]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
9bef6f55f99dc8c6e731ee2c60cc40b0d85b9fd5
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
44 {
45         return to_i915(node->minor->dev);
46 }
47
48 /* As the drm_debugfs_init() routines are called before dev->dev_private is
49  * allocated we need to hook into the minor for release. */
50 static int
51 drm_add_fake_info_node(struct drm_minor *minor,
52                        struct dentry *ent,
53                        const void *key)
54 {
55         struct drm_info_node *node;
56
57         node = kmalloc(sizeof(*node), GFP_KERNEL);
58         if (node == NULL) {
59                 debugfs_remove(ent);
60                 return -ENOMEM;
61         }
62
63         node->minor = minor;
64         node->dent = ent;
65         node->info_ent = (void *)key;
66
67         mutex_lock(&minor->debugfs_lock);
68         list_add(&node->list, &minor->debugfs_list);
69         mutex_unlock(&minor->debugfs_lock);
70
71         return 0;
72 }
73
74 static int i915_capabilities(struct seq_file *m, void *data)
75 {
76         struct drm_i915_private *dev_priv = node_to_i915(m->private);
77         const struct intel_device_info *info = INTEL_INFO(dev_priv);
78
79         seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
80         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
81 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
82         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
83 #undef PRINT_FLAG
84
85         return 0;
86 }
87
88 static char get_active_flag(struct drm_i915_gem_object *obj)
89 {
90         return i915_gem_object_is_active(obj) ? '*' : ' ';
91 }
92
93 static char get_pin_flag(struct drm_i915_gem_object *obj)
94 {
95         return obj->pin_display ? 'p' : ' ';
96 }
97
98 static char get_tiling_flag(struct drm_i915_gem_object *obj)
99 {
100         switch (i915_gem_object_get_tiling(obj)) {
101         default:
102         case I915_TILING_NONE: return ' ';
103         case I915_TILING_X: return 'X';
104         case I915_TILING_Y: return 'Y';
105         }
106 }
107
108 static char get_global_flag(struct drm_i915_gem_object *obj)
109 {
110         return !list_empty(&obj->userfault_link) ? 'g' : ' ';
111 }
112
113 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
114 {
115         return obj->mm.mapping ? 'M' : ' ';
116 }
117
118 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
119 {
120         u64 size = 0;
121         struct i915_vma *vma;
122
123         list_for_each_entry(vma, &obj->vma_list, obj_link) {
124                 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
125                         size += vma->node.size;
126         }
127
128         return size;
129 }
130
131 static void
132 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
133 {
134         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
135         struct intel_engine_cs *engine;
136         struct i915_vma *vma;
137         unsigned int frontbuffer_bits;
138         int pin_count = 0;
139
140         lockdep_assert_held(&obj->base.dev->struct_mutex);
141
142         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
143                    &obj->base,
144                    get_active_flag(obj),
145                    get_pin_flag(obj),
146                    get_tiling_flag(obj),
147                    get_global_flag(obj),
148                    get_pin_mapped_flag(obj),
149                    obj->base.size / 1024,
150                    obj->base.read_domains,
151                    obj->base.write_domain,
152                    i915_cache_level_str(dev_priv, obj->cache_level),
153                    obj->mm.dirty ? " dirty" : "",
154                    obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
155         if (obj->base.name)
156                 seq_printf(m, " (name: %d)", obj->base.name);
157         list_for_each_entry(vma, &obj->vma_list, obj_link) {
158                 if (i915_vma_is_pinned(vma))
159                         pin_count++;
160         }
161         seq_printf(m, " (pinned x %d)", pin_count);
162         if (obj->pin_display)
163                 seq_printf(m, " (display)");
164         list_for_each_entry(vma, &obj->vma_list, obj_link) {
165                 if (!drm_mm_node_allocated(&vma->node))
166                         continue;
167
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_vma_is_ggtt(vma) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_vma_is_ggtt(vma))
172                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
173                 if (vma->fence)
174                         seq_printf(m, " , fence: %d%s",
175                                    vma->fence->id,
176                                    i915_gem_active_isset(&vma->last_fence) ? "*" : "");
177                 seq_puts(m, ")");
178         }
179         if (obj->stolen)
180                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
181
182         engine = i915_gem_object_last_write_engine(obj);
183         if (engine)
184                 seq_printf(m, " (%s)", engine->name);
185
186         frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
187         if (frontbuffer_bits)
188                 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
189 }
190
191 static int obj_rank_by_stolen(void *priv,
192                               struct list_head *A, struct list_head *B)
193 {
194         struct drm_i915_gem_object *a =
195                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
196         struct drm_i915_gem_object *b =
197                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
198
199         if (a->stolen->start < b->stolen->start)
200                 return -1;
201         if (a->stolen->start > b->stolen->start)
202                 return 1;
203         return 0;
204 }
205
206 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
207 {
208         struct drm_i915_private *dev_priv = node_to_i915(m->private);
209         struct drm_device *dev = &dev_priv->drm;
210         struct drm_i915_gem_object *obj;
211         u64 total_obj_size, total_gtt_size;
212         LIST_HEAD(stolen);
213         int count, ret;
214
215         ret = mutex_lock_interruptible(&dev->struct_mutex);
216         if (ret)
217                 return ret;
218
219         total_obj_size = total_gtt_size = count = 0;
220         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
221                 if (obj->stolen == NULL)
222                         continue;
223
224                 list_add(&obj->obj_exec_link, &stolen);
225
226                 total_obj_size += obj->base.size;
227                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
228                 count++;
229         }
230         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
231                 if (obj->stolen == NULL)
232                         continue;
233
234                 list_add(&obj->obj_exec_link, &stolen);
235
236                 total_obj_size += obj->base.size;
237                 count++;
238         }
239         list_sort(NULL, &stolen, obj_rank_by_stolen);
240         seq_puts(m, "Stolen:\n");
241         while (!list_empty(&stolen)) {
242                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
243                 seq_puts(m, "   ");
244                 describe_obj(m, obj);
245                 seq_putc(m, '\n');
246                 list_del_init(&obj->obj_exec_link);
247         }
248         mutex_unlock(&dev->struct_mutex);
249
250         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
251                    count, total_obj_size, total_gtt_size);
252         return 0;
253 }
254
255 struct file_stats {
256         struct drm_i915_file_private *file_priv;
257         unsigned long count;
258         u64 total, unbound;
259         u64 global, shared;
260         u64 active, inactive;
261 };
262
263 static int per_file_stats(int id, void *ptr, void *data)
264 {
265         struct drm_i915_gem_object *obj = ptr;
266         struct file_stats *stats = data;
267         struct i915_vma *vma;
268
269         stats->count++;
270         stats->total += obj->base.size;
271         if (!obj->bind_count)
272                 stats->unbound += obj->base.size;
273         if (obj->base.name || obj->base.dma_buf)
274                 stats->shared += obj->base.size;
275
276         list_for_each_entry(vma, &obj->vma_list, obj_link) {
277                 if (!drm_mm_node_allocated(&vma->node))
278                         continue;
279
280                 if (i915_vma_is_ggtt(vma)) {
281                         stats->global += vma->node.size;
282                 } else {
283                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
284
285                         if (ppgtt->base.file != stats->file_priv)
286                                 continue;
287                 }
288
289                 if (i915_vma_is_active(vma))
290                         stats->active += vma->node.size;
291                 else
292                         stats->inactive += vma->node.size;
293         }
294
295         return 0;
296 }
297
298 #define print_file_stats(m, name, stats) do { \
299         if (stats.count) \
300                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
301                            name, \
302                            stats.count, \
303                            stats.total, \
304                            stats.active, \
305                            stats.inactive, \
306                            stats.global, \
307                            stats.shared, \
308                            stats.unbound); \
309 } while (0)
310
311 static void print_batch_pool_stats(struct seq_file *m,
312                                    struct drm_i915_private *dev_priv)
313 {
314         struct drm_i915_gem_object *obj;
315         struct file_stats stats;
316         struct intel_engine_cs *engine;
317         enum intel_engine_id id;
318         int j;
319
320         memset(&stats, 0, sizeof(stats));
321
322         for_each_engine(engine, dev_priv, id) {
323                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
324                         list_for_each_entry(obj,
325                                             &engine->batch_pool.cache_list[j],
326                                             batch_pool_link)
327                                 per_file_stats(0, obj, &stats);
328                 }
329         }
330
331         print_file_stats(m, "[k]batch pool", stats);
332 }
333
334 static int per_file_ctx_stats(int id, void *ptr, void *data)
335 {
336         struct i915_gem_context *ctx = ptr;
337         int n;
338
339         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
340                 if (ctx->engine[n].state)
341                         per_file_stats(0, ctx->engine[n].state->obj, data);
342                 if (ctx->engine[n].ring)
343                         per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
344         }
345
346         return 0;
347 }
348
349 static void print_context_stats(struct seq_file *m,
350                                 struct drm_i915_private *dev_priv)
351 {
352         struct drm_device *dev = &dev_priv->drm;
353         struct file_stats stats;
354         struct drm_file *file;
355
356         memset(&stats, 0, sizeof(stats));
357
358         mutex_lock(&dev->struct_mutex);
359         if (dev_priv->kernel_context)
360                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
361
362         list_for_each_entry(file, &dev->filelist, lhead) {
363                 struct drm_i915_file_private *fpriv = file->driver_priv;
364                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
365         }
366         mutex_unlock(&dev->struct_mutex);
367
368         print_file_stats(m, "[k]contexts", stats);
369 }
370
371 static int i915_gem_object_info(struct seq_file *m, void *data)
372 {
373         struct drm_i915_private *dev_priv = node_to_i915(m->private);
374         struct drm_device *dev = &dev_priv->drm;
375         struct i915_ggtt *ggtt = &dev_priv->ggtt;
376         u32 count, mapped_count, purgeable_count, dpy_count;
377         u64 size, mapped_size, purgeable_size, dpy_size;
378         struct drm_i915_gem_object *obj;
379         struct drm_file *file;
380         int ret;
381
382         ret = mutex_lock_interruptible(&dev->struct_mutex);
383         if (ret)
384                 return ret;
385
386         seq_printf(m, "%u objects, %llu bytes\n",
387                    dev_priv->mm.object_count,
388                    dev_priv->mm.object_memory);
389
390         size = count = 0;
391         mapped_size = mapped_count = 0;
392         purgeable_size = purgeable_count = 0;
393         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
394                 size += obj->base.size;
395                 ++count;
396
397                 if (obj->mm.madv == I915_MADV_DONTNEED) {
398                         purgeable_size += obj->base.size;
399                         ++purgeable_count;
400                 }
401
402                 if (obj->mm.mapping) {
403                         mapped_count++;
404                         mapped_size += obj->base.size;
405                 }
406         }
407         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
408
409         size = count = dpy_size = dpy_count = 0;
410         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
411                 size += obj->base.size;
412                 ++count;
413
414                 if (obj->pin_display) {
415                         dpy_size += obj->base.size;
416                         ++dpy_count;
417                 }
418
419                 if (obj->mm.madv == I915_MADV_DONTNEED) {
420                         purgeable_size += obj->base.size;
421                         ++purgeable_count;
422                 }
423
424                 if (obj->mm.mapping) {
425                         mapped_count++;
426                         mapped_size += obj->base.size;
427                 }
428         }
429         seq_printf(m, "%u bound objects, %llu bytes\n",
430                    count, size);
431         seq_printf(m, "%u purgeable objects, %llu bytes\n",
432                    purgeable_count, purgeable_size);
433         seq_printf(m, "%u mapped objects, %llu bytes\n",
434                    mapped_count, mapped_size);
435         seq_printf(m, "%u display objects (pinned), %llu bytes\n",
436                    dpy_count, dpy_size);
437
438         seq_printf(m, "%llu [%llu] gtt total\n",
439                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
440
441         seq_putc(m, '\n');
442         print_batch_pool_stats(m, dev_priv);
443         mutex_unlock(&dev->struct_mutex);
444
445         mutex_lock(&dev->filelist_mutex);
446         print_context_stats(m, dev_priv);
447         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
448                 struct file_stats stats;
449                 struct drm_i915_file_private *file_priv = file->driver_priv;
450                 struct drm_i915_gem_request *request;
451                 struct task_struct *task;
452
453                 memset(&stats, 0, sizeof(stats));
454                 stats.file_priv = file->driver_priv;
455                 spin_lock(&file->table_lock);
456                 idr_for_each(&file->object_idr, per_file_stats, &stats);
457                 spin_unlock(&file->table_lock);
458                 /*
459                  * Although we have a valid reference on file->pid, that does
460                  * not guarantee that the task_struct who called get_pid() is
461                  * still alive (e.g. get_pid(current) => fork() => exit()).
462                  * Therefore, we need to protect this ->comm access using RCU.
463                  */
464                 mutex_lock(&dev->struct_mutex);
465                 request = list_first_entry_or_null(&file_priv->mm.request_list,
466                                                    struct drm_i915_gem_request,
467                                                    client_list);
468                 rcu_read_lock();
469                 task = pid_task(request && request->ctx->pid ?
470                                 request->ctx->pid : file->pid,
471                                 PIDTYPE_PID);
472                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
473                 rcu_read_unlock();
474                 mutex_unlock(&dev->struct_mutex);
475         }
476         mutex_unlock(&dev->filelist_mutex);
477
478         return 0;
479 }
480
481 static int i915_gem_gtt_info(struct seq_file *m, void *data)
482 {
483         struct drm_info_node *node = m->private;
484         struct drm_i915_private *dev_priv = node_to_i915(node);
485         struct drm_device *dev = &dev_priv->drm;
486         bool show_pin_display_only = !!node->info_ent->data;
487         struct drm_i915_gem_object *obj;
488         u64 total_obj_size, total_gtt_size;
489         int count, ret;
490
491         ret = mutex_lock_interruptible(&dev->struct_mutex);
492         if (ret)
493                 return ret;
494
495         total_obj_size = total_gtt_size = count = 0;
496         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
497                 if (show_pin_display_only && !obj->pin_display)
498                         continue;
499
500                 seq_puts(m, "   ");
501                 describe_obj(m, obj);
502                 seq_putc(m, '\n');
503                 total_obj_size += obj->base.size;
504                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
505                 count++;
506         }
507
508         mutex_unlock(&dev->struct_mutex);
509
510         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
511                    count, total_obj_size, total_gtt_size);
512
513         return 0;
514 }
515
516 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
517 {
518         struct drm_i915_private *dev_priv = node_to_i915(m->private);
519         struct drm_device *dev = &dev_priv->drm;
520         struct intel_crtc *crtc;
521         int ret;
522
523         ret = mutex_lock_interruptible(&dev->struct_mutex);
524         if (ret)
525                 return ret;
526
527         for_each_intel_crtc(dev, crtc) {
528                 const char pipe = pipe_name(crtc->pipe);
529                 const char plane = plane_name(crtc->plane);
530                 struct intel_flip_work *work;
531
532                 spin_lock_irq(&dev->event_lock);
533                 work = crtc->flip_work;
534                 if (work == NULL) {
535                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
536                                    pipe, plane);
537                 } else {
538                         u32 pending;
539                         u32 addr;
540
541                         pending = atomic_read(&work->pending);
542                         if (pending) {
543                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
544                                            pipe, plane);
545                         } else {
546                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
547                                            pipe, plane);
548                         }
549                         if (work->flip_queued_req) {
550                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
551
552                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
553                                            engine->name,
554                                            i915_gem_request_get_seqno(work->flip_queued_req),
555                                            atomic_read(&dev_priv->gt.global_timeline.next_seqno),
556                                            intel_engine_get_seqno(engine),
557                                            i915_gem_request_completed(work->flip_queued_req));
558                         } else
559                                 seq_printf(m, "Flip not associated with any ring\n");
560                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
561                                    work->flip_queued_vblank,
562                                    work->flip_ready_vblank,
563                                    intel_crtc_get_vblank_counter(crtc));
564                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
565
566                         if (INTEL_GEN(dev_priv) >= 4)
567                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
568                         else
569                                 addr = I915_READ(DSPADDR(crtc->plane));
570                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
571
572                         if (work->pending_flip_obj) {
573                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
574                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
575                         }
576                 }
577                 spin_unlock_irq(&dev->event_lock);
578         }
579
580         mutex_unlock(&dev->struct_mutex);
581
582         return 0;
583 }
584
585 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
586 {
587         struct drm_i915_private *dev_priv = node_to_i915(m->private);
588         struct drm_device *dev = &dev_priv->drm;
589         struct drm_i915_gem_object *obj;
590         struct intel_engine_cs *engine;
591         enum intel_engine_id id;
592         int total = 0;
593         int ret, j;
594
595         ret = mutex_lock_interruptible(&dev->struct_mutex);
596         if (ret)
597                 return ret;
598
599         for_each_engine(engine, dev_priv, id) {
600                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
601                         int count;
602
603                         count = 0;
604                         list_for_each_entry(obj,
605                                             &engine->batch_pool.cache_list[j],
606                                             batch_pool_link)
607                                 count++;
608                         seq_printf(m, "%s cache[%d]: %d objects\n",
609                                    engine->name, j, count);
610
611                         list_for_each_entry(obj,
612                                             &engine->batch_pool.cache_list[j],
613                                             batch_pool_link) {
614                                 seq_puts(m, "   ");
615                                 describe_obj(m, obj);
616                                 seq_putc(m, '\n');
617                         }
618
619                         total += count;
620                 }
621         }
622
623         seq_printf(m, "total: %d\n", total);
624
625         mutex_unlock(&dev->struct_mutex);
626
627         return 0;
628 }
629
630 static void print_request(struct seq_file *m,
631                           struct drm_i915_gem_request *rq,
632                           const char *prefix)
633 {
634         seq_printf(m, "%s%x [%x:%x] @ %d: %s\n", prefix,
635                    rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
636                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
637                    rq->timeline->common->name);
638 }
639
640 static int i915_gem_request_info(struct seq_file *m, void *data)
641 {
642         struct drm_i915_private *dev_priv = node_to_i915(m->private);
643         struct drm_device *dev = &dev_priv->drm;
644         struct drm_i915_gem_request *req;
645         struct intel_engine_cs *engine;
646         enum intel_engine_id id;
647         int ret, any;
648
649         ret = mutex_lock_interruptible(&dev->struct_mutex);
650         if (ret)
651                 return ret;
652
653         any = 0;
654         for_each_engine(engine, dev_priv, id) {
655                 int count;
656
657                 count = 0;
658                 list_for_each_entry(req, &engine->timeline->requests, link)
659                         count++;
660                 if (count == 0)
661                         continue;
662
663                 seq_printf(m, "%s requests: %d\n", engine->name, count);
664                 list_for_each_entry(req, &engine->timeline->requests, link)
665                         print_request(m, req, "    ");
666
667                 any++;
668         }
669         mutex_unlock(&dev->struct_mutex);
670
671         if (any == 0)
672                 seq_puts(m, "No requests\n");
673
674         return 0;
675 }
676
677 static void i915_ring_seqno_info(struct seq_file *m,
678                                  struct intel_engine_cs *engine)
679 {
680         struct intel_breadcrumbs *b = &engine->breadcrumbs;
681         struct rb_node *rb;
682
683         seq_printf(m, "Current sequence (%s): %x\n",
684                    engine->name, intel_engine_get_seqno(engine));
685
686         spin_lock_irq(&b->lock);
687         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
688                 struct intel_wait *w = container_of(rb, typeof(*w), node);
689
690                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
691                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
692         }
693         spin_unlock_irq(&b->lock);
694 }
695
696 static int i915_gem_seqno_info(struct seq_file *m, void *data)
697 {
698         struct drm_i915_private *dev_priv = node_to_i915(m->private);
699         struct intel_engine_cs *engine;
700         enum intel_engine_id id;
701
702         for_each_engine(engine, dev_priv, id)
703                 i915_ring_seqno_info(m, engine);
704
705         return 0;
706 }
707
708
709 static int i915_interrupt_info(struct seq_file *m, void *data)
710 {
711         struct drm_i915_private *dev_priv = node_to_i915(m->private);
712         struct intel_engine_cs *engine;
713         enum intel_engine_id id;
714         int i, pipe;
715
716         intel_runtime_pm_get(dev_priv);
717
718         if (IS_CHERRYVIEW(dev_priv)) {
719                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
720                            I915_READ(GEN8_MASTER_IRQ));
721
722                 seq_printf(m, "Display IER:\t%08x\n",
723                            I915_READ(VLV_IER));
724                 seq_printf(m, "Display IIR:\t%08x\n",
725                            I915_READ(VLV_IIR));
726                 seq_printf(m, "Display IIR_RW:\t%08x\n",
727                            I915_READ(VLV_IIR_RW));
728                 seq_printf(m, "Display IMR:\t%08x\n",
729                            I915_READ(VLV_IMR));
730                 for_each_pipe(dev_priv, pipe) {
731                         enum intel_display_power_domain power_domain;
732
733                         power_domain = POWER_DOMAIN_PIPE(pipe);
734                         if (!intel_display_power_get_if_enabled(dev_priv,
735                                                                 power_domain)) {
736                                 seq_printf(m, "Pipe %c power disabled\n",
737                                            pipe_name(pipe));
738                                 continue;
739                         }
740
741                         seq_printf(m, "Pipe %c stat:\t%08x\n",
742                                    pipe_name(pipe),
743                                    I915_READ(PIPESTAT(pipe)));
744
745                         intel_display_power_put(dev_priv, power_domain);
746                 }
747
748                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
749                 seq_printf(m, "Port hotplug:\t%08x\n",
750                            I915_READ(PORT_HOTPLUG_EN));
751                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
752                            I915_READ(VLV_DPFLIPSTAT));
753                 seq_printf(m, "DPINVGTT:\t%08x\n",
754                            I915_READ(DPINVGTT));
755                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
756
757                 for (i = 0; i < 4; i++) {
758                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
759                                    i, I915_READ(GEN8_GT_IMR(i)));
760                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
761                                    i, I915_READ(GEN8_GT_IIR(i)));
762                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
763                                    i, I915_READ(GEN8_GT_IER(i)));
764                 }
765
766                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
767                            I915_READ(GEN8_PCU_IMR));
768                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
769                            I915_READ(GEN8_PCU_IIR));
770                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
771                            I915_READ(GEN8_PCU_IER));
772         } else if (INTEL_GEN(dev_priv) >= 8) {
773                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
774                            I915_READ(GEN8_MASTER_IRQ));
775
776                 for (i = 0; i < 4; i++) {
777                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
778                                    i, I915_READ(GEN8_GT_IMR(i)));
779                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
780                                    i, I915_READ(GEN8_GT_IIR(i)));
781                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
782                                    i, I915_READ(GEN8_GT_IER(i)));
783                 }
784
785                 for_each_pipe(dev_priv, pipe) {
786                         enum intel_display_power_domain power_domain;
787
788                         power_domain = POWER_DOMAIN_PIPE(pipe);
789                         if (!intel_display_power_get_if_enabled(dev_priv,
790                                                                 power_domain)) {
791                                 seq_printf(m, "Pipe %c power disabled\n",
792                                            pipe_name(pipe));
793                                 continue;
794                         }
795                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
796                                    pipe_name(pipe),
797                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
798                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
799                                    pipe_name(pipe),
800                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
801                         seq_printf(m, "Pipe %c IER:\t%08x\n",
802                                    pipe_name(pipe),
803                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
