]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
29408688505495a148ef6b69e707c4d0d113bc9e
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (i915_gem_obj_is_pinned(obj))
100                 return "p";
101         else
102                 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107         switch (obj->tiling_mode) {
108         default:
109         case I915_TILING_NONE: return " ";
110         case I915_TILING_X: return "X";
111         case I915_TILING_Y: return "Y";
112         }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123         struct i915_vma *vma;
124         int pin_count = 0;
125
126         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s",
127                    &obj->base,
128                    get_pin_flag(obj),
129                    get_tiling_flag(obj),
130                    get_global_flag(obj),
131                    obj->base.size / 1024,
132                    obj->base.read_domains,
133                    obj->base.write_domain,
134                    i915_gem_request_get_seqno(obj->last_read_req),
135                    i915_gem_request_get_seqno(obj->last_write_req),
136                    i915_gem_request_get_seqno(obj->last_fenced_req),
137                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138                    obj->dirty ? " dirty" : "",
139                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140         if (obj->base.name)
141                 seq_printf(m, " (name: %d)", obj->base.name);
142         list_for_each_entry(vma, &obj->vma_list, vma_link) {
143                 if (vma->pin_count > 0)
144                         pin_count++;
145         }
146         seq_printf(m, " (pinned x %d)", pin_count);
147         if (obj->pin_display)
148                 seq_printf(m, " (display)");
149         if (obj->fence_reg != I915_FENCE_REG_NONE)
150                 seq_printf(m, " (fence: %d)", obj->fence_reg);
151         list_for_each_entry(vma, &obj->vma_list, vma_link) {
152                 if (!i915_is_ggtt(vma->vm))
153                         seq_puts(m, " (pp");
154                 else
155                         seq_puts(m, " (g");
156                 seq_printf(m, "gtt offset: %08lx, size: %08lx, type: %u)",
157                            vma->node.start, vma->node.size,
158                            vma->ggtt_view.type);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->last_read_req != NULL)
172                 seq_printf(m, " (%s)",
173                            i915_gem_request_get_ring(obj->last_read_req)->name);
174         if (obj->frontbuffer_bits)
175                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
176 }
177
178 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
179 {
180         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
181         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
182         seq_putc(m, ' ');
183 }
184
185 static int i915_gem_object_list_info(struct seq_file *m, void *data)
186 {
187         struct drm_info_node *node = m->private;
188         uintptr_t list = (uintptr_t) node->info_ent->data;
189         struct list_head *head;
190         struct drm_device *dev = node->minor->dev;
191         struct drm_i915_private *dev_priv = dev->dev_private;
192         struct i915_address_space *vm = &dev_priv->gtt.base;
193         struct i915_vma *vma;
194         size_t total_obj_size, total_gtt_size;
195         int count, ret;
196
197         ret = mutex_lock_interruptible(&dev->struct_mutex);
198         if (ret)
199                 return ret;
200
201         /* FIXME: the user of this interface might want more than just GGTT */
202         switch (list) {
203         case ACTIVE_LIST:
204                 seq_puts(m, "Active:\n");
205                 head = &vm->active_list;
206                 break;
207         case INACTIVE_LIST:
208                 seq_puts(m, "Inactive:\n");
209                 head = &vm->inactive_list;
210                 break;
211         default:
212                 mutex_unlock(&dev->struct_mutex);
213                 return -EINVAL;
214         }
215
216         total_obj_size = total_gtt_size = count = 0;
217         list_for_each_entry(vma, head, mm_list) {
218                 seq_printf(m, "   ");
219                 describe_obj(m, vma->obj);
220                 seq_printf(m, "\n");
221                 total_obj_size += vma->obj->base.size;
222                 total_gtt_size += vma->node.size;
223                 count++;
224         }
225         mutex_unlock(&dev->struct_mutex);
226
227         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
228                    count, total_obj_size, total_gtt_size);
229         return 0;
230 }
231
232 static int obj_rank_by_stolen(void *priv,
233                               struct list_head *A, struct list_head *B)
234 {
235         struct drm_i915_gem_object *a =
236                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
237         struct drm_i915_gem_object *b =
238                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
239
240         return a->stolen->start - b->stolen->start;
241 }
242
243 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
244 {
245         struct drm_info_node *node = m->private;
246         struct drm_device *dev = node->minor->dev;
247         struct drm_i915_private *dev_priv = dev->dev_private;
248         struct drm_i915_gem_object *obj;
249         size_t total_obj_size, total_gtt_size;
250         LIST_HEAD(stolen);
251         int count, ret;
252
253         ret = mutex_lock_interruptible(&dev->struct_mutex);
254         if (ret)
255                 return ret;
256
257         total_obj_size = total_gtt_size = count = 0;
258         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
259                 if (obj->stolen == NULL)
260                         continue;
261
262                 list_add(&obj->obj_exec_link, &stolen);
263
264                 total_obj_size += obj->base.size;
265                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
266                 count++;
267         }
268         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
269                 if (obj->stolen == NULL)
270                         continue;
271
272                 list_add(&obj->obj_exec_link, &stolen);
273
274                 total_obj_size += obj->base.size;
275                 count++;
276         }
277         list_sort(NULL, &stolen, obj_rank_by_stolen);
278         seq_puts(m, "Stolen:\n");
279         while (!list_empty(&stolen)) {
280                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
281                 seq_puts(m, "   ");
282                 describe_obj(m, obj);
283                 seq_putc(m, '\n');
284                 list_del_init(&obj->obj_exec_link);
285         }
286         mutex_unlock(&dev->struct_mutex);
287
288         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
289                    count, total_obj_size, total_gtt_size);
290         return 0;
291 }
292
293 #define count_objects(list, member) do { \
294         list_for_each_entry(obj, list, member) { \
295                 size += i915_gem_obj_ggtt_size(obj); \
296                 ++count; \
297                 if (obj->map_and_fenceable) { \
298                         mappable_size += i915_gem_obj_ggtt_size(obj); \
299                         ++mappable_count; \
300                 } \
301         } \
302 } while (0)
303
304 struct file_stats {
305         struct drm_i915_file_private *file_priv;
306         int count;
307         size_t total, unbound;
308         size_t global, shared;
309         size_t active, inactive;
310 };
311
312 static int per_file_stats(int id, void *ptr, void *data)
313 {
314         struct drm_i915_gem_object *obj = ptr;
315         struct file_stats *stats = data;
316         struct i915_vma *vma;
317
318         stats->count++;
319         stats->total += obj->base.size;
320
321         if (obj->base.name || obj->base.dma_buf)
322                 stats->shared += obj->base.size;
323
324         if (USES_FULL_PPGTT(obj->base.dev)) {
325                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
326                         struct i915_hw_ppgtt *ppgtt;
327
328                         if (!drm_mm_node_allocated(&vma->node))
329                                 continue;
330
331                         if (i915_is_ggtt(vma->vm)) {
332                                 stats->global += obj->base.size;
333                                 continue;
334                         }
335
336                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
337                         if (ppgtt->file_priv != stats->file_priv)
338                                 continue;
339
340                         if (obj->active) /* XXX per-vma statistic */
341                                 stats->active += obj->base.size;
342                         else
343                                 stats->inactive += obj->base.size;
344
345                         return 0;
346                 }
347         } else {
348                 if (i915_gem_obj_ggtt_bound(obj)) {
349                         stats->global += obj->base.size;
350                         if (obj->active)
351                                 stats->active += obj->base.size;
352                         else
353                                 stats->inactive += obj->base.size;
354                         return 0;
355                 }
356         }
357
358         if (!list_empty(&obj->global_list))
359                 stats->unbound += obj->base.size;
360
361         return 0;
362 }
363
364 #define print_file_stats(m, name, stats) \
365         seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
366                    name, \
367                    stats.count, \
368                    stats.total, \
369                    stats.active, \
370                    stats.inactive, \
371                    stats.global, \
372                    stats.shared, \
373                    stats.unbound)
374
375 static void print_batch_pool_stats(struct seq_file *m,
376                                    struct drm_i915_private *dev_priv)
377 {
378         struct drm_i915_gem_object *obj;
379         struct file_stats stats;
380
381         memset(&stats, 0, sizeof(stats));
382
383         list_for_each_entry(obj,
384                             &dev_priv->mm.batch_pool.cache_list,
385                             batch_pool_list)
386                 per_file_stats(0, obj, &stats);
387
388         print_file_stats(m, "batch pool", stats);
389 }
390
391 #define count_vmas(list, member) do { \
392         list_for_each_entry(vma, list, member) { \
393                 size += i915_gem_obj_ggtt_size(vma->obj); \
394                 ++count; \
395                 if (vma->obj->map_and_fenceable) { \
396                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
397                         ++mappable_count; \
398                 } \
399         } \
400 } while (0)
401
402 static int i915_gem_object_info(struct seq_file *m, void* data)
403 {
404         struct drm_info_node *node = m->private;
405         struct drm_device *dev = node->minor->dev;
406         struct drm_i915_private *dev_priv = dev->dev_private;
407         u32 count, mappable_count, purgeable_count;
408         size_t size, mappable_size, purgeable_size;
409         struct drm_i915_gem_object *obj;
410         struct i915_address_space *vm = &dev_priv->gtt.base;
411         struct drm_file *file;
412         struct i915_vma *vma;
413         int ret;
414
415         ret = mutex_lock_interruptible(&dev->struct_mutex);
416         if (ret)
417                 return ret;
418
419         seq_printf(m, "%u objects, %zu bytes\n",
420                    dev_priv->mm.object_count,
421                    dev_priv->mm.object_memory);
422
423         size = count = mappable_size = mappable_count = 0;
424         count_objects(&dev_priv->mm.bound_list, global_list);
425         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
426                    count, mappable_count, size, mappable_size);
427
428         size = count = mappable_size = mappable_count = 0;
429         count_vmas(&vm->active_list, mm_list);
430         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
431                    count, mappable_count, size, mappable_size);
432
433         size = count = mappable_size = mappable_count = 0;
434         count_vmas(&vm->inactive_list, mm_list);
435         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
436                    count, mappable_count, size, mappable_size);
437
438         size = count = purgeable_size = purgeable_count = 0;
439         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
440                 size += obj->base.size, ++count;
441                 if (obj->madv == I915_MADV_DONTNEED)
442                         purgeable_size += obj->base.size, ++purgeable_count;
443         }
444         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
445
446         size = count = mappable_size = mappable_count = 0;
447         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
448                 if (obj->fault_mappable) {
449                         size += i915_gem_obj_ggtt_size(obj);
450                         ++count;
451                 }
452                 if (obj->pin_mappable) {
453                         mappable_size += i915_gem_obj_ggtt_size(obj);
454                         ++mappable_count;
455                 }
456                 if (obj->madv == I915_MADV_DONTNEED) {
457                         purgeable_size += obj->base.size;
458                         ++purgeable_count;
459                 }
460         }
461         seq_printf(m, "%u purgeable objects, %zu bytes\n",
462                    purgeable_count, purgeable_size);
463         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
464                    mappable_count, mappable_size);
465         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
466                    count, size);
467
468         seq_printf(m, "%zu [%lu] gtt total\n",
469                    dev_priv->gtt.base.total,
470                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
471
472         seq_putc(m, '\n');
473         print_batch_pool_stats(m, dev_priv);
474
475         seq_putc(m, '\n');
476         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
477                 struct file_stats stats;
478                 struct task_struct *task;
479
480                 memset(&stats, 0, sizeof(stats));
481                 stats.file_priv = file->driver_priv;
482                 spin_lock(&file->table_lock);
483                 idr_for_each(&file->object_idr, per_file_stats, &stats);
484                 spin_unlock(&file->table_lock);
485                 /*
486                  * Although we have a valid reference on file->pid, that does
487                  * not guarantee that the task_struct who called get_pid() is
488                  * still alive (e.g. get_pid(current) => fork() => exit()).
489                  * Therefore, we need to protect this ->comm access using RCU.
490                  */
491                 rcu_read_lock();
492                 task = pid_task(file->pid, PIDTYPE_PID);
493                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
494                 rcu_read_unlock();
495         }
496
497         mutex_unlock(&dev->struct_mutex);
498
499         return 0;
500 }
501
502 static int i915_gem_gtt_info(struct seq_file *m, void *data)
503 {
504         struct drm_info_node *node = m->private;
505         struct drm_device *dev = node->minor->dev;
506         uintptr_t list = (uintptr_t) node->info_ent->data;
507         struct drm_i915_private *dev_priv = dev->dev_private;
508         struct drm_i915_gem_object *obj;
509         size_t total_obj_size, total_gtt_size;
510         int count, ret;
511
512         ret = mutex_lock_interruptible(&dev->struct_mutex);
513         if (ret)
514                 return ret;
515
516         total_obj_size = total_gtt_size = count = 0;
517         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
518                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
519                         continue;
520
521                 seq_puts(m, "   ");
522                 describe_obj(m, obj);
523                 seq_putc(m, '\n');
524                 total_obj_size += obj->base.size;
525                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
526                 count++;
527         }
528
529         mutex_unlock(&dev->struct_mutex);
530
531         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
532                    count, total_obj_size, total_gtt_size);
533
534         return 0;
535 }
536
537 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
538 {
539         struct drm_info_node *node = m->private;
540         struct drm_device *dev = node->minor->dev;
541         struct drm_i915_private *dev_priv = dev->dev_private;
542         struct intel_crtc *crtc;
543         int ret;
544
545         ret = mutex_lock_interruptible(&dev->struct_mutex);
546         if (ret)
547                 return ret;
548
549         for_each_intel_crtc(dev, crtc) {
550                 const char pipe = pipe_name(crtc->pipe);
551                 const char plane = plane_name(crtc->plane);
552                 struct intel_unpin_work *work;
553
554                 spin_lock_irq(&dev->event_lock);
555                 work = crtc->unpin_work;
556                 if (work == NULL) {
557                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
558                                    pipe, plane);
559                 } else {
560                         u32 addr;
561
562                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
563                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
564                                            pipe, plane);
565                         } else {
566                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
567                                            pipe, plane);
568                         }
569                         if (work->flip_queued_req) {
570                                 struct intel_engine_cs *ring =
571                                         i915_gem_request_get_ring(work->flip_queued_req);
572
573                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
574                                            ring->name,
575                                            i915_gem_request_get_seqno(work->flip_queued_req),
576                                            dev_priv->next_seqno,
577                                            ring->get_seqno(ring, true),
578                                            i915_gem_request_completed(work->flip_queued_req, true));
579                         } else
580                                 seq_printf(m, "Flip not associated with any ring\n");
581                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
582                                    work->flip_queued_vblank,
583                                    work->flip_ready_vblank,
584                                    drm_crtc_vblank_count(&crtc->base));
585                         if (work->enable_stall_check)
586                                 seq_puts(m, "Stall check enabled, ");
587                         else
588                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
589                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
590
591                         if (INTEL_INFO(dev)->gen >= 4)
592                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
593                         else
594                                 addr = I915_READ(DSPADDR(crtc->plane));
595                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
596
597                         if (work->pending_flip_obj) {
598                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
599                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
600                         }
601                 }
602                 spin_unlock_irq(&dev->event_lock);
603         }
604
605         mutex_unlock(&dev->struct_mutex);
606
607         return 0;
608 }
609
610 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
611 {
612         struct drm_info_node *node = m->private;
613         struct drm_device *dev = node->minor->dev;
614         struct drm_i915_private *dev_priv = dev->dev_private;
615         struct drm_i915_gem_object *obj;
616         int count = 0;
617         int ret;
618
619         ret = mutex_lock_interruptible(&dev->struct_mutex);
620         if (ret)
621                 return ret;
622
623         seq_puts(m, "cache:\n");
624         list_for_each_entry(obj,
625                             &dev_priv->mm.batch_pool.cache_list,
626                             batch_pool_list) {
627                 seq_puts(m, "   ");
628                 describe_obj(m, obj);
629                 seq_putc(m, '\n');
630                 count++;
631         }
632
633         seq_printf(m, "total: %d\n", count);
634
635         mutex_unlock(&dev->struct_mutex);
636
637         return 0;
638 }
639
640 static int i915_gem_request_info(struct seq_file *m, void *data)
641 {
642         struct drm_info_node *node = m->private;
643         struct drm_device *dev = node->minor->dev;
644         struct drm_i915_private *dev_priv = dev->dev_private;
645         struct intel_engine_cs *ring;
646         struct drm_i915_gem_request *gem_request;
647         int ret, count, i;
648
649         ret = mutex_lock_interruptible(&dev->struct_mutex);
650         if (ret)
651                 return ret;
652
653         count = 0;
654         for_each_ring(ring, dev_priv, i) {
655                 if (list_empty(&ring->request_list))
656                         continue;
657
658                 seq_printf(m, "%s requests:\n", ring->name);
659                 list_for_each_entry(gem_request,
660                                     &ring->request_list,
661                                     list) {
662                         seq_printf(m, "    %x @ %d\n",
663                                    gem_request->seqno,
664                                    (int) (jiffies - gem_request->emitted_jiffies));
665                 }
666                 count++;
667         }
668         mutex_unlock(&dev->struct_mutex);
669
670         if (count == 0)
671                 seq_puts(m, "No requests\n");
672
673         return 0;
674 }
675
676 static void i915_ring_seqno_info(struct seq_file *m,
677                                  struct intel_engine_cs *ring)
678 {
679         if (ring->get_seqno) {
680                 seq_printf(m, "Current sequence (%s): %x\n",
681                            ring->name, ring->get_seqno(ring, false));
682         }
683 }
684
685 static int i915_gem_seqno_info(struct seq_file *m, void *data)
686 {
687         struct drm_info_node *node = m->private;
688         struct drm_device *dev = node->minor->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         struct intel_engine_cs *ring;
691         int ret, i;
692
693         ret = mutex_lock_interruptible(&dev->struct_mutex);
694         if (ret)
695                 return ret;
696         intel_runtime_pm_get(dev_priv);
697
698         for_each_ring(ring, dev_priv, i)
