]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
drm/qxl: return IRQ_NONE if it was not our irq
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->user_pin_count > 0)
100                 return "P";
101         else if (i915_gem_obj_is_pinned(obj))
102                 return "p";
103         else
104                 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109         switch (obj->tiling_mode) {
110         default:
111         case I915_TILING_NONE: return " ";
112         case I915_TILING_X: return "X";
113         case I915_TILING_Y: return "Y";
114         }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         struct i915_vma *vma;
126         int pin_count = 0;
127
128         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129                    &obj->base,
130                    get_pin_flag(obj),
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    obj->base.size / 1024,
134                    obj->base.read_domains,
135                    obj->base.write_domain,
136                    obj->last_read_seqno,
137                    obj->last_write_seqno,
138                    obj->last_fenced_seqno,
139                    i915_cache_level_str(obj->cache_level),
140                    obj->dirty ? " dirty" : "",
141                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142         if (obj->base.name)
143                 seq_printf(m, " (name: %d)", obj->base.name);
144         list_for_each_entry(vma, &obj->vma_list, vma_link)
145                 if (vma->pin_count > 0)
146                         pin_count++;
147                 seq_printf(m, " (pinned x %d)", pin_count);
148         if (obj->pin_display)
149                 seq_printf(m, " (display)");
150         if (obj->fence_reg != I915_FENCE_REG_NONE)
151                 seq_printf(m, " (fence: %d)", obj->fence_reg);
152         list_for_each_entry(vma, &obj->vma_list, vma_link) {
153                 if (!i915_is_ggtt(vma->vm))
154                         seq_puts(m, " (pp");
155                 else
156                         seq_puts(m, " (g");
157                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158                            vma->node.start, vma->node.size);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->ring != NULL)
172                 seq_printf(m, " (%s)", obj->ring->name);
173 }
174
175 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
176 {
177         seq_putc(m, ctx->is_initialized ? 'I' : 'i');
178         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
179         seq_putc(m, ' ');
180 }
181
182 static int i915_gem_object_list_info(struct seq_file *m, void *data)
183 {
184         struct drm_info_node *node = m->private;
185         uintptr_t list = (uintptr_t) node->info_ent->data;
186         struct list_head *head;
187         struct drm_device *dev = node->minor->dev;
188         struct drm_i915_private *dev_priv = dev->dev_private;
189         struct i915_address_space *vm = &dev_priv->gtt.base;
190         struct i915_vma *vma;
191         size_t total_obj_size, total_gtt_size;
192         int count, ret;
193
194         ret = mutex_lock_interruptible(&dev->struct_mutex);
195         if (ret)
196                 return ret;
197
198         /* FIXME: the user of this interface might want more than just GGTT */
199         switch (list) {
200         case ACTIVE_LIST:
201                 seq_puts(m, "Active:\n");
202                 head = &vm->active_list;
203                 break;
204         case INACTIVE_LIST:
205                 seq_puts(m, "Inactive:\n");
206                 head = &vm->inactive_list;
207                 break;
208         default:
209                 mutex_unlock(&dev->struct_mutex);
210                 return -EINVAL;
211         }
212
213         total_obj_size = total_gtt_size = count = 0;
214         list_for_each_entry(vma, head, mm_list) {
215                 seq_printf(m, "   ");
216                 describe_obj(m, vma->obj);
217                 seq_printf(m, "\n");
218                 total_obj_size += vma->obj->base.size;
219                 total_gtt_size += vma->node.size;
220                 count++;
221         }
222         mutex_unlock(&dev->struct_mutex);
223
224         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
225                    count, total_obj_size, total_gtt_size);
226         return 0;
227 }
228
229 static int obj_rank_by_stolen(void *priv,
230                               struct list_head *A, struct list_head *B)
231 {
232         struct drm_i915_gem_object *a =
233                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
234         struct drm_i915_gem_object *b =
235                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
236
237         return a->stolen->start - b->stolen->start;
238 }
239
240 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
241 {
242         struct drm_info_node *node = m->private;
243         struct drm_device *dev = node->minor->dev;
244         struct drm_i915_private *dev_priv = dev->dev_private;
245         struct drm_i915_gem_object *obj;
246         size_t total_obj_size, total_gtt_size;
247         LIST_HEAD(stolen);
248         int count, ret;
249
250         ret = mutex_lock_interruptible(&dev->struct_mutex);
251         if (ret)
252                 return ret;
253
254         total_obj_size = total_gtt_size = count = 0;
255         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
256                 if (obj->stolen == NULL)
257                         continue;
258
259                 list_add(&obj->obj_exec_link, &stolen);
260
261                 total_obj_size += obj->base.size;
262                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
263                 count++;
264         }
265         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
266                 if (obj->stolen == NULL)
267                         continue;
268
269                 list_add(&obj->obj_exec_link, &stolen);
270
271                 total_obj_size += obj->base.size;
272                 count++;
273         }
274         list_sort(NULL, &stolen, obj_rank_by_stolen);
275         seq_puts(m, "Stolen:\n");
276         while (!list_empty(&stolen)) {
277                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
278                 seq_puts(m, "   ");
279                 describe_obj(m, obj);
280                 seq_putc(m, '\n');
281                 list_del_init(&obj->obj_exec_link);
282         }
283         mutex_unlock(&dev->struct_mutex);
284
285         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
286                    count, total_obj_size, total_gtt_size);
287         return 0;
288 }
289
290 #define count_objects(list, member) do { \
291         list_for_each_entry(obj, list, member) { \
292                 size += i915_gem_obj_ggtt_size(obj); \
293                 ++count; \
294                 if (obj->map_and_fenceable) { \
295                         mappable_size += i915_gem_obj_ggtt_size(obj); \
296                         ++mappable_count; \
297                 } \
298         } \
299 } while (0)
300
301 struct file_stats {
302         struct drm_i915_file_private *file_priv;
303         int count;
304         size_t total, unbound;
305         size_t global, shared;
306         size_t active, inactive;
307 };
308
309 static int per_file_stats(int id, void *ptr, void *data)
310 {
311         struct drm_i915_gem_object *obj = ptr;
312         struct file_stats *stats = data;
313         struct i915_vma *vma;
314
315         stats->count++;
316         stats->total += obj->base.size;
317
318         if (obj->base.name || obj->base.dma_buf)
319                 stats->shared += obj->base.size;
320
321         if (USES_FULL_PPGTT(obj->base.dev)) {
322                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
323                         struct i915_hw_ppgtt *ppgtt;
324
325                         if (!drm_mm_node_allocated(&vma->node))
326                                 continue;
327
328                         if (i915_is_ggtt(vma->vm)) {
329                                 stats->global += obj->base.size;
330                                 continue;
331                         }
332
333                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
334                         if (ppgtt->ctx && ppgtt->ctx->file_priv != stats->file_priv)
335                                 continue;
336
337                         if (obj->ring) /* XXX per-vma statistic */
338                                 stats->active += obj->base.size;
339                         else
340                                 stats->inactive += obj->base.size;
341
342                         return 0;
343                 }
344         } else {
345                 if (i915_gem_obj_ggtt_bound(obj)) {
346                         stats->global += obj->base.size;
347                         if (obj->ring)
348                                 stats->active += obj->base.size;
349                         else
350                                 stats->inactive += obj->base.size;
351                         return 0;
352                 }
353         }
354
355         if (!list_empty(&obj->global_list))
356                 stats->unbound += obj->base.size;
357
358         return 0;
359 }
360
361 #define count_vmas(list, member) do { \
362         list_for_each_entry(vma, list, member) { \
363                 size += i915_gem_obj_ggtt_size(vma->obj); \
364                 ++count; \
365                 if (vma->obj->map_and_fenceable) { \
366                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
367                         ++mappable_count; \
368                 } \
369         } \
370 } while (0)
371
372 static int i915_gem_object_info(struct seq_file *m, void* data)
373 {
374         struct drm_info_node *node = m->private;
375         struct drm_device *dev = node->minor->dev;
376         struct drm_i915_private *dev_priv = dev->dev_private;
377         u32 count, mappable_count, purgeable_count;
378         size_t size, mappable_size, purgeable_size;
379         struct drm_i915_gem_object *obj;
380         struct i915_address_space *vm = &dev_priv->gtt.base;
381         struct drm_file *file;
382         struct i915_vma *vma;
383         int ret;
384
385         ret = mutex_lock_interruptible(&dev->struct_mutex);
386         if (ret)
387                 return ret;
388
389         seq_printf(m, "%u objects, %zu bytes\n",
390                    dev_priv->mm.object_count,
391                    dev_priv->mm.object_memory);
392
393         size = count = mappable_size = mappable_count = 0;
394         count_objects(&dev_priv->mm.bound_list, global_list);
395         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
396                    count, mappable_count, size, mappable_size);
397
398         size = count = mappable_size = mappable_count = 0;
399         count_vmas(&vm->active_list, mm_list);
400         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
401                    count, mappable_count, size, mappable_size);
402
403         size = count = mappable_size = mappable_count = 0;
404         count_vmas(&vm->inactive_list, mm_list);
405         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
406                    count, mappable_count, size, mappable_size);
407
408         size = count = purgeable_size = purgeable_count = 0;
409         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
410                 size += obj->base.size, ++count;
411                 if (obj->madv == I915_MADV_DONTNEED)
412                         purgeable_size += obj->base.size, ++purgeable_count;
413         }
414         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
415
416         size = count = mappable_size = mappable_count = 0;
417         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
418                 if (obj->fault_mappable) {
419                         size += i915_gem_obj_ggtt_size(obj);
420                         ++count;
421                 }
422                 if (obj->pin_mappable) {
423                         mappable_size += i915_gem_obj_ggtt_size(obj);
424                         ++mappable_count;
425                 }
426                 if (obj->madv == I915_MADV_DONTNEED) {
427                         purgeable_size += obj->base.size;
428                         ++purgeable_count;
429                 }
430         }
431         seq_printf(m, "%u purgeable objects, %zu bytes\n",
432                    purgeable_count, purgeable_size);
433         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
434                    mappable_count, mappable_size);
435         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
436                    count, size);
437
438         seq_printf(m, "%zu [%lu] gtt total\n",
439                    dev_priv->gtt.base.total,
440                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
441
442         seq_putc(m, '\n');
443         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
444                 struct file_stats stats;
445                 struct task_struct *task;
446
447                 memset(&stats, 0, sizeof(stats));
448                 stats.file_priv = file->driver_priv;
449                 spin_lock(&file->table_lock);
450                 idr_for_each(&file->object_idr, per_file_stats, &stats);
451                 spin_unlock(&file->table_lock);
452                 /*
453                  * Although we have a valid reference on file->pid, that does
454                  * not guarantee that the task_struct who called get_pid() is
455                  * still alive (e.g. get_pid(current) => fork() => exit()).
