]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge tag 'drm-intel-next-2012-02-07' of git://people.freedesktop.org/~danvet/drm...
[mv-sheeva.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include "drmP.h"
34 #include "drm.h"
35 #include "intel_drv.h"
36 #include "intel_ringbuffer.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39
40 #define DRM_I915_RING_DEBUG 1
41
42
43 #if defined(CONFIG_DEBUG_FS)
44
45 enum {
46         ACTIVE_LIST,
47         FLUSHING_LIST,
48         INACTIVE_LIST,
49         PINNED_LIST,
50         DEFERRED_FREE_LIST,
51 };
52
53 static const char *yesno(int v)
54 {
55         return v ? "yes" : "no";
56 }
57
58 static int i915_capabilities(struct seq_file *m, void *data)
59 {
60         struct drm_info_node *node = (struct drm_info_node *) m->private;
61         struct drm_device *dev = node->minor->dev;
62         const struct intel_device_info *info = INTEL_INFO(dev);
63
64         seq_printf(m, "gen: %d\n", info->gen);
65         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
66 #define B(x) seq_printf(m, #x ": %s\n", yesno(info->x))
67         B(is_mobile);
68         B(is_i85x);
69         B(is_i915g);
70         B(is_i945gm);
71         B(is_g33);
72         B(need_gfx_hws);
73         B(is_g4x);
74         B(is_pineview);
75         B(is_broadwater);
76         B(is_crestline);
77         B(has_fbc);
78         B(has_pipe_cxsr);
79         B(has_hotplug);
80         B(cursor_needs_physical);
81         B(has_overlay);
82         B(overlay_needs_physical);
83         B(supports_tv);
84         B(has_bsd_ring);
85         B(has_blt_ring);
86         B(has_llc);
87 #undef B
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->user_pin_count > 0)
95                 return "P";
96         else if (obj->pin_count > 0)
97                 return "p";
98         else
99                 return " ";
100 }
101
102 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104         switch (obj->tiling_mode) {
105         default:
106         case I915_TILING_NONE: return " ";
107         case I915_TILING_X: return "X";
108         case I915_TILING_Y: return "Y";
109         }
110 }
111
112 static const char *cache_level_str(int type)
113 {
114         switch (type) {
115         case I915_CACHE_NONE: return " uncached";
116         case I915_CACHE_LLC: return " snooped (LLC)";
117         case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
118         default: return "";
119         }
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         seq_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d%s%s%s",
126                    &obj->base,
127                    get_pin_flag(obj),
128                    get_tiling_flag(obj),
129                    obj->base.size / 1024,
130                    obj->base.read_domains,
131                    obj->base.write_domain,
132                    obj->last_rendering_seqno,
133                    obj->last_fenced_seqno,
134                    cache_level_str(obj->cache_level),
135                    obj->dirty ? " dirty" : "",
136                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
137         if (obj->base.name)
138                 seq_printf(m, " (name: %d)", obj->base.name);
139         if (obj->fence_reg != I915_FENCE_REG_NONE)
140                 seq_printf(m, " (fence: %d)", obj->fence_reg);
141         if (obj->gtt_space != NULL)
142                 seq_printf(m, " (gtt offset: %08x, size: %08x)",
143                            obj->gtt_offset, (unsigned int)obj->gtt_space->size);
144         if (obj->pin_mappable || obj->fault_mappable) {
145                 char s[3], *t = s;
146                 if (obj->pin_mappable)
147                         *t++ = 'p';
148                 if (obj->fault_mappable)
149                         *t++ = 'f';
150                 *t = '\0';
151                 seq_printf(m, " (%s mappable)", s);
152         }
153         if (obj->ring != NULL)
154                 seq_printf(m, " (%s)", obj->ring->name);
155 }
156
157 static int i915_gem_object_list_info(struct seq_file *m, void *data)
158 {
159         struct drm_info_node *node = (struct drm_info_node *) m->private;
160         uintptr_t list = (uintptr_t) node->info_ent->data;
161         struct list_head *head;
162         struct drm_device *dev = node->minor->dev;
163         drm_i915_private_t *dev_priv = dev->dev_private;
164         struct drm_i915_gem_object *obj;
165         size_t total_obj_size, total_gtt_size;
166         int count, ret;
167
168         ret = mutex_lock_interruptible(&dev->struct_mutex);
169         if (ret)
170                 return ret;
171
172         switch (list) {
173         case ACTIVE_LIST:
174                 seq_printf(m, "Active:\n");
175                 head = &dev_priv->mm.active_list;
176                 break;
177         case INACTIVE_LIST:
178                 seq_printf(m, "Inactive:\n");
179                 head = &dev_priv->mm.inactive_list;
180                 break;
181         case PINNED_LIST:
182                 seq_printf(m, "Pinned:\n");
183                 head = &dev_priv->mm.pinned_list;
184                 break;
185         case FLUSHING_LIST:
186                 seq_printf(m, "Flushing:\n");
187                 head = &dev_priv->mm.flushing_list;
188                 break;
189         case DEFERRED_FREE_LIST:
190                 seq_printf(m, "Deferred free:\n");
191                 head = &dev_priv->mm.deferred_free_list;
192                 break;
193         default:
194                 mutex_unlock(&dev->struct_mutex);
195                 return -EINVAL;
196         }
197
198         total_obj_size = total_gtt_size = count = 0;
199         list_for_each_entry(obj, head, mm_list) {
200                 seq_printf(m, "   ");
201                 describe_obj(m, obj);
202                 seq_printf(m, "\n");
203                 total_obj_size += obj->base.size;
204                 total_gtt_size += obj->gtt_space->size;
205                 count++;
206         }
207         mutex_unlock(&dev->struct_mutex);
208
209         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
210                    count, total_obj_size, total_gtt_size);
211         return 0;
212 }
213
214 #define count_objects(list, member) do { \
215         list_for_each_entry(obj, list, member) { \
216                 size += obj->gtt_space->size; \
217                 ++count; \
218                 if (obj->map_and_fenceable) { \
219                         mappable_size += obj->gtt_space->size; \
220                         ++mappable_count; \
221                 } \
222         } \
223 } while (0)
224
225 static int i915_gem_object_info(struct seq_file *m, void* data)
226 {
227         struct drm_info_node *node = (struct drm_info_node *) m->private;
228         struct drm_device *dev = node->minor->dev;
229         struct drm_i915_private *dev_priv = dev->dev_private;
230         u32 count, mappable_count;
231         size_t size, mappable_size;
232         struct drm_i915_gem_object *obj;
233         int ret;
234
235         ret = mutex_lock_interruptible(&dev->struct_mutex);
236         if (ret)
237                 return ret;
238
239         seq_printf(m, "%u objects, %zu bytes\n",
240                    dev_priv->mm.object_count,
241                    dev_priv->mm.object_memory);
242
243         size = count = mappable_size = mappable_count = 0;
244         count_objects(&dev_priv->mm.gtt_list, gtt_list);
245         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
246                    count, mappable_count, size, mappable_size);
247
248         size = count = mappable_size = mappable_count = 0;
249         count_objects(&dev_priv->mm.active_list, mm_list);
250         count_objects(&dev_priv->mm.flushing_list, mm_list);
251         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
252                    count, mappable_count, size, mappable_size);
253
254         size = count = mappable_size = mappable_count = 0;
255         count_objects(&dev_priv->mm.pinned_list, mm_list);
256         seq_printf(m, "  %u [%u] pinned objects, %zu [%zu] bytes\n",
257                    count, mappable_count, size, mappable_size);
258
259         size = count = mappable_size = mappable_count = 0;
260         count_objects(&dev_priv->mm.inactive_list, mm_list);
261         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
262                    count, mappable_count, size, mappable_size);
263
264         size = count = mappable_size = mappable_count = 0;
265         count_objects(&dev_priv->mm.deferred_free_list, mm_list);
266         seq_printf(m, "  %u [%u] freed objects, %zu [%zu] bytes\n",
267                    count, mappable_count, size, mappable_size);
268
269         size = count = mappable_size = mappable_count = 0;
270         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
271                 if (obj->fault_mappable) {
272                         size += obj->gtt_space->size;
273                         ++count;
274                 }
275                 if (obj->pin_mappable) {
276                         mappable_size += obj->gtt_space->size;
277                         ++mappable_count;
278                 }
279         }
280         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
281                    mappable_count, mappable_size);