804
805                         intel_display_power_put(dev_priv, power_domain);
806                 }
807
808                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
809                            I915_READ(GEN8_DE_PORT_IMR));
810                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
811                            I915_READ(GEN8_DE_PORT_IIR));
812                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
813                            I915_READ(GEN8_DE_PORT_IER));
814
815                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
816                            I915_READ(GEN8_DE_MISC_IMR));
817                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
818                            I915_READ(GEN8_DE_MISC_IIR));
819                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
820                            I915_READ(GEN8_DE_MISC_IER));
821
822                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
823                            I915_READ(GEN8_PCU_IMR));
824                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
825                            I915_READ(GEN8_PCU_IIR));
826                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
827                            I915_READ(GEN8_PCU_IER));
828         } else if (IS_VALLEYVIEW(dev_priv)) {
829                 seq_printf(m, "Display IER:\t%08x\n",
830                            I915_READ(VLV_IER));
831                 seq_printf(m, "Display IIR:\t%08x\n",
832                            I915_READ(VLV_IIR));
833                 seq_printf(m, "Display IIR_RW:\t%08x\n",
834                            I915_READ(VLV_IIR_RW));
835                 seq_printf(m, "Display IMR:\t%08x\n",
836                            I915_READ(VLV_IMR));
837                 for_each_pipe(dev_priv, pipe)
838                         seq_printf(m, "Pipe %c stat:\t%08x\n",
839                                    pipe_name(pipe),
840                                    I915_READ(PIPESTAT(pipe)));
841
842                 seq_printf(m, "Master IER:\t%08x\n",
843                            I915_READ(VLV_MASTER_IER));
844
845                 seq_printf(m, "Render IER:\t%08x\n",
846                            I915_READ(GTIER));
847                 seq_printf(m, "Render IIR:\t%08x\n",
848                            I915_READ(GTIIR));
849                 seq_printf(m, "Render IMR:\t%08x\n",
850                            I915_READ(GTIMR));
851
852                 seq_printf(m, "PM IER:\t\t%08x\n",
853                            I915_READ(GEN6_PMIER));
854                 seq_printf(m, "PM IIR:\t\t%08x\n",
855                            I915_READ(GEN6_PMIIR));
856                 seq_printf(m, "PM IMR:\t\t%08x\n",
857                            I915_READ(GEN6_PMIMR));
858
859                 seq_printf(m, "Port hotplug:\t%08x\n",
860                            I915_READ(PORT_HOTPLUG_EN));
861                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
862                            I915_READ(VLV_DPFLIPSTAT));
863                 seq_printf(m, "DPINVGTT:\t%08x\n",
864                            I915_READ(DPINVGTT));
865
866         } else if (!HAS_PCH_SPLIT(dev_priv)) {
867                 seq_printf(m, "Interrupt enable:    %08x\n",
868                            I915_READ(IER));
869                 seq_printf(m, "Interrupt identity:  %08x\n",
870                            I915_READ(IIR));
871                 seq_printf(m, "Interrupt mask:      %08x\n",
872                            I915_READ(IMR));
873                 for_each_pipe(dev_priv, pipe)
874                         seq_printf(m, "Pipe %c stat:         %08x\n",
875                                    pipe_name(pipe),
876                                    I915_READ(PIPESTAT(pipe)));
877         } else {
878                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
879                            I915_READ(DEIER));
880                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
881                            I915_READ(DEIIR));
882                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
883                            I915_READ(DEIMR));
884                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
885                            I915_READ(SDEIER));
886                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
887                            I915_READ(SDEIIR));
888                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
889                            I915_READ(SDEIMR));
890                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
891                            I915_READ(GTIER));
892                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
893                            I915_READ(GTIIR));
894                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
895                            I915_READ(GTIMR));
896         }
897         for_each_engine(engine, dev_priv, id) {
898                 if (INTEL_GEN(dev_priv) >= 6) {
899                         seq_printf(m,
900                                    "Graphics Interrupt mask (%s):       %08x\n",
901                                    engine->name, I915_READ_IMR(engine));
902                 }
903                 i915_ring_seqno_info(m, engine);
904         }
905         intel_runtime_pm_put(dev_priv);
906
907         return 0;
908 }
909
910 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
911 {
912         struct drm_i915_private *dev_priv = node_to_i915(m->private);
913         struct drm_device *dev = &dev_priv->drm;
914         int i, ret;
915
916         ret = mutex_lock_interruptible(&dev->struct_mutex);
917         if (ret)
918                 return ret;
919
920         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
921         for (i = 0; i < dev_priv->num_fence_regs; i++) {
922                 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
923
924                 seq_printf(m, "Fence %d, pin count = %d, object = ",
925                            i, dev_priv->fence_regs[i].pin_count);
926                 if (!vma)
927                         seq_puts(m, "unused");
928                 else
929                         describe_obj(m, vma->obj);
930                 seq_putc(m, '\n');
931         }
932
933         mutex_unlock(&dev->struct_mutex);
934         return 0;
935 }
936
937 static int i915_hws_info(struct seq_file *m, void *data)
938 {
939         struct drm_info_node *node = m->private;
940         struct drm_i915_private *dev_priv = node_to_i915(node);
941         struct intel_engine_cs *engine;
942         const u32 *hws;
943         int i;
944
945         engine = dev_priv->engine[(uintptr_t)node->info_ent->data];
946         hws = engine->status_page.page_addr;
947         if (hws == NULL)
948                 return 0;
949
950         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
951                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
952                            i * 4,
953                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
954         }
955         return 0;
956 }
957
958 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
959
960 static ssize_t
961 i915_error_state_write(struct file *filp,
962                        const char __user *ubuf,
963                        size_t cnt,
964                        loff_t *ppos)
965 {
966         struct i915_error_state_file_priv *error_priv = filp->private_data;
967
968         DRM_DEBUG_DRIVER("Resetting error state\n");
969         i915_destroy_error_state(error_priv->dev);
970
971         return cnt;
972 }
973
974 static int i915_error_state_open(struct inode *inode, struct file *file)
975 {
976         struct drm_i915_private *dev_priv = inode->i_private;
977         struct i915_error_state_file_priv *error_priv;
978
979         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
980         if (!error_priv)
981                 return -ENOMEM;
982
983         error_priv->dev = &dev_priv->drm;
984
985         i915_error_state_get(&dev_priv->drm, error_priv);
986
987         file->private_data = error_priv;
988
989         return 0;
990 }
991
992 static int i915_error_state_release(struct inode *inode, struct file *file)
993 {
994         struct i915_error_state_file_priv *error_priv = file->private_data;
995
996         i915_error_state_put(error_priv);
997         kfree(error_priv);
998
999         return 0;
1000 }
1001
1002 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1003                                      size_t count, loff_t *pos)
1004 {
1005         struct i915_error_state_file_priv *error_priv = file->private_data;
1006         struct drm_i915_error_state_buf error_str;
1007         loff_t tmp_pos = 0;
1008         ssize_t ret_count = 0;
1009         int ret;
1010
1011         ret = i915_error_state_buf_init(&error_str,
1012                                         to_i915(error_priv->dev), count, *pos);
1013         if (ret)
1014                 return ret;
1015
1016         ret = i915_error_state_to_str(&error_str, error_priv);
1017         if (ret)
1018                 goto out;
1019
1020         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1021                                             error_str.buf,
1022                                             error_str.bytes);
1023
1024         if (ret_count < 0)
1025                 ret = ret_count;
1026         else
1027                 *pos = error_str.start + ret_count;
1028 out:
1029         i915_error_state_buf_release(&error_str);
1030         return ret ?: ret_count;
1031 }
1032
1033 static const struct file_operations i915_error_state_fops = {
1034         .owner = THIS_MODULE,
1035         .open = i915_error_state_open,
1036         .read = i915_error_state_read,
1037         .write = i915_error_state_write,
1038         .llseek = default_llseek,
1039         .release = i915_error_state_release,
1040 };
1041
1042 #endif
1043
1044 static int
1045 i915_next_seqno_get(void *data, u64 *val)
1046 {
1047         struct drm_i915_private *dev_priv = data;
1048
1049         *val = atomic_read(&dev_priv->gt.global_timeline.next_seqno);
1050         return 0;
1051 }
1052
1053 static int
1054 i915_next_seqno_set(void *data, u64 val)
1055 {
1056         struct drm_i915_private *dev_priv = data;
1057         struct drm_device *dev = &dev_priv->drm;
1058         int ret;
1059
1060         ret = mutex_lock_interruptible(&dev->struct_mutex);
1061         if (ret)
1062                 return ret;
1063
1064         ret = i915_gem_set_global_seqno(dev, val);
1065         mutex_unlock(&dev->struct_mutex);
1066
1067         return ret;
1068 }
1069
1070 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1071                         i915_next_seqno_get, i915_next_seqno_set,
1072                         "0x%llx\n");
1073
1074 static int i915_frequency_info(struct seq_file *m, void *unused)
1075 {
1076         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1077         struct drm_device *dev = &dev_priv->drm;
1078         int ret = 0;
1079
1080         intel_runtime_pm_get(dev_priv);
1081
1082         if (IS_GEN5(dev_priv)) {
1083                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1084                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1085
1086                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1087                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1088                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1089                            MEMSTAT_VID_SHIFT);
1090                 seq_printf(m, "Current P-state: %d\n",
1091                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1092         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1093                 u32 freq_sts;
1094
1095                 mutex_lock(&dev_priv->rps.hw_lock);
1096                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1097                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1098                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1099
1100                 seq_printf(m, "actual GPU freq: %d MHz\n",
1101                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1102
1103                 seq_printf(m, "current GPU freq: %d MHz\n",
1104                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1105
1106                 seq_printf(m, "max GPU freq: %d MHz\n",
1107                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1108
1109                 seq_printf(m, "min GPU freq: %d MHz\n",
1110                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1111
1112                 seq_printf(m, "idle GPU freq: %d MHz\n",
1113                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1114
1115                 seq_printf(m,
1116                            "efficient (RPe) frequency: %d MHz\n",
1117                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1118                 mutex_unlock(&dev_priv->rps.hw_lock);
1119         } else if (INTEL_GEN(dev_priv) >= 6) {
1120                 u32 rp_state_limits;
1121                 u32 gt_perf_status;
1122                 u32 rp_state_cap;
1123                 u32 rpmodectl, rpinclimit, rpdeclimit;
1124                 u32 rpstat, cagf, reqf;
1125                 u32 rpupei, rpcurup, rpprevup;
1126                 u32 rpdownei, rpcurdown, rpprevdown;
1127                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1128                 int max_freq;
1129
1130                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1131                 if (IS_BROXTON(dev_priv)) {
1132                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1133                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1134                 } else {
1135                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1136                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1137                 }
1138
1139                 /* RPSTAT1 is in the GT power well */
1140                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1141                 if (ret)
1142                         goto out;
1143
1144                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1145
1146                 reqf = I915_READ(GEN6_RPNSWREQ);
1147                 if (IS_GEN9(dev_priv))
1148                         reqf >>= 23;
1149                 else {
1150                         reqf &= ~GEN6_TURBO_DISABLE;
1151                         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1152                                 reqf >>= 24;
1153                         else
1154                                 reqf >>= 25;
1155                 }
1156                 reqf = intel_gpu_freq(dev_priv, reqf);
1157
1158                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1159                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1160                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1161
1162                 rpstat = I915_READ(GEN6_RPSTAT1);
1163                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1164                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1165                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1166                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1167                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1168                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1169                 if (IS_GEN9(dev_priv))
1170                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1171                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1172                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1173                 else
1174                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1175                 cagf = intel_gpu_freq(dev_priv, cagf);
1176
1177                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1178                 mutex_unlock(&dev->struct_mutex);
1179
1180                 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1181                         pm_ier = I915_READ(GEN6_PMIER);
1182                         pm_imr = I915_READ(GEN6_PMIMR);
1183                         pm_isr = I915_READ(GEN6_PMISR);
1184                         pm_iir = I915_READ(GEN6_PMIIR);
1185                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1186                 } else {
1187                         pm_ier = I915_READ(GEN8_GT_IER(2));
1188                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1189                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1190                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1191                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1192                 }
1193                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1194                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1195                 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1196                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1197                 seq_printf(m, "Render p-state ratio: %d\n",
1198                            (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1199                 seq_printf(m, "Render p-state VID: %d\n",
1200                            gt_perf_status & 0xff);
1201                 seq_printf(m, "Render p-state limit: %d\n",
1202                            rp_state_limits & 0xff);
1203                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1204                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1205                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1206                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1207                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1208                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1209                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1210                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1211                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1212                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1213                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1214                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1215                 seq_printf(m, "Up threshold: %d%%\n",
1216                            dev_priv->rps.up_threshold);
1217
1218                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1219                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1220                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1221                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1222                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1223                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1224                 seq_printf(m, "Down threshold: %d%%\n",
1225                            dev_priv->rps.down_threshold);
1226
1227                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
1228                             rp_state_cap >> 16) & 0xff;
1229                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1230                              GEN9_FREQ_SCALER : 1);
1231                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1232                            intel_gpu_freq(dev_priv, max_freq));
1233
1234                 max_freq = (rp_state_cap & 0xff00) >> 8;
1235                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1236                              GEN9_FREQ_SCALER : 1);
1237                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1238                            intel_gpu_freq(dev_priv, max_freq));
1239
1240                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
1241                             rp_state_cap >> 0) & 0xff;
1242                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1243                              GEN9_FREQ_SCALER : 1);
1244                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1245                            intel_gpu_freq(dev_priv, max_freq));
1246                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1247                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1248
1249                 seq_printf(m, "Current freq: %d MHz\n",
1250                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1251                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1252                 seq_printf(m, "Idle freq: %d MHz\n",
1253                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1254                 seq_printf(m, "Min freq: %d MHz\n",
1255                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1256                 seq_printf(m, "Boost freq: %d MHz\n",
1257                            intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1258                 seq_printf(m, "Max freq: %d MHz\n",
1259                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1260                 seq_printf(m,
1261                            "efficient (RPe) frequency: %d MHz\n",
1262                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1263         } else {
1264                 seq_puts(m, "no P-state info available\n");
1265         }
1266
1267         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1268         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1269         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1270
1271 out:
1272         intel_runtime_pm_put(dev_priv);
1273         return ret;
1274 }
1275
1276 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1277                                struct seq_file *m,
1278                                struct intel_instdone *instdone)
1279 {
1280         int slice;
1281         int subslice;
1282
1283         seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1284                    instdone->instdone);
1285
1286         if (INTEL_GEN(dev_priv) <= 3)
1287                 return;
1288
1289         seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1290                    instdone->slice_common);
1291
1292         if (INTEL_GEN(dev_priv) <= 6)
1293                 return;
1294
1295         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1296                 seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1297                            slice, subslice, instdone->sampler[slice][subslice]);
1298
1299         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1300                 seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1301                            slice, subslice, instdone->row[slice][subslice]);
1302 }
1303
1304 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1305 {
1306         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1307         struct intel_engine_cs *engine;
1308         u64 acthd[I915_NUM_ENGINES];
1309         u32 seqno[I915_NUM_ENGINES];
1310         struct intel_instdone instdone;
1311         enum intel_engine_id id;
1312
1313         if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1314                 seq_printf(m, "Wedged\n");
1315         if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1316                 seq_printf(m, "Reset in progress\n");
1317         if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1318                 seq_printf(m, "Waiter holding struct mutex\n");
1319         if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1320                 seq_printf(m, "struct_mutex blocked for reset\n");
1321
1322         if (!i915.enable_hangcheck) {
1323                 seq_printf(m, "Hangcheck disabled\n");
1324                 return 0;
1325         }
1326
1327         intel_runtime_pm_get(dev_priv);
1328
1329         for_each_engine(engine, dev_priv, id) {
1330                 acthd[id] = intel_engine_get_active_head(engine);
1331                 seqno[id] = intel_engine_get_seqno(engine);
1332         }
1333
1334         intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1335
1336         intel_runtime_pm_put(dev_priv);
1337
1338         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1339                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1340                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1341                                             jiffies));
1342         } else
1343                 seq_printf(m, "Hangcheck inactive\n");
1344
1345         for_each_engine(engine, dev_priv, id) {
1346                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
1347                 struct rb_node *rb;
1348
1349                 seq_printf(m, "%s:\n", engine->name);
1350                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1351                            engine->hangcheck.seqno,
1352                            seqno[id],
1353                            engine->timeline->last_submitted_seqno);
1354                 seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1355                            yesno(intel_engine_has_waiter(engine)),
1356                            yesno(test_bit(engine->id,
1357                                           &dev_priv->gpu_error.missed_irq_rings)));
1358                 spin_lock_irq(&b->lock);
1359                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1360                         struct intel_wait *w = container_of(rb, typeof(*w), node);
1361
1362                         seq_printf(m, "\t%s [%d] waiting for %x\n",
1363                                    w->tsk->comm, w->tsk->pid, w->seqno);
1364                 }
1365                 spin_unlock_irq(&b->lock);
1366
1367                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1368                            (long long)engine->hangcheck.acthd,
1369                            (long long)acthd[id]);
1370                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1371                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1372
1373                 if (engine->id == RCS) {
1374                         seq_puts(m, "\tinstdone read =\n");
1375
1376                         i915_instdone_info(dev_priv, m, &instdone);
1377
1378                         seq_puts(m, "\tinstdone accu =\n");
1379
1380                         i915_instdone_info(dev_priv, m,
1381                                            &engine->hangcheck.instdone);
1382                 }
1383         }
1384
1385         return 0;
1386 }
1387
1388 static int ironlake_drpc_info(struct seq_file *m)
1389 {
1390         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1391         u32 rgvmodectl, rstdbyctl;
1392         u16 crstandvid;
1393
1394         intel_runtime_pm_get(dev_priv);
1395
1396         rgvmodectl = I915_READ(MEMMODECTL);
1397         rstdbyctl = I915_READ(RSTDBYCTL);
1398         crstandvid = I915_READ16(CRSTANDVID);
1399
1400         intel_runtime_pm_put(dev_priv);
1401
1402         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1403         seq_printf(m, "Boost freq: %d\n",
1404                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1405                    MEMMODE_BOOST_FREQ_SHIFT);
1406         seq_printf(m, "HW control enabled: %s\n",
1407                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1408         seq_printf(m, "SW control enabled: %s\n",
1409                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1410         seq_printf(m, "Gated voltage change: %s\n",
1411                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1412         seq_printf(m, "Starting frequency: P%d\n",
1413                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1414         seq_printf(m, "Max P-state: P%d\n",
1415                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1416         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1417         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1418         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1419         seq_printf(m, "Render standby enabled: %s\n",
1420                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1421         seq_puts(m, "Current RS state: ");
1422         switch (rstdbyctl & RSX_STATUS_MASK) {
1423         case RSX_STATUS_ON:
1424                 seq_puts(m, "on\n");
1425                 break;
1426         case RSX_STATUS_RC1:
1427                 seq_puts(m, "RC1\n");
1428                 break;
1429         case RSX_STATUS_RC1E:
1430                 seq_puts(m, "RC1E\n");
1431                 break;
1432         case RSX_STATUS_RS1:
1433                 seq_puts(m, "RS1\n");
1434                 break;
1435         case RSX_STATUS_RS2:
1436                 seq_puts(m, "RS2 (RC6)\n");
1437                 break;
1438         case RSX_STATUS_RS3:
1439                 seq_puts(m, "RC3 (RC6+)\n");
1440                 break;
1441         default:
1442                 seq_puts(m, "unknown\n");
1443                 break;
1444         }
1445
1446         return 0;
1447 }
1448
1449 static int i915_forcewake_domains(struct seq_file *m, void *data)
1450 {
1451         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1452         struct intel_uncore_forcewake_domain *fw_domain;
1453
1454         spin_lock_irq(&dev_priv->uncore.lock);
1455         for_each_fw_domain(fw_domain, dev_priv) {
1456                 seq_printf(m, "%s.wake_count = %u\n",
1457                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1458                            fw_domain->wake_count);
1459         }
1460         spin_unlock_irq(&dev_priv->uncore.lock);
1461
1462         return 0;
1463 }
1464
1465 static int vlv_drpc_info(struct seq_file *m)
1466 {
1467         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1468         u32 rpmodectl1, rcctl1, pw_status;
1469
1470         intel_runtime_pm_get(dev_priv);
1471
1472         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1473         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1474         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1475
1476         intel_runtime_pm_put(dev_priv);
1477
1478         seq_printf(m, "Video Turbo Mode: %s\n",
1479                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1480         seq_printf(m, "Turbo enabled: %s\n",
1481                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1482         seq_printf(m, "HW control enabled: %s\n",
1483                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1484         seq_printf(m, "SW control enabled: %s\n",