456                  * Therefore, we need to protect this ->comm access using RCU.
457                  */
458                 rcu_read_lock();
459                 task = pid_task(file->pid, PIDTYPE_PID);
460                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
461                            task ? task->comm : "<unknown>",
462                            stats.count,
463                            stats.total,
464                            stats.active,
465                            stats.inactive,
466                            stats.global,
467                            stats.shared,
468                            stats.unbound);
469                 rcu_read_unlock();
470         }
471
472         mutex_unlock(&dev->struct_mutex);
473
474         return 0;
475 }
476
477 static int i915_gem_gtt_info(struct seq_file *m, void *data)
478 {
479         struct drm_info_node *node = m->private;
480         struct drm_device *dev = node->minor->dev;
481         uintptr_t list = (uintptr_t) node->info_ent->data;
482         struct drm_i915_private *dev_priv = dev->dev_private;
483         struct drm_i915_gem_object *obj;
484         size_t total_obj_size, total_gtt_size;
485         int count, ret;
486
487         ret = mutex_lock_interruptible(&dev->struct_mutex);
488         if (ret)
489                 return ret;
490
491         total_obj_size = total_gtt_size = count = 0;
492         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
493                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
494                         continue;
495
496                 seq_puts(m, "   ");
497                 describe_obj(m, obj);
498                 seq_putc(m, '\n');
499                 total_obj_size += obj->base.size;
500                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
501                 count++;
502         }
503
504         mutex_unlock(&dev->struct_mutex);
505
506         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
507                    count, total_obj_size, total_gtt_size);
508
509         return 0;
510 }
511
512 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
513 {
514         struct drm_info_node *node = m->private;
515         struct drm_device *dev = node->minor->dev;
516         unsigned long flags;
517         struct intel_crtc *crtc;
518
519         for_each_intel_crtc(dev, crtc) {
520                 const char pipe = pipe_name(crtc->pipe);
521                 const char plane = plane_name(crtc->plane);
522                 struct intel_unpin_work *work;
523
524                 spin_lock_irqsave(&dev->event_lock, flags);
525                 work = crtc->unpin_work;
526                 if (work == NULL) {
527                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
528                                    pipe, plane);
529                 } else {
530                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
531                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
532                                            pipe, plane);
533                         } else {
534                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
535                                            pipe, plane);
536                         }
537                         if (work->enable_stall_check)
538                                 seq_puts(m, "Stall check enabled, ");
539                         else
540                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
541                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
542
543                         if (work->old_fb_obj) {
544                                 struct drm_i915_gem_object *obj = work->old_fb_obj;
545                                 if (obj)
546                                         seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
547                                                    i915_gem_obj_ggtt_offset(obj));
548                         }
549                         if (work->pending_flip_obj) {
550                                 struct drm_i915_gem_object *obj = work->pending_flip_obj;
551                                 if (obj)
552                                         seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
553                                                    i915_gem_obj_ggtt_offset(obj));
554                         }
555                 }
556                 spin_unlock_irqrestore(&dev->event_lock, flags);
557         }
558
559         return 0;
560 }
561
562 static int i915_gem_request_info(struct seq_file *m, void *data)
563 {
564         struct drm_info_node *node = m->private;
565         struct drm_device *dev = node->minor->dev;
566         struct drm_i915_private *dev_priv = dev->dev_private;
567         struct intel_engine_cs *ring;
568         struct drm_i915_gem_request *gem_request;
569         int ret, count, i;
570
571         ret = mutex_lock_interruptible(&dev->struct_mutex);
572         if (ret)
573                 return ret;
574
575         count = 0;
576         for_each_ring(ring, dev_priv, i) {
577                 if (list_empty(&ring->request_list))
578                         continue;
579
580                 seq_printf(m, "%s requests:\n", ring->name);
581                 list_for_each_entry(gem_request,
582                                     &ring->request_list,
583                                     list) {
584                         seq_printf(m, "    %d @ %d\n",
585                                    gem_request->seqno,
586                                    (int) (jiffies - gem_request->emitted_jiffies));
587                 }
588                 count++;
589         }
590         mutex_unlock(&dev->struct_mutex);
591
592         if (count == 0)
593                 seq_puts(m, "No requests\n");
594
595         return 0;
596 }
597
598 static void i915_ring_seqno_info(struct seq_file *m,
599                                  struct intel_engine_cs *ring)
600 {
601         if (ring->get_seqno) {
602                 seq_printf(m, "Current sequence (%s): %u\n",
603                            ring->name, ring->get_seqno(ring, false));
604         }
605 }
606
607 static int i915_gem_seqno_info(struct seq_file *m, void *data)
608 {
609         struct drm_info_node *node = m->private;
610         struct drm_device *dev = node->minor->dev;
611         struct drm_i915_private *dev_priv = dev->dev_private;
612         struct intel_engine_cs *ring;
613         int ret, i;
614
615         ret = mutex_lock_interruptible(&dev->struct_mutex);
616         if (ret)
617                 return ret;
618         intel_runtime_pm_get(dev_priv);
619
620         for_each_ring(ring, dev_priv, i)
621                 i915_ring_seqno_info(m, ring);
622
623         intel_runtime_pm_put(dev_priv);
624         mutex_unlock(&dev->struct_mutex);
625
626         return 0;
627 }
628
629
630 static int i915_interrupt_info(struct seq_file *m, void *data)
631 {
632         struct drm_info_node *node = m->private;
633         struct drm_device *dev = node->minor->dev;
634         struct drm_i915_private *dev_priv = dev->dev_private;
635         struct intel_engine_cs *ring;
636         int ret, i, pipe;
637
638         ret = mutex_lock_interruptible(&dev->struct_mutex);
639         if (ret)
640                 return ret;
641         intel_runtime_pm_get(dev_priv);
642
643         if (IS_CHERRYVIEW(dev)) {
644                 int i;
645                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
646                            I915_READ(GEN8_MASTER_IRQ));
647
648                 seq_printf(m, "Display IER:\t%08x\n",
649                            I915_READ(VLV_IER));
650                 seq_printf(m, "Display IIR:\t%08x\n",
651                            I915_READ(VLV_IIR));
652                 seq_printf(m, "Display IIR_RW:\t%08x\n",
653                            I915_READ(VLV_IIR_RW));
654                 seq_printf(m, "Display IMR:\t%08x\n",
655                            I915_READ(VLV_IMR));
656                 for_each_pipe(pipe)
657                         seq_printf(m, "Pipe %c stat:\t%08x\n",
658                                    pipe_name(pipe),
659                                    I915_READ(PIPESTAT(pipe)));
660
661                 seq_printf(m, "Port hotplug:\t%08x\n",
662                            I915_READ(PORT_HOTPLUG_EN));
663                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
664                            I915_READ(VLV_DPFLIPSTAT));
665                 seq_printf(m, "DPINVGTT:\t%08x\n",
666                            I915_READ(DPINVGTT));
667
668                 for (i = 0; i < 4; i++) {
669                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
670                                    i, I915_READ(GEN8_GT_IMR(i)));
671                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
672                                    i, I915_READ(GEN8_GT_IIR(i)));
673                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
674                                    i, I915_READ(GEN8_GT_IER(i)));
675                 }
676
677                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
678                            I915_READ(GEN8_PCU_IMR));
679                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
680                            I915_READ(GEN8_PCU_IIR));
681                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
682                            I915_READ(GEN8_PCU_IER));
683         } else if (INTEL_INFO(dev)->gen >= 8) {
684                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
685                            I915_READ(GEN8_MASTER_IRQ));
686
687                 for (i = 0; i < 4; i++) {
688                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
689                                    i, I915_READ(GEN8_GT_IMR(i)));
690                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
691                                    i, I915_READ(GEN8_GT_IIR(i)));
692                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
693                                    i, I915_READ(GEN8_GT_IER(i)));
694                 }
695
696                 for_each_pipe(pipe) {
697                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
698                                    pipe_name(pipe),
699                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
700                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
701                                    pipe_name(pipe),
702                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
703                         seq_printf(m, "Pipe %c IER:\t%08x\n",
704                                    pipe_name(pipe),
705                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
706                 }
707
708                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
709                            I915_READ(GEN8_DE_PORT_IMR));
710                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
711                            I915_READ(GEN8_DE_PORT_IIR));
712                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
713                            I915_READ(GEN8_DE_PORT_IER));
714
715                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