699                 i915_ring_seqno_info(m, ring);
700
701         intel_runtime_pm_put(dev_priv);
702         mutex_unlock(&dev->struct_mutex);
703
704         return 0;
705 }
706
707
708 static int i915_interrupt_info(struct seq_file *m, void *data)
709 {
710         struct drm_info_node *node = m->private;
711         struct drm_device *dev = node->minor->dev;
712         struct drm_i915_private *dev_priv = dev->dev_private;
713         struct intel_engine_cs *ring;
714         int ret, i, pipe;
715
716         ret = mutex_lock_interruptible(&dev->struct_mutex);
717         if (ret)
718                 return ret;
719         intel_runtime_pm_get(dev_priv);
720
721         if (IS_CHERRYVIEW(dev)) {
722                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
723                            I915_READ(GEN8_MASTER_IRQ));
724
725                 seq_printf(m, "Display IER:\t%08x\n",
726                            I915_READ(VLV_IER));
727                 seq_printf(m, "Display IIR:\t%08x\n",
728                            I915_READ(VLV_IIR));
729                 seq_printf(m, "Display IIR_RW:\t%08x\n",
730                            I915_READ(VLV_IIR_RW));
731                 seq_printf(m, "Display IMR:\t%08x\n",
732                            I915_READ(VLV_IMR));
733                 for_each_pipe(dev_priv, pipe)
734                         seq_printf(m, "Pipe %c stat:\t%08x\n",
735                                    pipe_name(pipe),
736                                    I915_READ(PIPESTAT(pipe)));
737
738                 seq_printf(m, "Port hotplug:\t%08x\n",
739                            I915_READ(PORT_HOTPLUG_EN));
740                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
741                            I915_READ(VLV_DPFLIPSTAT));
742                 seq_printf(m, "DPINVGTT:\t%08x\n",
743                            I915_READ(DPINVGTT));
744
745                 for (i = 0; i < 4; i++) {
746                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
747                                    i, I915_READ(GEN8_GT_IMR(i)));
748                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
749                                    i, I915_READ(GEN8_GT_IIR(i)));
750                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
751                                    i, I915_READ(GEN8_GT_IER(i)));
752                 }
753
754                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
755                            I915_READ(GEN8_PCU_IMR));
756                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
757                            I915_READ(GEN8_PCU_IIR));
758                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
759                            I915_READ(GEN8_PCU_IER));
760         } else if (INTEL_INFO(dev)->gen >= 8) {
761                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
762                            I915_READ(GEN8_MASTER_IRQ));
763
764                 for (i = 0; i < 4; i++) {
765                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
766                                    i, I915_READ(GEN8_GT_IMR(i)));
767                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
768                                    i, I915_READ(GEN8_GT_IIR(i)));
769                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
770                                    i, I915_READ(GEN8_GT_IER(i)));
771                 }
772
773                 for_each_pipe(dev_priv, pipe) {
774                         if (!intel_display_power_is_enabled(dev_priv,
775                                                 POWER_DOMAIN_PIPE(pipe))) {
776                                 seq_printf(m, "Pipe %c power disabled\n",
777                                            pipe_name(pipe));
778                                 continue;
779                         }
780                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
781                                    pipe_name(pipe),
782                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
783                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
784                                    pipe_name(pipe),
785                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
786                         seq_printf(m, "Pipe %c IER:\t%08x\n",
787                                    pipe_name(pipe),
788                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
789                 }
790
791                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
792                            I915_READ(GEN8_DE_PORT_IMR));
793                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
794                            I915_READ(GEN8_DE_PORT_IIR));
795                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
796                            I915_READ(GEN8_DE_PORT_IER));
797
798                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
799                            I915_READ(GEN8_DE_MISC_IMR));
800                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
801                            I915_READ(GEN8_DE_MISC_IIR));
802                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
803                            I915_READ(GEN8_DE_MISC_IER));
804
805                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
806                            I915_READ(GEN8_PCU_IMR));
807                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
808                            I915_READ(GEN8_PCU_IIR));
809                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
810                            I915_READ(GEN8_PCU_IER));
811         } else if (IS_VALLEYVIEW(dev)) {
812                 seq_printf(m, "Display IER:\t%08x\n",
813                            I915_READ(VLV_IER));
814                 seq_printf(m, "Display IIR:\t%08x\n",
815                            I915_READ(VLV_IIR));
816                 seq_printf(m, "Display IIR_RW:\t%08x\n",
817                            I915_READ(VLV_IIR_RW));
818                 seq_printf(m, "Display IMR:\t%08x\n",
819                            I915_READ(VLV_IMR));
820                 for_each_pipe(dev_priv, pipe)
821                         seq_printf(m, "Pipe %c stat:\t%08x\n",
822                                    pipe_name(pipe),
823                                    I915_READ(PIPESTAT(pipe)));
824
825                 seq_printf(m, "Master IER:\t%08x\n",
826                            I915_READ(VLV_MASTER_IER));
827
828                 seq_printf(m, "Render IER:\t%08x\n",
829                            I915_READ(GTIER));
830                 seq_printf(m, "Render IIR:\t%08x\n",
831                            I915_READ(GTIIR));
832                 seq_printf(m, "Render IMR:\t%08x\n",
833                            I915_READ(GTIMR));
834
835                 seq_printf(m, "PM IER:\t\t%08x\n",
836                            I915_READ(GEN6_PMIER));
837                 seq_printf(m, "PM IIR:\t\t%08x\n",
838                            I915_READ(GEN6_PMIIR));
839                 seq_printf(m, "PM IMR:\t\t%08x\n",
840                            I915_READ(GEN6_PMIMR));
841
842                 seq_printf(m, "Port hotplug:\t%08x\n",
843                            I915_READ(PORT_HOTPLUG_EN));
844                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
845                            I915_READ(VLV_DPFLIPSTAT));
846                 seq_printf(m, "DPINVGTT:\t%08x\n",
847                            I915_READ(DPINVGTT));
848
849         } else if (!HAS_PCH_SPLIT(dev)) {
850                 seq_printf(m, "Interrupt enable:    %08x\n",
851                            I915_READ(IER));
852                 seq_printf(m, "Interrupt identity:  %08x\n",
853                            I915_READ(IIR));
854                 seq_printf(m, "Interrupt mask:      %08x\n",
855                            I915_READ(IMR));
856                 for_each_pipe(dev_priv, pipe)
857                         seq_printf(m, "Pipe %c stat:         %08x\n",
858                                    pipe_name(pipe),
859                                    I915_READ(PIPESTAT(pipe)));
860         } else {
861                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
862                            I915_READ(DEIER));
863                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
864                            I915_READ(DEIIR));
865                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
866                            I915_READ(DEIMR));
867                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
868                            I915_READ(SDEIER));
869                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
870                            I915_READ(SDEIIR));
871                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
872                            I915_READ(SDEIMR));
873                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
874                            I915_READ(GTIER));
875                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
876                            I915_READ(GTIIR));
877                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
878                            I915_READ(GTIMR));
879         }
880         for_each_ring(ring, dev_priv, i) {
881                 if (INTEL_INFO(dev)->gen >= 6) {
882                         seq_printf(m,
883                                    "Graphics Interrupt mask (%s):       %08x\n",
884                                    ring->name, I915_READ_IMR(ring));
885                 }
886                 i915_ring_seqno_info(m, ring);
887         }
888         intel_runtime_pm_put(dev_priv);
889         mutex_unlock(&dev->struct_mutex);
890
891         return 0;
892 }
893
894 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
895 {
896         struct drm_info_node *node = m->private;
897         struct drm_device *dev = node->minor->dev;
898         struct drm_i915_private *dev_priv = dev->dev_private;
899         int i, ret;
900
901         ret = mutex_lock_interruptible(&dev->struct_mutex);
902         if (ret)
903                 return ret;
904
905         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
906         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
907         for (i = 0; i < dev_priv->num_fence_regs; i++) {
908                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
909
910                 seq_printf(m, "Fence %d, pin count = %d, object = ",
911                            i, dev_priv->fence_regs[i].pin_count);
912                 if (obj == NULL)
913                         seq_puts(m, "unused");
914                 else
915                         describe_obj(m, obj);
916                 seq_putc(m, '\n');
917         }
918
919         mutex_unlock(&dev->struct_mutex);
920         return 0;
921 }
922
923 static int i915_hws_info(struct seq_file *m, void *data)
924 {
925         struct drm_info_node *node = m->private;
926         struct drm_device *dev = node->minor->dev;
927         struct drm_i915_private *dev_priv = dev->dev_private;
928         struct intel_engine_cs *ring;
929         const u32 *hws;
930         int i;
931
932         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
933         hws = ring->status_page.page_addr;
934         if (hws == NULL)
935                 return 0;
936
937         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
938                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
939                            i * 4,
940                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
941         }
942         return 0;
943 }
944
945 static ssize_t
946 i915_error_state_write(struct file *filp,
947                        const char __user *ubuf,
948                        size_t cnt,
949                        loff_t *ppos)
950 {
951         struct i915_error_state_file_priv *error_priv = filp->private_data;
952         struct drm_device *dev = error_priv->dev;
953         int ret;
954
955         DRM_DEBUG_DRIVER("Resetting error state\n");
956
957         ret = mutex_lock_interruptible(&dev->struct_mutex);
958         if (ret)
959                 return ret;
960
961         i915_destroy_error_state(dev);
962         mutex_unlock(&dev->struct_mutex);
963
964         return cnt;
965 }
966
967 static int i915_error_state_open(struct inode *inode, struct file *file)
968 {
969         struct drm_device *dev = inode->i_private;
970         struct i915_error_state_file_priv *error_priv;
971
972         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
973         if (!error_priv)
974                 return -ENOMEM;
975
976         error_priv->dev = dev;
977
978         i915_error_state_get(dev, error_priv);
979
980         file->private_data = error_priv;
981
982         return 0;
983 }
984
985 static int i915_error_state_release(struct inode *inode, struct file *file)
986 {
987         struct i915_error_state_file_priv *error_priv = file->private_data;
988
989         i915_error_state_put(error_priv);
990         kfree(error_priv);
991
992         return 0;
993 }
994
995 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
996                                      size_t count, loff_t *pos)
997 {
998         struct i915_error_state_file_priv *error_priv = file->private_data;
999         struct drm_i915_error_state_buf error_str;
1000         loff_t tmp_pos = 0;
1001         ssize_t ret_count = 0;
1002         int ret;
1003
1004         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1005         if (ret)
1006                 return ret;
1007
1008         ret = i915_error_state_to_str(&error_str, error_priv);
1009         if (ret)
1010                 goto out;
1011
1012         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1013                                             error_str.buf,
1014                                             error_str.bytes);
1015
1016         if (ret_count < 0)
1017                 ret = ret_count;
1018         else
1019                 *pos = error_str.start + ret_count;
1020 out:
1021         i915_error_state_buf_release(&error_str);
1022         return ret ?: ret_count;
1023 }
1024
1025 static const struct file_operations i915_error_state_fops = {
1026         .owner = THIS_MODULE,
1027         .open = i915_error_state_open,
1028         .read = i915_error_state_read,
1029         .write = i915_error_state_write,
1030         .llseek = default_llseek,
1031         .release = i915_error_state_release,
1032 };
1033
1034 static int
1035 i915_next_seqno_get(void *data, u64 *val)
1036 {
1037         struct drm_device *dev = data;
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039         int ret;
1040
1041         ret = mutex_lock_interruptible(&dev->struct_mutex);
1042         if (ret)
1043                 return ret;
1044
1045         *val = dev_priv->next_seqno;
1046         mutex_unlock(&dev->struct_mutex);
1047
1048         return 0;
1049 }
1050
1051 static int
1052 i915_next_seqno_set(void *data, u64 val)
1053 {
1054         struct drm_device *dev = data;
1055         int ret;
1056
1057         ret = mutex_lock_interruptible(&dev->struct_mutex);
1058         if (ret)
1059                 return ret;
1060
1061         ret = i915_gem_set_seqno(dev, val);
1062         mutex_unlock(&dev->struct_mutex);
1063
1064         return ret;
1065 }
1066
1067 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1068                         i915_next_seqno_get, i915_next_seqno_set,
1069                         "0x%llx\n");
1070
1071 static int i915_frequency_info(struct seq_file *m, void *unused)
1072 {
1073         struct drm_info_node *node = m->private;
1074         struct drm_device *dev = node->minor->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076         int ret = 0;
1077
1078         intel_runtime_pm_get(dev_priv);
1079
1080         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1081
1082         if (IS_GEN5(dev)) {
1083                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1084                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1085
1086                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1087                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1088                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1089                            MEMSTAT_VID_SHIFT);
1090                 seq_printf(m, "Current P-state: %d\n",
1091                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1092         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1093                    IS_BROADWELL(dev)) {
1094                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1095                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1096                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1097                 u32 rpmodectl, rpinclimit, rpdeclimit;
1098                 u32 rpstat, cagf, reqf;
1099                 u32 rpupei, rpcurup, rpprevup;
1100                 u32 rpdownei, rpcurdown, rpprevdown;
1101                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1102                 int max_freq;
1103
1104                 /* RPSTAT1 is in the GT power well */
1105                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1106                 if (ret)
1107                         goto out;
1108
1109                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1110
1111                 reqf = I915_READ(GEN6_RPNSWREQ);
1112                 reqf &= ~GEN6_TURBO_DISABLE;
1113                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1114                         reqf >>= 24;
1115                 else
1116                         reqf >>= 25;
1117                 reqf = intel_gpu_freq(dev_priv, reqf);
1118
1119                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1120                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1121                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1122
1123                 rpstat = I915_READ(GEN6_RPSTAT1);
1124                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1125                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1126                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1127                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1128                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1129                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1130                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1131                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1132                 else
1133                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1134                 cagf = intel_gpu_freq(dev_priv, cagf);
1135
1136                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1137                 mutex_unlock(&dev->struct_mutex);
1138
1139                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1140                         pm_ier = I915_READ(GEN6_PMIER);
1141                         pm_imr = I915_READ(GEN6_PMIMR);
1142                         pm_isr = I915_READ(GEN6_PMISR);
1143                         pm_iir = I915_READ(GEN6_PMIIR);
1144                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1145                 } else {
1146                         pm_ier = I915_READ(GEN8_GT_IER(2));
1147                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1148                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1149                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1150                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1151                 }
1152                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1153                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1154                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1155                 seq_printf(m, "Render p-state ratio: %d\n",
1156                            (gt_perf_status & 0xff00) >> 8);
1157                 seq_printf(m, "Render p-state VID: %d\n",
1158                            gt_perf_status & 0xff);
1159                 seq_printf(m, "Render p-state limit: %d\n",
1160                            rp_state_limits & 0xff);
1161                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1162                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1163                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1164                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1165                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1166                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1167                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1168                            GEN6_CURICONT_MASK);
1169                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1170                            GEN6_CURBSYTAVG_MASK);
1171                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1172                            GEN6_CURBSYTAVG_MASK);
1173                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1174                            GEN6_CURIAVG_MASK);
1175                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1176                            GEN6_CURBSYTAVG_MASK);
1177                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1178                            GEN6_CURBSYTAVG_MASK);
1179
1180                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1181                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1182                            intel_gpu_freq(dev_priv, max_freq));
1183
1184                 max_freq = (rp_state_cap & 0xff00) >> 8;
1185                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1186                            intel_gpu_freq(dev_priv, max_freq));
1187
1188                 max_freq = rp_state_cap & 0xff;
1189                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1190                            intel_gpu_freq(dev_priv, max_freq));
1191
1192                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1193                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1194         } else if (IS_VALLEYVIEW(dev)) {
1195                 u32 freq_sts;
1196
1197                 mutex_lock(&dev_priv->rps.hw_lock);
1198                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1199                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1200                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1201
1202                 seq_printf(m, "max GPU freq: %d MHz\n",
1203                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1204
1205                 seq_printf(m, "min GPU freq: %d MHz\n",
1206                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1207
1208                 seq_printf(m,
1209                            "efficient (RPe) frequency: %d MHz\n",
1210                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1211
1212                 seq_printf(m, "current GPU freq: %d MHz\n",
1213                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1214                 mutex_unlock(&dev_priv->rps.hw_lock);