1485                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1486                           GEN6_RP_MEDIA_SW_MODE));
1487         seq_printf(m, "RC6 Enabled: %s\n",
1488                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1489                                         GEN6_RC_CTL_EI_MODE(1))));
1490         seq_printf(m, "Render Power Well: %s\n",
1491                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1492         seq_printf(m, "Media Power Well: %s\n",
1493                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1494
1495         seq_printf(m, "Render RC6 residency since boot: %u\n",
1496                    I915_READ(VLV_GT_RENDER_RC6));
1497         seq_printf(m, "Media RC6 residency since boot: %u\n",
1498                    I915_READ(VLV_GT_MEDIA_RC6));
1499
1500         return i915_forcewake_domains(m, NULL);
1501 }
1502
1503 static int gen6_drpc_info(struct seq_file *m)
1504 {
1505         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1506         struct drm_device *dev = &dev_priv->drm;
1507         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1508         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1509         unsigned forcewake_count;
1510         int count = 0, ret;
1511
1512         ret = mutex_lock_interruptible(&dev->struct_mutex);
1513         if (ret)
1514                 return ret;
1515         intel_runtime_pm_get(dev_priv);
1516
1517         spin_lock_irq(&dev_priv->uncore.lock);
1518         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1519         spin_unlock_irq(&dev_priv->uncore.lock);
1520
1521         if (forcewake_count) {
1522                 seq_puts(m, "RC information inaccurate because somebody "
1523                             "holds a forcewake reference \n");
1524         } else {
1525                 /* NB: we cannot use forcewake, else we read the wrong values */
1526                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1527                         udelay(10);
1528                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1529         }
1530
1531         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1532         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1533
1534         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1535         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1536         if (INTEL_GEN(dev_priv) >= 9) {
1537                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1538                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1539         }
1540         mutex_unlock(&dev->struct_mutex);
1541         mutex_lock(&dev_priv->rps.hw_lock);
1542         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1543         mutex_unlock(&dev_priv->rps.hw_lock);
1544
1545         intel_runtime_pm_put(dev_priv);
1546
1547         seq_printf(m, "Video Turbo Mode: %s\n",
1548                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1549         seq_printf(m, "HW control enabled: %s\n",
1550                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1551         seq_printf(m, "SW control enabled: %s\n",
1552                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1553                           GEN6_RP_MEDIA_SW_MODE));
1554         seq_printf(m, "RC1e Enabled: %s\n",
1555                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1556         seq_printf(m, "RC6 Enabled: %s\n",
1557                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1558         if (INTEL_GEN(dev_priv) >= 9) {
1559                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1560                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1561                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1562                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1563         }
1564         seq_printf(m, "Deep RC6 Enabled: %s\n",
1565                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1566         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1567                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1568         seq_puts(m, "Current RC state: ");
1569         switch (gt_core_status & GEN6_RCn_MASK) {
1570         case GEN6_RC0:
1571                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1572                         seq_puts(m, "Core Power Down\n");
1573                 else
1574                         seq_puts(m, "on\n");
1575                 break;
1576         case GEN6_RC3:
1577                 seq_puts(m, "RC3\n");
1578                 break;
1579         case GEN6_RC6:
1580                 seq_puts(m, "RC6\n");
1581                 break;
1582         case GEN6_RC7:
1583                 seq_puts(m, "RC7\n");
1584                 break;
1585         default:
1586                 seq_puts(m, "Unknown\n");
1587                 break;
1588         }
1589
1590         seq_printf(m, "Core Power Down: %s\n",
1591                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1592         if (INTEL_GEN(dev_priv) >= 9) {
1593                 seq_printf(m, "Render Power Well: %s\n",
1594                         (gen9_powergate_status &
1595                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1596                 seq_printf(m, "Media Power Well: %s\n",
1597                         (gen9_powergate_status &
1598                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1599         }
1600
1601         /* Not exactly sure what this is */
1602         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1603                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1604         seq_printf(m, "RC6 residency since boot: %u\n",
1605                    I915_READ(GEN6_GT_GFX_RC6));
1606         seq_printf(m, "RC6+ residency since boot: %u\n",
1607                    I915_READ(GEN6_GT_GFX_RC6p));
1608         seq_printf(m, "RC6++ residency since boot: %u\n",
1609                    I915_READ(GEN6_GT_GFX_RC6pp));
1610
1611         seq_printf(m, "RC6   voltage: %dmV\n",
1612                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1613         seq_printf(m, "RC6+  voltage: %dmV\n",
1614                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1615         seq_printf(m, "RC6++ voltage: %dmV\n",
1616                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1617         return i915_forcewake_domains(m, NULL);
1618 }
1619
1620 static int i915_drpc_info(struct seq_file *m, void *unused)
1621 {
1622         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1623
1624         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1625                 return vlv_drpc_info(m);
1626         else if (INTEL_GEN(dev_priv) >= 6)
1627                 return gen6_drpc_info(m);
1628         else
1629                 return ironlake_drpc_info(m);
1630 }
1631
1632 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1633 {
1634         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1635
1636         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1637                    dev_priv->fb_tracking.busy_bits);
1638
1639         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1640                    dev_priv->fb_tracking.flip_bits);
1641
1642         return 0;
1643 }
1644
1645 static int i915_fbc_status(struct seq_file *m, void *unused)
1646 {
1647         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1648
1649         if (!HAS_FBC(dev_priv)) {
1650                 seq_puts(m, "FBC unsupported on this chipset\n");
1651                 return 0;
1652         }
1653
1654         intel_runtime_pm_get(dev_priv);
1655         mutex_lock(&dev_priv->fbc.lock);
1656
1657         if (intel_fbc_is_active(dev_priv))
1658                 seq_puts(m, "FBC enabled\n");
1659         else
1660                 seq_printf(m, "FBC disabled: %s\n",
1661                            dev_priv->fbc.no_fbc_reason);
1662
1663         if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
1664                 uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
1665                                 BDW_FBC_COMPRESSION_MASK :
1666                                 IVB_FBC_COMPRESSION_MASK;
1667                 seq_printf(m, "Compressing: %s\n",
1668                            yesno(I915_READ(FBC_STATUS2) & mask));
1669         }
1670
1671         mutex_unlock(&dev_priv->fbc.lock);
1672         intel_runtime_pm_put(dev_priv);
1673
1674         return 0;
1675 }
1676
1677 static int i915_fbc_fc_get(void *data, u64 *val)
1678 {
1679         struct drm_i915_private *dev_priv = data;
1680
1681         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1682                 return -ENODEV;
1683
1684         *val = dev_priv->fbc.false_color;
1685
1686         return 0;
1687 }
1688
1689 static int i915_fbc_fc_set(void *data, u64 val)
1690 {
1691         struct drm_i915_private *dev_priv = data;
1692         u32 reg;
1693
1694         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1695                 return -ENODEV;
1696
1697         mutex_lock(&dev_priv->fbc.lock);
1698
1699         reg = I915_READ(ILK_DPFC_CONTROL);
1700         dev_priv->fbc.false_color = val;
1701
1702         I915_WRITE(ILK_DPFC_CONTROL, val ?
1703                    (reg | FBC_CTL_FALSE_COLOR) :
1704                    (reg & ~FBC_CTL_FALSE_COLOR));
1705
1706         mutex_unlock(&dev_priv->fbc.lock);
1707         return 0;
1708 }
1709
1710 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1711                         i915_fbc_fc_get, i915_fbc_fc_set,
1712                         "%llu\n");
1713
1714 static int i915_ips_status(struct seq_file *m, void *unused)
1715 {
1716         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1717
1718         if (!HAS_IPS(dev_priv)) {
1719                 seq_puts(m, "not supported\n");
1720                 return 0;
1721         }
1722
1723         intel_runtime_pm_get(dev_priv);
1724
1725         seq_printf(m, "Enabled by kernel parameter: %s\n",
1726                    yesno(i915.enable_ips));
1727
1728         if (INTEL_GEN(dev_priv) >= 8) {
1729                 seq_puts(m, "Currently: unknown\n");
1730         } else {
1731                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1732                         seq_puts(m, "Currently: enabled\n");
1733                 else
1734                         seq_puts(m, "Currently: disabled\n");
1735         }
1736
1737         intel_runtime_pm_put(dev_priv);
1738
1739         return 0;
1740 }
1741
1742 static int i915_sr_status(struct seq_file *m, void *unused)
1743 {
1744         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1745         bool sr_enabled = false;
1746
1747         intel_runtime_pm_get(dev_priv);
1748         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1749
1750         if (HAS_PCH_SPLIT(dev_priv))
1751                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1752         else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
1753                  IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1754                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1755         else if (IS_I915GM(dev_priv))
1756                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1757         else if (IS_PINEVIEW(dev_priv))
1758                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1759         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1760                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1761
1762         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1763         intel_runtime_pm_put(dev_priv);
1764
1765         seq_printf(m, "self-refresh: %s\n",
1766                    sr_enabled ? "enabled" : "disabled");
1767
1768         return 0;
1769 }
1770
1771 static int i915_emon_status(struct seq_file *m, void *unused)
1772 {
1773         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1774         struct drm_device *dev = &dev_priv->drm;
1775         unsigned long temp, chipset, gfx;
1776         int ret;
1777
1778         if (!IS_GEN5(dev_priv))
1779                 return -ENODEV;
1780
1781         ret = mutex_lock_interruptible(&dev->struct_mutex);
1782         if (ret)
1783                 return ret;
1784
1785         temp = i915_mch_val(dev_priv);
1786         chipset = i915_chipset_val(dev_priv);
1787         gfx = i915_gfx_val(dev_priv);
1788         mutex_unlock(&dev->struct_mutex);
1789
1790         seq_printf(m, "GMCH temp: %ld\n", temp);
1791         seq_printf(m, "Chipset power: %ld\n", chipset);
1792         seq_printf(m, "GFX power: %ld\n", gfx);
1793         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1794
1795         return 0;
1796 }
1797
1798 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1799 {
1800         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1801         int ret = 0;
1802         int gpu_freq, ia_freq;
1803         unsigned int max_gpu_freq, min_gpu_freq;
1804
1805         if (!HAS_LLC(dev_priv)) {
1806                 seq_puts(m, "unsupported on this chipset\n");
1807                 return 0;
1808         }
1809
1810         intel_runtime_pm_get(dev_priv);
1811
1812         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1813         if (ret)
1814                 goto out;
1815
1816         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1817                 /* Convert GT frequency to 50 HZ units */
1818                 min_gpu_freq =
1819                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1820                 max_gpu_freq =
1821                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1822         } else {
1823                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1824                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1825         }
1826
1827         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1828
1829         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1830                 ia_freq = gpu_freq;
1831                 sandybridge_pcode_read(dev_priv,
1832                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1833                                        &ia_freq);
1834                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1835                            intel_gpu_freq(dev_priv, (gpu_freq *
1836                                 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1837                                  GEN9_FREQ_SCALER : 1))),
1838                            ((ia_freq >> 0) & 0xff) * 100,
1839                            ((ia_freq >> 8) & 0xff) * 100);
1840         }
1841
1842         mutex_unlock(&dev_priv->rps.hw_lock);
1843
1844 out:
1845         intel_runtime_pm_put(dev_priv);
1846         return ret;
1847 }
1848
1849 static int i915_opregion(struct seq_file *m, void *unused)
1850 {
1851         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1852         struct drm_device *dev = &dev_priv->drm;
1853         struct intel_opregion *opregion = &dev_priv->opregion;
1854         int ret;
1855
1856         ret = mutex_lock_interruptible(&dev->struct_mutex);
1857         if (ret)
1858                 goto out;
1859
1860         if (opregion->header)
1861                 seq_write(m, opregion->header, OPREGION_SIZE);
1862
1863         mutex_unlock(&dev->struct_mutex);
1864
1865 out:
1866         return 0;
1867 }
1868
1869 static int i915_vbt(struct seq_file *m, void *unused)
1870 {
1871         struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1872
1873         if (opregion->vbt)
1874                 seq_write(m, opregion->vbt, opregion->vbt_size);
1875
1876         return 0;
1877 }
1878
1879 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1880 {
1881         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1882         struct drm_device *dev = &dev_priv->drm;
1883         struct intel_framebuffer *fbdev_fb = NULL;
1884         struct drm_framebuffer *drm_fb;
1885         int ret;
1886
1887         ret = mutex_lock_interruptible(&dev->struct_mutex);
1888         if (ret)
1889                 return ret;
1890
1891 #ifdef CONFIG_DRM_FBDEV_EMULATION
1892         if (dev_priv->fbdev) {
1893                 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1894
1895                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1896                            fbdev_fb->base.width,
1897                            fbdev_fb->base.height,
1898                            fbdev_fb->base.depth,
1899                            fbdev_fb->base.bits_per_pixel,
1900                            fbdev_fb->base.modifier[0],
1901                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1902                 describe_obj(m, fbdev_fb->obj);
1903                 seq_putc(m, '\n');
1904         }
1905 #endif
1906
1907         mutex_lock(&dev->mode_config.fb_lock);
1908         drm_for_each_fb(drm_fb, dev) {
1909                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1910                 if (fb == fbdev_fb)
1911                         continue;
1912
1913                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1914                            fb->base.width,
1915                            fb->base.height,
1916                            fb->base.depth,
1917                            fb->base.bits_per_pixel,
1918                            fb->base.modifier[0],
1919                            drm_framebuffer_read_refcount(&fb->base));
1920                 describe_obj(m, fb->obj);
1921                 seq_putc(m, '\n');
1922         }
1923         mutex_unlock(&dev->mode_config.fb_lock);
1924         mutex_unlock(&dev->struct_mutex);
1925
1926         return 0;
1927 }
1928
1929 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1930 {
1931         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1932                    ring->space, ring->head, ring->tail,
1933                    ring->last_retired_head);
1934 }
1935
1936 static int i915_context_status(struct seq_file *m, void *unused)
1937 {
1938         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1939         struct drm_device *dev = &dev_priv->drm;
1940         struct intel_engine_cs *engine;
1941         struct i915_gem_context *ctx;
1942         enum intel_engine_id id;
1943         int ret;
1944
1945         ret = mutex_lock_interruptible(&dev->struct_mutex);
1946         if (ret)
1947                 return ret;
1948
1949         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1950                 seq_printf(m, "HW context %u ", ctx->hw_id);
1951                 if (ctx->pid) {
1952                         struct task_struct *task;
1953
1954                         task = get_pid_task(ctx->pid, PIDTYPE_PID);
1955                         if (task) {
1956                                 seq_printf(m, "(%s [%d]) ",
1957                                            task->comm, task->pid);
1958                                 put_task_struct(task);
1959                         }
1960                 } else if (IS_ERR(ctx->file_priv)) {
1961                         seq_puts(m, "(deleted) ");
1962                 } else {
1963                         seq_puts(m, "(kernel) ");
1964                 }
1965
1966                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1967                 seq_putc(m, '\n');
1968
1969                 for_each_engine(engine, dev_priv, id) {
1970                         struct intel_context *ce = &ctx->engine[engine->id];
1971
1972                         seq_printf(m, "%s: ", engine->name);
1973                         seq_putc(m, ce->initialised ? 'I' : 'i');
1974                         if (ce->state)
1975                                 describe_obj(m, ce->state->obj);
1976                         if (ce->ring)
1977                                 describe_ctx_ring(m, ce->ring);
1978                         seq_putc(m, '\n');
1979                 }
1980
1981                 seq_putc(m, '\n');
1982         }
1983
1984         mutex_unlock(&dev->struct_mutex);
1985
1986         return 0;
1987 }
1988
1989 static void i915_dump_lrc_obj(struct seq_file *m,
1990                               struct i915_gem_context *ctx,
1991                               struct intel_engine_cs *engine)
1992 {
1993         struct i915_vma *vma = ctx->engine[engine->id].state;
1994         struct page *page;
1995         int j;
1996
1997         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
1998
1999         if (!vma) {
2000                 seq_puts(m, "\tFake context\n");
2001                 return;
2002         }
2003
2004         if (vma->flags & I915_VMA_GLOBAL_BIND)
2005                 seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2006                            i915_ggtt_offset(vma));
2007
2008         if (i915_gem_object_pin_pages(vma->obj)) {
2009                 seq_puts(m, "\tFailed to get pages for context object\n\n");
2010                 return;
2011         }
2012
2013         page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2014         if (page) {
2015                 u32 *reg_state = kmap_atomic(page);
2016
2017                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2018                         seq_printf(m,
2019                                    "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2020                                    j * 4,
2021                                    reg_state[j], reg_state[j + 1],
2022                                    reg_state[j + 2], reg_state[j + 3]);
2023                 }
2024                 kunmap_atomic(reg_state);
2025         }
2026
2027         i915_gem_object_unpin_pages(vma->obj);
2028         seq_putc(m, '\n');
2029 }
2030
2031 static int i915_dump_lrc(struct seq_file *m, void *unused)
2032 {
2033         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2034         struct drm_device *dev = &dev_priv->drm;
2035         struct intel_engine_cs *engine;
2036         struct i915_gem_context *ctx;
2037         enum intel_engine_id id;
2038         int ret;
2039
2040         if (!i915.enable_execlists) {
2041                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2042                 return 0;
2043         }
2044
2045         ret = mutex_lock_interruptible(&dev->struct_mutex);
2046         if (ret)
2047                 return ret;
2048
2049         list_for_each_entry(ctx, &dev_priv->context_list, link)
2050                 for_each_engine(engine, dev_priv, id)
2051                         i915_dump_lrc_obj(m, ctx, engine);
2052
2053         mutex_unlock(&dev->struct_mutex);
2054
2055         return 0;
2056 }
2057
2058 static const char *swizzle_string(unsigned swizzle)
2059 {
2060         switch (swizzle) {
2061         case I915_BIT_6_SWIZZLE_NONE:
2062                 return "none";
2063         case I915_BIT_6_SWIZZLE_9:
2064                 return "bit9";
2065         case I915_BIT_6_SWIZZLE_9_10:
2066                 return "bit9/bit10";
2067         case I915_BIT_6_SWIZZLE_9_11:
2068                 return "bit9/bit11";
2069         case I915_BIT_6_SWIZZLE_9_10_11:
2070                 return "bit9/bit10/bit11";
2071         case I915_BIT_6_SWIZZLE_9_17:
2072                 return "bit9/bit17";
2073         case I915_BIT_6_SWIZZLE_9_10_17:
2074                 return "bit9/bit10/bit17";
2075         case I915_BIT_6_SWIZZLE_UNKNOWN:
2076                 return "unknown";
2077         }
2078
2079         return "bug";
2080 }
2081
2082 static int i915_swizzle_info(struct seq_file *m, void *data)
2083 {
2084         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2085
2086         intel_runtime_pm_get(dev_priv);
2087
2088         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2089                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2090         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2091                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2092
2093         if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2094                 seq_printf(m, "DDC = 0x%08x\n",
2095                            I915_READ(DCC));
2096                 seq_printf(m, "DDC2 = 0x%08x\n",
2097                            I915_READ(DCC2));
2098                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2099                            I915_READ16(C0DRB3));
2100                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2101                            I915_READ16(C1DRB3));
2102         } else if (INTEL_GEN(dev_priv) >= 6) {
2103                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2104                            I915_READ(MAD_DIMM_C0));
2105                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2106                            I915_READ(MAD_DIMM_C1));
2107                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2108                            I915_READ(MAD_DIMM_C2));
2109                 seq_printf(m, "TILECTL = 0x%08x\n",
2110                            I915_READ(TILECTL));
2111                 if (INTEL_GEN(dev_priv) >= 8)
2112                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2113                                    I915_READ(GAMTARBMODE));
2114                 else
2115                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2116                                    I915_READ(ARB_MODE));
2117                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2118                            I915_READ(DISP_ARB_CTL));
2119         }
2120
2121         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2122                 seq_puts(m, "L-shaped memory detected\n");
2123
2124         intel_runtime_pm_put(dev_priv);
2125
2126         return 0;
2127 }
2128
2129 static int per_file_ctx(int id, void *ptr, void *data)
2130 {
2131         struct i915_gem_context *ctx = ptr;
2132         struct seq_file *m = data;
2133         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2134
2135         if (!ppgtt) {
2136                 seq_printf(m, "  no ppgtt for context %d\n",
2137                            ctx->user_handle);
2138                 return 0;
2139         }
2140
2141         if (i915_gem_context_is_default(ctx))
2142                 seq_puts(m, "  default context:\n");
2143         else
2144                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2145         ppgtt->debug_dump(ppgtt, m);
2146
2147         return 0;
2148 }
2149
2150 static void gen8_ppgtt_info(struct seq_file *m,
2151                             struct drm_i915_private *dev_priv)
2152 {
2153         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2154         struct intel_engine_cs *engine;
2155         enum intel_engine_id id;
2156         int i;
2157
2158         if (!ppgtt)
2159                 return;
2160
2161         for_each_engine(engine, dev_priv, id) {
2162                 seq_printf(m, "%s\n", engine->name);
2163                 for (i = 0; i < 4; i++) {
2164                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2165                         pdp <<= 32;
2166                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2167                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2168                 }
2169         }
2170 }
2171
2172 static void gen6_ppgtt_info(struct seq_file *m,
2173                             struct drm_i915_private *dev_priv)
2174 {
2175         struct intel_engine_cs *engine;
2176         enum intel_engine_id id;
2177
2178         if (IS_GEN6(dev_priv))
2179                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2180
2181         for_each_engine(engine, dev_priv, id) {
2182                 seq_printf(m, "%s\n", engine->name);
2183                 if (IS_GEN7(dev_priv))
2184                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2185                                    I915_READ(RING_MODE_GEN7(engine)));
2186                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2187                            I915_READ(RING_PP_DIR_BASE(engine)));
2188                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2189                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2190                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2191                            I915_READ(RING_PP_DIR_DCLV(engine)));
2192         }
2193         if (dev_priv->mm.aliasing_ppgtt) {
2194                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2195
2196                 seq_puts(m, "aliasing PPGTT:\n");
2197                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2198
2199                 ppgtt->debug_dump(ppgtt, m);
2200         }
2201
2202         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2203 }
2204
2205 static int i915_ppgtt_info(struct seq_file *m, void *data)
2206 {
2207         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2208         struct drm_device *dev = &dev_priv->drm;
2209         struct drm_file *file;
2210         int ret;
2211
2212         mutex_lock(&dev->filelist_mutex);
2213         ret = mutex_lock_interruptible(&dev->struct_mutex);
2214         if (ret)
2215                 goto out_unlock;
2216
2217         intel_runtime_pm_get(dev_priv);
2218
2219         if (INTEL_GEN(dev_priv) >= 8)
2220                 gen8_ppgtt_info(m, dev_priv);
2221         else if (INTEL_GEN(dev_priv) >= 6)
2222                 gen6_ppgtt_info(m, dev_priv);
2223
2224         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2225                 struct drm_i915_file_private *file_priv = file->driver_priv;
2226                 struct task_struct *task;
2227
2228                 task = get_pid_task(file->pid, PIDTYPE_PID);
2229                 if (!task) {
2230                         ret = -ESRCH;
2231                         goto out_rpm;
2232                 }
2233                 seq_printf(m, "\nproc: %s\n", task->comm);
2234                 put_task_struct(task);
2235                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2236                              (void *)(unsigned long)m);
2237         }
2238
2239 out_rpm:
2240         intel_runtime_pm_put(dev_priv);
2241         mutex_unlock(&dev->struct_mutex);
2242 out_unlock:
2243         mutex_unlock(&dev->filelist_mutex);
2244         return ret;
2245 }
2246
2247 static int count_irq_waiters(struct drm_i915_private *i915)
2248 {
2249         struct intel_engine_cs *engine;
2250         enum intel_engine_id id;
2251         int count = 0;
2252
2253         for_each_engine(engine, i915, id)
2254                 count += intel_engine_has_waiter(engine);
2255
2256         return count;
2257 }
2258
