev = m->private;
4513         struct drm_i915_private *dev_priv = dev->dev_private;
4514         const uint16_t *latencies;
4515
4516         if (INTEL_INFO(dev)->gen >= 9)
4517                 latencies = dev_priv->wm.skl_latency;
4518         else
4519                 latencies = to_i915(dev)->wm.spr_latency;
4520
4521         wm_latency_show(m, latencies);
4522
4523         return 0;
4524 }
4525
4526 static int cur_wm_latency_show(struct seq_file *m, void *data)
4527 {
4528         struct drm_device *dev = m->private;
4529         struct drm_i915_private *dev_priv = dev->dev_private;
4530         const uint16_t *latencies;
4531
4532         if (INTEL_INFO(dev)->gen >= 9)
4533                 latencies = dev_priv->wm.skl_latency;
4534         else
4535                 latencies = to_i915(dev)->wm.cur_latency;
4536
4537         wm_latency_show(m, latencies);
4538
4539         return 0;
4540 }
4541
4542 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4543 {
4544         struct drm_device *dev = inode->i_private;
4545
4546         if (INTEL_INFO(dev)->gen < 5)
4547                 return -ENODEV;
4548
4549         return single_open(file, pri_wm_latency_show, dev);
4550 }
4551
4552 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4553 {
4554         struct drm_device *dev = inode->i_private;
4555
4556         if (HAS_GMCH_DISPLAY(dev))
4557                 return -ENODEV;
4558
4559         return single_open(file, spr_wm_latency_show, dev);
4560 }
4561
4562 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4563 {
4564         struct drm_device *dev = inode->i_private;
4565
4566         if (HAS_GMCH_DISPLAY(dev))
4567                 return -ENODEV;
4568
4569         return single_open(file, cur_wm_latency_show, dev);
4570 }
4571
4572 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4573                                 size_t len, loff_t *offp, uint16_t wm[8])
4574 {
4575         struct seq_file *m = file->private_data;
4576         struct drm_device *dev = m->private;
4577         uint16_t new[8] = { 0 };
4578         int num_levels;
4579         int level;
4580         int ret;
4581         char tmp[32];
4582
4583         if (IS_CHERRYVIEW(dev))
4584                 num_levels = 3;
4585         else if (IS_VALLEYVIEW(dev))
4586                 num_levels = 1;
4587         else
4588                 num_levels = ilk_wm_max_level(dev) + 1;
4589
4590         if (len >= sizeof(tmp))
4591                 return -EINVAL;
4592
4593         if (copy_from_user(tmp, ubuf, len))
4594                 return -EFAULT;
4595
4596         tmp[len] = '\0';
4597
4598         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4599                      &new[0], &new[1], &new[2], &new[3],
4600                      &new[4], &new[5], &new[6], &new[7]);
4601         if (ret != num_levels)
4602                 return -EINVAL;
4603
4604         drm_modeset_lock_all(dev);
4605
4606         for (level = 0; level < num_levels; level++)
4607                 wm[level] = new[level];
4608
4609         drm_modeset_unlock_all(dev);
4610
4611         return len;
4612 }
4613
4614
4615 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4616                                     size_t len, loff_t *offp)
4617 {
4618         struct seq_file *m = file->private_data;
4619         struct drm_device *dev = m->private;
4620         struct drm_i915_private *dev_priv = dev->dev_private;
4621         uint16_t *latencies;
4622
4623         if (INTEL_INFO(dev)->gen >= 9)
4624                 latencies = dev_priv->wm.skl_latency;
4625         else
4626                 latencies = to_i915(dev)->wm.pri_latency;
4627
4628         return wm_latency_write(file, ubuf, len, offp, latencies);
4629 }
4630
4631 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4632                                     size_t len, loff_t *offp)
4633 {
4634         struct seq_file *m = file->private_data;
4635         struct drm_device *dev = m->private;
4636         struct drm_i915_private *dev_priv = dev->dev_private;
4637         uint16_t *latencies;
4638
4639         if (INTEL_INFO(dev)->gen >= 9)
4640                 latencies = dev_priv->wm.skl_latency;
4641         else
4642                 latencies = to_i915(dev)->wm.spr_latency;
4643
4644         return wm_latency_write(file, ubuf, len, offp, latencies);
4645 }
4646
4647 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4648                                     size_t len, loff_t *offp)