1215         } else {
1216                 seq_puts(m, "no P-state info available\n");
1217         }
1218
1219 out:
1220         intel_runtime_pm_put(dev_priv);
1221         return ret;
1222 }
1223
1224 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1225 {
1226         struct drm_info_node *node = m->private;
1227         struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
1228         struct intel_engine_cs *ring;
1229         int i;
1230
1231         if (!i915.enable_hangcheck) {
1232                 seq_printf(m, "Hangcheck disabled\n");
1233                 return 0;
1234         }
1235
1236         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1237                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1238                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1239                                             jiffies));
1240         } else
1241                 seq_printf(m, "Hangcheck inactive\n");
1242
1243         for_each_ring(ring, dev_priv, i) {
1244                 seq_printf(m, "%s:\n", ring->name);
1245                 seq_printf(m, "\tseqno = %x [current %x]\n",
1246                            ring->hangcheck.seqno, ring->get_seqno(ring, false));
1247                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1248                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1249                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1250                            (long long)ring->hangcheck.acthd,
1251                            (long long)intel_ring_get_active_head(ring));
1252                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1253                            (long long)ring->hangcheck.max_acthd);
1254         }
1255
1256         return 0;
1257 }
1258
1259 static int ironlake_drpc_info(struct seq_file *m)
1260 {
1261         struct drm_info_node *node = m->private;
1262         struct drm_device *dev = node->minor->dev;
1263         struct drm_i915_private *dev_priv = dev->dev_private;
1264         u32 rgvmodectl, rstdbyctl;
1265         u16 crstandvid;
1266         int ret;
1267
1268         ret = mutex_lock_interruptible(&dev->struct_mutex);
1269         if (ret)
1270                 return ret;
1271         intel_runtime_pm_get(dev_priv);
1272
1273         rgvmodectl = I915_READ(MEMMODECTL);
1274         rstdbyctl = I915_READ(RSTDBYCTL);
1275         crstandvid = I915_READ16(CRSTANDVID);
1276
1277         intel_runtime_pm_put(dev_priv);
1278         mutex_unlock(&dev->struct_mutex);
1279
1280         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1281                    "yes" : "no");
1282         seq_printf(m, "Boost freq: %d\n",
1283                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1284                    MEMMODE_BOOST_FREQ_SHIFT);
1285         seq_printf(m, "HW control enabled: %s\n",
1286                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1287         seq_printf(m, "SW control enabled: %s\n",
1288                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1289         seq_printf(m, "Gated voltage change: %s\n",
1290                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1291         seq_printf(m, "Starting frequency: P%d\n",
1292                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1293         seq_printf(m, "Max P-state: P%d\n",
1294                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1295         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1296         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1297         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1298         seq_printf(m, "Render standby enabled: %s\n",
1299                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1300         seq_puts(m, "Current RS state: ");
1301         switch (rstdbyctl & RSX_STATUS_MASK) {
1302         case RSX_STATUS_ON:
1303                 seq_puts(m, "on\n");
1304                 break;
1305         case RSX_STATUS_RC1:
1306                 seq_puts(m, "RC1\n");
1307                 break;
1308         case RSX_STATUS_RC1E:
1309                 seq_puts(m, "RC1E\n");
1310                 break;
1311         case RSX_STATUS_RS1:
1312                 seq_puts(m, "RS1\n");
1313                 break;
1314         case RSX_STATUS_RS2:
1315                 seq_puts(m, "RS2 (RC6)\n");
1316                 break;
1317         case RSX_STATUS_RS3:
1318                 seq_puts(m, "RC3 (RC6+)\n");
1319                 break;
1320         default:
1321                 seq_puts(m, "unknown\n");
1322                 break;
1323         }
1324
1325         return 0;
1326 }
1327
1328 static int i915_forcewake_domains(struct seq_file *m, void *data)
1329 {
1330         struct drm_info_node *node = m->private;
1331         struct drm_device *dev = node->minor->dev;
1332         struct drm_i915_private *dev_priv = dev->dev_private;
1333         struct intel_uncore_forcewake_domain *fw_domain;
1334         int i;
1335
1336         spin_lock_irq(&dev_priv->uncore.lock);
1337         for_each_fw_domain(fw_domain, dev_priv, i) {
1338                 seq_printf(m, "%s.wake_count = %u\n",
1339                            intel_uncore_forcewake_domain_to_str(i),
1340                            fw_domain->wake_count);
1341         }
1342         spin_unlock_irq(&dev_priv->uncore.lock);
1343
1344         return 0;
1345 }
1346
1347 static int vlv_drpc_info(struct seq_file *m)
1348 {
1349         struct drm_info_node *node = m->private;
1350         struct drm_device *dev = node->minor->dev;
1351         struct drm_i915_private *dev_priv = dev->dev_private;
1352         u32 rpmodectl1, rcctl1, pw_status;
1353
1354         intel_runtime_pm_get(dev_priv);
1355
1356         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1357         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1358         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1359
1360         intel_runtime_pm_put(dev_priv);
1361
1362         seq_printf(m, "Video Turbo Mode: %s\n",
1363                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1364         seq_printf(m, "Turbo enabled: %s\n",
1365                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1366         seq_printf(m, "HW control enabled: %s\n",
1367                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1368         seq_printf(m, "SW control enabled: %s\n",
1369                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1370                           GEN6_RP_MEDIA_SW_MODE));
1371         seq_printf(m, "RC6 Enabled: %s\n",
1372                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1373                                         GEN6_RC_CTL_EI_MODE(1))));
1374         seq_printf(m, "Render Power Well: %s\n",
1375                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1376         seq_printf(m, "Media Power Well: %s\n",
1377                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1378
1379         seq_printf(m, "Render RC6 residency since boot: %u\n",
1380                    I915_READ(VLV_GT_RENDER_RC6));
1381         seq_printf(m, "Media RC6 residency since boot: %u\n",
1382                    I915_READ(VLV_GT_MEDIA_RC6));
1383
1384         return i915_forcewake_domains(m, NULL);
1385 }
1386
1387 static int gen6_drpc_info(struct seq_file *m)
1388 {
1389         struct drm_info_node *node = m->private;
1390         struct drm_device *dev = node->minor->dev;
1391         struct drm_i915_private *dev_priv = dev->dev_private;
1392         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1393         unsigned forcewake_count;
1394         int count = 0, ret;
1395
1396         ret = mutex_lock_interruptible(&dev->struct_mutex);
1397         if (ret)
1398                 return ret;
1399         intel_runtime_pm_get(dev_priv);
1400
1401         spin_lock_irq(&dev_priv->uncore.lock);
1402         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1403         spin_unlock_irq(&dev_priv->uncore.lock);
1404
1405         if (forcewake_count) {
1406                 seq_puts(m, "RC information inaccurate because somebody "
1407                             "holds a forcewake reference \n");
1408         } else {
1409                 /* NB: we cannot use forcewake, else we read the wrong values */
1410                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1411                         udelay(10);
1412                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1413         }
1414
1415         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1416         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1417
1418         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1419         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1420         mutex_unlock(&dev->struct_mutex);
1421         mutex_lock(&dev_priv->rps.hw_lock);
1422         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1423         mutex_unlock(&dev_priv->rps.hw_lock);
1424
1425         intel_runtime_pm_put(dev_priv);
1426
1427         seq_printf(m, "Video Turbo Mode: %s\n",
1428                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1429         seq_printf(m, "HW control enabled: %s\n",
1430                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1431         seq_printf(m, "SW control enabled: %s\n",
1432                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1433                           GEN6_RP_MEDIA_SW_MODE));
1434         seq_printf(m, "RC1e Enabled: %s\n",
1435                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1436         seq_printf(m, "RC6 Enabled: %s\n",
1437                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1438         seq_printf(m, "Deep RC6 Enabled: %s\n",
1439                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1440         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1441                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1442         seq_puts(m, "Current RC state: ");
1443         switch (gt_core_status & GEN6_RCn_MASK) {
1444         case GEN6_RC0:
1445                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1446                         seq_puts(m, "Core Power Down\n");
1447                 else
1448                         seq_puts(m, "on\n");
1449                 break;
1450         case GEN6_RC3:
1451                 seq_puts(m, "RC3\n");
1452                 break;
1453         case GEN6_RC6:
1454                 seq_puts(m, "RC6\n");
1455                 break;
1456         case GEN6_RC7:
1457                 seq_puts(m, "RC7\n");
1458                 break;
1459         default:
1460                 seq_puts(m, "Unknown\n");
1461                 break;
1462         }
1463
1464         seq_printf(m, "Core Power Down: %s\n",
1465                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1466
1467         /* Not exactly sure what this is */
1468         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1469                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1470         seq_printf(m, "RC6 residency since boot: %u\n",
1471                    I915_READ(GEN6_GT_GFX_RC6));
1472         seq_printf(m, "RC6+ residency since boot: %u\n",
1473                    I915_READ(GEN6_GT_GFX_RC6p));
1474         seq_printf(m, "RC6++ residency since boot: %u\n",
1475                    I915_READ(GEN6_GT_GFX_RC6pp));
1476
1477         seq_printf(m, "RC6   voltage: %dmV\n",
1478                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1479         seq_printf(m, "RC6+  voltage: %dmV\n",
1480                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1481         seq_printf(m, "RC6++ voltage: %dmV\n",
1482                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1483         return 0;
1484 }
1485
1486 static int i915_drpc_info(struct seq_file *m, void *unused)
1487 {
1488         struct drm_info_node *node = m->private;
1489         struct drm_device *dev = node->minor->dev;
1490
1491         if (IS_VALLEYVIEW(dev))
1492                 return vlv_drpc_info(m);
1493         else if (INTEL_INFO(dev)->gen >= 6)
1494                 return gen6_drpc_info(m);
1495         else
1496                 return ironlake_drpc_info(m);
1497 }
1498
1499 static int i915_fbc_status(struct seq_file *m, void *unused)
1500 {
1501         struct drm_info_node *node = m->private;
1502         struct drm_device *dev = node->minor->dev;
1503         struct drm_i915_private *dev_priv = dev->dev_private;
1504
1505         if (!HAS_FBC(dev)) {
1506                 seq_puts(m, "FBC unsupported on this chipset\n");
1507                 return 0;
1508         }
1509
1510         intel_runtime_pm_get(dev_priv);
1511
1512         if (intel_fbc_enabled(dev)) {
1513                 seq_puts(m, "FBC enabled\n");
1514         } else {
1515                 seq_puts(m, "FBC disabled: ");
1516                 switch (dev_priv->fbc.no_fbc_reason) {
1517                 case FBC_OK:
1518                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1519                         break;
1520                 case FBC_UNSUPPORTED:
1521                         seq_puts(m, "unsupported by this chipset");
1522                         break;
1523                 case FBC_NO_OUTPUT:
1524                         seq_puts(m, "no outputs");
1525                         break;
1526                 case FBC_STOLEN_TOO_SMALL:
1527                         seq_puts(m, "not enough stolen memory");
1528                         break;
1529                 case FBC_UNSUPPORTED_MODE:
1530                         seq_puts(m, "mode not supported");
1531                         break;
1532                 case FBC_MODE_TOO_LARGE:
1533                         seq_puts(m, "mode too large");
1534                         break;
1535                 case FBC_BAD_PLANE:
1536                         seq_puts(m, "FBC unsupported on plane");
1537                         break;
1538                 case FBC_NOT_TILED:
1539                         seq_puts(m, "scanout buffer not tiled");
1540                         break;
1541                 case FBC_MULTIPLE_PIPES:
1542                         seq_puts(m, "multiple pipes are enabled");
1543                         break;
1544                 case FBC_MODULE_PARAM:
1545                         seq_puts(m, "disabled per module param (default off)");
1546                         break;
1547                 case FBC_CHIP_DEFAULT:
1548                         seq_puts(m, "disabled per chip default");
1549                         break;
1550                 default:
1551                         seq_puts(m, "unknown reason");
1552                 }
1553                 seq_putc(m, '\n');
1554         }
1555
1556         intel_runtime_pm_put(dev_priv);
1557
1558         return 0;
1559 }
1560
1561 static int i915_fbc_fc_get(void *data, u64 *val)
1562 {
1563         struct drm_device *dev = data;
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565
1566         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1567                 return -ENODEV;
1568
1569         drm_modeset_lock_all(dev);
1570         *val = dev_priv->fbc.false_color;
1571         drm_modeset_unlock_all(dev);
1572
1573         return 0;
1574 }
1575
1576 static int i915_fbc_fc_set(void *data, u64 val)
1577 {
1578         struct drm_device *dev = data;
1579         struct drm_i915_private *dev_priv = dev->dev_private;
1580         u32 reg;
1581
1582         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1583                 return -ENODEV;
1584
1585         drm_modeset_lock_all(dev);
1586
1587         reg = I915_READ(ILK_DPFC_CONTROL);
1588         dev_priv->fbc.false_color = val;
1589
1590         I915_WRITE(ILK_DPFC_CONTROL, val ?
1591                    (reg | FBC_CTL_FALSE_COLOR) :
1592                    (reg & ~FBC_CTL_FALSE_COLOR));
1593
1594         drm_modeset_unlock_all(dev);
1595         return 0;
1596 }
1597
1598 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1599                         i915_fbc_fc_get, i915_fbc_fc_set,
1600                         "%llu\n");
1601
1602 static int i915_ips_status(struct seq_file *m, void *unused)
1603 {
1604         struct drm_info_node *node = m->private;
1605         struct drm_device *dev = node->minor->dev;
1606         struct drm_i915_private *dev_priv = dev->dev_private;
1607
1608         if (!HAS_IPS(dev)) {
1609                 seq_puts(m, "not supported\n");
1610                 return 0;
1611         }
1612
1613         intel_runtime_pm_get(dev_priv);
1614
1615         seq_printf(m, "Enabled by kernel parameter: %s\n",
1616                    yesno(i915.enable_ips));
1617
1618         if (INTEL_INFO(dev)->gen >= 8) {
1619                 seq_puts(m, "Currently: unknown\n");
1620         } else {
1621                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1622                         seq_puts(m, "Currently: enabled\n");
1623                 else
1624                         seq_puts(m, "Currently: disabled\n");
1625         }
1626
1627         intel_runtime_pm_put(dev_priv);
1628
1629         return 0;
1630 }
1631
1632 static int i915_sr_status(struct seq_file *m, void *unused)
1633 {
1634         struct drm_info_node *node = m->private;
1635         struct drm_device *dev = node->minor->dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         bool sr_enabled = false;
1638
1639         intel_runtime_pm_get(dev_priv);
1640
1641         if (HAS_PCH_SPLIT(dev))
1642                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1643         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1644                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1645         else if (IS_I915GM(dev))
1646                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1647         else if (IS_PINEVIEW(dev))
1648                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1649
1650         intel_runtime_pm_put(dev_priv);
1651
1652         seq_printf(m, "self-refresh: %s\n",
1653                    sr_enabled ? "enabled" : "disabled");
1654
1655         return 0;
1656 }
1657
1658 static int i915_emon_status(struct seq_file *m, void *unused)
1659 {
1660         struct drm_info_node *node = m->private;
1661         struct drm_device *dev = node->minor->dev;
1662         struct drm_i915_private *dev_priv = dev->dev_private;
1663         unsigned long temp, chipset, gfx;
1664         int ret;
1665
1666         if (!IS_GEN5(dev))
1667                 return -ENODEV;
1668
1669         ret = mutex_lock_interruptible(&dev->struct_mutex);
1670         if (ret)
1671                 return ret;
1672
1673         temp = i915_mch_val(dev_priv);
1674         chipset = i915_chipset_val(dev_priv);
1675         gfx = i915_gfx_val(dev_priv);
1676         mutex_unlock(&dev->struct_mutex);
1677
1678         seq_printf(m, "GMCH temp: %ld\n", temp);
1679         seq_printf(m, "Chipset power: %ld\n", chipset);
1680         seq_printf(m, "GFX power: %ld\n", gfx);
1681         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1682
1683         return 0;
1684 }
1685
1686 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1687 {
1688         struct drm_info_node *node = m->private;
1689         struct drm_device *dev = node->minor->dev;
1690         struct drm_i915_private *dev_priv = dev->dev_private;
1691         int ret = 0;
1692         int gpu_freq, ia_freq;
1693
1694         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1695                 seq_puts(m, "unsupported on this chipset\n");
1696                 return 0;
1697         }
1698
1699         intel_runtime_pm_get(dev_priv);
1700
1701         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1702
1703         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1704         if (ret)
1705                 goto out;
1706
1707         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1708
1709         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1710              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1711              gpu_freq++) {
1712                 ia_freq = gpu_freq;
1713                 sandybridge_pcode_read(dev_priv,
1714                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1715                                        &ia_freq);
1716                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1717                            intel_gpu_freq(dev_priv, gpu_freq),
1718                            ((ia_freq >> 0) & 0xff) * 100,
1719                            ((ia_freq >> 8) & 0xff) * 100);
1720         }
1721
1722         mutex_unlock(&dev_priv->rps.hw_lock);
1723
1724 out:
1725         intel_runtime_pm_put(dev_priv);
1726         return ret;
1727 }
1728
1729 static int i915_opregion(struct seq_file *m, void *unused)
1730 {
1731         struct drm_info_node *node = m->private;
1732         struct drm_device *dev = node->minor->dev;
1733         struct drm_i915_private *dev_priv = dev->dev_private;
1734         struct intel_opregion *opregion = &dev_priv->opregion;
1735         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1736         int ret;
1737
1738         if (data == NULL)
1739                 return -ENOMEM;
1740
1741         ret = mutex_lock_interruptible(&dev->struct_mutex);
1742         if (ret)
1743                 goto out;
1744
1745         if (opregion->header) {
1746                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1747                 seq_write(m, data, OPREGION_SIZE);
1748         }
1749
1750         mutex_unlock(&dev->struct_mutex);
1751
1752 out:
1753         kfree(data);
1754         return 0;
1755 }
1756
1757 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1758 {
1759         struct drm_info_node *node = m->private;
1760         struct drm_device *dev = node->minor->dev;
1761         struct intel_fbdev *ifbdev = NULL;
1762         struct intel_framebuffer *fb;
1763
1764 #ifdef CONFIG_DRM_I915_FBDEV
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766
1767         ifbdev = dev_priv->fbdev;
1768         fb = to_intel_framebuffer(ifbdev->helper.fb);
1769
1770         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1771                    fb->base.width,
1772                    fb->base.height,
1773                    fb->base.depth,
1774                    fb->base.bits_per_pixel,
1775                    fb->base.modifier[0],
1776                    atomic_read(&fb->base.refcount.refcount));
1777         describe_obj(m, fb->obj);
1778         seq_putc(m, '\n');
1779 #endif
1780
1781         mutex_lock(&dev->mode_config.fb_lock);
1782         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1783                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1784                         continue;
1785
1786                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1787                            fb->base.width,
1788                            fb->base.height,
1789                            fb->base.depth,
1790                            fb->base.bits_per_pixel,
1791                            fb->base.modifier[0],
1792                            atomic_read(&fb->base.refcount.refcount));
1793                 describe_obj(m, fb->obj);
1794                 seq_putc(m, '\n');
1795         }
1796         mutex_unlock(&dev->mode_config.fb_lock);
1797
