]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
drm/i915/gvt: add KVMGT support
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
44 {
45         return to_i915(node->minor->dev);
46 }
47
48 /* As the drm_debugfs_init() routines are called before dev->dev_private is
49  * allocated we need to hook into the minor for release. */
50 static int
51 drm_add_fake_info_node(struct drm_minor *minor,
52                        struct dentry *ent,
53                        const void *key)
54 {
55         struct drm_info_node *node;
56
57         node = kmalloc(sizeof(*node), GFP_KERNEL);
58         if (node == NULL) {
59                 debugfs_remove(ent);
60                 return -ENOMEM;
61         }
62
63         node->minor = minor;
64         node->dent = ent;
65         node->info_ent = (void *)key;
66
67         mutex_lock(&minor->debugfs_lock);
68         list_add(&node->list, &minor->debugfs_list);
69         mutex_unlock(&minor->debugfs_lock);
70
71         return 0;
72 }
73
74 static int i915_capabilities(struct seq_file *m, void *data)
75 {
76         struct drm_i915_private *dev_priv = node_to_i915(m->private);
77         const struct intel_device_info *info = INTEL_INFO(dev_priv);
78
79         seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
80         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
81 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
82         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
83 #undef PRINT_FLAG
84
85         return 0;
86 }
87
88 static char get_active_flag(struct drm_i915_gem_object *obj)
89 {
90         return i915_gem_object_is_active(obj) ? '*' : ' ';
91 }
92
93 static char get_pin_flag(struct drm_i915_gem_object *obj)
94 {
95         return obj->pin_display ? 'p' : ' ';
96 }
97
98 static char get_tiling_flag(struct drm_i915_gem_object *obj)
99 {
100         switch (i915_gem_object_get_tiling(obj)) {
101         default:
102         case I915_TILING_NONE: return ' ';
103         case I915_TILING_X: return 'X';
104         case I915_TILING_Y: return 'Y';
105         }
106 }
107
108 static char get_global_flag(struct drm_i915_gem_object *obj)
109 {
110         return !list_empty(&obj->userfault_link) ? 'g' : ' ';
111 }
112
113 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
114 {
115         return obj->mm.mapping ? 'M' : ' ';
116 }
117
118 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
119 {
120         u64 size = 0;
121         struct i915_vma *vma;
122
123         list_for_each_entry(vma, &obj->vma_list, obj_link) {
124                 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
125                         size += vma->node.size;
126         }
127
128         return size;
129 }
130
131 static void
132 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
133 {
134         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
135         struct intel_engine_cs *engine;
136         struct i915_vma *vma;
137         unsigned int frontbuffer_bits;
138         int pin_count = 0;
139
140         lockdep_assert_held(&obj->base.dev->struct_mutex);
141
142         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
143                    &obj->base,
144                    get_active_flag(obj),
145                    get_pin_flag(obj),
146                    get_tiling_flag(obj),
147                    get_global_flag(obj),
148                    get_pin_mapped_flag(obj),
149                    obj->base.size / 1024,
150                    obj->base.read_domains,
151                    obj->base.write_domain,
152                    i915_cache_level_str(dev_priv, obj->cache_level),
153                    obj->mm.dirty ? " dirty" : "",
154                    obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
155         if (obj->base.name)
156                 seq_printf(m, " (name: %d)", obj->base.name);
157         list_for_each_entry(vma, &obj->vma_list, obj_link) {
158                 if (i915_vma_is_pinned(vma))
159                         pin_count++;
160         }
161         seq_printf(m, " (pinned x %d)", pin_count);
162         if (obj->pin_display)
163                 seq_printf(m, " (display)");
164         list_for_each_entry(vma, &obj->vma_list, obj_link) {
165                 if (!drm_mm_node_allocated(&vma->node))
166                         continue;
167
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_vma_is_ggtt(vma) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_vma_is_ggtt(vma))
172                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
173                 if (vma->fence)
174                         seq_printf(m, " , fence: %d%s",
175                                    vma->fence->id,
176                                    i915_gem_active_isset(&vma->last_fence) ? "*" : "");
177                 seq_puts(m, ")");
178         }
179         if (obj->stolen)
180                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
181
182         engine = i915_gem_object_last_write_engine(obj);
183         if (engine)
184                 seq_printf(m, " (%s)", engine->name);
185
186         frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
187         if (frontbuffer_bits)
188                 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
189 }
190
191 static int obj_rank_by_stolen(void *priv,
192                               struct list_head *A, struct list_head *B)
193 {
194         struct drm_i915_gem_object *a =
195                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
196         struct drm_i915_gem_object *b =
197                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
198
199         if (a->stolen->start < b->stolen->start)
200                 return -1;
201         if (a->stolen->start > b->stolen->start)
202                 return 1;
203         return 0;
204 }
205
206 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
207 {
208         struct drm_i915_private *dev_priv = node_to_i915(m->private);
209         struct drm_device *dev = &dev_priv->drm;
210         struct drm_i915_gem_object *obj;
211         u64 total_obj_size, total_gtt_size;
212         LIST_HEAD(stolen);
213         int count, ret;
214
215         ret = mutex_lock_interruptible(&dev->struct_mutex);
216         if (ret)
217                 return ret;
218
219         total_obj_size = total_gtt_size = count = 0;
220         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
221                 if (obj->stolen == NULL)
222                         continue;
223
224                 list_add(&obj->obj_exec_link, &stolen);
225
226                 total_obj_size += obj->base.size;
227                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
228                 count++;
229         }
230         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
231                 if (obj->stolen == NULL)
232                         continue;
233
234                 list_add(&obj->obj_exec_link, &stolen);
235
236                 total_obj_size += obj->base.size;
237                 count++;
238         }
239         list_sort(NULL, &stolen, obj_rank_by_stolen);
240         seq_puts(m, "Stolen:\n");
241         while (!list_empty(&stolen)) {
242                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
243                 seq_puts(m, "   ");
244                 describe_obj(m, obj);
245                 seq_putc(m, '\n');
246                 list_del_init(&obj->obj_exec_link);
247         }
248         mutex_unlock(&dev->struct_mutex);
249
250         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
251                    count, total_obj_size, total_gtt_size);
252         return 0;
253 }
254
255 struct file_stats {
256         struct drm_i915_file_private *file_priv;
257         unsigned long count;
258         u64 total, unbound;
259         u64 global, shared;
260         u64 active, inactive;
261 };
262
263 static int per_file_stats(int id, void *ptr, void *data)
264 {
265         struct drm_i915_gem_object *obj = ptr;
266         struct file_stats *stats = data;
267         struct i915_vma *vma;
268
269         stats->count++;
270         stats->total += obj->base.size;
271         if (!obj->bind_count)
272                 stats->unbound += obj->base.size;
273         if (obj->base.name || obj->base.dma_buf)
274                 stats->shared += obj->base.size;
275
276         list_for_each_entry(vma, &obj->vma_list, obj_link) {
277                 if (!drm_mm_node_allocated(&vma->node))
278                         continue;
279
280                 if (i915_vma_is_ggtt(vma)) {
281                         stats->global += vma->node.size;
282                 } else {
283                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
284
285                         if (ppgtt->base.file != stats->file_priv)
286                                 continue;
287                 }
288
289                 if (i915_vma_is_active(vma))
290                         stats->active += vma->node.size;
291                 else
292                         stats->inactive += vma->node.size;
293         }
294
295         return 0;
296 }
297
298 #define print_file_stats(m, name, stats) do { \
299         if (stats.count) \
300                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
301                            name, \
302                            stats.count, \
303                            stats.total, \
304                            stats.active, \
305                            stats.inactive, \
306                            stats.global, \
307                            stats.shared, \
308                            stats.unbound); \
309 } while (0)
310
311 static void print_batch_pool_stats(struct seq_file *m,
312                                    struct drm_i915_private *dev_priv)
313 {
314         struct drm_i915_gem_object *obj;
315         struct file_stats stats;
316         struct intel_engine_cs *engine;
317         enum intel_engine_id id;
318         int j;
319
320         memset(&stats, 0, sizeof(stats));
321
322         for_each_engine(engine, dev_priv, id) {
323                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
324                         list_for_each_entry(obj,
325                                             &engine->batch_pool.cache_list[j],
326                                             batch_pool_link)
327                                 per_file_stats(0, obj, &stats);
328                 }
329         }
330
331         print_file_stats(m, "[k]batch pool", stats);
332 }
333
334 static int per_file_ctx_stats(int id, void *ptr, void *data)
335 {
336         struct i915_gem_context *ctx = ptr;
337         int n;
338
339         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
340                 if (ctx->engine[n].state)
341                         per_file_stats(0, ctx->engine[n].state->obj, data);
342                 if (ctx->engine[n].ring)
343                         per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
344         }
345
346         return 0;
347 }
348
349 static void print_context_stats(struct seq_file *m,
350                                 struct drm_i915_private *dev_priv)
351 {
352         struct drm_device *dev = &dev_priv->drm;
353         struct file_stats stats;
354         struct drm_file *file;
355
356         memset(&stats, 0, sizeof(stats));
357
358         mutex_lock(&dev->struct_mutex);
359         if (dev_priv->kernel_context)
360                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
361
362         list_for_each_entry(file, &dev->filelist, lhead) {
363                 struct drm_i915_file_private *fpriv = file->driver_priv;
364                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
365         }
366         mutex_unlock(&dev->struct_mutex);
367
368         print_file_stats(m, "[k]contexts", stats);
369 }
370
371 static int i915_gem_object_info(struct seq_file *m, void *data)
372 {
373         struct drm_i915_private *dev_priv = node_to_i915(m->private);
374         struct drm_device *dev = &dev_priv->drm;
375         struct i915_ggtt *ggtt = &dev_priv->ggtt;
376         u32 count, mapped_count, purgeable_count, dpy_count;
377         u64 size, mapped_size, purgeable_size, dpy_size;
378         struct drm_i915_gem_object *obj;
379         struct drm_file *file;
380         int ret;
381
382         ret = mutex_lock_interruptible(&dev->struct_mutex);
383         if (ret)
384                 return ret;
385
386         seq_printf(m, "%u objects, %llu bytes\n",
387                    dev_priv->mm.object_count,
388                    dev_priv->mm.object_memory);
389
390         size = count = 0;
391         mapped_size = mapped_count = 0;
392         purgeable_size = purgeable_count = 0;
393         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
394                 size += obj->base.size;
395                 ++count;
396
397                 if (obj->mm.madv == I915_MADV_DONTNEED) {
398                         purgeable_size += obj->base.size;
399                         ++purgeable_count;
400                 }
401
402                 if (obj->mm.mapping) {
403                         mapped_count++;
404                         mapped_size += obj->base.size;
405                 }
406         }
407         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
408
409         size = count = dpy_size = dpy_count = 0;
410         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
411                 size += obj->base.size;
412                 ++count;
413
414                 if (obj->pin_display) {
415                         dpy_size += obj->base.size;
416                         ++dpy_count;
417                 }
418
419                 if (obj->mm.madv == I915_MADV_DONTNEED) {
420                         purgeable_size += obj->base.size;
421                         ++purgeable_count;
422                 }
423
424                 if (obj->mm.mapping) {
425                         mapped_count++;
426                         mapped_size += obj->base.size;
427                 }
428         }
429         seq_printf(m, "%u bound objects, %llu bytes\n",
430                    count, size);
431         seq_printf(m, "%u purgeable objects, %llu bytes\n",
432                    purgeable_count, purgeable_size);
433         seq_printf(m, "%u mapped objects, %llu bytes\n",
434                    mapped_count, mapped_size);
435         seq_printf(m, "%u display objects (pinned), %llu bytes\n",
436                    dpy_count, dpy_size);
437
438         seq_printf(m, "%llu [%llu] gtt total\n",
439                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
440
441         seq_putc(m, '\n');
442         print_batch_pool_stats(m, dev_priv);
443         mutex_unlock(&dev->struct_mutex);
444
445         mutex_lock(&dev->filelist_mutex);
446         print_context_stats(m, dev_priv);
447         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
448                 struct file_stats stats;
449                 struct drm_i915_file_private *file_priv = file->driver_priv;
450                 struct drm_i915_gem_request *request;
451                 struct task_struct *task;
452
453                 memset(&stats, 0, sizeof(stats));
454                 stats.file_priv = file->driver_priv;
455                 spin_lock(&file->table_lock);
456                 idr_for_each(&file->object_idr, per_file_stats, &stats);
457                 spin_unlock(&file->table_lock);
458                 /*
459                  * Although we have a valid reference on file->pid, that does
460                  * not guarantee that the task_struct who called get_pid() is
461                  * still alive (e.g. get_pid(current) => fork() => exit()).
462                  * Therefore, we need to protect this ->comm access using RCU.
463                  */
464                 mutex_lock(&dev->struct_mutex);
465                 request = list_first_entry_or_null(&file_priv->mm.request_list,
466                                                    struct drm_i915_gem_request,
467                                                    client_list);
468                 rcu_read_lock();
469                 task = pid_task(request && request->ctx->pid ?
470                                 request->ctx->pid : file->pid,
471                                 PIDTYPE_PID);
472                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
473                 rcu_read_unlock();
474                 mutex_unlock(&dev->struct_mutex);
475         }
476         mutex_unlock(&dev->filelist_mutex);
477
478         return 0;
479 }
480
481 static int i915_gem_gtt_info(struct seq_file *m, void *data)
482 {
483         struct drm_info_node *node = m->private;
484         struct drm_i915_private *dev_priv = node_to_i915(node);
485         struct drm_device *dev = &dev_priv->drm;
486         bool show_pin_display_only = !!node->info_ent->data;
487         struct drm_i915_gem_object *obj;
488         u64 total_obj_size, total_gtt_size;
489         int count, ret;
490
491         ret = mutex_lock_interruptible(&dev->struct_mutex);
492         if (ret)
493                 return ret;
494
495         total_obj_size = total_gtt_size = count = 0;
496         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
497                 if (show_pin_display_only && !obj->pin_display)
498                         continue;
499
500                 seq_puts(m, "   ");
501                 describe_obj(m, obj);
502                 seq_putc(m, '\n');
503                 total_obj_size += obj->base.size;
504                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
505                 count++;
506         }
507
508         mutex_unlock(&dev->struct_mutex);
509
510         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
511                    count, total_obj_size, total_gtt_size);
512
513         return 0;
514 }
515
516 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
517 {
518         struct drm_i915_private *dev_priv = node_to_i915(m->private);
519         struct drm_device *dev = &dev_priv->drm;
520         struct intel_crtc *crtc;
521         int ret;
522
523         ret = mutex_lock_interruptible(&dev->struct_mutex);
524         if (ret)
525                 return ret;
526
527         for_each_intel_crtc(dev, crtc) {
528                 const char pipe = pipe_name(crtc->pipe);
529                 const char plane = plane_name(crtc->plane);
530                 struct intel_flip_work *work;
531
532                 spin_lock_irq(&dev->event_lock);
533                 work = crtc->flip_work;
534                 if (work == NULL) {
535                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
536                                    pipe, plane);
537                 } else {
538                         u32 pending;
539                         u32 addr;
540
541                         pending = atomic_read(&work->pending);
542                         if (pending) {
543                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
544                                            pipe, plane);
545                         } else {
546                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
547                                            pipe, plane);
548                         }
549                         if (work->flip_queued_req) {
550                                 struct intel_engine_cs *engine = work->flip_queued_req->engine;
551
552                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
553                                            engine->name,
554                                            work->flip_queued_req->global_seqno,
555                                            atomic_read(&dev_priv->gt.global_timeline.next_seqno),
556                                            intel_engine_get_seqno(engine),
557                                            i915_gem_request_completed(work->flip_queued_req));
558                         } else
559                                 seq_printf(m, "Flip not associated with any ring\n");
560                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
561                                    work->flip_queued_vblank,
562                                    work->flip_ready_vblank,
563                                    intel_crtc_get_vblank_counter(crtc));
564                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
565
566                         if (INTEL_GEN(dev_priv) >= 4)
567                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
568                         else
569                                 addr = I915_READ(DSPADDR(crtc->plane));
570                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
571
572                         if (work->pending_flip_obj) {
573                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
574                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
575                         }
576                 }
577                 spin_unlock_irq(&dev->event_lock);
578         }
579
580         mutex_unlock(&dev->struct_mutex);
581
582         return 0;
583 }
584
585 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
586 {
587         struct drm_i915_private *dev_priv = node_to_i915(m->private);
588         struct drm_device *dev = &dev_priv->drm;
589         struct drm_i915_gem_object *obj;
590         struct intel_engine_cs *engine;
591         enum intel_engine_id id;
592         int total = 0;
593         int ret, j;
594
595         ret = mutex_lock_interruptible(&dev->struct_mutex);
596         if (ret)
597                 return ret;
598
599         for_each_engine(engine, dev_priv, id) {
600                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
601                         int count;
602
603                         count = 0;
604                         list_for_each_entry(obj,
605                                             &engine->batch_pool.cache_list[j],
606                                             batch_pool_link)
607                                 count++;
608                         seq_printf(m, "%s cache[%d]: %d objects\n",
609                                    engine->name, j, count);
610
611                         list_for_each_entry(obj,
612                                             &engine->batch_pool.cache_list[j],
613                                             batch_pool_link) {
614                                 seq_puts(m, "   ");
615                                 describe_obj(m, obj);
616                                 seq_putc(m, '\n');
617                         }
618
619                         total += count;
620                 }
621         }
622
623         seq_printf(m, "total: %d\n", total);
624
625         mutex_unlock(&dev->struct_mutex);
626
627         return 0;
628 }
629
630 static void print_request(struct seq_file *m,
631                           struct drm_i915_gem_request *rq,
632                           const char *prefix)
633 {
634         seq_printf(m, "%s%x [%x:%x] @ %d: %s\n", prefix,
635                    rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
636                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
637                    rq->timeline->common->name);
638 }
639
640 static int i915_gem_request_info(struct seq_file *m, void *data)
641 {
642         struct drm_i915_private *dev_priv = node_to_i915(m->private);
643         struct drm_device *dev = &dev_priv->drm;
644         struct drm_i915_gem_request *req;
645         struct intel_engine_cs *engine;
646         enum intel_engine_id id;
647         int ret, any;
648
649         ret = mutex_lock_interruptible(&dev->struct_mutex);
650         if (ret)
651                 return ret;
652
653         any = 0;
654         for_each_engine(engine, dev_priv, id) {
655                 int count;
656
657                 count = 0;
658                 list_for_each_entry(req, &engine->timeline->requests, link)
659                         count++;
660                 if (count == 0)
661                         continue;
662
663                 seq_printf(m, "%s requests: %d\n", engine->name, count);
664                 list_for_each_entry(req, &engine->timeline->requests, link)
665                         print_request(m, req, "    ");
666
667                 any++;
668         }
669         mutex_unlock(&dev->struct_mutex);
670
671         if (any == 0)
672                 seq_puts(m, "No requests\n");
673
674         return 0;
675 }
676
677 static void i915_ring_seqno_info(struct seq_file *m,
678                                  struct intel_engine_cs *engine)
679 {
680         struct intel_breadcrumbs *b = &engine->breadcrumbs;
681         struct rb_node *rb;
682
683         seq_printf(m, "Current sequence (%s): %x\n",
684                    engine->name, intel_engine_get_seqno(engine));
685
686         spin_lock_irq(&b->lock);
687         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
688                 struct intel_wait *w = container_of(rb, typeof(*w), node);
689
690                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
691                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
692         }
693         spin_unlock_irq(&b->lock);
694 }
695
696 static int i915_gem_seqno_info(struct seq_file *m, void *data)
697 {
698         struct drm_i915_private *dev_priv = node_to_i915(m->private);
699         struct intel_engine_cs *engine;
700         enum intel_engine_id id;
701
702         for_each_engine(engine, dev_priv, id)
703                 i915_ring_seqno_info(m, engine);
704
705         return 0;
706 }
707
708
709 static int i915_interrupt_info(struct seq_file *m, void *data)
710 {
711         struct drm_i915_private *dev_priv = node_to_i915(m->private);
712         struct intel_engine_cs *engine;
713         enum intel_engine_id id;
714         int i, pipe;
715
716         intel_runtime_pm_get(dev_priv);
717
718         if (IS_CHERRYVIEW(dev_priv)) {
719                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
720                            I915_READ(GEN8_MASTER_IRQ));
721
722                 seq_printf(m, "Display IER:\t%08x\n",
723                            I915_READ(VLV_IER));
724                 seq_printf(m, "Display IIR:\t%08x\n",
725                            I915_READ(VLV_IIR));
726                 seq_printf(m, "Display IIR_RW:\t%08x\n",
727                            I915_READ(VLV_IIR_RW));
728                 seq_printf(m, "Display IMR:\t%08x\n",
729                            I915_READ(VLV_IMR));
730                 for_each_pipe(dev_priv, pipe) {
731                         enum intel_display_power_domain power_domain;
732
733                         power_domain = POWER_DOMAIN_PIPE(pipe);
734                         if (!intel_display_power_get_if_enabled(dev_priv,
735                                                                 power_domain)) {
736                                 seq_printf(m, "Pipe %c power disabled\n",
737                                            pipe_name(pipe));
738                                 continue;
739                         }
740
741                         seq_printf(m, "Pipe %c stat:\t%08x\n",
742                                    pipe_name(pipe),
743                                    I915_READ(PIPESTAT(pipe)));
744
745                         intel_display_power_put(dev_priv, power_domain);
746                 }
747
748                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
749                 seq_printf(m, "Port hotplug:\t%08x\n",
750                            I915_READ(PORT_HOTPLUG_EN));
751                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
752                            I915_READ(VLV_DPFLIPSTAT));
753                 seq_printf(m, "DPINVGTT:\t%08x\n",
754                            I915_READ(DPINVGTT));
755                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
756
757                 for (i = 0; i < 4; i++) {
758                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
759                                    i, I915_READ(GEN8_GT_IMR(i)));
760                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
761                                    i, I915_READ(GEN8_GT_IIR(i)));
762                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
763                                    i, I915_READ(GEN8_GT_IER(i)));
764                 }
765
766                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
767                            I915_READ(GEN8_PCU_IMR));
768                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
769                            I915_READ(GEN8_PCU_IIR));
770                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
771                            I915_READ(GEN8_PCU_IER));
772         } else if (INTEL_GEN(dev_priv) >= 8) {
773                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
774                            I915_READ(GEN8_MASTER_IRQ));
775
776                 for (i = 0; i < 4; i++) {
777                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
778                                    i, I915_READ(GEN8_GT_IMR(i)));
779                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
780                                    i, I915_READ(GEN8_GT_IIR(i)));
781                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
782                                    i, I915_READ(GEN8_GT_IER(i)));
783                 }
784
785                 for_each_pipe(dev_priv, pipe) {
786                         enum intel_display_power_domain power_domain;
787
788                         power_domain = POWER_DOMAIN_PIPE(pipe);
789                         if (!intel_display_power_get_if_enabled(dev_priv,
790                                                                 power_domain)) {
791                                 seq_printf(m, "Pipe %c power disabled\n",
792                                            pipe_name(pipe));
793                                 continue;
794                         }
795                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
796                                    pipe_name(pipe),
797                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
798                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
799                                    pipe_name(pipe),
800                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
801                         seq_printf(m, "Pipe %c IER:\t%08x\n",
802                                    pipe_name(pipe),
803                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