4649 {
4650         struct seq_file *m = file->private_data;
4651         struct drm_device *dev = m->private;
4652         struct drm_i915_private *dev_priv = dev->dev_private;
4653         uint16_t *latencies;
4654
4655         if (INTEL_INFO(dev)->gen >= 9)
4656                 latencies = dev_priv->wm.skl_latency;
4657         else
4658                 latencies = to_i915(dev)->wm.cur_latency;
4659
4660         return wm_latency_write(file, ubuf, len, offp, latencies);
4661 }
4662
4663 static const struct file_operations i915_pri_wm_latency_fops = {
4664         .owner = THIS_MODULE,
4665         .open = pri_wm_latency_open,
4666         .read = seq_read,
4667         .llseek = seq_lseek,
4668         .release = single_release,
4669         .write = pri_wm_latency_write
4670 };
4671
4672 static const struct file_operations i915_spr_wm_latency_fops = {
4673         .owner = THIS_MODULE,
4674         .open = spr_wm_latency_open,
4675         .read = seq_read,
4676         .llseek = seq_lseek,
4677         .release = single_release,
4678         .write = spr_wm_latency_write
4679 };
4680
4681 static const struct file_operations i915_cur_wm_latency_fops = {
4682         .owner = THIS_MODULE,
4683         .open = cur_wm_latency_open,
4684         .read = seq_read,
4685         .llseek = seq_lseek,
4686         .release = single_release,
4687         .write = cur_wm_latency_write
4688 };
4689
4690 static int
4691 i915_wedged_get(void *data, u64 *val)
4692 {
4693         struct drm_device *dev = data;
4694         struct drm_i915_private *dev_priv = dev->dev_private;
4695
4696         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4697
4698         return 0;
4699 }
4700
4701 static int
4702 i915_wedged_set(void *data, u64 val)
4703 {
4704         struct drm_device *dev = data;
4705         struct drm_i915_private *dev_priv = dev->dev_private;
4706
4707         /*
4708          * There is no safeguard against this debugfs entry colliding
4709          * with the hangcheck calling same i915_handle_error() in
4710          * parallel, causing an explosion. For now we assume that the
4711          * test harness is responsible enough not to inject gpu hangs
4712          * while it is writing to 'i915_wedged'
4713          */
4714
4715         if (i915_reset_in_progress(&dev_priv->gpu_error))
4716                 return -EAGAIN;
4717
4718         intel_runtime_pm_get(dev_priv);
4719
4720         i915_handle_error(dev, val,
4721                           "Manually setting wedged to %llu", val);
4722
4723         intel_runtime_pm_put(dev_priv);
4724
4725         return 0;
4726 }
4727
4728 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4729                         i915_wedged_get, i915_wedged_set,
4730                         "%llu\n");
4731
4732 static int
4733 i915_ring_stop_get(void *data, u64 *val)
4734 {
4735         struct drm_device *dev = data;
4736         struct drm_i915_private *dev_priv = dev->dev_private;
4737
4738         *val = dev_priv->gpu_error.stop_rings;
4739
4740         return 0;
4741 }
4742
4743 static int
4744 i915_ring_stop_set(void *data, u64 val)
4745 {
4746         struct drm_device *dev = data;
4747         struct drm_i915_private *dev_priv = dev->dev_private;
4748         int ret;
4749
4750         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4751
4752         ret = mutex_lock_interruptible(&dev->struct_mutex);
4753         if (ret)
4754                 return ret;
4755
4756         dev_priv->gpu_error.stop_rings = val;
4757         mutex_unlock(&dev->struct_mutex);
4758
4759         return 0;
4760 }
4761
4762 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4763                         i915_ring_stop_get, i915_ring_stop_set,
4764                         "0x%08llx\n");
4765
4766 static int
4767 i915_ring_missed_irq_get(void *data, u64 *val)
4768 {
4769         struct drm_device *dev = data;
4770         struct drm_i915_private *dev_priv = dev->dev_private;
4771
4772         *val = dev_priv->gpu_error.missed_irq_rings;
4773         return 0;
4774 }
4775
4776 static int
4777 i915_ring_missed_irq_set(void *data, u64 val)
4778 {
4779         struct drm_device *dev = data;
4780         struct drm_i915_private *dev_priv = dev->dev_private;
4781         int ret;
4782
4783         /* Lock against concurrent debugfs callers */
4784         ret = mutex_lock_interruptible(&dev->struct_mutex);
4785         if (ret)
4786                 return ret;