1798         return 0;
1799 }
1800
1801 static void describe_ctx_ringbuf(struct seq_file *m,
1802                                  struct intel_ringbuffer *ringbuf)
1803 {
1804         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1805                    ringbuf->space, ringbuf->head, ringbuf->tail,
1806                    ringbuf->last_retired_head);
1807 }
1808
1809 static int i915_context_status(struct seq_file *m, void *unused)
1810 {
1811         struct drm_info_node *node = m->private;
1812         struct drm_device *dev = node->minor->dev;
1813         struct drm_i915_private *dev_priv = dev->dev_private;
1814         struct intel_engine_cs *ring;
1815         struct intel_context *ctx;
1816         int ret, i;
1817
1818         ret = mutex_lock_interruptible(&dev->struct_mutex);
1819         if (ret)
1820                 return ret;
1821
1822         if (dev_priv->ips.pwrctx) {
1823                 seq_puts(m, "power context ");
1824                 describe_obj(m, dev_priv->ips.pwrctx);
1825                 seq_putc(m, '\n');
1826         }
1827
1828         if (dev_priv->ips.renderctx) {
1829                 seq_puts(m, "render context ");
1830                 describe_obj(m, dev_priv->ips.renderctx);
1831                 seq_putc(m, '\n');
1832         }
1833
1834         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1835                 if (!i915.enable_execlists &&
1836                     ctx->legacy_hw_ctx.rcs_state == NULL)
1837                         continue;
1838
1839                 seq_puts(m, "HW context ");
1840                 describe_ctx(m, ctx);
1841                 for_each_ring(ring, dev_priv, i) {
1842                         if (ring->default_context == ctx)
1843                                 seq_printf(m, "(default context %s) ",
1844                                            ring->name);
1845                 }
1846
1847                 if (i915.enable_execlists) {
1848                         seq_putc(m, '\n');
1849                         for_each_ring(ring, dev_priv, i) {
1850                                 struct drm_i915_gem_object *ctx_obj =
1851                                         ctx->engine[i].state;
1852                                 struct intel_ringbuffer *ringbuf =
1853                                         ctx->engine[i].ringbuf;
1854
1855                                 seq_printf(m, "%s: ", ring->name);
1856                                 if (ctx_obj)
1857                                         describe_obj(m, ctx_obj);
1858                                 if (ringbuf)
1859                                         describe_ctx_ringbuf(m, ringbuf);
1860                                 seq_putc(m, '\n');
1861                         }
1862                 } else {
1863                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1864                 }
1865
1866                 seq_putc(m, '\n');
1867         }
1868
1869         mutex_unlock(&dev->struct_mutex);
1870
1871         return 0;
1872 }
1873
1874 static void i915_dump_lrc_obj(struct seq_file *m,
1875                               struct intel_engine_cs *ring,
1876                               struct drm_i915_gem_object *ctx_obj)
1877 {
1878         struct page *page;
1879         uint32_t *reg_state;
1880         int j;
1881         unsigned long ggtt_offset = 0;
1882
1883         if (ctx_obj == NULL) {
1884                 seq_printf(m, "Context on %s with no gem object\n",
1885                            ring->name);
1886                 return;
1887         }
1888
1889         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1890                    intel_execlists_ctx_id(ctx_obj));
1891
1892         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1893                 seq_puts(m, "\tNot bound in GGTT\n");
1894         else
1895                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1896
1897         if (i915_gem_object_get_pages(ctx_obj)) {
1898                 seq_puts(m, "\tFailed to get pages for context object\n");
1899                 return;
1900         }
1901
1902         page = i915_gem_object_get_page(ctx_obj, 1);
1903         if (!WARN_ON(page == NULL)) {
1904                 reg_state = kmap_atomic(page);
1905
1906                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1907                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1908                                    ggtt_offset + 4096 + (j * 4),
1909                                    reg_state[j], reg_state[j + 1],
1910                                    reg_state[j + 2], reg_state[j + 3]);
1911                 }
1912                 kunmap_atomic(reg_state);
1913         }
1914
1915         seq_putc(m, '\n');
1916 }
1917
1918 static int i915_dump_lrc(struct seq_file *m, void *unused)
1919 {
1920         struct drm_info_node *node = (struct drm_info_node *) m->private;
1921         struct drm_device *dev = node->minor->dev;
1922         struct drm_i915_private *dev_priv = dev->dev_private;
1923         struct intel_engine_cs *ring;
1924         struct intel_context *ctx;
1925         int ret, i;
1926
1927         if (!i915.enable_execlists) {
1928                 seq_printf(m, "Logical Ring Contexts are disabled\n");
1929                 return 0;
1930         }
1931
1932         ret = mutex_lock_interruptible(&dev->struct_mutex);
1933         if (ret)
1934                 return ret;
1935
1936         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1937                 for_each_ring(ring, dev_priv, i) {
1938                         if (ring->default_context != ctx)
1939                                 i915_dump_lrc_obj(m, ring,
1940                                                   ctx->engine[i].state);
1941                 }
1942         }
1943
1944         mutex_unlock(&dev->struct_mutex);
1945
1946         return 0;
1947 }
1948
1949 static int i915_execlists(struct seq_file *m, void *data)
1950 {
1951         struct drm_info_node *node = (struct drm_info_node *)m->private;
1952         struct drm_device *dev = node->minor->dev;
1953         struct drm_i915_private *dev_priv = dev->dev_private;
1954         struct intel_engine_cs *ring;
1955         u32 status_pointer;
1956         u8 read_pointer;
1957         u8 write_pointer;
1958         u32 status;
1959         u32 ctx_id;
1960         struct list_head *cursor;
1961         int ring_id, i;
1962         int ret;
1963
1964         if (!i915.enable_execlists) {
1965                 seq_puts(m, "Logical Ring Contexts are disabled\n");
1966                 return 0;
1967         }
1968
1969         ret = mutex_lock_interruptible(&dev->struct_mutex);
1970         if (ret)
1971                 return ret;
1972
1973         intel_runtime_pm_get(dev_priv);
1974
1975         for_each_ring(ring, dev_priv, ring_id) {
1976                 struct drm_i915_gem_request *head_req = NULL;
1977                 int count = 0;
1978                 unsigned long flags;
1979
1980                 seq_printf(m, "%s\n", ring->name);
1981
1982                 status = I915_READ(RING_EXECLIST_STATUS(ring));
1983                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1984                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1985                            status, ctx_id);
1986
1987                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1988                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1989
1990                 read_pointer = ring->next_context_status_buffer;
1991                 write_pointer = status_pointer & 0x07;
1992                 if (read_pointer > write_pointer)
1993                         write_pointer += 6;
1994                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1995                            read_pointer, write_pointer);
1996
1997                 for (i = 0; i < 6; i++) {
1998                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1999                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2000
2001                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2002                                    i, status, ctx_id);
2003                 }
2004
2005                 spin_lock_irqsave(&ring->execlist_lock, flags);
2006                 list_for_each(cursor, &ring->execlist_queue)
2007                         count++;
2008                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2009                                 struct drm_i915_gem_request, execlist_link);
2010                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2011
2012                 seq_printf(m, "\t%d requests in queue\n", count);
2013                 if (head_req) {
2014                         struct drm_i915_gem_object *ctx_obj;
2015
2016                         ctx_obj = head_req->ctx->engine[ring_id].state;
2017                         seq_printf(m, "\tHead request id: %u\n",
2018                                    intel_execlists_ctx_id(ctx_obj));
2019                         seq_printf(m, "\tHead request tail: %u\n",
2020                                    head_req->tail);
2021                 }
2022
2023                 seq_putc(m, '\n');
2024         }
2025
2026         intel_runtime_pm_put(dev_priv);
2027         mutex_unlock(&dev->struct_mutex);
2028
2029         return 0;
2030 }
2031
2032 static const char *swizzle_string(unsigned swizzle)
2033 {
2034         switch (swizzle) {
2035         case I915_BIT_6_SWIZZLE_NONE:
2036                 return "none";
2037         case I915_BIT_6_SWIZZLE_9:
2038                 return "bit9";
2039         case I915_BIT_6_SWIZZLE_9_10:
2040                 return "bit9/bit10";
2041         case I915_BIT_6_SWIZZLE_9_11:
2042                 return "bit9/bit11";
2043         case I915_BIT_6_SWIZZLE_9_10_11:
2044                 return "bit9/bit10/bit11";
2045         case I915_BIT_6_SWIZZLE_9_17:
2046                 return "bit9/bit17";
2047         case I915_BIT_6_SWIZZLE_9_10_17:
2048                 return "bit9/bit10/bit17";
2049         case I915_BIT_6_SWIZZLE_UNKNOWN:
2050                 return "unknown";
2051         }
2052
2053         return "bug";
2054 }
2055
2056 static int i915_swizzle_info(struct seq_file *m, void *data)
2057 {
2058         struct drm_info_node *node = m->private;
2059         struct drm_device *dev = node->minor->dev;
2060         struct drm_i915_private *dev_priv = dev->dev_private;
2061         int ret;
2062
2063         ret = mutex_lock_interruptible(&dev->struct_mutex);
2064         if (ret)
2065                 return ret;
2066         intel_runtime_pm_get(dev_priv);
2067
2068         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2069                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2070         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2071                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2072
2073         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2074                 seq_printf(m, "DDC = 0x%08x\n",
2075                            I915_READ(DCC));
2076                 seq_printf(m, "DDC2 = 0x%08x\n",
2077                            I915_READ(DCC2));
2078                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2079                            I915_READ16(C0DRB3));
2080                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2081                            I915_READ16(C1DRB3));
2082         } else if (INTEL_INFO(dev)->gen >= 6) {
2083                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2084                            I915_READ(MAD_DIMM_C0));
2085                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2086                            I915_READ(MAD_DIMM_C1));
2087                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2088                            I915_READ(MAD_DIMM_C2));
2089                 seq_printf(m, "TILECTL = 0x%08x\n",
2090                            I915_READ(TILECTL));
2091                 if (INTEL_INFO(dev)->gen >= 8)
2092                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2093                                    I915_READ(GAMTARBMODE));
2094                 else
2095                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2096                                    I915_READ(ARB_MODE));
2097                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2098                            I915_READ(DISP_ARB_CTL));
2099         }
2100
2101         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2102                 seq_puts(m, "L-shaped memory detected\n");
2103
2104         intel_runtime_pm_put(dev_priv);
2105         mutex_unlock(&dev->struct_mutex);
2106
2107         return 0;
2108 }
2109
2110 static int per_file_ctx(int id, void *ptr, void *data)
2111 {
2112         struct intel_context *ctx = ptr;
2113         struct seq_file *m = data;
2114         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2115
2116         if (!ppgtt) {
2117                 seq_printf(m, "  no ppgtt for context %d\n",
2118                            ctx->user_handle);
2119                 return 0;
2120         }
2121
2122         if (i915_gem_context_is_default(ctx))
2123                 seq_puts(m, "  default context:\n");
2124         else
2125                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2126         ppgtt->debug_dump(ppgtt, m);
2127
2128         return 0;
2129 }
2130
2131 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2132 {
2133         struct drm_i915_private *dev_priv = dev->dev_private;
2134         struct intel_engine_cs *ring;
2135         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2136         int unused, i;
2137
2138         if (!ppgtt)
2139                 return;
2140
2141         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2142         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2143         for_each_ring(ring, dev_priv, unused) {
2144                 seq_printf(m, "%s\n", ring->name);
2145                 for (i = 0; i < 4; i++) {
2146                         u32 offset = 0x270 + i * 8;
2147                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2148                         pdp <<= 32;
2149                         pdp |= I915_READ(ring->mmio_base + offset);
2150                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2151                 }
2152         }
2153 }
2154
2155 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2156 {
2157         struct drm_i915_private *dev_priv = dev->dev_private;
2158         struct intel_engine_cs *ring;
2159         struct drm_file *file;
2160         int i;
2161
2162         if (INTEL_INFO(dev)->gen == 6)
2163                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2164
2165         for_each_ring(ring, dev_priv, i) {
2166                 seq_printf(m, "%s\n", ring->name);
2167                 if (INTEL_INFO(dev)->gen == 7)
2168                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2169                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2170                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2171                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2172         }
2173         if (dev_priv->mm.aliasing_ppgtt) {
2174                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2175
2176                 seq_puts(m, "aliasing PPGTT:\n");
2177                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2178
2179                 ppgtt->debug_dump(ppgtt, m);
2180         }
2181
2182         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2183                 struct drm_i915_file_private *file_priv = file->driver_priv;
2184
2185                 seq_printf(m, "proc: %s\n",
2186                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2187                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2188         }
2189         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2190 }
2191
2192 static int i915_ppgtt_info(struct seq_file *m, void *data)
2193 {
2194         struct drm_info_node *node = m->private;
2195         struct drm_device *dev = node->minor->dev;
2196         struct drm_i915_private *dev_priv = dev->dev_private;
2197
2198         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2199         if (ret)
2200                 return ret;
2201         intel_runtime_pm_get(dev_priv);
2202
2203         if (INTEL_INFO(dev)->gen >= 8)
2204                 gen8_ppgtt_info(m, dev);
2205         else if (INTEL_INFO(dev)->gen >= 6)
2206                 gen6_ppgtt_info(m, dev);
2207
2208         intel_runtime_pm_put(dev_priv);
2209         mutex_unlock(&dev->struct_mutex);
2210
2211         return 0;
2212 }
2213
2214 static int i915_llc(struct seq_file *m, void *data)
2215 {
2216         struct drm_info_node *node = m->private;
2217         struct drm_device *dev = node->minor->dev;
2218         struct drm_i915_private *dev_priv = dev->dev_private;
2219
2220         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2221         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2222         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2223
2224         return 0;
2225 }
2226
2227 static int i915_edp_psr_status(struct seq_file *m, void *data)
2228 {
2229         struct drm_info_node *node = m->private;
2230         struct drm_device *dev = node->minor->dev;
2231         struct drm_i915_private *dev_priv = dev->dev_private;
2232         u32 psrperf = 0;
2233         u32 stat[3];
2234         enum pipe pipe;
2235         bool enabled = false;
2236
2237         intel_runtime_pm_get(dev_priv);
2238
2239         mutex_lock(&dev_priv->psr.lock);
2240         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2241         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2242         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2243         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2244         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2245                    dev_priv->psr.busy_frontbuffer_bits);
2246         seq_printf(m, "Re-enable work scheduled: %s\n",
2247                    yesno(work_busy(&dev_priv->psr.work.work)));
2248
2249         if (HAS_PSR(dev)) {
2250                 if (HAS_DDI(dev))
2251                         enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2252                 else {
2253                         for_each_pipe(dev_priv, pipe) {
2254                                 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2255                                         VLV_EDP_PSR_CURR_STATE_MASK;
2256                                 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2257                                     (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2258                                         enabled = true;
2259                         }
2260                 }
2261         }
2262         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2263
2264         if (!HAS_DDI(dev))
2265                 for_each_pipe(dev_priv, pipe) {
2266                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2267                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2268                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2269                 }
2270         seq_puts(m, "\n");
2271
2272         seq_printf(m, "Link standby: %s\n",
2273                    yesno((bool)dev_priv->psr.link_standby));
2274
2275         /* CHV PSR has no kind of performance counter */
2276         if (HAS_PSR(dev) && HAS_DDI(dev)) {
2277                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2278                         EDP_PSR_PERF_CNT_MASK;
2279
2280                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2281         }
2282         mutex_unlock(&dev_priv->psr.lock);
2283
2284         intel_runtime_pm_put(dev_priv);
2285         return 0;
2286 }
2287
2288 static int i915_sink_crc(struct seq_file *m, void *data)
2289 {
2290         struct drm_info_node *node = m->private;
2291         struct drm_device *dev = node->minor->dev;
2292         struct intel_encoder *encoder;
2293         struct intel_connector *connector;
2294         struct intel_dp *intel_dp = NULL;
2295         int ret;
2296         u8 crc[6];
2297
2298         drm_modeset_lock_all(dev);
2299         list_for_each_entry(connector, &dev->mode_config.connector_list,
2300                             base.head) {
2301
2302                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2303                         continue;
2304
2305                 if (!connector->base.encoder)
2306                         continue;
2307
2308                 encoder = to_intel_encoder(connector->base.encoder);
2309                 if (encoder->type != INTEL_OUTPUT_EDP)
2310                         continue;
2311
2312                 intel_dp = enc_to_intel_dp(&encoder->base);
2313
2314                 ret = intel_dp_sink_crc(intel_dp, crc);
2315                 if (ret)
2316                         goto out;
2317
2318                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2319                            crc[0], crc[1], crc[2],
2320                            crc[3], crc[4], crc[5]);
2321                 goto out;
2322         }
2323         ret = -ENODEV;
2324 out:
2325         drm_modeset_unlock_all(dev);
2326         return ret;
2327 }
2328
2329 static int i915_energy_uJ(struct seq_file *m, void *data)
2330 {
2331         struct drm_info_node *node = m->private;
2332         struct drm_device *dev = node->minor->dev;
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         u64 power;
2335         u32 units;
2336
2337         if (INTEL_INFO(dev)->gen < 6)
2338                 return -ENODEV;
2339
2340         intel_runtime_pm_get(dev_priv);
2341
2342         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2343         power = (power & 0x1f00) >> 8;
2344         units = 1000000 / (1 << power); /* convert to uJ */
2345         power = I915_READ(MCH_SECP_NRG_STTS);
2346         power *= units;
2347
2348         intel_runtime_pm_put(dev_priv);
2349
2350         seq_printf(m, "%llu", (long long unsigned)power);
2351
2352         return 0;
2353 }
2354
2355 static int i915_pc8_status(struct seq_file *m, void *unused)
2356 {
2357         struct drm_info_node *node = m->private;
2358         struct drm_device *dev = node->minor->dev;
2359         struct drm_i915_private *dev_priv = dev->dev_private;
2360
2361         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2362                 seq_puts(m, "not supported\n");
2363                 return 0;
2364         }
2365
2366         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2367         seq_printf(m, "IRQs disabled: %s\n",
2368                    yesno(!intel_irqs_enabled(dev_priv)));
2369
2370         return 0;
2371 }
2372
2373 static const char *power_domain_str(enum intel_display_power_domain domain)
2374 {
2375         switch (domain) {
2376         case POWER_DOMAIN_PIPE_A:
2377                 return "PIPE_A";
2378         case POWER_DOMAIN_PIPE_B:
2379                 return "PIPE_B";
2380         case POWER_DOMAIN_PIPE_C:
2381                 return "PIPE_C";
2382         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2383                 return "PIPE_A_PANEL_FITTER";
2384         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2385                 return "PIPE_B_PANEL_FITTER";