804
805                         intel_display_power_put(dev_priv, power_domain);
806                 }
807
808                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
809                            I915_READ(GEN8_DE_PORT_IMR));
810                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
811                            I915_READ(GEN8_DE_PORT_IIR));
812                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
813                            I915_READ(GEN8_DE_PORT_IER));
814
815                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
816                            I915_READ(GEN8_DE_MISC_IMR));
817                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
818                            I915_READ(GEN8_DE_MISC_IIR));
819                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
820                            I915_READ(GEN8_DE_MISC_IER));
821
822                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
823                            I915_READ(GEN8_PCU_IMR));
824                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
825                            I915_READ(GEN8_PCU_IIR));
826                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
827                            I915_READ(GEN8_PCU_IER));
828         } else if (IS_VALLEYVIEW(dev_priv)) {
829                 seq_printf(m, "Display IER:\t%08x\n",
830                            I915_READ(VLV_IER));
831                 seq_printf(m, "Display IIR:\t%08x\n",
832                            I915_READ(VLV_IIR));
833                 seq_printf(m, "Display IIR_RW:\t%08x\n",
834                            I915_READ(VLV_IIR_RW));
835                 seq_printf(m, "Display IMR:\t%08x\n",
836                            I915_READ(VLV_IMR));
837                 for_each_pipe(dev_priv, pipe)
838                         seq_printf(m, "Pipe %c stat:\t%08x\n",
839                                    pipe_name(pipe),
840                                    I915_READ(PIPESTAT(pipe)));
841
842                 seq_printf(m, "Master IER:\t%08x\n",
843                            I915_READ(VLV_MASTER_IER));
844
845                 seq_printf(m, "Render IER:\t%08x\n",
846                            I915_READ(GTIER));
847                 seq_printf(m, "Render IIR:\t%08x\n",
848                            I915_READ(GTIIR));
849                 seq_printf(m, "Render IMR:\t%08x\n",
850                            I915_READ(GTIMR));
851
852                 seq_printf(m, "PM IER:\t\t%08x\n",
853                            I915_READ(GEN6_PMIER));
854                 seq_printf(m, "PM IIR:\t\t%08x\n",
855                            I915_READ(GEN6_PMIIR));
856                 seq_printf(m, "PM IMR:\t\t%08x\n",
857                            I915_READ(GEN6_PMIMR));
858
859                 seq_printf(m, "Port hotplug:\t%08x\n",
860                            I915_READ(PORT_HOTPLUG_EN));
861                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
862                            I915_READ(VLV_DPFLIPSTAT));
863                 seq_printf(m, "DPINVGTT:\t%08x\n",
864                            I915_READ(DPINVGTT));
865
866         } else if (!HAS_PCH_SPLIT(dev_priv)) {
867                 seq_printf(m, "Interrupt enable:    %08x\n",
868                            I915_READ(IER));
869                 seq_printf(m, "Interrupt identity:  %08x\n",
870                            I915_READ(IIR));
871                 seq_printf(m, "Interrupt mask:      %08x\n",
872                            I915_READ(IMR));
873                 for_each_pipe(dev_priv, pipe)
874                         seq_printf(m, "Pipe %c stat:         %08x\n",
875                                    pipe_name(pipe),
876                                    I915_READ(PIPESTAT(pipe)));
877         } else {
878                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
879                            I915_READ(DEIER));
880                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
881                            I915_READ(DEIIR));
882                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
883                            I915_READ(DEIMR));
884                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
885                            I915_READ(SDEIER));
886                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
887                            I915_READ(SDEIIR));
888                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
889                            I915_READ(SDEIMR));
890                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
891                            I915_READ(GTIER));
892                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
893                            I915_READ(GTIIR));
894                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
895                            I915_READ(GTIMR));
896         }
897         for_each_engine(engine, dev_priv, id) {
898                 if (INTEL_GEN(dev_priv) >= 6) {
899                         seq_printf(m,
900                                    "Graphics Interrupt mask (%s):       %08x\n",
901                                    engine->name, I915_READ_IMR(engine));
902                 }
903                 i915_ring_seqno_info(m, engine);
904         }
905         intel_runtime_pm_put(dev_priv);
906
907         return 0;
908 }
909
910 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
911 {
912         struct drm_i915_private *dev_priv = node_to_i915(m->private);
913         struct drm_device *dev = &dev_priv->drm;
914         int i, ret;
915
916         ret = mutex_lock_interruptible(&dev->struct_mutex);
917         if (ret)
918                 return ret;
919
920         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
921         for (i = 0; i < dev_priv->num_fence_regs; i++) {
922                 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
923
924                 seq_printf(m, "Fence %d, pin count = %d, object = ",
925                            i, dev_priv->fence_regs[i].pin_count);
926                 if (!vma)
927                         seq_puts(m, "unused");
928                 else
929                         describe_obj(m, vma->obj);
930                 seq_putc(m, '\n');
931         }
932
933         mutex_unlock(&dev->struct_mutex);
934         return 0;
935 }
936
937 static int i915_hws_info(struct seq_file *m, void *data)
938 {
939         struct drm_info_node *node = m->private;
940         struct drm_i915_private *dev_priv = node_to_i915(node);
941         struct intel_engine_cs *engine;
942         const u32 *hws;
943         int i;
944
945         engine = dev_priv->engine[(uintptr_t)node->info_ent->data];
946         hws = engine->status_page.page_addr;
947         if (hws == NULL)
948                 return 0;
949
950         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
951                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
952                            i * 4,
953                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
954         }
955         return 0;
956 }
957
958 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
959
960 static ssize_t
961 i915_error_state_write(struct file *filp,
962                        const char __user *ubuf,
963                        size_t cnt,
964                        loff_t *ppos)
965 {
966         struct i915_error_state_file_priv *error_priv = filp->private_data;
967
968         DRM_DEBUG_DRIVER("Resetting error state\n");
969         i915_destroy_error_state(error_priv->dev);
970
971         return cnt;
972 }
973
974 static int i915_error_state_open(struct inode *inode, struct file *file)
975 {
976         struct drm_i915_private *dev_priv = inode->i_private;
977         struct i915_error_state_file_priv *error_priv;
978
979         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
980         if (!error_priv)
981                 return -ENOMEM;
982
983         error_priv->dev = &dev_priv->drm;
984
985         i915_error_state_get(&dev_priv->drm, error_priv);
986
987         file->private_data = error_priv;
988
989         return 0;
990 }
991
992 static int i915_error_state_release(struct inode *inode, struct file *file)
993 {
994         struct i915_error_state_file_priv *error_priv = file->private_data;
995
996         i915_error_state_put(error_priv);
997         kfree(error_priv);
998
999         return 0;
1000 }
1001
1002 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1003                                      size_t count, loff_t *pos)
1004 {
1005         struct i915_error_state_file_priv *error_priv = file->private_data;
1006         struct drm_i915_error_state_buf error_str;
1007         loff_t tmp_pos = 0;
1008         ssize_t ret_count = 0;
1009         int ret;
1010
1011         ret = i915_error_state_buf_init(&error_str,
1012                                         to_i915(error_priv->dev), count, *pos);
1013         if (ret)
1014                 return ret;
1015
1016         ret = i915_error_state_to_str(&error_str, error_priv);
1017         if (ret)
1018                 goto out;
1019
1020         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1021                                             error_str.buf,
1022                                             error_str.bytes);
1023
1024         if (ret_count < 0)
1025                 ret = ret_count;
1026         else
1027                 *pos = error_str.start + ret_count;
1028 out:
1029         i915_error_state_buf_release(&error_str);
1030         return ret ?: ret_count;
1031 }
1032
1033 static const struct file_operations i915_error_state_fops = {
1034         .owner = THIS_MODULE,
1035         .open = i915_error_state_open,
1036         .read = i915_error_state_read,
1037         .write = i915_error_state_write,
1038         .llseek = default_llseek,
1039         .release = i915_error_state_release,
1040 };
1041
1042 #endif
1043
1044 static int
1045 i915_next_seqno_get(void *data, u64 *val)
1046 {
1047         struct drm_i915_private *dev_priv = data;
1048
1049         *val = atomic_read(&dev_priv->gt.global_timeline.next_seqno);
1050         return 0;
1051 }
1052
1053 static int
1054 i915_next_seqno_set(void *data, u64 val)
1055 {
1056         struct drm_i915_private *dev_priv = data;
1057         struct drm_device *dev = &dev_priv->drm;
1058         int ret;
1059
1060         ret = mutex_lock_interruptible(&dev->struct_mutex);
1061         if (ret)
1062                 return ret;
1063
1064         ret = i915_gem_set_global_seqno(dev, val);
1065         mutex_unlock(&dev->struct_mutex);
1066
1067         return ret;
1068 }
1069
1070 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1071                         i915_next_seqno_get, i915_next_seqno_set,
1072                         "0x%llx\n");
1073
1074 static int i915_frequency_info(struct seq_file *m, void *unused)
1075 {
1076         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1077         struct drm_device *dev = &dev_priv->drm;
1078         int ret = 0;
1079
1080         intel_runtime_pm_get(dev_priv);
1081
1082         if (IS_GEN5(dev_priv)) {
1083                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1084                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1085
1086                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1087                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1088                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1089                            MEMSTAT_VID_SHIFT);
1090                 seq_printf(m, "Current P-state: %d\n",
1091                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1092         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1093                 u32 freq_sts;
1094
1095                 mutex_lock(&dev_priv->rps.hw_lock);
1096                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1097                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1098                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1099
1100                 seq_printf(m, "actual GPU freq: %d MHz\n",
1101                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1102
1103                 seq_printf(m, "current GPU freq: %d MHz\n",
1104                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1105
1106                 seq_printf(m, "max GPU freq: %d MHz\n",
1107                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1108
1109                 seq_printf(m, "min GPU freq: %d MHz\n",
1110                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1111
1112                 seq_printf(m, "idle GPU freq: %d MHz\n",
1113                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1114
1115                 seq_printf(m,
1116                            "efficient (RPe) frequency: %d MHz\n",
1117                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1118                 mutex_unlock(&dev_priv->rps.hw_lock);
1119         } else if (INTEL_GEN(dev_priv) >= 6) {
1120                 u32 rp_state_limits;
1121                 u32 gt_perf_status;
1122                 u32 rp_state_cap;
1123                 u32 rpmodectl, rpinclimit, rpdeclimit;
1124                 u32 rpstat, cagf, reqf;
1125                 u32 rpupei, rpcurup, rpprevup;
1126                 u32 rpdownei, rpcurdown, rpprevdown;
1127                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1128                 int max_freq;
1129
1130                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1131                 if (IS_BROXTON(dev_priv)) {
1132                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1133                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1134                 } else {
1135                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1136                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1137                 }
1138
1139                 /* RPSTAT1 is in the GT power well */
1140                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1141                 if (ret)
1142                         goto out;
1143
1144                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1145
1146                 reqf = I915_READ(GEN6_RPNSWREQ);
1147                 if (IS_GEN9(dev_priv))
1148                         reqf >>= 23;
1149                 else {
1150                         reqf &= ~GEN6_TURBO_DISABLE;
1151                         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1152                                 reqf >>= 24;
1153                         else
1154                                 reqf >>= 25;
1155                 }
1156                 reqf = intel_gpu_freq(dev_priv, reqf);
1157
1158                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1159                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1160                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1161
1162                 rpstat = I915_READ(GEN6_RPSTAT1);
1163                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1164                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1165                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1166                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1167                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1168                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1169                 if (IS_GEN9(dev_priv))
1170                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1171                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1172                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1173                 else
1174                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1175                 cagf = intel_gpu_freq(dev_priv, cagf);
1176
1177                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1178                 mutex_unlock(&dev->struct_mutex);
1179
1180                 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1181                         pm_ier = I915_READ(GEN6_PMIER);
1182                         pm_imr = I915_READ(GEN6_PMIMR);
1183                         pm_isr = I915_READ(GEN6_PMISR);
1184                         pm_iir = I915_READ(GEN6_PMIIR);
1185                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1186                 } else {
1187                         pm_ier = I915_READ(GEN8_GT_IER(2));
1188                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1189                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1190                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1191                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1192                 }
1193                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1194                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1195                 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1196                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1197                 seq_printf(m, "Render p-state ratio: %d\n",
1198                            (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1199                 seq_printf(m, "Render p-state VID: %d\n",
1200                            gt_perf_status & 0xff);
1201                 seq_printf(m, "Render p-state limit: %d\n",
1202                            rp_state_limits & 0xff);
1203                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1204                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1205                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1206                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1207                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1208                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1209                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1210                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1211                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1212                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1213                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1214                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1215                 seq_printf(m, "Up threshold: %d%%\n",
1216                            dev_priv->rps.up_threshold);
1217
1218                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1219                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1220                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1221                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1222                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1223                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1224                 seq_printf(m, "Down threshold: %d%%\n",
1225                            dev_priv->rps.down_threshold);
1226
1227                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
1228                             rp_state_cap >> 16) & 0xff;
1229                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1230                              GEN9_FREQ_SCALER : 1);
1231                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1232                            intel_gpu_freq(dev_priv, max_freq));
1233
1234                 max_freq = (rp_state_cap & 0xff00) >> 8;
1235                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1236                              GEN9_FREQ_SCALER : 1);
1237                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1238                            intel_gpu_freq(dev_priv, max_freq));
1239
1240                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
1241                             rp_state_cap >> 0) & 0xff;
1242                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1243                              GEN9_FREQ_SCALER : 1);
1244                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1245                            intel_gpu_freq(dev_priv, max_freq));
1246                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1247                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1248
1249                 seq_printf(m, "Current freq: %d MHz\n",
1250                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1251                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1252                 seq_printf(m, "Idle freq: %d MHz\n",
1253                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1254                 seq_printf(m, "Min freq: %d MHz\n",
1255                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1256                 seq_printf(m, "Boost freq: %d MHz\n",
1257                            intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1258                 seq_printf(m, "Max freq: %d MHz\n",
1259                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1260                 seq_printf(m,
1261                            "efficient (RPe) frequency: %d MHz\n",
1262                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1263         } else {
1264                 seq_puts(m, "no P-state info available\n");
1265         }
1266
1267         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1268         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1269         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1270
1271 out:
1272         intel_runtime_pm_put(dev_priv);
1273         return ret;
1274 }
1275
1276 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1277                                struct seq_file *m,
1278                                struct intel_instdone *instdone)
1279 {
1280         int slice;
1281         int subslice;
1282
1283         seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1284                    instdone->instdone);
1285
1286         if (INTEL_GEN(dev_priv) <= 3)
1287                 return;
1288
1289         seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1290                    instdone->slice_common);
1291
1292         if (INTEL_GEN(dev_priv) <= 6)
1293                 return;
1294
1295         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1296                 seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1297                            slice, subslice, instdone->sampler[slice][subslice]);
1298
1299         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1300                 seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1301                            slice, subslice, instdone->row[slice][subslice]);
1302 }
1303
1304 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1305 {
1306         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1307         struct intel_engine_cs *engine;
1308         u64 acthd[I915_NUM_ENGINES];
1309         u32 seqno[I915_NUM_ENGINES];
1310         struct intel_instdone instdone;
1311         enum intel_engine_id id;
1312
1313         if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1314                 seq_printf(m, "Wedged\n");
1315         if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1316                 seq_printf(m, "Reset in progress\n");
1317         if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1318                 seq_printf(m, "Waiter holding struct mutex\n");
1319         if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1320                 seq_printf(m, "struct_mutex blocked for reset\n");
1321
1322         if (!i915.enable_hangcheck) {
1323                 seq_printf(m, "Hangcheck disabled\n");
1324                 return 0;
1325         }
1326
1327         intel_runtime_pm_get(dev_priv);
1328
1329         for_each_engine(engine, dev_priv, id) {
1330                 acthd[id] = intel_engine_get_active_head(engine);
1331                 seqno[id] = intel_engine_get_seqno(engine);
1332         }
1333
1334         intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1335
1336         intel_runtime_pm_put(dev_priv);
1337
1338         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1339                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1340                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1341                                             jiffies));
1342         } else
1343                 seq_printf(m, "Hangcheck inactive\n");
1344
1345         for_each_engine(engine, dev_priv, id) {
1346                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
1347                 struct rb_node *rb;
1348
1349                 seq_printf(m, "%s:\n", engine->name);
1350                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1351                            engine->hangcheck.seqno, seqno[id],
1352                            intel_engine_last_submit(engine));
1353                 seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1354                            yesno(intel_engine_has_waiter(engine)),
1355                            yesno(test_bit(engine->id,
1356                                           &dev_priv->gpu_error.missed_irq_rings)));
1357                 spin_lock_irq(&b->lock);
1358                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1359                         struct intel_wait *w = container_of(rb, typeof(*w), node);
1360
1361                         seq_printf(m, "\t%s [%d] waiting for %x\n",
1362                                    w->tsk->comm, w->tsk->pid, w->seqno);
1363                 }
1364                 spin_unlock_irq(&b->lock);
1365
1366                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1367                            (long long)engine->hangcheck.acthd,
1368                            (long long)acthd[id]);
1369                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1370                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1371
1372                 if (engine->id == RCS) {
1373                         seq_puts(m, "\tinstdone read =\n");
1374
1375                         i915_instdone_info(dev_priv, m, &instdone);
1376
1377                         seq_puts(m, "\tinstdone accu =\n");
1378
1379                         i915_instdone_info(dev_priv, m,
1380                                            &engine->hangcheck.instdone);
1381                 }
1382         }
1383
1384         return 0;
1385 }
1386
1387 static int ironlake_drpc_info(struct seq_file *m)
1388 {
1389         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1390         u32 rgvmodectl, rstdbyctl;
1391         u16 crstandvid;
1392
1393         intel_runtime_pm_get(dev_priv);
1394
1395         rgvmodectl = I915_READ(MEMMODECTL);
1396         rstdbyctl = I915_READ(RSTDBYCTL);
1397         crstandvid = I915_READ16(CRSTANDVID);
1398
1399         intel_runtime_pm_put(dev_priv);
1400
1401         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1402         seq_printf(m, "Boost freq: %d\n",
1403                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1404                    MEMMODE_BOOST_FREQ_SHIFT);
1405         seq_printf(m, "HW control enabled: %s\n",
1406                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1407         seq_printf(m, "SW control enabled: %s\n",
1408                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1409         seq_printf(m, "Gated voltage change: %s\n",
1410                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1411         seq_printf(m, "Starting frequency: P%d\n",
1412                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1413         seq_printf(m, "Max P-state: P%d\n",
1414                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1415         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1416         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1417         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1418         seq_printf(m, "Render standby enabled: %s\n",
1419                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1420         seq_puts(m, "Current RS state: ");
1421         switch (rstdbyctl & RSX_STATUS_MASK) {
1422         case RSX_STATUS_ON:
1423                 seq_puts(m, "on\n");
1424                 break;
1425         case RSX_STATUS_RC1:
1426                 seq_puts(m, "RC1\n");
1427                 break;
1428         case RSX_STATUS_RC1E:
1429                 seq_puts(m, "RC1E\n");
1430                 break;
1431         case RSX_STATUS_RS1:
1432                 seq_puts(m, "RS1\n");
1433                 break;
1434         case RSX_STATUS_RS2:
1435                 seq_puts(m, "RS2 (RC6)\n");
1436                 break;
1437         case RSX_STATUS_RS3:
1438                 seq_puts(m, "RC3 (RC6+)\n");
1439                 break;
1440         default:
1441                 seq_puts(m, "unknown\n");
1442                 break;
1443         }
1444
1445         return 0;
1446 }
1447
1448 static int i915_forcewake_domains(struct seq_file *m, void *data)
1449 {
1450         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1451         struct intel_uncore_forcewake_domain *fw_domain;
1452
1453         spin_lock_irq(&dev_priv->uncore.lock);
1454         for_each_fw_domain(fw_domain, dev_priv) {
1455                 seq_printf(m, "%s.wake_count = %u\n",
1456                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1457                            fw_domain->wake_count);
1458         }
1459         spin_unlock_irq(&dev_priv->uncore.lock);
1460
1461         return 0;
1462 }
1463
1464 static int vlv_drpc_info(struct seq_file *m)
1465 {
1466         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1467         u32 rpmodectl1, rcctl1, pw_status;
1468
1469         intel_runtime_pm_get(dev_priv);
1470
1471         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1472         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1473         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1474
1475         intel_runtime_pm_put(dev_priv);
1476
1477         seq_printf(m, "Video Turbo Mode: %s\n",
1478                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1479         seq_printf(m, "Turbo enabled: %s\n",
1480                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1481         seq_printf(m, "HW control enabled: %s\n",
1482                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1483         seq_printf(m, "SW control enabled: %s\n",