4787         dev_priv->gpu_error.missed_irq_rings = val;
4788         mutex_unlock(&dev->struct_mutex);
4789
4790         return 0;
4791 }
4792
4793 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4794                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4795                         "0x%08llx\n");
4796
4797 static int
4798 i915_ring_test_irq_get(void *data, u64 *val)
4799 {
4800         struct drm_device *dev = data;
4801         struct drm_i915_private *dev_priv = dev->dev_private;
4802
4803         *val = dev_priv->gpu_error.test_irq_rings;
4804
4805         return 0;
4806 }
4807
4808 static int
4809 i915_ring_test_irq_set(void *data, u64 val)
4810 {
4811         struct drm_device *dev = data;
4812         struct drm_i915_private *dev_priv = dev->dev_private;
4813         int ret;
4814
4815         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4816
4817         /* Lock against concurrent debugfs callers */
4818         ret = mutex_lock_interruptible(&dev->struct_mutex);
4819         if (ret)
4820                 return ret;
4821
4822         dev_priv->gpu_error.test_irq_rings = val;
4823         mutex_unlock(&dev->struct_mutex);
4824
4825         return 0;
4826 }
4827
4828 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4829                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4830                         "0x%08llx\n");
4831
4832 #define DROP_UNBOUND 0x1
4833 #define DROP_BOUND 0x2
4834 #define DROP_RETIRE 0x4
4835 #define DROP_ACTIVE 0x8
4836 #define DROP_ALL (DROP_UNBOUND | \
4837                   DROP_BOUND | \
4838                   DROP_RETIRE | \
4839                   DROP_ACTIVE)
4840 static int
4841 i915_drop_caches_get(void *data, u64 *val)
4842 {
4843         *val = DROP_ALL;
4844
4845         return 0;
4846 }
4847
4848 static int
4849 i915_drop_caches_set(void *data, u64 val)
4850 {
4851         struct drm_device *dev = data;
4852         struct drm_i915_private *dev_priv = dev->dev_private;
4853         int ret;
4854
4855         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4856
4857         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4858          * on ioctls on -EAGAIN. */
4859         ret = mutex_lock_interruptible(&dev->struct_mutex);
4860         if (ret)
4861                 return ret;
4862
4863         if (val & DROP_ACTIVE) {
4864                 ret = i915_gpu_idle(dev);
4865                 if (ret)
4866                         goto unlock;
4867         }
4868
4869         if (val & (DROP_RETIRE | DROP_ACTIVE))
4870                 i915_gem_retire_requests(dev);
4871
4872         if (val & DROP_BOUND)
4873                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4874
4875         if (val & DROP_UNBOUND)
4876                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4877
4878 unlock:
4879         mutex_unlock(&dev->struct_mutex);
4880
4881         return ret;
4882 }
4883
4884 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4885                         i915_drop_caches_get, i915_drop_caches_set,
4886                         "0x%08llx\n");
4887
4888 static int
4889 i915_max_freq_get(void *data, u64 *val)
4890 {
4891         struct drm_device *dev = data;
4892         struct drm_i915_private *dev_priv = dev->dev_private;
4893         int ret;
4894
4895         if (INTEL_INFO(dev)->gen < 6)
4896                 return -ENODEV;
4897
4898         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4899
4900         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4901         if (ret)
4902                 return ret;
4903
4904         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4905         mutex_unlock(&dev_priv->rps.hw_lock);
4906
4907         return 0;
4908 }
4909
4910 static int
4911 i915_max_freq_set(void *data, u64 val)
4912 {
4913         struct drm_device *dev = data;
4914         struct drm_i915_private *dev_priv = dev->dev_private;
4915         u32 hw_max, hw_min;
4916         int ret;
4917
4918         if (INTEL_INFO(dev)->gen < 6)
4919                 return -ENODEV;
4920
4921         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4922
4923         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4924
4925         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4926         if (ret)
4927                 return ret;
4928
4929         /*
4930          * Turbo will still be enabled, but won't go above the set value.