282         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
283                    count, size);
284
285         seq_printf(m, "%zu [%zu] gtt total\n",
286                    dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
287
288         mutex_unlock(&dev->struct_mutex);
289
290         return 0;
291 }
292
293 static int i915_gem_gtt_info(struct seq_file *m, void* data)
294 {
295         struct drm_info_node *node = (struct drm_info_node *) m->private;
296         struct drm_device *dev = node->minor->dev;
297         struct drm_i915_private *dev_priv = dev->dev_private;
298         struct drm_i915_gem_object *obj;
299         size_t total_obj_size, total_gtt_size;
300         int count, ret;
301
302         ret = mutex_lock_interruptible(&dev->struct_mutex);
303         if (ret)
304                 return ret;
305
306         total_obj_size = total_gtt_size = count = 0;
307         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
308                 seq_printf(m, "   ");
309                 describe_obj(m, obj);
310                 seq_printf(m, "\n");
311                 total_obj_size += obj->base.size;
312                 total_gtt_size += obj->gtt_space->size;
313                 count++;
314         }
315
316         mutex_unlock(&dev->struct_mutex);
317
318         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
319                    count, total_obj_size, total_gtt_size);
320
321         return 0;
322 }
323
324
325 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
326 {
327         struct drm_info_node *node = (struct drm_info_node *) m->private;
328         struct drm_device *dev = node->minor->dev;
329         unsigned long flags;
330         struct intel_crtc *crtc;
331
332         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
333                 const char pipe = pipe_name(crtc->pipe);
334                 const char plane = plane_name(crtc->plane);
335                 struct intel_unpin_work *work;
336
337                 spin_lock_irqsave(&dev->event_lock, flags);
338                 work = crtc->unpin_work;
339                 if (work == NULL) {
340                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
341                                    pipe, plane);
342                 } else {
343                         if (!work->pending) {
344                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
345                                            pipe, plane);
346                         } else {
347                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
348                                            pipe, plane);
349                         }
350                         if (work->enable_stall_check)
351                                 seq_printf(m, "Stall check enabled, ");
352                         else
353                                 seq_printf(m, "Stall check waiting for page flip ioctl, ");
354                         seq_printf(m, "%d prepares\n", work->pending);
355
356                         if (work->old_fb_obj) {
357                                 struct drm_i915_gem_object *obj = work->old_fb_obj;
358                                 if (obj)
359                                         seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
360                         }
361                         if (work->pending_flip_obj) {
362                                 struct drm_i915_gem_object *obj = work->pending_flip_obj;
363                                 if (obj)
364                                         seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
365                         }
366                 }
367                 spin_unlock_irqrestore(&dev->event_lock, flags);
368         }
369
370         return 0;
371 }
372
373 static int i915_gem_request_info(struct seq_file *m, void *data)
374 {
375         struct drm_info_node *node = (struct drm_info_node *) m->private;
376         struct drm_device *dev = node->minor->dev;
377         drm_i915_private_t *dev_priv = dev->dev_private;
378         struct drm_i915_gem_request *gem_request;
379         int ret, count;
380
381         ret = mutex_lock_interruptible(&dev->struct_mutex);
382         if (ret)
383                 return ret;
384
385         count = 0;
386         if (!list_empty(&dev_priv->ring[RCS].request_list)) {
387                 seq_printf(m, "Render requests:\n");
388                 list_for_each_entry(gem_request,
389                                     &dev_priv->ring[RCS].request_list,
390                                     list) {
391                         seq_printf(m, "    %d @ %d\n",
392                                    gem_request->seqno,
393                                    (int) (jiffies - gem_request->emitted_jiffies));
394                 }
395                 count++;
396         }
397         if (!list_empty(&dev_priv->ring[VCS].request_list)) {
398                 seq_printf(m, "BSD requests:\n");
399                 list_for_each_entry(gem_request,
400                                     &dev_priv->ring[VCS].request_list,
401                                     list) {
402                         seq_printf(m, "    %d @ %d\n",
403                                    gem_request->seqno,
404                                    (int) (jiffies - gem_request->emitted_jiffies));
405                 }
406                 count++;
407         }
408         if (!list_empty(&dev_priv->ring[BCS].request_list)) {
409                 seq_printf(m, "BLT requests:\n");
410                 list_for_each_entry(gem_request,
411                                     &dev_priv->ring[BCS].request_list,
412                                     list) {
413                         seq_printf(m, "    %d @ %d\n",
414                                    gem_request->seqno,
415                                    (int) (jiffies - gem_request->emitted_jiffies));
416                 }
417                 count++;
418         }
419         mutex_unlock(&dev->struct_mutex);
420
421         if (count == 0)
422                 seq_printf(m, "No requests\n");
423
424         return 0;
425 }
426
427 static void i915_ring_seqno_info(struct seq_file *m,
428                                  struct intel_ring_buffer *ring)
429 {
430         if (ring->get_seqno) {
431                 seq_printf(m, "Current sequence (%s): %d\n",
432                            ring->name, ring->get_seqno(ring));
433                 seq_printf(m, "Waiter sequence (%s):  %d\n",
434                            ring->name, ring->waiting_seqno);
435                 seq_printf(m, "IRQ sequence (%s):     %d\n",
436                            ring->name, ring->irq_seqno);
437         }
438 }
439
440 static int i915_gem_seqno_info(struct seq_file *m, void *data)
441 {
442         struct drm_info_node *node = (struct drm_info_node *) m->private;
443         struct drm_device *dev = node->minor->dev;
444         drm_i915_private_t *dev_priv = dev->dev_private;
445         int ret, i;
446
447         ret = mutex_lock_interruptible(&dev->struct_mutex);
448         if (ret)
449                 return ret;
450
451         for (i = 0; i < I915_NUM_RINGS; i++)
452                 i915_ring_seqno_info(m, &dev_priv->ring[i]);
453
454         mutex_unlock(&dev->struct_mutex);
455
456         return 0;
457 }
458
459
460 static int i915_interrupt_info(struct seq_file *m, void *data)
461 {
462         struct drm_info_node *node = (struct drm_info_node *) m->private;
463         struct drm_device *dev = node->minor->dev;
464         drm_i915_private_t *dev_priv = dev->dev_private;
465         int ret, i, pipe;
466
467         ret = mutex_lock_interruptible(&dev->struct_mutex);
468         if (ret)
469                 return ret;
470
471         if (!HAS_PCH_SPLIT(dev)) {
472                 seq_printf(m, "Interrupt enable:    %08x\n",
473                            I915_READ(IER));
474                 seq_printf(m, "Interrupt identity:  %08x\n",
475                            I915_READ(IIR));
476                 seq_printf(m, "Interrupt mask:      %08x\n",
477                            I915_READ(IMR));
478                 for_each_pipe(pipe)
479                         seq_printf(m, "Pipe %c stat:         %08x\n",
480                                    pipe_name(pipe),
481                                    I915_READ(PIPESTAT(pipe)));
482         } else {
483                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
484                            I915_READ(DEIER));
485                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
486                            I915_READ(DEIIR));
487                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
488                            I915_READ(DEIMR));
489                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
490                            I915_READ(SDEIER));
491                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
492                            I915_READ(SDEIIR));
493                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
494                            I915_READ(SDEIMR));
495                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
496                            I915_READ(GTIER));
497                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