2259 static const char *rps_power_to_str(unsigned int power)
2260 {
2261         static const char * const strings[] = {
2262                 [LOW_POWER] = "low power",
2263                 [BETWEEN] = "mixed",
2264                 [HIGH_POWER] = "high power",
2265         };
2266
2267         if (power >= ARRAY_SIZE(strings) || !strings[power])
2268                 return "unknown";
2269
2270         return strings[power];
2271 }
2272
2273 static int i915_rps_boost_info(struct seq_file *m, void *data)
2274 {
2275         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2276         struct drm_device *dev = &dev_priv->drm;
2277         struct drm_file *file;
2278
2279         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2280         seq_printf(m, "GPU busy? %s [%d requests]\n",
2281                    yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2282         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2283         seq_printf(m, "Frequency requested %d\n",
2284                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2285         seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2286                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2287                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2288                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2289                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2290         seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2291                    intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2292                    intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2293                    intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2294
2295         mutex_lock(&dev->filelist_mutex);
2296         spin_lock(&dev_priv->rps.client_lock);
2297         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2298                 struct drm_i915_file_private *file_priv = file->driver_priv;
2299                 struct task_struct *task;
2300
2301                 rcu_read_lock();
2302                 task = pid_task(file->pid, PIDTYPE_PID);
2303                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2304                            task ? task->comm : "<unknown>",
2305                            task ? task->pid : -1,
2306                            file_priv->rps.boosts,
2307                            list_empty(&file_priv->rps.link) ? "" : ", active");
2308                 rcu_read_unlock();
2309         }
2310         seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2311         spin_unlock(&dev_priv->rps.client_lock);
2312         mutex_unlock(&dev->filelist_mutex);
2313
2314         if (INTEL_GEN(dev_priv) >= 6 &&
2315             dev_priv->rps.enabled &&
2316             dev_priv->gt.active_requests) {
2317                 u32 rpup, rpupei;
2318                 u32 rpdown, rpdownei;
2319
2320                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2321                 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2322                 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2323                 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2324                 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2325                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2326
2327                 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2328                            rps_power_to_str(dev_priv->rps.power));
2329                 seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2330                            100 * rpup / rpupei,
2331                            dev_priv->rps.up_threshold);
2332                 seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2333                            100 * rpdown / rpdownei,
2334                            dev_priv->rps.down_threshold);
2335         } else {
2336                 seq_puts(m, "\nRPS Autotuning inactive\n");
2337         }
2338
2339         return 0;
2340 }
2341
2342 static int i915_llc(struct seq_file *m, void *data)
2343 {
2344         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2345         const bool edram = INTEL_GEN(dev_priv) > 8;
2346
2347         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2348         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2349                    intel_uncore_edram_size(dev_priv)/1024/1024);
2350
2351         return 0;
2352 }
2353
2354 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2355 {
2356         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2357         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2358         u32 tmp, i;
2359
2360         if (!HAS_GUC_UCODE(dev_priv))
2361                 return 0;
2362
2363         seq_printf(m, "GuC firmware status:\n");
2364         seq_printf(m, "\tpath: %s\n",
2365                 guc_fw->guc_fw_path);
2366         seq_printf(m, "\tfetch: %s\n",
2367                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2368         seq_printf(m, "\tload: %s\n",
2369                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2370         seq_printf(m, "\tversion wanted: %d.%d\n",
2371                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2372         seq_printf(m, "\tversion found: %d.%d\n",
2373                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2374         seq_printf(m, "\theader: offset is %d; size = %d\n",
2375                 guc_fw->header_offset, guc_fw->header_size);
2376         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2377                 guc_fw->ucode_offset, guc_fw->ucode_size);
2378         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2379                 guc_fw->rsa_offset, guc_fw->rsa_size);
2380
2381         tmp = I915_READ(GUC_STATUS);
2382
2383         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2384         seq_printf(m, "\tBootrom status = 0x%x\n",
2385                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2386         seq_printf(m, "\tuKernel status = 0x%x\n",
2387                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2388         seq_printf(m, "\tMIA Core status = 0x%x\n",
2389                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2390         seq_puts(m, "\nScratch registers:\n");
2391         for (i = 0; i < 16; i++)
2392                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2393
2394         return 0;
2395 }
2396
2397 static void i915_guc_log_info(struct seq_file *m,
2398                               struct drm_i915_private *dev_priv)
2399 {
2400         struct intel_guc *guc = &dev_priv->guc;
2401
2402         seq_puts(m, "\nGuC logging stats:\n");
2403
2404         seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2405                    guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2406                    guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2407
2408         seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2409                    guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2410                    guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2411
2412         seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2413                    guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2414                    guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2415
2416         seq_printf(m, "\tTotal flush interrupt count: %u\n",
2417                    guc->log.flush_interrupt_count);
2418
2419         seq_printf(m, "\tCapture miss count: %u\n",
2420                    guc->log.capture_miss_count);
2421 }
2422
2423 static void i915_guc_client_info(struct seq_file *m,
2424                                  struct drm_i915_private *dev_priv,
2425                                  struct i915_guc_client *client)
2426 {
2427         struct intel_engine_cs *engine;
2428         enum intel_engine_id id;
2429         uint64_t tot = 0;
2430
2431         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2432                 client->priority, client->ctx_index, client->proc_desc_offset);
2433         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2434                 client->doorbell_id, client->doorbell_offset, client->cookie);
2435         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2436                 client->wq_size, client->wq_offset, client->wq_tail);
2437
2438         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2439         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2440         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2441
2442         for_each_engine(engine, dev_priv, id) {
2443                 u64 submissions = client->submissions[id];
2444                 tot += submissions;
2445                 seq_printf(m, "\tSubmissions: %llu %s\n",
2446                                 submissions, engine->name);
2447         }
2448         seq_printf(m, "\tTotal: %llu\n", tot);
2449 }
2450
2451 static int i915_guc_info(struct seq_file *m, void *data)
2452 {
2453         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2454         struct drm_device *dev = &dev_priv->drm;
2455         struct intel_guc guc;
2456         struct i915_guc_client client = {};
2457         struct intel_engine_cs *engine;
2458         enum intel_engine_id id;
2459         u64 total = 0;
2460
2461         if (!HAS_GUC_SCHED(dev_priv))
2462                 return 0;
2463
2464         if (mutex_lock_interruptible(&dev->struct_mutex))
2465                 return 0;
2466
2467         /* Take a local copy of the GuC data, so we can dump it at leisure */
2468         guc = dev_priv->guc;
2469         if (guc.execbuf_client)
2470                 client = *guc.execbuf_client;
2471
2472         mutex_unlock(&dev->struct_mutex);
2473
2474         seq_printf(m, "Doorbell map:\n");
2475         seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2476         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2477
2478         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2479         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2480         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2481         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2482         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2483
2484         seq_printf(m, "\nGuC submissions:\n");
2485         for_each_engine(engine, dev_priv, id) {
2486                 u64 submissions = guc.submissions[id];
2487                 total += submissions;
2488                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2489                         engine->name, submissions, guc.last_seqno[id]);
2490         }
2491         seq_printf(m, "\t%s: %llu\n", "Total", total);
2492
2493         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2494         i915_guc_client_info(m, dev_priv, &client);
2495
2496         i915_guc_log_info(m, dev_priv);
2497
2498         /* Add more as required ... */
2499
2500         return 0;
2501 }
2502
2503 static int i915_guc_log_dump(struct seq_file *m, void *data)
2504 {
2505         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2506         struct drm_i915_gem_object *obj;
2507         int i = 0, pg;
2508
2509         if (!dev_priv->guc.log.vma)
2510                 return 0;
2511
2512         obj = dev_priv->guc.log.vma->obj;
2513         for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2514                 u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2515
2516                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2517                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2518                                    *(log + i), *(log + i + 1),
2519                                    *(log + i + 2), *(log + i + 3));
2520
2521                 kunmap_atomic(log);
2522         }
2523
2524         seq_putc(m, '\n');
2525
2526         return 0;
2527 }
2528
2529 static int i915_guc_log_control_get(void *data, u64 *val)
2530 {
2531         struct drm_device *dev = data;
2532         struct drm_i915_private *dev_priv = to_i915(dev);
2533
2534         if (!dev_priv->guc.log.vma)
2535                 return -EINVAL;
2536
2537         *val = i915.guc_log_level;
2538
2539         return 0;
2540 }
2541
2542 static int i915_guc_log_control_set(void *data, u64 val)
2543 {
2544         struct drm_device *dev = data;
2545         struct drm_i915_private *dev_priv = to_i915(dev);
2546         int ret;
2547
2548         if (!dev_priv->guc.log.vma)
2549                 return -EINVAL;
2550
2551         ret = mutex_lock_interruptible(&dev->struct_mutex);
2552         if (ret)
2553                 return ret;
2554
2555         intel_runtime_pm_get(dev_priv);
2556         ret = i915_guc_log_control(dev_priv, val);
2557         intel_runtime_pm_put(dev_priv);
2558
2559         mutex_unlock(&dev->struct_mutex);
2560         return ret;
2561 }
2562
2563 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2564                         i915_guc_log_control_get, i915_guc_log_control_set,
2565                         "%lld\n");
2566
2567 static int i915_edp_psr_status(struct seq_file *m, void *data)
2568 {
2569         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2570         u32 psrperf = 0;
2571         u32 stat[3];
2572         enum pipe pipe;
2573         bool enabled = false;
2574
2575         if (!HAS_PSR(dev_priv)) {
2576                 seq_puts(m, "PSR not supported\n");
2577                 return 0;
2578         }
2579
2580         intel_runtime_pm_get(dev_priv);
2581
2582         mutex_lock(&dev_priv->psr.lock);
2583         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2584         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2585         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2586         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2587         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2588                    dev_priv->psr.busy_frontbuffer_bits);
2589         seq_printf(m, "Re-enable work scheduled: %s\n",
2590                    yesno(work_busy(&dev_priv->psr.work.work)));
2591
2592         if (HAS_DDI(dev_priv))
2593                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2594         else {
2595                 for_each_pipe(dev_priv, pipe) {
2596                         enum transcoder cpu_transcoder =
2597                                 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2598                         enum intel_display_power_domain power_domain;
2599
2600                         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2601                         if (!intel_display_power_get_if_enabled(dev_priv,
2602                                                                 power_domain))
2603                                 continue;
2604
2605                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2606                                 VLV_EDP_PSR_CURR_STATE_MASK;
2607                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2608                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2609                                 enabled = true;
2610
2611                         intel_display_power_put(dev_priv, power_domain);
2612                 }
2613         }
2614
2615         seq_printf(m, "Main link in standby mode: %s\n",
2616                    yesno(dev_priv->psr.link_standby));
2617
2618         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2619
2620         if (!HAS_DDI(dev_priv))
2621                 for_each_pipe(dev_priv, pipe) {
2622                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2623                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2624                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2625                 }
2626         seq_puts(m, "\n");
2627
2628         /*
2629          * VLV/CHV PSR has no kind of performance counter
2630          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2631          */
2632         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2633                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2634                         EDP_PSR_PERF_CNT_MASK;
2635
2636                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2637         }
2638         mutex_unlock(&dev_priv->psr.lock);
2639
2640         intel_runtime_pm_put(dev_priv);
2641         return 0;
2642 }
2643
2644 static int i915_sink_crc(struct seq_file *m, void *data)
2645 {
2646         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2647         struct drm_device *dev = &dev_priv->drm;
2648         struct intel_connector *connector;
2649         struct intel_dp *intel_dp = NULL;
2650         int ret;
2651         u8 crc[6];
2652
2653         drm_modeset_lock_all(dev);
2654         for_each_intel_connector(dev, connector) {
2655                 struct drm_crtc *crtc;
2656
2657                 if (!connector->base.state->best_encoder)
2658                         continue;
2659
2660                 crtc = connector->base.state->crtc;
2661                 if (!crtc->state->active)
2662                         continue;
2663
2664                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2665                         continue;
2666
2667                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2668
2669                 ret = intel_dp_sink_crc(intel_dp, crc);
2670                 if (ret)
2671                         goto out;
2672
2673                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2674                            crc[0], crc[1], crc[2],
2675                            crc[3], crc[4], crc[5]);
2676                 goto out;
2677         }
2678         ret = -ENODEV;
2679 out:
2680         drm_modeset_unlock_all(dev);
2681         return ret;
2682 }
2683
2684 static int i915_energy_uJ(struct seq_file *m, void *data)
2685 {
2686         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2687         u64 power;
2688         u32 units;
2689
2690         if (INTEL_GEN(dev_priv) < 6)
2691                 return -ENODEV;
2692
2693         intel_runtime_pm_get(dev_priv);
2694
2695         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2696         power = (power & 0x1f00) >> 8;
2697         units = 1000000 / (1 << power); /* convert to uJ */
2698         power = I915_READ(MCH_SECP_NRG_STTS);
2699         power *= units;
2700
2701         intel_runtime_pm_put(dev_priv);
2702
2703         seq_printf(m, "%llu", (long long unsigned)power);
2704
2705         return 0;
2706 }
2707
2708 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2709 {
2710         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2711         struct pci_dev *pdev = dev_priv->drm.pdev;
2712
2713         if (!HAS_RUNTIME_PM(dev_priv))
2714                 seq_puts(m, "Runtime power management not supported\n");
2715
2716         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2717         seq_printf(m, "IRQs disabled: %s\n",
2718                    yesno(!intel_irqs_enabled(dev_priv)));
2719 #ifdef CONFIG_PM
2720         seq_printf(m, "Usage count: %d\n",
2721                    atomic_read(&dev_priv->drm.dev->power.usage_count));
2722 #else
2723         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2724 #endif
2725         seq_printf(m, "PCI device power state: %s [%d]\n",
2726                    pci_power_name(pdev->current_state),
2727                    pdev->current_state);
2728
2729         return 0;
2730 }
2731
2732 static int i915_power_domain_info(struct seq_file *m, void *unused)
2733 {
2734         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2735         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2736         int i;
2737
2738         mutex_lock(&power_domains->lock);
2739
2740         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2741         for (i = 0; i < power_domains->power_well_count; i++) {
2742                 struct i915_power_well *power_well;
2743                 enum intel_display_power_domain power_domain;
2744
2745                 power_well = &power_domains->power_wells[i];
2746                 seq_printf(m, "%-25s %d\n", power_well->name,
2747                            power_well->count);
2748
2749                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2750                      power_domain++) {
2751                         if (!(BIT(power_domain) & power_well->domains))
2752                                 continue;
2753
2754                         seq_printf(m, "  %-23s %d\n",
2755                                  intel_display_power_domain_str(power_domain),
2756                                  power_domains->domain_use_count[power_domain]);
2757                 }
2758         }
2759
2760         mutex_unlock(&power_domains->lock);
2761
2762         return 0;
2763 }
2764
2765 static int i915_dmc_info(struct seq_file *m, void *unused)
2766 {
2767         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2768         struct intel_csr *csr;
2769
2770         if (!HAS_CSR(dev_priv)) {
2771                 seq_puts(m, "not supported\n");
2772                 return 0;
2773         }
2774
2775         csr = &dev_priv->csr;
2776
2777         intel_runtime_pm_get(dev_priv);
2778
2779         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2780         seq_printf(m, "path: %s\n", csr->fw_path);
2781
2782         if (!csr->dmc_payload)
2783                 goto out;
2784
2785         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2786                    CSR_VERSION_MINOR(csr->version));
2787
2788         if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2789                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2790                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2791                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2792                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2793         } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2794                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2795                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2796         }
2797
2798 out:
2799         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2800         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2801         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2802
2803         intel_runtime_pm_put(dev_priv);
2804
2805         return 0;
2806 }
2807
2808 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2809                                  struct drm_display_mode *mode)
2810 {
2811         int i;
2812
2813         for (i = 0; i < tabs; i++)
2814                 seq_putc(m, '\t');
2815
2816         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2817                    mode->base.id, mode->name,
2818                    mode->vrefresh, mode->clock,
2819                    mode->hdisplay, mode->hsync_start,
2820                    mode->hsync_end, mode->htotal,
2821                    mode->vdisplay, mode->vsync_start,
2822                    mode->vsync_end, mode->vtotal,
2823                    mode->type, mode->flags);
2824 }
2825
2826 static void intel_encoder_info(struct seq_file *m,
2827                                struct intel_crtc *intel_crtc,
2828                                struct intel_encoder *intel_encoder)
2829 {
2830         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2831         struct drm_device *dev = &dev_priv->drm;
2832         struct drm_crtc *crtc = &intel_crtc->base;
2833         struct intel_connector *intel_connector;
2834         struct drm_encoder *encoder;
2835
2836         encoder = &intel_encoder->base;
2837         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2838                    encoder->base.id, encoder->name);
2839         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2840                 struct drm_connector *connector = &intel_connector->base;
2841                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2842                            connector->base.id,
2843                            connector->name,
2844                            drm_get_connector_status_name(connector->status));
2845                 if (connector->status == connector_status_connected) {
2846                         struct drm_display_mode *mode = &crtc->mode;
2847                         seq_printf(m, ", mode:\n");
2848                         intel_seq_print_mode(m, 2, mode);
2849                 } else {
2850                         seq_putc(m, '\n');
2851                 }
2852         }
2853 }
2854
2855 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2856 {
2857         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2858         struct drm_device *dev = &dev_priv->drm;
2859         struct drm_crtc *crtc = &intel_crtc->base;
2860         struct intel_encoder *intel_encoder;
2861         struct drm_plane_state *plane_state = crtc->primary->state;
2862         struct drm_framebuffer *fb = plane_state->fb;
2863
2864         if (fb)
2865                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2866                            fb->base.id, plane_state->src_x >> 16,
2867                            plane_state->src_y >> 16, fb->width, fb->height);
2868         else
2869                 seq_puts(m, "\tprimary plane disabled\n");
2870         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2871                 intel_encoder_info(m, intel_crtc, intel_encoder);
2872 }
2873
2874 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2875 {
2876         struct drm_display_mode *mode = panel->fixed_mode;
2877
2878         seq_printf(m, "\tfixed mode:\n");
2879         intel_seq_print_mode(m, 2, mode);
2880 }
2881
2882 static void intel_dp_info(struct seq_file *m,
2883                           struct intel_connector *intel_connector)
2884 {
2885         struct intel_encoder *intel_encoder = intel_connector->encoder;
2886         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2887
2888         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2889         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2890         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2891                 intel_panel_info(m, &intel_connector->panel);
2892
2893         drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2894                                 &intel_dp->aux);
2895 }
2896
2897 static void intel_hdmi_info(struct seq_file *m,
2898                             struct intel_connector *intel_connector)
2899 {
2900         struct intel_encoder *intel_encoder = intel_connector->encoder;
2901         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2902
2903         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2904 }
2905
2906 static void intel_lvds_info(struct seq_file *m,
2907                             struct intel_connector *intel_connector)
2908 {
2909         intel_panel_info(m, &intel_connector->panel);
2910 }
2911
2912 static void intel_connector_info(struct seq_file *m,
2913                                  struct drm_connector *connector)
2914 {
2915         struct intel_connector *intel_connector = to_intel_connector(connector);
2916         struct intel_encoder *intel_encoder = intel_connector->encoder;
2917         struct drm_display_mode *mode;
2918
2919         seq_printf(m, "connector %d: type %s, status: %s\n",
2920                    connector->base.id, connector->name,
2921                    drm_get_connector_status_name(connector->status));
2922         if (connector->status == connector_status_connected) {
2923                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2924                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2925                            connector->display_info.width_mm,
2926                            connector->display_info.height_mm);
2927                 seq_printf(m, "\tsubpixel order: %s\n",
2928                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2929                 seq_printf(m, "\tCEA rev: %d\n",
2930                            connector->display_info.cea_rev);
2931         }
2932
2933         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
2934                 return;
2935
2936         switch (connector->connector_type) {
2937         case DRM_MODE_CONNECTOR_DisplayPort:
2938         case DRM_MODE_CONNECTOR_eDP:
2939                 intel_dp_info(m, intel_connector);
2940                 break;
2941         case DRM_MODE_CONNECTOR_LVDS:
2942                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2943                         intel_lvds_info(m, intel_connector);
2944                 break;
2945         case DRM_MODE_CONNECTOR_HDMIA:
2946                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2947                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
2948                         intel_hdmi_info(m, intel_connector);
2949                 break;
2950         default:
2951                 break;
2952         }
2953
2954         seq_printf(m, "\tmodes:\n");
2955         list_for_each_entry(mode, &connector->modes, head)
2956                 intel_seq_print_mode(m, 2, mode);
2957 }
2958
2959 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
2960 {
2961         u32 state;
2962
2963         if (IS_845G(dev_priv) || IS_I865G(dev_priv))
2964                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2965         else
2966                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2967
2968         return state;
2969 }
2970
2971 static bool cursor_position(struct drm_i915_private *dev_priv,
2972                             int pipe, int *x, int *y)
2973 {
2974         u32 pos;
2975
2976         pos = I915_READ(CURPOS(pipe));
2977
2978         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2979         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2980                 *x = -*x;
2981
2982         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2983         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2984                 *y = -*y;
2985
2986         return cursor_active(dev_priv, pipe);
2987 }
2988
2989 static const char *plane_type(enum drm_plane_type type)
2990 {
2991         switch (type) {
2992         case DRM_PLANE_TYPE_OVERLAY:
2993                 return "OVL";
2994         case DRM_PLANE_TYPE_PRIMARY:
2995                 return "PRI";
2996         case DRM_PLANE_TYPE_CURSOR:
2997                 return "CUR";
2998         /*
2999          * Deliberately omitting default: to generate compiler warnings
3000          * when a new drm_plane_type gets added.