716                            I915_READ(GEN8_DE_MISC_IMR));
717                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
718                            I915_READ(GEN8_DE_MISC_IIR));
719                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
720                            I915_READ(GEN8_DE_MISC_IER));
721
722                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
723                            I915_READ(GEN8_PCU_IMR));
724                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
725                            I915_READ(GEN8_PCU_IIR));
726                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
727                            I915_READ(GEN8_PCU_IER));
728         } else if (IS_VALLEYVIEW(dev)) {
729                 seq_printf(m, "Display IER:\t%08x\n",
730                            I915_READ(VLV_IER));
731                 seq_printf(m, "Display IIR:\t%08x\n",
732                            I915_READ(VLV_IIR));
733                 seq_printf(m, "Display IIR_RW:\t%08x\n",
734                            I915_READ(VLV_IIR_RW));
735                 seq_printf(m, "Display IMR:\t%08x\n",
736                            I915_READ(VLV_IMR));
737                 for_each_pipe(pipe)
738                         seq_printf(m, "Pipe %c stat:\t%08x\n",
739                                    pipe_name(pipe),
740                                    I915_READ(PIPESTAT(pipe)));
741
742                 seq_printf(m, "Master IER:\t%08x\n",
743                            I915_READ(VLV_MASTER_IER));
744
745                 seq_printf(m, "Render IER:\t%08x\n",
746                            I915_READ(GTIER));
747                 seq_printf(m, "Render IIR:\t%08x\n",
748                            I915_READ(GTIIR));
749                 seq_printf(m, "Render IMR:\t%08x\n",
750                            I915_READ(GTIMR));
751
752                 seq_printf(m, "PM IER:\t\t%08x\n",
753                            I915_READ(GEN6_PMIER));
754                 seq_printf(m, "PM IIR:\t\t%08x\n",
755                            I915_READ(GEN6_PMIIR));
756                 seq_printf(m, "PM IMR:\t\t%08x\n",
757                            I915_READ(GEN6_PMIMR));
758
759                 seq_printf(m, "Port hotplug:\t%08x\n",
760                            I915_READ(PORT_HOTPLUG_EN));
761                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
762                            I915_READ(VLV_DPFLIPSTAT));
763                 seq_printf(m, "DPINVGTT:\t%08x\n",
764                            I915_READ(DPINVGTT));
765
766         } else if (!HAS_PCH_SPLIT(dev)) {
767                 seq_printf(m, "Interrupt enable:    %08x\n",
768                            I915_READ(IER));
769                 seq_printf(m, "Interrupt identity:  %08x\n",
770                            I915_READ(IIR));
771                 seq_printf(m, "Interrupt mask:      %08x\n",
772                            I915_READ(IMR));
773                 for_each_pipe(pipe)
774                         seq_printf(m, "Pipe %c stat:         %08x\n",
775                                    pipe_name(pipe),
776                                    I915_READ(PIPESTAT(pipe)));
777         } else {
778                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
779                            I915_READ(DEIER));
780                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
781                            I915_READ(DEIIR));
782                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
783                            I915_READ(DEIMR));
784                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
785                            I915_READ(SDEIER));
786                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
787                            I915_READ(SDEIIR));
788                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
789                            I915_READ(SDEIMR));
790                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
791                            I915_READ(GTIER));
792                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
793                            I915_READ(GTIIR));
794                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
795                            I915_READ(GTIMR));
796         }
797         for_each_ring(ring, dev_priv, i) {
798                 if (INTEL_INFO(dev)->gen >= 6) {
799                         seq_printf(m,
800                                    "Graphics Interrupt mask (%s):       %08x\n",
801                                    ring->name, I915_READ_IMR(ring));
802                 }
803                 i915_ring_seqno_info(m, ring);
804         }
805         intel_runtime_pm_put(dev_priv);
806         mutex_unlock(&dev->struct_mutex);
807
808         return 0;
809 }
810
811 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
812 {
813         struct drm_info_node *node = m->private;
814         struct drm_device *dev = node->minor->dev;
815         struct drm_i915_private *dev_priv = dev->dev_private;
816         int i, ret;
817
818         ret = mutex_lock_interruptible(&dev->struct_mutex);
819         if (ret)
820                 return ret;
821
822         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
823         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
824         for (i = 0; i < dev_priv->num_fence_regs; i++) {
825                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
826
827                 seq_printf(m, "Fence %d, pin count = %d, object = ",
828                            i, dev_priv->fence_regs[i].pin_count);
829                 if (obj == NULL)
830                         seq_puts(m, "unused");
831                 else
832                         describe_obj(m, obj);
833                 seq_putc(m, '\n');
834         }
835
836         mutex_unlock(&dev->struct_mutex);
837         return 0;
838 }
839
840 static int i915_hws_info(struct seq_file *m, void *data)
841 {
842         struct drm_info_node *node = m->private;
843         struct drm_device *dev = node->minor->dev;
844         struct drm_i915_private *dev_priv = dev->dev_private;
845         struct intel_engine_cs *ring;
846         const u32 *hws;
847         int i;
848
849         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
850         hws = ring->status_page.page_addr;
851         if (hws == NULL)
852                 return 0;
853
854         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
855                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
856                            i * 4,
857                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
858         }
859         return 0;
860 }
861
862 static ssize_t
863 i915_error_state_write(struct file *filp,
864                        const char __user *ubuf,
865                        size_t cnt,
866                        loff_t *ppos)
867 {
868         struct i915_error_state_file_priv *error_priv = filp->private_data;
869         struct drm_device *dev = error_priv->dev;
870         int ret;
871
872         DRM_DEBUG_DRIVER("Resetting error state\n");
873
874         ret = mutex_lock_interruptible(&dev->struct_mutex);
875         if (ret)
876                 return ret;
877
878         i915_destroy_error_state(dev);
879         mutex_unlock(&dev->struct_mutex);
880
881         return cnt;
882 }
883
884 static int i915_error_state_open(struct inode *inode, struct file *file)
885 {
886         struct drm_device *dev = inode->i_private;
887         struct i915_error_state_file_priv *error_priv;
888
889         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
890         if (!error_priv)
891                 return -ENOMEM;
892
893         error_priv->dev = dev;
894
895         i915_error_state_get(dev, error_priv);
896
897         file->private_data = error_priv;
898
899         return 0;
900 }
901
902 static int i915_error_state_release(struct inode *inode, struct file *file)
903 {
904         struct i915_error_state_file_priv *error_priv = file->private_data;
905
906         i915_error_state_put(error_priv);
907         kfree(error_priv);
908
909         return 0;
910 }
911
912 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
913                                      size_t count, loff_t *pos)
914 {
915         struct i915_error_state_file_priv *error_priv = file->private_data;
916         struct drm_i915_error_state_buf error_str;
917         loff_t tmp_pos = 0;
918         ssize_t ret_count = 0;
919         int ret;
920
921         ret = i915_error_state_buf_init(&error_str, count, *pos);
922         if (ret)
923                 return ret;
924
925         ret = i915_error_state_to_str(&error_str, error_priv);
926         if (ret)
927                 goto out;
928
929         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
930                                             error_str.buf,
931                                             error_str.bytes);
932
933         if (ret_count < 0)
934                 ret = ret_count;
935         else
936                 *pos = error_str.start + ret_count;
937 out:
938         i915_error_state_buf_release(&error_str);
939         return ret ?: ret_count;
940 }
941
942 static const struct file_operations i915_error_state_fops = {
943         .owner = THIS_MODULE,
944         .open = i915_error_state_open,
945         .read = i915_error_state_read,
946         .write = i915_error_state_write,
947         .llseek = default_llseek,
948         .release = i915_error_state_release,
949 };
950
951 static int
952 i915_next_seqno_get(void *data, u64 *val)
953 {
954         struct drm_device *dev = data;
955         struct drm_i915_private *dev_priv = dev->dev_private;
956         int ret;
957
958         ret = mutex_lock_interruptible(&dev->struct_mutex);
959         if (ret)
960                 return ret;
961
962         *val = dev_priv->next_seqno;
963         mutex_unlock(&dev->struct_mutex);
964
965         return 0;
966 }
967
968 static int
969 i915_next_seqno_set(void *data, u64 val)
970 {
971         struct drm_device *dev = data;
972         int ret;
973
974         ret = mutex_lock_interruptible(&dev->struct_mutex);
975         if (ret)
976                 return ret;
977
978         ret = i915_gem_set_seqno(dev, val);
979         mutex_unlock(&dev->struct_mutex);
980
981         return ret;
982 }
983
984 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
985                         i915_next_seqno_get, i915_next_seqno_set,
986                         "0x%llx\n");
987
988 static int i915_rstdby_delays(struct seq_file *m, void *unused)
989 {
990         struct drm_info_node *node = m->private;
991         struct drm_device *dev = node->minor->dev;
992         struct drm_i915_private *dev_priv = dev->dev_private;
993         u16 crstanddelay;
994         int ret;
995
996         ret = mutex_lock_interruptible(&dev->struct_mutex);
997         if (ret)
998                 return ret;
999         intel_runtime_pm_get(dev_priv);
1000
1001         crstanddelay = I915_READ16(CRSTANDVID);
1002
1003         intel_runtime_pm_put(dev_priv);
1004         mutex_unlock(&dev->struct_mutex);
1005
1006         seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
1007
1008         return 0;
1009 }
1010