498                            I915_READ(GTIIR));
499                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
500                            I915_READ(GTIMR));
501         }
502         seq_printf(m, "Interrupts received: %d\n",
503                    atomic_read(&dev_priv->irq_received));
504         for (i = 0; i < I915_NUM_RINGS; i++) {
505                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
506                         seq_printf(m, "Graphics Interrupt mask (%s):    %08x\n",
507                                    dev_priv->ring[i].name,
508                                    I915_READ_IMR(&dev_priv->ring[i]));
509                 }
510                 i915_ring_seqno_info(m, &dev_priv->ring[i]);
511         }
512         mutex_unlock(&dev->struct_mutex);
513
514         return 0;
515 }
516
517 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
518 {
519         struct drm_info_node *node = (struct drm_info_node *) m->private;
520         struct drm_device *dev = node->minor->dev;
521         drm_i915_private_t *dev_priv = dev->dev_private;
522         int i, ret;
523
524         ret = mutex_lock_interruptible(&dev->struct_mutex);
525         if (ret)
526                 return ret;
527
528         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
529         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
530         for (i = 0; i < dev_priv->num_fence_regs; i++) {
531                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
532
533                 seq_printf(m, "Fenced object[%2d] = ", i);
534                 if (obj == NULL)
535                         seq_printf(m, "unused");
536                 else
537                         describe_obj(m, obj);
538                 seq_printf(m, "\n");
539         }
540
541         mutex_unlock(&dev->struct_mutex);
542         return 0;
543 }
544
545 static int i915_hws_info(struct seq_file *m, void *data)
546 {
547         struct drm_info_node *node = (struct drm_info_node *) m->private;
548         struct drm_device *dev = node->minor->dev;
549         drm_i915_private_t *dev_priv = dev->dev_private;
550         struct intel_ring_buffer *ring;
551         const volatile u32 __iomem *hws;
552         int i;
553
554         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
555         hws = (volatile u32 __iomem *)ring->status_page.page_addr;
556         if (hws == NULL)
557                 return 0;
558
559         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
560                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
561                            i * 4,
562                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
563         }
564         return 0;
565 }
566
567 static int i915_ringbuffer_data(struct seq_file *m, void *data)
568 {
569         struct drm_info_node *node = (struct drm_info_node *) m->private;
570         struct drm_device *dev = node->minor->dev;
571         drm_i915_private_t *dev_priv = dev->dev_private;
572         struct intel_ring_buffer *ring;
573         int ret;
574
575         ret = mutex_lock_interruptible(&dev->struct_mutex);
576         if (ret)
577                 return ret;
578
579         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
580         if (!ring->obj) {
581                 seq_printf(m, "No ringbuffer setup\n");
582         } else {
583                 const u8 __iomem *virt = ring->virtual_start;
584                 uint32_t off;
585
586                 for (off = 0; off < ring->size; off += 4) {
587                         uint32_t *ptr = (uint32_t *)(virt + off);
588                         seq_printf(m, "%08x :  %08x\n", off, *ptr);
589                 }
590         }
591         mutex_unlock(&dev->struct_mutex);
592
593         return 0;
594 }
595
596 static int i915_ringbuffer_info(struct seq_file *m, void *data)
597 {
598         struct drm_info_node *node = (struct drm_info_node *) m->private;
599         struct drm_device *dev = node->minor->dev;
600         drm_i915_private_t *dev_priv = dev->dev_private;
601         struct intel_ring_buffer *ring;
602         int ret;
603
604         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
605         if (ring->size == 0)
606                 return 0;
607
608         ret = mutex_lock_interruptible(&dev->struct_mutex);
609         if (ret)
610                 return ret;
611
612         seq_printf(m, "Ring %s:\n", ring->name);
613         seq_printf(m, "  Head :    %08x\n", I915_READ_HEAD(ring) & HEAD_ADDR);
614         seq_printf(m, "  Tail :    %08x\n", I915_READ_TAIL(ring) & TAIL_ADDR);
615         seq_printf(m, "  Size :    %08x\n", ring->size);
616         seq_printf(m, "  Active :  %08x\n", intel_ring_get_active_head(ring));
617         seq_printf(m, "  NOPID :   %08x\n", I915_READ_NOPID(ring));
618         if (IS_GEN6(dev) || IS_GEN7(dev)) {
619                 seq_printf(m, "  Sync 0 :   %08x\n", I915_READ_SYNC_0(ring));
620                 seq_printf(m, "  Sync 1 :   %08x\n", I915_READ_SYNC_1(ring));
621         }
622         seq_printf(m, "  Control : %08x\n", I915_READ_CTL(ring));
623         seq_printf(m, "  Start :   %08x\n", I915_READ_START(ring));
624
625         mutex_unlock(&dev->struct_mutex);
626
627         return 0;
628 }
629
630 static const char *ring_str(int ring)
631 {
632         switch (ring) {
633         case RCS: return "render";
634         case VCS: return "bsd";
635         case BCS: return "blt";
636         default: return "";
637         }
638 }
639
640 static const char *pin_flag(int pinned)
641 {
642         if (pinned > 0)
643                 return " P";
644         else if (pinned < 0)
645                 return " p";
646         else
647                 return "";
648 }
649
650 static const char *tiling_flag(int tiling)
651 {
652         switch (tiling) {
653         default:
654         case I915_TILING_NONE: return "";
655         case I915_TILING_X: return " X";
656         case I915_TILING_Y: return " Y";
657         }
658 }
659
660 static const char *dirty_flag(int dirty)
661 {
662         return dirty ? " dirty" : "";
663 }
664
665 static const char *purgeable_flag(int purgeable)
666 {
667         return purgeable ? " purgeable" : "";
668 }
669
670 static void print_error_buffers(struct seq_file *m,
671                                 const char *name,
672                                 struct drm_i915_error_buffer *err,
673                                 int count)
674 {
675         seq_printf(m, "%s [%d]:\n", name, count);
676
677         while (count--) {
678                 seq_printf(m, "  %08x %8u %04x %04x %08x%s%s%s%s%s%s%s",
679                            err->gtt_offset,
680                            err->size,
681                            err->read_domains,
682                            err->write_domain,
683                            err->seqno,
684                            pin_flag(err->pinned),
685                            tiling_flag(err->tiling),
686                            dirty_flag(err->dirty),
687                            purgeable_flag(err->purgeable),
688                            err->ring != -1 ? " " : "",
689                            ring_str(err->ring),
690                            cache_level_str(err->cache_level));
691
692                 if (err->name)
693                         seq_printf(m, " (name: %d)", err->name);
694                 if (err->fence_reg != I915_FENCE_REG_NONE)
695                         seq_printf(m, " (fence: %d)", err->fence_reg);
696
697                 seq_printf(m, "\n");
698                 err++;
699         }
700 }
701
702 static void i915_ring_error_state(struct seq_file *m,
703                                   struct drm_device *dev,
704                                   struct drm_i915_error_state *error,
705                                   unsigned ring)
706 {
707         seq_printf(m, "%s command stream:\n", ring_str(ring));
708         seq_printf(m, "  HEAD: 0x%08x\n", error->head[ring]);
709         seq_printf(m, "  TAIL: 0x%08x\n", error->tail[ring]);
710         seq_printf(m, "  ACTHD: 0x%08x\n", error->acthd[ring]);
711         seq_printf(m, "  IPEIR: 0x%08x\n", error->ipeir[ring]);
712         seq_printf(m, "  IPEHR: 0x%08x\n", error->ipehr[ring]);
713         seq_printf(m, "  INSTDONE: 0x%08x\n", error->instdone[ring]);
714         if (ring == RCS && INTEL_INFO(dev)->gen >= 4) {
715                 seq_printf(m, "  INSTDONE1: 0x%08x\n", error->instdone1);
716                 seq_printf(m, "  BBADDR: 0x%08llx\n", error->bbaddr);
717         }
718         if (INTEL_INFO(dev)->gen >= 4)
719                 seq_printf(m, "  INSTPS: 0x%08x\n", error->instps[ring]);
720         seq_printf(m, "  INSTPM: 0x%08x\n", error->instpm[ring]);
721         if (INTEL_INFO(dev)->gen >= 6) {
722                 seq_printf(m, "  FADDR: 0x%08x\n", error->faddr[ring]);
723                 seq_printf(m, "  FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
724         }
725         seq_printf(m, "  seqno: 0x%08x\n", error->seqno[ring]);
726 }
727
728 static int i915_error_state(struct seq_file *m, void *unused)
729 {
730         struct drm_info_node *node = (struct drm_info_node *) m->private;
731         struct drm_device *dev = node->minor->dev;
732         drm_i915_private_t *dev_priv = dev->dev_private;