1484                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1485                           GEN6_RP_MEDIA_SW_MODE));
1486         seq_printf(m, "RC6 Enabled: %s\n",
1487                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1488                                         GEN6_RC_CTL_EI_MODE(1))));
1489         seq_printf(m, "Render Power Well: %s\n",
1490                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1491         seq_printf(m, "Media Power Well: %s\n",
1492                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1493
1494         seq_printf(m, "Render RC6 residency since boot: %u\n",
1495                    I915_READ(VLV_GT_RENDER_RC6));
1496         seq_printf(m, "Media RC6 residency since boot: %u\n",
1497                    I915_READ(VLV_GT_MEDIA_RC6));
1498
1499         return i915_forcewake_domains(m, NULL);
1500 }
1501
1502 static int gen6_drpc_info(struct seq_file *m)
1503 {
1504         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1505         struct drm_device *dev = &dev_priv->drm;
1506         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1507         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1508         unsigned forcewake_count;
1509         int count = 0, ret;
1510
1511         ret = mutex_lock_interruptible(&dev->struct_mutex);
1512         if (ret)
1513                 return ret;
1514         intel_runtime_pm_get(dev_priv);
1515
1516         spin_lock_irq(&dev_priv->uncore.lock);
1517         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1518         spin_unlock_irq(&dev_priv->uncore.lock);
1519
1520         if (forcewake_count) {
1521                 seq_puts(m, "RC information inaccurate because somebody "
1522                             "holds a forcewake reference \n");
1523         } else {
1524                 /* NB: we cannot use forcewake, else we read the wrong values */
1525                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1526                         udelay(10);
1527                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1528         }
1529
1530         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1531         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1532
1533         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1534         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1535         if (INTEL_GEN(dev_priv) >= 9) {
1536                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1537                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1538         }
1539         mutex_unlock(&dev->struct_mutex);
1540         mutex_lock(&dev_priv->rps.hw_lock);
1541         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1542         mutex_unlock(&dev_priv->rps.hw_lock);
1543
1544         intel_runtime_pm_put(dev_priv);
1545
1546         seq_printf(m, "Video Turbo Mode: %s\n",
1547                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1548         seq_printf(m, "HW control enabled: %s\n",
1549                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1550         seq_printf(m, "SW control enabled: %s\n",
1551                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1552                           GEN6_RP_MEDIA_SW_MODE));
1553         seq_printf(m, "RC1e Enabled: %s\n",
1554                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1555         seq_printf(m, "RC6 Enabled: %s\n",
1556                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1557         if (INTEL_GEN(dev_priv) >= 9) {
1558                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1559                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1560                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1561                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1562         }
1563         seq_printf(m, "Deep RC6 Enabled: %s\n",
1564                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1565         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1566                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1567         seq_puts(m, "Current RC state: ");
1568         switch (gt_core_status & GEN6_RCn_MASK) {
1569         case GEN6_RC0:
1570                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1571                         seq_puts(m, "Core Power Down\n");
1572                 else
1573                         seq_puts(m, "on\n");
1574                 break;
1575         case GEN6_RC3:
1576                 seq_puts(m, "RC3\n");
1577                 break;
1578         case GEN6_RC6:
1579                 seq_puts(m, "RC6\n");
1580                 break;
1581         case GEN6_RC7:
1582                 seq_puts(m, "RC7\n");
1583                 break;
1584         default:
1585                 seq_puts(m, "Unknown\n");
1586                 break;
1587         }
1588
1589         seq_printf(m, "Core Power Down: %s\n",
1590                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1591         if (INTEL_GEN(dev_priv) >= 9) {
1592                 seq_printf(m, "Render Power Well: %s\n",
1593                         (gen9_powergate_status &
1594                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1595                 seq_printf(m, "Media Power Well: %s\n",
1596                         (gen9_powergate_status &
1597                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1598         }
1599
1600         /* Not exactly sure what this is */
1601         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1602                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1603         seq_printf(m, "RC6 residency since boot: %u\n",
1604                    I915_READ(GEN6_GT_GFX_RC6));
1605         seq_printf(m, "RC6+ residency since boot: %u\n",
1606                    I915_READ(GEN6_GT_GFX_RC6p));
1607         seq_printf(m, "RC6++ residency since boot: %u\n",
1608                    I915_READ(GEN6_GT_GFX_RC6pp));
1609
1610         seq_printf(m, "RC6   voltage: %dmV\n",
1611                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1612         seq_printf(m, "RC6+  voltage: %dmV\n",
1613                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1614         seq_printf(m, "RC6++ voltage: %dmV\n",
1615                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1616         return i915_forcewake_domains(m, NULL);
1617 }
1618
1619 static int i915_drpc_info(struct seq_file *m, void *unused)
1620 {
1621         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1622
1623         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1624                 return vlv_drpc_info(m);
1625         else if (INTEL_GEN(dev_priv) >= 6)
1626                 return gen6_drpc_info(m);
1627         else
1628                 return ironlake_drpc_info(m);
1629 }
1630
1631 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1632 {
1633         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1634
1635         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1636                    dev_priv->fb_tracking.busy_bits);
1637
1638         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1639                    dev_priv->fb_tracking.flip_bits);
1640
1641         return 0;
1642 }
1643
1644 static int i915_fbc_status(struct seq_file *m, void *unused)
1645 {
1646         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1647
1648         if (!HAS_FBC(dev_priv)) {
1649                 seq_puts(m, "FBC unsupported on this chipset\n");
1650                 return 0;
1651         }
1652
1653         intel_runtime_pm_get(dev_priv);
1654         mutex_lock(&dev_priv->fbc.lock);
1655
1656         if (intel_fbc_is_active(dev_priv))
1657                 seq_puts(m, "FBC enabled\n");
1658         else
1659                 seq_printf(m, "FBC disabled: %s\n",
1660                            dev_priv->fbc.no_fbc_reason);
1661
1662         if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
1663                 uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
1664                                 BDW_FBC_COMPRESSION_MASK :
1665                                 IVB_FBC_COMPRESSION_MASK;
1666                 seq_printf(m, "Compressing: %s\n",
1667                            yesno(I915_READ(FBC_STATUS2) & mask));
1668         }
1669
1670         mutex_unlock(&dev_priv->fbc.lock);
1671         intel_runtime_pm_put(dev_priv);
1672
1673         return 0;
1674 }
1675
1676 static int i915_fbc_fc_get(void *data, u64 *val)
1677 {
1678         struct drm_i915_private *dev_priv = data;
1679
1680         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1681                 return -ENODEV;
1682
1683         *val = dev_priv->fbc.false_color;
1684
1685         return 0;
1686 }
1687
1688 static int i915_fbc_fc_set(void *data, u64 val)
1689 {
1690         struct drm_i915_private *dev_priv = data;
1691         u32 reg;
1692
1693         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1694                 return -ENODEV;
1695
1696         mutex_lock(&dev_priv->fbc.lock);
1697
1698         reg = I915_READ(ILK_DPFC_CONTROL);
1699         dev_priv->fbc.false_color = val;
1700
1701         I915_WRITE(ILK_DPFC_CONTROL, val ?
1702                    (reg | FBC_CTL_FALSE_COLOR) :
1703                    (reg & ~FBC_CTL_FALSE_COLOR));
1704
1705         mutex_unlock(&dev_priv->fbc.lock);
1706         return 0;
1707 }
1708
1709 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1710                         i915_fbc_fc_get, i915_fbc_fc_set,
1711                         "%llu\n");
1712
1713 static int i915_ips_status(struct seq_file *m, void *unused)
1714 {
1715         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1716
1717         if (!HAS_IPS(dev_priv)) {
1718                 seq_puts(m, "not supported\n");
1719                 return 0;
1720         }
1721
1722         intel_runtime_pm_get(dev_priv);
1723
1724         seq_printf(m, "Enabled by kernel parameter: %s\n",
1725                    yesno(i915.enable_ips));
1726
1727         if (INTEL_GEN(dev_priv) >= 8) {
1728                 seq_puts(m, "Currently: unknown\n");
1729         } else {
1730                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1731                         seq_puts(m, "Currently: enabled\n");
1732                 else
1733                         seq_puts(m, "Currently: disabled\n");
1734         }
1735
1736         intel_runtime_pm_put(dev_priv);
1737
1738         return 0;
1739 }
1740
1741 static int i915_sr_status(struct seq_file *m, void *unused)
1742 {
1743         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1744         bool sr_enabled = false;
1745
1746         intel_runtime_pm_get(dev_priv);
1747         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1748
1749         if (HAS_PCH_SPLIT(dev_priv))
1750                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1751         else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
1752                  IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1753                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1754         else if (IS_I915GM(dev_priv))
1755                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1756         else if (IS_PINEVIEW(dev_priv))
1757                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1758         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1759                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1760
1761         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1762         intel_runtime_pm_put(dev_priv);
1763
1764         seq_printf(m, "self-refresh: %s\n",
1765                    sr_enabled ? "enabled" : "disabled");
1766
1767         return 0;
1768 }
1769
1770 static int i915_emon_status(struct seq_file *m, void *unused)
1771 {
1772         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1773         struct drm_device *dev = &dev_priv->drm;
1774         unsigned long temp, chipset, gfx;
1775         int ret;
1776
1777         if (!IS_GEN5(dev_priv))
1778                 return -ENODEV;
1779
1780         ret = mutex_lock_interruptible(&dev->struct_mutex);
1781         if (ret)
1782                 return ret;
1783
1784         temp = i915_mch_val(dev_priv);
1785         chipset = i915_chipset_val(dev_priv);
1786         gfx = i915_gfx_val(dev_priv);
1787         mutex_unlock(&dev->struct_mutex);
1788
1789         seq_printf(m, "GMCH temp: %ld\n", temp);
1790         seq_printf(m, "Chipset power: %ld\n", chipset);
1791         seq_printf(m, "GFX power: %ld\n", gfx);
1792         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1793
1794         return 0;
1795 }
1796
1797 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1798 {
1799         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1800         int ret = 0;
1801         int gpu_freq, ia_freq;
1802         unsigned int max_gpu_freq, min_gpu_freq;
1803
1804         if (!HAS_LLC(dev_priv)) {
1805                 seq_puts(m, "unsupported on this chipset\n");
1806                 return 0;
1807         }
1808
1809         intel_runtime_pm_get(dev_priv);
1810
1811         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1812         if (ret)
1813                 goto out;
1814
1815         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1816                 /* Convert GT frequency to 50 HZ units */
1817                 min_gpu_freq =
1818                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1819                 max_gpu_freq =
1820                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1821         } else {
1822                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1823                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1824         }
1825
1826         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1827
1828         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1829                 ia_freq = gpu_freq;
1830                 sandybridge_pcode_read(dev_priv,
1831                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1832                                        &ia_freq);
1833                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1834                            intel_gpu_freq(dev_priv, (gpu_freq *
1835                                 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1836                                  GEN9_FREQ_SCALER : 1))),
1837                            ((ia_freq >> 0) & 0xff) * 100,
1838                            ((ia_freq >> 8) & 0xff) * 100);
1839         }
1840
1841         mutex_unlock(&dev_priv->rps.hw_lock);
1842
1843 out:
1844         intel_runtime_pm_put(dev_priv);
1845         return ret;
1846 }
1847
1848 static int i915_opregion(struct seq_file *m, void *unused)
1849 {
1850         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1851         struct drm_device *dev = &dev_priv->drm;
1852         struct intel_opregion *opregion = &dev_priv->opregion;
1853         int ret;
1854
1855         ret = mutex_lock_interruptible(&dev->struct_mutex);
1856         if (ret)
1857                 goto out;
1858
1859         if (opregion->header)
1860                 seq_write(m, opregion->header, OPREGION_SIZE);
1861
1862         mutex_unlock(&dev->struct_mutex);
1863
1864 out:
1865         return 0;
1866 }
1867
1868 static int i915_vbt(struct seq_file *m, void *unused)
1869 {
1870         struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1871
1872         if (opregion->vbt)
1873                 seq_write(m, opregion->vbt, opregion->vbt_size);
1874
1875         return 0;
1876 }
1877
1878 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1879 {
1880         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1881         struct drm_device *dev = &dev_priv->drm;
1882         struct intel_framebuffer *fbdev_fb = NULL;
1883         struct drm_framebuffer *drm_fb;
1884         int ret;
1885
1886         ret = mutex_lock_interruptible(&dev->struct_mutex);
1887         if (ret)
1888                 return ret;
1889
1890 #ifdef CONFIG_DRM_FBDEV_EMULATION
1891         if (dev_priv->fbdev) {
1892                 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1893
1894                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1895                            fbdev_fb->base.width,
1896                            fbdev_fb->base.height,
1897                            fbdev_fb->base.depth,
1898                            fbdev_fb->base.bits_per_pixel,
1899                            fbdev_fb->base.modifier[0],
1900                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1901                 describe_obj(m, fbdev_fb->obj);
1902                 seq_putc(m, '\n');
1903         }
1904 #endif
1905
1906         mutex_lock(&dev->mode_config.fb_lock);
1907         drm_for_each_fb(drm_fb, dev) {
1908                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1909                 if (fb == fbdev_fb)
1910                         continue;
1911
1912                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1913                            fb->base.width,
1914                            fb->base.height,
1915                            fb->base.depth,
1916                            fb->base.bits_per_pixel,
1917                            fb->base.modifier[0],
1918                            drm_framebuffer_read_refcount(&fb->base));
1919                 describe_obj(m, fb->obj);
1920                 seq_putc(m, '\n');
1921         }
1922         mutex_unlock(&dev->mode_config.fb_lock);
1923         mutex_unlock(&dev->struct_mutex);
1924
1925         return 0;
1926 }
1927
1928 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1929 {
1930         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1931                    ring->space, ring->head, ring->tail,
1932                    ring->last_retired_head);
1933 }
1934
1935 static int i915_context_status(struct seq_file *m, void *unused)
1936 {
1937         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1938         struct drm_device *dev = &dev_priv->drm;
1939         struct intel_engine_cs *engine;
1940         struct i915_gem_context *ctx;
1941         enum intel_engine_id id;
1942         int ret;
1943
1944         ret = mutex_lock_interruptible(&dev->struct_mutex);
1945         if (ret)
1946                 return ret;
1947
1948         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1949                 seq_printf(m, "HW context %u ", ctx->hw_id);
1950                 if (ctx->pid) {
1951                         struct task_struct *task;
1952
1953                         task = get_pid_task(ctx->pid, PIDTYPE_PID);
1954                         if (task) {
1955                                 seq_printf(m, "(%s [%d]) ",
1956                                            task->comm, task->pid);
1957                                 put_task_struct(task);
1958                         }
1959                 } else if (IS_ERR(ctx->file_priv)) {
1960                         seq_puts(m, "(deleted) ");
1961                 } else {
1962                         seq_puts(m, "(kernel) ");
1963                 }
1964
1965                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1966                 seq_putc(m, '\n');
1967
1968                 for_each_engine(engine, dev_priv, id) {
1969                         struct intel_context *ce = &ctx->engine[engine->id];
1970
1971                         seq_printf(m, "%s: ", engine->name);
1972                         seq_putc(m, ce->initialised ? 'I' : 'i');
1973                         if (ce->state)
1974                                 describe_obj(m, ce->state->obj);
1975                         if (ce->ring)
1976                                 describe_ctx_ring(m, ce->ring);
1977                         seq_putc(m, '\n');
1978                 }
1979
1980                 seq_putc(m, '\n');
1981         }
1982
1983         mutex_unlock(&dev->struct_mutex);
1984
1985         return 0;
1986 }
1987
1988 static void i915_dump_lrc_obj(struct seq_file *m,
1989                               struct i915_gem_context *ctx,
1990                               struct intel_engine_cs *engine)
1991 {
1992         struct i915_vma *vma = ctx->engine[engine->id].state;
1993         struct page *page;
1994         int j;
1995
1996         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
1997
1998         if (!vma) {
1999                 seq_puts(m, "\tFake context\n");
2000                 return;
2001         }
2002
2003         if (vma->flags & I915_VMA_GLOBAL_BIND)
2004                 seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2005                            i915_ggtt_offset(vma));
2006
2007         if (i915_gem_object_pin_pages(vma->obj)) {
2008                 seq_puts(m, "\tFailed to get pages for context object\n\n");
2009                 return;
2010         }
2011
2012         page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2013         if (page) {
2014                 u32 *reg_state = kmap_atomic(page);
2015
2016                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2017                         seq_printf(m,
2018                                    "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2019                                    j * 4,
2020                                    reg_state[j], reg_state[j + 1],
2021                                    reg_state[j + 2], reg_state[j + 3]);
2022                 }
2023                 kunmap_atomic(reg_state);
2024         }
2025
2026         i915_gem_object_unpin_pages(vma->obj);
2027         seq_putc(m, '\n');
2028 }
2029
2030 static int i915_dump_lrc(struct seq_file *m, void *unused)
2031 {
2032         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2033         struct drm_device *dev = &dev_priv->drm;
2034         struct intel_engine_cs *engine;
2035         struct i915_gem_context *ctx;
2036         enum intel_engine_id id;
2037         int ret;
2038
2039         if (!i915.enable_execlists) {
2040                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2041                 return 0;
2042         }
2043
2044         ret = mutex_lock_interruptible(&dev->struct_mutex);
2045         if (ret)
2046                 return ret;
2047
2048         list_for_each_entry(ctx, &dev_priv->context_list, link)
2049                 for_each_engine(engine, dev_priv, id)
2050                         i915_dump_lrc_obj(m, ctx, engine);
2051
2052         mutex_unlock(&dev->struct_mutex);
2053
2054         return 0;
2055 }
2056
2057 static const char *swizzle_string(unsigned swizzle)
2058 {
2059         switch (swizzle) {
2060         case I915_BIT_6_SWIZZLE_NONE:
2061                 return "none";
2062         case I915_BIT_6_SWIZZLE_9:
2063                 return "bit9";
2064         case I915_BIT_6_SWIZZLE_9_10:
2065                 return "bit9/bit10";
2066         case I915_BIT_6_SWIZZLE_9_11:
2067                 return "bit9/bit11";
2068         case I915_BIT_6_SWIZZLE_9_10_11:
2069                 return "bit9/bit10/bit11";
2070         case I915_BIT_6_SWIZZLE_9_17:
2071                 return "bit9/bit17";
2072         case I915_BIT_6_SWIZZLE_9_10_17:
2073                 return "bit9/bit10/bit17";
2074         case I915_BIT_6_SWIZZLE_UNKNOWN:
2075                 return "unknown";
2076         }
2077
2078         return "bug";
2079 }
2080
2081 static int i915_swizzle_info(struct seq_file *m, void *data)
2082 {
2083         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2084
2085         intel_runtime_pm_get(dev_priv);
2086
2087         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2088                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2089         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2090                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2091
2092         if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2093                 seq_printf(m, "DDC = 0x%08x\n",
2094                            I915_READ(DCC));
2095                 seq_printf(m, "DDC2 = 0x%08x\n",
2096                            I915_READ(DCC2));
2097                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2098                            I915_READ16(C0DRB3));
2099                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2100                            I915_READ16(C1DRB3));
2101         } else if (INTEL_GEN(dev_priv) >= 6) {
2102                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2103                            I915_READ(MAD_DIMM_C0));
2104                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2105                            I915_READ(MAD_DIMM_C1));
2106                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2107                            I915_READ(MAD_DIMM_C2));
2108                 seq_printf(m, "TILECTL = 0x%08x\n",
2109                            I915_READ(TILECTL));
2110                 if (INTEL_GEN(dev_priv) >= 8)
2111                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2112                                    I915_READ(GAMTARBMODE));
2113                 else
2114                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2115                                    I915_READ(ARB_MODE));
2116                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2117                            I915_READ(DISP_ARB_CTL));
2118         }
2119
2120         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2121                 seq_puts(m, "L-shaped memory detected\n");
2122
2123         intel_runtime_pm_put(dev_priv);
2124
2125         return 0;
2126 }
2127
2128 static int per_file_ctx(int id, void *ptr, void *data)
2129 {
2130         struct i915_gem_context *ctx = ptr;
2131         struct seq_file *m = data;
2132         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2133
2134         if (!ppgtt) {
2135                 seq_printf(m, "  no ppgtt for context %d\n",
2136                            ctx->user_handle);
2137                 return 0;
2138         }
2139
2140         if (i915_gem_context_is_default(ctx))
2141                 seq_puts(m, "  default context:\n");
2142         else
2143                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2144         ppgtt->debug_dump(ppgtt, m);
2145
2146         return 0;
2147 }
2148
2149 static void gen8_ppgtt_info(struct seq_file *m,
2150                             struct drm_i915_private *dev_priv)
2151 {
2152         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2153         struct intel_engine_cs *engine;
2154         enum intel_engine_id id;
2155         int i;
2156
2157         if (!ppgtt)
2158                 return;
2159
2160         for_each_engine(engine, dev_priv, id) {
2161                 seq_printf(m, "%s\n", engine->name);
2162                 for (i = 0; i < 4; i++) {
2163                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2164                         pdp <<= 32;
2165                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2166                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2167                 }
2168         }
2169 }
2170
2171 static void gen6_ppgtt_info(struct seq_file *m,
2172                             struct drm_i915_private *dev_priv)
2173 {
2174         struct intel_engine_cs *engine;
2175         enum intel_engine_id id;
2176
2177         if (IS_GEN6(dev_priv))
2178                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2179
2180         for_each_engine(engine, dev_priv, id) {
2181                 seq_printf(m, "%s\n", engine->name);
2182                 if (IS_GEN7(dev_priv))
2183                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2184                                    I915_READ(RING_MODE_GEN7(engine)));
2185                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2186                            I915_READ(RING_PP_DIR_BASE(engine)));
2187                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2188                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2189                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2190                            I915_READ(RING_PP_DIR_DCLV(engine)));
2191         }
2192         if (dev_priv->mm.aliasing_ppgtt) {
2193                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2194
2195                 seq_puts(m, "aliasing PPGTT:\n");
2196                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2197
2198                 ppgtt->debug_dump(ppgtt, m);
2199         }
2200
2201         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2202 }
2203
2204 static int i915_ppgtt_info(struct seq_file *m, void *data)
2205 {
2206         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2207         struct drm_device *dev = &dev_priv->drm;
2208         struct drm_file *file;
2209         int ret;
2210
2211         mutex_lock(&dev->filelist_mutex);
2212         ret = mutex_lock_interruptible(&dev->struct_mutex);
2213         if (ret)
2214                 goto out_unlock;
2215
2216         intel_runtime_pm_get(dev_priv);
2217
2218         if (INTEL_GEN(dev_priv) >= 8)
2219                 gen8_ppgtt_info(m, dev_priv);
2220         else if (INTEL_GEN(dev_priv) >= 6)
2221                 gen6_ppgtt_info(m, dev_priv);
2222
2223         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2224                 struct drm_i915_file_private *file_priv = file->driver_priv;
2225                 struct task_struct *task;
2226
2227                 task = get_pid_task(file->pid, PIDTYPE_PID);
2228                 if (!task) {
2229                         ret = -ESRCH;
2230                         goto out_rpm;
2231                 }
2232                 seq_printf(m, "\nproc: %s\n", task->comm);
2233                 put_task_struct(task);
2234                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2235                              (void *)(unsigned long)m);
2236         }
2237
2238 out_rpm:
2239         intel_runtime_pm_put(dev_priv);
2240         mutex_unlock(&dev->struct_mutex);
2241 out_unlock:
2242         mutex_unlock(&dev->filelist_mutex);
2243         return ret;
2244 }
2245
2246 static int count_irq_waiters(struct drm_i915_private *i915)
2247 {
2248         struct intel_engine_cs *engine;
2249         enum intel_engine_id id;
2250         int count = 0;
2251
2252         for_each_engine(engine, i915, id)
2253                 count += intel_engine_has_waiter(engine);
2254
2255         return count;
2256 }
2257