2386         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2387                 return "PIPE_C_PANEL_FITTER";
2388         case POWER_DOMAIN_TRANSCODER_A:
2389                 return "TRANSCODER_A";
2390         case POWER_DOMAIN_TRANSCODER_B:
2391                 return "TRANSCODER_B";
2392         case POWER_DOMAIN_TRANSCODER_C:
2393                 return "TRANSCODER_C";
2394         case POWER_DOMAIN_TRANSCODER_EDP:
2395                 return "TRANSCODER_EDP";
2396         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2397                 return "PORT_DDI_A_2_LANES";
2398         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2399                 return "PORT_DDI_A_4_LANES";
2400         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2401                 return "PORT_DDI_B_2_LANES";
2402         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2403                 return "PORT_DDI_B_4_LANES";
2404         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2405                 return "PORT_DDI_C_2_LANES";
2406         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2407                 return "PORT_DDI_C_4_LANES";
2408         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2409                 return "PORT_DDI_D_2_LANES";
2410         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2411                 return "PORT_DDI_D_4_LANES";
2412         case POWER_DOMAIN_PORT_DSI:
2413                 return "PORT_DSI";
2414         case POWER_DOMAIN_PORT_CRT:
2415                 return "PORT_CRT";
2416         case POWER_DOMAIN_PORT_OTHER:
2417                 return "PORT_OTHER";
2418         case POWER_DOMAIN_VGA:
2419                 return "VGA";
2420         case POWER_DOMAIN_AUDIO:
2421                 return "AUDIO";
2422         case POWER_DOMAIN_PLLS:
2423                 return "PLLS";
2424         case POWER_DOMAIN_AUX_A:
2425                 return "AUX_A";
2426         case POWER_DOMAIN_AUX_B:
2427                 return "AUX_B";
2428         case POWER_DOMAIN_AUX_C:
2429                 return "AUX_C";
2430         case POWER_DOMAIN_AUX_D:
2431                 return "AUX_D";
2432         case POWER_DOMAIN_INIT:
2433                 return "INIT";
2434         default:
2435                 MISSING_CASE(domain);
2436                 return "?";
2437         }
2438 }
2439
2440 static int i915_power_domain_info(struct seq_file *m, void *unused)
2441 {
2442         struct drm_info_node *node = m->private;
2443         struct drm_device *dev = node->minor->dev;
2444         struct drm_i915_private *dev_priv = dev->dev_private;
2445         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2446         int i;
2447
2448         mutex_lock(&power_domains->lock);
2449
2450         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2451         for (i = 0; i < power_domains->power_well_count; i++) {
2452                 struct i915_power_well *power_well;
2453                 enum intel_display_power_domain power_domain;
2454
2455                 power_well = &power_domains->power_wells[i];
2456                 seq_printf(m, "%-25s %d\n", power_well->name,
2457                            power_well->count);
2458
2459                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2460                      power_domain++) {
2461                         if (!(BIT(power_domain) & power_well->domains))
2462                                 continue;
2463
2464                         seq_printf(m, "  %-23s %d\n",
2465                                  power_domain_str(power_domain),
2466                                  power_domains->domain_use_count[power_domain]);
2467                 }
2468         }
2469
2470         mutex_unlock(&power_domains->lock);
2471
2472         return 0;
2473 }
2474
2475 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2476                                  struct drm_display_mode *mode)
2477 {
2478         int i;
2479
2480         for (i = 0; i < tabs; i++)
2481                 seq_putc(m, '\t');
2482
2483         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2484                    mode->base.id, mode->name,
2485                    mode->vrefresh, mode->clock,
2486                    mode->hdisplay, mode->hsync_start,
2487                    mode->hsync_end, mode->htotal,
2488                    mode->vdisplay, mode->vsync_start,
2489                    mode->vsync_end, mode->vtotal,
2490                    mode->type, mode->flags);
2491 }
2492
2493 static void intel_encoder_info(struct seq_file *m,
2494                                struct intel_crtc *intel_crtc,
2495                                struct intel_encoder *intel_encoder)
2496 {
2497         struct drm_info_node *node = m->private;
2498         struct drm_device *dev = node->minor->dev;
2499         struct drm_crtc *crtc = &intel_crtc->base;
2500         struct intel_connector *intel_connector;
2501         struct drm_encoder *encoder;
2502
2503         encoder = &intel_encoder->base;
2504         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2505                    encoder->base.id, encoder->name);
2506         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2507                 struct drm_connector *connector = &intel_connector->base;
2508                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2509                            connector->base.id,
2510                            connector->name,
2511                            drm_get_connector_status_name(connector->status));
2512                 if (connector->status == connector_status_connected) {
2513                         struct drm_display_mode *mode = &crtc->mode;
2514                         seq_printf(m, ", mode:\n");
2515                         intel_seq_print_mode(m, 2, mode);
2516                 } else {
2517                         seq_putc(m, '\n');
2518                 }
2519         }
2520 }
2521
2522 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2523 {
2524         struct drm_info_node *node = m->private;
2525         struct drm_device *dev = node->minor->dev;
2526         struct drm_crtc *crtc = &intel_crtc->base;
2527         struct intel_encoder *intel_encoder;
2528
2529         if (crtc->primary->fb)
2530                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2531                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2532                            crtc->primary->fb->width, crtc->primary->fb->height);
2533         else
2534                 seq_puts(m, "\tprimary plane disabled\n");
2535         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2536                 intel_encoder_info(m, intel_crtc, intel_encoder);
2537 }
2538
2539 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2540 {
2541         struct drm_display_mode *mode = panel->fixed_mode;
2542
2543         seq_printf(m, "\tfixed mode:\n");
2544         intel_seq_print_mode(m, 2, mode);
2545 }
2546
2547 static void intel_dp_info(struct seq_file *m,
2548                           struct intel_connector *intel_connector)
2549 {
2550         struct intel_encoder *intel_encoder = intel_connector->encoder;
2551         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2552
2553         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2554         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2555                    "no");
2556         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2557                 intel_panel_info(m, &intel_connector->panel);
2558 }
2559
2560 static void intel_hdmi_info(struct seq_file *m,
2561                             struct intel_connector *intel_connector)
2562 {
2563         struct intel_encoder *intel_encoder = intel_connector->encoder;
2564         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2565
2566         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2567                    "no");
2568 }
2569
2570 static void intel_lvds_info(struct seq_file *m,
2571                             struct intel_connector *intel_connector)
2572 {
2573         intel_panel_info(m, &intel_connector->panel);
2574 }
2575
2576 static void intel_connector_info(struct seq_file *m,
2577                                  struct drm_connector *connector)
2578 {
2579         struct intel_connector *intel_connector = to_intel_connector(connector);
2580         struct intel_encoder *intel_encoder = intel_connector->encoder;
2581         struct drm_display_mode *mode;
2582
2583         seq_printf(m, "connector %d: type %s, status: %s\n",
2584                    connector->base.id, connector->name,
2585                    drm_get_connector_status_name(connector->status));
2586         if (connector->status == connector_status_connected) {
2587                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2588                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2589                            connector->display_info.width_mm,
2590                            connector->display_info.height_mm);
2591                 seq_printf(m, "\tsubpixel order: %s\n",
2592                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2593                 seq_printf(m, "\tCEA rev: %d\n",
2594                            connector->display_info.cea_rev);
2595         }
2596         if (intel_encoder) {
2597                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2598                     intel_encoder->type == INTEL_OUTPUT_EDP)
2599                         intel_dp_info(m, intel_connector);
2600                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2601                         intel_hdmi_info(m, intel_connector);
2602                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2603                         intel_lvds_info(m, intel_connector);
2604         }
2605
2606         seq_printf(m, "\tmodes:\n");
2607         list_for_each_entry(mode, &connector->modes, head)
2608                 intel_seq_print_mode(m, 2, mode);
2609 }
2610
2611 static bool cursor_active(struct drm_device *dev, int pipe)
2612 {
2613         struct drm_i915_private *dev_priv = dev->dev_private;
2614         u32 state;
2615
2616         if (IS_845G(dev) || IS_I865G(dev))
2617                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2618         else
2619                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2620
2621         return state;
2622 }
2623
2624 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2625 {
2626         struct drm_i915_private *dev_priv = dev->dev_private;
2627         u32 pos;
2628
2629         pos = I915_READ(CURPOS(pipe));
2630
2631         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2632         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2633                 *x = -*x;
2634
2635         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2636         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2637                 *y = -*y;
2638
2639         return cursor_active(dev, pipe);
2640 }
2641
2642 static int i915_display_info(struct seq_file *m, void *unused)
2643 {
2644         struct drm_info_node *node = m->private;
2645         struct drm_device *dev = node->minor->dev;
2646         struct drm_i915_private *dev_priv = dev->dev_private;
2647         struct intel_crtc *crtc;
2648         struct drm_connector *connector;
2649
2650         intel_runtime_pm_get(dev_priv);
2651         drm_modeset_lock_all(dev);
2652         seq_printf(m, "CRTC info\n");
2653         seq_printf(m, "---------\n");
2654         for_each_intel_crtc(dev, crtc) {
2655                 bool active;
2656                 int x, y;
2657
2658                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2659                            crtc->base.base.id, pipe_name(crtc->pipe),
2660                            yesno(crtc->active), crtc->config->pipe_src_w,
2661                            crtc->config->pipe_src_h);
2662                 if (crtc->active) {
2663                         intel_crtc_info(m, crtc);
2664
2665                         active = cursor_position(dev, crtc->pipe, &x, &y);
2666                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2667                                    yesno(crtc->cursor_base),
2668                                    x, y, crtc->cursor_width, crtc->cursor_height,
2669                                    crtc->cursor_addr, yesno(active));
2670                 }
2671
2672                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2673                            yesno(!crtc->cpu_fifo_underrun_disabled),
2674                            yesno(!crtc->pch_fifo_underrun_disabled));
2675         }
2676
2677         seq_printf(m, "\n");
2678         seq_printf(m, "Connector info\n");
2679         seq_printf(m, "--------------\n");
2680         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2681                 intel_connector_info(m, connector);
2682         }
2683         drm_modeset_unlock_all(dev);
2684         intel_runtime_pm_put(dev_priv);
2685
2686         return 0;
2687 }
2688
2689 static int i915_semaphore_status(struct seq_file *m, void *unused)
2690 {
2691         struct drm_info_node *node = (struct drm_info_node *) m->private;
2692         struct drm_device *dev = node->minor->dev;
2693         struct drm_i915_private *dev_priv = dev->dev_private;
2694         struct intel_engine_cs *ring;
2695         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2696         int i, j, ret;
2697
2698         if (!i915_semaphore_is_enabled(dev)) {
2699                 seq_puts(m, "Semaphores are disabled\n");
2700                 return 0;
2701         }
2702
2703         ret = mutex_lock_interruptible(&dev->struct_mutex);
2704         if (ret)
2705                 return ret;
2706         intel_runtime_pm_get(dev_priv);
2707
2708         if (IS_BROADWELL(dev)) {
2709                 struct page *page;
2710                 uint64_t *seqno;
2711
2712                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2713
2714                 seqno = (uint64_t *)kmap_atomic(page);
2715                 for_each_ring(ring, dev_priv, i) {
2716                         uint64_t offset;
2717
2718                         seq_printf(m, "%s\n", ring->name);
2719
2720                         seq_puts(m, "  Last signal:");
2721                         for (j = 0; j < num_rings; j++) {
2722                                 offset = i * I915_NUM_RINGS + j;
2723                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2724                                            seqno[offset], offset * 8);
2725                         }
2726                         seq_putc(m, '\n');
2727
2728                         seq_puts(m, "  Last wait:  ");
2729                         for (j = 0; j < num_rings; j++) {
2730                                 offset = i + (j * I915_NUM_RINGS);
2731                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2732                                            seqno[offset], offset * 8);
2733                         }
2734                         seq_putc(m, '\n');
2735
2736                 }
2737                 kunmap_atomic(seqno);
2738         } else {
2739                 seq_puts(m, "  Last signal:");
2740                 for_each_ring(ring, dev_priv, i)
2741                         for (j = 0; j < num_rings; j++)
2742                                 seq_printf(m, "0x%08x\n",
2743                                            I915_READ(ring->semaphore.mbox.signal[j]));
2744                 seq_putc(m, '\n');
2745         }
2746
2747         seq_puts(m, "\nSync seqno:\n");
2748         for_each_ring(ring, dev_priv, i) {
2749                 for (j = 0; j < num_rings; j++) {
2750                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2751                 }
2752                 seq_putc(m, '\n');
2753         }
2754         seq_putc(m, '\n');
2755
2756         intel_runtime_pm_put(dev_priv);
2757         mutex_unlock(&dev->struct_mutex);
2758         return 0;
2759 }
2760
2761 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2762 {
2763         struct drm_info_node *node = (struct drm_info_node *) m->private;
2764         struct drm_device *dev = node->minor->dev;
2765         struct drm_i915_private *dev_priv = dev->dev_private;
2766         int i;
2767
2768         drm_modeset_lock_all(dev);
2769         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2770                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2771
2772                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2773                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2774                            pll->config.crtc_mask, pll->active, yesno(pll->on));
2775                 seq_printf(m, " tracked hardware state:\n");
2776                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2777                 seq_printf(m, " dpll_md: 0x%08x\n",
2778                            pll->config.hw_state.dpll_md);
2779                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2780                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2781                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2782         }
2783         drm_modeset_unlock_all(dev);
2784
2785         return 0;
2786 }
2787
2788 static int i915_wa_registers(struct seq_file *m, void *unused)
2789 {
2790         int i;
2791         int ret;
2792         struct drm_info_node *node = (struct drm_info_node *) m->private;
2793         struct drm_device *dev = node->minor->dev;
2794         struct drm_i915_private *dev_priv = dev->dev_private;
2795
2796         ret = mutex_lock_interruptible(&dev->struct_mutex);
2797         if (ret)
2798                 return ret;
2799
2800         intel_runtime_pm_get(dev_priv);
2801
2802         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2803         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2804                 u32 addr, mask, value, read;
2805                 bool ok;
2806
2807                 addr = dev_priv->workarounds.reg[i].addr;
2808                 mask = dev_priv->workarounds.reg[i].mask;
2809                 value = dev_priv->workarounds.reg[i].value;
2810                 read = I915_READ(addr);
2811                 ok = (value & mask) == (read & mask);
2812                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2813                            addr, value, mask, read, ok ? "OK" : "FAIL");
2814         }
2815
2816         intel_runtime_pm_put(dev_priv);
2817         mutex_unlock(&dev->struct_mutex);
2818
2819         return 0;
2820 }
2821
2822 static int i915_ddb_info(struct seq_file *m, void *unused)
2823 {
2824         struct drm_info_node *node = m->private;
2825         struct drm_device *dev = node->minor->dev;
2826         struct drm_i915_private *dev_priv = dev->dev_private;
2827         struct skl_ddb_allocation *ddb;
2828         struct skl_ddb_entry *entry;
2829         enum pipe pipe;
2830         int plane;
2831
2832         if (INTEL_INFO(dev)->gen < 9)
2833                 return 0;
2834
2835         drm_modeset_lock_all(dev);
2836
2837         ddb = &dev_priv->wm.skl_hw.ddb;
2838
2839         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2840
2841         for_each_pipe(dev_priv, pipe) {
2842                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2843
2844                 for_each_plane(pipe, plane) {
2845                         entry = &ddb->plane[pipe][plane];
2846                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2847                                    entry->start, entry->end,
2848                                    skl_ddb_entry_size(entry));
2849                 }
2850
2851                 entry = &ddb->cursor[pipe];
2852                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2853                            entry->end, skl_ddb_entry_size(entry));
2854         }
2855
2856         drm_modeset_unlock_all(dev);
2857
2858         return 0;
2859 }
2860
2861 struct pipe_crc_info {
2862         const char *name;
2863         struct drm_device *dev;
2864         enum pipe pipe;
2865 };
2866
2867 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2868 {
2869         struct drm_info_node *node = (struct drm_info_node *) m->private;
2870         struct drm_device *dev = node->minor->dev;
2871         struct drm_encoder *encoder;
2872         struct intel_encoder *intel_encoder;
2873         struct intel_digital_port *intel_dig_port;
2874         drm_modeset_lock_all(dev);
2875         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2876                 intel_encoder = to_intel_encoder(encoder);
2877                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2878                         continue;
2879                 intel_dig_port = enc_to_dig_port(encoder);
2880                 if (!intel_dig_port->dp.can_mst)
2881                         continue;
2882
2883                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2884         }
2885         drm_modeset_unlock_all(dev);
2886         return 0;
2887 }
2888
2889 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2890 {
2891         struct pipe_crc_info *info = inode->i_private;
2892         struct drm_i915_private *dev_priv = info->dev->dev_private;
2893         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2894
2895         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2896                 return -ENODEV;
2897
2898         spin_lock_irq(&pipe_crc->lock);
2899
2900         if (pipe_crc->opened) {
2901                 spin_unlock_irq(&pipe_crc->lock);
2902                 return -EBUSY; /* already open */
2903         }
2904
2905         pipe_crc->opened = true;
2906         filep->private_data = inode->i_private;
2907
2908         spin_unlock_irq(&pipe_crc->lock);
2909
2910         return 0;
2911 }
2912
2913 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2914 {
2915         struct pipe_crc_info *info = inode->i_private;
2916         struct drm_i915_private *dev_priv = info->dev->dev_private;
2917         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2918
2919         spin_lock_irq(&pipe_crc->lock);
2920         pipe_crc->opened = false;
2921         spin_unlock_irq(&pipe_crc->lock);
2922
2923         return 0;
2924 }
2925
2926 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2927 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2928 /* account for \'0' */
2929 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2930
2931 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2932 {
2933         assert_spin_locked(&pipe_crc->lock);
2934         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2935                         INTEL_PIPE_CRC_ENTRIES_NR);
2936 }
2937
2938 static ssize_t
2939 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2940                    loff_t *pos)
2941 {
2942         struct pipe_crc_info *info = filep->private_data;
2943         struct drm_device *dev = info->dev;
2944         struct drm_i915_private *dev_priv = dev->dev_private;
2945         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2946         char buf[PIPE_CRC_BUFFER_LEN];
2947         int n_entries;
2948         ssize_t bytes_read;
2949
2950         /*
2951          * Don't allow user space to provide buffers not big enough to hold
2952          * a line of data.