1011 static int i915_frequency_info(struct seq_file *m, void *unused)
1012 {
1013         struct drm_info_node *node = m->private;
1014         struct drm_device *dev = node->minor->dev;
1015         struct drm_i915_private *dev_priv = dev->dev_private;
1016         int ret = 0;
1017
1018         intel_runtime_pm_get(dev_priv);
1019
1020         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1021
1022         if (IS_GEN5(dev)) {
1023                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1024                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1025
1026                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1027                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1028                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1029                            MEMSTAT_VID_SHIFT);
1030                 seq_printf(m, "Current P-state: %d\n",
1031                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1032         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
1033                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1034                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1035                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1036                 u32 rpmodectl, rpinclimit, rpdeclimit;
1037                 u32 rpstat, cagf, reqf;
1038                 u32 rpupei, rpcurup, rpprevup;
1039                 u32 rpdownei, rpcurdown, rpprevdown;
1040                 int max_freq;
1041
1042                 /* RPSTAT1 is in the GT power well */
1043                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1044                 if (ret)
1045                         goto out;
1046
1047                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1048
1049                 reqf = I915_READ(GEN6_RPNSWREQ);
1050                 reqf &= ~GEN6_TURBO_DISABLE;
1051                 if (IS_HASWELL(dev))
1052                         reqf >>= 24;
1053                 else
1054                         reqf >>= 25;
1055                 reqf *= GT_FREQUENCY_MULTIPLIER;
1056
1057                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1058                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1059                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1060
1061                 rpstat = I915_READ(GEN6_RPSTAT1);
1062                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1063                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1064                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1065                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1066                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1067                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1068                 if (IS_HASWELL(dev))
1069                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1070                 else
1071                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1072                 cagf *= GT_FREQUENCY_MULTIPLIER;
1073
1074                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1075                 mutex_unlock(&dev->struct_mutex);
1076
1077                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1078                            I915_READ(GEN6_PMIER),
1079                            I915_READ(GEN6_PMIMR),
1080                            I915_READ(GEN6_PMISR),
1081                            I915_READ(GEN6_PMIIR),
1082                            I915_READ(GEN6_PMINTRMSK));
1083                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1084                 seq_printf(m, "Render p-state ratio: %d\n",
1085                            (gt_perf_status & 0xff00) >> 8);
1086                 seq_printf(m, "Render p-state VID: %d\n",
1087                            gt_perf_status & 0xff);
1088                 seq_printf(m, "Render p-state limit: %d\n",
1089                            rp_state_limits & 0xff);
1090                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1091                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1092                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1093                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1094                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1095                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1096                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1097                            GEN6_CURICONT_MASK);
1098                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1099                            GEN6_CURBSYTAVG_MASK);
1100                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1101                            GEN6_CURBSYTAVG_MASK);
1102                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1103                            GEN6_CURIAVG_MASK);
1104                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1105                            GEN6_CURBSYTAVG_MASK);
1106                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1107                            GEN6_CURBSYTAVG_MASK);
1108
1109                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1110                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1111                            max_freq * GT_FREQUENCY_MULTIPLIER);
1112
1113                 max_freq = (rp_state_cap & 0xff00) >> 8;
1114                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1115                            max_freq * GT_FREQUENCY_MULTIPLIER);
1116
1117                 max_freq = rp_state_cap & 0xff;
1118                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1119                            max_freq * GT_FREQUENCY_MULTIPLIER);
1120
1121                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1122                            dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1123         } else if (IS_VALLEYVIEW(dev)) {
1124                 u32 freq_sts, val;
1125
1126                 mutex_lock(&dev_priv->rps.hw_lock);
1127                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1128                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1129                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1130
1131                 val = valleyview_rps_max_freq(dev_priv);
1132                 seq_printf(m, "max GPU freq: %d MHz\n",
1133                            vlv_gpu_freq(dev_priv, val));
1134
1135                 val = valleyview_rps_min_freq(dev_priv);
1136                 seq_printf(m, "min GPU freq: %d MHz\n",
1137                            vlv_gpu_freq(dev_priv, val));
1138
1139                 seq_printf(m, "current GPU freq: %d MHz\n",
1140                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1141                 mutex_unlock(&dev_priv->rps.hw_lock);
1142         } else {
1143                 seq_puts(m, "no P-state info available\n");
1144         }
1145
1146 out:
1147         intel_runtime_pm_put(dev_priv);
1148         return ret;
1149 }
1150
1151 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1152 {
1153         struct drm_info_node *node = m->private;
1154         struct drm_device *dev = node->minor->dev;
1155         struct drm_i915_private *dev_priv = dev->dev_private;
1156         u32 delayfreq;
1157         int ret, i;
1158
1159         ret = mutex_lock_interruptible(&dev->struct_mutex);
1160         if (ret)
1161                 return ret;
1162         intel_runtime_pm_get(dev_priv);
1163
1164         for (i = 0; i < 16; i++) {
1165                 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1166                 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1167                            (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1168         }
1169
1170         intel_runtime_pm_put(dev_priv);
1171
1172         mutex_unlock(&dev->struct_mutex);
1173
1174         return 0;
1175 }
1176
1177 static inline int MAP_TO_MV(int map)
1178 {
1179         return 1250 - (map * 25);
1180 }
1181
1182 static int i915_inttoext_table(struct seq_file *m, void *unused)
1183 {
1184         struct drm_info_node *node = m->private;
1185         struct drm_device *dev = node->minor->dev;
1186         struct drm_i915_private *dev_priv = dev->dev_private;
1187         u32 inttoext;
1188         int ret, i;
1189
1190         ret = mutex_lock_interruptible(&dev->struct_mutex);
1191         if (ret)
1192                 return ret;
1193         intel_runtime_pm_get(dev_priv);
1194
1195         for (i = 1; i <= 32; i++) {
1196                 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1197                 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1198         }
1199
1200         intel_runtime_pm_put(dev_priv);
1201         mutex_unlock(&dev->struct_mutex);
1202
1203         return 0;
1204 }
1205
1206 static int ironlake_drpc_info(struct seq_file *m)
1207 {
1208         struct drm_info_node *node = m->private;
1209         struct drm_device *dev = node->minor->dev;
1210         struct drm_i915_private *dev_priv = dev->dev_private;
1211         u32 rgvmodectl, rstdbyctl;
1212         u16 crstandvid;
1213         int ret;
1214
1215         ret = mutex_lock_interruptible(&dev->struct_mutex);
1216         if (ret)
1217                 return ret;
1218         intel_runtime_pm_get(dev_priv);
1219
1220         rgvmodectl = I915_READ(MEMMODECTL);
1221         rstdbyctl = I915_READ(RSTDBYCTL);
1222         crstandvid = I915_READ16(CRSTANDVID);
1223
1224         intel_runtime_pm_put(dev_priv);
1225         mutex_unlock(&dev->struct_mutex);
1226
1227         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1228                    "yes" : "no");
1229         seq_printf(m, "Boost freq: %d\n",
1230                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1231                    MEMMODE_BOOST_FREQ_SHIFT);
1232         seq_printf(m, "HW control enabled: %s\n",
1233                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1234         seq_printf(m, "SW control enabled: %s\n",
1235                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1236         seq_printf(m, "Gated voltage change: %s\n",
1237                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1238         seq_printf(m, "Starting frequency: P%d\n",
1239                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1240         seq_printf(m, "Max P-state: P%d\n",
1241                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1242         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1243         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1244         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1245         seq_printf(m, "Render standby enabled: %s\n",
1246                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1247         seq_puts(m, "Current RS state: ");
1248         switch (rstdbyctl & RSX_STATUS_MASK) {
1249         case RSX_STATUS_ON:
1250                 seq_puts(m, "on\n");
1251                 break;
1252         case RSX_STATUS_RC1:
1253                 seq_puts(m, "RC1\n");
1254                 break;
1255         case RSX_STATUS_RC1E:
1256                 seq_puts(m, "RC1E\n");