2258 static const char *rps_power_to_str(unsigned int power)
2259 {
2260         static const char * const strings[] = {
2261                 [LOW_POWER] = "low power",
2262                 [BETWEEN] = "mixed",
2263                 [HIGH_POWER] = "high power",
2264         };
2265
2266         if (power >= ARRAY_SIZE(strings) || !strings[power])
2267                 return "unknown";
2268
2269         return strings[power];
2270 }
2271
2272 static int i915_rps_boost_info(struct seq_file *m, void *data)
2273 {
2274         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2275         struct drm_device *dev = &dev_priv->drm;
2276         struct drm_file *file;
2277
2278         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2279         seq_printf(m, "GPU busy? %s [%d requests]\n",
2280                    yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2281         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2282         seq_printf(m, "Frequency requested %d\n",
2283                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2284         seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2285                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2286                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2287                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2288                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2289         seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2290                    intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2291                    intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2292                    intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2293
2294         mutex_lock(&dev->filelist_mutex);
2295         spin_lock(&dev_priv->rps.client_lock);
2296         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2297                 struct drm_i915_file_private *file_priv = file->driver_priv;
2298                 struct task_struct *task;
2299
2300                 rcu_read_lock();
2301                 task = pid_task(file->pid, PIDTYPE_PID);
2302                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2303                            task ? task->comm : "<unknown>",
2304                            task ? task->pid : -1,
2305                            file_priv->rps.boosts,
2306                            list_empty(&file_priv->rps.link) ? "" : ", active");
2307                 rcu_read_unlock();
2308         }
2309         seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2310         spin_unlock(&dev_priv->rps.client_lock);
2311         mutex_unlock(&dev->filelist_mutex);
2312
2313         if (INTEL_GEN(dev_priv) >= 6 &&
2314             dev_priv->rps.enabled &&
2315             dev_priv->gt.active_requests) {
2316                 u32 rpup, rpupei;
2317                 u32 rpdown, rpdownei;
2318
2319                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2320                 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2321                 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2322                 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2323                 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2324                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2325
2326                 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2327                            rps_power_to_str(dev_priv->rps.power));
2328                 seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2329                            100 * rpup / rpupei,
2330                            dev_priv->rps.up_threshold);
2331                 seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2332                            100 * rpdown / rpdownei,
2333                            dev_priv->rps.down_threshold);
2334         } else {
2335                 seq_puts(m, "\nRPS Autotuning inactive\n");
2336         }
2337
2338         return 0;
2339 }
2340
2341 static int i915_llc(struct seq_file *m, void *data)
2342 {
2343         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2344         const bool edram = INTEL_GEN(dev_priv) > 8;
2345
2346         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2347         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2348                    intel_uncore_edram_size(dev_priv)/1024/1024);
2349
2350         return 0;
2351 }
2352
2353 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2354 {
2355         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2356         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2357         u32 tmp, i;
2358
2359         if (!HAS_GUC_UCODE(dev_priv))
2360                 return 0;
2361
2362         seq_printf(m, "GuC firmware status:\n");
2363         seq_printf(m, "\tpath: %s\n",
2364                 guc_fw->guc_fw_path);
2365         seq_printf(m, "\tfetch: %s\n",
2366                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2367         seq_printf(m, "\tload: %s\n",
2368                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2369         seq_printf(m, "\tversion wanted: %d.%d\n",
2370                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2371         seq_printf(m, "\tversion found: %d.%d\n",
2372                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2373         seq_printf(m, "\theader: offset is %d; size = %d\n",
2374                 guc_fw->header_offset, guc_fw->header_size);
2375         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2376                 guc_fw->ucode_offset, guc_fw->ucode_size);
2377         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2378                 guc_fw->rsa_offset, guc_fw->rsa_size);
2379
2380         tmp = I915_READ(GUC_STATUS);
2381
2382         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2383         seq_printf(m, "\tBootrom status = 0x%x\n",
2384                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2385         seq_printf(m, "\tuKernel status = 0x%x\n",
2386                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2387         seq_printf(m, "\tMIA Core status = 0x%x\n",
2388                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2389         seq_puts(m, "\nScratch registers:\n");
2390         for (i = 0; i < 16; i++)
2391                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2392
2393         return 0;
2394 }
2395
2396 static void i915_guc_log_info(struct seq_file *m,
2397                               struct drm_i915_private *dev_priv)
2398 {
2399         struct intel_guc *guc = &dev_priv->guc;
2400
2401         seq_puts(m, "\nGuC logging stats:\n");
2402
2403         seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2404                    guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2405                    guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2406
2407         seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2408                    guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2409                    guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2410
2411         seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2412                    guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2413                    guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2414
2415         seq_printf(m, "\tTotal flush interrupt count: %u\n",
2416                    guc->log.flush_interrupt_count);
2417
2418         seq_printf(m, "\tCapture miss count: %u\n",
2419                    guc->log.capture_miss_count);
2420 }
2421
2422 static void i915_guc_client_info(struct seq_file *m,
2423                                  struct drm_i915_private *dev_priv,
2424                                  struct i915_guc_client *client)
2425 {
2426         struct intel_engine_cs *engine;
2427         enum intel_engine_id id;
2428         uint64_t tot = 0;
2429
2430         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2431                 client->priority, client->ctx_index, client->proc_desc_offset);
2432         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2433                 client->doorbell_id, client->doorbell_offset, client->cookie);
2434         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2435                 client->wq_size, client->wq_offset, client->wq_tail);
2436
2437         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2438         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2439         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2440
2441         for_each_engine(engine, dev_priv, id) {
2442                 u64 submissions = client->submissions[id];
2443                 tot += submissions;
2444                 seq_printf(m, "\tSubmissions: %llu %s\n",
2445                                 submissions, engine->name);
2446         }
2447         seq_printf(m, "\tTotal: %llu\n", tot);
2448 }
2449
2450 static int i915_guc_info(struct seq_file *m, void *data)
2451 {
2452         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2453         struct drm_device *dev = &dev_priv->drm;
2454         struct intel_guc guc;
2455         struct i915_guc_client client = {};
2456         struct intel_engine_cs *engine;
2457         enum intel_engine_id id;
2458         u64 total = 0;
2459
2460         if (!HAS_GUC_SCHED(dev_priv))
2461                 return 0;
2462
2463         if (mutex_lock_interruptible(&dev->struct_mutex))
2464                 return 0;
2465
2466         /* Take a local copy of the GuC data, so we can dump it at leisure */
2467         guc = dev_priv->guc;
2468         if (guc.execbuf_client)
2469                 client = *guc.execbuf_client;
2470
2471         mutex_unlock(&dev->struct_mutex);
2472
2473         seq_printf(m, "Doorbell map:\n");
2474         seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2475         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2476
2477         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2478         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2479         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2480         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2481         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2482
2483         seq_printf(m, "\nGuC submissions:\n");
2484         for_each_engine(engine, dev_priv, id) {
2485                 u64 submissions = guc.submissions[id];
2486                 total += submissions;
2487                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2488                         engine->name, submissions, guc.last_seqno[id]);
2489         }
2490         seq_printf(m, "\t%s: %llu\n", "Total", total);
2491
2492         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2493         i915_guc_client_info(m, dev_priv, &client);
2494
2495         i915_guc_log_info(m, dev_priv);
2496
2497         /* Add more as required ... */
2498
2499         return 0;
2500 }
2501
2502 static int i915_guc_log_dump(struct seq_file *m, void *data)
2503 {
2504         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2505         struct drm_i915_gem_object *obj;
2506         int i = 0, pg;
2507
2508         if (!dev_priv->guc.log.vma)
2509                 return 0;
2510
2511         obj = dev_priv->guc.log.vma->obj;
2512         for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2513                 u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2514
2515                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2516                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2517                                    *(log + i), *(log + i + 1),
2518                                    *(log + i + 2), *(log + i + 3));
2519
2520                 kunmap_atomic(log);
2521         }
2522
2523         seq_putc(m, '\n');
2524
2525         return 0;
2526 }
2527
2528 static int i915_guc_log_control_get(void *data, u64 *val)
2529 {
2530         struct drm_device *dev = data;
2531         struct drm_i915_private *dev_priv = to_i915(dev);
2532
2533         if (!dev_priv->guc.log.vma)
2534                 return -EINVAL;
2535
2536         *val = i915.guc_log_level;
2537
2538         return 0;
2539 }
2540
2541 static int i915_guc_log_control_set(void *data, u64 val)
2542 {
2543         struct drm_device *dev = data;
2544         struct drm_i915_private *dev_priv = to_i915(dev);
2545         int ret;
2546
2547         if (!dev_priv->guc.log.vma)
2548                 return -EINVAL;
2549
2550         ret = mutex_lock_interruptible(&dev->struct_mutex);
2551         if (ret)
2552                 return ret;
2553
2554         intel_runtime_pm_get(dev_priv);
2555         ret = i915_guc_log_control(dev_priv, val);
2556         intel_runtime_pm_put(dev_priv);
2557
2558         mutex_unlock(&dev->struct_mutex);
2559         return ret;
2560 }
2561
2562 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2563                         i915_guc_log_control_get, i915_guc_log_control_set,
2564                         "%lld\n");
2565
2566 static int i915_edp_psr_status(struct seq_file *m, void *data)
2567 {
2568         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2569         u32 psrperf = 0;
2570         u32 stat[3];
2571         enum pipe pipe;
2572         bool enabled = false;
2573
2574         if (!HAS_PSR(dev_priv)) {
2575                 seq_puts(m, "PSR not supported\n");
2576                 return 0;
2577         }
2578
2579         intel_runtime_pm_get(dev_priv);
2580
2581         mutex_lock(&dev_priv->psr.lock);
2582         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2583         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2584         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2585         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2586         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2587                    dev_priv->psr.busy_frontbuffer_bits);
2588         seq_printf(m, "Re-enable work scheduled: %s\n",
2589                    yesno(work_busy(&dev_priv->psr.work.work)));
2590
2591         if (HAS_DDI(dev_priv))
2592                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2593         else {
2594                 for_each_pipe(dev_priv, pipe) {
2595                         enum transcoder cpu_transcoder =
2596                                 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2597                         enum intel_display_power_domain power_domain;
2598
2599                         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2600                         if (!intel_display_power_get_if_enabled(dev_priv,
2601                                                                 power_domain))
2602                                 continue;
2603
2604                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2605                                 VLV_EDP_PSR_CURR_STATE_MASK;
2606                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2607                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2608                                 enabled = true;
2609
2610                         intel_display_power_put(dev_priv, power_domain);
2611                 }
2612         }
2613
2614         seq_printf(m, "Main link in standby mode: %s\n",
2615                    yesno(dev_priv->psr.link_standby));
2616
2617         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2618
2619         if (!HAS_DDI(dev_priv))
2620                 for_each_pipe(dev_priv, pipe) {
2621                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2622                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2623                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2624                 }
2625         seq_puts(m, "\n");
2626
2627         /*
2628          * VLV/CHV PSR has no kind of performance counter
2629          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2630          */
2631         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2632                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2633                         EDP_PSR_PERF_CNT_MASK;
2634
2635                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2636         }
2637         mutex_unlock(&dev_priv->psr.lock);
2638
2639         intel_runtime_pm_put(dev_priv);
2640         return 0;
2641 }
2642
2643 static int i915_sink_crc(struct seq_file *m, void *data)
2644 {
2645         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2646         struct drm_device *dev = &dev_priv->drm;
2647         struct intel_connector *connector;
2648         struct intel_dp *intel_dp = NULL;
2649         int ret;
2650         u8 crc[6];
2651
2652         drm_modeset_lock_all(dev);
2653         for_each_intel_connector(dev, connector) {
2654                 struct drm_crtc *crtc;
2655
2656                 if (!connector->base.state->best_encoder)
2657                         continue;
2658
2659                 crtc = connector->base.state->crtc;
2660                 if (!crtc->state->active)
2661                         continue;
2662
2663                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2664                         continue;
2665
2666                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2667
2668                 ret = intel_dp_sink_crc(intel_dp, crc);
2669                 if (ret)
2670                         goto out;
2671
2672                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2673                            crc[0], crc[1], crc[2],
2674                            crc[3], crc[4], crc[5]);
2675                 goto out;
2676         }
2677         ret = -ENODEV;
2678 out:
2679         drm_modeset_unlock_all(dev);
2680         return ret;
2681 }
2682
2683 static int i915_energy_uJ(struct seq_file *m, void *data)
2684 {
2685         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2686         u64 power;
2687         u32 units;
2688
2689         if (INTEL_GEN(dev_priv) < 6)
2690                 return -ENODEV;
2691
2692         intel_runtime_pm_get(dev_priv);
2693
2694         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2695         power = (power & 0x1f00) >> 8;
2696         units = 1000000 / (1 << power); /* convert to uJ */
2697         power = I915_READ(MCH_SECP_NRG_STTS);
2698         power *= units;
2699
2700         intel_runtime_pm_put(dev_priv);
2701
2702         seq_printf(m, "%llu", (long long unsigned)power);
2703
2704         return 0;
2705 }
2706
2707 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2708 {
2709         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2710         struct pci_dev *pdev = dev_priv->drm.pdev;
2711
2712         if (!HAS_RUNTIME_PM(dev_priv))
2713                 seq_puts(m, "Runtime power management not supported\n");
2714
2715         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2716         seq_printf(m, "IRQs disabled: %s\n",
2717                    yesno(!intel_irqs_enabled(dev_priv)));
2718 #ifdef CONFIG_PM
2719         seq_printf(m, "Usage count: %d\n",
2720                    atomic_read(&dev_priv->drm.dev->power.usage_count));
2721 #else
2722         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2723 #endif
2724         seq_printf(m, "PCI device power state: %s [%d]\n",
2725                    pci_power_name(pdev->current_state),
2726                    pdev->current_state);
2727
2728         return 0;
2729 }
2730
2731 static int i915_power_domain_info(struct seq_file *m, void *unused)
2732 {
2733         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2734         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2735         int i;
2736
2737         mutex_lock(&power_domains->lock);
2738
2739         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2740         for (i = 0; i < power_domains->power_well_count; i++) {
2741                 struct i915_power_well *power_well;
2742                 enum intel_display_power_domain power_domain;
2743
2744                 power_well = &power_domains->power_wells[i];
2745                 seq_printf(m, "%-25s %d\n", power_well->name,
2746                            power_well->count);
2747
2748                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2749                      power_domain++) {
2750                         if (!(BIT(power_domain) & power_well->domains))
2751                                 continue;
2752
2753                         seq_printf(m, "  %-23s %d\n",
2754                                  intel_display_power_domain_str(power_domain),
2755                                  power_domains->domain_use_count[power_domain]);
2756                 }
2757         }
2758
2759         mutex_unlock(&power_domains->lock);
2760
2761         return 0;
2762 }
2763
2764 static int i915_dmc_info(struct seq_file *m, void *unused)
2765 {
2766         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2767         struct intel_csr *csr;
2768
2769         if (!HAS_CSR(dev_priv)) {
2770                 seq_puts(m, "not supported\n");
2771                 return 0;
2772         }
2773
2774         csr = &dev_priv->csr;
2775
2776         intel_runtime_pm_get(dev_priv);
2777
2778         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2779         seq_printf(m, "path: %s\n", csr->fw_path);
2780
2781         if (!csr->dmc_payload)
2782                 goto out;
2783
2784         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2785                    CSR_VERSION_MINOR(csr->version));
2786
2787         if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2788                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2789                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2790                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2791                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2792         } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2793                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2794                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2795         }
2796
2797 out:
2798         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2799         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2800         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2801
2802         intel_runtime_pm_put(dev_priv);
2803
2804         return 0;
2805 }
2806
2807 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2808                                  struct drm_display_mode *mode)
2809 {
2810         int i;
2811
2812         for (i = 0; i < tabs; i++)
2813                 seq_putc(m, '\t');
2814
2815         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2816                    mode->base.id, mode->name,
2817                    mode->vrefresh, mode->clock,
2818                    mode->hdisplay, mode->hsync_start,
2819                    mode->hsync_end, mode->htotal,
2820                    mode->vdisplay, mode->vsync_start,
2821                    mode->vsync_end, mode->vtotal,
2822                    mode->type, mode->flags);
2823 }
2824
2825 static void intel_encoder_info(struct seq_file *m,
2826                                struct intel_crtc *intel_crtc,
2827                                struct intel_encoder *intel_encoder)
2828 {
2829         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2830         struct drm_device *dev = &dev_priv->drm;
2831         struct drm_crtc *crtc = &intel_crtc->base;
2832         struct intel_connector *intel_connector;
2833         struct drm_encoder *encoder;
2834
2835         encoder = &intel_encoder->base;
2836         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2837                    encoder->base.id, encoder->name);
2838         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2839                 struct drm_connector *connector = &intel_connector->base;
2840                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2841                            connector->base.id,
2842                            connector->name,
2843                            drm_get_connector_status_name(connector->status));
2844                 if (connector->status == connector_status_connected) {
2845                         struct drm_display_mode *mode = &crtc->mode;
2846                         seq_printf(m, ", mode:\n");
2847                         intel_seq_print_mode(m, 2, mode);
2848                 } else {
2849                         seq_putc(m, '\n');
2850                 }
2851         }
2852 }
2853
2854 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2855 {
2856         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2857         struct drm_device *dev = &dev_priv->drm;
2858         struct drm_crtc *crtc = &intel_crtc->base;
2859         struct intel_encoder *intel_encoder;
2860         struct drm_plane_state *plane_state = crtc->primary->state;
2861         struct drm_framebuffer *fb = plane_state->fb;
2862
2863         if (fb)
2864                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2865                            fb->base.id, plane_state->src_x >> 16,
2866                            plane_state->src_y >> 16, fb->width, fb->height);
2867         else
2868                 seq_puts(m, "\tprimary plane disabled\n");
2869         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2870                 intel_encoder_info(m, intel_crtc, intel_encoder);
2871 }
2872
2873 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2874 {
2875         struct drm_display_mode *mode = panel->fixed_mode;
2876
2877         seq_printf(m, "\tfixed mode:\n");
2878         intel_seq_print_mode(m, 2, mode);
2879 }
2880
2881 static void intel_dp_info(struct seq_file *m,
2882                           struct intel_connector *intel_connector)
2883 {
2884         struct intel_encoder *intel_encoder = intel_connector->encoder;
2885         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2886
2887         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2888         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2889         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2890                 intel_panel_info(m, &intel_connector->panel);
2891
2892         drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2893                                 &intel_dp->aux);
2894 }
2895
2896 static void intel_hdmi_info(struct seq_file *m,
2897                             struct intel_connector *intel_connector)
2898 {
2899         struct intel_encoder *intel_encoder = intel_connector->encoder;
2900         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2901
2902         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2903 }
2904
2905 static void intel_lvds_info(struct seq_file *m,
2906                             struct intel_connector *intel_connector)
2907 {
2908         intel_panel_info(m, &intel_connector->panel);
2909 }
2910
2911 static void intel_connector_info(struct seq_file *m,
2912                                  struct drm_connector *connector)
2913 {
2914         struct intel_connector *intel_connector = to_intel_connector(connector);
2915         struct intel_encoder *intel_encoder = intel_connector->encoder;
2916         struct drm_display_mode *mode;
2917
2918         seq_printf(m, "connector %d: type %s, status: %s\n",
2919                    connector->base.id, connector->name,
2920                    drm_get_connector_status_name(connector->status));
2921         if (connector->status == connector_status_connected) {
2922                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2923                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2924                            connector->display_info.width_mm,
2925                            connector->display_info.height_mm);
2926                 seq_printf(m, "\tsubpixel order: %s\n",
2927                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2928                 seq_printf(m, "\tCEA rev: %d\n",
2929                            connector->display_info.cea_rev);
2930         }
2931
2932         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
2933                 return;
2934
2935         switch (connector->connector_type) {
2936         case DRM_MODE_CONNECTOR_DisplayPort:
2937         case DRM_MODE_CONNECTOR_eDP:
2938                 intel_dp_info(m, intel_connector);
2939                 break;
2940         case DRM_MODE_CONNECTOR_LVDS:
2941                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2942                         intel_lvds_info(m, intel_connector);
2943                 break;
2944         case DRM_MODE_CONNECTOR_HDMIA:
2945                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2946                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
2947                         intel_hdmi_info(m, intel_connector);
2948                 break;
2949         default:
2950                 break;
2951         }
2952
2953         seq_printf(m, "\tmodes:\n");
2954         list_for_each_entry(mode, &connector->modes, head)
2955                 intel_seq_print_mode(m, 2, mode);
2956 }
2957
2958 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
2959 {
2960         u32 state;
2961
2962         if (IS_845G(dev_priv) || IS_I865G(dev_priv))
2963                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2964         else
2965                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2966
2967         return state;
2968 }
2969
2970 static bool cursor_position(struct drm_i915_private *dev_priv,
2971                             int pipe, int *x, int *y)
2972 {
2973         u32 pos;
2974
2975         pos = I915_READ(CURPOS(pipe));
2976
2977         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2978         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2979                 *x = -*x;
2980
2981         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2982         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2983                 *y = -*y;
2984
2985         return cursor_active(dev_priv, pipe);
2986 }
2987
2988 static const char *plane_type(enum drm_plane_type type)
2989 {
2990         switch (type) {
2991         case DRM_PLANE_TYPE_OVERLAY:
2992                 return "OVL";
2993         case DRM_PLANE_TYPE_PRIMARY:
2994                 return "PRI";
2995         case DRM_PLANE_TYPE_CURSOR:
2996                 return "CUR";
2997         /*
2998          * Deliberately omitting default: to generate compiler warnings
2999          * when a new drm_plane_type gets added.