733         struct drm_i915_error_state *error;
734         unsigned long flags;
735         int i, page, offset, elt;
736
737         spin_lock_irqsave(&dev_priv->error_lock, flags);
738         if (!dev_priv->first_error) {
739                 seq_printf(m, "no error state collected\n");
740                 goto out;
741         }
742
743         error = dev_priv->first_error;
744
745         seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
746                    error->time.tv_usec);
747         seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
748         seq_printf(m, "EIR: 0x%08x\n", error->eir);
749         seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
750
751         for (i = 0; i < dev_priv->num_fence_regs; i++)
752                 seq_printf(m, "  fence[%d] = %08llx\n", i, error->fence[i]);
753
754         if (INTEL_INFO(dev)->gen >= 6) {
755                 seq_printf(m, "ERROR: 0x%08x\n", error->error);
756                 seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
757         }
758
759         i915_ring_error_state(m, dev, error, RCS);
760         if (HAS_BLT(dev))
761                 i915_ring_error_state(m, dev, error, BCS);
762         if (HAS_BSD(dev))
763                 i915_ring_error_state(m, dev, error, VCS);
764
765         if (error->active_bo)
766                 print_error_buffers(m, "Active",
767                                     error->active_bo,
768                                     error->active_bo_count);
769
770         if (error->pinned_bo)
771                 print_error_buffers(m, "Pinned",
772                                     error->pinned_bo,
773                                     error->pinned_bo_count);
774
775         for (i = 0; i < ARRAY_SIZE(error->batchbuffer); i++) {
776                 if (error->batchbuffer[i]) {
777                         struct drm_i915_error_object *obj = error->batchbuffer[i];
778
779                         seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
780                                    dev_priv->ring[i].name,
781                                    obj->gtt_offset);
782                         offset = 0;
783                         for (page = 0; page < obj->page_count; page++) {
784                                 for (elt = 0; elt < PAGE_SIZE/4; elt++) {
785                                         seq_printf(m, "%08x :  %08x\n", offset, obj->pages[page][elt]);
786                                         offset += 4;
787                                 }
788                         }
789                 }
790         }
791
792         for (i = 0; i < ARRAY_SIZE(error->ringbuffer); i++) {
793                 if (error->ringbuffer[i]) {
794                         struct drm_i915_error_object *obj = error->ringbuffer[i];
795                         seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
796                                    dev_priv->ring[i].name,
797                                    obj->gtt_offset);
798                         offset = 0;
799                         for (page = 0; page < obj->page_count; page++) {
800                                 for (elt = 0; elt < PAGE_SIZE/4; elt++) {
801                                         seq_printf(m, "%08x :  %08x\n",
802                                                    offset,
803                                                    obj->pages[page][elt]);
804                                         offset += 4;
805                                 }
806                         }
807                 }
808         }
809
810         if (error->overlay)
811                 intel_overlay_print_error_state(m, error->overlay);
812
813         if (error->display)
814                 intel_display_print_error_state(m, dev, error->display);
815
816 out:
817         spin_unlock_irqrestore(&dev_priv->error_lock, flags);
818
819         return 0;
820 }
821
822 static int i915_rstdby_delays(struct seq_file *m, void *unused)
823 {
824         struct drm_info_node *node = (struct drm_info_node *) m->private;
825         struct drm_device *dev = node->minor->dev;
826         drm_i915_private_t *dev_priv = dev->dev_private;
827         u16 crstanddelay;
828         int ret;
829
830         ret = mutex_lock_interruptible(&dev->struct_mutex);
831         if (ret)
832                 return ret;
833
834         crstanddelay = I915_READ16(CRSTANDVID);
835
836         mutex_unlock(&dev->struct_mutex);
837
838         seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
839
840         return 0;
841 }
842
843 static int i915_cur_delayinfo(struct seq_file *m, void *unused)
844 {
845         struct drm_info_node *node = (struct drm_info_node *) m->private;
846         struct drm_device *dev = node->minor->dev;
847         drm_i915_private_t *dev_priv = dev->dev_private;
848         int ret;
849
850         if (IS_GEN5(dev)) {
851                 u16 rgvswctl = I915_READ16(MEMSWCTL);
852                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
853
854                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
855                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
856                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
857                            MEMSTAT_VID_SHIFT);
858                 seq_printf(m, "Current P-state: %d\n",
859                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
860         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
861                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
862                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
863                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
864                 u32 rpstat;
865                 u32 rpupei, rpcurup, rpprevup;
866                 u32 rpdownei, rpcurdown, rpprevdown;
867                 int max_freq;
868
869                 /* RPSTAT1 is in the GT power well */
870                 ret = mutex_lock_interruptible(&dev->struct_mutex);
871                 if (ret)
872                         return ret;
873
874                 gen6_gt_force_wake_get(dev_priv);
875
876                 rpstat = I915_READ(GEN6_RPSTAT1);
877                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
878                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
879                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
880                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
881                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
882                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
883
884                 gen6_gt_force_wake_put(dev_priv);
885                 mutex_unlock(&dev->struct_mutex);
886
887                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
888                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
889                 seq_printf(m, "Render p-state ratio: %d\n",
890                            (gt_perf_status & 0xff00) >> 8);
891                 seq_printf(m, "Render p-state VID: %d\n",
892                            gt_perf_status & 0xff);
893                 seq_printf(m, "Render p-state limit: %d\n",
894                            rp_state_limits & 0xff);
895                 seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
896                                                 GEN6_CAGF_SHIFT) * 50);
897                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
898                            GEN6_CURICONT_MASK);
899                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
900                            GEN6_CURBSYTAVG_MASK);
901                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
902                            GEN6_CURBSYTAVG_MASK);
903                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
904                            GEN6_CURIAVG_MASK);
905                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
906                            GEN6_CURBSYTAVG_MASK);
907                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
908                            GEN6_CURBSYTAVG_MASK);
909
910                 max_freq = (rp_state_cap & 0xff0000) >> 16;
911                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
912                            max_freq * 50);
913
914                 max_freq = (rp_state_cap & 0xff00) >> 8;
915                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
916                            max_freq * 50);
917
918                 max_freq = rp_state_cap & 0xff;
919                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
920                            max_freq * 50);
921         } else {
922                 seq_printf(m, "no P-state info available\n");
923         }
924
925         return 0;
926 }
927
928 static int i915_delayfreq_table(struct seq_file *m, void *unused)
929 {
930         struct drm_info_node *node = (struct drm_info_node *) m->private;
931         struct drm_device *dev = node->minor->dev;
932         drm_i915_private_t *dev_priv = dev->dev_private;
933         u32 delayfreq;
934         int ret, i;
935
936         ret = mutex_lock_interruptible(&dev->struct_mutex);
937         if (ret)
938                 return ret;
939
940         for (i = 0; i < 16; i++) {