4931          */
4932         val = intel_freq_opcode(dev_priv, val);
4933
4934         hw_max = dev_priv->rps.max_freq;
4935         hw_min = dev_priv->rps.min_freq;
4936
4937         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4938                 mutex_unlock(&dev_priv->rps.hw_lock);
4939                 return -EINVAL;
4940         }
4941
4942         dev_priv->rps.max_freq_softlimit = val;
4943
4944         intel_set_rps(dev, val);
4945
4946         mutex_unlock(&dev_priv->rps.hw_lock);
4947
4948         return 0;
4949 }
4950
4951 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4952                         i915_max_freq_get, i915_max_freq_set,
4953                         "%llu\n");
4954
4955 static int
4956 i915_min_freq_get(void *data, u64 *val)
4957 {
4958         struct drm_device *dev = data;
4959         struct drm_i915_private *dev_priv = dev->dev_private;
4960         int ret;
4961
4962         if (INTEL_INFO(dev)->gen < 6)
4963                 return -ENODEV;
4964
4965         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4966
4967         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4968         if (ret)
4969                 return ret;
4970
4971         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4972         mutex_unlock(&dev_priv->rps.hw_lock);
4973
4974         return 0;
4975 }
4976
4977 static int
4978 i915_min_freq_set(void *data, u64 val)
4979 {
4980         struct drm_device *dev = data;
4981         struct drm_i915_private *dev_priv = dev->dev_private;
4982         u32 hw_max, hw_min;
4983         int ret;
4984
4985         if (INTEL_INFO(dev)->gen < 6)
4986                 return -ENODEV;
4987
4988         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4989
4990         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4991
4992         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4993         if (ret)
4994                 return ret;
4995
4996         /*
4997          * Turbo will still be enabled, but won't go below the set value.
4998          */
4999         val = intel_freq_opcode(dev_priv, val);
5000
5001         hw_max = dev_priv->rps.max_freq;
5002         hw_min = dev_priv->rps.min_freq;
5003
5004         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5005                 mutex_unlock(&dev_priv->rps.hw_lock);
5006                 return -EINVAL;
5007         }
5008
5009         dev_priv->rps.min_freq_softlimit = val;
5010
5011         intel_set_rps(dev, val);
5012
5013         mutex_unlock(&dev_priv->rps.hw_lock);
5014
5015         return 0;
5016 }
5017
5018 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5019                         i915_min_freq_get, i915_min_freq_set,
5020                         "%llu\n");
5021
5022 static int
5023 i915_cache_sharing_get(void *data, u64 *val)
5024 {
5025         struct drm_device *dev = data;
5026         struct drm_i915_private *dev_priv = dev->dev_private;
5027         u32 snpcr;
5028         int ret;
5029
5030         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5031                 return -ENODEV;
5032
5033         ret = mutex_lock_interruptible(&dev->struct_mutex);
5034         if (ret)
5035                 return ret;
5036         intel_runtime_pm_get(dev_priv);
5037
5038         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5039
5040         intel_runtime_pm_put(dev_priv);
5041         mutex_unlock(&dev_priv->dev->struct_mutex);
5042
5043         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5044
5045         return 0;
5046 }
5047
5048 static int
5049 i915_cache_sharing_set(void *data, u64 val)
5050 {
5051         struct drm_device *dev = data;
5052         struct drm_i915_private *dev_priv = dev->dev_private;
5053         u32 snpcr;
5054
5055         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5056                 return -ENODEV;
5057
5058         if (val > 3)
5059                 return -EINVAL;
5060
5061         intel_runtime_pm_get(dev_priv);
5062         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5063
5064         /* Update the cache sharing policy here as well */
5065         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5066         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5067         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5068         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5069
5070         intel_runtime_pm_put(dev_priv);
5071         return 0;
5072 }
5073
5074 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5075                         i915_cache_sharing_get, i915_cache_sharing_set,
5076                         "%llu\n");
5077
5078 struct sseu_dev_status {
5079         unsigned int slice_total;
5080         unsigned int subslice_total;
5081         unsigned int subslice_per_slice;
5082         unsigned int eu_total;
5083         unsigned int eu_per_subslice;
5084 };
5085
5086 static void cherryview_sseu_device_status(struct drm_device *dev,
5087                                           struct sseu_dev_status *stat)
5088 {
5089         struct drm_i915_private *dev_priv = dev->dev_private;
5090         int ss_max = 2;