3001          */
3002         }
3003
3004         return "unknown";
3005 }
3006
3007 static const char *plane_rotation(unsigned int rotation)
3008 {
3009         static char buf[48];
3010         /*
3011          * According to doc only one DRM_ROTATE_ is allowed but this
3012          * will print them all to visualize if the values are misused
3013          */
3014         snprintf(buf, sizeof(buf),
3015                  "%s%s%s%s%s%s(0x%08x)",
3016                  (rotation & DRM_ROTATE_0) ? "0 " : "",
3017                  (rotation & DRM_ROTATE_90) ? "90 " : "",
3018                  (rotation & DRM_ROTATE_180) ? "180 " : "",
3019                  (rotation & DRM_ROTATE_270) ? "270 " : "",
3020                  (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
3021                  (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3022                  rotation);
3023
3024         return buf;
3025 }
3026
3027 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3028 {
3029         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3030         struct drm_device *dev = &dev_priv->drm;
3031         struct intel_plane *intel_plane;
3032
3033         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3034                 struct drm_plane_state *state;
3035                 struct drm_plane *plane = &intel_plane->base;
3036                 char *format_name;
3037
3038                 if (!plane->state) {
3039                         seq_puts(m, "plane->state is NULL!\n");
3040                         continue;
3041                 }
3042
3043                 state = plane->state;
3044
3045                 if (state->fb) {
3046                         format_name = drm_get_format_name(state->fb->pixel_format);
3047                 } else {
3048                         format_name = kstrdup("N/A", GFP_KERNEL);
3049                 }
3050
3051                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3052                            plane->base.id,
3053                            plane_type(intel_plane->base.type),
3054                            state->crtc_x, state->crtc_y,
3055                            state->crtc_w, state->crtc_h,
3056                            (state->src_x >> 16),
3057                            ((state->src_x & 0xffff) * 15625) >> 10,
3058                            (state->src_y >> 16),
3059                            ((state->src_y & 0xffff) * 15625) >> 10,
3060                            (state->src_w >> 16),
3061                            ((state->src_w & 0xffff) * 15625) >> 10,
3062                            (state->src_h >> 16),
3063                            ((state->src_h & 0xffff) * 15625) >> 10,
3064                            format_name,
3065                            plane_rotation(state->rotation));
3066
3067                 kfree(format_name);
3068         }
3069 }
3070
3071 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3072 {
3073         struct intel_crtc_state *pipe_config;
3074         int num_scalers = intel_crtc->num_scalers;
3075         int i;
3076
3077         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3078
3079         /* Not all platformas have a scaler */
3080         if (num_scalers) {
3081                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3082                            num_scalers,
3083                            pipe_config->scaler_state.scaler_users,
3084                            pipe_config->scaler_state.scaler_id);
3085
3086                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3087                         struct intel_scaler *sc =
3088                                         &pipe_config->scaler_state.scalers[i];
3089
3090                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3091                                    i, yesno(sc->in_use), sc->mode);
3092                 }
3093                 seq_puts(m, "\n");
3094         } else {
3095                 seq_puts(m, "\tNo scalers available on this platform\n");
3096         }
3097 }
3098
3099 static int i915_display_info(struct seq_file *m, void *unused)
3100 {
3101         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3102         struct drm_device *dev = &dev_priv->drm;
3103         struct intel_crtc *crtc;
3104         struct drm_connector *connector;
3105
3106         intel_runtime_pm_get(dev_priv);
3107         drm_modeset_lock_all(dev);
3108         seq_printf(m, "CRTC info\n");
3109         seq_printf(m, "---------\n");
3110         for_each_intel_crtc(dev, crtc) {
3111                 bool active;
3112                 struct intel_crtc_state *pipe_config;
3113                 int x, y;
3114
3115                 pipe_config = to_intel_crtc_state(crtc->base.state);
3116
3117                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3118                            crtc->base.base.id, pipe_name(crtc->pipe),
3119                            yesno(pipe_config->base.active),
3120                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3121                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3122
3123                 if (pipe_config->base.active) {
3124                         intel_crtc_info(m, crtc);
3125
3126                         active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3127                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3128                                    yesno(crtc->cursor_base),
3129                                    x, y, crtc->base.cursor->state->crtc_w,
3130                                    crtc->base.cursor->state->crtc_h,
3131                                    crtc->cursor_addr, yesno(active));
3132                         intel_scaler_info(m, crtc);
3133                         intel_plane_info(m, crtc);
3134                 }
3135
3136                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3137                            yesno(!crtc->cpu_fifo_underrun_disabled),
3138                            yesno(!crtc->pch_fifo_underrun_disabled));
3139         }
3140
3141         seq_printf(m, "\n");
3142         seq_printf(m, "Connector info\n");
3143         seq_printf(m, "--------------\n");
3144         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3145                 intel_connector_info(m, connector);
3146         }
3147         drm_modeset_unlock_all(dev);
3148         intel_runtime_pm_put(dev_priv);
3149
3150         return 0;
3151 }
3152
3153 static int i915_engine_info(struct seq_file *m, void *unused)
3154 {
3155         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3156         struct intel_engine_cs *engine;
3157         enum intel_engine_id id;
3158
3159         intel_runtime_pm_get(dev_priv);
3160
3161         for_each_engine(engine, dev_priv, id) {
3162                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3163                 struct drm_i915_gem_request *rq;
3164                 struct rb_node *rb;
3165                 u64 addr;
3166
3167                 seq_printf(m, "%s\n", engine->name);
3168                 seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [score %d]\n",
3169                            intel_engine_get_seqno(engine),
3170                            engine->timeline->last_submitted_seqno,
3171                            engine->hangcheck.seqno,
3172                            engine->hangcheck.score);
3173
3174                 rcu_read_lock();
3175
3176                 seq_printf(m, "\tRequests:\n");
3177
3178                 rq = list_first_entry(&engine->timeline->requests,
3179                                       struct drm_i915_gem_request, link);
3180                 if (&rq->link != &engine->timeline->requests)
3181                         print_request(m, rq, "\t\tfirst  ");
3182
3183                 rq = list_last_entry(&engine->timeline->requests,
3184                                      struct drm_i915_gem_request, link);
3185                 if (&rq->link != &engine->timeline->requests)
3186                         print_request(m, rq, "\t\tlast   ");
3187
3188                 rq = i915_gem_find_active_request(engine);
3189                 if (rq) {
3190                         print_request(m, rq, "\t\tactive ");
3191                         seq_printf(m,
3192                                    "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3193                                    rq->head, rq->postfix, rq->tail,
3194                                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3195                                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3196                 }
3197
3198                 seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3199                            I915_READ(RING_START(engine->mmio_base)),
3200                            rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3201                 seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3202                            I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3203                            rq ? rq->ring->head : 0);
3204                 seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3205                            I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3206                            rq ? rq->ring->tail : 0);
3207                 seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3208                            I915_READ(RING_CTL(engine->mmio_base)),
3209                            I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3210
3211                 rcu_read_unlock();
3212
3213                 addr = intel_engine_get_active_head(engine);
3214                 seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3215                            upper_32_bits(addr), lower_32_bits(addr));
3216                 addr = intel_engine_get_last_batch_head(engine);
3217                 seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3218                            upper_32_bits(addr), lower_32_bits(addr));
3219
3220                 if (i915.enable_execlists) {
3221                         u32 ptr, read, write;
3222
3223                         seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3224                                    I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3225                                    I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3226
3227                         ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3228                         read = GEN8_CSB_READ_PTR(ptr);
3229                         write = GEN8_CSB_WRITE_PTR(ptr);
3230                         seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3231                                    read, write);
3232                         if (read >= GEN8_CSB_ENTRIES)
3233                                 read = 0;
3234                         if (write >= GEN8_CSB_ENTRIES)
3235                                 write = 0;
3236                         if (read > write)
3237                                 write += GEN8_CSB_ENTRIES;
3238                         while (read < write) {
3239                                 unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3240
3241                                 seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3242                                            idx,
3243                                            I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3244                                            I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3245                         }
3246
3247                         rcu_read_lock();
3248                         rq = READ_ONCE(engine->execlist_port[0].request);
3249                         if (rq)
3250                                 print_request(m, rq, "\t\tELSP[0] ");
3251                         else
3252                                 seq_printf(m, "\t\tELSP[0] idle\n");
3253                         rq = READ_ONCE(engine->execlist_port[1].request);
3254                         if (rq)
3255                                 print_request(m, rq, "\t\tELSP[1] ");
3256                         else
3257                                 seq_printf(m, "\t\tELSP[1] idle\n");
3258                         rcu_read_unlock();
3259                 } else if (INTEL_GEN(dev_priv) > 6) {
3260                         seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3261                                    I915_READ(RING_PP_DIR_BASE(engine)));
3262                         seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3263                                    I915_READ(RING_PP_DIR_BASE_READ(engine)));
3264                         seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3265                                    I915_READ(RING_PP_DIR_DCLV(engine)));
3266                 }
3267
3268                 spin_lock_irq(&b->lock);
3269                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3270                         struct intel_wait *w = container_of(rb, typeof(*w), node);
3271
3272                         seq_printf(m, "\t%s [%d] waiting for %x\n",
3273                                    w->tsk->comm, w->tsk->pid, w->seqno);
3274                 }
3275                 spin_unlock_irq(&b->lock);
3276
3277                 seq_puts(m, "\n");
3278         }
3279
3280         intel_runtime_pm_put(dev_priv);
3281
3282         return 0;
3283 }
3284
3285 static int i915_semaphore_status(struct seq_file *m, void *unused)
3286 {
3287         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3288         struct drm_device *dev = &dev_priv->drm;
3289         struct intel_engine_cs *engine;
3290         int num_rings = INTEL_INFO(dev_priv)->num_rings;
3291         enum intel_engine_id id;
3292         int j, ret;
3293
3294         if (!i915.semaphores) {
3295                 seq_puts(m, "Semaphores are disabled\n");
3296                 return 0;
3297         }
3298
3299         ret = mutex_lock_interruptible(&dev->struct_mutex);
3300         if (ret)
3301                 return ret;
3302         intel_runtime_pm_get(dev_priv);
3303
3304         if (IS_BROADWELL(dev_priv)) {
3305                 struct page *page;
3306                 uint64_t *seqno;
3307
3308                 page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3309
3310                 seqno = (uint64_t *)kmap_atomic(page);
3311                 for_each_engine(engine, dev_priv, id) {
3312                         uint64_t offset;
3313
3314                         seq_printf(m, "%s\n", engine->name);
3315
3316                         seq_puts(m, "  Last signal:");
3317                         for (j = 0; j < num_rings; j++) {
3318                                 offset = id * I915_NUM_ENGINES + j;
3319                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3320                                            seqno[offset], offset * 8);
3321                         }
3322                         seq_putc(m, '\n');
3323
3324                         seq_puts(m, "  Last wait:  ");
3325                         for (j = 0; j < num_rings; j++) {
3326                                 offset = id + (j * I915_NUM_ENGINES);
3327                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3328                                            seqno[offset], offset * 8);
3329                         }
3330                         seq_putc(m, '\n');
3331
3332                 }
3333                 kunmap_atomic(seqno);
3334         } else {
3335                 seq_puts(m, "  Last signal:");
3336                 for_each_engine(engine, dev_priv, id)
3337                         for (j = 0; j < num_rings; j++)
3338                                 seq_printf(m, "0x%08x\n",
3339                                            I915_READ(engine->semaphore.mbox.signal[j]));
3340                 seq_putc(m, '\n');
3341         }
3342
3343         intel_runtime_pm_put(dev_priv);
3344         mutex_unlock(&dev->struct_mutex);
3345         return 0;
3346 }
3347
3348 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3349 {
3350         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3351         struct drm_device *dev = &dev_priv->drm;
3352         int i;
3353
3354         drm_modeset_lock_all(dev);
3355         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3356                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3357
3358                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3359                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3360                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3361                 seq_printf(m, " tracked hardware state:\n");
3362                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3363                 seq_printf(m, " dpll_md: 0x%08x\n",
3364                            pll->config.hw_state.dpll_md);
3365                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3366                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3367                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3368         }
3369         drm_modeset_unlock_all(dev);
3370
3371         return 0;
3372 }
3373
3374 static int i915_wa_registers(struct seq_file *m, void *unused)
3375 {
3376         int i;
3377         int ret;
3378         struct intel_engine_cs *engine;
3379         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3380         struct drm_device *dev = &dev_priv->drm;
3381         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3382         enum intel_engine_id id;
3383
3384         ret = mutex_lock_interruptible(&dev->struct_mutex);
3385         if (ret)
3386                 return ret;
3387
3388         intel_runtime_pm_get(dev_priv);
3389
3390         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3391         for_each_engine(engine, dev_priv, id)
3392                 seq_printf(m, "HW whitelist count for %s: %d\n",
3393                            engine->name, workarounds->hw_whitelist_count[id]);
3394         for (i = 0; i < workarounds->count; ++i) {
3395                 i915_reg_t addr;
3396                 u32 mask, value, read;
3397                 bool ok;
3398
3399                 addr = workarounds->reg[i].addr;
3400                 mask = workarounds->reg[i].mask;
3401                 value = workarounds->reg[i].value;
3402                 read = I915_READ(addr);
3403                 ok = (value & mask) == (read & mask);
3404                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3405                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3406         }
3407
3408         intel_runtime_pm_put(dev_priv);
3409         mutex_unlock(&dev->struct_mutex);
3410
3411         return 0;
3412 }
3413
3414 static int i915_ddb_info(struct seq_file *m, void *unused)
3415 {
3416         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3417         struct drm_device *dev = &dev_priv->drm;
3418         struct skl_ddb_allocation *ddb;
3419         struct skl_ddb_entry *entry;
3420         enum pipe pipe;
3421         int plane;
3422
3423         if (INTEL_GEN(dev_priv) < 9)
3424                 return 0;
3425
3426         drm_modeset_lock_all(dev);
3427
3428         ddb = &dev_priv->wm.skl_hw.ddb;
3429
3430         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3431
3432         for_each_pipe(dev_priv, pipe) {
3433                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3434
3435                 for_each_universal_plane(dev_priv, pipe, plane) {
3436                         entry = &ddb->plane[pipe][plane];
3437                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3438                                    entry->start, entry->end,
3439                                    skl_ddb_entry_size(entry));
3440                 }
3441
3442                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3443                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3444                            entry->end, skl_ddb_entry_size(entry));
3445         }
3446
3447         drm_modeset_unlock_all(dev);
3448
3449         return 0;
3450 }
3451
3452 static void drrs_status_per_crtc(struct seq_file *m,
3453                                  struct drm_device *dev,
3454                                  struct intel_crtc *intel_crtc)
3455 {
3456         struct drm_i915_private *dev_priv = to_i915(dev);
3457         struct i915_drrs *drrs = &dev_priv->drrs;
3458         int vrefresh = 0;
3459         struct drm_connector *connector;
3460
3461         drm_for_each_connector(connector, dev) {
3462                 if (connector->state->crtc != &intel_crtc->base)
3463                         continue;
3464
3465                 seq_printf(m, "%s:\n", connector->name);
3466         }
3467
3468         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3469                 seq_puts(m, "\tVBT: DRRS_type: Static");
3470         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3471                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3472         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3473                 seq_puts(m, "\tVBT: DRRS_type: None");
3474         else
3475                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3476
3477         seq_puts(m, "\n\n");
3478
3479         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3480                 struct intel_panel *panel;
3481
3482                 mutex_lock(&drrs->mutex);
3483                 /* DRRS Supported */
3484                 seq_puts(m, "\tDRRS Supported: Yes\n");
3485
3486                 /* disable_drrs() will make drrs->dp NULL */
3487                 if (!drrs->dp) {
3488                         seq_puts(m, "Idleness DRRS: Disabled");
3489                         mutex_unlock(&drrs->mutex);
3490                         return;
3491                 }
3492
3493                 panel = &drrs->dp->attached_connector->panel;
3494                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3495                                         drrs->busy_frontbuffer_bits);
3496
3497                 seq_puts(m, "\n\t\t");
3498                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3499                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3500                         vrefresh = panel->fixed_mode->vrefresh;
3501                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3502                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3503                         vrefresh = panel->downclock_mode->vrefresh;
3504                 } else {
3505                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3506                                                 drrs->refresh_rate_type);
3507                         mutex_unlock(&drrs->mutex);
3508                         return;
3509                 }
3510                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3511
3512                 seq_puts(m, "\n\t\t");
3513                 mutex_unlock(&drrs->mutex);
3514         } else {
3515                 /* DRRS not supported. Print the VBT parameter*/
3516                 seq_puts(m, "\tDRRS Supported : No");
3517         }
3518         seq_puts(m, "\n");
3519 }
3520
3521 static int i915_drrs_status(struct seq_file *m, void *unused)
3522 {
3523         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3524         struct drm_device *dev = &dev_priv->drm;
3525         struct intel_crtc *intel_crtc;
3526         int active_crtc_cnt = 0;
3527
3528         drm_modeset_lock_all(dev);
3529         for_each_intel_crtc(dev, intel_crtc) {
3530                 if (intel_crtc->base.state->active) {
3531                         active_crtc_cnt++;
3532                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3533
3534                         drrs_status_per_crtc(m, dev, intel_crtc);
3535                 }
3536         }
3537         drm_modeset_unlock_all(dev);
3538
3539         if (!active_crtc_cnt)
3540                 seq_puts(m, "No active crtc found\n");
3541
3542         return 0;
3543 }
3544
3545 struct pipe_crc_info {
3546         const char *name;
3547         struct drm_i915_private *dev_priv;
3548         enum pipe pipe;
3549 };
3550
3551 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3552 {
3553         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3554         struct drm_device *dev = &dev_priv->drm;
3555         struct intel_encoder *intel_encoder;
3556         struct intel_digital_port *intel_dig_port;
3557         struct drm_connector *connector;
3558
3559         drm_modeset_lock_all(dev);
3560         drm_for_each_connector(connector, dev) {
3561                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3562                         continue;
3563
3564                 intel_encoder = intel_attached_encoder(connector);
3565                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3566                         continue;
3567
3568                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3569                 if (!intel_dig_port->dp.can_mst)
3570                         continue;
3571
3572                 seq_printf(m, "MST Source Port %c\n",
3573                            port_name(intel_dig_port->port));
3574                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3575         }
3576         drm_modeset_unlock_all(dev);
3577         return 0;
3578 }
3579
3580 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3581 {
3582         struct pipe_crc_info *info = inode->i_private;
3583         struct drm_i915_private *dev_priv = info->dev_priv;
3584         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3585
3586         if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
3587                 return -ENODEV;
3588
3589         spin_lock_irq(&pipe_crc->lock);
3590
3591         if (pipe_crc->opened) {
3592                 spin_unlock_irq(&pipe_crc->lock);
3593                 return -EBUSY; /* already open */
3594         }
3595
3596         pipe_crc->opened = true;
3597         filep->private_data = inode->i_private;
3598
3599         spin_unlock_irq(&pipe_crc->lock);
3600
3601         return 0;
3602 }
3603
3604 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3605 {
3606         struct pipe_crc_info *info = inode->i_private;
3607         struct drm_i915_private *dev_priv = info->dev_priv;
3608         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3609
3610         spin_lock_irq(&pipe_crc->lock);
3611         pipe_crc->opened = false;
3612         spin_unlock_irq(&pipe_crc->lock);
3613
3614         return 0;
3615 }
3616
3617 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3618 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3619 /* account for \'0' */
3620 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3621
3622 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3623 {
3624         assert_spin_locked(&pipe_crc->lock);
3625         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3626                         INTEL_PIPE_CRC_ENTRIES_NR);
3627 }
3628
3629 static ssize_t
3630 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3631                    loff_t *pos)
3632 {
3633         struct pipe_crc_info *info = filep->private_data;
3634         struct drm_i915_private *dev_priv = info->dev_priv;
3635         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3636         char buf[PIPE_CRC_BUFFER_LEN];
3637         int n_entries;
3638         ssize_t bytes_read;
3639
3640         /*
3641          * Don't allow user space to provide buffers not big enough to hold
3642          * a line of data.