941                 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
942                 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
943                            (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
944         }
945
946         mutex_unlock(&dev->struct_mutex);
947
948         return 0;
949 }
950
951 static inline int MAP_TO_MV(int map)
952 {
953         return 1250 - (map * 25);
954 }
955
956 static int i915_inttoext_table(struct seq_file *m, void *unused)
957 {
958         struct drm_info_node *node = (struct drm_info_node *) m->private;
959         struct drm_device *dev = node->minor->dev;
960         drm_i915_private_t *dev_priv = dev->dev_private;
961         u32 inttoext;
962         int ret, i;
963
964         ret = mutex_lock_interruptible(&dev->struct_mutex);
965         if (ret)
966                 return ret;
967
968         for (i = 1; i <= 32; i++) {
969                 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
970                 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
971         }
972
973         mutex_unlock(&dev->struct_mutex);
974
975         return 0;
976 }
977
978 static int ironlake_drpc_info(struct seq_file *m)
979 {
980         struct drm_info_node *node = (struct drm_info_node *) m->private;
981         struct drm_device *dev = node->minor->dev;
982         drm_i915_private_t *dev_priv = dev->dev_private;
983         u32 rgvmodectl, rstdbyctl;
984         u16 crstandvid;
985         int ret;
986
987         ret = mutex_lock_interruptible(&dev->struct_mutex);
988         if (ret)
989                 return ret;
990
991         rgvmodectl = I915_READ(MEMMODECTL);
992         rstdbyctl = I915_READ(RSTDBYCTL);
993         crstandvid = I915_READ16(CRSTANDVID);
994
995         mutex_unlock(&dev->struct_mutex);
996
997         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
998                    "yes" : "no");
999         seq_printf(m, "Boost freq: %d\n",
1000                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1001                    MEMMODE_BOOST_FREQ_SHIFT);
1002         seq_printf(m, "HW control enabled: %s\n",
1003                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1004         seq_printf(m, "SW control enabled: %s\n",
1005                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1006         seq_printf(m, "Gated voltage change: %s\n",
1007                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1008         seq_printf(m, "Starting frequency: P%d\n",
1009                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1010         seq_printf(m, "Max P-state: P%d\n",
1011                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1012         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1013         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1014         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1015         seq_printf(m, "Render standby enabled: %s\n",
1016                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1017         seq_printf(m, "Current RS state: ");
1018         switch (rstdbyctl & RSX_STATUS_MASK) {
1019         case RSX_STATUS_ON:
1020                 seq_printf(m, "on\n");
1021                 break;
1022         case RSX_STATUS_RC1:
1023                 seq_printf(m, "RC1\n");
1024                 break;
1025         case RSX_STATUS_RC1E:
1026                 seq_printf(m, "RC1E\n");
1027                 break;
1028         case RSX_STATUS_RS1:
1029                 seq_printf(m, "RS1\n");
1030                 break;
1031         case RSX_STATUS_RS2:
1032                 seq_printf(m, "RS2 (RC6)\n");
1033                 break;
1034         case RSX_STATUS_RS3:
1035                 seq_printf(m, "RC3 (RC6+)\n");
1036                 break;
1037         default:
1038                 seq_printf(m, "unknown\n");
1039                 break;
1040         }
1041
1042         return 0;
1043 }
1044
1045 static int gen6_drpc_info(struct seq_file *m)
1046 {
1047
1048         struct drm_info_node *node = (struct drm_info_node *) m->private;
1049         struct drm_device *dev = node->minor->dev;
1050         struct drm_i915_private *dev_priv = dev->dev_private;
1051         u32 rpmodectl1, gt_core_status, rcctl1;
1052         unsigned forcewake_count;
1053         int count=0, ret;
1054
1055
1056         ret = mutex_lock_interruptible(&dev->struct_mutex);
1057         if (ret)
1058                 return ret;
1059
1060         spin_lock_irq(&dev_priv->gt_lock);
1061         forcewake_count = dev_priv->forcewake_count;
1062         spin_unlock_irq(&dev_priv->gt_lock);
1063
1064         if (forcewake_count) {
1065                 seq_printf(m, "RC information inaccurate because somebody "
1066                               "holds a forcewake reference \n");
1067         } else {
1068                 /* NB: we cannot use forcewake, else we read the wrong values */
1069                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1070                         udelay(10);
1071                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1072         }
1073
1074         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1075         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
1076
1077         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1078         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1079         mutex_unlock(&dev->struct_mutex);
1080
1081         seq_printf(m, "Video Turbo Mode: %s\n",
1082                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1083         seq_printf(m, "HW control enabled: %s\n",
1084                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1085         seq_printf(m, "SW control enabled: %s\n",
1086                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1087                           GEN6_RP_MEDIA_SW_MODE));
1088         seq_printf(m, "RC1e Enabled: %s\n",
1089                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1090         seq_printf(m, "RC6 Enabled: %s\n",
1091                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1092         seq_printf(m, "Deep RC6 Enabled: %s\n",
1093                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1094         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1095                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1096         seq_printf(m, "Current RC state: ");
1097         switch (gt_core_status & GEN6_RCn_MASK) {
1098         case GEN6_RC0:
1099                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1100                         seq_printf(m, "Core Power Down\n");
1101                 else
1102                         seq_printf(m, "on\n");
1103                 break;
1104         case GEN6_RC3:
1105                 seq_printf(m, "RC3\n");
1106                 break;
1107         case GEN6_RC6:
1108                 seq_printf(m, "RC6\n");
1109                 break;
1110         case GEN6_RC7:
1111                 seq_printf(m, "RC7\n");
1112                 break;
1113         default:
1114                 seq_printf(m, "Unknown\n");
1115                 break;
1116         }
1117
1118         seq_printf(m, "Core Power Down: %s\n",
1119                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1120         return 0;
1121 }
1122
1123 static int i915_drpc_info(struct seq_file *m, void *unused)
1124 {
1125         struct drm_info_node *node = (struct drm_info_node *) m->private;
1126         struct drm_device *dev = node->minor->dev;
1127
1128         if (IS_GEN6(dev) || IS_GEN7(dev))
1129                 return gen6_drpc_info(m);
1130         else
1131                 return ironlake_drpc_info(m);
1132 }
1133
1134 static int i915_fbc_status(struct seq_file *m, void *unused)
1135 {
1136         struct drm_info_node *node = (struct drm_info_node *) m->private;
1137         struct drm_device *dev = node->minor->dev;
1138         drm_i915_private_t *dev_priv = dev->dev_private;
1139
1140         if (!I915_HAS_FBC(dev)) {
1141                 seq_printf(m, "FBC unsupported on this chipset\n");
1142                 return 0;
1143         }
1144
1145         if (intel_fbc_enabled(dev)) {
1146                 seq_printf(m, "FBC enabled\n");
1147         } else {
1148                 seq_printf(m, "FBC disabled: ");
1149                 switch (dev_priv->no_fbc_reason) {
1150                 case FBC_NO_OUTPUT:
1151                         seq_printf(m, "no outputs");
1152                         break;
1153                 case FBC_STOLEN_TOO_SMALL:
1154                         seq_printf(m, "not enough stolen memory");
1155                         break;
1156                 case FBC_UNSUPPORTED_MODE:
1157                         seq_printf(m, "mode not supported");
1158                         break;
1159                 case FBC_MODE_TOO_LARGE:
1160                         seq_printf(m, "mode too large");
1161                         break;
1162                 case FBC_BAD_PLANE:
1163                         seq_printf(m, "FBC unsupported on plane");
1164                         break;
1165                 case FBC_NOT_TILED:
1166                         seq_printf(m, "scanout buffer not tiled");
1167                         break;
1168                 case FBC_MULTIPLE_PIPES:
