]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
464fceb17d6d6123d647e409e0f44bc1fb86da90
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->pin_display)
95                 return "p";
96         else
97                 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (obj->tiling_mode) {
103         default:
104         case I915_TILING_NONE: return " ";
105         case I915_TILING_X: return "X";
106         case I915_TILING_Y: return "Y";
107         }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117         u64 size = 0;
118         struct i915_vma *vma;
119
120         list_for_each_entry(vma, &obj->vma_list, vma_link) {
121                 if (i915_is_ggtt(vma->vm) &&
122                     drm_mm_node_allocated(&vma->node))
123                         size += vma->node.size;
124         }
125
126         return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133         struct intel_engine_cs *ring;
134         struct i915_vma *vma;
135         int pin_count = 0;
136         int i;
137
138         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139                    &obj->base,
140                    obj->active ? "*" : " ",
141                    get_pin_flag(obj),
142                    get_tiling_flag(obj),
143                    get_global_flag(obj),
144                    obj->base.size / 1024,
145                    obj->base.read_domains,
146                    obj->base.write_domain);
147         for_each_ring(ring, dev_priv, i)
148                 seq_printf(m, "%x ",
149                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
150         seq_printf(m, "] %x %x%s%s%s",
151                    i915_gem_request_get_seqno(obj->last_write_req),
152                    i915_gem_request_get_seqno(obj->last_fenced_req),
153                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154                    obj->dirty ? " dirty" : "",
155                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156         if (obj->base.name)
157                 seq_printf(m, " (name: %d)", obj->base.name);
158         list_for_each_entry(vma, &obj->vma_list, vma_link) {
159                 if (vma->pin_count > 0)
160                         pin_count++;
161         }
162         seq_printf(m, " (pinned x %d)", pin_count);
163         if (obj->pin_display)
164                 seq_printf(m, " (display)");
165         if (obj->fence_reg != I915_FENCE_REG_NONE)
166                 seq_printf(m, " (fence: %d)", obj->fence_reg);
167         list_for_each_entry(vma, &obj->vma_list, vma_link) {
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_is_ggtt(vma->vm) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_is_ggtt(vma->vm))
172                         seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173                 else
174                         seq_puts(m, ")");
175         }
176         if (obj->stolen)
177                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178         if (obj->pin_display || obj->fault_mappable) {
179                 char s[3], *t = s;
180                 if (obj->pin_display)
181                         *t++ = 'p';
182                 if (obj->fault_mappable)
183                         *t++ = 'f';
184                 *t = '\0';
185                 seq_printf(m, " (%s mappable)", s);
186         }
187         if (obj->last_write_req != NULL)
188                 seq_printf(m, " (%s)",
189                            i915_gem_request_get_ring(obj->last_write_req)->name);
190         if (obj->frontbuffer_bits)
191                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198         seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203         struct drm_info_node *node = m->private;
204         uintptr_t list = (uintptr_t) node->info_ent->data;
205         struct list_head *head;
206         struct drm_device *dev = node->minor->dev;
207         struct drm_i915_private *dev_priv = dev->dev_private;
208         struct i915_address_space *vm = &dev_priv->gtt.base;
209         struct i915_vma *vma;
210         u64 total_obj_size, total_gtt_size;
211         int count, ret;
212
213         ret = mutex_lock_interruptible(&dev->struct_mutex);
214         if (ret)
215                 return ret;
216
217         /* FIXME: the user of this interface might want more than just GGTT */
218         switch (list) {
219         case ACTIVE_LIST:
220                 seq_puts(m, "Active:\n");
221                 head = &vm->active_list;
222                 break;
223         case INACTIVE_LIST:
224                 seq_puts(m, "Inactive:\n");
225                 head = &vm->inactive_list;
226                 break;
227         default:
228                 mutex_unlock(&dev->struct_mutex);
229                 return -EINVAL;
230         }
231
232         total_obj_size = total_gtt_size = count = 0;
233         list_for_each_entry(vma, head, mm_list) {
234                 seq_printf(m, "   ");
235                 describe_obj(m, vma->obj);
236                 seq_printf(m, "\n");
237                 total_obj_size += vma->obj->base.size;
238                 total_gtt_size += vma->node.size;
239                 count++;
240         }
241         mutex_unlock(&dev->struct_mutex);
242
243         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244                    count, total_obj_size, total_gtt_size);
245         return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249                               struct list_head *A, struct list_head *B)
250 {
251         struct drm_i915_gem_object *a =
252                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253         struct drm_i915_gem_object *b =
254                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256         if (a->stolen->start < b->stolen->start)
257                 return -1;
258         if (a->stolen->start > b->stolen->start)
259                 return 1;
260         return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265         struct drm_info_node *node = m->private;
266         struct drm_device *dev = node->minor->dev;
267         struct drm_i915_private *dev_priv = dev->dev_private;
268         struct drm_i915_gem_object *obj;
269         u64 total_obj_size, total_gtt_size;
270         LIST_HEAD(stolen);
271         int count, ret;
272
273         ret = mutex_lock_interruptible(&dev->struct_mutex);
274         if (ret)
275                 return ret;
276
277         total_obj_size = total_gtt_size = count = 0;
278         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279                 if (obj->stolen == NULL)
280                         continue;
281
282                 list_add(&obj->obj_exec_link, &stolen);
283
284                 total_obj_size += obj->base.size;
285                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286                 count++;
287         }
288         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289                 if (obj->stolen == NULL)
290                         continue;
291
292                 list_add(&obj->obj_exec_link, &stolen);
293
294                 total_obj_size += obj->base.size;
295                 count++;
296         }
297         list_sort(NULL, &stolen, obj_rank_by_stolen);
298         seq_puts(m, "Stolen:\n");
299         while (!list_empty(&stolen)) {
300                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301                 seq_puts(m, "   ");
302                 describe_obj(m, obj);
303                 seq_putc(m, '\n');
304                 list_del_init(&obj->obj_exec_link);
305         }
306         mutex_unlock(&dev->struct_mutex);
307
308         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309                    count, total_obj_size, total_gtt_size);
310         return 0;
311 }
312
313 #define count_objects(list, member) do { \
314         list_for_each_entry(obj, list, member) { \
315                 size += i915_gem_obj_total_ggtt_size(obj); \
316                 ++count; \
317                 if (obj->map_and_fenceable) { \
318                         mappable_size += i915_gem_obj_ggtt_size(obj); \
319                         ++mappable_count; \
320                 } \
321         } \
322 } while (0)
323
324 struct file_stats {
325         struct drm_i915_file_private *file_priv;
326         unsigned long count;
327         u64 total, unbound;
328         u64 global, shared;
329         u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334         struct drm_i915_gem_object *obj = ptr;
335         struct file_stats *stats = data;
336         struct i915_vma *vma;
337
338         stats->count++;
339         stats->total += obj->base.size;
340
341         if (obj->base.name || obj->base.dma_buf)
342                 stats->shared += obj->base.size;
343
344         if (USES_FULL_PPGTT(obj->base.dev)) {
345                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346                         struct i915_hw_ppgtt *ppgtt;
347
348                         if (!drm_mm_node_allocated(&vma->node))
349                                 continue;
350
351                         if (i915_is_ggtt(vma->vm)) {
352                                 stats->global += obj->base.size;
353                                 continue;
354                         }
355
356                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357                         if (ppgtt->file_priv != stats->file_priv)
358                                 continue;
359
360                         if (obj->active) /* XXX per-vma statistic */
361                                 stats->active += obj->base.size;
362                         else
363                                 stats->inactive += obj->base.size;
364
365                         return 0;
366                 }
367         } else {
368                 if (i915_gem_obj_ggtt_bound(obj)) {
369                         stats->global += obj->base.size;
370                         if (obj->active)
371                                 stats->active += obj->base.size;
372                         else
373                                 stats->inactive += obj->base.size;
374                         return 0;
375                 }
376         }
377
378         if (!list_empty(&obj->global_list))
379                 stats->unbound += obj->base.size;
380
381         return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385         if (stats.count) \
386                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387                            name, \
388                            stats.count, \
389                            stats.total, \
390                            stats.active, \
391                            stats.inactive, \
392                            stats.global, \
393                            stats.shared, \
394                            stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398                                    struct drm_i915_private *dev_priv)
399 {
400         struct drm_i915_gem_object *obj;
401         struct file_stats stats;
402         struct intel_engine_cs *ring;
403         int i, j;
404
405         memset(&stats, 0, sizeof(stats));
406
407         for_each_ring(ring, dev_priv, i) {
408                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409                         list_for_each_entry(obj,
410                                             &ring->batch_pool.cache_list[j],
411                                             batch_pool_link)
412                                 per_file_stats(0, obj, &stats);
413                 }
414         }
415
416         print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420         list_for_each_entry(vma, list, member) { \
421                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422                 ++count; \
423                 if (vma->obj->map_and_fenceable) { \
424                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425                         ++mappable_count; \
426                 } \
427         } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432         struct drm_info_node *node = m->private;
433         struct drm_device *dev = node->minor->dev;
434         struct drm_i915_private *dev_priv = dev->dev_private;
435         u32 count, mappable_count, purgeable_count;
436         u64 size, mappable_size, purgeable_size;
437         struct drm_i915_gem_object *obj;
438         struct i915_address_space *vm = &dev_priv->gtt.base;
439         struct drm_file *file;
440         struct i915_vma *vma;
441         int ret;
442
443         ret = mutex_lock_interruptible(&dev->struct_mutex);
444         if (ret)
445                 return ret;
446
447         seq_printf(m, "%u objects, %zu bytes\n",
448                    dev_priv->mm.object_count,
449                    dev_priv->mm.object_memory);
450
451         size = count = mappable_size = mappable_count = 0;
452         count_objects(&dev_priv->mm.bound_list, global_list);
453         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454                    count, mappable_count, size, mappable_size);
455
456         size = count = mappable_size = mappable_count = 0;
457         count_vmas(&vm->active_list, mm_list);
458         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459                    count, mappable_count, size, mappable_size);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_vmas(&vm->inactive_list, mm_list);
463         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = purgeable_size = purgeable_count = 0;
467         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468                 size += obj->base.size, ++count;
469                 if (obj->madv == I915_MADV_DONTNEED)
470                         purgeable_size += obj->base.size, ++purgeable_count;
471         }
472         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474         size = count = mappable_size = mappable_count = 0;
475         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476                 if (obj->fault_mappable) {
477                         size += i915_gem_obj_ggtt_size(obj);
478                         ++count;
479                 }
480                 if (obj->pin_display) {
481                         mappable_size += i915_gem_obj_ggtt_size(obj);
482                         ++mappable_count;
483                 }
484                 if (obj->madv == I915_MADV_DONTNEED) {
485                         purgeable_size += obj->base.size;
486                         ++purgeable_count;
487                 }
488         }
489         seq_printf(m, "%u purgeable objects, %llu bytes\n",
490                    purgeable_count, purgeable_size);
491         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492                    mappable_count, mappable_size);
493         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494                    count, size);
495
496         seq_printf(m, "%llu [%llu] gtt total\n",
497                    dev_priv->gtt.base.total,
498                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500         seq_putc(m, '\n');
501         print_batch_pool_stats(m, dev_priv);
502         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503                 struct file_stats stats;
504                 struct task_struct *task;
505
506                 memset(&stats, 0, sizeof(stats));
507                 stats.file_priv = file->driver_priv;
508                 spin_lock(&file->table_lock);
509                 idr_for_each(&file->object_idr, per_file_stats, &stats);
510                 spin_unlock(&file->table_lock);
511                 /*
512                  * Although we have a valid reference on file->pid, that does
513                  * not guarantee that the task_struct who called get_pid() is
514                  * still alive (e.g. get_pid(current) => fork() => exit()).
515                  * Therefore, we need to protect this ->comm access using RCU.
516                  */
517                 rcu_read_lock();
518                 task = pid_task(file->pid, PIDTYPE_PID);
519                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520                 rcu_read_unlock();
521         }
522
523         mutex_unlock(&dev->struct_mutex);
524
525         return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530         struct drm_info_node *node = m->private;
531         struct drm_device *dev = node->minor->dev;
532         uintptr_t list = (uintptr_t) node->info_ent->data;
533         struct drm_i915_private *dev_priv = dev->dev_private;
534         struct drm_i915_gem_object *obj;
535         u64 total_obj_size, total_gtt_size;
536         int count, ret;
537
538         ret = mutex_lock_interruptible(&dev->struct_mutex);
539         if (ret)
540                 return ret;
541
542         total_obj_size = total_gtt_size = count = 0;
543         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545                         continue;
546
547                 seq_puts(m, "   ");
548                 describe_obj(m, obj);
549                 seq_putc(m, '\n');
550                 total_obj_size += obj->base.size;
551                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552                 count++;
553         }
554
555         mutex_unlock(&dev->struct_mutex);
556
557         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558                    count, total_obj_size, total_gtt_size);
559
560         return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565         struct drm_info_node *node = m->private;
566         struct drm_device *dev = node->minor->dev;
567         struct drm_i915_private *dev_priv = dev->dev_private;
568         struct intel_crtc *crtc;
569         int ret;
570
571         ret = mutex_lock_interruptible(&dev->struct_mutex);
572         if (ret)
573                 return ret;
574
575         for_each_intel_crtc(dev, crtc) {
576                 const char pipe = pipe_name(crtc->pipe);
577                 const char plane = plane_name(crtc->plane);
578                 struct intel_unpin_work *work;
579
580                 spin_lock_irq(&dev->event_lock);
581                 work = crtc->unpin_work;
582                 if (work == NULL) {
583                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584                                    pipe, plane);
585                 } else {
586                         u32 addr;
587
588                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590                                            pipe, plane);
591                         } else {
592                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593                                            pipe, plane);
594                         }
595                         if (work->flip_queued_req) {
596                                 struct intel_engine_cs *ring =
597                                         i915_gem_request_get_ring(work->flip_queued_req);
598
599                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600                                            ring->name,
601                                            i915_gem_request_get_seqno(work->flip_queued_req),
602                                            dev_priv->next_seqno,
603                                            ring->get_seqno(ring, true),
604                                            i915_gem_request_completed(work->flip_queued_req, true));
605                         } else
606                                 seq_printf(m, "Flip not associated with any ring\n");
607                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608                                    work->flip_queued_vblank,
609                                    work->flip_ready_vblank,
610                                    drm_crtc_vblank_count(&crtc->base));
611                         if (work->enable_stall_check)
612                                 seq_puts(m, "Stall check enabled, ");
613                         else
614                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617                         if (INTEL_INFO(dev)->gen >= 4)
618                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619                         else
620                                 addr = I915_READ(DSPADDR(crtc->plane));
621                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623                         if (work->pending_flip_obj) {
624                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626                         }
627                 }
628                 spin_unlock_irq(&dev->event_lock);
629         }
630
631         mutex_unlock(&dev->struct_mutex);
632
633         return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638         struct drm_info_node *node = m->private;
639         struct drm_device *dev = node->minor->dev;
640         struct drm_i915_private *dev_priv = dev->dev_private;
641         struct drm_i915_gem_object *obj;
642         struct intel_engine_cs *ring;
643         int total = 0;
644         int ret, i, j;
645
646         ret = mutex_lock_interruptible(&dev->struct_mutex);
647         if (ret)
648                 return ret;
649
650         for_each_ring(ring, dev_priv, i) {
651                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652                         int count;
653
654                         count = 0;
655                         list_for_each_entry(obj,
656                                             &ring->batch_pool.cache_list[j],
657                                             batch_pool_link)
658                                 count++;
659                         seq_printf(m, "%s cache[%d]: %d objects\n",
660                                    ring->name, j, count);
661
662                         list_for_each_entry(obj,
663                                             &ring->batch_pool.cache_list[j],
664                                             batch_pool_link) {
665                                 seq_puts(m, "   ");
666                                 describe_obj(m, obj);
667                                 seq_putc(m, '\n');
668                         }
669
670                         total += count;
671                 }
672         }
673
674         seq_printf(m, "total: %d\n", total);
675
676         mutex_unlock(&dev->struct_mutex);
677
678         return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683         struct drm_info_node *node = m->private;
684         struct drm_device *dev = node->minor->dev;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct intel_engine_cs *ring;
687         struct drm_i915_gem_request *req;
688         int ret, any, i;
689
690         ret = mutex_lock_interruptible(&dev->struct_mutex);
691         if (ret)
692                 return ret;
693
694         any = 0;
695         for_each_ring(ring, dev_priv, i) {
696                 int count;
697
698                 count = 0;
699                 list_for_each_entry(req, &ring->request_list, list)
700                         count++;
701                 if (count == 0)
702                         continue;
703
704                 seq_printf(m, "%s requests: %d\n", ring->name, count);
705                 list_for_each_entry(req, &ring->request_list, list) {
706                         struct task_struct *task;
707
708                         rcu_read_lock();
709                         task = NULL;
710                         if (req->pid)
711                                 task = pid_task(req->pid, PIDTYPE_PID);
712                         seq_printf(m, "    %x @ %d: %s [%d]\n",
713                                    req->seqno,
714                                    (int) (jiffies - req->emitted_jiffies),
715                                    task ? task->comm : "<unknown>",
716                                    task ? task->pid : -1);
717                         rcu_read_unlock();
718                 }
719
720                 any++;
721         }
722         mutex_unlock(&dev->struct_mutex);
723
724         if (any == 0)
725                 seq_puts(m, "No requests\n");
726
727         return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731                                  struct intel_engine_cs *ring)
732 {
733         if (ring->get_seqno) {
734                 seq_printf(m, "Current sequence (%s): %x\n",
735                            ring->name, ring->get_seqno(ring, false));
736         }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741         struct drm_info_node *node = m->private;
742         struct drm_device *dev = node->minor->dev;
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         struct intel_engine_cs *ring;
745         int ret, i;
746
747         ret = mutex_lock_interruptible(&dev->struct_mutex);
748         if (ret)
749                 return ret;
750         intel_runtime_pm_get(dev_priv);
751
752         for_each_ring(ring, dev_priv, i)
753                 i915_ring_seqno_info(m, ring);
754
755         intel_runtime_pm_put(dev_priv);
756         mutex_unlock(&dev->struct_mutex);
757
758         return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764         struct drm_info_node *node = m->private;
765         struct drm_device *dev = node->minor->dev;
766         struct drm_i915_private *dev_priv = dev->dev_private;
767         struct intel_engine_cs *ring;
768         int ret, i, pipe;
769
770         ret = mutex_lock_interruptible(&dev->struct_mutex);
771         if (ret)
772                 return ret;
773         intel_runtime_pm_get(dev_priv);
774
775         if (IS_CHERRYVIEW(dev)) {
776                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777                            I915_READ(GEN8_MASTER_IRQ));
778
779                 seq_printf(m, "Display IER:\t%08x\n",
780                            I915_READ(VLV_IER));
781                 seq_printf(m, "Display IIR:\t%08x\n",
782                            I915_READ(VLV_IIR));
783                 seq_printf(m, "Display IIR_RW:\t%08x\n",
784                            I915_READ(VLV_IIR_RW));
785                 seq_printf(m, "Display IMR:\t%08x\n",
786                            I915_READ(VLV_IMR));
787                 for_each_pipe(dev_priv, pipe)
788                         seq_printf(m, "Pipe %c stat:\t%08x\n",
789                                    pipe_name(pipe),
790                                    I915_READ(PIPESTAT(pipe)));
791
792                 seq_printf(m, "Port hotplug:\t%08x\n",
793                            I915_READ(PORT_HOTPLUG_EN));
794                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795                            I915_READ(VLV_DPFLIPSTAT));
796                 seq_printf(m, "DPINVGTT:\t%08x\n",
797                            I915_READ(DPINVGTT));
798
799                 for (i = 0; i < 4; i++) {
800                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801                                    i, I915_READ(GEN8_GT_IMR(i)));
802                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803                                    i, I915_READ(GEN8_GT_IIR(i)));
804                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805                                    i, I915_READ(GEN8_GT_IER(i)));
806                 }
807
808                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809                            I915_READ(GEN8_PCU_IMR));
810                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811                            I915_READ(GEN8_PCU_IIR));
812                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813                            I915_READ(GEN8_PCU_IER));
814         } else if (INTEL_INFO(dev)->gen >= 8) {
815                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816                            I915_READ(GEN8_MASTER_IRQ));
817
818                 for (i = 0; i < 4; i++) {
819                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820                                    i, I915_READ(GEN8_GT_IMR(i)));
821                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822                                    i, I915_READ(GEN8_GT_IIR(i)));