5091         int ss;
5092         u32 sig1[ss_max], sig2[ss_max];
5093
5094         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5095         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5096         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5097         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5098
5099         for (ss = 0; ss < ss_max; ss++) {
5100                 unsigned int eu_cnt;
5101
5102                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5103                         /* skip disabled subslice */
5104                         continue;
5105
5106                 stat->slice_total = 1;
5107                 stat->subslice_per_slice++;
5108                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5109                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5110                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5111                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5112                 stat->eu_total += eu_cnt;
5113                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5114         }
5115         stat->subslice_total = stat->subslice_per_slice;
5116 }
5117
5118 static void gen9_sseu_device_status(struct drm_device *dev,
5119                                     struct sseu_dev_status *stat)
5120 {
5121         struct drm_i915_private *dev_priv = dev->dev_private;
5122         int s_max = 3, ss_max = 4;
5123         int s, ss;
5124         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5125
5126         /* BXT has a single slice and at most 3 subslices. */
5127         if (IS_BROXTON(dev)) {
5128                 s_max = 1;
5129                 ss_max = 3;
5130         }
5131
5132         for (s = 0; s < s_max; s++) {
5133                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5134                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5135                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5136         }
5137
5138         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5139                      GEN9_PGCTL_SSA_EU19_ACK |
5140                      GEN9_PGCTL_SSA_EU210_ACK |
5141                      GEN9_PGCTL_SSA_EU311_ACK;
5142         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5143                      GEN9_PGCTL_SSB_EU19_ACK |
5144                      GEN9_PGCTL_SSB_EU210_ACK |
5145                      GEN9_PGCTL_SSB_EU311_ACK;
5146
5147         for (s = 0; s < s_max; s++) {
5148                 unsigned int ss_cnt = 0;
5149
5150                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5151                         /* skip disabled slice */
5152                         continue;
5153
5154                 stat->slice_total++;
5155
5156                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5157                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5158
5159                 for (ss = 0; ss < ss_max; ss++) {
5160                         unsigned int eu_cnt;
5161
5162                         if (IS_BROXTON(dev) &&
5163                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5164                                 /* skip disabled subslice */
5165                                 continue;
5166
5167                         if (IS_BROXTON(dev))
5168                                 ss_cnt++;
5169
5170                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5171                                                eu_mask[ss%2]);
5172                         stat->eu_total += eu_cnt;
5173                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5174                                                     eu_cnt);
5175                 }
5176
5177                 stat->subslice_total += ss_cnt;
5178                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5179                                                ss_cnt);
5180         }
5181 }
5182
5183 static void broadwell_sseu_device_status(struct drm_device *dev,
5184                                          struct sseu_dev_status *stat)
5185 {
5186         struct drm_i915_private *dev_priv = dev->dev_private;
5187         int s;
5188         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5189
5190         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5191
5192         if (stat->slice_total) {
5193                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5194                 stat->subslice_total = stat->slice_total *
5195                                        stat->subslice_per_slice;
5196                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5197                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5198
5199                 /* subtract fused off EU(s) from enabled slice(s) */
5200                 for (s = 0; s < stat->slice_total; s++) {
5201                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5202
5203                         stat->eu_total -= hweight8(subslice_7eu);
5204                 }
5205         }
5206 }
5207
5208 static int i915_sseu_status(struct seq_file *m, void *unused)
5209 {