3000          */
3001         }
3002
3003         return "unknown";
3004 }
3005
3006 static const char *plane_rotation(unsigned int rotation)
3007 {
3008         static char buf[48];
3009         /*
3010          * According to doc only one DRM_ROTATE_ is allowed but this
3011          * will print them all to visualize if the values are misused
3012          */
3013         snprintf(buf, sizeof(buf),
3014                  "%s%s%s%s%s%s(0x%08x)",
3015                  (rotation & DRM_ROTATE_0) ? "0 " : "",
3016                  (rotation & DRM_ROTATE_90) ? "90 " : "",
3017                  (rotation & DRM_ROTATE_180) ? "180 " : "",
3018                  (rotation & DRM_ROTATE_270) ? "270 " : "",
3019                  (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
3020                  (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3021                  rotation);
3022
3023         return buf;
3024 }
3025
3026 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3027 {
3028         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3029         struct drm_device *dev = &dev_priv->drm;
3030         struct intel_plane *intel_plane;
3031
3032         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3033                 struct drm_plane_state *state;
3034                 struct drm_plane *plane = &intel_plane->base;
3035                 char *format_name;
3036
3037                 if (!plane->state) {
3038                         seq_puts(m, "plane->state is NULL!\n");
3039                         continue;
3040                 }
3041
3042                 state = plane->state;
3043
3044                 if (state->fb) {
3045                         format_name = drm_get_format_name(state->fb->pixel_format);
3046                 } else {
3047                         format_name = kstrdup("N/A", GFP_KERNEL);
3048                 }
3049
3050                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3051                            plane->base.id,
3052                            plane_type(intel_plane->base.type),
3053                            state->crtc_x, state->crtc_y,
3054                            state->crtc_w, state->crtc_h,
3055                            (state->src_x >> 16),
3056                            ((state->src_x & 0xffff) * 15625) >> 10,
3057                            (state->src_y >> 16),
3058                            ((state->src_y & 0xffff) * 15625) >> 10,
3059                            (state->src_w >> 16),
3060                            ((state->src_w & 0xffff) * 15625) >> 10,
3061                            (state->src_h >> 16),
3062                            ((state->src_h & 0xffff) * 15625) >> 10,
3063                            format_name,
3064                            plane_rotation(state->rotation));
3065
3066                 kfree(format_name);
3067         }
3068 }
3069
3070 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3071 {
3072         struct intel_crtc_state *pipe_config;
3073         int num_scalers = intel_crtc->num_scalers;
3074         int i;
3075
3076         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3077
3078         /* Not all platformas have a scaler */
3079         if (num_scalers) {
3080                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3081                            num_scalers,
3082                            pipe_config->scaler_state.scaler_users,
3083                            pipe_config->scaler_state.scaler_id);
3084
3085                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3086                         struct intel_scaler *sc =
3087                                         &pipe_config->scaler_state.scalers[i];
3088
3089                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3090                                    i, yesno(sc->in_use), sc->mode);
3091                 }
3092                 seq_puts(m, "\n");
3093         } else {
3094                 seq_puts(m, "\tNo scalers available on this platform\n");
3095         }
3096 }
3097
3098 static int i915_display_info(struct seq_file *m, void *unused)
3099 {
3100         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3101         struct drm_device *dev = &dev_priv->drm;
3102         struct intel_crtc *crtc;
3103         struct drm_connector *connector;
3104
3105         intel_runtime_pm_get(dev_priv);
3106         drm_modeset_lock_all(dev);
3107         seq_printf(m, "CRTC info\n");
3108         seq_printf(m, "---------\n");
3109         for_each_intel_crtc(dev, crtc) {
3110                 bool active;
3111                 struct intel_crtc_state *pipe_config;
3112                 int x, y;
3113
3114                 pipe_config = to_intel_crtc_state(crtc->base.state);
3115
3116                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3117                            crtc->base.base.id, pipe_name(crtc->pipe),
3118                            yesno(pipe_config->base.active),
3119                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3120                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3121
3122                 if (pipe_config->base.active) {
3123                         intel_crtc_info(m, crtc);
3124
3125                         active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3126                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3127                                    yesno(crtc->cursor_base),
3128                                    x, y, crtc->base.cursor->state->crtc_w,
3129                                    crtc->base.cursor->state->crtc_h,
3130                                    crtc->cursor_addr, yesno(active));
3131                         intel_scaler_info(m, crtc);
3132                         intel_plane_info(m, crtc);
3133                 }
3134
3135                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3136                            yesno(!crtc->cpu_fifo_underrun_disabled),
3137                            yesno(!crtc->pch_fifo_underrun_disabled));
3138         }
3139
3140         seq_printf(m, "\n");
3141         seq_printf(m, "Connector info\n");
3142         seq_printf(m, "--------------\n");
3143         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3144                 intel_connector_info(m, connector);
3145         }
3146         drm_modeset_unlock_all(dev);
3147         intel_runtime_pm_put(dev_priv);
3148
3149         return 0;
3150 }
3151
3152 static int i915_engine_info(struct seq_file *m, void *unused)
3153 {
3154         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3155         struct intel_engine_cs *engine;
3156         enum intel_engine_id id;
3157
3158         intel_runtime_pm_get(dev_priv);
3159
3160         for_each_engine(engine, dev_priv, id) {
3161                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3162                 struct drm_i915_gem_request *rq;
3163                 struct rb_node *rb;
3164                 u64 addr;
3165
3166                 seq_printf(m, "%s\n", engine->name);
3167                 seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [score %d]\n",
3168                            intel_engine_get_seqno(engine),
3169                            intel_engine_last_submit(engine),
3170                            engine->hangcheck.seqno,
3171                            engine->hangcheck.score);
3172
3173                 rcu_read_lock();
3174
3175                 seq_printf(m, "\tRequests:\n");
3176
3177                 rq = list_first_entry(&engine->timeline->requests,
3178                                       struct drm_i915_gem_request, link);
3179                 if (&rq->link != &engine->timeline->requests)
3180                         print_request(m, rq, "\t\tfirst  ");
3181
3182                 rq = list_last_entry(&engine->timeline->requests,
3183                                      struct drm_i915_gem_request, link);
3184                 if (&rq->link != &engine->timeline->requests)
3185                         print_request(m, rq, "\t\tlast   ");
3186
3187                 rq = i915_gem_find_active_request(engine);
3188                 if (rq) {
3189                         print_request(m, rq, "\t\tactive ");
3190                         seq_printf(m,
3191                                    "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3192                                    rq->head, rq->postfix, rq->tail,
3193                                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3194                                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3195                 }
3196
3197                 seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3198                            I915_READ(RING_START(engine->mmio_base)),
3199                            rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3200                 seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3201                            I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3202                            rq ? rq->ring->head : 0);
3203                 seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3204                            I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3205                            rq ? rq->ring->tail : 0);
3206                 seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3207                            I915_READ(RING_CTL(engine->mmio_base)),
3208                            I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3209
3210                 rcu_read_unlock();
3211
3212                 addr = intel_engine_get_active_head(engine);
3213                 seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3214                            upper_32_bits(addr), lower_32_bits(addr));
3215                 addr = intel_engine_get_last_batch_head(engine);
3216                 seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3217                            upper_32_bits(addr), lower_32_bits(addr));
3218
3219                 if (i915.enable_execlists) {
3220                         u32 ptr, read, write;
3221
3222                         seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3223                                    I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3224                                    I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3225
3226                         ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3227                         read = GEN8_CSB_READ_PTR(ptr);
3228                         write = GEN8_CSB_WRITE_PTR(ptr);
3229                         seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3230                                    read, write);
3231                         if (read >= GEN8_CSB_ENTRIES)
3232                                 read = 0;
3233                         if (write >= GEN8_CSB_ENTRIES)
3234                                 write = 0;
3235                         if (read > write)
3236                                 write += GEN8_CSB_ENTRIES;
3237                         while (read < write) {
3238                                 unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3239
3240                                 seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3241                                            idx,
3242                                            I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3243                                            I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3244                         }
3245
3246                         rcu_read_lock();
3247                         rq = READ_ONCE(engine->execlist_port[0].request);
3248                         if (rq)
3249                                 print_request(m, rq, "\t\tELSP[0] ");
3250                         else
3251                                 seq_printf(m, "\t\tELSP[0] idle\n");
3252                         rq = READ_ONCE(engine->execlist_port[1].request);
3253                         if (rq)
3254                                 print_request(m, rq, "\t\tELSP[1] ");
3255                         else
3256                                 seq_printf(m, "\t\tELSP[1] idle\n");
3257                         rcu_read_unlock();
3258
3259                         spin_lock_irq(&engine->execlist_lock);
3260                         list_for_each_entry(rq, &engine->execlist_queue, execlist_link) {
3261                                 print_request(m, rq, "\t\tQ ");
3262                         }
3263                         spin_unlock_irq(&engine->execlist_lock);
3264                 } else if (INTEL_GEN(dev_priv) > 6) {
3265                         seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3266                                    I915_READ(RING_PP_DIR_BASE(engine)));
3267                         seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3268                                    I915_READ(RING_PP_DIR_BASE_READ(engine)));
3269                         seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3270                                    I915_READ(RING_PP_DIR_DCLV(engine)));
3271                 }
3272
3273                 spin_lock_irq(&b->lock);
3274                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3275                         struct intel_wait *w = container_of(rb, typeof(*w), node);
3276
3277                         seq_printf(m, "\t%s [%d] waiting for %x\n",
3278                                    w->tsk->comm, w->tsk->pid, w->seqno);
3279                 }
3280                 spin_unlock_irq(&b->lock);
3281
3282                 seq_puts(m, "\n");
3283         }
3284
3285         intel_runtime_pm_put(dev_priv);
3286
3287         return 0;
3288 }
3289
3290 static int i915_semaphore_status(struct seq_file *m, void *unused)
3291 {
3292         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3293         struct drm_device *dev = &dev_priv->drm;
3294         struct intel_engine_cs *engine;
3295         int num_rings = INTEL_INFO(dev_priv)->num_rings;
3296         enum intel_engine_id id;
3297         int j, ret;
3298
3299         if (!i915.semaphores) {
3300                 seq_puts(m, "Semaphores are disabled\n");
3301                 return 0;
3302         }
3303
3304         ret = mutex_lock_interruptible(&dev->struct_mutex);
3305         if (ret)
3306                 return ret;
3307         intel_runtime_pm_get(dev_priv);
3308
3309         if (IS_BROADWELL(dev_priv)) {
3310                 struct page *page;
3311                 uint64_t *seqno;
3312
3313                 page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3314
3315                 seqno = (uint64_t *)kmap_atomic(page);
3316                 for_each_engine(engine, dev_priv, id) {
3317                         uint64_t offset;
3318
3319                         seq_printf(m, "%s\n", engine->name);
3320
3321                         seq_puts(m, "  Last signal:");
3322                         for (j = 0; j < num_rings; j++) {
3323                                 offset = id * I915_NUM_ENGINES + j;
3324                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3325                                            seqno[offset], offset * 8);
3326                         }
3327                         seq_putc(m, '\n');
3328
3329                         seq_puts(m, "  Last wait:  ");
3330                         for (j = 0; j < num_rings; j++) {
3331                                 offset = id + (j * I915_NUM_ENGINES);
3332                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3333                                            seqno[offset], offset * 8);
3334                         }
3335                         seq_putc(m, '\n');
3336
3337                 }
3338                 kunmap_atomic(seqno);
3339         } else {
3340                 seq_puts(m, "  Last signal:");
3341                 for_each_engine(engine, dev_priv, id)
3342                         for (j = 0; j < num_rings; j++)
3343                                 seq_printf(m, "0x%08x\n",
3344                                            I915_READ(engine->semaphore.mbox.signal[j]));
3345                 seq_putc(m, '\n');
3346         }
3347
3348         intel_runtime_pm_put(dev_priv);
3349         mutex_unlock(&dev->struct_mutex);
3350         return 0;
3351 }
3352
3353 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3354 {
3355         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3356         struct drm_device *dev = &dev_priv->drm;
3357         int i;
3358
3359         drm_modeset_lock_all(dev);
3360         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3361                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3362
3363                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3364                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3365                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3366                 seq_printf(m, " tracked hardware state:\n");
3367                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3368                 seq_printf(m, " dpll_md: 0x%08x\n",
3369                            pll->config.hw_state.dpll_md);
3370                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3371                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3372                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3373         }
3374         drm_modeset_unlock_all(dev);
3375
3376         return 0;
3377 }
3378
3379 static int i915_wa_registers(struct seq_file *m, void *unused)
3380 {
3381         int i;
3382         int ret;
3383         struct intel_engine_cs *engine;
3384         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3385         struct drm_device *dev = &dev_priv->drm;
3386         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3387         enum intel_engine_id id;
3388
3389         ret = mutex_lock_interruptible(&dev->struct_mutex);
3390         if (ret)
3391                 return ret;
3392
3393         intel_runtime_pm_get(dev_priv);
3394
3395         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3396         for_each_engine(engine, dev_priv, id)
3397                 seq_printf(m, "HW whitelist count for %s: %d\n",
3398                            engine->name, workarounds->hw_whitelist_count[id]);
3399         for (i = 0; i < workarounds->count; ++i) {
3400                 i915_reg_t addr;
3401                 u32 mask, value, read;
3402                 bool ok;
3403
3404                 addr = workarounds->reg[i].addr;
3405                 mask = workarounds->reg[i].mask;
3406                 value = workarounds->reg[i].value;
3407                 read = I915_READ(addr);
3408                 ok = (value & mask) == (read & mask);
3409                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3410                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3411         }
3412
3413         intel_runtime_pm_put(dev_priv);
3414         mutex_unlock(&dev->struct_mutex);
3415
3416         return 0;
3417 }
3418
3419 static int i915_ddb_info(struct seq_file *m, void *unused)
3420 {
3421         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3422         struct drm_device *dev = &dev_priv->drm;
3423         struct skl_ddb_allocation *ddb;
3424         struct skl_ddb_entry *entry;
3425         enum pipe pipe;
3426         int plane;
3427
3428         if (INTEL_GEN(dev_priv) < 9)
3429                 return 0;
3430
3431         drm_modeset_lock_all(dev);
3432
3433         ddb = &dev_priv->wm.skl_hw.ddb;
3434
3435         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3436
3437         for_each_pipe(dev_priv, pipe) {
3438                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3439
3440                 for_each_universal_plane(dev_priv, pipe, plane) {
3441                         entry = &ddb->plane[pipe][plane];
3442                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3443                                    entry->start, entry->end,
3444                                    skl_ddb_entry_size(entry));
3445                 }
3446
3447                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3448                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3449                            entry->end, skl_ddb_entry_size(entry));
3450         }
3451
3452         drm_modeset_unlock_all(dev);
3453
3454         return 0;
3455 }
3456
3457 static void drrs_status_per_crtc(struct seq_file *m,
3458                                  struct drm_device *dev,
3459                                  struct intel_crtc *intel_crtc)
3460 {
3461         struct drm_i915_private *dev_priv = to_i915(dev);
3462         struct i915_drrs *drrs = &dev_priv->drrs;
3463         int vrefresh = 0;
3464         struct drm_connector *connector;
3465
3466         drm_for_each_connector(connector, dev) {
3467                 if (connector->state->crtc != &intel_crtc->base)
3468                         continue;
3469
3470                 seq_printf(m, "%s:\n", connector->name);
3471         }
3472
3473         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3474                 seq_puts(m, "\tVBT: DRRS_type: Static");
3475         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3476                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3477         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3478                 seq_puts(m, "\tVBT: DRRS_type: None");
3479         else
3480                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3481
3482         seq_puts(m, "\n\n");
3483
3484         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3485                 struct intel_panel *panel;
3486
3487                 mutex_lock(&drrs->mutex);
3488                 /* DRRS Supported */
3489                 seq_puts(m, "\tDRRS Supported: Yes\n");
3490
3491                 /* disable_drrs() will make drrs->dp NULL */
3492                 if (!drrs->dp) {
3493                         seq_puts(m, "Idleness DRRS: Disabled");
3494                         mutex_unlock(&drrs->mutex);
3495                         return;
3496                 }
3497
3498                 panel = &drrs->dp->attached_connector->panel;
3499                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3500                                         drrs->busy_frontbuffer_bits);
3501
3502                 seq_puts(m, "\n\t\t");
3503                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3504                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3505                         vrefresh = panel->fixed_mode->vrefresh;
3506                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3507                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3508                         vrefresh = panel->downclock_mode->vrefresh;
3509                 } else {
3510                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3511                                                 drrs->refresh_rate_type);
3512                         mutex_unlock(&drrs->mutex);
3513                         return;
3514                 }
3515                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3516
3517                 seq_puts(m, "\n\t\t");
3518                 mutex_unlock(&drrs->mutex);
3519         } else {
3520                 /* DRRS not supported. Print the VBT parameter*/
3521                 seq_puts(m, "\tDRRS Supported : No");
3522         }
3523         seq_puts(m, "\n");
3524 }
3525
3526 static int i915_drrs_status(struct seq_file *m, void *unused)
3527 {
3528         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3529         struct drm_device *dev = &dev_priv->drm;
3530         struct intel_crtc *intel_crtc;
3531         int active_crtc_cnt = 0;
3532
3533         drm_modeset_lock_all(dev);
3534         for_each_intel_crtc(dev, intel_crtc) {
3535                 if (intel_crtc->base.state->active) {
3536                         active_crtc_cnt++;
3537                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3538
3539                         drrs_status_per_crtc(m, dev, intel_crtc);
3540                 }
3541         }
3542         drm_modeset_unlock_all(dev);
3543
3544         if (!active_crtc_cnt)
3545                 seq_puts(m, "No active crtc found\n");
3546
3547         return 0;
3548 }
3549
3550 struct pipe_crc_info {
3551         const char *name;
3552         struct drm_i915_private *dev_priv;
3553         enum pipe pipe;
3554 };
3555
3556 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3557 {
3558         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3559         struct drm_device *dev = &dev_priv->drm;
3560         struct intel_encoder *intel_encoder;
3561         struct intel_digital_port *intel_dig_port;
3562         struct drm_connector *connector;
3563
3564         drm_modeset_lock_all(dev);
3565         drm_for_each_connector(connector, dev) {
3566                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3567                         continue;
3568
3569                 intel_encoder = intel_attached_encoder(connector);
3570                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3571                         continue;
3572
3573                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3574                 if (!intel_dig_port->dp.can_mst)
3575                         continue;
3576
3577                 seq_printf(m, "MST Source Port %c\n",
3578                            port_name(intel_dig_port->port));
3579                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3580         }
3581         drm_modeset_unlock_all(dev);
3582         return 0;
3583 }
3584
3585 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3586 {
3587         struct pipe_crc_info *info = inode->i_private;
3588         struct drm_i915_private *dev_priv = info->dev_priv;
3589         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3590
3591         if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
3592                 return -ENODEV;
3593
3594         spin_lock_irq(&pipe_crc->lock);
3595
3596         if (pipe_crc->opened) {
3597                 spin_unlock_irq(&pipe_crc->lock);
3598                 return -EBUSY; /* already open */
3599         }
3600
3601         pipe_crc->opened = true;
3602         filep->private_data = inode->i_private;
3603
3604         spin_unlock_irq(&pipe_crc->lock);
3605
3606         return 0;
3607 }
3608
3609 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3610 {
3611         struct pipe_crc_info *info = inode->i_private;
3612         struct drm_i915_private *dev_priv = info->dev_priv;
3613         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3614
3615         spin_lock_irq(&pipe_crc->lock);
3616         pipe_crc->opened = false;
3617         spin_unlock_irq(&pipe_crc->lock);
3618
3619         return 0;
3620 }
3621
3622 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3623 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3624 /* account for \'0' */
3625 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3626
3627 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3628 {
3629         assert_spin_locked(&pipe_crc->lock);
3630         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3631                         INTEL_PIPE_CRC_ENTRIES_NR);
3632 }
3633
3634 static ssize_t
3635 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3636                    loff_t *pos)
3637 {
3638         struct pipe_crc_info *info = filep->private_data;
3639         struct drm_i915_private *dev_priv = info->dev_priv;
3640         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3641         char buf[PIPE_CRC_BUFFER_LEN];
3642         int n_entries;
3643         ssize_t bytes_read;
3644
3645         /*
3646          * Don't allow user space to provide buffers not big enough to hold
3647          * a line of data.