3643          */
3644         if (count < PIPE_CRC_LINE_LEN)
3645                 return -EINVAL;
3646
3647         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3648                 return 0;
3649
3650         /* nothing to read */
3651         spin_lock_irq(&pipe_crc->lock);
3652         while (pipe_crc_data_count(pipe_crc) == 0) {
3653                 int ret;
3654
3655                 if (filep->f_flags & O_NONBLOCK) {
3656                         spin_unlock_irq(&pipe_crc->lock);
3657                         return -EAGAIN;
3658                 }
3659
3660                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3661                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3662                 if (ret) {
3663                         spin_unlock_irq(&pipe_crc->lock);
3664                         return ret;
3665                 }
3666         }
3667
3668         /* We now have one or more entries to read */
3669         n_entries = count / PIPE_CRC_LINE_LEN;
3670
3671         bytes_read = 0;
3672         while (n_entries > 0) {
3673                 struct intel_pipe_crc_entry *entry =
3674                         &pipe_crc->entries[pipe_crc->tail];
3675
3676                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3677                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3678                         break;
3679
3680                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3681                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3682
3683                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3684                                        "%8u %8x %8x %8x %8x %8x\n",
3685                                        entry->frame, entry->crc[0],
3686                                        entry->crc[1], entry->crc[2],
3687                                        entry->crc[3], entry->crc[4]);
3688
3689                 spin_unlock_irq(&pipe_crc->lock);
3690
3691                 if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3692                         return -EFAULT;
3693
3694                 user_buf += PIPE_CRC_LINE_LEN;
3695                 n_entries--;
3696
3697                 spin_lock_irq(&pipe_crc->lock);
3698         }
3699
3700         spin_unlock_irq(&pipe_crc->lock);
3701
3702         return bytes_read;
3703 }
3704
3705 static const struct file_operations i915_pipe_crc_fops = {
3706         .owner = THIS_MODULE,
3707         .open = i915_pipe_crc_open,
3708         .read = i915_pipe_crc_read,
3709         .release = i915_pipe_crc_release,
3710 };
3711
3712 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3713         {
3714                 .name = "i915_pipe_A_crc",
3715                 .pipe = PIPE_A,
3716         },
3717         {
3718                 .name = "i915_pipe_B_crc",
3719                 .pipe = PIPE_B,
3720         },
3721         {
3722                 .name = "i915_pipe_C_crc",
3723                 .pipe = PIPE_C,
3724         },
3725 };
3726
3727 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3728                                 enum pipe pipe)
3729 {
3730         struct drm_i915_private *dev_priv = to_i915(minor->dev);
3731         struct dentry *ent;
3732         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3733
3734         info->dev_priv = dev_priv;
3735         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3736                                   &i915_pipe_crc_fops);
3737         if (!ent)
3738                 return -ENOMEM;
3739
3740         return drm_add_fake_info_node(minor, ent, info);
3741 }
3742
3743 static const char * const pipe_crc_sources[] = {
3744         "none",
3745         "plane1",
3746         "plane2",
3747         "pf",
3748         "pipe",
3749         "TV",
3750         "DP-B",
3751         "DP-C",
3752         "DP-D",
3753         "auto",
3754 };
3755
3756 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3757 {
3758         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3759         return pipe_crc_sources[source];
3760 }
3761
3762 static int display_crc_ctl_show(struct seq_file *m, void *data)
3763 {
3764         struct drm_i915_private *dev_priv = m->private;
3765         int i;
3766
3767         for (i = 0; i < I915_MAX_PIPES; i++)
3768                 seq_printf(m, "%c %s\n", pipe_name(i),
3769                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3770
3771         return 0;
3772 }
3773
3774 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3775 {
3776         return single_open(file, display_crc_ctl_show, inode->i_private);
3777 }
3778
3779 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3780                                  uint32_t *val)
3781 {
3782         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3783                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3784
3785         switch (*source) {
3786         case INTEL_PIPE_CRC_SOURCE_PIPE:
3787                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3788                 break;
3789         case INTEL_PIPE_CRC_SOURCE_NONE:
3790                 *val = 0;
3791                 break;
3792         default:
3793                 return -EINVAL;
3794         }
3795
3796         return 0;
3797 }
3798
3799 static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
3800                                      enum pipe pipe,
3801                                      enum intel_pipe_crc_source *source)
3802 {
3803         struct drm_device *dev = &dev_priv->drm;
3804         struct intel_encoder *encoder;
3805         struct intel_crtc *crtc;
3806         struct intel_digital_port *dig_port;
3807         int ret = 0;
3808
3809         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3810
3811         drm_modeset_lock_all(dev);
3812         for_each_intel_encoder(dev, encoder) {
3813                 if (!encoder->base.crtc)
3814                         continue;
3815
3816                 crtc = to_intel_crtc(encoder->base.crtc);
3817
3818                 if (crtc->pipe != pipe)
3819                         continue;
3820
3821                 switch (encoder->type) {
3822                 case INTEL_OUTPUT_TVOUT:
3823                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3824                         break;
3825                 case INTEL_OUTPUT_DP:
3826                 case INTEL_OUTPUT_EDP:
3827                         dig_port = enc_to_dig_port(&encoder->base);
3828                         switch (dig_port->port) {
3829                         case PORT_B:
3830                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3831                                 break;
3832                         case PORT_C:
3833                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3834                                 break;
3835                         case PORT_D:
3836                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3837                                 break;
3838                         default:
3839                                 WARN(1, "nonexisting DP port %c\n",
3840                                      port_name(dig_port->port));
3841                                 break;
3842                         }
3843                         break;
3844                 default:
3845                         break;
3846                 }
3847         }
3848         drm_modeset_unlock_all(dev);
3849
3850         return ret;
3851 }
3852
3853 static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3854                                 enum pipe pipe,
3855                                 enum intel_pipe_crc_source *source,
3856                                 uint32_t *val)
3857 {
3858         bool need_stable_symbols = false;
3859
3860         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3861                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3862                 if (ret)
3863                         return ret;
3864         }
3865
3866         switch (*source) {
3867         case INTEL_PIPE_CRC_SOURCE_PIPE:
3868                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3869                 break;
3870         case INTEL_PIPE_CRC_SOURCE_DP_B:
3871                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3872                 need_stable_symbols = true;
3873                 break;
3874         case INTEL_PIPE_CRC_SOURCE_DP_C:
3875                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3876                 need_stable_symbols = true;
3877                 break;
3878         case INTEL_PIPE_CRC_SOURCE_DP_D:
3879                 if (!IS_CHERRYVIEW(dev_priv))
3880                         return -EINVAL;
3881                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3882                 need_stable_symbols = true;
3883                 break;
3884         case INTEL_PIPE_CRC_SOURCE_NONE:
3885                 *val = 0;
3886                 break;
3887         default:
3888                 return -EINVAL;
3889         }
3890
3891         /*
3892          * When the pipe CRC tap point is after the transcoders we need
3893          * to tweak symbol-level features to produce a deterministic series of
3894          * symbols for a given frame. We need to reset those features only once
3895          * a frame (instead of every nth symbol):
3896          *   - DC-balance: used to ensure a better clock recovery from the data
3897          *     link (SDVO)
3898          *   - DisplayPort scrambling: used for EMI reduction
3899          */
3900         if (need_stable_symbols) {
3901                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3902
3903                 tmp |= DC_BALANCE_RESET_VLV;
3904                 switch (pipe) {
3905                 case PIPE_A:
3906                         tmp |= PIPE_A_SCRAMBLE_RESET;
3907                         break;
3908                 case PIPE_B:
3909                         tmp |= PIPE_B_SCRAMBLE_RESET;
3910                         break;
3911                 case PIPE_C:
3912                         tmp |= PIPE_C_SCRAMBLE_RESET;
3913                         break;
3914                 default:
3915                         return -EINVAL;
3916                 }
3917                 I915_WRITE(PORT_DFT2_G4X, tmp);
3918         }
3919
3920         return 0;
3921 }
3922
3923 static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3924                                  enum pipe pipe,
3925                                  enum intel_pipe_crc_source *source,
3926                                  uint32_t *val)
3927 {
3928         bool need_stable_symbols = false;
3929
3930         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3931                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3932                 if (ret)
3933                         return ret;
3934         }
3935
3936         switch (*source) {
3937         case INTEL_PIPE_CRC_SOURCE_PIPE:
3938                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3939                 break;
3940         case INTEL_PIPE_CRC_SOURCE_TV:
3941                 if (!SUPPORTS_TV(dev_priv))
3942                         return -EINVAL;
3943                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3944                 break;
3945         case INTEL_PIPE_CRC_SOURCE_DP_B:
3946                 if (!IS_G4X(dev_priv))
3947                         return -EINVAL;
3948                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3949                 need_stable_symbols = true;
3950                 break;
3951         case INTEL_PIPE_CRC_SOURCE_DP_C:
3952                 if (!IS_G4X(dev_priv))
3953                         return -EINVAL;
3954                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3955                 need_stable_symbols = true;
3956                 break;
3957         case INTEL_PIPE_CRC_SOURCE_DP_D:
3958                 if (!IS_G4X(dev_priv))
3959                         return -EINVAL;
3960                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3961                 need_stable_symbols = true;
3962                 break;
3963         case INTEL_PIPE_CRC_SOURCE_NONE:
3964                 *val = 0;
3965                 break;
3966         default:
3967                 return -EINVAL;
3968         }
3969
3970         /*
3971          * When the pipe CRC tap point is after the transcoders we need
3972          * to tweak symbol-level features to produce a deterministic series of
3973          * symbols for a given frame. We need to reset those features only once
3974          * a frame (instead of every nth symbol):
3975          *   - DC-balance: used to ensure a better clock recovery from the data
3976          *     link (SDVO)
3977          *   - DisplayPort scrambling: used for EMI reduction
3978          */
3979         if (need_stable_symbols) {
3980                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3981
3982                 WARN_ON(!IS_G4X(dev_priv));
3983
3984                 I915_WRITE(PORT_DFT_I9XX,
3985                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3986
3987                 if (pipe == PIPE_A)
3988                         tmp |= PIPE_A_SCRAMBLE_RESET;
3989                 else
3990                         tmp |= PIPE_B_SCRAMBLE_RESET;
3991
3992                 I915_WRITE(PORT_DFT2_G4X, tmp);
3993         }
3994
3995         return 0;
3996 }
3997
3998 static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3999                                          enum pipe pipe)
4000 {
4001         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
4002
4003         switch (pipe) {
4004         case PIPE_A:
4005                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
4006                 break;
4007         case PIPE_B:
4008                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
4009                 break;
4010         case PIPE_C:
4011                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
4012                 break;
4013         default:
4014                 return;
4015         }
4016         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
4017                 tmp &= ~DC_BALANCE_RESET_VLV;
4018         I915_WRITE(PORT_DFT2_G4X, tmp);
4019
4020 }
4021
4022 static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
4023                                          enum pipe pipe)
4024 {
4025         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
4026
4027         if (pipe == PIPE_A)
4028                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
4029         else
4030                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
4031         I915_WRITE(PORT_DFT2_G4X, tmp);
4032
4033         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
4034                 I915_WRITE(PORT_DFT_I9XX,
4035                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
4036         }
4037 }
4038
4039 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
4040                                 uint32_t *val)
4041 {
4042         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4043                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
4044
4045         switch (*source) {
4046         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4047                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
4048                 break;
4049         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4050                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
4051                 break;
4052         case INTEL_PIPE_CRC_SOURCE_PIPE:
4053                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
4054                 break;
4055         case INTEL_PIPE_CRC_SOURCE_NONE:
4056                 *val = 0;
4057                 break;
4058         default:
4059                 return -EINVAL;
4060         }
4061
4062         return 0;
4063 }
4064
4065 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
4066                                         bool enable)
4067 {
4068         struct drm_device *dev = &dev_priv->drm;
4069         struct intel_crtc *crtc =
4070                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4071         struct intel_crtc_state *pipe_config;
4072         struct drm_atomic_state *state;
4073         int ret = 0;
4074
4075         drm_modeset_lock_all(dev);
4076         state = drm_atomic_state_alloc(dev);
4077         if (!state) {
4078                 ret = -ENOMEM;
4079                 goto out;
4080         }
4081
4082         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4083         pipe_config = intel_atomic_get_crtc_state(state, crtc);
4084         if (IS_ERR(pipe_config)) {
4085                 ret = PTR_ERR(pipe_config);
4086                 goto out;
4087         }
4088
4089         pipe_config->pch_pfit.force_thru = enable;
4090         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4091             pipe_config->pch_pfit.enabled != enable)
4092                 pipe_config->base.connectors_changed = true;
4093
4094         ret = drm_atomic_commit(state);
4095 out:
4096         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4097         drm_modeset_unlock_all(dev);
4098         drm_atomic_state_put(state);
4099 }
4100
4101 static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
4102                                 enum pipe pipe,
4103                                 enum intel_pipe_crc_source *source,
4104                                 uint32_t *val)
4105 {
4106         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4107                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4108
4109         switch (*source) {
4110         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4111                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4112                 break;
4113         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4114                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4115                 break;
4116         case INTEL_PIPE_CRC_SOURCE_PF:
4117                 if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4118                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
4119
4120                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4121                 break;
4122         case INTEL_PIPE_CRC_SOURCE_NONE:
4123                 *val = 0;
4124                 break;
4125         default:
4126                 return -EINVAL;
4127         }
4128
4129         return 0;
4130 }
4131
4132 static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
4133                                enum pipe pipe,
4134                                enum intel_pipe_crc_source source)
4135 {
4136         struct drm_device *dev = &dev_priv->drm;
4137         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4138         struct intel_crtc *crtc =
4139                         to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
4140         enum intel_display_power_domain power_domain;
4141         u32 val = 0; /* shut up gcc */
4142         int ret;
4143
4144         if (pipe_crc->source == source)
4145                 return 0;
4146
4147         /* forbid changing the source without going back to 'none' */
4148         if (pipe_crc->source && source)
4149                 return -EINVAL;
4150
4151         power_domain = POWER_DOMAIN_PIPE(pipe);
4152         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4153                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4154                 return -EIO;
4155         }
4156
4157         if (IS_GEN2(dev_priv))
4158                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4159         else if (INTEL_GEN(dev_priv) < 5)
4160                 ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4161         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4162                 ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4163         else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
4164                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4165         else
4166                 ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4167
4168         if (ret != 0)
4169                 goto out;
4170
4171         /* none -> real source transition */
4172         if (source) {
4173                 struct intel_pipe_crc_entry *entries;
4174
4175                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4176                                  pipe_name(pipe), pipe_crc_source_name(source));
4177
4178                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4179                                   sizeof(pipe_crc->entries[0]),
4180                                   GFP_KERNEL);
4181                 if (!entries) {
4182                         ret = -ENOMEM;
4183                         goto out;
4184                 }
4185
4186                 /*
4187                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4188                  * enabled and disabled dynamically based on package C states,
4189                  * user space can't make reliable use of the CRCs, so let's just
4190                  * completely disable it.