823                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824                                    i, I915_READ(GEN8_GT_IER(i)));
825                 }
826
827                 for_each_pipe(dev_priv, pipe) {
828                         if (!intel_display_power_is_enabled(dev_priv,
829                                                 POWER_DOMAIN_PIPE(pipe))) {
830                                 seq_printf(m, "Pipe %c power disabled\n",
831                                            pipe_name(pipe));
832                                 continue;
833                         }
834                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
835                                    pipe_name(pipe),
836                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
838                                    pipe_name(pipe),
839                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840                         seq_printf(m, "Pipe %c IER:\t%08x\n",
841                                    pipe_name(pipe),
842                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
843                 }
844
845                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846                            I915_READ(GEN8_DE_PORT_IMR));
847                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848                            I915_READ(GEN8_DE_PORT_IIR));
849                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850                            I915_READ(GEN8_DE_PORT_IER));
851
852                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853                            I915_READ(GEN8_DE_MISC_IMR));
854                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855                            I915_READ(GEN8_DE_MISC_IIR));
856                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857                            I915_READ(GEN8_DE_MISC_IER));
858
859                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
860                            I915_READ(GEN8_PCU_IMR));
861                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
862                            I915_READ(GEN8_PCU_IIR));
863                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
864                            I915_READ(GEN8_PCU_IER));
865         } else if (IS_VALLEYVIEW(dev)) {
866                 seq_printf(m, "Display IER:\t%08x\n",
867                            I915_READ(VLV_IER));
868                 seq_printf(m, "Display IIR:\t%08x\n",
869                            I915_READ(VLV_IIR));
870                 seq_printf(m, "Display IIR_RW:\t%08x\n",
871                            I915_READ(VLV_IIR_RW));
872                 seq_printf(m, "Display IMR:\t%08x\n",
873                            I915_READ(VLV_IMR));
874                 for_each_pipe(dev_priv, pipe)
875                         seq_printf(m, "Pipe %c stat:\t%08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878
879                 seq_printf(m, "Master IER:\t%08x\n",
880                            I915_READ(VLV_MASTER_IER));
881
882                 seq_printf(m, "Render IER:\t%08x\n",
883                            I915_READ(GTIER));
884                 seq_printf(m, "Render IIR:\t%08x\n",
885                            I915_READ(GTIIR));
886                 seq_printf(m, "Render IMR:\t%08x\n",
887                            I915_READ(GTIMR));
888
889                 seq_printf(m, "PM IER:\t\t%08x\n",
890                            I915_READ(GEN6_PMIER));
891                 seq_printf(m, "PM IIR:\t\t%08x\n",
892                            I915_READ(GEN6_PMIIR));
893                 seq_printf(m, "PM IMR:\t\t%08x\n",
894                            I915_READ(GEN6_PMIMR));
895
896                 seq_printf(m, "Port hotplug:\t%08x\n",
897                            I915_READ(PORT_HOTPLUG_EN));
898                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899                            I915_READ(VLV_DPFLIPSTAT));
900                 seq_printf(m, "DPINVGTT:\t%08x\n",
901                            I915_READ(DPINVGTT));
902
903         } else if (!HAS_PCH_SPLIT(dev)) {
904                 seq_printf(m, "Interrupt enable:    %08x\n",
905                            I915_READ(IER));
906                 seq_printf(m, "Interrupt identity:  %08x\n",
907                            I915_READ(IIR));
908                 seq_printf(m, "Interrupt mask:      %08x\n",
909                            I915_READ(IMR));
910                 for_each_pipe(dev_priv, pipe)
911                         seq_printf(m, "Pipe %c stat:         %08x\n",
912                                    pipe_name(pipe),
913                                    I915_READ(PIPESTAT(pipe)));
914         } else {
915                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
916                            I915_READ(DEIER));
917                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
918                            I915_READ(DEIIR));
919                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
920                            I915_READ(DEIMR));
921                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
922                            I915_READ(SDEIER));
923                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
924                            I915_READ(SDEIIR));
925                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
926                            I915_READ(SDEIMR));
927                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
928                            I915_READ(GTIER));
929                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
930                            I915_READ(GTIIR));
931                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
932                            I915_READ(GTIMR));
933         }
934         for_each_ring(ring, dev_priv, i) {
935                 if (INTEL_INFO(dev)->gen >= 6) {
936                         seq_printf(m,
937                                    "Graphics Interrupt mask (%s):       %08x\n",
938                                    ring->name, I915_READ_IMR(ring));
939                 }
940                 i915_ring_seqno_info(m, ring);
941         }
942         intel_runtime_pm_put(dev_priv);
943         mutex_unlock(&dev->struct_mutex);
944
945         return 0;
946 }
947
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950         struct drm_info_node *node = m->private;
951         struct drm_device *dev = node->minor->dev;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953         int i, ret;
954
955         ret = mutex_lock_interruptible(&dev->struct_mutex);
956         if (ret)
957                 return ret;
958
959         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
960         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
961         for (i = 0; i < dev_priv->num_fence_regs; i++) {
962                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
963
964                 seq_printf(m, "Fence %d, pin count = %d, object = ",
965                            i, dev_priv->fence_regs[i].pin_count);
966                 if (obj == NULL)
967                         seq_puts(m, "unused");
968                 else
969                         describe_obj(m, obj);
970                 seq_putc(m, '\n');
971         }
972
973         mutex_unlock(&dev->struct_mutex);
974         return 0;
975 }
976
977 static int i915_hws_info(struct seq_file *m, void *data)
978 {
979         struct drm_info_node *node = m->private;
980         struct drm_device *dev = node->minor->dev;
981         struct drm_i915_private *dev_priv = dev->dev_private;
982         struct intel_engine_cs *ring;
983         const u32 *hws;
984         int i;
985
986         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
987         hws = ring->status_page.page_addr;
988         if (hws == NULL)
989                 return 0;
990
991         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
992                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
993                            i * 4,
994                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
995         }
996         return 0;
997 }
998
999 static ssize_t
1000 i915_error_state_write(struct file *filp,
1001                        const char __user *ubuf,
1002                        size_t cnt,
1003                        loff_t *ppos)
1004 {
1005         struct i915_error_state_file_priv *error_priv = filp->private_data;
1006         struct drm_device *dev = error_priv->dev;
1007         int ret;
1008
1009         DRM_DEBUG_DRIVER("Resetting error state\n");
1010
1011         ret = mutex_lock_interruptible(&dev->struct_mutex);
1012         if (ret)
1013                 return ret;
1014
1015         i915_destroy_error_state(dev);
1016         mutex_unlock(&dev->struct_mutex);
1017
1018         return cnt;
1019 }
1020
1021 static int i915_error_state_open(struct inode *inode, struct file *file)
1022 {
1023         struct drm_device *dev = inode->i_private;
1024         struct i915_error_state_file_priv *error_priv;
1025
1026         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1027         if (!error_priv)
1028                 return -ENOMEM;
1029
1030         error_priv->dev = dev;
1031
1032         i915_error_state_get(dev, error_priv);
1033
1034         file->private_data = error_priv;
1035
1036         return 0;
1037 }
1038
1039 static int i915_error_state_release(struct inode *inode, struct file *file)
1040 {
1041         struct i915_error_state_file_priv *error_priv = file->private_data;
1042
1043         i915_error_state_put(error_priv);
1044         kfree(error_priv);
1045
1046         return 0;
1047 }
1048
1049 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1050                                      size_t count, loff_t *pos)
1051 {
1052         struct i915_error_state_file_priv *error_priv = file->private_data;
1053         struct drm_i915_error_state_buf error_str;
1054         loff_t tmp_pos = 0;
1055         ssize_t ret_count = 0;
1056         int ret;
1057
1058         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1059         if (ret)
1060                 return ret;
1061
1062         ret = i915_error_state_to_str(&error_str, error_priv);
1063         if (ret)
1064                 goto out;
1065
1066         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1067                                             error_str.buf,
1068                                             error_str.bytes);
1069
1070         if (ret_count < 0)
1071                 ret = ret_count;
1072         else
1073                 *pos = error_str.start + ret_count;
1074 out:
1075         i915_error_state_buf_release(&error_str);
1076         return ret ?: ret_count;
1077 }
1078
1079 static const struct file_operations i915_error_state_fops = {
1080         .owner = THIS_MODULE,
1081         .open = i915_error_state_open,
1082         .read = i915_error_state_read,
1083         .write = i915_error_state_write,
1084         .llseek = default_llseek,
1085         .release = i915_error_state_release,
1086 };
1087
1088 static int
1089 i915_next_seqno_get(void *data, u64 *val)
1090 {
1091         struct drm_device *dev = data;
1092         struct drm_i915_private *dev_priv = dev->dev_private;
1093         int ret;
1094
1095         ret = mutex_lock_interruptible(&dev->struct_mutex);
1096         if (ret)
1097                 return ret;
1098
1099         *val = dev_priv->next_seqno;
1100         mutex_unlock(&dev->struct_mutex);
1101
1102         return 0;
1103 }
1104
1105 static int
1106 i915_next_seqno_set(void *data, u64 val)
1107 {
1108         struct drm_device *dev = data;
1109         int ret;
1110
1111         ret = mutex_lock_interruptible(&dev->struct_mutex);
1112         if (ret)
1113                 return ret;
1114
1115         ret = i915_gem_set_seqno(dev, val);
1116         mutex_unlock(&dev->struct_mutex);
1117
1118         return ret;
1119 }
1120
1121 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1122                         i915_next_seqno_get, i915_next_seqno_set,
1123                         "0x%llx\n");
1124
1125 static int i915_frequency_info(struct seq_file *m, void *unused)
1126 {
1127         struct drm_info_node *node = m->private;
1128         struct drm_device *dev = node->minor->dev;
1129         struct drm_i915_private *dev_priv = dev->dev_private;
1130         int ret = 0;
1131
1132         intel_runtime_pm_get(dev_priv);
1133
1134         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1135
1136         if (IS_GEN5(dev)) {
1137                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1138                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1139
1140                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1141                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1142                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1143                            MEMSTAT_VID_SHIFT);
1144                 seq_printf(m, "Current P-state: %d\n",
1145                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1146         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1147                    IS_BROADWELL(dev) || IS_GEN9(dev)) {
1148                 u32 rp_state_limits;
1149                 u32 gt_perf_status;
1150                 u32 rp_state_cap;
1151                 u32 rpmodectl, rpinclimit, rpdeclimit;
1152                 u32 rpstat, cagf, reqf;
1153                 u32 rpupei, rpcurup, rpprevup;
1154                 u32 rpdownei, rpcurdown, rpprevdown;
1155                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1156                 int max_freq;
1157
1158                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1159                 if (IS_BROXTON(dev)) {
1160                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1161                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1162                 } else {
1163                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1164                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1165                 }
1166
1167                 /* RPSTAT1 is in the GT power well */
1168                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1169                 if (ret)
1170                         goto out;
1171
1172                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1173
1174                 reqf = I915_READ(GEN6_RPNSWREQ);
1175                 if (IS_GEN9(dev))
1176                         reqf >>= 23;
1177                 else {
1178                         reqf &= ~GEN6_TURBO_DISABLE;
1179                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1180                                 reqf >>= 24;
1181                         else
1182                                 reqf >>= 25;
1183                 }
1184                 reqf = intel_gpu_freq(dev_priv, reqf);
1185
1186                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1187                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1188                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1189
1190                 rpstat = I915_READ(GEN6_RPSTAT1);
1191                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1192                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1193                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1194                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1195                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1196                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1197                 if (IS_GEN9(dev))
1198                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1199                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1200                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1201                 else
1202                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1203                 cagf = intel_gpu_freq(dev_priv, cagf);
1204
1205                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1206                 mutex_unlock(&dev->struct_mutex);
1207
1208                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1209                         pm_ier = I915_READ(GEN6_PMIER);
1210                         pm_imr = I915_READ(GEN6_PMIMR);
1211                         pm_isr = I915_READ(GEN6_PMISR);
1212                         pm_iir = I915_READ(GEN6_PMIIR);
1213                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1214                 } else {
1215                         pm_ier = I915_READ(GEN8_GT_IER(2));
1216                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1217                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1218                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1219                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1220                 }
1221                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1222                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1223                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1224                 seq_printf(m, "Render p-state ratio: %d\n",
1225                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1226                 seq_printf(m, "Render p-state VID: %d\n",
1227                            gt_perf_status & 0xff);
1228                 seq_printf(m, "Render p-state limit: %d\n",
1229                            rp_state_limits & 0xff);
1230                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1231                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1232                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1233                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1234                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1235                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1236                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1237                            GEN6_CURICONT_MASK);
1238                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1239                            GEN6_CURBSYTAVG_MASK);
1240                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1241                            GEN6_CURBSYTAVG_MASK);
1242                 seq_printf(m, "Up threshold: %d%%\n",
1243                            dev_priv->rps.up_threshold);
1244
1245                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1246                            GEN6_CURIAVG_MASK);
1247                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1248                            GEN6_CURBSYTAVG_MASK);
1249                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1250                            GEN6_CURBSYTAVG_MASK);
1251                 seq_printf(m, "Down threshold: %d%%\n",
1252                            dev_priv->rps.down_threshold);
1253
1254                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1255                             rp_state_cap >> 16) & 0xff;
1256                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1257                              GEN9_FREQ_SCALER : 1);
1258                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1259                            intel_gpu_freq(dev_priv, max_freq));
1260
1261                 max_freq = (rp_state_cap & 0xff00) >> 8;
1262                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1263                              GEN9_FREQ_SCALER : 1);
1264                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1265                            intel_gpu_freq(dev_priv, max_freq));
1266
1267                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1268                             rp_state_cap >> 0) & 0xff;
1269                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1270                              GEN9_FREQ_SCALER : 1);
1271                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1272                            intel_gpu_freq(dev_priv, max_freq));
1273                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1274                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1275
1276                 seq_printf(m, "Current freq: %d MHz\n",
1277                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1278                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1279                 seq_printf(m, "Idle freq: %d MHz\n",
1280                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1281                 seq_printf(m, "Min freq: %d MHz\n",
1282                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1283                 seq_printf(m, "Max freq: %d MHz\n",
1284                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1285                 seq_printf(m,
1286                            "efficient (RPe) frequency: %d MHz\n",
1287                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1288         } else if (IS_VALLEYVIEW(dev)) {
1289                 u32 freq_sts;
1290
1291                 mutex_lock(&dev_priv->rps.hw_lock);
1292                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1293                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1294                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1295
1296                 seq_printf(m, "actual GPU freq: %d MHz\n",
1297                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1298
1299                 seq_printf(m, "current GPU freq: %d MHz\n",
1300                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1301
1302                 seq_printf(m, "max GPU freq: %d MHz\n",
1303                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1304
1305                 seq_printf(m, "min GPU freq: %d MHz\n",
1306                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1307
1308                 seq_printf(m, "idle GPU freq: %d MHz\n",
1309                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1310
1311                 seq_printf(m,
1312                            "efficient (RPe) frequency: %d MHz\n",
1313                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1314                 mutex_unlock(&dev_priv->rps.hw_lock);
1315         } else {
1316                 seq_puts(m, "no P-state info available\n");
1317         }
1318
1319         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1320         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1321         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1322
1323 out:
1324         intel_runtime_pm_put(dev_priv);
1325         return ret;
1326 }
1327
1328 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1329 {
1330         struct drm_info_node *node = m->private;
1331         struct drm_device *dev = node->minor->dev;
1332         struct drm_i915_private *dev_priv = dev->dev_private;
1333         struct intel_engine_cs *ring;
1334         u64 acthd[I915_NUM_RINGS];
1335         u32 seqno[I915_NUM_RINGS];
1336         int i;
1337
1338         if (!i915.enable_hangcheck) {
1339                 seq_printf(m, "Hangcheck disabled\n");
1340                 return 0;
1341         }
1342
1343         intel_runtime_pm_get(dev_priv);
1344
1345         for_each_ring(ring, dev_priv, i) {
1346                 seqno[i] = ring->get_seqno(ring, false);
1347                 acthd[i] = intel_ring_get_active_head(ring);
1348         }
1349
1350         intel_runtime_pm_put(dev_priv);
1351
1352         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1353                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1354                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1355                                             jiffies));
1356         } else
1357                 seq_printf(m, "Hangcheck inactive\n");
1358
1359         for_each_ring(ring, dev_priv, i) {
1360                 seq_printf(m, "%s:\n", ring->name);
1361                 seq_printf(m, "\tseqno = %x [current %x]\n",
1362                            ring->hangcheck.seqno, seqno[i]);
1363                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1364                            (long long)ring->hangcheck.acthd,
1365                            (long long)acthd[i]);
1366                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1367                            (long long)ring->hangcheck.max_acthd);
1368                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1369                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1370         }
1371
1372         return 0;
1373 }
1374
1375 static int ironlake_drpc_info(struct seq_file *m)
1376 {
1377         struct drm_info_node *node = m->private;
1378         struct drm_device *dev = node->minor->dev;
1379         struct drm_i915_private *dev_priv = dev->dev_private;
1380         u32 rgvmodectl, rstdbyctl;
1381         u16 crstandvid;
1382         int ret;
1383
1384         ret = mutex_lock_interruptible(&dev->struct_mutex);
1385         if (ret)
1386                 return ret;
1387         intel_runtime_pm_get(dev_priv);
1388
1389         rgvmodectl = I915_READ(MEMMODECTL);
1390         rstdbyctl = I915_READ(RSTDBYCTL);
1391         crstandvid = I915_READ16(CRSTANDVID);
1392
1393         intel_runtime_pm_put(dev_priv);
1394         mutex_unlock(&dev->struct_mutex);
1395
1396         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1397         seq_printf(m, "Boost freq: %d\n",
1398                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1399                    MEMMODE_BOOST_FREQ_SHIFT);
1400         seq_printf(m, "HW control enabled: %s\n",
1401                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1402         seq_printf(m, "SW control enabled: %s\n",
1403                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1404         seq_printf(m, "Gated voltage change: %s\n",
1405                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1406         seq_printf(m, "Starting frequency: P%d\n",
1407                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1408         seq_printf(m, "Max P-state: P%d\n",
1409                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1410         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1411         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1412         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1413         seq_printf(m, "Render standby enabled: %s\n",
1414                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1415         seq_puts(m, "Current RS state: ");
1416         switch (rstdbyctl & RSX_STATUS_MASK) {
1417         case RSX_STATUS_ON:
1418                 seq_puts(m, "on\n");
1419                 break;
1420         case RSX_STATUS_RC1:
1421                 seq_puts(m, "RC1\n");
1422                 break;
1423         case RSX_STATUS_RC1E:
1424                 seq_puts(m, "RC1E\n");
1425                 break;
1426         case RSX_STATUS_RS1:
1427                 seq_puts(m, "RS1\n");
1428                 break;
1429         case RSX_STATUS_RS2:
1430                 seq_puts(m, "RS2 (RC6)\n");
1431                 break;
1432         case RSX_STATUS_RS3:
1433                 seq_puts(m, "RC3 (RC6+)\n");
1434                 break;
1435         default:
1436                 seq_puts(m, "unknown\n");
1437                 break;
1438         }
1439
1440         return 0;
1441 }
1442
1443 static int i915_forcewake_domains(struct seq_file *m, void *data)
1444 {
1445         struct drm_info_node *node = m->private;
1446         struct drm_device *dev = node->minor->dev;
1447         struct drm_i915_private *dev_priv = dev->dev_private;
1448         struct intel_uncore_forcewake_domain *fw_domain;
1449         int i;
1450
1451         spin_lock_irq(&dev_priv->uncore.lock);
1452         for_each_fw_domain(fw_domain, dev_priv, i) {
1453                 seq_printf(m, "%s.wake_count = %u\n",