1257                 break;
1258         case RSX_STATUS_RS1:
1259                 seq_puts(m, "RS1\n");
1260                 break;
1261         case RSX_STATUS_RS2:
1262                 seq_puts(m, "RS2 (RC6)\n");
1263                 break;
1264         case RSX_STATUS_RS3:
1265                 seq_puts(m, "RC3 (RC6+)\n");
1266                 break;
1267         default:
1268                 seq_puts(m, "unknown\n");
1269                 break;
1270         }
1271
1272         return 0;
1273 }
1274
1275 static int vlv_drpc_info(struct seq_file *m)
1276 {
1277
1278         struct drm_info_node *node = m->private;
1279         struct drm_device *dev = node->minor->dev;
1280         struct drm_i915_private *dev_priv = dev->dev_private;
1281         u32 rpmodectl1, rcctl1;
1282         unsigned fw_rendercount = 0, fw_mediacount = 0;
1283
1284         intel_runtime_pm_get(dev_priv);
1285
1286         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1287         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1288
1289         intel_runtime_pm_put(dev_priv);
1290
1291         seq_printf(m, "Video Turbo Mode: %s\n",
1292                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1293         seq_printf(m, "Turbo enabled: %s\n",
1294                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1295         seq_printf(m, "HW control enabled: %s\n",
1296                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1297         seq_printf(m, "SW control enabled: %s\n",
1298                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1299                           GEN6_RP_MEDIA_SW_MODE));
1300         seq_printf(m, "RC6 Enabled: %s\n",
1301                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1302                                         GEN6_RC_CTL_EI_MODE(1))));
1303         seq_printf(m, "Render Power Well: %s\n",
1304                         (I915_READ(VLV_GTLC_PW_STATUS) &
1305                                 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1306         seq_printf(m, "Media Power Well: %s\n",
1307                         (I915_READ(VLV_GTLC_PW_STATUS) &
1308                                 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1309
1310         seq_printf(m, "Render RC6 residency since boot: %u\n",
1311                    I915_READ(VLV_GT_RENDER_RC6));
1312         seq_printf(m, "Media RC6 residency since boot: %u\n",
1313                    I915_READ(VLV_GT_MEDIA_RC6));
1314
1315         spin_lock_irq(&dev_priv->uncore.lock);
1316         fw_rendercount = dev_priv->uncore.fw_rendercount;
1317         fw_mediacount = dev_priv->uncore.fw_mediacount;
1318         spin_unlock_irq(&dev_priv->uncore.lock);
1319
1320         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1321         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1322
1323
1324         return 0;
1325 }
1326
1327
1328 static int gen6_drpc_info(struct seq_file *m)
1329 {
1330
1331         struct drm_info_node *node = m->private;
1332         struct drm_device *dev = node->minor->dev;
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1335         unsigned forcewake_count;
1336         int count = 0, ret;
1337
1338         ret = mutex_lock_interruptible(&dev->struct_mutex);
1339         if (ret)
1340                 return ret;
1341         intel_runtime_pm_get(dev_priv);
1342
1343         spin_lock_irq(&dev_priv->uncore.lock);
1344         forcewake_count = dev_priv->uncore.forcewake_count;
1345         spin_unlock_irq(&dev_priv->uncore.lock);
1346
1347         if (forcewake_count) {
1348                 seq_puts(m, "RC information inaccurate because somebody "
1349                             "holds a forcewake reference \n");
1350         } else {
1351                 /* NB: we cannot use forcewake, else we read the wrong values */
1352                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1353                         udelay(10);
1354                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1355         }
1356
1357         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1358         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1359
1360         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1361         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1362         mutex_unlock(&dev->struct_mutex);
1363         mutex_lock(&dev_priv->rps.hw_lock);
1364         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1365         mutex_unlock(&dev_priv->rps.hw_lock);
1366
1367         intel_runtime_pm_put(dev_priv);
1368
1369         seq_printf(m, "Video Turbo Mode: %s\n",
1370                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1371         seq_printf(m, "HW control enabled: %s\n",
1372                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1373         seq_printf(m, "SW control enabled: %s\n",
1374                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1375                           GEN6_RP_MEDIA_SW_MODE));
1376         seq_printf(m, "RC1e Enabled: %s\n",
1377                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1378         seq_printf(m, "RC6 Enabled: %s\n",
1379                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1380         seq_printf(m, "Deep RC6 Enabled: %s\n",
1381                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1382         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1383                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1384         seq_puts(m, "Current RC state: ");
1385         switch (gt_core_status & GEN6_RCn_MASK) {
1386         case GEN6_RC0:
1387                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1388                         seq_puts(m, "Core Power Down\n");
1389                 else
1390                         seq_puts(m, "on\n");
1391                 break;
1392         case GEN6_RC3:
1393                 seq_puts(m, "RC3\n");
1394                 break;
1395         case GEN6_RC6:
1396                 seq_puts(m, "RC6\n");
1397                 break;
1398         case GEN6_RC7:
1399                 seq_puts(m, "RC7\n");
1400                 break;
1401         default:
1402                 seq_puts(m, "Unknown\n");
1403                 break;
1404         }
1405
1406         seq_printf(m, "Core Power Down: %s\n",
1407                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1408
1409         /* Not exactly sure what this is */
1410         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1411                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1412         seq_printf(m, "RC6 residency since boot: %u\n",
1413                    I915_READ(GEN6_GT_GFX_RC6));
1414         seq_printf(m, "RC6+ residency since boot: %u\n",
1415                    I915_READ(GEN6_GT_GFX_RC6p));
1416         seq_printf(m, "RC6++ residency since boot: %u\n",
1417                    I915_READ(GEN6_GT_GFX_RC6pp));
1418
1419         seq_printf(m, "RC6   voltage: %dmV\n",
1420                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1421         seq_printf(m, "RC6+  voltage: %dmV\n",
1422                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1423         seq_printf(m, "RC6++ voltage: %dmV\n",
1424                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1425         return 0;
1426 }
1427
1428 static int i915_drpc_info(struct seq_file *m, void *unused)
1429 {
1430         struct drm_info_node *node = m->private;
1431         struct drm_device *dev = node->minor->dev;
1432
1433         if (IS_VALLEYVIEW(dev))
1434                 return vlv_drpc_info(m);
1435         else if (IS_GEN6(dev) || IS_GEN7(dev))
1436                 return gen6_drpc_info(m);
1437         else
1438                 return ironlake_drpc_info(m);
1439 }
1440
1441 static int i915_fbc_status(struct seq_file *m, void *unused)
1442 {
1443         struct drm_info_node *node = m->private;
1444         struct drm_device *dev = node->minor->dev;
1445         struct drm_i915_private *dev_priv = dev->dev_private;
1446
1447         if (!HAS_FBC(dev)) {
1448                 seq_puts(m, "FBC unsupported on this chipset\n");
1449                 return 0;
1450         }
1451
1452         intel_runtime_pm_get(dev_priv);
1453
1454         if (intel_fbc_enabled(dev)) {
1455                 seq_puts(m, "FBC enabled\n");
1456         } else {
1457                 seq_puts(m, "FBC disabled: ");
1458                 switch (dev_priv->fbc.no_fbc_reason) {
1459                 case FBC_OK:
1460                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1461                         break;
1462                 case FBC_UNSUPPORTED:
1463                         seq_puts(m, "unsupported by this chipset");
1464                         break;
1465                 case FBC_NO_OUTPUT:
1466                         seq_puts(m, "no outputs");
1467                         break;
1468                 case FBC_STOLEN_TOO_SMALL:
1469                         seq_puts(m, "not enough stolen memory");
1470                         break;
1471                 case FBC_UNSUPPORTED_MODE:
1472                         seq_puts(m, "mode not supported");
1473                         break;
1474                 case FBC_MODE_TOO_LARGE:
1475                         seq_puts(m, "mode too large");
1476                         break;
1477                 case FBC_BAD_PLANE:
1478                         seq_puts(m, "FBC unsupported on plane");
1479                         break;
1480                 case FBC_NOT_TILED:
1481                         seq_puts(m, "scanout buffer not tiled");
1482                         break;
1483                 case FBC_MULTIPLE_PIPES:
1484                         seq_puts(m, "multiple pipes are enabled");
1485                         break;
1486                 case FBC_MODULE_PARAM:
1487                         seq_puts(m, "disabled per module param (default off)");
1488                         break;
1489                 case FBC_CHIP_DEFAULT:
1490                         seq_puts(m, "disabled per chip default");
1491                         break;
1492                 default:
1493                         seq_puts(m, "unknown reason");
1494                 }
1495                 seq_putc(m, '\n');
1496         }
1497
1498         intel_runtime_pm_put(dev_priv);
1499
1500         return 0;
1501 }
1502
1503 static int i915_ips_status(struct seq_file *m, void *unused)
1504 {
1505         struct drm_info_node *node = m->private;
1506         struct drm_device *dev = node->minor->dev;
1507         struct drm_i915_private *dev_priv = dev->dev_private;
1508
1509         if (!HAS_IPS(dev)) {
1510                 seq_puts(m, "not supported\n");
1511                 return 0;
1512         }
1513
1514         intel_runtime_pm_get(dev_priv);
1515
1516         if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
1517                 seq_puts(m, "enabled\n");
1518         else
1519                 seq_puts(m, "disabled\n");
1520
1521         intel_runtime_pm_put(dev_priv);
1522
1523         return 0;
1524 }
1525
1526 static int i915_sr_status(struct seq_file *m, void *unused)
1527 {
1528         struct drm_info_node *node = m->private;
1529         struct drm_device *dev = node->minor->dev;