5210         struct drm_info_node *node = (struct drm_info_node *) m->private;
5211         struct drm_device *dev = node->minor->dev;
5212         struct sseu_dev_status stat;
5213
5214         if (INTEL_INFO(dev)->gen < 8)
5215                 return -ENODEV;
5216
5217         seq_puts(m, "SSEU Device Info\n");
5218         seq_printf(m, "  Available Slice Total: %u\n",
5219                    INTEL_INFO(dev)->slice_total);
5220         seq_printf(m, "  Available Subslice Total: %u\n",
5221                    INTEL_INFO(dev)->subslice_total);
5222         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5223                    INTEL_INFO(dev)->subslice_per_slice);
5224         seq_printf(m, "  Available EU Total: %u\n",
5225                    INTEL_INFO(dev)->eu_total);
5226         seq_printf(m, "  Available EU Per Subslice: %u\n",
5227                    INTEL_INFO(dev)->eu_per_subslice);
5228         seq_printf(m, "  Has Slice Power Gating: %s\n",
5229                    yesno(INTEL_INFO(dev)->has_slice_pg));
5230         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5231                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5232         seq_printf(m, "  Has EU Power Gating: %s\n",
5233                    yesno(INTEL_INFO(dev)->has_eu_pg));
5234
5235         seq_puts(m, "SSEU Device Status\n");
5236         memset(&stat, 0, sizeof(stat));
5237         if (IS_CHERRYVIEW(dev)) {
5238                 cherryview_sseu_device_status(dev, &stat);
5239         } else if (IS_BROADWELL(dev)) {
5240                 broadwell_sseu_device_status(dev, &stat);
5241         } else if (INTEL_INFO(dev)->gen >= 9) {
5242                 gen9_sseu_device_status(dev, &stat);
5243         }
5244         seq_printf(m, "  Enabled Slice Total: %u\n",
5245                    stat.slice_total);
5246         seq_printf(m, "  Enabled Subslice Total: %u\n",
5247                    stat.subslice_total);
5248         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5249                    stat.subslice_per_slice);
5250         seq_printf(m, "  Enabled EU Total: %u\n",
5251                    stat.eu_total);
5252         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5253                    stat.eu_per_subslice);
5254
5255         return 0;
5256 }
5257
5258 static int i915_forcewake_open(struct inode *inode, struct file *file)
5259 {
5260         struct drm_device *dev = inode->i_private;
5261         struct drm_i915_private *dev_priv = dev->dev_private;
5262
5263         if (INTEL_INFO(dev)->gen < 6)
5264                 return 0;
5265
5266         intel_runtime_pm_get(dev_priv);
5267         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5268
5269         return 0;
5270 }
5271
5272 static int i915_forcewake_release(struct inode *inode, struct file *file)
5273 {
5274         struct drm_device *dev = inode->i_private;
5275         struct drm_i915_private *dev_priv = dev->dev_private;
5276
5277         if (INTEL_INFO(dev)->gen < 6)
5278                 return 0;
5279
5280         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5281         intel_runtime_pm_put(dev_priv);
5282
5283         return 0;
5284 }
5285
5286 static const struct file_operations i915_forcewake_fops = {
5287         .owner = THIS_MODULE,
5288         .open = i915_forcewake_open,
5289         .release = i915_forcewake_release,
5290 };
5291
5292 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5293 {
5294         struct drm_device *dev = minor->dev;
5295         struct dentry *ent;
5296
5297         ent = debugfs_create_file("i915_forcewake_user",
5298                                   S_IRUSR,
5299                                   root, dev,
5300                                   &i915_forcewake_fops);
5301         if (!ent)
5302                 return -ENOMEM;
5303
5304         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5305 }
5306
5307 static int i915_debugfs_create(struct dentry *root,
5308                                struct drm_minor *minor,
5309                                const char *name,
5310                                const struct file_operations *fops)
5311 {
5312         struct drm_device *dev = minor->dev;
5313         struct dentry *ent;
5314
5315         ent = debugfs_create_file(name,
5316                                   S_IRUGO | S_IWUSR,
5317                                   root, dev,
5318                                   fops);
5319         if (!ent)
5320                 return -ENOMEM;
5321
5322         return drm_add_fake_info_node(minor, ent, fops);
5323 }
5324
5325 static const struct drm_info_list i915_debugfs_list[] = {
5326         {"i915_capabilities", i915_capabilities, 0},
5327         {"i915_gem_objects", i915_gem_object_info, 0},
5328         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5329         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5330         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5331         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5332         {"i915_gem_stolen", i915_gem_stolen_list_info },
5333         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5334         {"i915_gem_request", i915_gem_request_info, 0},