1454                            intel_uncore_forcewake_domain_to_str(i),
1455                            fw_domain->wake_count);
1456         }
1457         spin_unlock_irq(&dev_priv->uncore.lock);
1458
1459         return 0;
1460 }
1461
1462 static int vlv_drpc_info(struct seq_file *m)
1463 {
1464         struct drm_info_node *node = m->private;
1465         struct drm_device *dev = node->minor->dev;
1466         struct drm_i915_private *dev_priv = dev->dev_private;
1467         u32 rpmodectl1, rcctl1, pw_status;
1468
1469         intel_runtime_pm_get(dev_priv);
1470
1471         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1472         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1473         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1474
1475         intel_runtime_pm_put(dev_priv);
1476
1477         seq_printf(m, "Video Turbo Mode: %s\n",
1478                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1479         seq_printf(m, "Turbo enabled: %s\n",
1480                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1481         seq_printf(m, "HW control enabled: %s\n",
1482                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1483         seq_printf(m, "SW control enabled: %s\n",
1484                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1485                           GEN6_RP_MEDIA_SW_MODE));
1486         seq_printf(m, "RC6 Enabled: %s\n",
1487                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1488                                         GEN6_RC_CTL_EI_MODE(1))));
1489         seq_printf(m, "Render Power Well: %s\n",
1490                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1491         seq_printf(m, "Media Power Well: %s\n",
1492                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1493
1494         seq_printf(m, "Render RC6 residency since boot: %u\n",
1495                    I915_READ(VLV_GT_RENDER_RC6));
1496         seq_printf(m, "Media RC6 residency since boot: %u\n",
1497                    I915_READ(VLV_GT_MEDIA_RC6));
1498
1499         return i915_forcewake_domains(m, NULL);
1500 }
1501
1502 static int gen6_drpc_info(struct seq_file *m)
1503 {
1504         struct drm_info_node *node = m->private;
1505         struct drm_device *dev = node->minor->dev;
1506         struct drm_i915_private *dev_priv = dev->dev_private;
1507         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1508         unsigned forcewake_count;
1509         int count = 0, ret;
1510
1511         ret = mutex_lock_interruptible(&dev->struct_mutex);
1512         if (ret)
1513                 return ret;
1514         intel_runtime_pm_get(dev_priv);
1515
1516         spin_lock_irq(&dev_priv->uncore.lock);
1517         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1518         spin_unlock_irq(&dev_priv->uncore.lock);
1519
1520         if (forcewake_count) {
1521                 seq_puts(m, "RC information inaccurate because somebody "
1522                             "holds a forcewake reference \n");
1523         } else {
1524                 /* NB: we cannot use forcewake, else we read the wrong values */
1525                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1526                         udelay(10);
1527                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1528         }
1529
1530         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1531         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1532
1533         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1534         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1535         mutex_unlock(&dev->struct_mutex);
1536         mutex_lock(&dev_priv->rps.hw_lock);
1537         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1538         mutex_unlock(&dev_priv->rps.hw_lock);
1539
1540         intel_runtime_pm_put(dev_priv);
1541
1542         seq_printf(m, "Video Turbo Mode: %s\n",
1543                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1544         seq_printf(m, "HW control enabled: %s\n",
1545                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1546         seq_printf(m, "SW control enabled: %s\n",
1547                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1548                           GEN6_RP_MEDIA_SW_MODE));
1549         seq_printf(m, "RC1e Enabled: %s\n",
1550                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1551         seq_printf(m, "RC6 Enabled: %s\n",
1552                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1553         seq_printf(m, "Deep RC6 Enabled: %s\n",
1554                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1555         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1556                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1557         seq_puts(m, "Current RC state: ");
1558         switch (gt_core_status & GEN6_RCn_MASK) {
1559         case GEN6_RC0:
1560                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1561                         seq_puts(m, "Core Power Down\n");
1562                 else
1563                         seq_puts(m, "on\n");
1564                 break;
1565         case GEN6_RC3:
1566                 seq_puts(m, "RC3\n");
1567                 break;
1568         case GEN6_RC6:
1569                 seq_puts(m, "RC6\n");
1570                 break;
1571         case GEN6_RC7:
1572                 seq_puts(m, "RC7\n");
1573                 break;
1574         default:
1575                 seq_puts(m, "Unknown\n");
1576                 break;
1577         }
1578
1579         seq_printf(m, "Core Power Down: %s\n",
1580                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1581
1582         /* Not exactly sure what this is */
1583         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1584                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1585         seq_printf(m, "RC6 residency since boot: %u\n",
1586                    I915_READ(GEN6_GT_GFX_RC6));
1587         seq_printf(m, "RC6+ residency since boot: %u\n",
1588                    I915_READ(GEN6_GT_GFX_RC6p));
1589         seq_printf(m, "RC6++ residency since boot: %u\n",
1590                    I915_READ(GEN6_GT_GFX_RC6pp));
1591
1592         seq_printf(m, "RC6   voltage: %dmV\n",
1593                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1594         seq_printf(m, "RC6+  voltage: %dmV\n",
1595                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1596         seq_printf(m, "RC6++ voltage: %dmV\n",
1597                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1598         return 0;
1599 }
1600
1601 static int i915_drpc_info(struct seq_file *m, void *unused)
1602 {
1603         struct drm_info_node *node = m->private;
1604         struct drm_device *dev = node->minor->dev;
1605
1606         if (IS_VALLEYVIEW(dev))
1607                 return vlv_drpc_info(m);
1608         else if (INTEL_INFO(dev)->gen >= 6)
1609                 return gen6_drpc_info(m);
1610         else
1611                 return ironlake_drpc_info(m);
1612 }
1613
1614 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1615 {
1616         struct drm_info_node *node = m->private;
1617         struct drm_device *dev = node->minor->dev;
1618         struct drm_i915_private *dev_priv = dev->dev_private;
1619
1620         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1621                    dev_priv->fb_tracking.busy_bits);
1622
1623         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1624                    dev_priv->fb_tracking.flip_bits);
1625
1626         return 0;
1627 }
1628
1629 static int i915_fbc_status(struct seq_file *m, void *unused)
1630 {
1631         struct drm_info_node *node = m->private;
1632         struct drm_device *dev = node->minor->dev;
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634
1635         if (!HAS_FBC(dev)) {
1636                 seq_puts(m, "FBC unsupported on this chipset\n");
1637                 return 0;
1638         }
1639
1640         intel_runtime_pm_get(dev_priv);
1641         mutex_lock(&dev_priv->fbc.lock);
1642
1643         if (intel_fbc_enabled(dev_priv))
1644                 seq_puts(m, "FBC enabled\n");
1645         else
1646                 seq_printf(m, "FBC disabled: %s\n",
1647                            dev_priv->fbc.no_fbc_reason);
1648
1649         if (INTEL_INFO(dev_priv)->gen >= 7)
1650                 seq_printf(m, "Compressing: %s\n",
1651                            yesno(I915_READ(FBC_STATUS2) &
1652                                  FBC_COMPRESSION_MASK));
1653
1654         mutex_unlock(&dev_priv->fbc.lock);
1655         intel_runtime_pm_put(dev_priv);
1656
1657         return 0;
1658 }
1659
1660 static int i915_fbc_fc_get(void *data, u64 *val)
1661 {
1662         struct drm_device *dev = data;
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664
1665         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1666                 return -ENODEV;
1667
1668         *val = dev_priv->fbc.false_color;
1669
1670         return 0;
1671 }
1672
1673 static int i915_fbc_fc_set(void *data, u64 val)
1674 {
1675         struct drm_device *dev = data;
1676         struct drm_i915_private *dev_priv = dev->dev_private;
1677         u32 reg;
1678
1679         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1680                 return -ENODEV;
1681
1682         mutex_lock(&dev_priv->fbc.lock);
1683
1684         reg = I915_READ(ILK_DPFC_CONTROL);
1685         dev_priv->fbc.false_color = val;
1686
1687         I915_WRITE(ILK_DPFC_CONTROL, val ?
1688                    (reg | FBC_CTL_FALSE_COLOR) :
1689                    (reg & ~FBC_CTL_FALSE_COLOR));
1690
1691         mutex_unlock(&dev_priv->fbc.lock);
1692         return 0;
1693 }
1694
1695 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1696                         i915_fbc_fc_get, i915_fbc_fc_set,
1697                         "%llu\n");
1698
1699 static int i915_ips_status(struct seq_file *m, void *unused)
1700 {
1701         struct drm_info_node *node = m->private;
1702         struct drm_device *dev = node->minor->dev;
1703         struct drm_i915_private *dev_priv = dev->dev_private;
1704
1705         if (!HAS_IPS(dev)) {
1706                 seq_puts(m, "not supported\n");
1707                 return 0;
1708         }
1709
1710         intel_runtime_pm_get(dev_priv);
1711
1712         seq_printf(m, "Enabled by kernel parameter: %s\n",
1713                    yesno(i915.enable_ips));
1714
1715         if (INTEL_INFO(dev)->gen >= 8) {
1716                 seq_puts(m, "Currently: unknown\n");
1717         } else {
1718                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1719                         seq_puts(m, "Currently: enabled\n");
1720                 else
1721                         seq_puts(m, "Currently: disabled\n");
1722         }
1723
1724         intel_runtime_pm_put(dev_priv);
1725
1726         return 0;
1727 }
1728
1729 static int i915_sr_status(struct seq_file *m, void *unused)
1730 {
1731         struct drm_info_node *node = m->private;
1732         struct drm_device *dev = node->minor->dev;
1733         struct drm_i915_private *dev_priv = dev->dev_private;
1734         bool sr_enabled = false;
1735
1736         intel_runtime_pm_get(dev_priv);
1737
1738         if (HAS_PCH_SPLIT(dev))
1739                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1740         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1741                  IS_I945G(dev) || IS_I945GM(dev))
1742                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1743         else if (IS_I915GM(dev))
1744                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1745         else if (IS_PINEVIEW(dev))
1746                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1747         else if (IS_VALLEYVIEW(dev))
1748                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1749
1750         intel_runtime_pm_put(dev_priv);
1751
1752         seq_printf(m, "self-refresh: %s\n",
1753                    sr_enabled ? "enabled" : "disabled");
1754
1755         return 0;
1756 }
1757
1758 static int i915_emon_status(struct seq_file *m, void *unused)
1759 {
1760         struct drm_info_node *node = m->private;
1761         struct drm_device *dev = node->minor->dev;
1762         struct drm_i915_private *dev_priv = dev->dev_private;
1763         unsigned long temp, chipset, gfx;
1764         int ret;
1765
1766         if (!IS_GEN5(dev))
1767                 return -ENODEV;
1768
1769         ret = mutex_lock_interruptible(&dev->struct_mutex);
1770         if (ret)
1771                 return ret;
1772
1773         temp = i915_mch_val(dev_priv);
1774         chipset = i915_chipset_val(dev_priv);
1775         gfx = i915_gfx_val(dev_priv);
1776         mutex_unlock(&dev->struct_mutex);
1777
1778         seq_printf(m, "GMCH temp: %ld\n", temp);
1779         seq_printf(m, "Chipset power: %ld\n", chipset);
1780         seq_printf(m, "GFX power: %ld\n", gfx);
1781         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1782
1783         return 0;
1784 }
1785
1786 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1787 {
1788         struct drm_info_node *node = m->private;
1789         struct drm_device *dev = node->minor->dev;
1790         struct drm_i915_private *dev_priv = dev->dev_private;
1791         int ret = 0;
1792         int gpu_freq, ia_freq;
1793         unsigned int max_gpu_freq, min_gpu_freq;
1794
1795         if (!HAS_CORE_RING_FREQ(dev)) {
1796                 seq_puts(m, "unsupported on this chipset\n");
1797                 return 0;
1798         }
1799
1800         intel_runtime_pm_get(dev_priv);
1801
1802         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1803
1804         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1805         if (ret)
1806                 goto out;
1807
1808         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1809                 /* Convert GT frequency to 50 HZ units */
1810                 min_gpu_freq =
1811                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1812                 max_gpu_freq =
1813                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1814         } else {
1815                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1816                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1817         }
1818
1819         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1820
1821         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1822                 ia_freq = gpu_freq;
1823                 sandybridge_pcode_read(dev_priv,
1824                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1825                                        &ia_freq);
1826                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1827                            intel_gpu_freq(dev_priv, (gpu_freq *
1828                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1829                                  GEN9_FREQ_SCALER : 1))),
1830                            ((ia_freq >> 0) & 0xff) * 100,
1831                            ((ia_freq >> 8) & 0xff) * 100);
1832         }
1833
1834         mutex_unlock(&dev_priv->rps.hw_lock);
1835
1836 out:
1837         intel_runtime_pm_put(dev_priv);
1838         return ret;
1839 }
1840
1841 static int i915_opregion(struct seq_file *m, void *unused)
1842 {
1843         struct drm_info_node *node = m->private;
1844         struct drm_device *dev = node->minor->dev;
1845         struct drm_i915_private *dev_priv = dev->dev_private;
1846         struct intel_opregion *opregion = &dev_priv->opregion;
1847         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1848         int ret;
1849
1850         if (data == NULL)
1851                 return -ENOMEM;
1852
1853         ret = mutex_lock_interruptible(&dev->struct_mutex);
1854         if (ret)
1855                 goto out;
1856
1857         if (opregion->header) {
1858                 memcpy(data, opregion->header, OPREGION_SIZE);
1859                 seq_write(m, data, OPREGION_SIZE);
1860         }
1861
1862         mutex_unlock(&dev->struct_mutex);
1863
1864 out:
1865         kfree(data);
1866         return 0;
1867 }
1868
1869 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1870 {
1871         struct drm_info_node *node = m->private;
1872         struct drm_device *dev = node->minor->dev;
1873         struct intel_fbdev *ifbdev = NULL;
1874         struct intel_framebuffer *fb;
1875         struct drm_framebuffer *drm_fb;
1876
1877 #ifdef CONFIG_DRM_FBDEV_EMULATION
1878         struct drm_i915_private *dev_priv = dev->dev_private;
1879
1880         ifbdev = dev_priv->fbdev;
1881         fb = to_intel_framebuffer(ifbdev->helper.fb);
1882
1883         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1884                    fb->base.width,
1885                    fb->base.height,
1886                    fb->base.depth,
1887                    fb->base.bits_per_pixel,
1888                    fb->base.modifier[0],
1889                    atomic_read(&fb->base.refcount.refcount));
1890         describe_obj(m, fb->obj);
1891         seq_putc(m, '\n');
1892 #endif
1893
1894         mutex_lock(&dev->mode_config.fb_lock);
1895         drm_for_each_fb(drm_fb, dev) {
1896                 fb = to_intel_framebuffer(drm_fb);
1897                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1898                         continue;
1899
1900                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1901                            fb->base.width,
1902                            fb->base.height,
1903                            fb->base.depth,
1904                            fb->base.bits_per_pixel,
1905                            fb->base.modifier[0],
1906                            atomic_read(&fb->base.refcount.refcount));
1907                 describe_obj(m, fb->obj);
1908                 seq_putc(m, '\n');
1909         }
1910         mutex_unlock(&dev->mode_config.fb_lock);
1911
1912         return 0;
1913 }
1914
1915 static void describe_ctx_ringbuf(struct seq_file *m,
1916                                  struct intel_ringbuffer *ringbuf)
1917 {
1918         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1919                    ringbuf->space, ringbuf->head, ringbuf->tail,
1920                    ringbuf->last_retired_head);
1921 }
1922
1923 static int i915_context_status(struct seq_file *m, void *unused)
1924 {
1925         struct drm_info_node *node = m->private;
1926         struct drm_device *dev = node->minor->dev;
1927         struct drm_i915_private *dev_priv = dev->dev_private;
1928         struct intel_engine_cs *ring;
1929         struct intel_context *ctx;
1930         int ret, i;
1931
1932         ret = mutex_lock_interruptible(&dev->struct_mutex);
1933         if (ret)
1934                 return ret;
1935
1936         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1937                 if (!i915.enable_execlists &&
1938                     ctx->legacy_hw_ctx.rcs_state == NULL)
1939                         continue;
1940
1941                 seq_puts(m, "HW context ");
1942                 describe_ctx(m, ctx);
1943                 for_each_ring(ring, dev_priv, i) {
1944                         if (ring->default_context == ctx)
1945                                 seq_printf(m, "(default context %s) ",
1946                                            ring->name);
1947                 }
1948
1949                 if (i915.enable_execlists) {
1950                         seq_putc(m, '\n');
1951                         for_each_ring(ring, dev_priv, i) {
1952                                 struct drm_i915_gem_object *ctx_obj =
1953                                         ctx->engine[i].state;
1954                                 struct intel_ringbuffer *ringbuf =
1955                                         ctx->engine[i].ringbuf;
1956
1957                                 seq_printf(m, "%s: ", ring->name);
1958                                 if (ctx_obj)
1959                                         describe_obj(m, ctx_obj);
1960                                 if (ringbuf)
1961                                         describe_ctx_ringbuf(m, ringbuf);
1962                                 seq_putc(m, '\n');
1963                         }
1964                 } else {
1965                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1966                 }
1967
1968                 seq_putc(m, '\n');
1969         }
1970
1971         mutex_unlock(&dev->struct_mutex);
1972
1973         return 0;
1974 }
1975
1976 static void i915_dump_lrc_obj(struct seq_file *m,
1977                               struct intel_engine_cs *ring,
1978                               struct drm_i915_gem_object *ctx_obj)
1979 {
1980         struct page *page;
1981         uint32_t *reg_state;
1982         int j;
1983         unsigned long ggtt_offset = 0;
1984
1985         if (ctx_obj == NULL) {
1986                 seq_printf(m, "Context on %s with no gem object\n",
1987                            ring->name);
1988                 return;
1989         }
1990
1991         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1992                    intel_execlists_ctx_id(ctx_obj));
1993
1994         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1995                 seq_puts(m, "\tNot bound in GGTT\n");
1996         else
1997                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1998
1999         if (i915_gem_object_get_pages(ctx_obj)) {
2000                 seq_puts(m, "\tFailed to get pages for context object\n");
2001                 return;
2002         }
2003
2004         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2005         if (!WARN_ON(page == NULL)) {
2006                 reg_state = kmap_atomic(page);
2007
2008                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2009                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2010                                    ggtt_offset + 4096 + (j * 4),
2011                                    reg_state[j], reg_state[j + 1],
2012                                    reg_state[j + 2], reg_state[j + 3]);
2013                 }
2014                 kunmap_atomic(reg_state);
2015         }
2016
2017         seq_putc(m, '\n');
2018 }
2019
2020 static int i915_dump_lrc(struct seq_file *m, void *unused)
2021 {
2022         struct drm_info_node *node = (struct drm_info_node *) m->private;
2023         struct drm_device *dev = node->minor->dev;
2024         struct drm_i915_private *dev_priv = dev->dev_private;
2025         struct intel_engine_cs *ring;
2026         struct intel_context *ctx;
2027         int ret, i;
2028
2029         if (!i915.enable_execlists) {
2030                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2031                 return 0;
2032         }
2033
2034         ret = mutex_lock_interruptible(&dev->struct_mutex);
2035         if (ret)
2036                 return ret;
2037
2038         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2039                 for_each_ring(ring, dev_priv, i) {
2040                         if (ring->default_context != ctx)
2041                                 i915_dump_lrc_obj(m, ring,
2042                                                   ctx->engine[i].state);
2043                 }
2044         }
2045
2046         mutex_unlock(&dev->struct_mutex);
2047
2048         return 0;
2049 }
2050
2051 static int i915_execlists(struct seq_file *m, void *data)
2052 {
2053         struct drm_info_node *node = (struct drm_info_node *)m->private;
2054         struct drm_device *dev = node->minor->dev;
2055         struct drm_i915_private *dev_priv = dev->dev_private;
2056         struct intel_engine_cs *ring;
2057         u32 status_pointer;
2058         u8 read_pointer;
2059         u8 write_pointer;
2060         u32 status;
2061         u32 ctx_id;
2062         struct list_head *cursor;
2063         int ring_id, i;
2064         int ret;
2065
2066         if (!i915.enable_execlists) {
2067                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2068                 return 0;
2069         }
2070
2071         ret = mutex_lock_interruptible(&dev->struct_mutex);
2072         if (ret)
2073                 return ret;
2074
2075         intel_runtime_pm_get(dev_priv);
2076
2077         for_each_ring(ring, dev_priv, ring_id) {
2078                 struct drm_i915_gem_request *head_req = NULL;
2079                 int count = 0;
2080                 unsigned long flags;
2081
2082                 seq_printf(m, "%s\n", ring->name);
2083
2084                 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2085                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2086                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2087                            status, ctx_id);
2088
2089                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2090                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2091
2092                 read_pointer = ring->next_context_status_buffer;
2093                 write_pointer = status_pointer & 0x07;
2094                 if (read_pointer > write_pointer)
2095                         write_pointer += 6;
2096                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2097                            read_pointer, write_pointer);
2098
2099                 for (i = 0; i < 6; i++) {
2100                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2101                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2102
2103                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2104                                    i, status, ctx_id);
2105                 }
2106
2107                 spin_lock_irqsave(&ring->execlist_lock, flags);
2108                 list_for_each(cursor, &ring->execlist_queue)
2109                         count++;
2110                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2111                                 struct drm_i915_gem_request, execlist_link);
2112                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2113
2114                 seq_printf(m, "\t%d requests in queue\n", count);
2115                 if (head_req) {
2116                         struct drm_i915_gem_object *ctx_obj;
2117
2118                         ctx_obj = head_req->ctx->engine[ring_id].state;
2119                         seq_printf(m, "\tHead request id: %u\n",
2120                                    intel_execlists_ctx_id(ctx_obj));
2121                         seq_printf(m, "\tHead request tail: %u\n",
2122                                    head_req->tail);
2123                 }
2124
2125                 seq_putc(m, '\n');
2126         }
2127
2128         intel_runtime_pm_put(dev_priv);
2129         mutex_unlock(&dev->struct_mutex);
2130
2131         return 0;
2132 }
2133
2134 static const char *swizzle_string(unsigned swizzle)
2135 {
2136         switch (swizzle) {
2137         case I915_BIT_6_SWIZZLE_NONE:
2138                 return "none";
2139         case I915_BIT_6_SWIZZLE_9:
2140                 return "bit9";
2141         case I915_BIT_6_SWIZZLE_9_10:
2142                 return "bit9/bit10";
2143         case I915_BIT_6_SWIZZLE_9_11:
2144                 return "bit9/bit11";
2145         case I915_BIT_6_SWIZZLE_9_10_11:
2146                 return "bit9/bit10/bit11";
2147         case I915_BIT_6_SWIZZLE_9_17:
2148                 return "bit9/bit17";
2149         case I915_BIT_6_SWIZZLE_9_10_17:
2150                 return "bit9/bit10/bit17";
2151         case I915_BIT_6_SWIZZLE_UNKNOWN:
2152                 return "unknown";
2153         }
2154
2155         return "bug";
2156 }
2157
2158 static int i915_swizzle_info(struct seq_file *m, void *data)
2159 {
2160         struct drm_info_node *node = m->private;
2161         struct drm_device *dev = node->minor->dev;
2162         struct drm_i915_private *dev_priv = dev->dev_private;
2163         int ret;
2164
2165         ret = mutex_lock_interruptible(&dev->struct_mutex);
2166         if (ret)
2167                 return ret;