1530         struct drm_i915_private *dev_priv = dev->dev_private;
1531         bool sr_enabled = false;
1532
1533         intel_runtime_pm_get(dev_priv);
1534
1535         if (HAS_PCH_SPLIT(dev))
1536                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1537         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1538                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1539         else if (IS_I915GM(dev))
1540                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1541         else if (IS_PINEVIEW(dev))
1542                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1543
1544         intel_runtime_pm_put(dev_priv);
1545
1546         seq_printf(m, "self-refresh: %s\n",
1547                    sr_enabled ? "enabled" : "disabled");
1548
1549         return 0;
1550 }
1551
1552 static int i915_emon_status(struct seq_file *m, void *unused)
1553 {
1554         struct drm_info_node *node = m->private;
1555         struct drm_device *dev = node->minor->dev;
1556         struct drm_i915_private *dev_priv = dev->dev_private;
1557         unsigned long temp, chipset, gfx;
1558         int ret;
1559
1560         if (!IS_GEN5(dev))
1561                 return -ENODEV;
1562
1563         ret = mutex_lock_interruptible(&dev->struct_mutex);
1564         if (ret)
1565                 return ret;
1566
1567         temp = i915_mch_val(dev_priv);
1568         chipset = i915_chipset_val(dev_priv);
1569         gfx = i915_gfx_val(dev_priv);
1570         mutex_unlock(&dev->struct_mutex);
1571
1572         seq_printf(m, "GMCH temp: %ld\n", temp);
1573         seq_printf(m, "Chipset power: %ld\n", chipset);
1574         seq_printf(m, "GFX power: %ld\n", gfx);
1575         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1576
1577         return 0;
1578 }
1579
1580 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1581 {
1582         struct drm_info_node *node = m->private;
1583         struct drm_device *dev = node->minor->dev;
1584         struct drm_i915_private *dev_priv = dev->dev_private;
1585         int ret = 0;
1586         int gpu_freq, ia_freq;
1587
1588         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1589                 seq_puts(m, "unsupported on this chipset\n");
1590                 return 0;
1591         }
1592
1593         intel_runtime_pm_get(dev_priv);
1594
1595         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1596
1597         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1598         if (ret)
1599                 goto out;
1600
1601         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1602
1603         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1604              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1605              gpu_freq++) {
1606                 ia_freq = gpu_freq;
1607                 sandybridge_pcode_read(dev_priv,
1608                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1609                                        &ia_freq);
1610                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1611                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1612                            ((ia_freq >> 0) & 0xff) * 100,
1613                            ((ia_freq >> 8) & 0xff) * 100);
1614         }
1615
1616         mutex_unlock(&dev_priv->rps.hw_lock);
1617
1618 out:
1619         intel_runtime_pm_put(dev_priv);
1620         return ret;
1621 }
1622
1623 static int i915_gfxec(struct seq_file *m, void *unused)
1624 {
1625         struct drm_info_node *node = m->private;
1626         struct drm_device *dev = node->minor->dev;
1627         struct drm_i915_private *dev_priv = dev->dev_private;
1628         int ret;
1629
1630         ret = mutex_lock_interruptible(&dev->struct_mutex);
1631         if (ret)
1632                 return ret;
1633         intel_runtime_pm_get(dev_priv);
1634
1635         seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1636         intel_runtime_pm_put(dev_priv);
1637
1638         mutex_unlock(&dev->struct_mutex);
1639
1640         return 0;
1641 }
1642
1643 static int i915_opregion(struct seq_file *m, void *unused)
1644 {
1645         struct drm_info_node *node = m->private;
1646         struct drm_device *dev = node->minor->dev;
1647         struct drm_i915_private *dev_priv = dev->dev_private;
1648         struct intel_opregion *opregion = &dev_priv->opregion;
1649         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1650         int ret;
1651
1652         if (data == NULL)
1653                 return -ENOMEM;
1654
1655         ret = mutex_lock_interruptible(&dev->struct_mutex);
1656         if (ret)
1657                 goto out;
1658
1659         if (opregion->header) {
1660                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1661                 seq_write(m, data, OPREGION_SIZE);
1662         }
1663
1664         mutex_unlock(&dev->struct_mutex);
1665
1666 out:
1667         kfree(data);
1668         return 0;
1669 }
1670
1671 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1672 {
1673         struct drm_info_node *node = m->private;
1674         struct drm_device *dev = node->minor->dev;
1675         struct intel_fbdev *ifbdev = NULL;
1676         struct intel_framebuffer *fb;
1677
1678 #ifdef CONFIG_DRM_I915_FBDEV
1679         struct drm_i915_private *dev_priv = dev->dev_private;
1680         int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1681         if (ret)
1682                 return ret;
1683
1684         ifbdev = dev_priv->fbdev;
1685         fb = to_intel_framebuffer(ifbdev->helper.fb);
1686
1687         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1688                    fb->base.width,
1689                    fb->base.height,
1690                    fb->base.depth,
1691                    fb->base.bits_per_pixel,
1692                    atomic_read(&fb->base.refcount.refcount));
1693         describe_obj(m, fb->obj);
1694         seq_putc(m, '\n');
1695         mutex_unlock(&dev->mode_config.mutex);
1696 #endif
1697
1698         mutex_lock(&dev->mode_config.fb_lock);
1699         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1700                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1701                         continue;
1702
1703                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1704                            fb->base.width,
1705                            fb->base.height,
1706                            fb->base.depth,
1707                            fb->base.bits_per_pixel,
1708                            atomic_read(&fb->base.refcount.refcount));
1709                 describe_obj(m, fb->obj);
1710                 seq_putc(m, '\n');
1711         }
1712         mutex_unlock(&dev->mode_config.fb_lock);
1713
1714         return 0;
1715 }
1716
1717 static int i915_context_status(struct seq_file *m, void *unused)
1718 {
1719         struct drm_info_node *node = m->private;
1720         struct drm_device *dev = node->minor->dev;
1721         struct drm_i915_private *dev_priv = dev->dev_private;
1722         struct intel_engine_cs *ring;
1723         struct intel_context *ctx;
1724         int ret, i;
1725
1726         ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1727         if (ret)
1728                 return ret;
1729
1730         if (dev_priv->ips.pwrctx) {
1731                 seq_puts(m, "power context ");
1732                 describe_obj(m, dev_priv->ips.pwrctx);
1733                 seq_putc(m, '\n');
1734         }
1735
1736         if (dev_priv->ips.renderctx) {
1737                 seq_puts(m, "render context ");
1738                 describe_obj(m, dev_priv->ips.renderctx);
1739                 seq_putc(m, '\n');
1740         }
1741
1742         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1743                 if (ctx->obj == NULL)
1744                         continue;
1745
1746                 seq_puts(m, "HW context ");
1747                 describe_ctx(m, ctx);
1748                 for_each_ring(ring, dev_priv, i)
1749                         if (ring->default_context == ctx)
1750                                 seq_printf(m, "(default context %s) ", ring->name);
1751
1752                 describe_obj(m, ctx->obj);
1753                 seq_putc(m, '\n');
1754         }
1755
1756         mutex_unlock(&dev->mode_config.mutex);
1757
1758         return 0;
1759 }
1760
1761 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1762 {
1763         struct drm_info_node *node = m->private;
1764         struct drm_device *dev = node->minor->dev;
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1767
1768         spin_lock_irq(&dev_priv->uncore.lock);
1769         if (IS_VALLEYVIEW(dev)) {
1770                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1771                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1772         } else
1773                 forcewake_count = dev_priv->uncore.forcewake_count;
1774         spin_unlock_irq(&dev_priv->uncore.lock);
1775
1776         if (IS_VALLEYVIEW(dev)) {
1777                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1778                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1779         } else
1780                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1781
1782         return 0;
1783 }
1784
1785 static const char *swizzle_string(unsigned swizzle)
1786 {
1787         switch (swizzle) {
1788         case I915_BIT_6_SWIZZLE_NONE:
1789                 return "none";
1790         case I915_BIT_6_SWIZZLE_9:
1791                 return "bit9";
1792         case I915_BIT_6_SWIZZLE_9_10:
1793                 return "bit9/bit10";
1794         case I915_BIT_6_SWIZZLE_9_11:
1795                 return "bit9/bit11";
1796         case I915_BIT_6_SWIZZLE_9_10_11:
1797                 return "bit9/bit10/bit11";
1798         case I915_BIT_6_SWIZZLE_9_17:
1799                 return "bit9/bit17";
1800         case I915_BIT_6_SWIZZLE_9_10_17:
1801                 return "bit9/bit10/bit17";
1802         case I915_BIT_6_SWIZZLE_UNKNOWN:
1803                 return "unknown";
1804         }
1805
1806         return "bug";
1807 }
1808
1809 static int i915_swizzle_info(struct seq_file *m, void *data)
1810 {
1811         struct drm_info_node *node = m->private;
1812         struct drm_device *dev = node->minor->dev;
1813         struct drm_i915_private *dev_priv = dev->dev_private;
1814         int ret;
1815
1816         ret = mutex_lock_interruptible(&dev->struct_mutex);
1817         if (ret)
1818                 return ret;
1819         intel_runtime_pm_get(dev_priv);
1820
1821         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1822                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1823         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1824                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1825
1826         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1827                 seq_printf(m, "DDC = 0x%08x\n",
1828                            I915_READ(DCC));
1829                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1830                            I915_READ16(C0DRB3));
1831                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1832                            I915_READ16(C1DRB3));