2953          */
2954         if (count < PIPE_CRC_LINE_LEN)
2955                 return -EINVAL;
2956
2957         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2958                 return 0;
2959
2960         /* nothing to read */
2961         spin_lock_irq(&pipe_crc->lock);
2962         while (pipe_crc_data_count(pipe_crc) == 0) {
2963                 int ret;
2964
2965                 if (filep->f_flags & O_NONBLOCK) {
2966                         spin_unlock_irq(&pipe_crc->lock);
2967                         return -EAGAIN;
2968                 }
2969
2970                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2971                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2972                 if (ret) {
2973                         spin_unlock_irq(&pipe_crc->lock);
2974                         return ret;
2975                 }
2976         }
2977
2978         /* We now have one or more entries to read */
2979         n_entries = count / PIPE_CRC_LINE_LEN;
2980
2981         bytes_read = 0;
2982         while (n_entries > 0) {
2983                 struct intel_pipe_crc_entry *entry =
2984                         &pipe_crc->entries[pipe_crc->tail];
2985                 int ret;
2986
2987                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2988                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
2989                         break;
2990
2991                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2992                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2993
2994                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2995                                        "%8u %8x %8x %8x %8x %8x\n",
2996                                        entry->frame, entry->crc[0],
2997                                        entry->crc[1], entry->crc[2],
2998                                        entry->crc[3], entry->crc[4]);
2999
3000                 spin_unlock_irq(&pipe_crc->lock);
3001
3002                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3003                 if (ret == PIPE_CRC_LINE_LEN)
3004                         return -EFAULT;
3005
3006                 user_buf += PIPE_CRC_LINE_LEN;
3007                 n_entries--;
3008
3009                 spin_lock_irq(&pipe_crc->lock);
3010         }
3011
3012         spin_unlock_irq(&pipe_crc->lock);
3013
3014         return bytes_read;
3015 }
3016
3017 static const struct file_operations i915_pipe_crc_fops = {
3018         .owner = THIS_MODULE,
3019         .open = i915_pipe_crc_open,
3020         .read = i915_pipe_crc_read,
3021         .release = i915_pipe_crc_release,
3022 };
3023
3024 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3025         {
3026                 .name = "i915_pipe_A_crc",
3027                 .pipe = PIPE_A,
3028         },
3029         {
3030                 .name = "i915_pipe_B_crc",
3031                 .pipe = PIPE_B,
3032         },
3033         {
3034                 .name = "i915_pipe_C_crc",
3035                 .pipe = PIPE_C,
3036         },
3037 };
3038
3039 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3040                                 enum pipe pipe)
3041 {
3042         struct drm_device *dev = minor->dev;
3043         struct dentry *ent;
3044         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3045
3046         info->dev = dev;
3047         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3048                                   &i915_pipe_crc_fops);
3049         if (!ent)
3050                 return -ENOMEM;
3051
3052         return drm_add_fake_info_node(minor, ent, info);
3053 }
3054
3055 static const char * const pipe_crc_sources[] = {
3056         "none",
3057         "plane1",
3058         "plane2",
3059         "pf",
3060         "pipe",
3061         "TV",
3062         "DP-B",
3063         "DP-C",
3064         "DP-D",
3065         "auto",
3066 };
3067
3068 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3069 {
3070         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3071         return pipe_crc_sources[source];
3072 }
3073
3074 static int display_crc_ctl_show(struct seq_file *m, void *data)
3075 {
3076         struct drm_device *dev = m->private;
3077         struct drm_i915_private *dev_priv = dev->dev_private;
3078         int i;
3079
3080         for (i = 0; i < I915_MAX_PIPES; i++)
3081                 seq_printf(m, "%c %s\n", pipe_name(i),
3082                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3083
3084         return 0;
3085 }
3086
3087 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3088 {
3089         struct drm_device *dev = inode->i_private;
3090
3091         return single_open(file, display_crc_ctl_show, dev);
3092 }
3093
3094 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3095                                  uint32_t *val)
3096 {
3097         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3098                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3099
3100         switch (*source) {
3101         case INTEL_PIPE_CRC_SOURCE_PIPE:
3102                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3103                 break;
3104         case INTEL_PIPE_CRC_SOURCE_NONE:
3105                 *val = 0;
3106                 break;
3107         default:
3108                 return -EINVAL;
3109         }
3110
3111         return 0;
3112 }
3113
3114 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3115                                      enum intel_pipe_crc_source *source)
3116 {
3117         struct intel_encoder *encoder;
3118         struct intel_crtc *crtc;
3119         struct intel_digital_port *dig_port;
3120         int ret = 0;
3121
3122         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3123
3124         drm_modeset_lock_all(dev);
3125         for_each_intel_encoder(dev, encoder) {
3126                 if (!encoder->base.crtc)
3127                         continue;
3128
3129                 crtc = to_intel_crtc(encoder->base.crtc);
3130
3131                 if (crtc->pipe != pipe)
3132                         continue;
3133
3134                 switch (encoder->type) {
3135                 case INTEL_OUTPUT_TVOUT:
3136                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3137                         break;
3138                 case INTEL_OUTPUT_DISPLAYPORT:
3139                 case INTEL_OUTPUT_EDP:
3140                         dig_port = enc_to_dig_port(&encoder->base);
3141                         switch (dig_port->port) {
3142                         case PORT_B:
3143                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3144                                 break;
3145                         case PORT_C:
3146                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3147                                 break;
3148                         case PORT_D:
3149                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3150                                 break;
3151                         default:
3152                                 WARN(1, "nonexisting DP port %c\n",
3153                                      port_name(dig_port->port));
3154                                 break;
3155                         }
3156                         break;
3157                 default:
3158                         break;
3159                 }
3160         }
3161         drm_modeset_unlock_all(dev);
3162
3163         return ret;
3164 }
3165
3166 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3167                                 enum pipe pipe,
3168                                 enum intel_pipe_crc_source *source,
3169                                 uint32_t *val)
3170 {
3171         struct drm_i915_private *dev_priv = dev->dev_private;
3172         bool need_stable_symbols = false;
3173
3174         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3175                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3176                 if (ret)
3177                         return ret;
3178         }
3179
3180         switch (*source) {
3181         case INTEL_PIPE_CRC_SOURCE_PIPE:
3182                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3183                 break;
3184         case INTEL_PIPE_CRC_SOURCE_DP_B:
3185                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3186                 need_stable_symbols = true;
3187                 break;
3188         case INTEL_PIPE_CRC_SOURCE_DP_C:
3189                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3190                 need_stable_symbols = true;
3191                 break;
3192         case INTEL_PIPE_CRC_SOURCE_DP_D:
3193                 if (!IS_CHERRYVIEW(dev))
3194                         return -EINVAL;
3195                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3196                 need_stable_symbols = true;
3197                 break;
3198         case INTEL_PIPE_CRC_SOURCE_NONE:
3199                 *val = 0;
3200                 break;
3201         default:
3202                 return -EINVAL;
3203         }
3204
3205         /*
3206          * When the pipe CRC tap point is after the transcoders we need
3207          * to tweak symbol-level features to produce a deterministic series of
3208          * symbols for a given frame. We need to reset those features only once
3209          * a frame (instead of every nth symbol):
3210          *   - DC-balance: used to ensure a better clock recovery from the data
3211          *     link (SDVO)
3212          *   - DisplayPort scrambling: used for EMI reduction
3213          */
3214         if (need_stable_symbols) {
3215                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3216
3217                 tmp |= DC_BALANCE_RESET_VLV;
3218                 switch (pipe) {
3219                 case PIPE_A:
3220                         tmp |= PIPE_A_SCRAMBLE_RESET;
3221                         break;
3222                 case PIPE_B:
3223                         tmp |= PIPE_B_SCRAMBLE_RESET;
3224                         break;
3225                 case PIPE_C:
3226                         tmp |= PIPE_C_SCRAMBLE_RESET;
3227                         break;
3228                 default:
3229                         return -EINVAL;
3230                 }
3231                 I915_WRITE(PORT_DFT2_G4X, tmp);
3232         }
3233
3234         return 0;
3235 }
3236
3237 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3238                                  enum pipe pipe,
3239                                  enum intel_pipe_crc_source *source,
3240                                  uint32_t *val)
3241 {
3242         struct drm_i915_private *dev_priv = dev->dev_private;
3243         bool need_stable_symbols = false;
3244
3245         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3246                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3247                 if (ret)
3248                         return ret;
3249         }
3250
3251         switch (*source) {
3252         case INTEL_PIPE_CRC_SOURCE_PIPE:
3253                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3254                 break;
3255         case INTEL_PIPE_CRC_SOURCE_TV:
3256                 if (!SUPPORTS_TV(dev))
3257                         return -EINVAL;
3258                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3259                 break;
3260         case INTEL_PIPE_CRC_SOURCE_DP_B:
3261                 if (!IS_G4X(dev))
3262                         return -EINVAL;
3263                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3264                 need_stable_symbols = true;
3265                 break;
3266         case INTEL_PIPE_CRC_SOURCE_DP_C:
3267                 if (!IS_G4X(dev))
3268                         return -EINVAL;
3269                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3270                 need_stable_symbols = true;
3271                 break;
3272         case INTEL_PIPE_CRC_SOURCE_DP_D:
3273                 if (!IS_G4X(dev))
3274                         return -EINVAL;
3275                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3276                 need_stable_symbols = true;
3277                 break;
3278         case INTEL_PIPE_CRC_SOURCE_NONE:
3279                 *val = 0;
3280                 break;
3281         default:
3282                 return -EINVAL;
3283         }
3284
3285         /*
3286          * When the pipe CRC tap point is after the transcoders we need
3287          * to tweak symbol-level features to produce a deterministic series of
3288          * symbols for a given frame. We need to reset those features only once
3289          * a frame (instead of every nth symbol):
3290          *   - DC-balance: used to ensure a better clock recovery from the data
3291          *     link (SDVO)
3292          *   - DisplayPort scrambling: used for EMI reduction
3293          */
3294         if (need_stable_symbols) {
3295                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3296
3297                 WARN_ON(!IS_G4X(dev));
3298
3299                 I915_WRITE(PORT_DFT_I9XX,
3300                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3301
3302                 if (pipe == PIPE_A)
3303                         tmp |= PIPE_A_SCRAMBLE_RESET;
3304                 else
3305                         tmp |= PIPE_B_SCRAMBLE_RESET;
3306
3307                 I915_WRITE(PORT_DFT2_G4X, tmp);
3308         }
3309
3310         return 0;
3311 }
3312
3313 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3314                                          enum pipe pipe)
3315 {
3316         struct drm_i915_private *dev_priv = dev->dev_private;
3317         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3318
3319         switch (pipe) {
3320         case PIPE_A:
3321                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3322                 break;
3323         case PIPE_B:
3324                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3325                 break;
3326         case PIPE_C:
3327                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3328                 break;
3329         default:
3330                 return;
3331         }
3332         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3333                 tmp &= ~DC_BALANCE_RESET_VLV;
3334         I915_WRITE(PORT_DFT2_G4X, tmp);
3335
3336 }
3337
3338 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3339                                          enum pipe pipe)
3340 {
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3343
3344         if (pipe == PIPE_A)
3345                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3346         else
3347                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3348         I915_WRITE(PORT_DFT2_G4X, tmp);
3349
3350         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3351                 I915_WRITE(PORT_DFT_I9XX,
3352                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3353         }
3354 }
3355
3356 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3357                                 uint32_t *val)
3358 {
3359         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3360                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3361
3362         switch (*source) {
3363         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3364                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3365                 break;
3366         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3367                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3368                 break;
3369         case INTEL_PIPE_CRC_SOURCE_PIPE:
3370                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3371                 break;
3372         case INTEL_PIPE_CRC_SOURCE_NONE:
3373                 *val = 0;
3374                 break;
3375         default:
3376                 return -EINVAL;
3377         }
3378
3379         return 0;
3380 }
3381
3382 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3383 {
3384         struct drm_i915_private *dev_priv = dev->dev_private;
3385         struct intel_crtc *crtc =
3386                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3387
3388         drm_modeset_lock_all(dev);
3389         /*
3390          * If we use the eDP transcoder we need to make sure that we don't
3391          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3392          * relevant on hsw with pipe A when using the always-on power well
3393          * routing.
3394          */
3395         if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3396             !crtc->config->pch_pfit.enabled) {
3397                 crtc->config->pch_pfit.force_thru = true;
3398
3399                 intel_display_power_get(dev_priv,
3400                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3401
3402                 dev_priv->display.crtc_disable(&crtc->base);
3403                 dev_priv->display.crtc_enable(&crtc->base);
3404         }
3405         drm_modeset_unlock_all(dev);
3406 }
3407
3408 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3409 {
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411         struct intel_crtc *crtc =
3412                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3413
3414         drm_modeset_lock_all(dev);
3415         /*
3416          * If we use the eDP transcoder we need to make sure that we don't
3417          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3418          * relevant on hsw with pipe A when using the always-on power well
3419          * routing.
3420          */
3421         if (crtc->config->pch_pfit.force_thru) {
3422                 crtc->config->pch_pfit.force_thru = false;
3423
3424                 dev_priv->display.crtc_disable(&crtc->base);
3425                 dev_priv->display.crtc_enable(&crtc->base);
3426
3427                 intel_display_power_put(dev_priv,
3428                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3429         }
3430         drm_modeset_unlock_all(dev);
3431 }
3432
3433 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3434                                 enum pipe pipe,
3435                                 enum intel_pipe_crc_source *source,
3436                                 uint32_t *val)
3437 {
3438         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3439                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3440
3441         switch (*source) {
3442         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3443                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3444                 break;
3445         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3446                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3447                 break;
3448         case INTEL_PIPE_CRC_SOURCE_PF:
3449                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3450                         hsw_trans_edp_pipe_A_crc_wa(dev);
3451
3452                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3453                 break;
3454         case INTEL_PIPE_CRC_SOURCE_NONE:
3455                 *val = 0;
3456                 break;
3457         default:
3458                 return -EINVAL;
3459         }
3460
3461         return 0;
3462 }
3463
3464 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3465                                enum intel_pipe_crc_source source)
3466 {
3467         struct drm_i915_private *dev_priv = dev->dev_private;
3468         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3469         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3470                                                                         pipe));
3471         u32 val = 0; /* shut up gcc */
3472         int ret;
3473
3474         if (pipe_crc->source == source)
3475                 return 0;
3476
3477         /* forbid changing the source without going back to 'none' */
3478         if (pipe_crc->source && source)
3479                 return -EINVAL;
3480
3481         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3482                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3483                 return -EIO;
3484         }
3485
3486         if (IS_GEN2(dev))
3487                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3488         else if (INTEL_INFO(dev)->gen < 5)
3489                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3490         else if (IS_VALLEYVIEW(dev))
3491                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3492         else if (IS_GEN5(dev) || IS_GEN6(dev))
3493                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3494         else
3495                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3496
3497         if (ret != 0)
3498                 return ret;
3499
3500         /* none -> real source transition */
3501         if (source) {
3502                 struct intel_pipe_crc_entry *entries;
3503
3504                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3505                                  pipe_name(pipe), pipe_crc_source_name(source));
3506
3507                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3508                                   sizeof(pipe_crc->entries[0]),
3509                                   GFP_KERNEL);
3510                 if (!entries)
3511                         return -ENOMEM;
3512
3513                 /*
3514                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3515                  * enabled and disabled dynamically based on package C states,
3516                  * user space can't make reliable use of the CRCs, so let's just
3517                  * completely disable it.