2168         intel_runtime_pm_get(dev_priv);
2169
2170         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2171                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2172         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2173                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2174
2175         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2176                 seq_printf(m, "DDC = 0x%08x\n",
2177                            I915_READ(DCC));
2178                 seq_printf(m, "DDC2 = 0x%08x\n",
2179                            I915_READ(DCC2));
2180                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2181                            I915_READ16(C0DRB3));
2182                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2183                            I915_READ16(C1DRB3));
2184         } else if (INTEL_INFO(dev)->gen >= 6) {
2185                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2186                            I915_READ(MAD_DIMM_C0));
2187                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2188                            I915_READ(MAD_DIMM_C1));
2189                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2190                            I915_READ(MAD_DIMM_C2));
2191                 seq_printf(m, "TILECTL = 0x%08x\n",
2192                            I915_READ(TILECTL));
2193                 if (INTEL_INFO(dev)->gen >= 8)
2194                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2195                                    I915_READ(GAMTARBMODE));
2196                 else
2197                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2198                                    I915_READ(ARB_MODE));
2199                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2200                            I915_READ(DISP_ARB_CTL));
2201         }
2202
2203         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2204                 seq_puts(m, "L-shaped memory detected\n");
2205
2206         intel_runtime_pm_put(dev_priv);
2207         mutex_unlock(&dev->struct_mutex);
2208
2209         return 0;
2210 }
2211
2212 static int per_file_ctx(int id, void *ptr, void *data)
2213 {
2214         struct intel_context *ctx = ptr;
2215         struct seq_file *m = data;
2216         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2217
2218         if (!ppgtt) {
2219                 seq_printf(m, "  no ppgtt for context %d\n",
2220                            ctx->user_handle);
2221                 return 0;
2222         }
2223
2224         if (i915_gem_context_is_default(ctx))
2225                 seq_puts(m, "  default context:\n");
2226         else
2227                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2228         ppgtt->debug_dump(ppgtt, m);
2229
2230         return 0;
2231 }
2232
2233 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2234 {
2235         struct drm_i915_private *dev_priv = dev->dev_private;
2236         struct intel_engine_cs *ring;
2237         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2238         int unused, i;
2239
2240         if (!ppgtt)
2241                 return;
2242
2243         for_each_ring(ring, dev_priv, unused) {
2244                 seq_printf(m, "%s\n", ring->name);
2245                 for (i = 0; i < 4; i++) {
2246                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2247                         pdp <<= 32;
2248                         pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2249                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2250                 }
2251         }
2252 }
2253
2254 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2255 {
2256         struct drm_i915_private *dev_priv = dev->dev_private;
2257         struct intel_engine_cs *ring;
2258         int i;
2259
2260         if (INTEL_INFO(dev)->gen == 6)
2261                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2262
2263         for_each_ring(ring, dev_priv, i) {
2264                 seq_printf(m, "%s\n", ring->name);
2265                 if (INTEL_INFO(dev)->gen == 7)
2266                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2267                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2268                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2269                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2270         }
2271         if (dev_priv->mm.aliasing_ppgtt) {
2272                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2273
2274                 seq_puts(m, "aliasing PPGTT:\n");
2275                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2276
2277                 ppgtt->debug_dump(ppgtt, m);
2278         }
2279
2280         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2281 }
2282
2283 static int i915_ppgtt_info(struct seq_file *m, void *data)
2284 {
2285         struct drm_info_node *node = m->private;
2286         struct drm_device *dev = node->minor->dev;
2287         struct drm_i915_private *dev_priv = dev->dev_private;
2288         struct drm_file *file;
2289
2290         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2291         if (ret)
2292                 return ret;
2293         intel_runtime_pm_get(dev_priv);
2294
2295         if (INTEL_INFO(dev)->gen >= 8)
2296                 gen8_ppgtt_info(m, dev);
2297         else if (INTEL_INFO(dev)->gen >= 6)
2298                 gen6_ppgtt_info(m, dev);
2299
2300         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2301                 struct drm_i915_file_private *file_priv = file->driver_priv;
2302                 struct task_struct *task;
2303
2304                 task = get_pid_task(file->pid, PIDTYPE_PID);
2305                 if (!task) {
2306                         ret = -ESRCH;
2307                         goto out_put;
2308                 }
2309                 seq_printf(m, "\nproc: %s\n", task->comm);
2310                 put_task_struct(task);
2311                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2312                              (void *)(unsigned long)m);
2313         }
2314
2315 out_put:
2316         intel_runtime_pm_put(dev_priv);
2317         mutex_unlock(&dev->struct_mutex);
2318
2319         return ret;
2320 }
2321
2322 static int count_irq_waiters(struct drm_i915_private *i915)
2323 {
2324         struct intel_engine_cs *ring;
2325         int count = 0;
2326         int i;
2327
2328         for_each_ring(ring, i915, i)
2329                 count += ring->irq_refcount;
2330
2331         return count;
2332 }
2333
2334 static int i915_rps_boost_info(struct seq_file *m, void *data)
2335 {
2336         struct drm_info_node *node = m->private;
2337         struct drm_device *dev = node->minor->dev;
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         struct drm_file *file;
2340
2341         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2342         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2343         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2344         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2345                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2346                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2347                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2348                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2349                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2350         spin_lock(&dev_priv->rps.client_lock);
2351         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2352                 struct drm_i915_file_private *file_priv = file->driver_priv;
2353                 struct task_struct *task;
2354
2355                 rcu_read_lock();
2356                 task = pid_task(file->pid, PIDTYPE_PID);
2357                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2358                            task ? task->comm : "<unknown>",
2359                            task ? task->pid : -1,
2360                            file_priv->rps.boosts,
2361                            list_empty(&file_priv->rps.link) ? "" : ", active");
2362                 rcu_read_unlock();
2363         }
2364         seq_printf(m, "Semaphore boosts: %d%s\n",
2365                    dev_priv->rps.semaphores.boosts,
2366                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2367         seq_printf(m, "MMIO flip boosts: %d%s\n",
2368                    dev_priv->rps.mmioflips.boosts,
2369                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2370         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2371         spin_unlock(&dev_priv->rps.client_lock);
2372
2373         return 0;
2374 }
2375
2376 static int i915_llc(struct seq_file *m, void *data)
2377 {
2378         struct drm_info_node *node = m->private;
2379         struct drm_device *dev = node->minor->dev;
2380         struct drm_i915_private *dev_priv = dev->dev_private;
2381
2382         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2383         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2384         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2385
2386         return 0;
2387 }
2388
2389 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2390 {
2391         struct drm_info_node *node = m->private;
2392         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2393         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2394         u32 tmp, i;
2395
2396         if (!HAS_GUC_UCODE(dev_priv->dev))
2397                 return 0;
2398
2399         seq_printf(m, "GuC firmware status:\n");
2400         seq_printf(m, "\tpath: %s\n",
2401                 guc_fw->guc_fw_path);
2402         seq_printf(m, "\tfetch: %s\n",
2403                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2404         seq_printf(m, "\tload: %s\n",
2405                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2406         seq_printf(m, "\tversion wanted: %d.%d\n",
2407                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2408         seq_printf(m, "\tversion found: %d.%d\n",
2409                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2410         seq_printf(m, "\theader: offset is %d; size = %d\n",
2411                 guc_fw->header_offset, guc_fw->header_size);
2412         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2413                 guc_fw->ucode_offset, guc_fw->ucode_size);
2414         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2415                 guc_fw->rsa_offset, guc_fw->rsa_size);
2416
2417         tmp = I915_READ(GUC_STATUS);
2418
2419         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2420         seq_printf(m, "\tBootrom status = 0x%x\n",
2421                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2422         seq_printf(m, "\tuKernel status = 0x%x\n",
2423                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2424         seq_printf(m, "\tMIA Core status = 0x%x\n",
2425                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2426         seq_puts(m, "\nScratch registers:\n");
2427         for (i = 0; i < 16; i++)
2428                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2429
2430         return 0;
2431 }
2432
2433 static void i915_guc_client_info(struct seq_file *m,
2434                                  struct drm_i915_private *dev_priv,
2435                                  struct i915_guc_client *client)
2436 {
2437         struct intel_engine_cs *ring;
2438         uint64_t tot = 0;
2439         uint32_t i;
2440
2441         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2442                 client->priority, client->ctx_index, client->proc_desc_offset);
2443         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2444                 client->doorbell_id, client->doorbell_offset, client->cookie);
2445         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2446                 client->wq_size, client->wq_offset, client->wq_tail);
2447
2448         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2449         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2450         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2451
2452         for_each_ring(ring, dev_priv, i) {
2453                 seq_printf(m, "\tSubmissions: %llu %s\n",
2454                                 client->submissions[i],
2455                                 ring->name);
2456                 tot += client->submissions[i];
2457         }
2458         seq_printf(m, "\tTotal: %llu\n", tot);
2459 }
2460
2461 static int i915_guc_info(struct seq_file *m, void *data)
2462 {
2463         struct drm_info_node *node = m->private;
2464         struct drm_device *dev = node->minor->dev;
2465         struct drm_i915_private *dev_priv = dev->dev_private;
2466         struct intel_guc guc;
2467         struct i915_guc_client client = {};
2468         struct intel_engine_cs *ring;
2469         enum intel_ring_id i;
2470         u64 total = 0;
2471
2472         if (!HAS_GUC_SCHED(dev_priv->dev))
2473                 return 0;
2474
2475         /* Take a local copy of the GuC data, so we can dump it at leisure */
2476         spin_lock(&dev_priv->guc.host2guc_lock);
2477         guc = dev_priv->guc;
2478         if (guc.execbuf_client) {
2479                 spin_lock(&guc.execbuf_client->wq_lock);
2480                 client = *guc.execbuf_client;
2481                 spin_unlock(&guc.execbuf_client->wq_lock);
2482         }
2483         spin_unlock(&dev_priv->guc.host2guc_lock);
2484
2485         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2486         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2487         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2488         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2489         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2490
2491         seq_printf(m, "\nGuC submissions:\n");
2492         for_each_ring(ring, dev_priv, i) {
2493                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2494                         ring->name, guc.submissions[i],
2495                         guc.last_seqno[i], guc.last_seqno[i]);
2496                 total += guc.submissions[i];
2497         }
2498         seq_printf(m, "\t%s: %llu\n", "Total", total);
2499
2500         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2501         i915_guc_client_info(m, dev_priv, &client);
2502
2503         /* Add more as required ... */
2504
2505         return 0;
2506 }
2507
2508 static int i915_guc_log_dump(struct seq_file *m, void *data)
2509 {
2510         struct drm_info_node *node = m->private;
2511         struct drm_device *dev = node->minor->dev;
2512         struct drm_i915_private *dev_priv = dev->dev_private;
2513         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2514         u32 *log;
2515         int i = 0, pg;
2516
2517         if (!log_obj)
2518                 return 0;
2519
2520         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2521                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2522
2523                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2524                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2525                                    *(log + i), *(log + i + 1),
2526                                    *(log + i + 2), *(log + i + 3));
2527
2528                 kunmap_atomic(log);
2529         }
2530
2531         seq_putc(m, '\n');
2532
2533         return 0;
2534 }
2535
2536 static int i915_edp_psr_status(struct seq_file *m, void *data)
2537 {
2538         struct drm_info_node *node = m->private;
2539         struct drm_device *dev = node->minor->dev;
2540         struct drm_i915_private *dev_priv = dev->dev_private;
2541         u32 psrperf = 0;
2542         u32 stat[3];
2543         enum pipe pipe;
2544         bool enabled = false;
2545
2546         if (!HAS_PSR(dev)) {
2547                 seq_puts(m, "PSR not supported\n");
2548                 return 0;
2549         }
2550
2551         intel_runtime_pm_get(dev_priv);
2552
2553         mutex_lock(&dev_priv->psr.lock);
2554         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2555         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2556         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2557         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2558         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2559                    dev_priv->psr.busy_frontbuffer_bits);
2560         seq_printf(m, "Re-enable work scheduled: %s\n",
2561                    yesno(work_busy(&dev_priv->psr.work.work)));
2562
2563         if (HAS_DDI(dev))
2564                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2565         else {
2566                 for_each_pipe(dev_priv, pipe) {
2567                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2568                                 VLV_EDP_PSR_CURR_STATE_MASK;
2569                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2570                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2571                                 enabled = true;
2572                 }
2573         }
2574         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2575
2576         if (!HAS_DDI(dev))
2577                 for_each_pipe(dev_priv, pipe) {
2578                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2579                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2580                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2581                 }
2582         seq_puts(m, "\n");
2583
2584         /* CHV PSR has no kind of performance counter */
2585         if (HAS_DDI(dev)) {
2586                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2587                         EDP_PSR_PERF_CNT_MASK;
2588
2589                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2590         }
2591         mutex_unlock(&dev_priv->psr.lock);
2592
2593         intel_runtime_pm_put(dev_priv);
2594         return 0;
2595 }
2596
2597 static int i915_sink_crc(struct seq_file *m, void *data)
2598 {
2599         struct drm_info_node *node = m->private;
2600         struct drm_device *dev = node->minor->dev;
2601         struct intel_encoder *encoder;
2602         struct intel_connector *connector;
2603         struct intel_dp *intel_dp = NULL;
2604         int ret;
2605         u8 crc[6];
2606
2607         drm_modeset_lock_all(dev);
2608         for_each_intel_connector(dev, connector) {
2609
2610                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2611                         continue;
2612
2613                 if (!connector->base.encoder)
2614                         continue;
2615
2616                 encoder = to_intel_encoder(connector->base.encoder);
2617                 if (encoder->type != INTEL_OUTPUT_EDP)
2618                         continue;
2619
2620                 intel_dp = enc_to_intel_dp(&encoder->base);
2621
2622                 ret = intel_dp_sink_crc(intel_dp, crc);
2623                 if (ret)
2624                         goto out;
2625
2626                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2627                            crc[0], crc[1], crc[2],
2628                            crc[3], crc[4], crc[5]);
2629                 goto out;
2630         }
2631         ret = -ENODEV;
2632 out:
2633         drm_modeset_unlock_all(dev);
2634         return ret;
2635 }
2636
2637 static int i915_energy_uJ(struct seq_file *m, void *data)
2638 {
2639         struct drm_info_node *node = m->private;
2640         struct drm_device *dev = node->minor->dev;
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         u64 power;
2643         u32 units;
2644
2645         if (INTEL_INFO(dev)->gen < 6)
2646                 return -ENODEV;
2647
2648         intel_runtime_pm_get(dev_priv);
2649
2650         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2651         power = (power & 0x1f00) >> 8;
2652         units = 1000000 / (1 << power); /* convert to uJ */
2653         power = I915_READ(MCH_SECP_NRG_STTS);
2654         power *= units;
2655
2656         intel_runtime_pm_put(dev_priv);
2657
2658         seq_printf(m, "%llu", (long long unsigned)power);
2659
2660         return 0;
2661 }
2662
2663 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2664 {
2665         struct drm_info_node *node = m->private;
2666         struct drm_device *dev = node->minor->dev;
2667         struct drm_i915_private *dev_priv = dev->dev_private;
2668
2669         if (!HAS_RUNTIME_PM(dev)) {
2670                 seq_puts(m, "not supported\n");
2671                 return 0;
2672         }
2673
2674         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2675         seq_printf(m, "IRQs disabled: %s\n",
2676                    yesno(!intel_irqs_enabled(dev_priv)));
2677 #ifdef CONFIG_PM
2678         seq_printf(m, "Usage count: %d\n",
2679                    atomic_read(&dev->dev->power.usage_count));
2680 #else
2681         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2682 #endif
2683
2684         return 0;
2685 }
2686
2687 static const char *power_domain_str(enum intel_display_power_domain domain)
2688 {
2689         switch (domain) {
2690         case POWER_DOMAIN_PIPE_A:
2691                 return "PIPE_A";
2692         case POWER_DOMAIN_PIPE_B:
2693                 return "PIPE_B";
2694         case POWER_DOMAIN_PIPE_C:
2695                 return "PIPE_C";
2696         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2697                 return "PIPE_A_PANEL_FITTER";
2698         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2699                 return "PIPE_B_PANEL_FITTER";
2700         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2701                 return "PIPE_C_PANEL_FITTER";
2702         case POWER_DOMAIN_TRANSCODER_A:
2703                 return "TRANSCODER_A";
2704         case POWER_DOMAIN_TRANSCODER_B:
2705                 return "TRANSCODER_B";
2706         case POWER_DOMAIN_TRANSCODER_C:
2707                 return "TRANSCODER_C";
2708         case POWER_DOMAIN_TRANSCODER_EDP:
2709                 return "TRANSCODER_EDP";
2710         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2711                 return "PORT_DDI_A_2_LANES";
2712         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2713                 return "PORT_DDI_A_4_LANES";
2714         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2715                 return "PORT_DDI_B_2_LANES";
2716         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2717                 return "PORT_DDI_B_4_LANES";
2718         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2719                 return "PORT_DDI_C_2_LANES";
2720         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2721                 return "PORT_DDI_C_4_LANES";
2722         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2723                 return "PORT_DDI_D_2_LANES";
2724         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2725                 return "PORT_DDI_D_4_LANES";
2726         case POWER_DOMAIN_PORT_DDI_E_2_LANES:
2727                 return "PORT_DDI_E_2_LANES";
2728         case POWER_DOMAIN_PORT_DSI:
2729                 return "PORT_DSI";
2730         case POWER_DOMAIN_PORT_CRT:
2731                 return "PORT_CRT";
2732         case POWER_DOMAIN_PORT_OTHER:
2733                 return "PORT_OTHER";
2734         case POWER_DOMAIN_VGA:
2735                 return "VGA";
2736         case POWER_DOMAIN_AUDIO:
2737                 return "AUDIO";
2738         case POWER_DOMAIN_PLLS:
2739                 return "PLLS";
2740         case POWER_DOMAIN_AUX_A:
2741                 return "AUX_A";
2742         case POWER_DOMAIN_AUX_B:
2743                 return "AUX_B";
2744         case POWER_DOMAIN_AUX_C:
2745                 return "AUX_C";
2746         case POWER_DOMAIN_AUX_D:
2747                 return "AUX_D";
2748         case POWER_DOMAIN_GMBUS:
2749                 return "GMBUS";
2750         case POWER_DOMAIN_INIT:
2751                 return "INIT";
2752         default:
2753                 MISSING_CASE(domain);
2754                 return "?";
2755         }
2756 }
2757
2758 static int i915_power_domain_info(struct seq_file *m, void *unused)
2759 {
2760         struct drm_info_node *node = m->private;
2761         struct drm_device *dev = node->minor->dev;
2762         struct drm_i915_private *dev_priv = dev->dev_private;
2763         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2764         int i;
2765
2766         mutex_lock(&power_domains->lock);
2767
2768         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2769         for (i = 0; i < power_domains->power_well_count; i++) {
2770                 struct i915_power_well *power_well;
2771                 enum intel_display_power_domain power_domain;
2772
2773                 power_well = &power_domains->power_wells[i];
2774                 seq_printf(m, "%-25s %d\n", power_well->name,
2775                            power_well->count);
2776
2777                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2778                      power_domain++) {
2779                         if (!(BIT(power_domain) & power_well->domains))
2780                                 continue;
2781
2782                         seq_printf(m, "  %-23s %d\n",
2783                                  power_domain_str(power_domain),
2784                                  power_domains->domain_use_count[power_domain]);
2785                 }
2786         }
2787
2788         mutex_unlock(&power_domains->lock);
2789
2790         return 0;
2791 }
2792
2793 static int i915_dmc_info(struct seq_file *m, void *unused)
2794 {
2795         struct drm_info_node *node = m->private;
2796         struct drm_device *dev = node->minor->dev;
2797         struct drm_i915_private *dev_priv = dev->dev_private;
2798         struct intel_csr *csr;
2799
2800         if (!HAS_CSR(dev)) {
2801                 seq_puts(m, "not supported\n");
2802                 return 0;
2803         }
2804
2805         csr = &dev_priv->csr;
2806
2807         intel_runtime_pm_get(dev_priv);
2808
2809         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2810         seq_printf(m, "path: %s\n", csr->fw_path);
2811
2812         if (!csr->dmc_payload)
2813                 goto out;
2814
2815         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2816                    CSR_VERSION_MINOR(csr->version));
2817
2818         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2819                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2820                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2821                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2822                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2823         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2824                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2825                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2826         }
2827
2828 out:
2829         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2830         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2831         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2832
2833         intel_runtime_pm_put(dev_priv);
2834
2835         return 0;
2836 }
2837
2838 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2839                                  struct drm_display_mode *mode)
2840 {
2841         int i;
2842
2843         for (i = 0; i < tabs; i++)
2844                 seq_putc(m, '\t');
2845
2846         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2847                    mode->base.id, mode->name,
2848                    mode->vrefresh, mode->clock,
2849                    mode->hdisplay, mode->hsync_start,
2850                    mode->hsync_end, mode->htotal,
2851                    mode->vdisplay, mode->vsync_start,
2852                    mode->vsync_end, mode->vtotal,
2853                    mode->type, mode->flags);
2854 }