1833         } else if (INTEL_INFO(dev)->gen >= 6) {
1834                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1835                            I915_READ(MAD_DIMM_C0));
1836                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1837                            I915_READ(MAD_DIMM_C1));
1838                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1839                            I915_READ(MAD_DIMM_C2));
1840                 seq_printf(m, "TILECTL = 0x%08x\n",
1841                            I915_READ(TILECTL));
1842                 if (IS_GEN8(dev))
1843                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1844                                    I915_READ(GAMTARBMODE));
1845                 else
1846                         seq_printf(m, "ARB_MODE = 0x%08x\n",
1847                                    I915_READ(ARB_MODE));
1848                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1849                            I915_READ(DISP_ARB_CTL));
1850         }
1851         intel_runtime_pm_put(dev_priv);
1852         mutex_unlock(&dev->struct_mutex);
1853
1854         return 0;
1855 }
1856
1857 static int per_file_ctx(int id, void *ptr, void *data)
1858 {
1859         struct intel_context *ctx = ptr;
1860         struct seq_file *m = data;
1861         struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
1862
1863         if (i915_gem_context_is_default(ctx))
1864                 seq_puts(m, "  default context:\n");
1865         else
1866                 seq_printf(m, "  context %d:\n", ctx->id);
1867         ppgtt->debug_dump(ppgtt, m);
1868
1869         return 0;
1870 }
1871
1872 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1873 {
1874         struct drm_i915_private *dev_priv = dev->dev_private;
1875         struct intel_engine_cs *ring;
1876         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1877         int unused, i;
1878
1879         if (!ppgtt)
1880                 return;
1881
1882         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1883         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
1884         for_each_ring(ring, dev_priv, unused) {
1885                 seq_printf(m, "%s\n", ring->name);
1886                 for (i = 0; i < 4; i++) {
1887                         u32 offset = 0x270 + i * 8;
1888                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1889                         pdp <<= 32;
1890                         pdp |= I915_READ(ring->mmio_base + offset);
1891                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1892                 }
1893         }
1894 }
1895
1896 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1897 {
1898         struct drm_i915_private *dev_priv = dev->dev_private;
1899         struct intel_engine_cs *ring;
1900         struct drm_file *file;
1901         int i;
1902
1903         if (INTEL_INFO(dev)->gen == 6)
1904                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1905
1906         for_each_ring(ring, dev_priv, i) {
1907                 seq_printf(m, "%s\n", ring->name);
1908                 if (INTEL_INFO(dev)->gen == 7)
1909                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1910                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1911                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1912                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1913         }
1914         if (dev_priv->mm.aliasing_ppgtt) {
1915                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1916
1917                 seq_puts(m, "aliasing PPGTT:\n");
1918                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1919
1920                 ppgtt->debug_dump(ppgtt, m);
1921         } else
1922                 return;
1923
1924         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
1925                 struct drm_i915_file_private *file_priv = file->driver_priv;
1926
1927                 seq_printf(m, "proc: %s\n",
1928                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
1929                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
1930         }
1931         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1932 }
1933
1934 static int i915_ppgtt_info(struct seq_file *m, void *data)
1935 {
1936         struct drm_info_node *node = m->private;
1937         struct drm_device *dev = node->minor->dev;
1938         struct drm_i915_private *dev_priv = dev->dev_private;
1939
1940         int ret = mutex_lock_interruptible(&dev->struct_mutex);
1941         if (ret)
1942                 return ret;
1943         intel_runtime_pm_get(dev_priv);
1944
1945         if (INTEL_INFO(dev)->gen >= 8)
1946                 gen8_ppgtt_info(m, dev);
1947         else if (INTEL_INFO(dev)->gen >= 6)
1948                 gen6_ppgtt_info(m, dev);
1949
1950         intel_runtime_pm_put(dev_priv);
1951         mutex_unlock(&dev->struct_mutex);
1952
1953         return 0;
1954 }
1955
1956 static int i915_llc(struct seq_file *m, void *data)
1957 {
1958         struct drm_info_node *node = m->private;
1959         struct drm_device *dev = node->minor->dev;
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961
1962         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
1963         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1964         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1965
1966         return 0;
1967 }
1968
1969 static int i915_edp_psr_status(struct seq_file *m, void *data)
1970 {
1971         struct drm_info_node *node = m->private;
1972         struct drm_device *dev = node->minor->dev;
1973         struct drm_i915_private *dev_priv = dev->dev_private;
1974         u32 psrperf = 0;
1975         bool enabled = false;
1976
1977         intel_runtime_pm_get(dev_priv);
1978
1979         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1980         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1981
1982         enabled = HAS_PSR(dev) &&
1983                 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1984         seq_printf(m, "Enabled: %s\n", yesno(enabled));
1985
1986         if (HAS_PSR(dev))
1987                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1988                         EDP_PSR_PERF_CNT_MASK;
1989         seq_printf(m, "Performance_Counter: %u\n", psrperf);
1990
1991         intel_runtime_pm_put(dev_priv);
1992         return 0;
1993 }
1994
1995 static int i915_sink_crc(struct seq_file *m, void *data)
1996 {
1997         struct drm_info_node *node = m->private;
1998         struct drm_device *dev = node->minor->dev;
1999         struct intel_encoder *encoder;
2000         struct intel_connector *connector;
2001         struct intel_dp *intel_dp = NULL;
2002         int ret;
2003         u8 crc[6];
2004
2005         drm_modeset_lock_all(dev);
2006         list_for_each_entry(connector, &dev->mode_config.connector_list,
2007                             base.head) {
2008
2009                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2010                         continue;
2011
2012                 if (!connector->base.encoder)
2013                         continue;
2014
2015                 encoder = to_intel_encoder(connector->base.encoder);
2016                 if (encoder->type != INTEL_OUTPUT_EDP)
2017                         continue;
2018
2019                 intel_dp = enc_to_intel_dp(&encoder->base);
2020
2021                 ret = intel_dp_sink_crc(intel_dp, crc);
2022                 if (ret)
2023                         goto out;
2024
2025                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2026                            crc[0], crc[1], crc[2],
2027                            crc[3], crc[4], crc[5]);
2028                 goto out;
2029         }
2030         ret = -ENODEV;
2031 out:
2032         drm_modeset_unlock_all(dev);
2033         return ret;
2034 }
2035
2036 static int i915_energy_uJ(struct seq_file *m, void *data)
2037 {
2038         struct drm_info_node *node = m->private;
2039         struct drm_device *dev = node->minor->dev;
2040         struct drm_i915_private *dev_priv = dev->dev_private;
2041         u64 power;
2042         u32 units;
2043
2044         if (INTEL_INFO(dev)->gen < 6)
2045                 return -ENODEV;
2046
2047         intel_runtime_pm_get(dev_priv);
2048
2049         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2050         power = (power & 0x1f00) >> 8;
2051         units = 1000000 / (1 << power); /* convert to uJ */
2052         power = I915_READ(MCH_SECP_NRG_STTS);
2053         power *= units;
2054
2055         intel_runtime_pm_put(dev_priv);
2056
2057         seq_printf(m, "%llu", (long long unsigned)power);
2058
2059         return 0;
2060 }
2061
2062 static int i915_pc8_status(struct seq_file *m, void *unused)
2063 {
2064         struct drm_info_node *node = m->private;
2065         struct drm_device *dev = node->minor->dev;
2066         struct drm_i915_private *dev_priv = dev->dev_private;
2067
2068         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2069                 seq_puts(m, "not supported\n");
2070                 return 0;
2071         }
2072
2073         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2074         seq_printf(m, "IRQs disabled: %s\n",
2075                    yesno(dev_priv->pm.irqs_disabled));
2076
2077         return 0;
2078 }
2079
2080 static const char *power_domain_str(enum intel_display_power_domain domain)
2081 {
2082         switch (domain) {
2083         case POWER_DOMAIN_PIPE_A:
2084                 return "PIPE_A";
2085         case POWER_DOMAIN_PIPE_B:
2086                 return "PIPE_B";
2087         case POWER_DOMAIN_PIPE_C:
2088                 return "PIPE_C";
2089         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2090                 return "PIPE_A_PANEL_FITTER";
2091         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2092                 return "PIPE_B_PANEL_FITTER";
2093         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2094                 return "PIPE_C_PANEL_FITTER";
2095         case POWER_DOMAIN_TRANSCODER_A:
2096                 return "TRANSCODER_A";
2097         case POWER_DOMAIN_TRANSCODER_B:
2098                 return "TRANSCODER_B";
2099         case POWER_DOMAIN_TRANSCODER_C:
2100                 return "TRANSCODER_C";
2101         case POWER_DOMAIN_TRANSCODER_EDP:
2102                 return "TRANSCODER_EDP";
2103         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2104                 return "PORT_DDI_A_2_LANES";
2105         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2106                 return "PORT_DDI_A_4_LANES";
2107         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2108                 return "PORT_DDI_B_2_LANES";
2109         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2110                 return "PORT_DDI_B_4_LANES";
2111         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2112                 return "PORT_DDI_C_2_LANES";
2113         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2114                 return "PORT_DDI_C_4_LANES";
2115         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2116                 return "PORT_DDI_D_2_LANES";
2117         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2118                 return "PORT_DDI_D_4_LANES";