5335         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5336         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5337         {"i915_gem_interrupt", i915_interrupt_info, 0},
5338         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5339         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5340         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5341         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5342         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5343         {"i915_guc_info", i915_guc_info, 0},
5344         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5345         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5346         {"i915_frequency_info", i915_frequency_info, 0},
5347         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5348         {"i915_drpc_info", i915_drpc_info, 0},
5349         {"i915_emon_status", i915_emon_status, 0},
5350         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5351         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5352         {"i915_fbc_status", i915_fbc_status, 0},
5353         {"i915_ips_status", i915_ips_status, 0},
5354         {"i915_sr_status", i915_sr_status, 0},
5355         {"i915_opregion", i915_opregion, 0},
5356         {"i915_vbt", i915_vbt, 0},
5357         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5358         {"i915_context_status", i915_context_status, 0},
5359         {"i915_dump_lrc", i915_dump_lrc, 0},
5360         {"i915_execlists", i915_execlists, 0},
5361         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5362         {"i915_swizzle_info", i915_swizzle_info, 0},
5363         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5364         {"i915_llc", i915_llc, 0},
5365         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5366         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5367         {"i915_energy_uJ", i915_energy_uJ, 0},
5368         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5369         {"i915_power_domain_info", i915_power_domain_info, 0},
5370         {"i915_dmc_info", i915_dmc_info, 0},
5371         {"i915_display_info", i915_display_info, 0},
5372         {"i915_semaphore_status", i915_semaphore_status, 0},
5373         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5374         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5375         {"i915_wa_registers", i915_wa_registers, 0},
5376         {"i915_ddb_info", i915_ddb_info, 0},
5377         {"i915_sseu_status", i915_sseu_status, 0},
5378         {"i915_drrs_status", i915_drrs_status, 0},
5379         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5380 };
5381 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5382
5383 static const struct i915_debugfs_files {
5384         const char *name;
5385         const struct file_operations *fops;
5386 } i915_debugfs_files[] = {
5387         {"i915_wedged", &i915_wedged_fops},
5388         {"i915_max_freq", &i915_max_freq_fops},
5389         {"i915_min_freq", &i915_min_freq_fops},
5390         {"i915_cache_sharing", &i915_cache_sharing_fops},
5391         {"i915_ring_stop", &i915_ring_stop_fops},
5392         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5393         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5394         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5395         {"i915_error_state", &i915_error_state_fops},
5396         {"i915_next_seqno", &i915_next_seqno_fops},
5397         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5398         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5399         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5400         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5401         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5402         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5403         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5404         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5405 };
5406
5407 void intel_display_crc_init(struct drm_device *dev)
5408 {
5409         struct drm_i915_private *dev_priv = dev->dev_private;
5410         enum pipe pipe;
5411
5412         for_each_pipe(dev_priv, pipe) {
5413                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5414
5415                 pipe_crc->opened = false;
5416                 spin_lock_init(&pipe_crc->lock);
5417                 init_waitqueue_head(&pipe_crc->wq);
5418         }
5419 }
5420
5421 int i915_debugfs_init(struct drm_minor *minor)
5422 {
5423         int ret, i;
5424
5425         ret = i915_forcewake_create(minor->debugfs_root, minor);
5426         if (ret)
5427                 return ret;
5428
5429         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5430                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5431                 if (ret)
5432                         return ret;
5433         }
5434
5435         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5436                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5437                                           i915_debugfs_files[i].name,