3648          */
3649         if (count < PIPE_CRC_LINE_LEN)
3650                 return -EINVAL;
3651
3652         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3653                 return 0;
3654
3655         /* nothing to read */
3656         spin_lock_irq(&pipe_crc->lock);
3657         while (pipe_crc_data_count(pipe_crc) == 0) {
3658                 int ret;
3659
3660                 if (filep->f_flags & O_NONBLOCK) {
3661                         spin_unlock_irq(&pipe_crc->lock);
3662                         return -EAGAIN;
3663                 }
3664
3665                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3666                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3667                 if (ret) {
3668                         spin_unlock_irq(&pipe_crc->lock);
3669                         return ret;
3670                 }
3671         }
3672
3673         /* We now have one or more entries to read */
3674         n_entries = count / PIPE_CRC_LINE_LEN;
3675
3676         bytes_read = 0;
3677         while (n_entries > 0) {
3678                 struct intel_pipe_crc_entry *entry =
3679                         &pipe_crc->entries[pipe_crc->tail];
3680
3681                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3682                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3683                         break;
3684
3685                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3686                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3687
3688                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3689                                        "%8u %8x %8x %8x %8x %8x\n",
3690                                        entry->frame, entry->crc[0],
3691                                        entry->crc[1], entry->crc[2],
3692                                        entry->crc[3], entry->crc[4]);
3693
3694                 spin_unlock_irq(&pipe_crc->lock);
3695
3696                 if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3697                         return -EFAULT;
3698
3699                 user_buf += PIPE_CRC_LINE_LEN;
3700                 n_entries--;
3701
3702                 spin_lock_irq(&pipe_crc->lock);
3703         }
3704
3705         spin_unlock_irq(&pipe_crc->lock);
3706
3707         return bytes_read;
3708 }
3709
3710 static const struct file_operations i915_pipe_crc_fops = {
3711         .owner = THIS_MODULE,
3712         .open = i915_pipe_crc_open,
3713         .read = i915_pipe_crc_read,
3714         .release = i915_pipe_crc_release,
3715 };
3716
3717 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3718         {
3719                 .name = "i915_pipe_A_crc",
3720                 .pipe = PIPE_A,
3721         },
3722         {
3723                 .name = "i915_pipe_B_crc",
3724                 .pipe = PIPE_B,
3725         },
3726         {
3727                 .name = "i915_pipe_C_crc",
3728                 .pipe = PIPE_C,
3729         },
3730 };
3731
3732 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3733                                 enum pipe pipe)
3734 {
3735         struct drm_i915_private *dev_priv = to_i915(minor->dev);
3736         struct dentry *ent;
3737         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3738
3739         info->dev_priv = dev_priv;
3740         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3741                                   &i915_pipe_crc_fops);
3742         if (!ent)
3743                 return -ENOMEM;
3744
3745         return drm_add_fake_info_node(minor, ent, info);
3746 }
3747
3748 static const char * const pipe_crc_sources[] = {
3749         "none",
3750         "plane1",
3751         "plane2",
3752         "pf",
3753         "pipe",
3754         "TV",
3755         "DP-B",
3756         "DP-C",
3757         "DP-D",
3758         "auto",
3759 };
3760
3761 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3762 {
3763         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3764         return pipe_crc_sources[source];
3765 }
3766
3767 static int display_crc_ctl_show(struct seq_file *m, void *data)
3768 {
3769         struct drm_i915_private *dev_priv = m->private;
3770         int i;
3771
3772         for (i = 0; i < I915_MAX_PIPES; i++)
3773                 seq_printf(m, "%c %s\n", pipe_name(i),
3774                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3775
3776         return 0;
3777 }
3778
3779 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3780 {
3781         return single_open(file, display_crc_ctl_show, inode->i_private);
3782 }
3783
3784 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3785                                  uint32_t *val)
3786 {
3787         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3788                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3789
3790         switch (*source) {
3791         case INTEL_PIPE_CRC_SOURCE_PIPE:
3792                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3793                 break;
3794         case INTEL_PIPE_CRC_SOURCE_NONE:
3795                 *val = 0;
3796                 break;
3797         default:
3798                 return -EINVAL;
3799         }
3800
3801         return 0;
3802 }
3803
3804 static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
3805                                      enum pipe pipe,
3806                                      enum intel_pipe_crc_source *source)
3807 {
3808         struct drm_device *dev = &dev_priv->drm;
3809         struct intel_encoder *encoder;
3810         struct intel_crtc *crtc;
3811         struct intel_digital_port *dig_port;
3812         int ret = 0;
3813
3814         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3815
3816         drm_modeset_lock_all(dev);
3817         for_each_intel_encoder(dev, encoder) {
3818                 if (!encoder->base.crtc)
3819                         continue;
3820
3821                 crtc = to_intel_crtc(encoder->base.crtc);
3822
3823                 if (crtc->pipe != pipe)
3824                         continue;
3825
3826                 switch (encoder->type) {
3827                 case INTEL_OUTPUT_TVOUT:
3828                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3829                         break;
3830                 case INTEL_OUTPUT_DP:
3831                 case INTEL_OUTPUT_EDP:
3832                         dig_port = enc_to_dig_port(&encoder->base);
3833                         switch (dig_port->port) {
3834                         case PORT_B:
3835                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3836                                 break;
3837                         case PORT_C:
3838                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3839                                 break;
3840                         case PORT_D:
3841                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3842                                 break;
3843                         default:
3844                                 WARN(1, "nonexisting DP port %c\n",
3845                                      port_name(dig_port->port));
3846                                 break;
3847                         }
3848                         break;
3849                 default:
3850                         break;
3851                 }
3852         }
3853         drm_modeset_unlock_all(dev);
3854
3855         return ret;
3856 }
3857
3858 static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3859                                 enum pipe pipe,
3860                                 enum intel_pipe_crc_source *source,
3861                                 uint32_t *val)
3862 {
3863         bool need_stable_symbols = false;
3864
3865         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3866                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3867                 if (ret)
3868                         return ret;
3869         }
3870
3871         switch (*source) {
3872         case INTEL_PIPE_CRC_SOURCE_PIPE:
3873                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3874                 break;
3875         case INTEL_PIPE_CRC_SOURCE_DP_B:
3876                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3877                 need_stable_symbols = true;
3878                 break;
3879         case INTEL_PIPE_CRC_SOURCE_DP_C:
3880                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3881                 need_stable_symbols = true;
3882                 break;
3883         case INTEL_PIPE_CRC_SOURCE_DP_D:
3884                 if (!IS_CHERRYVIEW(dev_priv))
3885                         return -EINVAL;
3886                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3887                 need_stable_symbols = true;
3888                 break;
3889         case INTEL_PIPE_CRC_SOURCE_NONE:
3890                 *val = 0;
3891                 break;
3892         default:
3893                 return -EINVAL;
3894         }
3895
3896         /*
3897          * When the pipe CRC tap point is after the transcoders we need
3898          * to tweak symbol-level features to produce a deterministic series of
3899          * symbols for a given frame. We need to reset those features only once
3900          * a frame (instead of every nth symbol):
3901          *   - DC-balance: used to ensure a better clock recovery from the data
3902          *     link (SDVO)
3903          *   - DisplayPort scrambling: used for EMI reduction
3904          */
3905         if (need_stable_symbols) {
3906                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3907
3908                 tmp |= DC_BALANCE_RESET_VLV;
3909                 switch (pipe) {
3910                 case PIPE_A:
3911                         tmp |= PIPE_A_SCRAMBLE_RESET;
3912                         break;
3913                 case PIPE_B:
3914                         tmp |= PIPE_B_SCRAMBLE_RESET;
3915                         break;
3916                 case PIPE_C:
3917                         tmp |= PIPE_C_SCRAMBLE_RESET;
3918                         break;
3919                 default:
3920                         return -EINVAL;
3921                 }
3922                 I915_WRITE(PORT_DFT2_G4X, tmp);
3923         }
3924
3925         return 0;
3926 }
3927
3928 static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3929                                  enum pipe pipe,
3930                                  enum intel_pipe_crc_source *source,
3931                                  uint32_t *val)
3932 {
3933         bool need_stable_symbols = false;
3934
3935         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3936                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3937                 if (ret)
3938                         return ret;
3939         }
3940
3941         switch (*source) {
3942         case INTEL_PIPE_CRC_SOURCE_PIPE:
3943                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3944                 break;
3945         case INTEL_PIPE_CRC_SOURCE_TV:
3946                 if (!SUPPORTS_TV(dev_priv))
3947                         return -EINVAL;
3948                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3949                 break;
3950         case INTEL_PIPE_CRC_SOURCE_DP_B:
3951                 if (!IS_G4X(dev_priv))
3952                         return -EINVAL;
3953                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3954                 need_stable_symbols = true;
3955                 break;
3956         case INTEL_PIPE_CRC_SOURCE_DP_C:
3957                 if (!IS_G4X(dev_priv))
3958                         return -EINVAL;
3959                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3960                 need_stable_symbols = true;
3961                 break;
3962         case INTEL_PIPE_CRC_SOURCE_DP_D:
3963                 if (!IS_G4X(dev_priv))
3964                         return -EINVAL;
3965                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3966                 need_stable_symbols = true;
3967                 break;
3968         case INTEL_PIPE_CRC_SOURCE_NONE:
3969                 *val = 0;
3970                 break;
3971         default:
3972                 return -EINVAL;
3973         }
3974
3975         /*
3976          * When the pipe CRC tap point is after the transcoders we need
3977          * to tweak symbol-level features to produce a deterministic series of
3978          * symbols for a given frame. We need to reset those features only once
3979          * a frame (instead of every nth symbol):
3980          *   - DC-balance: used to ensure a better clock recovery from the data
3981          *     link (SDVO)
3982          *   - DisplayPort scrambling: used for EMI reduction
3983          */
3984         if (need_stable_symbols) {
3985                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3986
3987                 WARN_ON(!IS_G4X(dev_priv));
3988
3989                 I915_WRITE(PORT_DFT_I9XX,
3990                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3991
3992                 if (pipe == PIPE_A)
3993                         tmp |= PIPE_A_SCRAMBLE_RESET;
3994                 else
3995                         tmp |= PIPE_B_SCRAMBLE_RESET;
3996
3997                 I915_WRITE(PORT_DFT2_G4X, tmp);
3998         }
3999
4000         return 0;
4001 }
4002
4003 static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
4004                                          enum pipe pipe)
4005 {
4006         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
4007
4008         switch (pipe) {
4009         case PIPE_A:
4010                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
4011                 break;
4012         case PIPE_B:
4013                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
4014                 break;
4015         case PIPE_C:
4016                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
4017                 break;
4018         default:
4019                 return;
4020         }
4021         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
4022                 tmp &= ~DC_BALANCE_RESET_VLV;
4023         I915_WRITE(PORT_DFT2_G4X, tmp);
4024
4025 }
4026
4027 static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
4028                                          enum pipe pipe)
4029 {
4030         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
4031
4032         if (pipe == PIPE_A)
4033                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
4034         else
4035                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
4036         I915_WRITE(PORT_DFT2_G4X, tmp);
4037
4038         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
4039                 I915_WRITE(PORT_DFT_I9XX,
4040                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
4041         }
4042 }
4043
4044 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
4045                                 uint32_t *val)
4046 {
4047         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4048                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
4049
4050         switch (*source) {
4051         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4052                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
4053                 break;
4054         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4055                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
4056                 break;
4057         case INTEL_PIPE_CRC_SOURCE_PIPE:
4058                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
4059                 break;
4060         case INTEL_PIPE_CRC_SOURCE_NONE:
4061                 *val = 0;
4062                 break;
4063         default:
4064                 return -EINVAL;
4065         }
4066
4067         return 0;
4068 }
4069
4070 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
4071                                         bool enable)
4072 {
4073         struct drm_device *dev = &dev_priv->drm;
4074         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
4075         struct intel_crtc_state *pipe_config;
4076         struct drm_atomic_state *state;
4077         int ret = 0;
4078
4079         drm_modeset_lock_all(dev);
4080         state = drm_atomic_state_alloc(dev);
4081         if (!state) {
4082                 ret = -ENOMEM;
4083                 goto out;
4084         }
4085
4086         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4087         pipe_config = intel_atomic_get_crtc_state(state, crtc);
4088         if (IS_ERR(pipe_config)) {
4089                 ret = PTR_ERR(pipe_config);
4090                 goto out;
4091         }
4092
4093         pipe_config->pch_pfit.force_thru = enable;
4094         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4095             pipe_config->pch_pfit.enabled != enable)
4096                 pipe_config->base.connectors_changed = true;
4097
4098         ret = drm_atomic_commit(state);
4099 out:
4100         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4101         drm_modeset_unlock_all(dev);
4102         drm_atomic_state_put(state);
4103 }
4104
4105 static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
4106                                 enum pipe pipe,
4107                                 enum intel_pipe_crc_source *source,
4108                                 uint32_t *val)
4109 {
4110         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4111                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4112
4113         switch (*source) {
4114         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4115                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4116                 break;
4117         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4118                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4119                 break;
4120         case INTEL_PIPE_CRC_SOURCE_PF:
4121                 if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4122                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
4123
4124                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4125                 break;
4126         case INTEL_PIPE_CRC_SOURCE_NONE:
4127                 *val = 0;
4128                 break;
4129         default:
4130                 return -EINVAL;
4131         }
4132
4133         return 0;
4134 }
4135
4136 static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
4137                                enum pipe pipe,
4138                                enum intel_pipe_crc_source source)
4139 {
4140         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4141         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
4142         enum intel_display_power_domain power_domain;
4143         u32 val = 0; /* shut up gcc */
4144         int ret;
4145
4146         if (pipe_crc->source == source)
4147                 return 0;
4148
4149         /* forbid changing the source without going back to 'none' */
4150         if (pipe_crc->source && source)
4151                 return -EINVAL;
4152
4153         power_domain = POWER_DOMAIN_PIPE(pipe);
4154         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4155                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4156                 return -EIO;
4157         }
4158
4159         if (IS_GEN2(dev_priv))
4160                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4161         else if (INTEL_GEN(dev_priv) < 5)
4162                 ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4163         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4164                 ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4165         else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
4166                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4167         else
4168                 ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4169
4170         if (ret != 0)
4171                 goto out;
4172
4173         /* none -> real source transition */
4174         if (source) {
4175                 struct intel_pipe_crc_entry *entries;
4176
4177                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4178                                  pipe_name(pipe), pipe_crc_source_name(source));
4179
4180                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4181                                   sizeof(pipe_crc->entries[0]),
4182                                   GFP_KERNEL);
4183                 if (!entries) {
4184                         ret = -ENOMEM;
4185                         goto out;
4186                 }
4187
4188                 /*
4189                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4190                  * enabled and disabled dynamically based on package C states,
4191                  * user space can't make reliable use of the CRCs, so let's just
4192                  * completely disable it.