2855
2856 static void intel_encoder_info(struct seq_file *m,
2857                                struct intel_crtc *intel_crtc,
2858                                struct intel_encoder *intel_encoder)
2859 {
2860         struct drm_info_node *node = m->private;
2861         struct drm_device *dev = node->minor->dev;
2862         struct drm_crtc *crtc = &intel_crtc->base;
2863         struct intel_connector *intel_connector;
2864         struct drm_encoder *encoder;
2865
2866         encoder = &intel_encoder->base;
2867         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2868                    encoder->base.id, encoder->name);
2869         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2870                 struct drm_connector *connector = &intel_connector->base;
2871                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2872                            connector->base.id,
2873                            connector->name,
2874                            drm_get_connector_status_name(connector->status));
2875                 if (connector->status == connector_status_connected) {
2876                         struct drm_display_mode *mode = &crtc->mode;
2877                         seq_printf(m, ", mode:\n");
2878                         intel_seq_print_mode(m, 2, mode);
2879                 } else {
2880                         seq_putc(m, '\n');
2881                 }
2882         }
2883 }
2884
2885 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2886 {
2887         struct drm_info_node *node = m->private;
2888         struct drm_device *dev = node->minor->dev;
2889         struct drm_crtc *crtc = &intel_crtc->base;
2890         struct intel_encoder *intel_encoder;
2891         struct drm_plane_state *plane_state = crtc->primary->state;
2892         struct drm_framebuffer *fb = plane_state->fb;
2893
2894         if (fb)
2895                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2896                            fb->base.id, plane_state->src_x >> 16,
2897                            plane_state->src_y >> 16, fb->width, fb->height);
2898         else
2899                 seq_puts(m, "\tprimary plane disabled\n");
2900         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2901                 intel_encoder_info(m, intel_crtc, intel_encoder);
2902 }
2903
2904 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2905 {
2906         struct drm_display_mode *mode = panel->fixed_mode;
2907
2908         seq_printf(m, "\tfixed mode:\n");
2909         intel_seq_print_mode(m, 2, mode);
2910 }
2911
2912 static void intel_dp_info(struct seq_file *m,
2913                           struct intel_connector *intel_connector)
2914 {
2915         struct intel_encoder *intel_encoder = intel_connector->encoder;
2916         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2917
2918         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2919         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2920         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2921                 intel_panel_info(m, &intel_connector->panel);
2922 }
2923
2924 static void intel_hdmi_info(struct seq_file *m,
2925                             struct intel_connector *intel_connector)
2926 {
2927         struct intel_encoder *intel_encoder = intel_connector->encoder;
2928         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2929
2930         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2931 }
2932
2933 static void intel_lvds_info(struct seq_file *m,
2934                             struct intel_connector *intel_connector)
2935 {
2936         intel_panel_info(m, &intel_connector->panel);
2937 }
2938
2939 static void intel_connector_info(struct seq_file *m,
2940                                  struct drm_connector *connector)
2941 {
2942         struct intel_connector *intel_connector = to_intel_connector(connector);
2943         struct intel_encoder *intel_encoder = intel_connector->encoder;
2944         struct drm_display_mode *mode;
2945
2946         seq_printf(m, "connector %d: type %s, status: %s\n",
2947                    connector->base.id, connector->name,
2948                    drm_get_connector_status_name(connector->status));
2949         if (connector->status == connector_status_connected) {
2950                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2951                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2952                            connector->display_info.width_mm,
2953                            connector->display_info.height_mm);
2954                 seq_printf(m, "\tsubpixel order: %s\n",
2955                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2956                 seq_printf(m, "\tCEA rev: %d\n",
2957                            connector->display_info.cea_rev);
2958         }
2959         if (intel_encoder) {
2960                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2961                     intel_encoder->type == INTEL_OUTPUT_EDP)
2962                         intel_dp_info(m, intel_connector);
2963                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2964                         intel_hdmi_info(m, intel_connector);
2965                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2966                         intel_lvds_info(m, intel_connector);
2967         }
2968
2969         seq_printf(m, "\tmodes:\n");
2970         list_for_each_entry(mode, &connector->modes, head)
2971                 intel_seq_print_mode(m, 2, mode);
2972 }
2973
2974 static bool cursor_active(struct drm_device *dev, int pipe)
2975 {
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977         u32 state;
2978
2979         if (IS_845G(dev) || IS_I865G(dev))
2980                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2981         else
2982                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2983
2984         return state;
2985 }
2986
2987 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2988 {
2989         struct drm_i915_private *dev_priv = dev->dev_private;
2990         u32 pos;
2991
2992         pos = I915_READ(CURPOS(pipe));
2993
2994         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2995         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2996                 *x = -*x;
2997
2998         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2999         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3000                 *y = -*y;
3001
3002         return cursor_active(dev, pipe);
3003 }
3004
3005 static const char *plane_type(enum drm_plane_type type)
3006 {
3007         switch (type) {
3008         case DRM_PLANE_TYPE_OVERLAY:
3009                 return "OVL";
3010         case DRM_PLANE_TYPE_PRIMARY:
3011                 return "PRI";
3012         case DRM_PLANE_TYPE_CURSOR:
3013                 return "CUR";
3014         /*
3015          * Deliberately omitting default: to generate compiler warnings
3016          * when a new drm_plane_type gets added.
3017          */
3018         }
3019
3020         return "unknown";
3021 }
3022
3023 static const char *plane_rotation(unsigned int rotation)
3024 {
3025         static char buf[48];
3026         /*
3027          * According to doc only one DRM_ROTATE_ is allowed but this
3028          * will print them all to visualize if the values are misused
3029          */
3030         snprintf(buf, sizeof(buf),
3031                  "%s%s%s%s%s%s(0x%08x)",
3032                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3033                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3034                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3035                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3036                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3037                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3038                  rotation);
3039
3040         return buf;
3041 }
3042
3043 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3044 {
3045         struct drm_info_node *node = m->private;
3046         struct drm_device *dev = node->minor->dev;
3047         struct intel_plane *intel_plane;
3048
3049         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3050                 struct drm_plane_state *state;
3051                 struct drm_plane *plane = &intel_plane->base;
3052
3053                 if (!plane->state) {
3054                         seq_puts(m, "plane->state is NULL!\n");
3055                         continue;
3056                 }
3057
3058                 state = plane->state;
3059
3060                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3061                            plane->base.id,
3062                            plane_type(intel_plane->base.type),
3063                            state->crtc_x, state->crtc_y,
3064                            state->crtc_w, state->crtc_h,
3065                            (state->src_x >> 16),
3066                            ((state->src_x & 0xffff) * 15625) >> 10,
3067                            (state->src_y >> 16),
3068                            ((state->src_y & 0xffff) * 15625) >> 10,
3069                            (state->src_w >> 16),
3070                            ((state->src_w & 0xffff) * 15625) >> 10,
3071                            (state->src_h >> 16),
3072                            ((state->src_h & 0xffff) * 15625) >> 10,
3073                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3074                            plane_rotation(state->rotation));
3075         }
3076 }
3077
3078 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3079 {
3080         struct intel_crtc_state *pipe_config;
3081         int num_scalers = intel_crtc->num_scalers;
3082         int i;
3083
3084         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3085
3086         /* Not all platformas have a scaler */
3087         if (num_scalers) {
3088                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3089                            num_scalers,
3090                            pipe_config->scaler_state.scaler_users,
3091                            pipe_config->scaler_state.scaler_id);
3092
3093                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3094                         struct intel_scaler *sc =
3095                                         &pipe_config->scaler_state.scalers[i];
3096
3097                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3098                                    i, yesno(sc->in_use), sc->mode);
3099                 }
3100                 seq_puts(m, "\n");
3101         } else {
3102                 seq_puts(m, "\tNo scalers available on this platform\n");
3103         }
3104 }
3105
3106 static int i915_display_info(struct seq_file *m, void *unused)
3107 {
3108         struct drm_info_node *node = m->private;
3109         struct drm_device *dev = node->minor->dev;
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111         struct intel_crtc *crtc;
3112         struct drm_connector *connector;
3113
3114         intel_runtime_pm_get(dev_priv);
3115         drm_modeset_lock_all(dev);
3116         seq_printf(m, "CRTC info\n");
3117         seq_printf(m, "---------\n");
3118         for_each_intel_crtc(dev, crtc) {
3119                 bool active;
3120                 struct intel_crtc_state *pipe_config;
3121                 int x, y;
3122
3123                 pipe_config = to_intel_crtc_state(crtc->base.state);
3124
3125                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3126                            crtc->base.base.id, pipe_name(crtc->pipe),
3127                            yesno(pipe_config->base.active),
3128                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3129                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3130
3131                 if (pipe_config->base.active) {
3132                         intel_crtc_info(m, crtc);
3133
3134                         active = cursor_position(dev, crtc->pipe, &x, &y);
3135                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3136                                    yesno(crtc->cursor_base),
3137                                    x, y, crtc->base.cursor->state->crtc_w,
3138                                    crtc->base.cursor->state->crtc_h,
3139                                    crtc->cursor_addr, yesno(active));
3140                         intel_scaler_info(m, crtc);
3141                         intel_plane_info(m, crtc);
3142                 }
3143
3144                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3145                            yesno(!crtc->cpu_fifo_underrun_disabled),
3146                            yesno(!crtc->pch_fifo_underrun_disabled));
3147         }
3148
3149         seq_printf(m, "\n");
3150         seq_printf(m, "Connector info\n");
3151         seq_printf(m, "--------------\n");
3152         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3153                 intel_connector_info(m, connector);
3154         }
3155         drm_modeset_unlock_all(dev);
3156         intel_runtime_pm_put(dev_priv);
3157
3158         return 0;
3159 }
3160
3161 static int i915_semaphore_status(struct seq_file *m, void *unused)
3162 {
3163         struct drm_info_node *node = (struct drm_info_node *) m->private;
3164         struct drm_device *dev = node->minor->dev;
3165         struct drm_i915_private *dev_priv = dev->dev_private;
3166         struct intel_engine_cs *ring;
3167         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3168         int i, j, ret;
3169
3170         if (!i915_semaphore_is_enabled(dev)) {
3171                 seq_puts(m, "Semaphores are disabled\n");
3172                 return 0;
3173         }
3174
3175         ret = mutex_lock_interruptible(&dev->struct_mutex);
3176         if (ret)
3177                 return ret;
3178         intel_runtime_pm_get(dev_priv);
3179
3180         if (IS_BROADWELL(dev)) {
3181                 struct page *page;
3182                 uint64_t *seqno;
3183
3184                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3185
3186                 seqno = (uint64_t *)kmap_atomic(page);
3187                 for_each_ring(ring, dev_priv, i) {
3188                         uint64_t offset;
3189
3190                         seq_printf(m, "%s\n", ring->name);
3191
3192                         seq_puts(m, "  Last signal:");
3193                         for (j = 0; j < num_rings; j++) {
3194                                 offset = i * I915_NUM_RINGS + j;
3195                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3196                                            seqno[offset], offset * 8);
3197                         }
3198                         seq_putc(m, '\n');
3199
3200                         seq_puts(m, "  Last wait:  ");
3201                         for (j = 0; j < num_rings; j++) {
3202                                 offset = i + (j * I915_NUM_RINGS);
3203                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3204                                            seqno[offset], offset * 8);
3205                         }
3206                         seq_putc(m, '\n');
3207
3208                 }
3209                 kunmap_atomic(seqno);
3210         } else {
3211                 seq_puts(m, "  Last signal:");
3212                 for_each_ring(ring, dev_priv, i)
3213                         for (j = 0; j < num_rings; j++)
3214                                 seq_printf(m, "0x%08x\n",
3215                                            I915_READ(ring->semaphore.mbox.signal[j]));
3216                 seq_putc(m, '\n');
3217         }
3218
3219         seq_puts(m, "\nSync seqno:\n");
3220         for_each_ring(ring, dev_priv, i) {
3221                 for (j = 0; j < num_rings; j++) {
3222                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3223                 }
3224                 seq_putc(m, '\n');
3225         }
3226         seq_putc(m, '\n');
3227
3228         intel_runtime_pm_put(dev_priv);
3229         mutex_unlock(&dev->struct_mutex);
3230         return 0;
3231 }
3232
3233 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3234 {
3235         struct drm_info_node *node = (struct drm_info_node *) m->private;
3236         struct drm_device *dev = node->minor->dev;
3237         struct drm_i915_private *dev_priv = dev->dev_private;
3238         int i;
3239
3240         drm_modeset_lock_all(dev);
3241         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3242                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3243
3244                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3245                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3246                            pll->config.crtc_mask, pll->active, yesno(pll->on));
3247                 seq_printf(m, " tracked hardware state:\n");
3248                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3249                 seq_printf(m, " dpll_md: 0x%08x\n",
3250                            pll->config.hw_state.dpll_md);
3251                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3252                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3253                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3254         }
3255         drm_modeset_unlock_all(dev);
3256
3257         return 0;
3258 }
3259
3260 static int i915_wa_registers(struct seq_file *m, void *unused)
3261 {
3262         int i;
3263         int ret;
3264         struct drm_info_node *node = (struct drm_info_node *) m->private;
3265         struct drm_device *dev = node->minor->dev;
3266         struct drm_i915_private *dev_priv = dev->dev_private;
3267
3268         ret = mutex_lock_interruptible(&dev->struct_mutex);
3269         if (ret)
3270                 return ret;
3271
3272         intel_runtime_pm_get(dev_priv);
3273
3274         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3275         for (i = 0; i < dev_priv->workarounds.count; ++i) {
3276                 u32 addr, mask, value, read;
3277                 bool ok;
3278
3279                 addr = dev_priv->workarounds.reg[i].addr;
3280                 mask = dev_priv->workarounds.reg[i].mask;
3281                 value = dev_priv->workarounds.reg[i].value;
3282                 read = I915_READ(addr);
3283                 ok = (value & mask) == (read & mask);
3284                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3285                            addr, value, mask, read, ok ? "OK" : "FAIL");
3286         }
3287
3288         intel_runtime_pm_put(dev_priv);
3289         mutex_unlock(&dev->struct_mutex);
3290
3291         return 0;
3292 }
3293
3294 static int i915_ddb_info(struct seq_file *m, void *unused)
3295 {
3296         struct drm_info_node *node = m->private;
3297         struct drm_device *dev = node->minor->dev;
3298         struct drm_i915_private *dev_priv = dev->dev_private;
3299         struct skl_ddb_allocation *ddb;
3300         struct skl_ddb_entry *entry;
3301         enum pipe pipe;
3302         int plane;
3303
3304         if (INTEL_INFO(dev)->gen < 9)
3305                 return 0;
3306
3307         drm_modeset_lock_all(dev);
3308
3309         ddb = &dev_priv->wm.skl_hw.ddb;
3310
3311         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3312
3313         for_each_pipe(dev_priv, pipe) {
3314                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3315
3316                 for_each_plane(dev_priv, pipe, plane) {
3317                         entry = &ddb->plane[pipe][plane];
3318                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3319                                    entry->start, entry->end,
3320                                    skl_ddb_entry_size(entry));
3321                 }
3322
3323                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3324                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3325                            entry->end, skl_ddb_entry_size(entry));
3326         }
3327
3328         drm_modeset_unlock_all(dev);
3329
3330         return 0;
3331 }
3332
3333 static void drrs_status_per_crtc(struct seq_file *m,
3334                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3335 {
3336         struct intel_encoder *intel_encoder;
3337         struct drm_i915_private *dev_priv = dev->dev_private;
3338         struct i915_drrs *drrs = &dev_priv->drrs;
3339         int vrefresh = 0;
3340
3341         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3342                 /* Encoder connected on this CRTC */
3343                 switch (intel_encoder->type) {
3344                 case INTEL_OUTPUT_EDP:
3345                         seq_puts(m, "eDP:\n");
3346                         break;
3347                 case INTEL_OUTPUT_DSI:
3348                         seq_puts(m, "DSI:\n");
3349                         break;
3350                 case INTEL_OUTPUT_HDMI:
3351                         seq_puts(m, "HDMI:\n");
3352                         break;
3353                 case INTEL_OUTPUT_DISPLAYPORT:
3354                         seq_puts(m, "DP:\n");
3355                         break;
3356                 default:
3357                         seq_printf(m, "Other encoder (id=%d).\n",
3358                                                 intel_encoder->type);
3359                         return;
3360                 }
3361         }
3362
3363         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3364                 seq_puts(m, "\tVBT: DRRS_type: Static");
3365         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3366                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3367         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3368                 seq_puts(m, "\tVBT: DRRS_type: None");
3369         else
3370                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3371
3372         seq_puts(m, "\n\n");
3373
3374         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3375                 struct intel_panel *panel;
3376
3377                 mutex_lock(&drrs->mutex);
3378                 /* DRRS Supported */
3379                 seq_puts(m, "\tDRRS Supported: Yes\n");
3380
3381                 /* disable_drrs() will make drrs->dp NULL */
3382                 if (!drrs->dp) {
3383                         seq_puts(m, "Idleness DRRS: Disabled");
3384                         mutex_unlock(&drrs->mutex);
3385                         return;
3386                 }
3387
3388                 panel = &drrs->dp->attached_connector->panel;
3389                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3390                                         drrs->busy_frontbuffer_bits);
3391
3392                 seq_puts(m, "\n\t\t");
3393                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3394                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3395                         vrefresh = panel->fixed_mode->vrefresh;
3396                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3397                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3398                         vrefresh = panel->downclock_mode->vrefresh;
3399                 } else {
3400                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3401                                                 drrs->refresh_rate_type);
3402                         mutex_unlock(&drrs->mutex);
3403                         return;
3404                 }
3405                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3406
3407                 seq_puts(m, "\n\t\t");
3408                 mutex_unlock(&drrs->mutex);
3409         } else {
3410                 /* DRRS not supported. Print the VBT parameter*/
3411                 seq_puts(m, "\tDRRS Supported : No");
3412         }
3413         seq_puts(m, "\n");
3414 }
3415
3416 static int i915_drrs_status(struct seq_file *m, void *unused)
3417 {
3418         struct drm_info_node *node = m->private;
3419         struct drm_device *dev = node->minor->dev;
3420         struct intel_crtc *intel_crtc;
3421         int active_crtc_cnt = 0;
3422
3423         for_each_intel_crtc(dev, intel_crtc) {
3424                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3425
3426                 if (intel_crtc->base.state->active) {
3427                         active_crtc_cnt++;
3428                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3429
3430                         drrs_status_per_crtc(m, dev, intel_crtc);
3431                 }
3432
3433                 drm_modeset_unlock(&intel_crtc->base.mutex);
3434         }
3435
3436         if (!active_crtc_cnt)
3437                 seq_puts(m, "No active crtc found\n");
3438
3439         return 0;
3440 }
3441
3442 struct pipe_crc_info {
3443         const char *name;
3444         struct drm_device *dev;
3445         enum pipe pipe;
3446 };
3447
3448 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3449 {
3450         struct drm_info_node *node = (struct drm_info_node *) m->private;
3451         struct drm_device *dev = node->minor->dev;
3452         struct drm_encoder *encoder;
3453         struct intel_encoder *intel_encoder;
3454         struct intel_digital_port *intel_dig_port;
3455         drm_modeset_lock_all(dev);
3456         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3457                 intel_encoder = to_intel_encoder(encoder);
3458                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3459                         continue;
3460                 intel_dig_port = enc_to_dig_port(encoder);
3461                 if (!intel_dig_port->dp.can_mst)
3462                         continue;
3463
3464                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3465         }
3466         drm_modeset_unlock_all(dev);
3467         return 0;
3468 }
3469
3470 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3471 {
3472         struct pipe_crc_info *info = inode->i_private;
3473         struct drm_i915_private *dev_priv = info->dev->dev_private;
3474         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3475
3476         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3477                 return -ENODEV;
3478
3479         spin_lock_irq(&pipe_crc->lock);
3480
3481         if (pipe_crc->opened) {
3482                 spin_unlock_irq(&pipe_crc->lock);
3483                 return -EBUSY; /* already open */
3484         }
3485
3486         pipe_crc->opened = true;
3487         filep->private_data = inode->i_private;
3488
3489         spin_unlock_irq(&pipe_crc->lock);
3490
3491         return 0;
3492 }
3493
3494 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3495 {
3496         struct pipe_crc_info *info = inode->i_private;
3497         struct drm_i915_private *dev_priv = info->dev->dev_private;
3498         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3499
3500         spin_lock_irq(&pipe_crc->lock);
3501         pipe_crc->opened = false;
3502         spin_unlock_irq(&pipe_crc->lock);
3503
3504         return 0;
3505 }
3506
3507 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3508 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3509 /* account for \'0' */
3510 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3511
3512 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3513 {
3514         assert_spin_locked(&pipe_crc->lock);
3515         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3516                         INTEL_PIPE_CRC_ENTRIES_NR);
3517 }
3518
3519 static ssize_t
3520 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3521                    loff_t *pos)
3522 {
3523         struct pipe_crc_info *info = filep->private_data;
3524         struct drm_device *dev = info->dev;
3525         struct drm_i915_private *dev_priv = dev->dev_private;
3526         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3527         char buf[PIPE_CRC_BUFFER_LEN];
3528         int n_entries;
3529         ssize_t bytes_read;
3530
3531         /*
3532          * Don't allow user space to provide buffers not big enough to hold
3533          * a line of data.