5438                                           i915_debugfs_files[i].fops);
5439                 if (ret)
5440                         return ret;
5441         }
5442
5443         return drm_debugfs_create_files(i915_debugfs_list,
5444                                         I915_DEBUGFS_ENTRIES,
5445                                         minor->debugfs_root, minor);
5446 }
5447
5448 void i915_debugfs_cleanup(struct drm_minor *minor)
5449 {
5450         int i;
5451
5452         drm_debugfs_remove_files(i915_debugfs_list,
5453                                  I915_DEBUGFS_ENTRIES, minor);
5454
5455         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5456                                  1, minor);
5457
5458         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5459                 struct drm_info_list *info_list =
5460                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5461
5462                 drm_debugfs_remove_files(info_list, 1, minor);
5463         }
5464
5465         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5466                 struct drm_info_list *info_list =
5467                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5468
5469                 drm_debugfs_remove_files(info_list, 1, minor);
5470         }
5471 }
5472
5473 struct dpcd_block {
5474         /* DPCD dump start address. */
5475         unsigned int offset;
5476         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5477         unsigned int end;
5478         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5479         size_t size;
5480         /* Only valid for eDP. */
5481         bool edp;
5482 };
5483
5484 static const struct dpcd_block i915_dpcd_debug[] = {
5485         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5486         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5487         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5488         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5489         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5490         { .offset = DP_SET_POWER },
5491         { .offset = DP_EDP_DPCD_REV },
5492         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5493         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5494         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5495 };
5496
5497 static int i915_dpcd_show(struct seq_file *m, void *data)
5498 {
5499         struct drm_connector *connector = m->private;
5500         struct intel_dp *intel_dp =
5501                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5502         uint8_t buf[16];
5503         ssize_t err;
5504         int i;
5505
5506         if (connector->status != connector_status_connected)
5507                 return -ENODEV;
5508
5509         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5510                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5511                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5512
5513                 if (b->edp &&
5514                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5515                         continue;
5516
5517                 /* low tech for now */
5518                 if (WARN_ON(size > sizeof(buf)))
5519                         continue;
5520
5521                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5522                 if (err <= 0) {
5523                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5524                                   size, b->offset, err);
5525                         continue;
5526                 }
5527
5528                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5529         }
5530
5531         return 0;
5532 }
5533
5534 static int i915_dpcd_open(struct inode *inode, struct file *file)
5535 {
5536         return single_open(file, i915_dpcd_show, inode->i_private);
5537 }
5538
5539 static const struct file_operations i915_dpcd_fops = {
5540         .owner = THIS_MODULE,
5541         .open = i915_dpcd_open,
5542         .read = seq_read,
5543         .llseek = seq_lseek,
5544         .release = single_release,
5545 };
5546
5547 /**
5548  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5549  * @connector: pointer to a registered drm_connector
5550  *
5551  * Cleanup will be done by drm_connector_unregister() through a call to
5552  * drm_debugfs_connector_remove().
5553  *
5554  * Returns 0 on success, negative error codes on error.
5555  */
5556 int i915_debugfs_connector_add(struct drm_connector *connector)
5557 {
5558         struct dentry *root = connector->debugfs_entry;
5559
5560         /* The connector must have been registered beforehands. */
5561         if (!root)
5562                 return -ENODEV;
5563
5564         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5565             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5566                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5567                                     &i915_dpcd_fops);
5568
5569         return 0;
5570 }