3518                  */
3519                 hsw_disable_ips(crtc);
3520
3521                 spin_lock_irq(&pipe_crc->lock);
3522                 kfree(pipe_crc->entries);
3523                 pipe_crc->entries = entries;
3524                 pipe_crc->head = 0;
3525                 pipe_crc->tail = 0;
3526                 spin_unlock_irq(&pipe_crc->lock);
3527         }
3528
3529         pipe_crc->source = source;
3530
3531         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3532         POSTING_READ(PIPE_CRC_CTL(pipe));
3533
3534         /* real source -> none transition */
3535         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3536                 struct intel_pipe_crc_entry *entries;
3537                 struct intel_crtc *crtc =
3538                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3539
3540                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3541                                  pipe_name(pipe));
3542
3543                 drm_modeset_lock(&crtc->base.mutex, NULL);
3544                 if (crtc->active)
3545                         intel_wait_for_vblank(dev, pipe);
3546                 drm_modeset_unlock(&crtc->base.mutex);
3547
3548                 spin_lock_irq(&pipe_crc->lock);
3549                 entries = pipe_crc->entries;
3550                 pipe_crc->entries = NULL;
3551                 pipe_crc->head = 0;
3552                 pipe_crc->tail = 0;
3553                 spin_unlock_irq(&pipe_crc->lock);
3554
3555                 kfree(entries);
3556
3557                 if (IS_G4X(dev))
3558                         g4x_undo_pipe_scramble_reset(dev, pipe);
3559                 else if (IS_VALLEYVIEW(dev))
3560                         vlv_undo_pipe_scramble_reset(dev, pipe);
3561                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3562                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3563
3564                 hsw_enable_ips(crtc);
3565         }
3566
3567         return 0;
3568 }
3569
3570 /*
3571  * Parse pipe CRC command strings:
3572  *   command: wsp* object wsp+ name wsp+ source wsp*
3573  *   object: 'pipe'
3574  *   name: (A | B | C)
3575  *   source: (none | plane1 | plane2 | pf)
3576  *   wsp: (#0x20 | #0x9 | #0xA)+
3577  *
3578  * eg.:
3579  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3580  *  "pipe A none"    ->  Stop CRC
3581  */
3582 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3583 {
3584         int n_words = 0;
3585
3586         while (*buf) {
3587                 char *end;
3588
3589                 /* skip leading white space */
3590                 buf = skip_spaces(buf);
3591                 if (!*buf)
3592                         break;  /* end of buffer */
3593
3594                 /* find end of word */
3595                 for (end = buf; *end && !isspace(*end); end++)
3596                         ;
3597
3598                 if (n_words == max_words) {
3599                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3600                                          max_words);
3601                         return -EINVAL; /* ran out of words[] before bytes */
3602                 }
3603
3604                 if (*end)
3605                         *end++ = '\0';
3606                 words[n_words++] = buf;
3607                 buf = end;
3608         }
3609
3610         return n_words;
3611 }
3612
3613 enum intel_pipe_crc_object {
3614         PIPE_CRC_OBJECT_PIPE,
3615 };
3616
3617 static const char * const pipe_crc_objects[] = {
3618         "pipe",
3619 };
3620
3621 static int
3622 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3623 {
3624         int i;
3625
3626         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3627                 if (!strcmp(buf, pipe_crc_objects[i])) {
3628                         *o = i;
3629                         return 0;
3630                     }
3631
3632         return -EINVAL;
3633 }
3634
3635 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3636 {
3637         const char name = buf[0];
3638
3639         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3640                 return -EINVAL;
3641
3642         *pipe = name - 'A';
3643
3644         return 0;
3645 }
3646
3647 static int
3648 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3649 {
3650         int i;
3651
3652         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3653                 if (!strcmp(buf, pipe_crc_sources[i])) {
3654                         *s = i;
3655                         return 0;
3656                     }
3657
3658         return -EINVAL;
3659 }
3660
3661 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3662 {
3663 #define N_WORDS 3
3664         int n_words;
3665         char *words[N_WORDS];
3666         enum pipe pipe;
3667         enum intel_pipe_crc_object object;
3668         enum intel_pipe_crc_source source;
3669
3670         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3671         if (n_words != N_WORDS) {
3672                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3673                                  N_WORDS);
3674                 return -EINVAL;
3675         }
3676
3677         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3678                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3679                 return -EINVAL;
3680         }
3681
3682         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3683                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3684                 return -EINVAL;
3685         }
3686
3687         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3688                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3689                 return -EINVAL;
3690         }
3691
3692         return pipe_crc_set_source(dev, pipe, source);
3693 }
3694
3695 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3696                                      size_t len, loff_t *offp)
3697 {
3698         struct seq_file *m = file->private_data;
3699         struct drm_device *dev = m->private;
3700         char *tmpbuf;
3701         int ret;
3702
3703         if (len == 0)
3704                 return 0;
3705
3706         if (len > PAGE_SIZE - 1) {
3707                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3708                                  PAGE_SIZE);
3709                 return -E2BIG;
3710         }
3711
3712         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3713         if (!tmpbuf)
3714                 return -ENOMEM;
3715
3716         if (copy_from_user(tmpbuf, ubuf, len)) {
3717                 ret = -EFAULT;
3718                 goto out;
3719         }
3720         tmpbuf[len] = '\0';
3721
3722         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3723
3724 out:
3725         kfree(tmpbuf);
3726         if (ret < 0)
3727                 return ret;
3728
3729         *offp += len;
3730         return len;
3731 }
3732
3733 static const struct file_operations i915_display_crc_ctl_fops = {
3734         .owner = THIS_MODULE,
3735         .open = display_crc_ctl_open,
3736         .read = seq_read,
3737         .llseek = seq_lseek,
3738         .release = single_release,
3739         .write = display_crc_ctl_write
3740 };
3741
3742 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3743 {
3744         struct drm_device *dev = m->private;
3745         int num_levels = ilk_wm_max_level(dev) + 1;
3746         int level;
3747
3748         drm_modeset_lock_all(dev);
3749
3750         for (level = 0; level < num_levels; level++) {
3751                 unsigned int latency = wm[level];
3752
3753                 /*
3754                  * - WM1+ latency values in 0.5us units
3755                  * - latencies are in us on gen9
3756                  */
3757                 if (INTEL_INFO(dev)->gen >= 9)
3758                         latency *= 10;
3759                 else if (level > 0)
3760                         latency *= 5;
3761
3762                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3763                            level, wm[level], latency / 10, latency % 10);
3764         }
3765
3766         drm_modeset_unlock_all(dev);
3767 }
3768
3769 static int pri_wm_latency_show(struct seq_file *m, void *data)
3770 {
3771         struct drm_device *dev = m->private;
3772         struct drm_i915_private *dev_priv = dev->dev_private;
3773         const uint16_t *latencies;
3774
3775         if (INTEL_INFO(dev)->gen >= 9)
3776                 latencies = dev_priv->wm.skl_latency;
3777         else
3778                 latencies = to_i915(dev)->wm.pri_latency;
3779
3780         wm_latency_show(m, latencies);
3781
3782         return 0;
3783 }
3784
3785 static int spr_wm_latency_show(struct seq_file *m, void *data)
3786 {
3787         struct drm_device *dev = m->private;
3788         struct drm_i915_private *dev_priv = dev->dev_private;
3789         const uint16_t *latencies;
3790
3791         if (INTEL_INFO(dev)->gen >= 9)
3792                 latencies = dev_priv->wm.skl_latency;
3793         else
3794                 latencies = to_i915(dev)->wm.spr_latency;
3795
3796         wm_latency_show(m, latencies);
3797
3798         return 0;
3799 }
3800
3801 static int cur_wm_latency_show(struct seq_file *m, void *data)
3802 {
3803         struct drm_device *dev = m->private;
3804         struct drm_i915_private *dev_priv = dev->dev_private;
3805         const uint16_t *latencies;
3806
3807         if (INTEL_INFO(dev)->gen >= 9)
3808                 latencies = dev_priv->wm.skl_latency;
3809         else
3810                 latencies = to_i915(dev)->wm.cur_latency;
3811
3812         wm_latency_show(m, latencies);
3813
3814         return 0;
3815 }
3816
3817 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3818 {
3819         struct drm_device *dev = inode->i_private;
3820
3821         if (HAS_GMCH_DISPLAY(dev))
3822                 return -ENODEV;
3823
3824         return single_open(file, pri_wm_latency_show, dev);
3825 }
3826
3827 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3828 {
3829         struct drm_device *dev = inode->i_private;
3830
3831         if (HAS_GMCH_DISPLAY(dev))
3832                 return -ENODEV;
3833
3834         return single_open(file, spr_wm_latency_show, dev);
3835 }
3836
3837 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3838 {
3839         struct drm_device *dev = inode->i_private;
3840
3841         if (HAS_GMCH_DISPLAY(dev))
3842                 return -ENODEV;
3843
3844         return single_open(file, cur_wm_latency_show, dev);
3845 }
3846
3847 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3848                                 size_t len, loff_t *offp, uint16_t wm[8])
3849 {
3850         struct seq_file *m = file->private_data;
3851         struct drm_device *dev = m->private;
3852         uint16_t new[8] = { 0 };
3853         int num_levels = ilk_wm_max_level(dev) + 1;
3854         int level;
3855         int ret;
3856         char tmp[32];
3857
3858         if (len >= sizeof(tmp))
3859                 return -EINVAL;
3860
3861         if (copy_from_user(tmp, ubuf, len))
3862                 return -EFAULT;
3863
3864         tmp[len] = '\0';
3865
3866         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3867                      &new[0], &new[1], &new[2], &new[3],
3868                      &new[4], &new[5], &new[6], &new[7]);
3869         if (ret != num_levels)
3870                 return -EINVAL;
3871
3872         drm_modeset_lock_all(dev);
3873
3874         for (level = 0; level < num_levels; level++)
3875                 wm[level] = new[level];
3876
3877         drm_modeset_unlock_all(dev);
3878
3879         return len;
3880 }
3881
3882
3883 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3884                                     size_t len, loff_t *offp)
3885 {
3886         struct seq_file *m = file->private_data;
3887         struct drm_device *dev = m->private;
3888         struct drm_i915_private *dev_priv = dev->dev_private;
3889         uint16_t *latencies;
3890
3891         if (INTEL_INFO(dev)->gen >= 9)
3892                 latencies = dev_priv->wm.skl_latency;
3893         else
3894                 latencies = to_i915(dev)->wm.pri_latency;
3895
3896         return wm_latency_write(file, ubuf, len, offp, latencies);
3897 }
3898
3899 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3900                                     size_t len, loff_t *offp)
3901 {
3902         struct seq_file *m = file->private_data;
3903         struct drm_device *dev = m->private;
3904         struct drm_i915_private *dev_priv = dev->dev_private;
3905         uint16_t *latencies;
3906
3907         if (INTEL_INFO(dev)->gen >= 9)
3908                 latencies = dev_priv->wm.skl_latency;
3909         else
3910                 latencies = to_i915(dev)->wm.spr_latency;
3911
3912         return wm_latency_write(file, ubuf, len, offp, latencies);
3913 }
3914
3915 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3916                                     size_t len, loff_t *offp)
3917 {
3918         struct seq_file *m = file->private_data;
3919         struct drm_device *dev = m->private;
3920         struct drm_i915_private *dev_priv = dev->dev_private;
3921         uint16_t *latencies;
3922
3923         if (INTEL_INFO(dev)->gen >= 9)
3924                 latencies = dev_priv->wm.skl_latency;
3925         else
3926                 latencies = to_i915(dev)->wm.cur_latency;
3927
3928         return wm_latency_write(file, ubuf, len, offp, latencies);
3929 }
3930
3931 static const struct file_operations i915_pri_wm_latency_fops = {
3932         .owner = THIS_MODULE,
3933         .open = pri_wm_latency_open,
3934         .read = seq_read,
3935         .llseek = seq_lseek,
3936         .release = single_release,
3937         .write = pri_wm_latency_write
3938 };
3939
3940 static const struct file_operations i915_spr_wm_latency_fops = {
3941         .owner = THIS_MODULE,
3942         .open = spr_wm_latency_open,
3943         .read = seq_read,
3944         .llseek = seq_lseek,
3945         .release = single_release,
3946         .write = spr_wm_latency_write
3947 };
3948
3949 static const struct file_operations i915_cur_wm_latency_fops = {
3950         .owner = THIS_MODULE,
3951         .open = cur_wm_latency_open,
3952         .read = seq_read,
3953         .llseek = seq_lseek,
3954         .release = single_release,
3955         .write = cur_wm_latency_write
3956 };
3957
3958 static int
3959 i915_wedged_get(void *data, u64 *val)
3960 {
3961         struct drm_device *dev = data;
3962         struct drm_i915_private *dev_priv = dev->dev_private;
3963
3964         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3965
3966         return 0;
3967 }
3968
3969 static int
3970 i915_wedged_set(void *data, u64 val)
3971 {
3972         struct drm_device *dev = data;
3973         struct drm_i915_private *dev_priv = dev->dev_private;
3974
3975         /*
3976          * There is no safeguard against this debugfs entry colliding
3977          * with the hangcheck calling same i915_handle_error() in
3978          * parallel, causing an explosion. For now we assume that the
3979          * test harness is responsible enough not to inject gpu hangs
3980          * while it is writing to 'i915_wedged'
3981          */
3982
3983         if (i915_reset_in_progress(&dev_priv->gpu_error))
3984                 return -EAGAIN;
3985
3986         intel_runtime_pm_get(dev_priv);
3987
3988         i915_handle_error(dev, val,
3989                           "Manually setting wedged to %llu", val);
3990
3991         intel_runtime_pm_put(dev_priv);
3992
3993         return 0;
3994 }
3995
3996 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3997                         i915_wedged_get, i915_wedged_set,
3998                         "%llu\n");
3999
4000 static int
4001 i915_ring_stop_get(void *data, u64 *val)
4002 {
4003         struct drm_device *dev = data;
4004         struct drm_i915_private *dev_priv = dev->dev_private;
4005
4006         *val = dev_priv->gpu_error.stop_rings;
4007
4008         return 0;
4009 }
4010
4011 static int
4012 i915_ring_stop_set(void *data, u64 val)
4013 {
4014         struct drm_device *dev = data;
4015         struct drm_i915_private *dev_priv = dev->dev_private;
4016         int ret;
4017
4018         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4019
4020         ret = mutex_lock_interruptible(&dev->struct_mutex);
4021         if (ret)
4022                 return ret;
4023
4024         dev_priv->gpu_error.stop_rings = val;
4025         mutex_unlock(&dev->struct_mutex);
4026
4027         return 0;
4028 }
4029
4030 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4031                         i915_ring_stop_get, i915_ring_stop_set,
4032                         "0x%08llx\n");
4033
4034 static int
4035 i915_ring_missed_irq_get(void *data, u64 *val)
4036 {
4037         struct drm_device *dev = data;
4038         struct drm_i915_private *dev_priv = dev->dev_private;
4039
4040         *val = dev_priv->gpu_error.missed_irq_rings;
4041         return 0;
4042 }
4043
4044 static int
4045 i915_ring_missed_irq_set(void *data, u64 val)
4046 {
4047         struct drm_device *dev = data;
4048         struct drm_i915_private *dev_priv = dev->dev_private;
4049         int ret;
4050
4051         /* Lock against concurrent debugfs callers */
4052         ret = mutex_lock_interruptible(&dev->struct_mutex);
4053         if (ret)
4054                 return ret;
4055         dev_priv->gpu_error.missed_irq_rings = val;
4056         mutex_unlock(&dev->struct_mutex);
4057
4058         return 0;
4059 }
4060
4061 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4062                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4063                         "0x%08llx\n");
4064
4065 static int
4066 i915_ring_test_irq_get(void *data, u64 *val)
4067 {
4068         struct drm_device *dev = data;
4069         struct drm_i915_private *dev_priv = dev->dev_private;
4070
4071         *val = dev_priv->gpu_error.test_irq_rings;
4072
4073         return 0;
4074 }
4075
4076 static int
4077 i915_ring_test_irq_set(void *data, u64 val)
4078 {
4079         struct drm_device *dev = data;
4080         struct drm_i915_private *dev_priv = dev->dev_private;
4081         int ret;
4082
4083         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4084
4085         /* Lock against concurrent debugfs callers */
4086         ret = mutex_lock_interruptible(&dev->struct_mutex);
4087         if (ret)
4088                 return ret;
4089
4090         dev_priv->gpu_error.test_irq_rings = val;
4091         mutex_unlock(&dev->struct_mutex);
4092
4093         return 0;
4094 }
4095
4096 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4097                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4098                         "0x%08llx\n");
4099
4100 #define DROP_UNBOUND 0x1
4101 #define DROP_BOUND 0x2
4102 #define DROP_RETIRE 0x4
4103 #define DROP_ACTIVE 0x8
4104 #define DROP_ALL (DROP_UNBOUND | \
4105                   DROP_BOUND | \
4106                   DROP_RETIRE | \
4107                   DROP_ACTIVE)
4108 static int
4109 i915_drop_caches_get(void *data, u64 *val)
4110 {
4111         *val = DROP_ALL;
4112
4113         return 0;
4114 }
4115
4116 static int
4117 i915_drop_caches_set(void *data, u64 val)
4118 {
4119         struct drm_device *dev = data;
4120         struct drm_i915_private *dev_priv = dev->dev_private;
4121         int ret;
4122
4123         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4124
4125         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4126          * on ioctls on -EAGAIN. */
4127         ret = mutex_lock_interruptible(&dev->struct_mutex);
4128         if (ret)
4129                 return ret;
4130
4131         if (val & DROP_ACTIVE) {
4132                 ret = i915_gpu_idle(dev);
4133                 if (ret)
4134                         goto unlock;
4135         }
4136
4137         if (val & (DROP_RETIRE | DROP_ACTIVE))
4138                 i915_gem_retire_requests(dev);
4139
4140         if (val & DROP_BOUND)
4141                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4142
4143         if (val & DROP_UNBOUND)
4144                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4145
4146 unlock:
4147         mutex_unlock(&dev->struct_mutex);
4148
4149         return ret;
4150 }
4151
4152 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4153                         i915_drop_caches_get, i915_drop_caches_set,
4154                         "0x%08llx\n");
4155
4156 static int
4157 i915_max_freq_get(void *data, u64 *val)
4158 {
4159         struct drm_device *dev = data;
4160         struct drm_i915_private *dev_priv = dev->dev_private;
4161         int ret;
4162
4163         if (INTEL_INFO(dev)->gen < 6)
4164                 return -ENODEV;
4165
4166         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4167
4168         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4169         if (ret)
4170                 return ret;
4171
4172         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4173         mutex_unlock(&dev_priv->rps.hw_lock);
4174
4175         return 0;
4176 }
4177
4178 static int
4179 i915_max_freq_set(void *data, u64 val)
4180 {
4181         struct drm_device *dev = data;
4182         struct drm_i915_private *dev_priv = dev->dev_private;
4183         u32 rp_state_cap, hw_max, hw_min;
4184         int ret;
4185
4186         if (INTEL_INFO(dev)->gen < 6)
4187                 return -ENODEV;
4188
4189         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4190
4191         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4192
4193         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4194         if (ret)
4195                 return ret;
4196
4197         /*
4198          * Turbo will still be enabled, but won't go above the set value.