1169                         seq_printf(m, "multiple pipes are enabled");
1170                         break;
1171                 case FBC_MODULE_PARAM:
1172                         seq_printf(m, "disabled per module param (default off)");
1173                         break;
1174                 default:
1175                         seq_printf(m, "unknown reason");
1176                 }
1177                 seq_printf(m, "\n");
1178         }
1179         return 0;
1180 }
1181
1182 static int i915_sr_status(struct seq_file *m, void *unused)
1183 {
1184         struct drm_info_node *node = (struct drm_info_node *) m->private;
1185         struct drm_device *dev = node->minor->dev;
1186         drm_i915_private_t *dev_priv = dev->dev_private;
1187         bool sr_enabled = false;
1188
1189         if (HAS_PCH_SPLIT(dev))
1190                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1191         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1192                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1193         else if (IS_I915GM(dev))
1194                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1195         else if (IS_PINEVIEW(dev))
1196                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1197
1198         seq_printf(m, "self-refresh: %s\n",
1199                    sr_enabled ? "enabled" : "disabled");
1200
1201         return 0;
1202 }
1203
1204 static int i915_emon_status(struct seq_file *m, void *unused)
1205 {
1206         struct drm_info_node *node = (struct drm_info_node *) m->private;
1207         struct drm_device *dev = node->minor->dev;
1208         drm_i915_private_t *dev_priv = dev->dev_private;
1209         unsigned long temp, chipset, gfx;
1210         int ret;
1211
1212         ret = mutex_lock_interruptible(&dev->struct_mutex);
1213         if (ret)
1214                 return ret;
1215
1216         temp = i915_mch_val(dev_priv);
1217         chipset = i915_chipset_val(dev_priv);
1218         gfx = i915_gfx_val(dev_priv);
1219         mutex_unlock(&dev->struct_mutex);
1220
1221         seq_printf(m, "GMCH temp: %ld\n", temp);
1222         seq_printf(m, "Chipset power: %ld\n", chipset);
1223         seq_printf(m, "GFX power: %ld\n", gfx);
1224         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1225
1226         return 0;
1227 }
1228
1229 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1230 {
1231         struct drm_info_node *node = (struct drm_info_node *) m->private;
1232         struct drm_device *dev = node->minor->dev;
1233         drm_i915_private_t *dev_priv = dev->dev_private;
1234         int ret;
1235         int gpu_freq, ia_freq;
1236
1237         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1238                 seq_printf(m, "unsupported on this chipset\n");
1239                 return 0;
1240         }
1241
1242         ret = mutex_lock_interruptible(&dev->struct_mutex);
1243         if (ret)
1244                 return ret;
1245
1246         seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
1247
1248         for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay;
1249              gpu_freq++) {
1250                 I915_WRITE(GEN6_PCODE_DATA, gpu_freq);
1251                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
1252                            GEN6_PCODE_READ_MIN_FREQ_TABLE);
1253                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
1254                               GEN6_PCODE_READY) == 0, 10)) {
1255                         DRM_ERROR("pcode read of freq table timed out\n");
1256                         continue;
1257                 }
1258                 ia_freq = I915_READ(GEN6_PCODE_DATA);
1259                 seq_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100);
1260         }
1261
1262         mutex_unlock(&dev->struct_mutex);
1263
1264         return 0;
1265 }
1266
1267 static int i915_gfxec(struct seq_file *m, void *unused)
1268 {
1269         struct drm_info_node *node = (struct drm_info_node *) m->private;
1270         struct drm_device *dev = node->minor->dev;
1271         drm_i915_private_t *dev_priv = dev->dev_private;
1272         int ret;
1273
1274         ret = mutex_lock_interruptible(&dev->struct_mutex);
1275         if (ret)
1276                 return ret;
1277
1278         seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1279
1280         mutex_unlock(&dev->struct_mutex);
1281
1282         return 0;
1283 }
1284
1285 static int i915_opregion(struct seq_file *m, void *unused)
1286 {
1287         struct drm_info_node *node = (struct drm_info_node *) m->private;
1288         struct drm_device *dev = node->minor->dev;
1289         drm_i915_private_t *dev_priv = dev->dev_private;
1290         struct intel_opregion *opregion = &dev_priv->opregion;
1291         int ret;
1292
1293         ret = mutex_lock_interruptible(&dev->struct_mutex);
1294         if (ret)
1295                 return ret;
1296
1297         if (opregion->header)
1298                 seq_write(m, opregion->header, OPREGION_SIZE);
1299
1300         mutex_unlock(&dev->struct_mutex);
1301
1302         return 0;
1303 }
1304
1305 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1306 {
1307         struct drm_info_node *node = (struct drm_info_node *) m->private;
1308         struct drm_device *dev = node->minor->dev;
1309         drm_i915_private_t *dev_priv = dev->dev_private;
1310         struct intel_fbdev *ifbdev;
1311         struct intel_framebuffer *fb;
1312         int ret;
1313
1314         ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1315         if (ret)
1316                 return ret;
1317
1318         ifbdev = dev_priv->fbdev;
1319         fb = to_intel_framebuffer(ifbdev->helper.fb);
1320
1321         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
1322                    fb->base.width,
1323                    fb->base.height,
1324                    fb->base.depth,
1325                    fb->base.bits_per_pixel);
1326         describe_obj(m, fb->obj);
1327         seq_printf(m, "\n");
1328
1329         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1330                 if (&fb->base == ifbdev->helper.fb)
1331                         continue;
1332
1333                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
1334                            fb->base.width,
1335                            fb->base.height,
1336                            fb->base.depth,
1337                            fb->base.bits_per_pixel);
1338                 describe_obj(m, fb->obj);
1339                 seq_printf(m, "\n");
1340         }
1341
1342         mutex_unlock(&dev->mode_config.mutex);
1343
1344         return 0;
1345 }
1346
1347 static int i915_context_status(struct seq_file *m, void *unused)
1348 {
1349         struct drm_info_node *node = (struct drm_info_node *) m->private;
1350         struct drm_device *dev = node->minor->dev;
1351         drm_i915_private_t *dev_priv = dev->dev_private;
1352         int ret;
1353
1354         ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1355         if (ret)
1356                 return ret;
1357
1358         if (dev_priv->pwrctx) {
1359                 seq_printf(m, "power context ");
1360                 describe_obj(m, dev_priv->pwrctx);
1361                 seq_printf(m, "\n");
1362         }
1363
1364         if (dev_priv->renderctx) {
1365                 seq_printf(m, "render context ");
1366                 describe_obj(m, dev_priv->renderctx);
1367                 seq_printf(m, "\n");
1368         }
1369
1370         mutex_unlock(&dev->mode_config.mutex);
1371
1372         return 0;
1373 }
1374
1375 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1376 {
1377         struct drm_info_node *node = (struct drm_info_node *) m->private;
1378         struct drm_device *dev = node->minor->dev;
1379         struct drm_i915_private *dev_priv = dev->dev_private;
1380         unsigned forcewake_count;
1381
1382         spin_lock_irq(&dev_priv->gt_lock);
1383         forcewake_count = dev_priv->forcewake_count;
1384         spin_unlock_irq(&dev_priv->gt_lock);
1385
1386         seq_printf(m, "forcewake count = %u\n", forcewake_count);
1387
1388         return 0;
1389 }
1390
1391 static const char *swizzle_string(unsigned swizzle)
1392 {
1393         switch(swizzle) {
1394         case I915_BIT_6_SWIZZLE_NONE:
1395                 return "none";
1396         case I915_BIT_6_SWIZZLE_9:
1397                 return "bit9";
1398         case I915_BIT_6_SWIZZLE_9_10:
1399                 return "bit9/bit10";
1400         case I915_BIT_6_SWIZZLE_9_11:
1401                 return "bit9/bit11";
1402         case I915_BIT_6_SWIZZLE_9_10_11:
1403                 return "bit9/bit10/bit11";
1404         case I915_BIT_6_SWIZZLE_9_17:
1405                 return "bit9/bit17";
1406         case I915_BIT_6_SWIZZLE_9_10_17:
1407                 return "bit9/bit10/bit17";
1408         case I915_BIT_6_SWIZZLE_UNKNOWN:
1409                 return "unkown";
1410         }
1411
1412         return "bug";
1413 }
1414
1415 static int i915_swizzle_info(struct seq_file *m, void *data)
1416 {
1417         struct drm_info_node *node = (struct drm_info_node *) m->private;
1418         struct drm_device *dev = node->minor->dev;
1419         struct drm_i915_private *dev_priv = dev->dev_private;