3534          */
3535         if (count < PIPE_CRC_LINE_LEN)
3536                 return -EINVAL;
3537
3538         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3539                 return 0;
3540
3541         /* nothing to read */
3542         spin_lock_irq(&pipe_crc->lock);
3543         while (pipe_crc_data_count(pipe_crc) == 0) {
3544                 int ret;
3545
3546                 if (filep->f_flags & O_NONBLOCK) {
3547                         spin_unlock_irq(&pipe_crc->lock);
3548                         return -EAGAIN;
3549                 }
3550
3551                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3552                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3553                 if (ret) {
3554                         spin_unlock_irq(&pipe_crc->lock);
3555                         return ret;
3556                 }
3557         }
3558
3559         /* We now have one or more entries to read */
3560         n_entries = count / PIPE_CRC_LINE_LEN;
3561
3562         bytes_read = 0;
3563         while (n_entries > 0) {
3564                 struct intel_pipe_crc_entry *entry =
3565                         &pipe_crc->entries[pipe_crc->tail];
3566                 int ret;
3567
3568                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3569                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3570                         break;
3571
3572                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3573                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3574
3575                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3576                                        "%8u %8x %8x %8x %8x %8x\n",
3577                                        entry->frame, entry->crc[0],
3578                                        entry->crc[1], entry->crc[2],
3579                                        entry->crc[3], entry->crc[4]);
3580
3581                 spin_unlock_irq(&pipe_crc->lock);
3582
3583                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3584                 if (ret == PIPE_CRC_LINE_LEN)
3585                         return -EFAULT;
3586
3587                 user_buf += PIPE_CRC_LINE_LEN;
3588                 n_entries--;
3589
3590                 spin_lock_irq(&pipe_crc->lock);
3591         }
3592
3593         spin_unlock_irq(&pipe_crc->lock);
3594
3595         return bytes_read;
3596 }
3597
3598 static const struct file_operations i915_pipe_crc_fops = {
3599         .owner = THIS_MODULE,
3600         .open = i915_pipe_crc_open,
3601         .read = i915_pipe_crc_read,
3602         .release = i915_pipe_crc_release,
3603 };
3604
3605 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3606         {
3607                 .name = "i915_pipe_A_crc",
3608                 .pipe = PIPE_A,
3609         },
3610         {
3611                 .name = "i915_pipe_B_crc",
3612                 .pipe = PIPE_B,
3613         },
3614         {
3615                 .name = "i915_pipe_C_crc",
3616                 .pipe = PIPE_C,
3617         },
3618 };
3619
3620 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3621                                 enum pipe pipe)
3622 {
3623         struct drm_device *dev = minor->dev;
3624         struct dentry *ent;
3625         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3626
3627         info->dev = dev;
3628         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3629                                   &i915_pipe_crc_fops);
3630         if (!ent)
3631                 return -ENOMEM;
3632
3633         return drm_add_fake_info_node(minor, ent, info);
3634 }
3635
3636 static const char * const pipe_crc_sources[] = {
3637         "none",
3638         "plane1",
3639         "plane2",
3640         "pf",
3641         "pipe",
3642         "TV",
3643         "DP-B",
3644         "DP-C",
3645         "DP-D",
3646         "auto",
3647 };
3648
3649 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3650 {
3651         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3652         return pipe_crc_sources[source];
3653 }
3654
3655 static int display_crc_ctl_show(struct seq_file *m, void *data)
3656 {
3657         struct drm_device *dev = m->private;
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659         int i;
3660
3661         for (i = 0; i < I915_MAX_PIPES; i++)
3662                 seq_printf(m, "%c %s\n", pipe_name(i),
3663                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3664
3665         return 0;
3666 }
3667
3668 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3669 {
3670         struct drm_device *dev = inode->i_private;
3671
3672         return single_open(file, display_crc_ctl_show, dev);
3673 }
3674
3675 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3676                                  uint32_t *val)
3677 {
3678         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3679                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3680
3681         switch (*source) {
3682         case INTEL_PIPE_CRC_SOURCE_PIPE:
3683                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3684                 break;
3685         case INTEL_PIPE_CRC_SOURCE_NONE:
3686                 *val = 0;
3687                 break;
3688         default:
3689                 return -EINVAL;
3690         }
3691
3692         return 0;
3693 }
3694
3695 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3696                                      enum intel_pipe_crc_source *source)
3697 {
3698         struct intel_encoder *encoder;
3699         struct intel_crtc *crtc;
3700         struct intel_digital_port *dig_port;
3701         int ret = 0;
3702
3703         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3704
3705         drm_modeset_lock_all(dev);
3706         for_each_intel_encoder(dev, encoder) {
3707                 if (!encoder->base.crtc)
3708                         continue;
3709
3710                 crtc = to_intel_crtc(encoder->base.crtc);
3711
3712                 if (crtc->pipe != pipe)
3713                         continue;
3714
3715                 switch (encoder->type) {
3716                 case INTEL_OUTPUT_TVOUT:
3717                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3718                         break;
3719                 case INTEL_OUTPUT_DISPLAYPORT:
3720                 case INTEL_OUTPUT_EDP:
3721                         dig_port = enc_to_dig_port(&encoder->base);
3722                         switch (dig_port->port) {
3723                         case PORT_B:
3724                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3725                                 break;
3726                         case PORT_C:
3727                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3728                                 break;
3729                         case PORT_D:
3730                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3731                                 break;
3732                         default:
3733                                 WARN(1, "nonexisting DP port %c\n",
3734                                      port_name(dig_port->port));
3735                                 break;
3736                         }
3737                         break;
3738                 default:
3739                         break;
3740                 }
3741         }
3742         drm_modeset_unlock_all(dev);
3743
3744         return ret;
3745 }
3746
3747 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3748                                 enum pipe pipe,
3749                                 enum intel_pipe_crc_source *source,
3750                                 uint32_t *val)
3751 {
3752         struct drm_i915_private *dev_priv = dev->dev_private;
3753         bool need_stable_symbols = false;
3754
3755         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3756                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3757                 if (ret)
3758                         return ret;
3759         }
3760
3761         switch (*source) {
3762         case INTEL_PIPE_CRC_SOURCE_PIPE:
3763                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3764                 break;
3765         case INTEL_PIPE_CRC_SOURCE_DP_B:
3766                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3767                 need_stable_symbols = true;
3768                 break;
3769         case INTEL_PIPE_CRC_SOURCE_DP_C:
3770                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3771                 need_stable_symbols = true;
3772                 break;
3773         case INTEL_PIPE_CRC_SOURCE_DP_D:
3774                 if (!IS_CHERRYVIEW(dev))
3775                         return -EINVAL;
3776                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3777                 need_stable_symbols = true;
3778                 break;
3779         case INTEL_PIPE_CRC_SOURCE_NONE:
3780                 *val = 0;
3781                 break;
3782         default:
3783                 return -EINVAL;
3784         }
3785
3786         /*
3787          * When the pipe CRC tap point is after the transcoders we need
3788          * to tweak symbol-level features to produce a deterministic series of
3789          * symbols for a given frame. We need to reset those features only once
3790          * a frame (instead of every nth symbol):
3791          *   - DC-balance: used to ensure a better clock recovery from the data
3792          *     link (SDVO)
3793          *   - DisplayPort scrambling: used for EMI reduction
3794          */
3795         if (need_stable_symbols) {
3796                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3797
3798                 tmp |= DC_BALANCE_RESET_VLV;
3799                 switch (pipe) {
3800                 case PIPE_A:
3801                         tmp |= PIPE_A_SCRAMBLE_RESET;
3802                         break;
3803                 case PIPE_B:
3804                         tmp |= PIPE_B_SCRAMBLE_RESET;
3805                         break;
3806                 case PIPE_C:
3807                         tmp |= PIPE_C_SCRAMBLE_RESET;
3808                         break;
3809                 default:
3810                         return -EINVAL;
3811                 }
3812                 I915_WRITE(PORT_DFT2_G4X, tmp);
3813         }
3814
3815         return 0;
3816 }
3817
3818 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3819                                  enum pipe pipe,
3820                                  enum intel_pipe_crc_source *source,
3821                                  uint32_t *val)
3822 {
3823         struct drm_i915_private *dev_priv = dev->dev_private;
3824         bool need_stable_symbols = false;
3825
3826         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3827                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3828                 if (ret)
3829                         return ret;
3830         }
3831
3832         switch (*source) {
3833         case INTEL_PIPE_CRC_SOURCE_PIPE:
3834                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3835                 break;
3836         case INTEL_PIPE_CRC_SOURCE_TV:
3837                 if (!SUPPORTS_TV(dev))
3838                         return -EINVAL;
3839                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3840                 break;
3841         case INTEL_PIPE_CRC_SOURCE_DP_B:
3842                 if (!IS_G4X(dev))
3843                         return -EINVAL;
3844                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3845                 need_stable_symbols = true;
3846                 break;
3847         case INTEL_PIPE_CRC_SOURCE_DP_C:
3848                 if (!IS_G4X(dev))
3849                         return -EINVAL;
3850                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3851                 need_stable_symbols = true;
3852                 break;
3853         case INTEL_PIPE_CRC_SOURCE_DP_D:
3854                 if (!IS_G4X(dev))
3855                         return -EINVAL;
3856                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3857                 need_stable_symbols = true;
3858                 break;
3859         case INTEL_PIPE_CRC_SOURCE_NONE:
3860                 *val = 0;
3861                 break;
3862         default:
3863                 return -EINVAL;
3864         }
3865
3866         /*
3867          * When the pipe CRC tap point is after the transcoders we need
3868          * to tweak symbol-level features to produce a deterministic series of
3869          * symbols for a given frame. We need to reset those features only once
3870          * a frame (instead of every nth symbol):
3871          *   - DC-balance: used to ensure a better clock recovery from the data
3872          *     link (SDVO)
3873          *   - DisplayPort scrambling: used for EMI reduction
3874          */
3875         if (need_stable_symbols) {
3876                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3877
3878                 WARN_ON(!IS_G4X(dev));
3879
3880                 I915_WRITE(PORT_DFT_I9XX,
3881                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3882
3883                 if (pipe == PIPE_A)
3884                         tmp |= PIPE_A_SCRAMBLE_RESET;
3885                 else
3886                         tmp |= PIPE_B_SCRAMBLE_RESET;
3887
3888                 I915_WRITE(PORT_DFT2_G4X, tmp);
3889         }
3890
3891         return 0;
3892 }
3893
3894 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3895                                          enum pipe pipe)
3896 {
3897         struct drm_i915_private *dev_priv = dev->dev_private;
3898         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3899
3900         switch (pipe) {
3901         case PIPE_A:
3902                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3903                 break;
3904         case PIPE_B:
3905                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3906                 break;
3907         case PIPE_C:
3908                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3909                 break;
3910         default:
3911                 return;
3912         }
3913         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3914                 tmp &= ~DC_BALANCE_RESET_VLV;
3915         I915_WRITE(PORT_DFT2_G4X, tmp);
3916
3917 }
3918
3919 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3920                                          enum pipe pipe)
3921 {
3922         struct drm_i915_private *dev_priv = dev->dev_private;
3923         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3924
3925         if (pipe == PIPE_A)
3926                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3927         else
3928                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3929         I915_WRITE(PORT_DFT2_G4X, tmp);
3930
3931         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3932                 I915_WRITE(PORT_DFT_I9XX,
3933                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3934         }
3935 }
3936
3937 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3938                                 uint32_t *val)
3939 {
3940         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3941                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3942
3943         switch (*source) {
3944         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3945                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3946                 break;
3947         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3948                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3949                 break;
3950         case INTEL_PIPE_CRC_SOURCE_PIPE:
3951                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3952                 break;
3953         case INTEL_PIPE_CRC_SOURCE_NONE:
3954                 *val = 0;
3955                 break;
3956         default:
3957                 return -EINVAL;
3958         }
3959
3960         return 0;
3961 }
3962
3963 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3964 {
3965         struct drm_i915_private *dev_priv = dev->dev_private;
3966         struct intel_crtc *crtc =
3967                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3968         struct intel_crtc_state *pipe_config;
3969         struct drm_atomic_state *state;
3970         int ret = 0;
3971
3972         drm_modeset_lock_all(dev);
3973         state = drm_atomic_state_alloc(dev);
3974         if (!state) {
3975                 ret = -ENOMEM;
3976                 goto out;
3977         }
3978
3979         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3980         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3981         if (IS_ERR(pipe_config)) {
3982                 ret = PTR_ERR(pipe_config);
3983                 goto out;
3984         }
3985
3986         pipe_config->pch_pfit.force_thru = enable;
3987         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3988             pipe_config->pch_pfit.enabled != enable)
3989                 pipe_config->base.connectors_changed = true;
3990
3991         ret = drm_atomic_commit(state);
3992 out:
3993         drm_modeset_unlock_all(dev);
3994         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3995         if (ret)
3996                 drm_atomic_state_free(state);
3997 }
3998
3999 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4000                                 enum pipe pipe,
4001                                 enum intel_pipe_crc_source *source,
4002                                 uint32_t *val)
4003 {
4004         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4005                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4006
4007         switch (*source) {
4008         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4009                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4010                 break;
4011         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4012                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4013                 break;
4014         case INTEL_PIPE_CRC_SOURCE_PF:
4015                 if (IS_HASWELL(dev) && pipe == PIPE_A)
4016                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
4017
4018                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4019                 break;
4020         case INTEL_PIPE_CRC_SOURCE_NONE:
4021                 *val = 0;
4022                 break;
4023         default:
4024                 return -EINVAL;
4025         }
4026
4027         return 0;
4028 }
4029
4030 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4031                                enum intel_pipe_crc_source source)
4032 {
4033         struct drm_i915_private *dev_priv = dev->dev_private;
4034         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4035         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4036                                                                         pipe));
4037         u32 val = 0; /* shut up gcc */
4038         int ret;
4039
4040         if (pipe_crc->source == source)
4041                 return 0;
4042
4043         /* forbid changing the source without going back to 'none' */
4044         if (pipe_crc->source && source)
4045                 return -EINVAL;
4046
4047         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
4048                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4049                 return -EIO;
4050         }
4051
4052         if (IS_GEN2(dev))
4053                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4054         else if (INTEL_INFO(dev)->gen < 5)
4055                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4056         else if (IS_VALLEYVIEW(dev))
4057                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4058         else if (IS_GEN5(dev) || IS_GEN6(dev))
4059                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4060         else
4061                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4062
4063         if (ret != 0)
4064                 return ret;
4065
4066         /* none -> real source transition */
4067         if (source) {
4068                 struct intel_pipe_crc_entry *entries;
4069
4070                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4071                                  pipe_name(pipe), pipe_crc_source_name(source));
4072
4073                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4074                                   sizeof(pipe_crc->entries[0]),
4075                                   GFP_KERNEL);
4076                 if (!entries)
4077                         return -ENOMEM;
4078
4079                 /*
4080                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4081                  * enabled and disabled dynamically based on package C states,
4082                  * user space can't make reliable use of the CRCs, so let's just
4083                  * completely disable it.