4199          */
4200         if (IS_VALLEYVIEW(dev)) {
4201                 val = intel_freq_opcode(dev_priv, val);
4202
4203                 hw_max = dev_priv->rps.max_freq;
4204                 hw_min = dev_priv->rps.min_freq;
4205         } else {
4206                 val = intel_freq_opcode(dev_priv, val);
4207
4208                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4209                 hw_max = dev_priv->rps.max_freq;
4210                 hw_min = (rp_state_cap >> 16) & 0xff;
4211         }
4212
4213         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4214                 mutex_unlock(&dev_priv->rps.hw_lock);
4215                 return -EINVAL;
4216         }
4217
4218         dev_priv->rps.max_freq_softlimit = val;
4219
4220         intel_set_rps(dev, val);
4221
4222         mutex_unlock(&dev_priv->rps.hw_lock);
4223
4224         return 0;
4225 }
4226
4227 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4228                         i915_max_freq_get, i915_max_freq_set,
4229                         "%llu\n");
4230
4231 static int
4232 i915_min_freq_get(void *data, u64 *val)
4233 {
4234         struct drm_device *dev = data;
4235         struct drm_i915_private *dev_priv = dev->dev_private;
4236         int ret;
4237
4238         if (INTEL_INFO(dev)->gen < 6)
4239                 return -ENODEV;
4240
4241         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4242
4243         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4244         if (ret)
4245                 return ret;
4246
4247         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4248         mutex_unlock(&dev_priv->rps.hw_lock);
4249
4250         return 0;
4251 }
4252
4253 static int
4254 i915_min_freq_set(void *data, u64 val)
4255 {
4256         struct drm_device *dev = data;
4257         struct drm_i915_private *dev_priv = dev->dev_private;
4258         u32 rp_state_cap, hw_max, hw_min;
4259         int ret;
4260
4261         if (INTEL_INFO(dev)->gen < 6)
4262                 return -ENODEV;
4263
4264         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4265
4266         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4267
4268         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4269         if (ret)
4270                 return ret;
4271
4272         /*
4273          * Turbo will still be enabled, but won't go below the set value.
4274          */
4275         if (IS_VALLEYVIEW(dev)) {
4276                 val = intel_freq_opcode(dev_priv, val);
4277
4278                 hw_max = dev_priv->rps.max_freq;
4279                 hw_min = dev_priv->rps.min_freq;
4280         } else {
4281                 val = intel_freq_opcode(dev_priv, val);
4282
4283                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4284                 hw_max = dev_priv->rps.max_freq;
4285                 hw_min = (rp_state_cap >> 16) & 0xff;
4286         }
4287
4288         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4289                 mutex_unlock(&dev_priv->rps.hw_lock);
4290                 return -EINVAL;
4291         }
4292
4293         dev_priv->rps.min_freq_softlimit = val;
4294
4295         intel_set_rps(dev, val);
4296
4297         mutex_unlock(&dev_priv->rps.hw_lock);
4298
4299         return 0;
4300 }
4301
4302 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4303                         i915_min_freq_get, i915_min_freq_set,
4304                         "%llu\n");
4305
4306 static int
4307 i915_cache_sharing_get(void *data, u64 *val)
4308 {
4309         struct drm_device *dev = data;
4310         struct drm_i915_private *dev_priv = dev->dev_private;
4311         u32 snpcr;
4312         int ret;
4313
4314         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4315                 return -ENODEV;
4316
4317         ret = mutex_lock_interruptible(&dev->struct_mutex);
4318         if (ret)
4319                 return ret;
4320         intel_runtime_pm_get(dev_priv);
4321
4322         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4323
4324         intel_runtime_pm_put(dev_priv);
4325         mutex_unlock(&dev_priv->dev->struct_mutex);
4326
4327         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4328
4329         return 0;
4330 }
4331
4332 static int
4333 i915_cache_sharing_set(void *data, u64 val)
4334 {
4335         struct drm_device *dev = data;
4336         struct drm_i915_private *dev_priv = dev->dev_private;
4337         u32 snpcr;
4338
4339         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4340                 return -ENODEV;
4341
4342         if (val > 3)
4343                 return -EINVAL;
4344
4345         intel_runtime_pm_get(dev_priv);
4346         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4347
4348         /* Update the cache sharing policy here as well */
4349         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4350         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4351         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4352         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4353
4354         intel_runtime_pm_put(dev_priv);
4355         return 0;
4356 }
4357
4358 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4359                         i915_cache_sharing_get, i915_cache_sharing_set,
4360                         "%llu\n");
4361
4362 static int i915_sseu_status(struct seq_file *m, void *unused)
4363 {
4364         struct drm_info_node *node = (struct drm_info_node *) m->private;
4365         struct drm_device *dev = node->minor->dev;
4366         struct drm_i915_private *dev_priv = dev->dev_private;
4367         unsigned int s_tot = 0, ss_tot = 0, ss_per = 0, eu_tot = 0, eu_per = 0;
4368
4369         if (INTEL_INFO(dev)->gen < 9)
4370                 return -ENODEV;
4371
4372         seq_puts(m, "SSEU Device Info\n");
4373         seq_printf(m, "  Available Slice Total: %u\n",
4374                    INTEL_INFO(dev)->slice_total);
4375         seq_printf(m, "  Available Subslice Total: %u\n",
4376                    INTEL_INFO(dev)->subslice_total);
4377         seq_printf(m, "  Available Subslice Per Slice: %u\n",
4378                    INTEL_INFO(dev)->subslice_per_slice);
4379         seq_printf(m, "  Available EU Total: %u\n",
4380                    INTEL_INFO(dev)->eu_total);
4381         seq_printf(m, "  Available EU Per Subslice: %u\n",
4382                    INTEL_INFO(dev)->eu_per_subslice);
4383         seq_printf(m, "  Has Slice Power Gating: %s\n",
4384                    yesno(INTEL_INFO(dev)->has_slice_pg));
4385         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4386                    yesno(INTEL_INFO(dev)->has_subslice_pg));
4387         seq_printf(m, "  Has EU Power Gating: %s\n",
4388                    yesno(INTEL_INFO(dev)->has_eu_pg));
4389
4390         seq_puts(m, "SSEU Device Status\n");
4391         if (IS_SKYLAKE(dev)) {
4392                 const int s_max = 3, ss_max = 4;
4393                 int s, ss;
4394                 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4395
4396                 s_reg[0] = I915_READ(GEN9_SLICE0_PGCTL_ACK);
4397                 s_reg[1] = I915_READ(GEN9_SLICE1_PGCTL_ACK);
4398                 s_reg[2] = I915_READ(GEN9_SLICE2_PGCTL_ACK);
4399                 eu_reg[0] = I915_READ(GEN9_SLICE0_SS01_EU_PGCTL_ACK);
4400                 eu_reg[1] = I915_READ(GEN9_SLICE0_SS23_EU_PGCTL_ACK);
4401                 eu_reg[2] = I915_READ(GEN9_SLICE1_SS01_EU_PGCTL_ACK);
4402                 eu_reg[3] = I915_READ(GEN9_SLICE1_SS23_EU_PGCTL_ACK);
4403                 eu_reg[4] = I915_READ(GEN9_SLICE2_SS01_EU_PGCTL_ACK);
4404                 eu_reg[5] = I915_READ(GEN9_SLICE2_SS23_EU_PGCTL_ACK);
4405                 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4406                              GEN9_PGCTL_SSA_EU19_ACK |
4407                              GEN9_PGCTL_SSA_EU210_ACK |
4408                              GEN9_PGCTL_SSA_EU311_ACK;
4409                 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4410                              GEN9_PGCTL_SSB_EU19_ACK |
4411                              GEN9_PGCTL_SSB_EU210_ACK |
4412                              GEN9_PGCTL_SSB_EU311_ACK;
4413
4414                 for (s = 0; s < s_max; s++) {
4415                         if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4416                                 /* skip disabled slice */
4417                                 continue;
4418
4419                         s_tot++;
4420                         ss_per = INTEL_INFO(dev)->subslice_per_slice;
4421                         ss_tot += ss_per;
4422                         for (ss = 0; ss < ss_max; ss++) {
4423                                 unsigned int eu_cnt;
4424
4425                                 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4426                                                        eu_mask[ss%2]);
4427                                 eu_tot += eu_cnt;
4428                                 eu_per = max(eu_per, eu_cnt);
4429                         }
4430                 }
4431         }
4432         seq_printf(m, "  Enabled Slice Total: %u\n", s_tot);
4433         seq_printf(m, "  Enabled Subslice Total: %u\n", ss_tot);
4434         seq_printf(m, "  Enabled Subslice Per Slice: %u\n", ss_per);
4435         seq_printf(m, "  Enabled EU Total: %u\n", eu_tot);
4436         seq_printf(m, "  Enabled EU Per Subslice: %u\n", eu_per);
4437
4438         return 0;
4439 }
4440
4441 static int i915_forcewake_open(struct inode *inode, struct file *file)
4442 {
4443         struct drm_device *dev = inode->i_private;
4444         struct drm_i915_private *dev_priv = dev->dev_private;
4445
4446         if (INTEL_INFO(dev)->gen < 6)
4447                 return 0;
4448
4449         intel_runtime_pm_get(dev_priv);
4450         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4451
4452         return 0;
4453 }
4454
4455 static int i915_forcewake_release(struct inode *inode, struct file *file)
4456 {
4457         struct drm_device *dev = inode->i_private;
4458         struct drm_i915_private *dev_priv = dev->dev_private;
4459
4460         if (INTEL_INFO(dev)->gen < 6)
4461                 return 0;
4462
4463         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4464         intel_runtime_pm_put(dev_priv);
4465
4466         return 0;
4467 }
4468
4469 static const struct file_operations i915_forcewake_fops = {
4470         .owner = THIS_MODULE,
4471         .open = i915_forcewake_open,
4472         .release = i915_forcewake_release,
4473 };
4474
4475 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4476 {
4477         struct drm_device *dev = minor->dev;
4478         struct dentry *ent;
4479
4480         ent = debugfs_create_file("i915_forcewake_user",
4481                                   S_IRUSR,
4482                                   root, dev,
4483                                   &i915_forcewake_fops);
4484         if (!ent)
4485                 return -ENOMEM;
4486
4487         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4488 }
4489
4490 static int i915_debugfs_create(struct dentry *root,
4491                                struct drm_minor *minor,
4492                                const char *name,
4493                                const struct file_operations *fops)
4494 {
4495         struct drm_device *dev = minor->dev;
4496         struct dentry *ent;
4497
4498         ent = debugfs_create_file(name,
4499                                   S_IRUGO | S_IWUSR,
4500                                   root, dev,
4501                                   fops);
4502         if (!ent)
4503                 return -ENOMEM;
4504
4505         return drm_add_fake_info_node(minor, ent, fops);
4506 }
4507
4508 static const struct drm_info_list i915_debugfs_list[] = {
4509         {"i915_capabilities", i915_capabilities, 0},
4510         {"i915_gem_objects", i915_gem_object_info, 0},
4511         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4512         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4513         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4514         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4515         {"i915_gem_stolen", i915_gem_stolen_list_info },
4516         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4517         {"i915_gem_request", i915_gem_request_info, 0},
4518         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4519         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4520         {"i915_gem_interrupt", i915_interrupt_info, 0},
4521         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4522         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4523         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4524         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4525         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4526         {"i915_frequency_info", i915_frequency_info, 0},
4527         {"i915_hangcheck_info", i915_hangcheck_info, 0},
4528         {"i915_drpc_info", i915_drpc_info, 0},
4529         {"i915_emon_status", i915_emon_status, 0},
4530         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4531         {"i915_fbc_status", i915_fbc_status, 0},
4532         {"i915_ips_status", i915_ips_status, 0},
4533         {"i915_sr_status", i915_sr_status, 0},
4534         {"i915_opregion", i915_opregion, 0},
4535         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4536         {"i915_context_status", i915_context_status, 0},
4537         {"i915_dump_lrc", i915_dump_lrc, 0},
4538         {"i915_execlists", i915_execlists, 0},
4539         {"i915_forcewake_domains", i915_forcewake_domains, 0},
4540         {"i915_swizzle_info", i915_swizzle_info, 0},
4541         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4542         {"i915_llc", i915_llc, 0},
4543         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4544         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4545         {"i915_energy_uJ", i915_energy_uJ, 0},
4546         {"i915_pc8_status", i915_pc8_status, 0},
4547         {"i915_power_domain_info", i915_power_domain_info, 0},
4548         {"i915_display_info", i915_display_info, 0},
4549         {"i915_semaphore_status", i915_semaphore_status, 0},
4550         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4551         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4552         {"i915_wa_registers", i915_wa_registers, 0},
4553         {"i915_ddb_info", i915_ddb_info, 0},
4554         {"i915_sseu_status", i915_sseu_status, 0},
4555 };
4556 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4557
4558 static const struct i915_debugfs_files {
4559         const char *name;
4560         const struct file_operations *fops;
4561 } i915_debugfs_files[] = {
4562         {"i915_wedged", &i915_wedged_fops},
4563         {"i915_max_freq", &i915_max_freq_fops},
4564         {"i915_min_freq", &i915_min_freq_fops},
4565         {"i915_cache_sharing", &i915_cache_sharing_fops},
4566         {"i915_ring_stop", &i915_ring_stop_fops},
4567         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4568         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4569         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4570         {"i915_error_state", &i915_error_state_fops},
4571         {"i915_next_seqno", &i915_next_seqno_fops},
4572         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4573         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4574         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4575         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4576         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4577 };
4578
4579 void intel_display_crc_init(struct drm_device *dev)
4580 {
4581         struct drm_i915_private *dev_priv = dev->dev_private;
4582         enum pipe pipe;
4583
4584         for_each_pipe(dev_priv, pipe) {
4585                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4586
4587                 pipe_crc->opened = false;
4588                 spin_lock_init(&pipe_crc->lock);
4589                 init_waitqueue_head(&pipe_crc->wq);
4590         }
4591 }
4592
4593 int i915_debugfs_init(struct drm_minor *minor)
4594 {
4595         int ret, i;
4596
4597         ret = i915_forcewake_create(minor->debugfs_root, minor);
4598         if (ret)
4599                 return ret;
4600
4601         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4602                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4603                 if (ret)
4604                         return ret;
4605         }
4606
4607         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4608                 ret = i915_debugfs_create(minor->debugfs_root, minor,
4609                                           i915_debugfs_files[i].name,
4610                                           i915_debugfs_files[i].fops);
4611                 if (ret)
4612                         return ret;
4613         }
4614
4615         return drm_debugfs_create_files(i915_debugfs_list,
4616                                         I915_DEBUGFS_ENTRIES,
4617                                         minor->debugfs_root, minor);
4618 }
4619
4620 void i915_debugfs_cleanup(struct drm_minor *minor)
4621 {
4622         int i;
4623
4624         drm_debugfs_remove_files(i915_debugfs_list,
4625                                  I915_DEBUGFS_ENTRIES, minor);
4626
4627         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4628                                  1, minor);
4629
4630         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4631                 struct drm_info_list *info_list =
4632                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4633
4634                 drm_debugfs_remove_files(info_list, 1, minor);
4635         }
4636
4637         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4638                 struct drm_info_list *info_list =
4639                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4640
4641                 drm_debugfs_remove_files(info_list, 1, minor);
4642         }
4643 }