1420
1421         mutex_lock(&dev->struct_mutex);
1422         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1423                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1424         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1425                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1426
1427         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1428                 seq_printf(m, "DDC = 0x%08x\n",
1429                            I915_READ(DCC));
1430                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1431                            I915_READ16(C0DRB3));
1432                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1433                            I915_READ16(C1DRB3));
1434         }
1435         mutex_unlock(&dev->struct_mutex);
1436
1437         return 0;
1438 }
1439
1440 static int
1441 i915_debugfs_common_open(struct inode *inode,
1442                          struct file *filp)
1443 {
1444         filp->private_data = inode->i_private;
1445         return 0;
1446 }
1447
1448 static ssize_t
1449 i915_wedged_read(struct file *filp,
1450                  char __user *ubuf,
1451                  size_t max,
1452                  loff_t *ppos)
1453 {
1454         struct drm_device *dev = filp->private_data;
1455         drm_i915_private_t *dev_priv = dev->dev_private;
1456         char buf[80];
1457         int len;
1458
1459         len = snprintf(buf, sizeof(buf),
1460                        "wedged :  %d\n",
1461                        atomic_read(&dev_priv->mm.wedged));
1462
1463         if (len > sizeof(buf))
1464                 len = sizeof(buf);
1465
1466         return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1467 }
1468
1469 static ssize_t
1470 i915_wedged_write(struct file *filp,
1471                   const char __user *ubuf,
1472                   size_t cnt,
1473                   loff_t *ppos)
1474 {
1475         struct drm_device *dev = filp->private_data;
1476         char buf[20];
1477         int val = 1;
1478
1479         if (cnt > 0) {
1480                 if (cnt > sizeof(buf) - 1)
1481                         return -EINVAL;
1482
1483                 if (copy_from_user(buf, ubuf, cnt))
1484                         return -EFAULT;
1485                 buf[cnt] = 0;
1486
1487                 val = simple_strtoul(buf, NULL, 0);
1488         }
1489
1490         DRM_INFO("Manually setting wedged to %d\n", val);
1491         i915_handle_error(dev, val);
1492
1493         return cnt;
1494 }
1495
1496 static const struct file_operations i915_wedged_fops = {
1497         .owner = THIS_MODULE,
1498         .open = i915_debugfs_common_open,
1499         .read = i915_wedged_read,
1500         .write = i915_wedged_write,
1501         .llseek = default_llseek,
1502 };
1503
1504 static ssize_t
1505 i915_max_freq_read(struct file *filp,
1506                    char __user *ubuf,
1507                    size_t max,
1508                    loff_t *ppos)
1509 {
1510         struct drm_device *dev = filp->private_data;
1511         drm_i915_private_t *dev_priv = dev->dev_private;
1512         char buf[80];
1513         int len;
1514
1515         len = snprintf(buf, sizeof(buf),
1516                        "max freq: %d\n", dev_priv->max_delay * 50);
1517
1518         if (len > sizeof(buf))
1519                 len = sizeof(buf);
1520
1521         return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1522 }
1523
1524 static ssize_t
1525 i915_max_freq_write(struct file *filp,
1526                   const char __user *ubuf,
1527                   size_t cnt,
1528                   loff_t *ppos)
1529 {
1530         struct drm_device *dev = filp->private_data;
1531         struct drm_i915_private *dev_priv = dev->dev_private;
1532         char buf[20];
1533         int val = 1;
1534
1535         if (cnt > 0) {
1536                 if (cnt > sizeof(buf) - 1)
1537                         return -EINVAL;
1538
1539                 if (copy_from_user(buf, ubuf, cnt))
1540                         return -EFAULT;
1541                 buf[cnt] = 0;
1542
1543                 val = simple_strtoul(buf, NULL, 0);
1544         }
1545
1546         DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);
1547
1548         /*
1549          * Turbo will still be enabled, but won't go above the set value.
1550          */
1551         dev_priv->max_delay = val / 50;
1552
1553         gen6_set_rps(dev, val / 50);
1554
1555         return cnt;
1556 }
1557
1558 static const struct file_operations i915_max_freq_fops = {
1559         .owner = THIS_MODULE,
1560         .open = i915_debugfs_common_open,
1561         .read = i915_max_freq_read,
1562         .write = i915_max_freq_write,
1563         .llseek = default_llseek,
1564 };
1565
1566 static ssize_t
1567 i915_cache_sharing_read(struct file *filp,
1568                    char __user *ubuf,
1569                    size_t max,
1570                    loff_t *ppos)
1571 {
1572         struct drm_device *dev = filp->private_data;
1573         drm_i915_private_t *dev_priv = dev->dev_private;
1574         char buf[80];
1575         u32 snpcr;
1576         int len;
1577
1578         mutex_lock(&dev_priv->dev->struct_mutex);
1579         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1580         mutex_unlock(&dev_priv->dev->struct_mutex);
1581
1582         len = snprintf(buf, sizeof(buf),
1583                        "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
1584                        GEN6_MBC_SNPCR_SHIFT);
1585
1586         if (len > sizeof(buf))
1587                 len = sizeof(buf);
1588
1589         return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1590 }
1591
1592 static ssize_t
1593 i915_cache_sharing_write(struct file *filp,
1594                   const char __user *ubuf,
1595                   size_t cnt,
1596                   loff_t *ppos)
1597 {
1598         struct drm_device *dev = filp->private_data;
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600         char buf[20];
1601         u32 snpcr;
1602         int val = 1;
1603
1604         if (cnt > 0) {
1605                 if (cnt > sizeof(buf) - 1)
1606                         return -EINVAL;
1607
1608                 if (copy_from_user(buf, ubuf, cnt))
1609                         return -EFAULT;
1610                 buf[cnt] = 0;
1611
1612                 val = simple_strtoul(buf, NULL, 0);
1613         }
1614
1615         if (val < 0 || val > 3)
1616                 return -EINVAL;
1617
1618         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);
1619
1620         /* Update the cache sharing policy here as well */
1621         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1622         snpcr &= ~GEN6_MBC_SNPCR_MASK;
1623         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
1624         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
1625
1626         return cnt;
1627 }
1628
1629 static const struct file_operations i915_cache_sharing_fops = {
1630         .owner = THIS_MODULE,
1631         .open = i915_debugfs_common_open,
1632         .read = i915_cache_sharing_read,
1633         .write = i915_cache_sharing_write,
1634         .llseek = default_llseek,
1635 };
1636
1637 /* As the drm_debugfs_init() routines are called before dev->dev_private is
1638  * allocated we need to hook into the minor for release. */
1639 static int
1640 drm_add_fake_info_node(struct drm_minor *minor,
1641                        struct dentry *ent,
1642                        const void *key)
1643 {
1644         struct drm_info_node *node;
1645
1646         node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
1647         if (node == NULL) {
1648                 debugfs_remove(ent);
1649                 return -ENOMEM;
1650         }
1651
1652         node->minor = minor;
1653         node->dent = ent;
1654         node->info_ent = (void *) key;
1655
1656         mutex_lock(&minor->debugfs_lock);
1657         list_add(&node->list, &minor->debugfs_list);
1658         mutex_unlock(&minor->debugfs_lock);
1659
1660         return 0;
1661 }
1662
1663 static int i915_forcewake_open(struct inode *inode, struct file *file)
1664 {
1665         struct drm_device *dev = inode->i_private;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         int ret;
1668
1669         if (INTEL_INFO(dev)->gen < 6)
1670                 return 0;
1671
1672         ret = mutex_lock_interruptible(&dev->struct_mutex);
1673         if (ret)
1674                 return ret;
1675         gen6_gt_force_wake_get(dev_priv);
1676         mutex_unlock(&dev->struct_mutex);
1677
1678         return 0;
1679 }
1680
1681 int i915_forcewake_release(struct inode *inode, struct file *file)
1682 {
1683         struct drm_device *dev = inode->i_private;
1684         struct drm_i915_private *dev_priv = dev->dev_private;
1685
1686         if (INTEL_INFO(dev)->gen < 6)
1687                 return 0;
1688
1689         /*
1690          * It's bad that we can potentially hang userspace if struct_mutex gets
1691          * forever stuck.  However, if we cannot acquire this lock it means that
1692          * almost certainly the driver has hung, is not unload-able. Therefore
1693          * hanging here is probably a minor inconvenience not to be seen my
1694          * almost every user.