4191                  */
4192                 hsw_disable_ips(crtc);
4193
4194                 spin_lock_irq(&pipe_crc->lock);
4195                 kfree(pipe_crc->entries);
4196                 pipe_crc->entries = entries;
4197                 pipe_crc->head = 0;
4198                 pipe_crc->tail = 0;
4199                 spin_unlock_irq(&pipe_crc->lock);
4200         }
4201
4202         pipe_crc->source = source;
4203
4204         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4205         POSTING_READ(PIPE_CRC_CTL(pipe));
4206
4207         /* real source -> none transition */
4208         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4209                 struct intel_pipe_crc_entry *entries;
4210                 struct intel_crtc *crtc =
4211                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4212
4213                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4214                                  pipe_name(pipe));
4215
4216                 drm_modeset_lock(&crtc->base.mutex, NULL);
4217                 if (crtc->base.state->active)
4218                         intel_wait_for_vblank(dev, pipe);
4219                 drm_modeset_unlock(&crtc->base.mutex);
4220
4221                 spin_lock_irq(&pipe_crc->lock);
4222                 entries = pipe_crc->entries;
4223                 pipe_crc->entries = NULL;
4224                 pipe_crc->head = 0;
4225                 pipe_crc->tail = 0;
4226                 spin_unlock_irq(&pipe_crc->lock);
4227
4228                 kfree(entries);
4229
4230                 if (IS_G4X(dev_priv))
4231                         g4x_undo_pipe_scramble_reset(dev_priv, pipe);
4232                 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4233                         vlv_undo_pipe_scramble_reset(dev_priv, pipe);
4234                 else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4235                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
4236
4237                 hsw_enable_ips(crtc);
4238         }
4239
4240         ret = 0;
4241
4242 out:
4243         intel_display_power_put(dev_priv, power_domain);
4244
4245         return ret;
4246 }
4247
4248 /*
4249  * Parse pipe CRC command strings:
4250  *   command: wsp* object wsp+ name wsp+ source wsp*
4251  *   object: 'pipe'
4252  *   name: (A | B | C)
4253  *   source: (none | plane1 | plane2 | pf)
4254  *   wsp: (#0x20 | #0x9 | #0xA)+
4255  *
4256  * eg.:
4257  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4258  *  "pipe A none"    ->  Stop CRC
4259  */
4260 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4261 {
4262         int n_words = 0;
4263
4264         while (*buf) {
4265                 char *end;
4266
4267                 /* skip leading white space */
4268                 buf = skip_spaces(buf);
4269                 if (!*buf)
4270                         break;  /* end of buffer */
4271
4272                 /* find end of word */
4273                 for (end = buf; *end && !isspace(*end); end++)
4274                         ;
4275
4276                 if (n_words == max_words) {
4277                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4278                                          max_words);
4279                         return -EINVAL; /* ran out of words[] before bytes */
4280                 }
4281
4282                 if (*end)
4283                         *end++ = '\0';
4284                 words[n_words++] = buf;
4285                 buf = end;
4286         }
4287
4288         return n_words;
4289 }
4290
4291 enum intel_pipe_crc_object {
4292         PIPE_CRC_OBJECT_PIPE,
4293 };
4294
4295 static const char * const pipe_crc_objects[] = {
4296         "pipe",
4297 };
4298
4299 static int
4300 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4301 {
4302         int i;
4303
4304         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4305                 if (!strcmp(buf, pipe_crc_objects[i])) {
4306                         *o = i;
4307                         return 0;
4308                     }
4309
4310         return -EINVAL;
4311 }
4312
4313 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4314 {
4315         const char name = buf[0];
4316
4317         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4318                 return -EINVAL;
4319
4320         *pipe = name - 'A';
4321
4322         return 0;
4323 }
4324
4325 static int
4326 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4327 {
4328         int i;
4329
4330         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4331                 if (!strcmp(buf, pipe_crc_sources[i])) {
4332                         *s = i;
4333                         return 0;
4334                     }
4335
4336         return -EINVAL;
4337 }
4338
4339 static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
4340                                  char *buf, size_t len)
4341 {
4342 #define N_WORDS 3
4343         int n_words;
4344         char *words[N_WORDS];
4345         enum pipe pipe;
4346         enum intel_pipe_crc_object object;
4347         enum intel_pipe_crc_source source;
4348
4349         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4350         if (n_words != N_WORDS) {
4351                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4352                                  N_WORDS);
4353                 return -EINVAL;
4354         }
4355
4356         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4357                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4358                 return -EINVAL;
4359         }
4360
4361         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4362                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4363                 return -EINVAL;
4364         }
4365
4366         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4367                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4368                 return -EINVAL;
4369         }
4370
4371         return pipe_crc_set_source(dev_priv, pipe, source);
4372 }
4373
4374 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4375                                      size_t len, loff_t *offp)
4376 {
4377         struct seq_file *m = file->private_data;
4378         struct drm_i915_private *dev_priv = m->private;
4379         char *tmpbuf;
4380         int ret;
4381
4382         if (len == 0)
4383                 return 0;
4384
4385         if (len > PAGE_SIZE - 1) {
4386                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4387                                  PAGE_SIZE);
4388                 return -E2BIG;
4389         }
4390
4391         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4392         if (!tmpbuf)
4393                 return -ENOMEM;
4394
4395         if (copy_from_user(tmpbuf, ubuf, len)) {
4396                 ret = -EFAULT;
4397                 goto out;
4398         }
4399         tmpbuf[len] = '\0';
4400
4401         ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
4402
4403 out:
4404         kfree(tmpbuf);
4405         if (ret < 0)
4406                 return ret;
4407
4408         *offp += len;
4409         return len;
4410 }
4411
4412 static const struct file_operations i915_display_crc_ctl_fops = {
4413         .owner = THIS_MODULE,
4414         .open = display_crc_ctl_open,
4415         .read = seq_read,
4416         .llseek = seq_lseek,
4417         .release = single_release,
4418         .write = display_crc_ctl_write
4419 };
4420
4421 static ssize_t i915_displayport_test_active_write(struct file *file,
4422                                                   const char __user *ubuf,
4423                                                   size_t len, loff_t *offp)
4424 {
4425         char *input_buffer;
4426         int status = 0;
4427         struct drm_device *dev;
4428         struct drm_connector *connector;
4429         struct list_head *connector_list;
4430         struct intel_dp *intel_dp;
4431         int val = 0;
4432
4433         dev = ((struct seq_file *)file->private_data)->private;
4434
4435         connector_list = &dev->mode_config.connector_list;
4436
4437         if (len == 0)
4438                 return 0;
4439
4440         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4441         if (!input_buffer)
4442                 return -ENOMEM;
4443
4444         if (copy_from_user(input_buffer, ubuf, len)) {
4445                 status = -EFAULT;
4446                 goto out;
4447         }
4448
4449         input_buffer[len] = '\0';
4450         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4451
4452         list_for_each_entry(connector, connector_list, head) {
4453                 if (connector->connector_type !=
4454                     DRM_MODE_CONNECTOR_DisplayPort)
4455                         continue;
4456
4457                 if (connector->status == connector_status_connected &&
4458                     connector->encoder != NULL) {
4459                         intel_dp = enc_to_intel_dp(connector->encoder);
4460                         status = kstrtoint(input_buffer, 10, &val);
4461                         if (status < 0)
4462                                 goto out;
4463                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4464                         /* To prevent erroneous activation of the compliance
4465                          * testing code, only accept an actual value of 1 here
4466                          */
4467                         if (val == 1)
4468                                 intel_dp->compliance_test_active = 1;
4469                         else
4470                                 intel_dp->compliance_test_active = 0;
4471                 }
4472         }
4473 out:
4474         kfree(input_buffer);
4475         if (status < 0)
4476                 return status;
4477
4478         *offp += len;
4479         return len;
4480 }
4481
4482 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4483 {
4484         struct drm_device *dev = m->private;
4485         struct drm_connector *connector;
4486         struct list_head *connector_list = &dev->mode_config.connector_list;
4487         struct intel_dp *intel_dp;
4488
4489         list_for_each_entry(connector, connector_list, head) {
4490                 if (connector->connector_type !=
4491                     DRM_MODE_CONNECTOR_DisplayPort)
4492                         continue;
4493
4494                 if (connector->status == connector_status_connected &&
4495                     connector->encoder != NULL) {
4496                         intel_dp = enc_to_intel_dp(connector->encoder);
4497                         if (intel_dp->compliance_test_active)
4498                                 seq_puts(m, "1");
4499                         else
4500                                 seq_puts(m, "0");
4501                 } else
4502                         seq_puts(m, "0");
4503         }
4504
4505         return 0;
4506 }
4507
4508 static int i915_displayport_test_active_open(struct inode *inode,
4509                                              struct file *file)
4510 {
4511         struct drm_i915_private *dev_priv = inode->i_private;
4512
4513         return single_open(file, i915_displayport_test_active_show,
4514                            &dev_priv->drm);
4515 }
4516
4517 static const struct file_operations i915_displayport_test_active_fops = {
4518         .owner = THIS_MODULE,
4519         .open = i915_displayport_test_active_open,
4520         .read = seq_read,
4521         .llseek = seq_lseek,
4522         .release = single_release,
4523         .write = i915_displayport_test_active_write
4524 };
4525
4526 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4527 {
4528         struct drm_device *dev = m->private;
4529         struct drm_connector *connector;
4530         struct list_head *connector_list = &dev->mode_config.connector_list;
4531         struct intel_dp *intel_dp;
4532
4533         list_for_each_entry(connector, connector_list, head) {
4534                 if (connector->connector_type !=
4535                     DRM_MODE_CONNECTOR_DisplayPort)
4536                         continue;
4537
4538                 if (connector->status == connector_status_connected &&
4539                     connector->encoder != NULL) {
4540                         intel_dp = enc_to_intel_dp(connector->encoder);
4541                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4542                 } else
4543                         seq_puts(m, "0");
4544         }
4545
4546         return 0;
4547 }
4548 static int i915_displayport_test_data_open(struct inode *inode,
4549                                            struct file *file)
4550 {
4551         struct drm_i915_private *dev_priv = inode->i_private;
4552
4553         return single_open(file, i915_displayport_test_data_show,
4554                            &dev_priv->drm);
4555 }
4556
4557 static const struct file_operations i915_displayport_test_data_fops = {
4558         .owner = THIS_MODULE,
4559         .open = i915_displayport_test_data_open,
4560         .read = seq_read,
4561         .llseek = seq_lseek,
4562         .release = single_release
4563 };
4564
4565 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4566 {
4567         struct drm_device *dev = m->private;
4568         struct drm_connector *connector;
4569         struct list_head *connector_list = &dev->mode_config.connector_list;
4570         struct intel_dp *intel_dp;
4571
4572         list_for_each_entry(connector, connector_list, head) {
4573                 if (connector->connector_type !=
4574                     DRM_MODE_CONNECTOR_DisplayPort)
4575                         continue;
4576
4577                 if (connector->status == connector_status_connected &&
4578                     connector->encoder != NULL) {
4579                         intel_dp = enc_to_intel_dp(connector->encoder);
4580                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4581                 } else
4582                         seq_puts(m, "0");
4583         }
4584
4585         return 0;
4586 }
4587
4588 static int i915_displayport_test_type_open(struct inode *inode,
4589                                        struct file *file)
4590 {
4591         struct drm_i915_private *dev_priv = inode->i_private;
4592
4593         return single_open(file, i915_displayport_test_type_show,
4594                            &dev_priv->drm);
4595 }
4596
4597 static const struct file_operations i915_displayport_test_type_fops = {
4598         .owner = THIS_MODULE,
4599         .open = i915_displayport_test_type_open,
4600         .read = seq_read,
4601         .llseek = seq_lseek,
4602         .release = single_release
4603 };
4604
4605 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4606 {
4607         struct drm_i915_private *dev_priv = m->private;
4608         struct drm_device *dev = &dev_priv->drm;
4609         int level;
4610         int num_levels;
4611
4612         if (IS_CHERRYVIEW(dev_priv))
4613                 num_levels = 3;
4614         else if (IS_VALLEYVIEW(dev_priv))
4615                 num_levels = 1;
4616         else
4617                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4618
4619         drm_modeset_lock_all(dev);
4620
4621         for (level = 0; level < num_levels; level++) {
4622                 unsigned int latency = wm[level];
4623
4624                 /*
4625                  * - WM1+ latency values in 0.5us units
4626                  * - latencies are in us on gen9/vlv/chv
4627                  */
4628                 if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
4629                     IS_CHERRYVIEW(dev_priv))
4630                         latency *= 10;
4631                 else if (level > 0)
4632                         latency *= 5;
4633
4634                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4635                            level, wm[level], latency / 10, latency % 10);
4636         }
4637
4638         drm_modeset_unlock_all(dev);
4639 }
4640
4641 static int pri_wm_latency_show(struct seq_file *m, void *data)
4642 {
4643         struct drm_i915_private *dev_priv = m->private;
4644         const uint16_t *latencies;
4645
4646         if (INTEL_GEN(dev_priv) >= 9)
4647                 latencies = dev_priv->wm.skl_latency;
4648         else
4649                 latencies = dev_priv->wm.pri_latency;
4650
4651         wm_latency_show(m, latencies);
4652
4653         return 0;
4654 }
4655
4656 static int spr_wm_latency_show(struct seq_file *m, void *data)
4657 {
4658         struct drm_i915_private *dev_priv = m->private;
4659         const uint16_t *latencies;
4660
4661         if (INTEL_GEN(dev_priv) >= 9)
4662                 latencies = dev_priv->wm.skl_latency;
4663         else
4664                 latencies = dev_priv->wm.spr_latency;
4665
4666         wm_latency_show(m, latencies);
4667
4668         return 0;
4669 }
4670
4671 static int cur_wm_latency_show(struct seq_file *m, void *data)
4672 {
4673         struct drm_i915_private *dev_priv = m->private;
4674         const uint16_t *latencies;
4675
4676         if (INTEL_GEN(dev_priv) >= 9)
4677                 latencies = dev_priv->wm.skl_latency;
4678         else
4679                 latencies = dev_priv->wm.cur_latency;
4680
4681         wm_latency_show(m, latencies);
4682
4683         return 0;
4684 }
4685
4686 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4687 {
4688         struct drm_i915_private *dev_priv = inode->i_private;
4689
4690         if (INTEL_GEN(dev_priv) < 5)
4691                 return -ENODEV;
4692
4693         return single_open(file, pri_wm_latency_show, dev_priv);
4694 }
4695
4696 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4697 {
4698         struct drm_i915_private *dev_priv = inode->i_private;
4699
4700         if (HAS_GMCH_DISPLAY(dev_priv))
4701                 return -ENODEV;
4702
4703         return single_open(file, spr_wm_latency_show, dev_priv);
4704 }
4705
4706 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4707 {
4708         struct drm_i915_private *dev_priv = inode->i_private;
4709
4710         if (HAS_GMCH_DISPLAY(dev_priv))
4711                 return -ENODEV;
4712
4713         return single_open(file, cur_wm_latency_show, dev_priv);
4714 }
4715
4716 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4717                                 size_t len, loff_t *offp, uint16_t wm[8])
4718 {
4719         struct seq_file *m = file->private_data;
4720         struct drm_i915_private *dev_priv = m->private;
4721         struct drm_device *dev = &dev_priv->drm;
4722         uint16_t new[8] = { 0 };
4723         int num_levels;
4724         int level;
4725         int ret;
4726         char tmp[32];
4727
4728         if (IS_CHERRYVIEW(dev_priv))
4729                 num_levels = 3;
4730         else if (IS_VALLEYVIEW(dev_priv))
4731                 num_levels = 1;
4732         else
4733                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4734
4735         if (len >= sizeof(tmp))
4736                 return -EINVAL;
4737
4738         if (copy_from_user(tmp, ubuf, len))
4739                 return -EFAULT;
4740
4741         tmp[len] = '\0';
4742
4743         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4744                      &new[0], &new[1], &new[2], &new[3],
4745                      &new[4], &new[5], &new[6], &new[7]);
4746         if (ret != num_levels)
4747                 return -EINVAL;
4748
4749         drm_modeset_lock_all(dev);
4750
4751         for (level = 0; level < num_levels; level++)
4752                 wm[level] = new[level];
4753
4754         drm_modeset_unlock_all(dev);
4755
4756         return len;
4757 }
4758
4759
4760 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4761                                     size_t len, loff_t *offp)
4762 {
4763         struct seq_file *m = file->private_data;
4764         struct drm_i915_private *dev_priv = m->private;
4765         uint16_t *latencies;
4766
4767         if (INTEL_GEN(dev_priv) >= 9)
4768                 latencies = dev_priv->wm.skl_latency;
4769         else
4770                 latencies = dev_priv->wm.pri_latency;
4771
4772         return wm_latency_write(file, ubuf, len, offp, latencies);
4773 }
4774
4775 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4776                                     size_t len, loff_t *offp)
4777 {
4778         struct seq_file *m = file->private_data;
4779         struct drm_i915_private *dev_priv = m->private;
4780         uint16_t *latencies;
4781
4782         if (INTEL_GEN(dev_priv) >= 9)
4783                 latencies = dev_priv->wm.skl_latency;
4784         else
4785                 latencies = dev_priv->wm.spr_latency;
4786
4787         return wm_latency_write(file, ubuf, len, offp, latencies);
4788 }
4789
4790 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4791                                     size_t len, loff_t *offp)
4792 {
4793         struct seq_file *m = file->private_data;
4794         struct drm_i915_private *dev_priv = m->private;
4795         uint16_t *latencies;
4796
4797         if (INTEL_GEN(dev_priv) >= 9)
4798                 latencies = dev_priv->wm.skl_latency;
4799         else
4800                 latencies = dev_priv->wm.cur_latency;
4801
4802         return wm_latency_write(file, ubuf, len, offp, latencies);
4803 }
4804
4805 static const struct file_operations i915_pri_wm_latency_fops = {
4806         .owner = THIS_MODULE,
4807         .open = pri_wm_latency_open,
4808         .read = seq_read,
4809         .llseek = seq_lseek,
4810         .release = single_release,
4811         .write = pri_wm_latency_write
4812 };
4813
4814 static const struct file_operations i915_spr_wm_latency_fops = {
4815         .owner = THIS_MODULE,
4816         .open = spr_wm_latency_open,
4817         .read = seq_read,
4818         .llseek = seq_lseek,
4819         .release = single_release,
4820         .write = spr_wm_latency_write
4821 };
4822
4823 static const struct file_operations i915_cur_wm_latency_fops = {
4824         .owner = THIS_MODULE,
4825         .open = cur_wm_latency_open,
4826         .read = seq_read,
4827         .llseek = seq_lseek,
4828         .release = single_release,
4829         .write = cur_wm_latency_write
4830 };
4831
4832 static int
4833 i915_wedged_get(void *data, u64 *val)
4834 {
4835         struct drm_i915_private *dev_priv = data;
4836
4837         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4838
4839         return 0;
4840 }
4841
4842 static int
4843 i915_wedged_set(void *data, u64 val)
4844 {
4845         struct drm_i915_private *dev_priv = data;
4846
4847         /*
4848          * There is no safeguard against this debugfs entry colliding
4849          * with the hangcheck calling same i915_handle_error() in
4850          * parallel, causing an explosion. For now we assume that the
4851          * test harness is responsible enough not to inject gpu hangs
4852          * while it is writing to 'i915_wedged'
4853          */
4854
4855         if (i915_reset_in_progress(&dev_priv->gpu_error))
4856                 return -EAGAIN;
4857
4858         i915_handle_error(dev_priv, val,
4859                           "Manually setting wedged to %llu", val);
4860
4861         return 0;
4862 }
4863
4864 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4865                         i915_wedged_get, i915_wedged_set,
4866                         "%llu\n");
4867
4868 static int
4869 i915_ring_missed_irq_get(void *data, u64 *val)
4870 {
4871         struct drm_i915_private *dev_priv = data;
4872
4873         *val = dev_priv->gpu_error.missed_irq_rings;
4874         return 0;
4875 }
4876
4877 static int
4878 i915_ring_missed_irq_set(void *data, u64 val)
4879 {
4880         struct drm_i915_private *dev_priv = data;
4881         struct drm_device *dev = &dev_priv->drm;
4882         int ret;
4883
4884         /* Lock against concurrent debugfs callers */
4885         ret = mutex_lock_interruptible(&dev->struct_mutex);
4886         if (ret)
4887                 return ret;
4888         dev_priv->gpu_error.missed_irq_rings = val;
4889         mutex_unlock(&dev->struct_mutex);
4890
4891         return 0;
4892 }
4893
4894 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4895                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4896                         "0x%08llx\n");
4897
4898 static int
4899 i915_ring_test_irq_get(void *data, u64 *val)
4900 {
4901         struct drm_i915_private *dev_priv = data;
4902
4903         *val = dev_priv->gpu_error.test_irq_rings;
4904
4905         return 0;
4906 }
4907
4908 static int
4909 i915_ring_test_irq_set(void *data, u64 val)
4910 {
4911         struct drm_i915_private *dev_priv = data;
4912
4913         val &= INTEL_INFO(dev_priv)->ring_mask;
4914         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4915         dev_priv->gpu_error.test_irq_rings = val;
4916
4917         return 0;
4918 }
4919
4920 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4921                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4922                         "0x%08llx\n");
4923
4924 #define DROP_UNBOUND 0x1
4925 #define DROP_BOUND 0x2
4926 #define DROP_RETIRE 0x4
4927 #define DROP_ACTIVE 0x8
4928 #define DROP_FREED 0x10
4929 #define DROP_ALL (DROP_UNBOUND  | \
4930                   DROP_BOUND    | \
4931                   DROP_RETIRE   | \
4932                   DROP_ACTIVE   | \
4933                   DROP_FREED)
4934 static int
4935 i915_drop_caches_get(void *data, u64 *val)
4936 {
4937         *val = DROP_ALL;
4938
4939         return 0;
4940 }
4941
4942 static int
4943 i915_drop_caches_set(void *data, u64 val)
4944 {
4945         struct drm_i915_private *dev_priv = data;
4946         struct drm_device *dev = &dev_priv->drm;
4947         int ret;
4948
4949         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4950
4951         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4952          * on ioctls on -EAGAIN. */
4953         ret = mutex_lock_interruptible(&dev->struct_mutex);
4954         if (ret)
4955                 return ret;
4956
4957         if (val & DROP_ACTIVE) {
4958                 ret = i915_gem_wait_for_idle(dev_priv,
4959                                              I915_WAIT_INTERRUPTIBLE |
4960                                              I915_WAIT_LOCKED);
4961                 if (ret)
4962                         goto unlock;
4963         }
4964
4965         if (val & (DROP_RETIRE | DROP_ACTIVE))
4966                 i915_gem_retire_requests(dev_priv);
4967
4968         if (val & DROP_BOUND)
4969                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4970
4971         if (val & DROP_UNBOUND)
4972                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4973
4974 unlock:
4975         mutex_unlock(&dev->struct_mutex);
4976
4977         if (val & DROP_FREED) {
4978                 synchronize_rcu();
4979                 flush_work(&dev_priv->mm.free_work);
4980         }
4981
4982         return ret;
4983 }
4984
4985 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4986                         i915_drop_caches_get, i915_drop_caches_set,
4987                         "0x%08llx\n");
4988
4989 static int
4990 i915_max_freq_get(void *data, u64 *val)
4991 {
4992         struct drm_i915_private *dev_priv = data;
4993
4994         if (INTEL_GEN(dev_priv) < 6)
4995                 return -ENODEV;
4996
4997         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4998         return 0;
4999 }
5000
5001 static int
5002 i915_max_freq_set(void *data, u64 val)
5003 {
5004         struct drm_i915_private *dev_priv = data;
5005         u32 hw_max, hw_min;
5006         int ret;
5007
5008         if (INTEL_GEN(dev_priv) < 6)
5009                 return -ENODEV;
5010
5011         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
5012
5013         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5014         if (ret)
5015                 return ret;
5016
5017         /*
5018          * Turbo will still be enabled, but won't go above the set value.