4084                  */
4085                 hsw_disable_ips(crtc);
4086
4087                 spin_lock_irq(&pipe_crc->lock);
4088                 kfree(pipe_crc->entries);
4089                 pipe_crc->entries = entries;
4090                 pipe_crc->head = 0;
4091                 pipe_crc->tail = 0;
4092                 spin_unlock_irq(&pipe_crc->lock);
4093         }
4094
4095         pipe_crc->source = source;
4096
4097         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4098         POSTING_READ(PIPE_CRC_CTL(pipe));
4099
4100         /* real source -> none transition */
4101         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4102                 struct intel_pipe_crc_entry *entries;
4103                 struct intel_crtc *crtc =
4104                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4105
4106                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4107                                  pipe_name(pipe));
4108
4109                 drm_modeset_lock(&crtc->base.mutex, NULL);
4110                 if (crtc->base.state->active)
4111                         intel_wait_for_vblank(dev, pipe);
4112                 drm_modeset_unlock(&crtc->base.mutex);
4113
4114                 spin_lock_irq(&pipe_crc->lock);
4115                 entries = pipe_crc->entries;
4116                 pipe_crc->entries = NULL;
4117                 pipe_crc->head = 0;
4118                 pipe_crc->tail = 0;
4119                 spin_unlock_irq(&pipe_crc->lock);
4120
4121                 kfree(entries);
4122
4123                 if (IS_G4X(dev))
4124                         g4x_undo_pipe_scramble_reset(dev, pipe);
4125                 else if (IS_VALLEYVIEW(dev))
4126                         vlv_undo_pipe_scramble_reset(dev, pipe);
4127                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4128                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4129
4130                 hsw_enable_ips(crtc);
4131         }
4132
4133         return 0;
4134 }
4135
4136 /*
4137  * Parse pipe CRC command strings:
4138  *   command: wsp* object wsp+ name wsp+ source wsp*
4139  *   object: 'pipe'
4140  *   name: (A | B | C)
4141  *   source: (none | plane1 | plane2 | pf)
4142  *   wsp: (#0x20 | #0x9 | #0xA)+
4143  *
4144  * eg.:
4145  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4146  *  "pipe A none"    ->  Stop CRC
4147  */
4148 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4149 {
4150         int n_words = 0;
4151
4152         while (*buf) {
4153                 char *end;
4154
4155                 /* skip leading white space */
4156                 buf = skip_spaces(buf);
4157                 if (!*buf)
4158                         break;  /* end of buffer */
4159
4160                 /* find end of word */
4161                 for (end = buf; *end && !isspace(*end); end++)
4162                         ;
4163
4164                 if (n_words == max_words) {
4165                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4166                                          max_words);
4167                         return -EINVAL; /* ran out of words[] before bytes */
4168                 }
4169
4170                 if (*end)
4171                         *end++ = '\0';
4172                 words[n_words++] = buf;
4173                 buf = end;
4174         }
4175
4176         return n_words;
4177 }
4178
4179 enum intel_pipe_crc_object {
4180         PIPE_CRC_OBJECT_PIPE,
4181 };
4182
4183 static const char * const pipe_crc_objects[] = {
4184         "pipe",
4185 };
4186
4187 static int
4188 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4189 {
4190         int i;
4191
4192         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4193                 if (!strcmp(buf, pipe_crc_objects[i])) {
4194                         *o = i;
4195                         return 0;
4196                     }
4197
4198         return -EINVAL;
4199 }
4200
4201 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4202 {
4203         const char name = buf[0];
4204
4205         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4206                 return -EINVAL;
4207
4208         *pipe = name - 'A';
4209
4210         return 0;
4211 }
4212
4213 static int
4214 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4215 {
4216         int i;
4217
4218         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4219                 if (!strcmp(buf, pipe_crc_sources[i])) {
4220                         *s = i;
4221                         return 0;
4222                     }
4223
4224         return -EINVAL;
4225 }
4226
4227 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4228 {
4229 #define N_WORDS 3
4230         int n_words;
4231         char *words[N_WORDS];
4232         enum pipe pipe;
4233         enum intel_pipe_crc_object object;
4234         enum intel_pipe_crc_source source;
4235
4236         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4237         if (n_words != N_WORDS) {
4238                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4239                                  N_WORDS);
4240                 return -EINVAL;
4241         }
4242
4243         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4244                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4245                 return -EINVAL;
4246         }
4247
4248         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4249                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4250                 return -EINVAL;
4251         }
4252
4253         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4254                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4255                 return -EINVAL;
4256         }
4257
4258         return pipe_crc_set_source(dev, pipe, source);
4259 }
4260
4261 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4262                                      size_t len, loff_t *offp)
4263 {
4264         struct seq_file *m = file->private_data;
4265         struct drm_device *dev = m->private;
4266         char *tmpbuf;
4267         int ret;
4268
4269         if (len == 0)
4270                 return 0;
4271
4272         if (len > PAGE_SIZE - 1) {
4273                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4274                                  PAGE_SIZE);
4275                 return -E2BIG;
4276         }
4277
4278         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4279         if (!tmpbuf)
4280                 return -ENOMEM;
4281
4282         if (copy_from_user(tmpbuf, ubuf, len)) {
4283                 ret = -EFAULT;
4284                 goto out;
4285         }
4286         tmpbuf[len] = '\0';
4287
4288         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4289
4290 out:
4291         kfree(tmpbuf);
4292         if (ret < 0)
4293                 return ret;
4294
4295         *offp += len;
4296         return len;
4297 }
4298
4299 static const struct file_operations i915_display_crc_ctl_fops = {
4300         .owner = THIS_MODULE,
4301         .open = display_crc_ctl_open,
4302         .read = seq_read,
4303         .llseek = seq_lseek,
4304         .release = single_release,
4305         .write = display_crc_ctl_write
4306 };
4307
4308 static ssize_t i915_displayport_test_active_write(struct file *file,
4309                                             const char __user *ubuf,
4310                                             size_t len, loff_t *offp)
4311 {
4312         char *input_buffer;
4313         int status = 0;
4314         struct drm_device *dev;
4315         struct drm_connector *connector;
4316         struct list_head *connector_list;
4317         struct intel_dp *intel_dp;
4318         int val = 0;
4319
4320         dev = ((struct seq_file *)file->private_data)->private;
4321
4322         connector_list = &dev->mode_config.connector_list;
4323
4324         if (len == 0)
4325                 return 0;
4326
4327         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4328         if (!input_buffer)
4329                 return -ENOMEM;
4330
4331         if (copy_from_user(input_buffer, ubuf, len)) {
4332                 status = -EFAULT;
4333                 goto out;
4334         }
4335
4336         input_buffer[len] = '\0';
4337         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4338
4339         list_for_each_entry(connector, connector_list, head) {
4340
4341                 if (connector->connector_type !=
4342                     DRM_MODE_CONNECTOR_DisplayPort)
4343                         continue;
4344
4345                 if (connector->status == connector_status_connected &&
4346                     connector->encoder != NULL) {
4347                         intel_dp = enc_to_intel_dp(connector->encoder);
4348                         status = kstrtoint(input_buffer, 10, &val);
4349                         if (status < 0)
4350                                 goto out;
4351                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4352                         /* To prevent erroneous activation of the compliance
4353                          * testing code, only accept an actual value of 1 here
4354                          */
4355                         if (val == 1)
4356                                 intel_dp->compliance_test_active = 1;
4357                         else
4358                                 intel_dp->compliance_test_active = 0;
4359                 }
4360         }
4361 out:
4362         kfree(input_buffer);
4363         if (status < 0)
4364                 return status;
4365
4366         *offp += len;
4367         return len;
4368 }
4369
4370 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4371 {
4372         struct drm_device *dev = m->private;
4373         struct drm_connector *connector;
4374         struct list_head *connector_list = &dev->mode_config.connector_list;
4375         struct intel_dp *intel_dp;
4376
4377         list_for_each_entry(connector, connector_list, head) {
4378
4379                 if (connector->connector_type !=
4380                     DRM_MODE_CONNECTOR_DisplayPort)
4381                         continue;
4382
4383                 if (connector->status == connector_status_connected &&
4384                     connector->encoder != NULL) {
4385                         intel_dp = enc_to_intel_dp(connector->encoder);
4386                         if (intel_dp->compliance_test_active)
4387                                 seq_puts(m, "1");
4388                         else
4389                                 seq_puts(m, "0");
4390                 } else
4391                         seq_puts(m, "0");
4392         }
4393
4394         return 0;
4395 }
4396
4397 static int i915_displayport_test_active_open(struct inode *inode,
4398                                        struct file *file)
4399 {
4400         struct drm_device *dev = inode->i_private;
4401
4402         return single_open(file, i915_displayport_test_active_show, dev);
4403 }
4404
4405 static const struct file_operations i915_displayport_test_active_fops = {
4406         .owner = THIS_MODULE,
4407         .open = i915_displayport_test_active_open,
4408         .read = seq_read,
4409         .llseek = seq_lseek,
4410         .release = single_release,
4411         .write = i915_displayport_test_active_write
4412 };
4413
4414 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4415 {
4416         struct drm_device *dev = m->private;
4417         struct drm_connector *connector;
4418         struct list_head *connector_list = &dev->mode_config.connector_list;
4419         struct intel_dp *intel_dp;
4420
4421         list_for_each_entry(connector, connector_list, head) {
4422
4423                 if (connector->connector_type !=
4424                     DRM_MODE_CONNECTOR_DisplayPort)
4425                         continue;
4426
4427                 if (connector->status == connector_status_connected &&
4428                     connector->encoder != NULL) {
4429                         intel_dp = enc_to_intel_dp(connector->encoder);
4430                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4431                 } else
4432                         seq_puts(m, "0");
4433         }
4434
4435         return 0;
4436 }
4437 static int i915_displayport_test_data_open(struct inode *inode,
4438                                        struct file *file)
4439 {
4440         struct drm_device *dev = inode->i_private;
4441
4442         return single_open(file, i915_displayport_test_data_show, dev);
4443 }
4444
4445 static const struct file_operations i915_displayport_test_data_fops = {
4446         .owner = THIS_MODULE,
4447         .open = i915_displayport_test_data_open,
4448         .read = seq_read,
4449         .llseek = seq_lseek,
4450         .release = single_release
4451 };
4452
4453 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4454 {
4455         struct drm_device *dev = m->private;
4456         struct drm_connector *connector;
4457         struct list_head *connector_list = &dev->mode_config.connector_list;
4458         struct intel_dp *intel_dp;
4459
4460         list_for_each_entry(connector, connector_list, head) {
4461
4462                 if (connector->connector_type !=
4463                     DRM_MODE_CONNECTOR_DisplayPort)
4464                         continue;
4465
4466                 if (connector->status == connector_status_connected &&
4467                     connector->encoder != NULL) {
4468                         intel_dp = enc_to_intel_dp(connector->encoder);
4469                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4470                 } else
4471                         seq_puts(m, "0");
4472         }
4473
4474         return 0;
4475 }
4476
4477 static int i915_displayport_test_type_open(struct inode *inode,
4478                                        struct file *file)
4479 {
4480         struct drm_device *dev = inode->i_private;
4481
4482         return single_open(file, i915_displayport_test_type_show, dev);
4483 }
4484
4485 static const struct file_operations i915_displayport_test_type_fops = {
4486         .owner = THIS_MODULE,
4487         .open = i915_displayport_test_type_open,
4488         .read = seq_read,
4489         .llseek = seq_lseek,
4490         .release = single_release
4491 };
4492
4493 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4494 {
4495         struct drm_device *dev = m->private;
4496         int level;
4497         int num_levels;
4498
4499         if (IS_CHERRYVIEW(dev))
4500                 num_levels = 3;
4501         else if (IS_VALLEYVIEW(dev))
4502                 num_levels = 1;
4503         else
4504                 num_levels = ilk_wm_max_level(dev) + 1;
4505
4506         drm_modeset_lock_all(dev);
4507
4508         for (level = 0; level < num_levels; level++) {
4509                 unsigned int latency = wm[level];
4510
4511                 /*
4512                  * - WM1+ latency values in 0.5us units
4513                  * - latencies are in us on gen9/vlv/chv
4514                  */
4515                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev))
4516                         latency *= 10;
4517                 else if (level > 0)
4518                         latency *= 5;
4519
4520                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4521                            level, wm[level], latency / 10, latency % 10);
4522         }
4523
4524         drm_modeset_unlock_all(dev);
4525 }
4526
4527 static int pri_wm_latency_show(struct seq_file *m, void *data)
4528 {
4529         struct drm_device *dev = m->private;
4530         struct drm_i915_private *dev_priv = dev->dev_private;
4531         const uint16_t *latencies;
4532
4533         if (INTEL_INFO(dev)->gen >= 9)
4534                 latencies = dev_priv->wm.skl_latency;
4535         else
4536                 latencies = to_i915(dev)->wm.pri_latency;
4537
4538         wm_latency_show(m, latencies);
4539
4540         return 0;
4541 }
4542
4543 static int spr_wm_latency_show(struct seq_file *m, void *data)
4544 {
4545         struct drm_device *dev = m->private;
4546         struct drm_i915_private *dev_priv = dev->dev_private;
4547         const uint16_t *latencies;
4548
4549         if (INTEL_INFO(dev)->gen >= 9)
4550                 latencies = dev_priv->wm.skl_latency;
4551         else
4552                 latencies = to_i915(dev)->wm.spr_latency;
4553
4554         wm_latency_show(m, latencies);
4555
4556         return 0;
4557 }
4558
4559 static int cur_wm_latency_show(struct seq_file *m, void *data)
4560 {
4561         struct drm_device *dev = m->private;
4562         struct drm_i915_private *dev_priv = dev->dev_private;
4563         const uint16_t *latencies;
4564
4565         if (INTEL_INFO(dev)->gen >= 9)
4566                 latencies = dev_priv->wm.skl_latency;
4567         else
4568                 latencies = to_i915(dev)->wm.cur_latency;
4569
4570         wm_latency_show(m, latencies);
4571
4572         return 0;
4573 }
4574
4575 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4576 {
4577         struct drm_device *dev = inode->i_private;
4578
4579         if (INTEL_INFO(dev)->gen < 5)
4580                 return -ENODEV;
4581
4582         return single_open(file, pri_wm_latency_show, dev);
4583 }
4584
4585 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4586 {
4587         struct drm_device *dev = inode->i_private;
4588
4589         if (HAS_GMCH_DISPLAY(dev))
4590                 return -ENODEV;
4591
4592         return single_open(file, spr_wm_latency_show, dev);
4593 }
4594
4595 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4596 {
4597         struct drm_device *dev = inode->i_private;
4598
4599         if (HAS_GMCH_DISPLAY(dev))
4600                 return -ENODEV;
4601
4602         return single_open(file, cur_wm_latency_show, dev);
4603 }
4604
4605 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4606                                 size_t len, loff_t *offp, uint16_t wm[8])
4607 {
4608         struct seq_file *m = file->private_data;
4609         struct drm_device *dev = m->private;
4610         uint16_t new[8] = { 0 };
4611         int num_levels;
4612         int level;
4613         int ret;
4614         char tmp[32];
4615
4616         if (IS_CHERRYVIEW(dev))
4617                 num_levels = 3;
4618         else if (IS_VALLEYVIEW(dev))
4619                 num_levels = 1;
4620         else
4621                 num_levels = ilk_wm_max_level(dev) + 1;
4622
4623         if (len >= sizeof(tmp))
4624                 return -EINVAL;
4625
4626         if (copy_from_user(tmp, ubuf, len))
4627                 return -EFAULT;
4628
4629         tmp[len] = '\0';
4630
4631         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4632                      &new[0], &new[1], &new[2], &new[3],
4633                      &new[4], &new[5], &new[6], &new[7]);
4634         if (ret != num_levels)
4635                 return -EINVAL;
4636
4637         drm_modeset_lock_all(dev);
4638
4639         for (level = 0; level < num_levels; level++)
4640                 wm[level] = new[level];
4641
4642         drm_modeset_unlock_all(dev);
4643
4644         return len;
4645 }
4646
4647
4648 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4649                                     size_t len, loff_t *offp)
4650 {
4651         struct seq_file *m = file->private_data;
4652         struct drm_device *dev = m->private;
4653         struct drm_i915_private *dev_priv = dev->dev_private;
4654         uint16_t *latencies;
4655
4656         if (INTEL_INFO(dev)->gen >= 9)
4657                 latencies = dev_priv->wm.skl_latency;
4658         else
4659                 latencies = to_i915(dev)->wm.pri_latency;
4660
4661         return wm_latency_write(file, ubuf, len, offp, latencies);
4662 }
4663
4664 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4665                                     size_t len, loff_t *offp)
4666 {
4667         struct seq_file *m = file->private_data;
4668         struct drm_device *dev = m->private;
4669         struct drm_i915_private *dev_priv = dev->dev_private;
4670         uint16_t *latencies;
4671
4672         if (INTEL_INFO(dev)->gen >= 9)
4673                 latencies = dev_priv->wm.skl_latency;
4674         else
4675                 latencies = to_i915(dev)->wm.spr_latency;
4676
4677         return wm_latency_write(file, ubuf, len, offp, latencies);
4678 }
4679
4680 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4681                                     size_t len, loff_t *offp)
4682 {
4683         struct seq_file *m = file->private_data;
4684         struct drm_device *dev = m->private;
4685         struct drm_i915_private *dev_priv = dev->dev_private;
4686         uint16_t *latencies;
4687
4688         if (INTEL_INFO(dev)->gen >= 9)
4689                 latencies = dev_priv->wm.skl_latency;
4690         else
4691                 latencies = to_i915(dev)->wm.cur_latency;
4692
4693         return wm_latency_write(file, ubuf, len, offp, latencies);
4694 }
4695
4696 static const struct file_operations i915_pri_wm_latency_fops = {
4697         .owner = THIS_MODULE,
4698         .open = pri_wm_latency_open,
4699         .read = seq_read,
4700         .llseek = seq_lseek,
4701         .release = single_release,
4702         .write = pri_wm_latency_write
4703 };
4704
4705 static const struct file_operations i915_spr_wm_latency_fops = {
4706         .owner = THIS_MODULE,
4707         .open = spr_wm_latency_open,
4708         .read = seq_read,
4709         .llseek = seq_lseek,
4710         .release = single_release,
4711         .write = spr_wm_latency_write
4712 };
4713
4714 static const struct file_operations i915_cur_wm_latency_fops = {
4715         .owner = THIS_MODULE,
4716         .open = cur_wm_latency_open,
4717         .read = seq_read,
4718         .llseek = seq_lseek,
4719         .release = single_release,
4720         .write = cur_wm_latency_write
4721 };
4722
4723 static int
4724 i915_wedged_get(void *data, u64 *val)
4725 {
4726         struct drm_device *dev = data;
4727         struct drm_i915_private *dev_priv = dev->dev_private;
4728
4729         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4730
4731         return 0;
4732 }
4733
4734 static int
4735 i915_wedged_set(void *data, u64 val)
4736 {
4737         struct drm_device *dev = data;
4738         struct drm_i915_private *dev_priv = dev->dev_private;
4739
4740         /*
4741          * There is no safeguard against this debugfs entry colliding
4742          * with the hangcheck calling same i915_handle_error() in
4743          * parallel, causing an explosion. For now we assume that the
4744          * test harness is responsible enough not to inject gpu hangs
4745          * while it is writing to 'i915_wedged'
4746          */
4747
4748         if (i915_reset_in_progress(&dev_priv->gpu_error))
4749                 return -EAGAIN;
4750
4751         intel_runtime_pm_get(dev_priv);
4752
4753         i915_handle_error(dev, val,
4754                           "Manually setting wedged to %llu", val);
4755
4756         intel_runtime_pm_put(dev_priv);
4757
4758         return 0;
4759 }
4760
4761 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4762                         i915_wedged_get, i915_wedged_set,
4763                         "%llu\n");
4764
4765 static int
4766 i915_ring_stop_get(void *data, u64 *val)
4767 {
4768         struct drm_device *dev = data;
4769         struct drm_i915_private *dev_priv = dev->dev_private;
4770
4771         *val = dev_priv->gpu_error.stop_rings;
4772
4773         return 0;
4774 }
4775
4776 static int
4777 i915_ring_stop_set(void *data, u64 val)
4778 {
4779         struct drm_device *dev = data;
4780         struct drm_i915_private *dev_priv = dev->dev_private;
4781         int ret;
4782
4783         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4784
4785         ret = mutex_lock_interruptible(&dev->struct_mutex);
4786         if (ret)
4787                 return ret;
4788
4789         dev_priv->gpu_error.stop_rings = val;
4790         mutex_unlock(&dev->struct_mutex);
4791
4792         return 0;
4793 }
4794
4795 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4796                         i915_ring_stop_get, i915_ring_stop_set,
4797                         "0x%08llx\n");
4798
4799 static int
4800 i915_ring_missed_irq_get(void *data, u64 *val)
4801 {
4802         struct drm_device *dev = data;
4803         struct drm_i915_private *dev_priv = dev->dev_private;
4804
4805         *val = dev_priv->gpu_error.missed_irq_rings;
4806         return 0;
4807 }
4808
4809 static int
4810 i915_ring_missed_irq_set(void *data, u64 val)
4811 {
4812         struct drm_device *dev = data;
4813         struct drm_i915_private *dev_priv = dev->dev_private;
4814         int ret;
4815
4816         /* Lock against concurrent debugfs callers */
4817         ret = mutex_lock_interruptible(&dev->struct_mutex);
4818         if (ret)
4819                 return ret;
4820         dev_priv->gpu_error.missed_irq_rings = val;
4821         mutex_unlock(&dev->struct_mutex);
4822
4823         return 0;
4824 }
4825
4826 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4827                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4828                         "0x%08llx\n");
4829
4830 static int
4831 i915_ring_test_irq_get(void *data, u64 *val)
4832 {
4833         struct drm_device *dev = data;
4834         struct drm_i915_private *dev_priv = dev->dev_private;
4835
4836         *val = dev_priv->gpu_error.test_irq_rings;
4837
4838         return 0;
4839 }
4840
4841 static int
4842 i915_ring_test_irq_set(void *data, u64 val)
4843 {
4844         struct drm_device *dev = data;
4845         struct drm_i915_private *dev_priv = dev->dev_private;
4846         int ret;
4847
4848         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4849
4850         /* Lock against concurrent debugfs callers */
4851         ret = mutex_lock_interruptible(&dev->struct_mutex);
4852         if (ret)
4853                 return ret;
4854
4855         dev_priv->gpu_error.test_irq_rings = val;
4856         mutex_unlock(&dev->struct_mutex);
4857
4858         return 0;
4859 }
4860
4861 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4862                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4863                         "0x%08llx\n");
4864
4865 #define DROP_UNBOUND 0x1
4866 #define DROP_BOUND 0x2
4867 #define DROP_RETIRE 0x4
4868 #define DROP_ACTIVE 0x8
4869 #define DROP_ALL (DROP_UNBOUND | \
4870                   DROP_BOUND | \
4871                   DROP_RETIRE | \
4872                   DROP_ACTIVE)
4873 static int
4874 i915_drop_caches_get(void *data, u64 *val)
4875 {
4876         *val = DROP_ALL;
4877
4878         return 0;
4879 }
4880
4881 static int
4882 i915_drop_caches_set(void *data, u64 val)
4883 {
4884         struct drm_device *dev = data;
4885         struct drm_i915_private *dev_priv = dev->dev_private;
4886         int ret;
4887
4888         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4889
4890         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4891          * on ioctls on -EAGAIN. */
4892         ret = mutex_lock_interruptible(&dev->struct_mutex);
4893         if (ret)
4894                 return ret;
4895
4896         if (val & DROP_ACTIVE) {
4897                 ret = i915_gpu_idle(dev);
4898                 if (ret)
4899                         goto unlock;
4900         }
4901
4902         if (val & (DROP_RETIRE | DROP_ACTIVE))
4903                 i915_gem_retire_requests(dev);
4904
4905         if (val & DROP_BOUND)
4906                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4907
4908         if (val & DROP_UNBOUND)
4909                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4910
4911 unlock:
4912         mutex_unlock(&dev->struct_mutex);
4913
4914         return ret;
4915 }
4916
4917 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4918                         i915_drop_caches_get, i915_drop_caches_set,
4919                         "0x%08llx\n");
4920
4921 static int
4922 i915_max_freq_get(void *data, u64 *val)
4923 {
4924         struct drm_device *dev = data;
4925         struct drm_i915_private *dev_priv = dev->dev_private;
4926         int ret;
4927
4928         if (INTEL_INFO(dev)->gen < 6)
4929                 return -ENODEV;
4930
4931         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4932
4933         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4934         if (ret)
4935                 return ret;
4936
4937         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4938         mutex_unlock(&dev_priv->rps.hw_lock);
4939
4940         return 0;
4941 }
4942
4943 static int
4944 i915_max_freq_set(void *data, u64 val)
4945 {
4946         struct drm_device *dev = data;
4947         struct drm_i915_private *dev_priv = dev->dev_private;
4948         u32 hw_max, hw_min;
4949         int ret;
4950
4951         if (INTEL_INFO(dev)->gen < 6)
4952                 return -ENODEV;
4953
4954         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4955
4956         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4957
4958         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4959         if (ret)
4960                 return ret;
4961
4962         /*
4963          * Turbo will still be enabled, but won't go above the set value.