1695          */
1696         mutex_lock(&dev->struct_mutex);
1697         gen6_gt_force_wake_put(dev_priv);
1698         mutex_unlock(&dev->struct_mutex);
1699
1700         return 0;
1701 }
1702
1703 static const struct file_operations i915_forcewake_fops = {
1704         .owner = THIS_MODULE,
1705         .open = i915_forcewake_open,
1706         .release = i915_forcewake_release,
1707 };
1708
1709 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
1710 {
1711         struct drm_device *dev = minor->dev;
1712         struct dentry *ent;
1713
1714         ent = debugfs_create_file("i915_forcewake_user",
1715                                   S_IRUSR,
1716                                   root, dev,
1717                                   &i915_forcewake_fops);
1718         if (IS_ERR(ent))
1719                 return PTR_ERR(ent);
1720
1721         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
1722 }
1723
1724 static int i915_debugfs_create(struct dentry *root,
1725                                struct drm_minor *minor,
1726                                const char *name,
1727                                const struct file_operations *fops)
1728 {
1729         struct drm_device *dev = minor->dev;
1730         struct dentry *ent;
1731
1732         ent = debugfs_create_file(name,
1733                                   S_IRUGO | S_IWUSR,
1734                                   root, dev,
1735                                   fops);
1736         if (IS_ERR(ent))
1737                 return PTR_ERR(ent);
1738
1739         return drm_add_fake_info_node(minor, ent, fops);
1740 }
1741
1742 static struct drm_info_list i915_debugfs_list[] = {
1743         {"i915_capabilities", i915_capabilities, 0},
1744         {"i915_gem_objects", i915_gem_object_info, 0},
1745         {"i915_gem_gtt", i915_gem_gtt_info, 0},
1746         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
1747         {"i915_gem_flushing", i915_gem_object_list_info, 0, (void *) FLUSHING_LIST},
1748         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
1749         {"i915_gem_pinned", i915_gem_object_list_info, 0, (void *) PINNED_LIST},
1750         {"i915_gem_deferred_free", i915_gem_object_list_info, 0, (void *) DEFERRED_FREE_LIST},
1751         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
1752         {"i915_gem_request", i915_gem_request_info, 0},
1753         {"i915_gem_seqno", i915_gem_seqno_info, 0},
1754         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
1755         {"i915_gem_interrupt", i915_interrupt_info, 0},
1756         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
1757         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
1758         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
1759         {"i915_ringbuffer_data", i915_ringbuffer_data, 0, (void *)RCS},
1760         {"i915_ringbuffer_info", i915_ringbuffer_info, 0, (void *)RCS},
1761         {"i915_bsd_ringbuffer_data", i915_ringbuffer_data, 0, (void *)VCS},
1762         {"i915_bsd_ringbuffer_info", i915_ringbuffer_info, 0, (void *)VCS},
1763         {"i915_blt_ringbuffer_data", i915_ringbuffer_data, 0, (void *)BCS},
1764         {"i915_blt_ringbuffer_info", i915_ringbuffer_info, 0, (void *)BCS},
1765         {"i915_error_state", i915_error_state, 0},
1766         {"i915_rstdby_delays", i915_rstdby_delays, 0},
1767         {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
1768         {"i915_delayfreq_table", i915_delayfreq_table, 0},
1769         {"i915_inttoext_table", i915_inttoext_table, 0},
1770         {"i915_drpc_info", i915_drpc_info, 0},
1771         {"i915_emon_status", i915_emon_status, 0},
1772         {"i915_ring_freq_table", i915_ring_freq_table, 0},
1773         {"i915_gfxec", i915_gfxec, 0},
1774         {"i915_fbc_status", i915_fbc_status, 0},
1775         {"i915_sr_status", i915_sr_status, 0},
1776         {"i915_opregion", i915_opregion, 0},
1777         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
1778         {"i915_context_status", i915_context_status, 0},
1779         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
1780         {"i915_swizzle_info", i915_swizzle_info, 0},
1781 };
1782 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
1783
1784 int i915_debugfs_init(struct drm_minor *minor)
1785 {
1786         int ret;
1787
1788         ret = i915_debugfs_create(minor->debugfs_root, minor,
1789                                   "i915_wedged",
1790                                   &i915_wedged_fops);
1791         if (ret)
1792                 return ret;
1793
1794         ret = i915_forcewake_create(minor->debugfs_root, minor);
1795         if (ret)
1796                 return ret;
1797
1798         ret = i915_debugfs_create(minor->debugfs_root, minor,
1799                                   "i915_max_freq",
1800                                   &i915_max_freq_fops);
1801         if (ret)
1802                 return ret;
1803
1804         ret = i915_debugfs_create(minor->debugfs_root, minor,
1805                                   "i915_cache_sharing",
1806                                   &i915_cache_sharing_fops);
1807         if (ret)
1808                 return ret;
1809
1810         return drm_debugfs_create_files(i915_debugfs_list,
1811                                         I915_DEBUGFS_ENTRIES,
1812                                         minor->debugfs_root, minor);
1813 }
1814
1815 void i915_debugfs_cleanup(struct drm_minor *minor)
1816 {
1817         drm_debugfs_remove_files(i915_debugfs_list,
1818                                  I915_DEBUGFS_ENTRIES, minor);
1819         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
1820                                  1, minor);
1821         drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
1822                                  1, minor);
1823         drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
1824                                  1, minor);
1825         drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
1826                                  1, minor);
1827 }
1828
1829 #endif /* CONFIG_DEBUG_FS */