4193                  */
4194                 hsw_disable_ips(crtc);
4195
4196                 spin_lock_irq(&pipe_crc->lock);
4197                 kfree(pipe_crc->entries);
4198                 pipe_crc->entries = entries;
4199                 pipe_crc->head = 0;
4200                 pipe_crc->tail = 0;
4201                 spin_unlock_irq(&pipe_crc->lock);
4202         }
4203
4204         pipe_crc->source = source;
4205
4206         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4207         POSTING_READ(PIPE_CRC_CTL(pipe));
4208
4209         /* real source -> none transition */
4210         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4211                 struct intel_pipe_crc_entry *entries;
4212                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
4213                                                                   pipe);
4214
4215                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4216                                  pipe_name(pipe));
4217
4218                 drm_modeset_lock(&crtc->base.mutex, NULL);
4219                 if (crtc->base.state->active)
4220                         intel_wait_for_vblank(dev_priv, pipe);
4221                 drm_modeset_unlock(&crtc->base.mutex);
4222
4223                 spin_lock_irq(&pipe_crc->lock);
4224                 entries = pipe_crc->entries;
4225                 pipe_crc->entries = NULL;
4226                 pipe_crc->head = 0;
4227                 pipe_crc->tail = 0;
4228                 spin_unlock_irq(&pipe_crc->lock);
4229
4230                 kfree(entries);
4231
4232                 if (IS_G4X(dev_priv))
4233                         g4x_undo_pipe_scramble_reset(dev_priv, pipe);
4234                 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4235                         vlv_undo_pipe_scramble_reset(dev_priv, pipe);
4236                 else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4237                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
4238
4239                 hsw_enable_ips(crtc);
4240         }
4241
4242         ret = 0;
4243
4244 out:
4245         intel_display_power_put(dev_priv, power_domain);
4246
4247         return ret;
4248 }
4249
4250 /*
4251  * Parse pipe CRC command strings:
4252  *   command: wsp* object wsp+ name wsp+ source wsp*
4253  *   object: 'pipe'
4254  *   name: (A | B | C)
4255  *   source: (none | plane1 | plane2 | pf)
4256  *   wsp: (#0x20 | #0x9 | #0xA)+
4257  *
4258  * eg.:
4259  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4260  *  "pipe A none"    ->  Stop CRC
4261  */
4262 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4263 {
4264         int n_words = 0;
4265
4266         while (*buf) {
4267                 char *end;
4268
4269                 /* skip leading white space */
4270                 buf = skip_spaces(buf);
4271                 if (!*buf)
4272                         break;  /* end of buffer */
4273
4274                 /* find end of word */
4275                 for (end = buf; *end && !isspace(*end); end++)
4276                         ;
4277
4278                 if (n_words == max_words) {
4279                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4280                                          max_words);
4281                         return -EINVAL; /* ran out of words[] before bytes */
4282                 }
4283
4284                 if (*end)
4285                         *end++ = '\0';
4286                 words[n_words++] = buf;
4287                 buf = end;
4288         }
4289
4290         return n_words;
4291 }
4292
4293 enum intel_pipe_crc_object {
4294         PIPE_CRC_OBJECT_PIPE,
4295 };
4296
4297 static const char * const pipe_crc_objects[] = {
4298         "pipe",
4299 };
4300
4301 static int
4302 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4303 {
4304         int i;
4305
4306         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4307                 if (!strcmp(buf, pipe_crc_objects[i])) {
4308                         *o = i;
4309                         return 0;
4310                     }
4311
4312         return -EINVAL;
4313 }
4314
4315 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4316 {
4317         const char name = buf[0];
4318
4319         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4320                 return -EINVAL;
4321
4322         *pipe = name - 'A';
4323
4324         return 0;
4325 }
4326
4327 static int
4328 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4329 {
4330         int i;
4331
4332         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4333                 if (!strcmp(buf, pipe_crc_sources[i])) {
4334                         *s = i;
4335                         return 0;
4336                     }
4337
4338         return -EINVAL;
4339 }
4340
4341 static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
4342                                  char *buf, size_t len)
4343 {
4344 #define N_WORDS 3
4345         int n_words;
4346         char *words[N_WORDS];
4347         enum pipe pipe;
4348         enum intel_pipe_crc_object object;
4349         enum intel_pipe_crc_source source;
4350
4351         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4352         if (n_words != N_WORDS) {
4353                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4354                                  N_WORDS);
4355                 return -EINVAL;
4356         }
4357
4358         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4359                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4360                 return -EINVAL;
4361         }
4362
4363         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4364                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4365                 return -EINVAL;
4366         }
4367
4368         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4369                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4370                 return -EINVAL;
4371         }
4372
4373         return pipe_crc_set_source(dev_priv, pipe, source);
4374 }
4375
4376 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4377                                      size_t len, loff_t *offp)
4378 {
4379         struct seq_file *m = file->private_data;
4380         struct drm_i915_private *dev_priv = m->private;
4381         char *tmpbuf;
4382         int ret;
4383
4384         if (len == 0)
4385                 return 0;
4386
4387         if (len > PAGE_SIZE - 1) {
4388                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4389                                  PAGE_SIZE);
4390                 return -E2BIG;
4391         }
4392
4393         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4394         if (!tmpbuf)
4395                 return -ENOMEM;
4396
4397         if (copy_from_user(tmpbuf, ubuf, len)) {
4398                 ret = -EFAULT;
4399                 goto out;
4400         }
4401         tmpbuf[len] = '\0';
4402
4403         ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
4404
4405 out:
4406         kfree(tmpbuf);
4407         if (ret < 0)
4408                 return ret;
4409
4410         *offp += len;
4411         return len;
4412 }
4413
4414 static const struct file_operations i915_display_crc_ctl_fops = {
4415         .owner = THIS_MODULE,
4416         .open = display_crc_ctl_open,
4417         .read = seq_read,
4418         .llseek = seq_lseek,
4419         .release = single_release,
4420         .write = display_crc_ctl_write
4421 };
4422
4423 static ssize_t i915_displayport_test_active_write(struct file *file,
4424                                                   const char __user *ubuf,
4425                                                   size_t len, loff_t *offp)
4426 {
4427         char *input_buffer;
4428         int status = 0;
4429         struct drm_device *dev;
4430         struct drm_connector *connector;
4431         struct list_head *connector_list;
4432         struct intel_dp *intel_dp;
4433         int val = 0;
4434
4435         dev = ((struct seq_file *)file->private_data)->private;
4436
4437         connector_list = &dev->mode_config.connector_list;
4438
4439         if (len == 0)
4440                 return 0;
4441
4442         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4443         if (!input_buffer)
4444                 return -ENOMEM;
4445
4446         if (copy_from_user(input_buffer, ubuf, len)) {
4447                 status = -EFAULT;
4448                 goto out;
4449         }
4450
4451         input_buffer[len] = '\0';
4452         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4453
4454         list_for_each_entry(connector, connector_list, head) {
4455                 if (connector->connector_type !=
4456                     DRM_MODE_CONNECTOR_DisplayPort)
4457                         continue;
4458
4459                 if (connector->status == connector_status_connected &&
4460                     connector->encoder != NULL) {
4461                         intel_dp = enc_to_intel_dp(connector->encoder);
4462                         status = kstrtoint(input_buffer, 10, &val);
4463                         if (status < 0)
4464                                 goto out;
4465                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4466                         /* To prevent erroneous activation of the compliance
4467                          * testing code, only accept an actual value of 1 here
4468                          */
4469                         if (val == 1)
4470                                 intel_dp->compliance_test_active = 1;
4471                         else
4472                                 intel_dp->compliance_test_active = 0;
4473                 }
4474         }
4475 out:
4476         kfree(input_buffer);
4477         if (status < 0)
4478                 return status;
4479
4480         *offp += len;
4481         return len;
4482 }
4483
4484 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4485 {
4486         struct drm_device *dev = m->private;
4487         struct drm_connector *connector;
4488         struct list_head *connector_list = &dev->mode_config.connector_list;
4489         struct intel_dp *intel_dp;
4490
4491         list_for_each_entry(connector, connector_list, head) {
4492                 if (connector->connector_type !=
4493                     DRM_MODE_CONNECTOR_DisplayPort)
4494                         continue;
4495
4496                 if (connector->status == connector_status_connected &&
4497                     connector->encoder != NULL) {
4498                         intel_dp = enc_to_intel_dp(connector->encoder);
4499                         if (intel_dp->compliance_test_active)
4500                                 seq_puts(m, "1");
4501                         else
4502                                 seq_puts(m, "0");
4503                 } else
4504                         seq_puts(m, "0");
4505         }
4506
4507         return 0;
4508 }
4509
4510 static int i915_displayport_test_active_open(struct inode *inode,
4511                                              struct file *file)
4512 {
4513         struct drm_i915_private *dev_priv = inode->i_private;
4514
4515         return single_open(file, i915_displayport_test_active_show,
4516                            &dev_priv->drm);
4517 }
4518
4519 static const struct file_operations i915_displayport_test_active_fops = {
4520         .owner = THIS_MODULE,
4521         .open = i915_displayport_test_active_open,
4522         .read = seq_read,
4523         .llseek = seq_lseek,
4524         .release = single_release,
4525         .write = i915_displayport_test_active_write
4526 };
4527
4528 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4529 {
4530         struct drm_device *dev = m->private;
4531         struct drm_connector *connector;
4532         struct list_head *connector_list = &dev->mode_config.connector_list;
4533         struct intel_dp *intel_dp;
4534
4535         list_for_each_entry(connector, connector_list, head) {
4536                 if (connector->connector_type !=
4537                     DRM_MODE_CONNECTOR_DisplayPort)
4538                         continue;
4539
4540                 if (connector->status == connector_status_connected &&
4541                     connector->encoder != NULL) {
4542                         intel_dp = enc_to_intel_dp(connector->encoder);
4543                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4544                 } else
4545                         seq_puts(m, "0");
4546         }
4547
4548         return 0;
4549 }
4550 static int i915_displayport_test_data_open(struct inode *inode,
4551                                            struct file *file)
4552 {
4553         struct drm_i915_private *dev_priv = inode->i_private;
4554
4555         return single_open(file, i915_displayport_test_data_show,
4556                            &dev_priv->drm);
4557 }
4558
4559 static const struct file_operations i915_displayport_test_data_fops = {
4560         .owner = THIS_MODULE,
4561         .open = i915_displayport_test_data_open,
4562         .read = seq_read,
4563         .llseek = seq_lseek,
4564         .release = single_release
4565 };
4566
4567 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4568 {
4569         struct drm_device *dev = m->private;
4570         struct drm_connector *connector;
4571         struct list_head *connector_list = &dev->mode_config.connector_list;
4572         struct intel_dp *intel_dp;
4573
4574         list_for_each_entry(connector, connector_list, head) {
4575                 if (connector->connector_type !=
4576                     DRM_MODE_CONNECTOR_DisplayPort)
4577                         continue;
4578
4579                 if (connector->status == connector_status_connected &&
4580                     connector->encoder != NULL) {
4581                         intel_dp = enc_to_intel_dp(connector->encoder);
4582                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4583                 } else
4584                         seq_puts(m, "0");
4585         }
4586
4587         return 0;
4588 }
4589
4590 static int i915_displayport_test_type_open(struct inode *inode,
4591                                        struct file *file)
4592 {
4593         struct drm_i915_private *dev_priv = inode->i_private;
4594
4595         return single_open(file, i915_displayport_test_type_show,
4596                            &dev_priv->drm);
4597 }
4598
4599 static const struct file_operations i915_displayport_test_type_fops = {
4600         .owner = THIS_MODULE,
4601         .open = i915_displayport_test_type_open,
4602         .read = seq_read,
4603         .llseek = seq_lseek,
4604         .release = single_release
4605 };
4606
4607 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4608 {
4609         struct drm_i915_private *dev_priv = m->private;
4610         struct drm_device *dev = &dev_priv->drm;
4611         int level;
4612         int num_levels;
4613
4614         if (IS_CHERRYVIEW(dev_priv))
4615                 num_levels = 3;
4616         else if (IS_VALLEYVIEW(dev_priv))
4617                 num_levels = 1;
4618         else
4619                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4620
4621         drm_modeset_lock_all(dev);
4622
4623         for (level = 0; level < num_levels; level++) {
4624                 unsigned int latency = wm[level];
4625
4626                 /*
4627                  * - WM1+ latency values in 0.5us units
4628                  * - latencies are in us on gen9/vlv/chv
4629                  */
4630                 if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
4631                     IS_CHERRYVIEW(dev_priv))
4632                         latency *= 10;
4633                 else if (level > 0)
4634                         latency *= 5;
4635
4636                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4637                            level, wm[level], latency / 10, latency % 10);
4638         }
4639
4640         drm_modeset_unlock_all(dev);
4641 }
4642
4643 static int pri_wm_latency_show(struct seq_file *m, void *data)
4644 {
4645         struct drm_i915_private *dev_priv = m->private;
4646         const uint16_t *latencies;
4647
4648         if (INTEL_GEN(dev_priv) >= 9)
4649                 latencies = dev_priv->wm.skl_latency;
4650         else
4651                 latencies = dev_priv->wm.pri_latency;
4652
4653         wm_latency_show(m, latencies);
4654
4655         return 0;
4656 }
4657
4658 static int spr_wm_latency_show(struct seq_file *m, void *data)
4659 {
4660         struct drm_i915_private *dev_priv = m->private;
4661         const uint16_t *latencies;
4662
4663         if (INTEL_GEN(dev_priv) >= 9)
4664                 latencies = dev_priv->wm.skl_latency;
4665         else
4666                 latencies = dev_priv->wm.spr_latency;
4667
4668         wm_latency_show(m, latencies);
4669
4670         return 0;
4671 }
4672
4673 static int cur_wm_latency_show(struct seq_file *m, void *data)
4674 {
4675         struct drm_i915_private *dev_priv = m->private;
4676         const uint16_t *latencies;
4677
4678         if (INTEL_GEN(dev_priv) >= 9)
4679                 latencies = dev_priv->wm.skl_latency;
4680         else
4681                 latencies = dev_priv->wm.cur_latency;
4682
4683         wm_latency_show(m, latencies);
4684
4685         return 0;
4686 }
4687
4688 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4689 {
4690         struct drm_i915_private *dev_priv = inode->i_private;
4691
4692         if (INTEL_GEN(dev_priv) < 5)
4693                 return -ENODEV;
4694
4695         return single_open(file, pri_wm_latency_show, dev_priv);
4696 }
4697
4698 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4699 {
4700         struct drm_i915_private *dev_priv = inode->i_private;
4701
4702         if (HAS_GMCH_DISPLAY(dev_priv))
4703                 return -ENODEV;
4704
4705         return single_open(file, spr_wm_latency_show, dev_priv);
4706 }
4707
4708 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4709 {
4710         struct drm_i915_private *dev_priv = inode->i_private;
4711
4712         if (HAS_GMCH_DISPLAY(dev_priv))
4713                 return -ENODEV;
4714
4715         return single_open(file, cur_wm_latency_show, dev_priv);
4716 }
4717
4718 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4719                                 size_t len, loff_t *offp, uint16_t wm[8])
4720 {
4721         struct seq_file *m = file->private_data;
4722         struct drm_i915_private *dev_priv = m->private;
4723         struct drm_device *dev = &dev_priv->drm;
4724         uint16_t new[8] = { 0 };
4725         int num_levels;
4726         int level;
4727         int ret;
4728         char tmp[32];
4729
4730         if (IS_CHERRYVIEW(dev_priv))
4731                 num_levels = 3;
4732         else if (IS_VALLEYVIEW(dev_priv))
4733                 num_levels = 1;
4734         else
4735                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4736
4737         if (len >= sizeof(tmp))
4738                 return -EINVAL;
4739
4740         if (copy_from_user(tmp, ubuf, len))
4741                 return -EFAULT;
4742
4743         tmp[len] = '\0';
4744
4745         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4746                      &new[0], &new[1], &new[2], &new[3],
4747                      &new[4], &new[5], &new[6], &new[7]);
4748         if (ret != num_levels)
4749                 return -EINVAL;
4750
4751         drm_modeset_lock_all(dev);
4752
4753         for (level = 0; level < num_levels; level++)
4754                 wm[level] = new[level];
4755
4756         drm_modeset_unlock_all(dev);
4757
4758         return len;
4759 }
4760
4761
4762 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4763                                     size_t len, loff_t *offp)
4764 {
4765         struct seq_file *m = file->private_data;
4766         struct drm_i915_private *dev_priv = m->private;
4767         uint16_t *latencies;
4768
4769         if (INTEL_GEN(dev_priv) >= 9)
4770                 latencies = dev_priv->wm.skl_latency;
4771         else
4772                 latencies = dev_priv->wm.pri_latency;
4773
4774         return wm_latency_write(file, ubuf, len, offp, latencies);
4775 }
4776
4777 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4778                                     size_t len, loff_t *offp)
4779 {
4780         struct seq_file *m = file->private_data;
4781         struct drm_i915_private *dev_priv = m->private;
4782         uint16_t *latencies;
4783
4784         if (INTEL_GEN(dev_priv) >= 9)
4785                 latencies = dev_priv->wm.skl_latency;
4786         else
4787                 latencies = dev_priv->wm.spr_latency;
4788
4789         return wm_latency_write(file, ubuf, len, offp, latencies);
4790 }
4791
4792 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4793                                     size_t len, loff_t *offp)
4794 {
4795         struct seq_file *m = file->private_data;
4796         struct drm_i915_private *dev_priv = m->private;
4797         uint16_t *latencies;
4798
4799         if (INTEL_GEN(dev_priv) >= 9)
4800                 latencies = dev_priv->wm.skl_latency;
4801         else
4802                 latencies = dev_priv->wm.cur_latency;
4803
4804         return wm_latency_write(file, ubuf, len, offp, latencies);
4805 }
4806
4807 static const struct file_operations i915_pri_wm_latency_fops = {
4808         .owner = THIS_MODULE,
4809         .open = pri_wm_latency_open,
4810         .read = seq_read,
4811         .llseek = seq_lseek,
4812         .release = single_release,
4813         .write = pri_wm_latency_write
4814 };
4815
4816 static const struct file_operations i915_spr_wm_latency_fops = {
4817         .owner = THIS_MODULE,
4818         .open = spr_wm_latency_open,
4819         .read = seq_read,
4820         .llseek = seq_lseek,
4821         .release = single_release,
4822         .write = spr_wm_latency_write
4823 };
4824
4825 static const struct file_operations i915_cur_wm_latency_fops = {
4826         .owner = THIS_MODULE,
4827         .open = cur_wm_latency_open,
4828         .read = seq_read,
4829         .llseek = seq_lseek,
4830         .release = single_release,
4831         .write = cur_wm_latency_write
4832 };
4833
4834 static int
4835 i915_wedged_get(void *data, u64 *val)
4836 {
4837         struct drm_i915_private *dev_priv = data;
4838
4839         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4840
4841         return 0;
4842 }
4843
4844 static int
4845 i915_wedged_set(void *data, u64 val)
4846 {
4847         struct drm_i915_private *dev_priv = data;
4848
4849         /*
4850          * There is no safeguard against this debugfs entry colliding
4851          * with the hangcheck calling same i915_handle_error() in
4852          * parallel, causing an explosion. For now we assume that the
4853          * test harness is responsible enough not to inject gpu hangs
4854          * while it is writing to 'i915_wedged'
4855          */
4856
4857         if (i915_reset_in_progress(&dev_priv->gpu_error))
4858                 return -EAGAIN;
4859
4860         i915_handle_error(dev_priv, val,
4861                           "Manually setting wedged to %llu", val);
4862
4863         return 0;
4864 }
4865
4866 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4867                         i915_wedged_get, i915_wedged_set,
4868                         "%llu\n");
4869
4870 static int
4871 i915_ring_missed_irq_get(void *data, u64 *val)
4872 {
4873         struct drm_i915_private *dev_priv = data;
4874
4875         *val = dev_priv->gpu_error.missed_irq_rings;
4876         return 0;
4877 }
4878
4879 static int
4880 i915_ring_missed_irq_set(void *data, u64 val)
4881 {
4882         struct drm_i915_private *dev_priv = data;
4883         struct drm_device *dev = &dev_priv->drm;
4884         int ret;
4885
4886         /* Lock against concurrent debugfs callers */
4887         ret = mutex_lock_interruptible(&dev->struct_mutex);
4888         if (ret)
4889                 return ret;
4890         dev_priv->gpu_error.missed_irq_rings = val;
4891         mutex_unlock(&dev->struct_mutex);
4892
4893         return 0;
4894 }
4895
4896 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4897                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4898                         "0x%08llx\n");
4899
4900 static int
4901 i915_ring_test_irq_get(void *data, u64 *val)
4902 {
4903         struct drm_i915_private *dev_priv = data;
4904
4905         *val = dev_priv->gpu_error.test_irq_rings;
4906
4907         return 0;
4908 }
4909
4910 static int
4911 i915_ring_test_irq_set(void *data, u64 val)
4912 {
4913         struct drm_i915_private *dev_priv = data;
4914
4915         val &= INTEL_INFO(dev_priv)->ring_mask;
4916         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4917         dev_priv->gpu_error.test_irq_rings = val;
4918
4919         return 0;
4920 }
4921
4922 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4923                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4924                         "0x%08llx\n");
4925
4926 #define DROP_UNBOUND 0x1
4927 #define DROP_BOUND 0x2
4928 #define DROP_RETIRE 0x4
4929 #define DROP_ACTIVE 0x8
4930 #define DROP_FREED 0x10
4931 #define DROP_ALL (DROP_UNBOUND  | \
4932                   DROP_BOUND    | \
4933                   DROP_RETIRE   | \
4934                   DROP_ACTIVE   | \
4935                   DROP_FREED)
4936 static int
4937 i915_drop_caches_get(void *data, u64 *val)
4938 {
4939         *val = DROP_ALL;
4940
4941         return 0;
4942 }
4943
4944 static int
4945 i915_drop_caches_set(void *data, u64 val)
4946 {
4947         struct drm_i915_private *dev_priv = data;
4948         struct drm_device *dev = &dev_priv->drm;
4949         int ret;
4950
4951         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4952
4953         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4954          * on ioctls on -EAGAIN. */
4955         ret = mutex_lock_interruptible(&dev->struct_mutex);
4956         if (ret)
4957                 return ret;
4958
4959         if (val & DROP_ACTIVE) {
4960                 ret = i915_gem_wait_for_idle(dev_priv,
4961                                              I915_WAIT_INTERRUPTIBLE |
4962                                              I915_WAIT_LOCKED);
4963                 if (ret)
4964                         goto unlock;
4965         }
4966
4967         if (val & (DROP_RETIRE | DROP_ACTIVE))
4968                 i915_gem_retire_requests(dev_priv);
4969
4970         if (val & DROP_BOUND)
4971                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4972
4973         if (val & DROP_UNBOUND)
4974                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4975
4976 unlock:
4977         mutex_unlock(&dev->struct_mutex);
4978
4979         if (val & DROP_FREED) {
4980                 synchronize_rcu();
4981                 flush_work(&dev_priv->mm.free_work);
4982         }
4983
4984         return ret;
4985 }
4986
4987 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4988                         i915_drop_caches_get, i915_drop_caches_set,
4989                         "0x%08llx\n");
4990
4991 static int
4992 i915_max_freq_get(void *data, u64 *val)
4993 {
4994         struct drm_i915_private *dev_priv = data;
4995
4996         if (INTEL_GEN(dev_priv) < 6)
4997                 return -ENODEV;
4998
4999         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
5000         return 0;
5001 }
5002
5003 static int
5004 i915_max_freq_set(void *data, u64 val)
5005 {
5006         struct drm_i915_private *dev_priv = data;
5007         u32 hw_max, hw_min;
5008         int ret;
5009
5010         if (INTEL_GEN(dev_priv) < 6)
5011                 return -ENODEV;
5012
5013         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
5014
5015         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5016         if (ret)
5017                 return ret;
5018
5019         /*
5020          * Turbo will still be enabled, but won't go above the set value.