5019          */
5020         val = intel_freq_opcode(dev_priv, val);
5021
5022         hw_max = dev_priv->rps.max_freq;
5023         hw_min = dev_priv->rps.min_freq;
5024
5025         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
5026                 mutex_unlock(&dev_priv->rps.hw_lock);
5027                 return -EINVAL;
5028         }
5029
5030         dev_priv->rps.max_freq_softlimit = val;
5031
5032         intel_set_rps(dev_priv, val);
5033
5034         mutex_unlock(&dev_priv->rps.hw_lock);
5035
5036         return 0;
5037 }
5038
5039 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5040                         i915_max_freq_get, i915_max_freq_set,
5041                         "%llu\n");
5042
5043 static int
5044 i915_min_freq_get(void *data, u64 *val)
5045 {
5046         struct drm_i915_private *dev_priv = data;
5047
5048         if (INTEL_GEN(dev_priv) < 6)
5049                 return -ENODEV;
5050
5051         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5052         return 0;
5053 }
5054
5055 static int
5056 i915_min_freq_set(void *data, u64 val)
5057 {
5058         struct drm_i915_private *dev_priv = data;
5059         u32 hw_max, hw_min;
5060         int ret;
5061
5062         if (INTEL_GEN(dev_priv) < 6)
5063                 return -ENODEV;
5064
5065         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5066
5067         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5068         if (ret)
5069                 return ret;
5070
5071         /*
5072          * Turbo will still be enabled, but won't go below the set value.
5073          */
5074         val = intel_freq_opcode(dev_priv, val);
5075
5076         hw_max = dev_priv->rps.max_freq;
5077         hw_min = dev_priv->rps.min_freq;
5078
5079         if (val < hw_min ||
5080             val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5081                 mutex_unlock(&dev_priv->rps.hw_lock);
5082                 return -EINVAL;
5083         }
5084
5085         dev_priv->rps.min_freq_softlimit = val;
5086
5087         intel_set_rps(dev_priv, val);
5088
5089         mutex_unlock(&dev_priv->rps.hw_lock);
5090
5091         return 0;
5092 }
5093
5094 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5095                         i915_min_freq_get, i915_min_freq_set,
5096                         "%llu\n");
5097
5098 static int
5099 i915_cache_sharing_get(void *data, u64 *val)
5100 {
5101         struct drm_i915_private *dev_priv = data;
5102         u32 snpcr;
5103
5104         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5105                 return -ENODEV;
5106
5107         intel_runtime_pm_get(dev_priv);
5108
5109         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5110
5111         intel_runtime_pm_put(dev_priv);
5112
5113         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5114
5115         return 0;
5116 }
5117
5118 static int
5119 i915_cache_sharing_set(void *data, u64 val)
5120 {
5121         struct drm_i915_private *dev_priv = data;
5122         u32 snpcr;
5123
5124         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5125                 return -ENODEV;
5126
5127         if (val > 3)
5128                 return -EINVAL;
5129
5130         intel_runtime_pm_get(dev_priv);
5131         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5132
5133         /* Update the cache sharing policy here as well */
5134         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5135         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5136         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5137         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5138
5139         intel_runtime_pm_put(dev_priv);
5140         return 0;
5141 }
5142
5143 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5144                         i915_cache_sharing_get, i915_cache_sharing_set,
5145                         "%llu\n");
5146
5147 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
5148                                           struct sseu_dev_info *sseu)
5149 {
5150         int ss_max = 2;
5151         int ss;
5152         u32 sig1[ss_max], sig2[ss_max];
5153
5154         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5155         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5156         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5157         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5158
5159         for (ss = 0; ss < ss_max; ss++) {
5160                 unsigned int eu_cnt;
5161
5162                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5163                         /* skip disabled subslice */
5164                         continue;
5165
5166                 sseu->slice_mask = BIT(0);
5167                 sseu->subslice_mask |= BIT(ss);
5168                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5169                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5170                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5171                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5172                 sseu->eu_total += eu_cnt;
5173                 sseu->eu_per_subslice = max_t(unsigned int,
5174                                               sseu->eu_per_subslice, eu_cnt);
5175         }
5176 }
5177
5178 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
5179                                     struct sseu_dev_info *sseu)
5180 {
5181         int s_max = 3, ss_max = 4;
5182         int s, ss;
5183         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5184
5185         /* BXT has a single slice and at most 3 subslices. */
5186         if (IS_BROXTON(dev_priv)) {
5187                 s_max = 1;
5188                 ss_max = 3;
5189         }
5190
5191         for (s = 0; s < s_max; s++) {
5192                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5193                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5194                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5195         }
5196
5197         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5198                      GEN9_PGCTL_SSA_EU19_ACK |
5199                      GEN9_PGCTL_SSA_EU210_ACK |
5200                      GEN9_PGCTL_SSA_EU311_ACK;
5201         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5202                      GEN9_PGCTL_SSB_EU19_ACK |
5203                      GEN9_PGCTL_SSB_EU210_ACK |
5204                      GEN9_PGCTL_SSB_EU311_ACK;
5205
5206         for (s = 0; s < s_max; s++) {
5207                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5208                         /* skip disabled slice */
5209                         continue;
5210
5211                 sseu->slice_mask |= BIT(s);
5212
5213                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5214                         sseu->subslice_mask =
5215                                 INTEL_INFO(dev_priv)->sseu.subslice_mask;
5216
5217                 for (ss = 0; ss < ss_max; ss++) {
5218                         unsigned int eu_cnt;
5219
5220                         if (IS_BROXTON(dev_priv)) {
5221                                 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5222                                         /* skip disabled subslice */
5223                                         continue;
5224
5225                                 sseu->subslice_mask |= BIT(ss);
5226                         }
5227
5228                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5229                                                eu_mask[ss%2]);
5230                         sseu->eu_total += eu_cnt;
5231                         sseu->eu_per_subslice = max_t(unsigned int,
5232                                                       sseu->eu_per_subslice,
5233                                                       eu_cnt);
5234                 }
5235         }
5236 }
5237
5238 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
5239                                          struct sseu_dev_info *sseu)
5240 {
5241         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5242         int s;
5243
5244         sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
5245
5246         if (sseu->slice_mask) {
5247                 sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
5248                 sseu->eu_per_subslice =
5249                                 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
5250                 sseu->eu_total = sseu->eu_per_subslice *
5251                                  sseu_subslice_total(sseu);
5252
5253                 /* subtract fused off EU(s) from enabled slice(s) */
5254                 for (s = 0; s < fls(sseu->slice_mask); s++) {
5255                         u8 subslice_7eu =
5256                                 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
5257
5258                         sseu->eu_total -= hweight8(subslice_7eu);
5259                 }
5260         }
5261 }
5262
5263 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
5264                                  const struct sseu_dev_info *sseu)
5265 {
5266         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5267         const char *type = is_available_info ? "Available" : "Enabled";
5268
5269         seq_printf(m, "  %s Slice Mask: %04x\n", type,
5270                    sseu->slice_mask);
5271         seq_printf(m, "  %s Slice Total: %u\n", type,
5272                    hweight8(sseu->slice_mask));
5273         seq_printf(m, "  %s Subslice Total: %u\n", type,
5274                    sseu_subslice_total(sseu));
5275         seq_printf(m, "  %s Subslice Mask: %04x\n", type,
5276                    sseu->subslice_mask);
5277         seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
5278                    hweight8(sseu->subslice_mask));
5279         seq_printf(m, "  %s EU Total: %u\n", type,
5280                    sseu->eu_total);
5281         seq_printf(m, "  %s EU Per Subslice: %u\n", type,
5282                    sseu->eu_per_subslice);
5283
5284         if (!is_available_info)
5285                 return;
5286
5287         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
5288         if (HAS_POOLED_EU(dev_priv))
5289                 seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
5290
5291         seq_printf(m, "  Has Slice Power Gating: %s\n",
5292                    yesno(sseu->has_slice_pg));
5293         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5294                    yesno(sseu->has_subslice_pg));
5295         seq_printf(m, "  Has EU Power Gating: %s\n",
5296                    yesno(sseu->has_eu_pg));
5297 }
5298
5299 static int i915_sseu_status(struct seq_file *m, void *unused)
5300 {
5301         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5302         struct sseu_dev_info sseu;
5303
5304         if (INTEL_GEN(dev_priv) < 8)
5305                 return -ENODEV;
5306
5307         seq_puts(m, "SSEU Device Info\n");
5308         i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
5309
5310         seq_puts(m, "SSEU Device Status\n");
5311         memset(&sseu, 0, sizeof(sseu));
5312
5313         intel_runtime_pm_get(dev_priv);
5314
5315         if (IS_CHERRYVIEW(dev_priv)) {
5316                 cherryview_sseu_device_status(dev_priv, &sseu);
5317         } else if (IS_BROADWELL(dev_priv)) {
5318                 broadwell_sseu_device_status(dev_priv, &sseu);
5319         } else if (INTEL_GEN(dev_priv) >= 9) {
5320                 gen9_sseu_device_status(dev_priv, &sseu);
5321         }
5322
5323         intel_runtime_pm_put(dev_priv);
5324
5325         i915_print_sseu_info(m, false, &sseu);
5326
5327         return 0;
5328 }
5329
5330 static int i915_forcewake_open(struct inode *inode, struct file *file)
5331 {
5332         struct drm_i915_private *dev_priv = inode->i_private;
5333
5334         if (INTEL_GEN(dev_priv) < 6)
5335                 return 0;
5336
5337         intel_runtime_pm_get(dev_priv);
5338         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5339
5340         return 0;
5341 }
5342
5343 static int i915_forcewake_release(struct inode *inode, struct file *file)
5344 {
5345         struct drm_i915_private *dev_priv = inode->i_private;
5346
5347         if (INTEL_GEN(dev_priv) < 6)
5348                 return 0;
5349
5350         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5351         intel_runtime_pm_put(dev_priv);
5352
5353         return 0;
5354 }
5355
5356 static const struct file_operations i915_forcewake_fops = {
5357         .owner = THIS_MODULE,
5358         .open = i915_forcewake_open,
5359         .release = i915_forcewake_release,
5360 };
5361
5362 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5363 {
5364         struct dentry *ent;
5365
5366         ent = debugfs_create_file("i915_forcewake_user",
5367                                   S_IRUSR,
5368                                   root, to_i915(minor->dev),
5369                                   &i915_forcewake_fops);
5370         if (!ent)
5371                 return -ENOMEM;
5372
5373         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5374 }
5375
5376 static int i915_debugfs_create(struct dentry *root,
5377                                struct drm_minor *minor,
5378                                const char *name,
5379                                const struct file_operations *fops)
5380 {
5381         struct dentry *ent;
5382
5383         ent = debugfs_create_file(name,
5384                                   S_IRUGO | S_IWUSR,
5385                                   root, to_i915(minor->dev),
5386                                   fops);
5387         if (!ent)
5388                 return -ENOMEM;
5389
5390         return drm_add_fake_info_node(minor, ent, fops);
5391 }
5392
5393 static const struct drm_info_list i915_debugfs_list[] = {
5394         {"i915_capabilities", i915_capabilities, 0},
5395         {"i915_gem_objects", i915_gem_object_info, 0},
5396         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5397         {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
5398         {"i915_gem_stolen", i915_gem_stolen_list_info },
5399         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5400         {"i915_gem_request", i915_gem_request_info, 0},
5401         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5402         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5403         {"i915_gem_interrupt", i915_interrupt_info, 0},
5404         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5405         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5406         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5407         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5408         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5409         {"i915_guc_info", i915_guc_info, 0},
5410         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5411         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5412         {"i915_frequency_info", i915_frequency_info, 0},
5413         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5414         {"i915_drpc_info", i915_drpc_info, 0},
5415         {"i915_emon_status", i915_emon_status, 0},
5416         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5417         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5418         {"i915_fbc_status", i915_fbc_status, 0},
5419         {"i915_ips_status", i915_ips_status, 0},
5420         {"i915_sr_status", i915_sr_status, 0},
5421         {"i915_opregion", i915_opregion, 0},
5422         {"i915_vbt", i915_vbt, 0},
5423         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5424         {"i915_context_status", i915_context_status, 0},
5425         {"i915_dump_lrc", i915_dump_lrc, 0},
5426         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5427         {"i915_swizzle_info", i915_swizzle_info, 0},
5428         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5429         {"i915_llc", i915_llc, 0},
5430         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5431         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5432         {"i915_energy_uJ", i915_energy_uJ, 0},
5433         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5434         {"i915_power_domain_info", i915_power_domain_info, 0},
5435         {"i915_dmc_info", i915_dmc_info, 0},
5436         {"i915_display_info", i915_display_info, 0},
5437         {"i915_engine_info", i915_engine_info, 0},
5438         {"i915_semaphore_status", i915_semaphore_status, 0},
5439         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5440         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5441         {"i915_wa_registers", i915_wa_registers, 0},
5442         {"i915_ddb_info", i915_ddb_info, 0},
5443         {"i915_sseu_status", i915_sseu_status, 0},
5444         {"i915_drrs_status", i915_drrs_status, 0},
5445         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5446 };
5447 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5448
5449 static const struct i915_debugfs_files {
5450         const char *name;
5451         const struct file_operations *fops;
5452 } i915_debugfs_files[] = {
5453         {"i915_wedged", &i915_wedged_fops},
5454         {"i915_max_freq", &i915_max_freq_fops},
5455         {"i915_min_freq", &i915_min_freq_fops},
5456         {"i915_cache_sharing", &i915_cache_sharing_fops},
5457         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5458         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5459         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5460 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
5461         {"i915_error_state", &i915_error_state_fops},
5462 #endif
5463         {"i915_next_seqno", &i915_next_seqno_fops},
5464         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5465         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5466         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5467         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5468         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5469         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5470         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5471         {"i915_dp_test_active", &i915_displayport_test_active_fops},
5472         {"i915_guc_log_control", &i915_guc_log_control_fops}
5473 };
5474
5475 void intel_display_crc_init(struct drm_i915_private *dev_priv)
5476 {
5477         enum pipe pipe;
5478
5479         for_each_pipe(dev_priv, pipe) {
5480                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5481
5482                 pipe_crc->opened = false;
5483                 spin_lock_init(&pipe_crc->lock);
5484                 init_waitqueue_head(&pipe_crc->wq);
5485         }
5486 }
5487
5488 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5489 {
5490         struct drm_minor *minor = dev_priv->drm.primary;
5491         int ret, i;
5492
5493         ret = i915_forcewake_create(minor->debugfs_root, minor);
5494         if (ret)
5495                 return ret;
5496
5497         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5498                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5499                 if (ret)
5500                         return ret;
5501         }
5502
5503         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5504                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5505                                           i915_debugfs_files[i].name,
5506                                           i915_debugfs_files[i].fops);
5507                 if (ret)
5508                         return ret;
5509         }
5510
5511         return drm_debugfs_create_files(i915_debugfs_list,
5512                                         I915_DEBUGFS_ENTRIES,
5513                                         minor->debugfs_root, minor);
5514 }
5515
5516 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5517 {
5518         struct drm_minor *minor = dev_priv->drm.primary;
5519         int i;
5520
5521         drm_debugfs_remove_files(i915_debugfs_list,
5522                                  I915_DEBUGFS_ENTRIES, minor);
5523
5524         drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
5525                                  1, minor);
5526
5527         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5528                 struct drm_info_list *info_list =
5529                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5530
5531                 drm_debugfs_remove_files(info_list, 1, minor);
5532         }
5533
5534         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5535                 struct drm_info_list *info_list =
5536                         (struct drm_info_list *)i915_debugfs_files[i].fops;
5537
5538                 drm_debugfs_remove_files(info_list, 1, minor);
5539         }
5540 }
5541
5542 struct dpcd_block {
5543         /* DPCD dump start address. */
5544         unsigned int offset;
5545         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5546         unsigned int end;
5547         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5548         size_t size;
5549         /* Only valid for eDP. */
5550         bool edp;
5551 };
5552
5553 static const struct dpcd_block i915_dpcd_debug[] = {
5554         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5555         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5556         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5557         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5558         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5559         { .offset = DP_SET_POWER },
5560         { .offset = DP_EDP_DPCD_REV },
5561         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5562         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5563         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5564 };
5565
5566 static int i915_dpcd_show(struct seq_file *m, void *data)
5567 {
5568         struct drm_connector *connector = m->private;
5569         struct intel_dp *intel_dp =
5570                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5571         uint8_t buf[16];
5572         ssize_t err;
5573         int i;
5574
5575         if (connector->status != connector_status_connected)
5576                 return -ENODEV;
5577
5578         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5579                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5580                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5581
5582                 if (b->edp &&
5583                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5584                         continue;
5585
5586                 /* low tech for now */
5587                 if (WARN_ON(size > sizeof(buf)))
5588                         continue;
5589
5590                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5591                 if (err <= 0) {
5592                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5593                                   size, b->offset, err);
5594                         continue;
5595                 }
5596
5597                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5598         }
5599
5600         return 0;
5601 }
5602
5603 static int i915_dpcd_open(struct inode *inode, struct file *file)
5604 {
5605         return single_open(file, i915_dpcd_show, inode->i_private);
5606 }
5607
5608 static const struct file_operations i915_dpcd_fops = {
5609         .owner = THIS_MODULE,
5610         .open = i915_dpcd_open,
5611         .read = seq_read,
5612         .llseek = seq_lseek,
5613         .release = single_release,
5614 };
5615
5616 static int i915_panel_show(struct seq_file *m, void *data)
5617 {
5618         struct drm_connector *connector = m->private;
5619         struct intel_dp *intel_dp =
5620                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5621
5622         if (connector->status != connector_status_connected)
5623                 return -ENODEV;
5624
5625         seq_printf(m, "Panel power up delay: %d\n",
5626                    intel_dp->panel_power_up_delay);
5627         seq_printf(m, "Panel power down delay: %d\n",
5628                    intel_dp->panel_power_down_delay);
5629         seq_printf(m, "Backlight on delay: %d\n",
5630                    intel_dp->backlight_on_delay);
5631         seq_printf(m, "Backlight off delay: %d\n",
5632                    intel_dp->backlight_off_delay);
5633
5634         return 0;
5635 }
5636
5637 static int i915_panel_open(struct inode *inode, struct file *file)
5638 {
5639         return single_open(file, i915_panel_show, inode->i_private);
5640 }
5641
5642 static const struct file_operations i915_panel_fops = {
5643         .owner = THIS_MODULE,
5644         .open = i915_panel_open,
5645         .read = seq_read,
5646         .llseek = seq_lseek,
5647         .release = single_release,
5648 };
5649
5650 /**
5651  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5652  * @connector: pointer to a registered drm_connector
5653  *
5654  * Cleanup will be done by drm_connector_unregister() through a call to
5655  * drm_debugfs_connector_remove().
5656  *
5657  * Returns 0 on success, negative error codes on error.
5658  */
5659 int i915_debugfs_connector_add(struct drm_connector *connector)
5660 {
5661         struct dentry *root = connector->debugfs_entry;
5662
5663         /* The connector must have been registered beforehands. */
5664         if (!root)
5665                 return -ENODEV;
5666
5667         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5668             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5669                 debugfs_create_file("i915_dpcd", S_IRUGO, root,
5670                                     connector, &i915_dpcd_fops);
5671
5672         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5673                 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5674                                     connector, &i915_panel_fops);
5675
5676         return 0;
5677 }