4964          */
4965         val = intel_freq_opcode(dev_priv, val);
4966
4967         hw_max = dev_priv->rps.max_freq;
4968         hw_min = dev_priv->rps.min_freq;
4969
4970         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4971                 mutex_unlock(&dev_priv->rps.hw_lock);
4972                 return -EINVAL;
4973         }
4974
4975         dev_priv->rps.max_freq_softlimit = val;
4976
4977         intel_set_rps(dev, val);
4978
4979         mutex_unlock(&dev_priv->rps.hw_lock);
4980
4981         return 0;
4982 }
4983
4984 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4985                         i915_max_freq_get, i915_max_freq_set,
4986                         "%llu\n");
4987
4988 static int
4989 i915_min_freq_get(void *data, u64 *val)
4990 {
4991         struct drm_device *dev = data;
4992         struct drm_i915_private *dev_priv = dev->dev_private;
4993         int ret;
4994
4995         if (INTEL_INFO(dev)->gen < 6)
4996                 return -ENODEV;
4997
4998         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4999
5000         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5001         if (ret)
5002                 return ret;
5003
5004         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5005         mutex_unlock(&dev_priv->rps.hw_lock);
5006
5007         return 0;
5008 }
5009
5010 static int
5011 i915_min_freq_set(void *data, u64 val)
5012 {
5013         struct drm_device *dev = data;
5014         struct drm_i915_private *dev_priv = dev->dev_private;
5015         u32 hw_max, hw_min;
5016         int ret;
5017
5018         if (INTEL_INFO(dev)->gen < 6)
5019                 return -ENODEV;
5020
5021         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5022
5023         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5024
5025         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5026         if (ret)
5027                 return ret;
5028
5029         /*
5030          * Turbo will still be enabled, but won't go below the set value.
5031          */
5032         val = intel_freq_opcode(dev_priv, val);
5033
5034         hw_max = dev_priv->rps.max_freq;
5035         hw_min = dev_priv->rps.min_freq;
5036
5037         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5038                 mutex_unlock(&dev_priv->rps.hw_lock);
5039                 return -EINVAL;
5040         }
5041
5042         dev_priv->rps.min_freq_softlimit = val;
5043
5044         intel_set_rps(dev, val);
5045
5046         mutex_unlock(&dev_priv->rps.hw_lock);
5047
5048         return 0;
5049 }
5050
5051 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5052                         i915_min_freq_get, i915_min_freq_set,
5053                         "%llu\n");
5054
5055 static int
5056 i915_cache_sharing_get(void *data, u64 *val)
5057 {
5058         struct drm_device *dev = data;
5059         struct drm_i915_private *dev_priv = dev->dev_private;
5060         u32 snpcr;
5061         int ret;
5062
5063         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5064                 return -ENODEV;
5065
5066         ret = mutex_lock_interruptible(&dev->struct_mutex);
5067         if (ret)
5068                 return ret;
5069         intel_runtime_pm_get(dev_priv);
5070
5071         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5072
5073         intel_runtime_pm_put(dev_priv);
5074         mutex_unlock(&dev_priv->dev->struct_mutex);
5075
5076         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5077
5078         return 0;
5079 }
5080
5081 static int
5082 i915_cache_sharing_set(void *data, u64 val)
5083 {
5084         struct drm_device *dev = data;
5085         struct drm_i915_private *dev_priv = dev->dev_private;
5086         u32 snpcr;
5087
5088         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5089                 return -ENODEV;
5090
5091         if (val > 3)
5092                 return -EINVAL;
5093
5094         intel_runtime_pm_get(dev_priv);
5095         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5096
5097         /* Update the cache sharing policy here as well */
5098         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5099         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5100         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5101         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5102
5103         intel_runtime_pm_put(dev_priv);
5104         return 0;
5105 }
5106
5107 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5108                         i915_cache_sharing_get, i915_cache_sharing_set,
5109                         "%llu\n");
5110
5111 struct sseu_dev_status {
5112         unsigned int slice_total;
5113         unsigned int subslice_total;
5114         unsigned int subslice_per_slice;
5115         unsigned int eu_total;
5116         unsigned int eu_per_subslice;
5117 };
5118
5119 static void cherryview_sseu_device_status(struct drm_device *dev,
5120                                           struct sseu_dev_status *stat)
5121 {
5122         struct drm_i915_private *dev_priv = dev->dev_private;
5123         int ss_max = 2;
5124         int ss;
5125         u32 sig1[ss_max], sig2[ss_max];
5126
5127         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5128         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5129         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5130         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5131
5132         for (ss = 0; ss < ss_max; ss++) {
5133                 unsigned int eu_cnt;
5134
5135                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5136                         /* skip disabled subslice */
5137                         continue;
5138
5139                 stat->slice_total = 1;
5140                 stat->subslice_per_slice++;
5141                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5142                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5143                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5144                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5145                 stat->eu_total += eu_cnt;
5146                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5147         }
5148         stat->subslice_total = stat->subslice_per_slice;
5149 }
5150
5151 static void gen9_sseu_device_status(struct drm_device *dev,
5152                                     struct sseu_dev_status *stat)
5153 {
5154         struct drm_i915_private *dev_priv = dev->dev_private;
5155         int s_max = 3, ss_max = 4;
5156         int s, ss;
5157         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5158
5159         /* BXT has a single slice and at most 3 subslices. */
5160         if (IS_BROXTON(dev)) {
5161                 s_max = 1;
5162                 ss_max = 3;
5163         }
5164
5165         for (s = 0; s < s_max; s++) {
5166                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5167                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5168                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5169         }
5170
5171         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5172                      GEN9_PGCTL_SSA_EU19_ACK |
5173                      GEN9_PGCTL_SSA_EU210_ACK |
5174                      GEN9_PGCTL_SSA_EU311_ACK;
5175         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5176                      GEN9_PGCTL_SSB_EU19_ACK |
5177                      GEN9_PGCTL_SSB_EU210_ACK |
5178                      GEN9_PGCTL_SSB_EU311_ACK;
5179
5180         for (s = 0; s < s_max; s++) {
5181                 unsigned int ss_cnt = 0;
5182
5183                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5184                         /* skip disabled slice */
5185                         continue;
5186
5187                 stat->slice_total++;
5188
5189                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5190                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5191
5192                 for (ss = 0; ss < ss_max; ss++) {
5193                         unsigned int eu_cnt;
5194
5195                         if (IS_BROXTON(dev) &&
5196                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5197                                 /* skip disabled subslice */
5198                                 continue;
5199
5200                         if (IS_BROXTON(dev))
5201                                 ss_cnt++;
5202
5203                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5204                                                eu_mask[ss%2]);
5205                         stat->eu_total += eu_cnt;
5206                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5207                                                     eu_cnt);
5208                 }
5209
5210                 stat->subslice_total += ss_cnt;
5211                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5212                                                ss_cnt);
5213         }
5214 }
5215
5216 static void broadwell_sseu_device_status(struct drm_device *dev,
5217                                          struct sseu_dev_status *stat)
5218 {
5219         struct drm_i915_private *dev_priv = dev->dev_private;
5220         int s;
5221         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5222
5223         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5224
5225         if (stat->slice_total) {
5226                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5227                 stat->subslice_total = stat->slice_total *
5228                                        stat->subslice_per_slice;
5229                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5230                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5231
5232                 /* subtract fused off EU(s) from enabled slice(s) */
5233                 for (s = 0; s < stat->slice_total; s++) {
5234                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5235
5236                         stat->eu_total -= hweight8(subslice_7eu);
5237                 }
5238         }
5239 }
5240
5241 static int i915_sseu_status(struct seq_file *m, void *unused)
5242 {
5243         struct drm_info_node *node = (struct drm_info_node *) m->private;
5244         struct drm_device *dev = node->minor->dev;
5245         struct sseu_dev_status stat;
5246
5247         if (INTEL_INFO(dev)->gen < 8)
5248                 return -ENODEV;
5249
5250         seq_puts(m, "SSEU Device Info\n");
5251         seq_printf(m, "  Available Slice Total: %u\n",
5252                    INTEL_INFO(dev)->slice_total);
5253         seq_printf(m, "  Available Subslice Total: %u\n",
5254                    INTEL_INFO(dev)->subslice_total);
5255         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5256                    INTEL_INFO(dev)->subslice_per_slice);
5257         seq_printf(m, "  Available EU Total: %u\n",
5258                    INTEL_INFO(dev)->eu_total);
5259         seq_printf(m, "  Available EU Per Subslice: %u\n",
5260                    INTEL_INFO(dev)->eu_per_subslice);
5261         seq_printf(m, "  Has Slice Power Gating: %s\n",
5262                    yesno(INTEL_INFO(dev)->has_slice_pg));
5263         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5264                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5265         seq_printf(m, "  Has EU Power Gating: %s\n",
5266                    yesno(INTEL_INFO(dev)->has_eu_pg));
5267
5268         seq_puts(m, "SSEU Device Status\n");
5269         memset(&stat, 0, sizeof(stat));
5270         if (IS_CHERRYVIEW(dev)) {
5271                 cherryview_sseu_device_status(dev, &stat);
5272         } else if (IS_BROADWELL(dev)) {
5273                 broadwell_sseu_device_status(dev, &stat);
5274         } else if (INTEL_INFO(dev)->gen >= 9) {
5275                 gen9_sseu_device_status(dev, &stat);
5276         }
5277         seq_printf(m, "  Enabled Slice Total: %u\n",
5278                    stat.slice_total);
5279         seq_printf(m, "  Enabled Subslice Total: %u\n",
5280                    stat.subslice_total);
5281         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5282                    stat.subslice_per_slice);
5283         seq_printf(m, "  Enabled EU Total: %u\n",
5284                    stat.eu_total);
5285         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5286                    stat.eu_per_subslice);
5287
5288         return 0;
5289 }
5290
5291 static int i915_forcewake_open(struct inode *inode, struct file *file)
5292 {
5293         struct drm_device *dev = inode->i_private;
5294         struct drm_i915_private *dev_priv = dev->dev_private;
5295
5296         if (INTEL_INFO(dev)->gen < 6)
5297                 return 0;
5298
5299         intel_runtime_pm_get(dev_priv);
5300         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5301
5302         return 0;
5303 }
5304
5305 static int i915_forcewake_release(struct inode *inode, struct file *file)
5306 {
5307         struct drm_device *dev = inode->i_private;
5308         struct drm_i915_private *dev_priv = dev->dev_private;
5309
5310         if (INTEL_INFO(dev)->gen < 6)
5311                 return 0;
5312
5313         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5314         intel_runtime_pm_put(dev_priv);
5315
5316         return 0;
5317 }
5318
5319 static const struct file_operations i915_forcewake_fops = {
5320         .owner = THIS_MODULE,
5321         .open = i915_forcewake_open,
5322         .release = i915_forcewake_release,
5323 };
5324
5325 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5326 {
5327         struct drm_device *dev = minor->dev;
5328         struct dentry *ent;
5329
5330         ent = debugfs_create_file("i915_forcewake_user",
5331                                   S_IRUSR,
5332                                   root, dev,
5333                                   &i915_forcewake_fops);
5334         if (!ent)
5335                 return -ENOMEM;
5336
5337         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5338 }
5339
5340 static int i915_debugfs_create(struct dentry *root,
5341                                struct drm_minor *minor,
5342                                const char *name,
5343                                const struct file_operations *fops)
5344 {
5345         struct drm_device *dev = minor->dev;
5346         struct dentry *ent;
5347
5348         ent = debugfs_create_file(name,
5349                                   S_IRUGO | S_IWUSR,
5350                                   root, dev,
5351                                   fops);
5352         if (!ent)
5353                 return -ENOMEM;
5354
5355         return drm_add_fake_info_node(minor, ent, fops);
5356 }
5357
5358 static const struct drm_info_list i915_debugfs_list[] = {
5359         {"i915_capabilities", i915_capabilities, 0},
5360         {"i915_gem_objects", i915_gem_object_info, 0},
5361         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5362         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5363         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5364         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5365         {"i915_gem_stolen", i915_gem_stolen_list_info },
5366         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5367         {"i915_gem_request", i915_gem_request_info, 0},
5368         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5369         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5370         {"i915_gem_interrupt", i915_interrupt_info, 0},
5371         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5372         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5373         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5374         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5375         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5376         {"i915_guc_info", i915_guc_info, 0},
5377         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5378         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5379         {"i915_frequency_info", i915_frequency_info, 0},
5380         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5381         {"i915_drpc_info", i915_drpc_info, 0},
5382         {"i915_emon_status", i915_emon_status, 0},
5383         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5384         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5385         {"i915_fbc_status", i915_fbc_status, 0},
5386         {"i915_ips_status", i915_ips_status, 0},
5387         {"i915_sr_status", i915_sr_status, 0},
5388         {"i915_opregion", i915_opregion, 0},
5389         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5390         {"i915_context_status", i915_context_status, 0},
5391         {"i915_dump_lrc", i915_dump_lrc, 0},
5392         {"i915_execlists", i915_execlists, 0},
5393         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5394         {"i915_swizzle_info", i915_swizzle_info, 0},
5395         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5396         {"i915_llc", i915_llc, 0},
5397         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5398         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5399         {"i915_energy_uJ", i915_energy_uJ, 0},
5400         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5401         {"i915_power_domain_info", i915_power_domain_info, 0},
5402         {"i915_dmc_info", i915_dmc_info, 0},
5403         {"i915_display_info", i915_display_info, 0},
5404         {"i915_semaphore_status", i915_semaphore_status, 0},
5405         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5406         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5407         {"i915_wa_registers", i915_wa_registers, 0},
5408         {"i915_ddb_info", i915_ddb_info, 0},
5409         {"i915_sseu_status", i915_sseu_status, 0},
5410         {"i915_drrs_status", i915_drrs_status, 0},
5411         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5412 };
5413 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5414
5415 static const struct i915_debugfs_files {
5416         const char *name;
5417         const struct file_operations *fops;
5418 } i915_debugfs_files[] = {
5419         {"i915_wedged", &i915_wedged_fops},
5420         {"i915_max_freq", &i915_max_freq_fops},
5421         {"i915_min_freq", &i915_min_freq_fops},
5422         {"i915_cache_sharing", &i915_cache_sharing_fops},
5423         {"i915_ring_stop", &i915_ring_stop_fops},
5424         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5425         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5426         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5427         {"i915_error_state", &i915_error_state_fops},
5428         {"i915_next_seqno", &i915_next_seqno_fops},
5429         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5430         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5431         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5432         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5433         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5434         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5435         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5436         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5437 };
5438
5439 void intel_display_crc_init(struct drm_device *dev)
5440 {
5441         struct drm_i915_private *dev_priv = dev->dev_private;
5442         enum pipe pipe;
5443
5444         for_each_pipe(dev_priv, pipe) {
5445                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5446
5447                 pipe_crc->opened = false;
5448                 spin_lock_init(&pipe_crc->lock);
5449                 init_waitqueue_head(&pipe_crc->wq);
5450         }
5451 }
5452
5453 int i915_debugfs_init(struct drm_minor *minor)
5454 {
5455         int ret, i;
5456
5457         ret = i915_forcewake_create(minor->debugfs_root, minor);
5458         if (ret)
5459                 return ret;
5460
5461         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5462                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5463                 if (ret)
5464                         return ret;
5465         }
5466
5467         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5468                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5469                                           i915_debugfs_files[i].name,
5470                                           i915_debugfs_files[i].fops);
5471                 if (ret)
5472                         return ret;
5473         }
5474
5475         return drm_debugfs_create_files(i915_debugfs_list,
5476                                         I915_DEBUGFS_ENTRIES,
5477                                         minor->debugfs_root, minor);
5478 }
5479
5480 void i915_debugfs_cleanup(struct drm_minor *minor)
5481 {
5482         int i;
5483
5484         drm_debugfs_remove_files(i915_debugfs_list,
5485                                  I915_DEBUGFS_ENTRIES, minor);
5486
5487         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5488                                  1, minor);
5489
5490         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5491                 struct drm_info_list *info_list =
5492                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5493
5494                 drm_debugfs_remove_files(info_list, 1, minor);
5495         }
5496
5497         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5498                 struct drm_info_list *info_list =
5499                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5500
5501                 drm_debugfs_remove_files(info_list, 1, minor);
5502         }
5503 }
5504
5505 struct dpcd_block {
5506         /* DPCD dump start address. */
5507         unsigned int offset;
5508         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5509         unsigned int end;
5510         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5511         size_t size;
5512         /* Only valid for eDP. */
5513         bool edp;
5514 };
5515
5516 static const struct dpcd_block i915_dpcd_debug[] = {
5517         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5518         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5519         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5520         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5521         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5522         { .offset = DP_SET_POWER },
5523         { .offset = DP_EDP_DPCD_REV },
5524         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5525         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5526         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5527 };
5528
5529 static int i915_dpcd_show(struct seq_file *m, void *data)
5530 {
5531         struct drm_connector *connector = m->private;
5532         struct intel_dp *intel_dp =
5533                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5534         uint8_t buf[16];
5535         ssize_t err;
5536         int i;
5537
5538         if (connector->status != connector_status_connected)
5539                 return -ENODEV;
5540
5541         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5542                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5543                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5544
5545                 if (b->edp &&
5546                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5547                         continue;
5548
5549                 /* low tech for now */
5550                 if (WARN_ON(size > sizeof(buf)))
5551                         continue;
5552
5553                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5554                 if (err <= 0) {
5555                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5556                                   size, b->offset, err);
5557                         continue;
5558                 }
5559
5560                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5561         }
5562
5563         return 0;
5564 }
5565
5566 static int i915_dpcd_open(struct inode *inode, struct file *file)
5567 {
5568         return single_open(file, i915_dpcd_show, inode->i_private);
5569 }
5570
5571 static const struct file_operations i915_dpcd_fops = {
5572         .owner = THIS_MODULE,
5573         .open = i915_dpcd_open,
5574         .read = seq_read,
5575         .llseek = seq_lseek,
5576         .release = single_release,
5577 };
5578
5579 /**
5580  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5581  * @connector: pointer to a registered drm_connector
5582  *
5583  * Cleanup will be done by drm_connector_unregister() through a call to
5584  * drm_debugfs_connector_remove().
5585  *
5586  * Returns 0 on success, negative error codes on error.
5587  */
5588 int i915_debugfs_connector_add(struct drm_connector *connector)
5589 {
5590         struct dentry *root = connector->debugfs_entry;
5591
5592         /* The connector must have been registered beforehands. */
5593         if (!root)
5594                 return -ENODEV;
5595
5596         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5597             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5598                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5599                                     &i915_dpcd_fops);
5600
5601         return 0;
5602 }