5021          */
5022         val = intel_freq_opcode(dev_priv, val);
5023
5024         hw_max = dev_priv->rps.max_freq;
5025         hw_min = dev_priv->rps.min_freq;
5026
5027         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
5028                 mutex_unlock(&dev_priv->rps.hw_lock);
5029                 return -EINVAL;
5030         }
5031
5032         dev_priv->rps.max_freq_softlimit = val;
5033
5034         intel_set_rps(dev_priv, val);
5035
5036         mutex_unlock(&dev_priv->rps.hw_lock);
5037
5038         return 0;
5039 }
5040
5041 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5042                         i915_max_freq_get, i915_max_freq_set,
5043                         "%llu\n");
5044
5045 static int
5046 i915_min_freq_get(void *data, u64 *val)
5047 {
5048         struct drm_i915_private *dev_priv = data;
5049
5050         if (INTEL_GEN(dev_priv) < 6)
5051                 return -ENODEV;
5052
5053         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5054         return 0;
5055 }
5056
5057 static int
5058 i915_min_freq_set(void *data, u64 val)
5059 {
5060         struct drm_i915_private *dev_priv = data;
5061         u32 hw_max, hw_min;
5062         int ret;
5063
5064         if (INTEL_GEN(dev_priv) < 6)
5065                 return -ENODEV;
5066
5067         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5068
5069         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5070         if (ret)
5071                 return ret;
5072
5073         /*
5074          * Turbo will still be enabled, but won't go below the set value.
5075          */
5076         val = intel_freq_opcode(dev_priv, val);
5077
5078         hw_max = dev_priv->rps.max_freq;
5079         hw_min = dev_priv->rps.min_freq;
5080
5081         if (val < hw_min ||
5082             val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5083                 mutex_unlock(&dev_priv->rps.hw_lock);
5084                 return -EINVAL;
5085         }
5086
5087         dev_priv->rps.min_freq_softlimit = val;
5088
5089         intel_set_rps(dev_priv, val);
5090
5091         mutex_unlock(&dev_priv->rps.hw_lock);
5092
5093         return 0;
5094 }
5095
5096 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5097                         i915_min_freq_get, i915_min_freq_set,
5098                         "%llu\n");
5099
5100 static int
5101 i915_cache_sharing_get(void *data, u64 *val)
5102 {
5103         struct drm_i915_private *dev_priv = data;
5104         u32 snpcr;
5105
5106         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5107                 return -ENODEV;
5108
5109         intel_runtime_pm_get(dev_priv);
5110
5111         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5112
5113         intel_runtime_pm_put(dev_priv);
5114
5115         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5116
5117         return 0;
5118 }
5119
5120 static int
5121 i915_cache_sharing_set(void *data, u64 val)
5122 {
5123         struct drm_i915_private *dev_priv = data;
5124         u32 snpcr;
5125
5126         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5127                 return -ENODEV;
5128
5129         if (val > 3)
5130                 return -EINVAL;
5131
5132         intel_runtime_pm_get(dev_priv);
5133         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5134
5135         /* Update the cache sharing policy here as well */
5136         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5137         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5138         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5139         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5140
5141         intel_runtime_pm_put(dev_priv);
5142         return 0;
5143 }
5144
5145 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5146                         i915_cache_sharing_get, i915_cache_sharing_set,
5147                         "%llu\n");
5148
5149 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
5150                                           struct sseu_dev_info *sseu)
5151 {
5152         int ss_max = 2;
5153         int ss;
5154         u32 sig1[ss_max], sig2[ss_max];
5155
5156         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5157         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5158         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5159         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5160
5161         for (ss = 0; ss < ss_max; ss++) {
5162                 unsigned int eu_cnt;
5163
5164                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5165                         /* skip disabled subslice */
5166                         continue;
5167
5168                 sseu->slice_mask = BIT(0);
5169                 sseu->subslice_mask |= BIT(ss);
5170                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5171                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5172                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5173                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5174                 sseu->eu_total += eu_cnt;
5175                 sseu->eu_per_subslice = max_t(unsigned int,
5176                                               sseu->eu_per_subslice, eu_cnt);
5177         }
5178 }
5179
5180 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
5181                                     struct sseu_dev_info *sseu)
5182 {
5183         int s_max = 3, ss_max = 4;
5184         int s, ss;
5185         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5186
5187         /* BXT has a single slice and at most 3 subslices. */
5188         if (IS_BROXTON(dev_priv)) {
5189                 s_max = 1;
5190                 ss_max = 3;
5191         }
5192
5193         for (s = 0; s < s_max; s++) {
5194                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5195                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5196                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5197         }
5198
5199         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5200                      GEN9_PGCTL_SSA_EU19_ACK |
5201                      GEN9_PGCTL_SSA_EU210_ACK |
5202                      GEN9_PGCTL_SSA_EU311_ACK;
5203         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5204                      GEN9_PGCTL_SSB_EU19_ACK |
5205                      GEN9_PGCTL_SSB_EU210_ACK |
5206                      GEN9_PGCTL_SSB_EU311_ACK;
5207
5208         for (s = 0; s < s_max; s++) {
5209                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5210                         /* skip disabled slice */
5211                         continue;
5212
5213                 sseu->slice_mask |= BIT(s);
5214
5215                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5216                         sseu->subslice_mask =
5217                                 INTEL_INFO(dev_priv)->sseu.subslice_mask;
5218
5219                 for (ss = 0; ss < ss_max; ss++) {
5220                         unsigned int eu_cnt;
5221
5222                         if (IS_BROXTON(dev_priv)) {
5223                                 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5224                                         /* skip disabled subslice */
5225                                         continue;
5226
5227                                 sseu->subslice_mask |= BIT(ss);
5228                         }
5229
5230                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5231                                                eu_mask[ss%2]);
5232                         sseu->eu_total += eu_cnt;
5233                         sseu->eu_per_subslice = max_t(unsigned int,
5234                                                       sseu->eu_per_subslice,
5235                                                       eu_cnt);
5236                 }
5237         }
5238 }
5239
5240 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
5241                                          struct sseu_dev_info *sseu)
5242 {
5243         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5244         int s;
5245
5246         sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
5247
5248         if (sseu->slice_mask) {
5249                 sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
5250                 sseu->eu_per_subslice =
5251                                 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
5252                 sseu->eu_total = sseu->eu_per_subslice *
5253                                  sseu_subslice_total(sseu);
5254
5255                 /* subtract fused off EU(s) from enabled slice(s) */
5256                 for (s = 0; s < fls(sseu->slice_mask); s++) {
5257                         u8 subslice_7eu =
5258                                 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
5259
5260                         sseu->eu_total -= hweight8(subslice_7eu);
5261                 }
5262         }
5263 }
5264
5265 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
5266                                  const struct sseu_dev_info *sseu)
5267 {
5268         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5269         const char *type = is_available_info ? "Available" : "Enabled";
5270
5271         seq_printf(m, "  %s Slice Mask: %04x\n", type,
5272                    sseu->slice_mask);
5273         seq_printf(m, "  %s Slice Total: %u\n", type,
5274                    hweight8(sseu->slice_mask));
5275         seq_printf(m, "  %s Subslice Total: %u\n", type,
5276                    sseu_subslice_total(sseu));
5277         seq_printf(m, "  %s Subslice Mask: %04x\n", type,
5278                    sseu->subslice_mask);
5279         seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
5280                    hweight8(sseu->subslice_mask));
5281         seq_printf(m, "  %s EU Total: %u\n", type,
5282                    sseu->eu_total);
5283         seq_printf(m, "  %s EU Per Subslice: %u\n", type,
5284                    sseu->eu_per_subslice);
5285
5286         if (!is_available_info)
5287                 return;
5288
5289         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
5290         if (HAS_POOLED_EU(dev_priv))
5291                 seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
5292
5293         seq_printf(m, "  Has Slice Power Gating: %s\n",
5294                    yesno(sseu->has_slice_pg));
5295         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5296                    yesno(sseu->has_subslice_pg));
5297         seq_printf(m, "  Has EU Power Gating: %s\n",
5298                    yesno(sseu->has_eu_pg));
5299 }
5300
5301 static int i915_sseu_status(struct seq_file *m, void *unused)
5302 {
5303         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5304         struct sseu_dev_info sseu;
5305
5306         if (INTEL_GEN(dev_priv) < 8)
5307                 return -ENODEV;
5308
5309         seq_puts(m, "SSEU Device Info\n");
5310         i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
5311
5312         seq_puts(m, "SSEU Device Status\n");
5313         memset(&sseu, 0, sizeof(sseu));
5314
5315         intel_runtime_pm_get(dev_priv);
5316
5317         if (IS_CHERRYVIEW(dev_priv)) {
5318                 cherryview_sseu_device_status(dev_priv, &sseu);
5319         } else if (IS_BROADWELL(dev_priv)) {
5320                 broadwell_sseu_device_status(dev_priv, &sseu);
5321         } else if (INTEL_GEN(dev_priv) >= 9) {
5322                 gen9_sseu_device_status(dev_priv, &sseu);
5323         }
5324
5325         intel_runtime_pm_put(dev_priv);
5326
5327         i915_print_sseu_info(m, false, &sseu);
5328
5329         return 0;
5330 }
5331
5332 static int i915_forcewake_open(struct inode *inode, struct file *file)
5333 {
5334         struct drm_i915_private *dev_priv = inode->i_private;
5335
5336         if (INTEL_GEN(dev_priv) < 6)
5337                 return 0;
5338
5339         intel_runtime_pm_get(dev_priv);
5340         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5341
5342         return 0;
5343 }
5344
5345 static int i915_forcewake_release(struct inode *inode, struct file *file)
5346 {
5347         struct drm_i915_private *dev_priv = inode->i_private;
5348
5349         if (INTEL_GEN(dev_priv) < 6)
5350                 return 0;
5351
5352         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5353         intel_runtime_pm_put(dev_priv);
5354
5355         return 0;
5356 }
5357
5358 static const struct file_operations i915_forcewake_fops = {
5359         .owner = THIS_MODULE,
5360         .open = i915_forcewake_open,
5361         .release = i915_forcewake_release,
5362 };
5363
5364 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5365 {
5366         struct dentry *ent;
5367
5368         ent = debugfs_create_file("i915_forcewake_user",
5369                                   S_IRUSR,
5370                                   root, to_i915(minor->dev),
5371                                   &i915_forcewake_fops);
5372         if (!ent)
5373                 return -ENOMEM;
5374
5375         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5376 }
5377
5378 static int i915_debugfs_create(struct dentry *root,
5379                                struct drm_minor *minor,
5380                                const char *name,
5381                                const struct file_operations *fops)
5382 {
5383         struct dentry *ent;
5384
5385         ent = debugfs_create_file(name,
5386                                   S_IRUGO | S_IWUSR,
5387                                   root, to_i915(minor->dev),
5388                                   fops);
5389         if (!ent)
5390                 return -ENOMEM;
5391
5392         return drm_add_fake_info_node(minor, ent, fops);
5393 }
5394
5395 static const struct drm_info_list i915_debugfs_list[] = {
5396         {"i915_capabilities", i915_capabilities, 0},
5397         {"i915_gem_objects", i915_gem_object_info, 0},
5398         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5399         {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
5400         {"i915_gem_stolen", i915_gem_stolen_list_info },
5401         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5402         {"i915_gem_request", i915_gem_request_info, 0},
5403         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5404         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5405         {"i915_gem_interrupt", i915_interrupt_info, 0},
5406         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5407         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5408         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5409         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5410         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5411         {"i915_guc_info", i915_guc_info, 0},
5412         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5413         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5414         {"i915_frequency_info", i915_frequency_info, 0},
5415         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5416         {"i915_drpc_info", i915_drpc_info, 0},
5417         {"i915_emon_status", i915_emon_status, 0},
5418         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5419         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5420         {"i915_fbc_status", i915_fbc_status, 0},
5421         {"i915_ips_status", i915_ips_status, 0},
5422         {"i915_sr_status", i915_sr_status, 0},
5423         {"i915_opregion", i915_opregion, 0},
5424         {"i915_vbt", i915_vbt, 0},
5425         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5426         {"i915_context_status", i915_context_status, 0},
5427         {"i915_dump_lrc", i915_dump_lrc, 0},
5428         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5429         {"i915_swizzle_info", i915_swizzle_info, 0},
5430         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5431         {"i915_llc", i915_llc, 0},
5432         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5433         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5434         {"i915_energy_uJ", i915_energy_uJ, 0},
5435         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5436         {"i915_power_domain_info", i915_power_domain_info, 0},
5437         {"i915_dmc_info", i915_dmc_info, 0},
5438         {"i915_display_info", i915_display_info, 0},
5439         {"i915_engine_info", i915_engine_info, 0},
5440         {"i915_semaphore_status", i915_semaphore_status, 0},
5441         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5442         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5443         {"i915_wa_registers", i915_wa_registers, 0},
5444         {"i915_ddb_info", i915_ddb_info, 0},
5445         {"i915_sseu_status", i915_sseu_status, 0},
5446         {"i915_drrs_status", i915_drrs_status, 0},
5447         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5448 };
5449 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5450
5451 static const struct i915_debugfs_files {
5452         const char *name;
5453         const struct file_operations *fops;
5454 } i915_debugfs_files[] = {
5455         {"i915_wedged", &i915_wedged_fops},
5456         {"i915_max_freq", &i915_max_freq_fops},
5457         {"i915_min_freq", &i915_min_freq_fops},
5458         {"i915_cache_sharing", &i915_cache_sharing_fops},
5459         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5460         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5461         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5462 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
5463         {"i915_error_state", &i915_error_state_fops},
5464 #endif
5465         {"i915_next_seqno", &i915_next_seqno_fops},
5466         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5467         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5468         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5469         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5470         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5471         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5472         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5473         {"i915_dp_test_active", &i915_displayport_test_active_fops},
5474         {"i915_guc_log_control", &i915_guc_log_control_fops}
5475 };
5476
5477 void intel_display_crc_init(struct drm_i915_private *dev_priv)
5478 {
5479         enum pipe pipe;
5480
5481         for_each_pipe(dev_priv, pipe) {
5482                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5483
5484                 pipe_crc->opened = false;
5485                 spin_lock_init(&pipe_crc->lock);
5486                 init_waitqueue_head(&pipe_crc->wq);
5487         }
5488 }
5489
5490 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5491 {
5492         struct drm_minor *minor = dev_priv->drm.primary;
5493         int ret, i;
5494
5495         ret = i915_forcewake_create(minor->debugfs_root, minor);
5496         if (ret)
5497                 return ret;
5498
5499         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5500                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5501                 if (ret)
5502                         return ret;
5503         }
5504
5505         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5506                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5507                                           i915_debugfs_files[i].name,
5508                                           i915_debugfs_files[i].fops);
5509                 if (ret)
5510                         return ret;
5511         }
5512
5513         return drm_debugfs_create_files(i915_debugfs_list,
5514                                         I915_DEBUGFS_ENTRIES,
5515                                         minor->debugfs_root, minor);
5516 }
5517
5518 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5519 {
5520         struct drm_minor *minor = dev_priv->drm.primary;
5521         int i;
5522
5523         drm_debugfs_remove_files(i915_debugfs_list,
5524                                  I915_DEBUGFS_ENTRIES, minor);
5525
5526         drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
5527                                  1, minor);
5528
5529         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5530                 struct drm_info_list *info_list =
5531                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5532
5533                 drm_debugfs_remove_files(info_list, 1, minor);
5534         }
5535
5536         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5537                 struct drm_info_list *info_list =
5538                         (struct drm_info_list *)i915_debugfs_files[i].fops;
5539
5540                 drm_debugfs_remove_files(info_list, 1, minor);
5541         }
5542 }
5543
5544 struct dpcd_block {
5545         /* DPCD dump start address. */
5546         unsigned int offset;
5547         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5548         unsigned int end;
5549         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5550         size_t size;
5551         /* Only valid for eDP. */
5552         bool edp;
5553 };
5554
5555 static const struct dpcd_block i915_dpcd_debug[] = {
5556         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5557         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5558         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5559         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5560         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5561         { .offset = DP_SET_POWER },
5562         { .offset = DP_EDP_DPCD_REV },
5563         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5564         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5565         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5566 };
5567
5568 static int i915_dpcd_show(struct seq_file *m, void *data)
5569 {
5570         struct drm_connector *connector = m->private;
5571         struct intel_dp *intel_dp =
5572                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5573         uint8_t buf[16];
5574         ssize_t err;
5575         int i;
5576
5577         if (connector->status != connector_status_connected)
5578                 return -ENODEV;
5579
5580         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5581                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5582                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5583
5584                 if (b->edp &&
5585                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5586                         continue;
5587
5588                 /* low tech for now */
5589                 if (WARN_ON(size > sizeof(buf)))
5590                         continue;
5591
5592                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5593                 if (err <= 0) {
5594                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5595                                   size, b->offset, err);
5596                         continue;
5597                 }
5598
5599                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5600         }
5601
5602         return 0;
5603 }
5604
5605 static int i915_dpcd_open(struct inode *inode, struct file *file)
5606 {
5607         return single_open(file, i915_dpcd_show, inode->i_private);
5608 }
5609
5610 static const struct file_operations i915_dpcd_fops = {
5611         .owner = THIS_MODULE,
5612         .open = i915_dpcd_open,
5613         .read = seq_read,
5614         .llseek = seq_lseek,
5615         .release = single_release,
5616 };
5617
5618 static int i915_panel_show(struct seq_file *m, void *data)
5619 {
5620         struct drm_connector *connector = m->private;
5621         struct intel_dp *intel_dp =
5622                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5623
5624         if (connector->status != connector_status_connected)
5625                 return -ENODEV;
5626
5627         seq_printf(m, "Panel power up delay: %d\n",
5628                    intel_dp->panel_power_up_delay);
5629         seq_printf(m, "Panel power down delay: %d\n",
5630                    intel_dp->panel_power_down_delay);
5631         seq_printf(m, "Backlight on delay: %d\n",
5632                    intel_dp->backlight_on_delay);
5633         seq_printf(m, "Backlight off delay: %d\n",
5634                    intel_dp->backlight_off_delay);
5635
5636         return 0;
5637 }
5638
5639 static int i915_panel_open(struct inode *inode, struct file *file)
5640 {
5641         return single_open(file, i915_panel_show, inode->i_private);
5642 }
5643
5644 static const struct file_operations i915_panel_fops = {
5645         .owner = THIS_MODULE,
5646         .open = i915_panel_open,
5647         .read = seq_read,
5648         .llseek = seq_lseek,
5649         .release = single_release,
5650 };
5651
5652 /**
5653  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5654  * @connector: pointer to a registered drm_connector
5655  *
5656  * Cleanup will be done by drm_connector_unregister() through a call to
5657  * drm_debugfs_connector_remove().
5658  *
5659  * Returns 0 on success, negative error codes on error.
5660  */
5661 int i915_debugfs_connector_add(struct drm_connector *connector)
5662 {
5663         struct dentry *root = connector->debugfs_entry;
5664
5665         /* The connector must have been registered beforehands. */
5666         if (!root)
5667                 return -ENODEV;
5668
5669         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5670             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5671                 debugfs_create_file("i915_dpcd", S_IRUGO, root,
5672                                     connector, &i915_dpcd_fops);
5673
5674         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5675                 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5676                                     connector, &i915_panel_fops);
5677
5678         return 0;
5679 }