2119         case POWER_DOMAIN_PORT_DSI:
2120                 return "PORT_DSI";
2121         case POWER_DOMAIN_PORT_CRT:
2122                 return "PORT_CRT";
2123         case POWER_DOMAIN_PORT_OTHER:
2124                 return "PORT_OTHER";
2125         case POWER_DOMAIN_VGA:
2126                 return "VGA";
2127         case POWER_DOMAIN_AUDIO:
2128                 return "AUDIO";
2129         case POWER_DOMAIN_INIT:
2130                 return "INIT";
2131         default:
2132                 WARN_ON(1);
2133                 return "?";
2134         }
2135 }
2136
2137 static int i915_power_domain_info(struct seq_file *m, void *unused)
2138 {
2139         struct drm_info_node *node = m->private;
2140         struct drm_device *dev = node->minor->dev;
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2143         int i;
2144
2145         mutex_lock(&power_domains->lock);
2146
2147         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2148         for (i = 0; i < power_domains->power_well_count; i++) {
2149                 struct i915_power_well *power_well;
2150                 enum intel_display_power_domain power_domain;
2151
2152                 power_well = &power_domains->power_wells[i];
2153                 seq_printf(m, "%-25s %d\n", power_well->name,
2154                            power_well->count);
2155
2156                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2157                      power_domain++) {
2158                         if (!(BIT(power_domain) & power_well->domains))
2159                                 continue;
2160
2161                         seq_printf(m, "  %-23s %d\n",
2162                                  power_domain_str(power_domain),
2163                                  power_domains->domain_use_count[power_domain]);
2164                 }
2165         }
2166
2167         mutex_unlock(&power_domains->lock);
2168
2169         return 0;
2170 }
2171
2172 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2173                                  struct drm_display_mode *mode)
2174 {
2175         int i;
2176
2177         for (i = 0; i < tabs; i++)
2178                 seq_putc(m, '\t');
2179
2180         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2181                    mode->base.id, mode->name,
2182                    mode->vrefresh, mode->clock,
2183                    mode->hdisplay, mode->hsync_start,
2184                    mode->hsync_end, mode->htotal,
2185                    mode->vdisplay, mode->vsync_start,
2186                    mode->vsync_end, mode->vtotal,
2187                    mode->type, mode->flags);
2188 }
2189
2190 static void intel_encoder_info(struct seq_file *m,
2191                                struct intel_crtc *intel_crtc,
2192                                struct intel_encoder *intel_encoder)
2193 {
2194         struct drm_info_node *node = m->private;
2195         struct drm_device *dev = node->minor->dev;
2196         struct drm_crtc *crtc = &intel_crtc->base;
2197         struct intel_connector *intel_connector;
2198         struct drm_encoder *encoder;
2199
2200         encoder = &intel_encoder->base;
2201         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2202                    encoder->base.id, encoder->name);
2203         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2204                 struct drm_connector *connector = &intel_connector->base;
2205                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2206                            connector->base.id,
2207                            connector->name,
2208                            drm_get_connector_status_name(connector->status));
2209                 if (connector->status == connector_status_connected) {
2210                         struct drm_display_mode *mode = &crtc->mode;
2211                         seq_printf(m, ", mode:\n");
2212                         intel_seq_print_mode(m, 2, mode);
2213                 } else {
2214                         seq_putc(m, '\n');
2215                 }
2216         }
2217 }
2218
2219 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2220 {
2221         struct drm_info_node *node = m->private;
2222         struct drm_device *dev = node->minor->dev;
2223         struct drm_crtc *crtc = &intel_crtc->base;
2224         struct intel_encoder *intel_encoder;
2225
2226         seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2227                    crtc->primary->fb->base.id, crtc->x, crtc->y,
2228                    crtc->primary->fb->width, crtc->primary->fb->height);
2229         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2230                 intel_encoder_info(m, intel_crtc, intel_encoder);
2231 }
2232
2233 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2234 {
2235         struct drm_display_mode *mode = panel->fixed_mode;
2236
2237         seq_printf(m, "\tfixed mode:\n");
2238         intel_seq_print_mode(m, 2, mode);
2239 }
2240
2241 static void intel_dp_info(struct seq_file *m,
2242                           struct intel_connector *intel_connector)
2243 {
2244         struct intel_encoder *intel_encoder = intel_connector->encoder;
2245         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2246
2247         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2248         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2249                    "no");
2250         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2251                 intel_panel_info(m, &intel_connector->panel);
2252 }
2253
2254 static void intel_hdmi_info(struct seq_file *m,
2255                             struct intel_connector *intel_connector)
2256 {
2257         struct intel_encoder *intel_encoder = intel_connector->encoder;
2258         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2259
2260         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2261                    "no");
2262 }
2263
2264 static void intel_lvds_info(struct seq_file *m,
2265                             struct intel_connector *intel_connector)
2266 {
2267         intel_panel_info(m, &intel_connector->panel);
2268 }
2269
2270 static void intel_connector_info(struct seq_file *m,
2271                                  struct drm_connector *connector)
2272 {
2273         struct intel_connector *intel_connector = to_intel_connector(connector);
2274         struct intel_encoder *intel_encoder = intel_connector->encoder;
2275         struct drm_display_mode *mode;
2276
2277         seq_printf(m, "connector %d: type %s, status: %s\n",
2278                    connector->base.id, connector->name,
2279                    drm_get_connector_status_name(connector->status));
2280         if (connector->status == connector_status_connected) {
2281                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2282                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2283                            connector->display_info.width_mm,
2284                            connector->display_info.height_mm);
2285                 seq_printf(m, "\tsubpixel order: %s\n",
2286                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2287                 seq_printf(m, "\tCEA rev: %d\n",
2288                            connector->display_info.cea_rev);
2289         }
2290         if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2291             intel_encoder->type == INTEL_OUTPUT_EDP)
2292                 intel_dp_info(m, intel_connector);
2293         else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2294                 intel_hdmi_info(m, intel_connector);
2295         else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2296                 intel_lvds_info(m, intel_connector);
2297
2298         seq_printf(m, "\tmodes:\n");
2299         list_for_each_entry(mode, &connector->modes, head)
2300                 intel_seq_print_mode(m, 2, mode);
2301 }
2302
2303 static bool cursor_active(struct drm_device *dev, int pipe)
2304 {
2305         struct drm_i915_private *dev_priv = dev->dev_private;
2306         u32 state;
2307
2308         if (IS_845G(dev) || IS_I865G(dev))
2309                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2310         else
2311                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2312
2313         return state;
2314 }
2315
2316 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2317 {
2318         struct drm_i915_private *dev_priv = dev->dev_private;
2319         u32 pos;
2320
2321         pos = I915_READ(CURPOS(pipe));
2322
2323         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2324         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2325                 *x = -*x;
2326
2327         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2328         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2329                 *y = -*y;
2330
2331         return cursor_active(dev, pipe);
2332 }
2333
2334 static int i915_display_info(struct seq_file *m, void *unused)
2335 {
2336         struct drm_info_node *node = m->private;
2337         struct drm_device *dev = node->minor->dev;
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         struct intel_crtc *crtc;
2340         struct drm_connector *connector;
2341
2342         intel_runtime_pm_get(dev_priv);
2343         drm_modeset_lock_all(dev);
2344         seq_printf(m, "CRTC info\n");
2345         seq_printf(m, "---------\n");
2346         for_each_intel_crtc(dev, crtc) {
2347                 bool active;
2348                 int x, y;
2349
2350                 seq_printf(m, "CRTC %d: pipe: %c, active: %s\n",
2351                            crtc->base.base.id, pipe_name(crtc->pipe),
2352                            yesno(crtc->active));
2353                 if (crtc->active) {
2354                         intel_crtc_info(m, crtc);
2355
2356                         active = cursor_position(dev, crtc->pipe, &x, &y);
2357                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), addr 0x%08x, active? %s\n",
2358                                    yesno(crtc->cursor_base),
2359                                    x, y, crtc->cursor_addr,
2360                                    yesno(active));
2361                 }
2362
2363                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2364                            yesno(!crtc->cpu_fifo_underrun_disabled),
2365                            yesno(!crtc->pch_fifo_underrun_disabled));
2366         }
2367
2368         seq_printf(m, "\n");
2369         seq_printf(m, "Connector info\n");
2370         seq_printf(m, "--------------\n");
2371         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2372                 intel_connector_info(m, connector);
2373         }
2374         drm_modeset_unlock_all(dev);
2375         intel_runtime_pm_put(dev_priv);
2376
2377         return 0;
2378 }
2379
2380 struct pipe_crc_info {
2381         const char *name;
2382         struct drm_device *dev;
2383         enum pipe pipe;
2384 };
2385
2386 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2387 {
2388         struct pipe_crc_info *info = inode->i_private;
2389         struct drm_i915_private *dev_priv = info->dev->dev_private;
2390         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2391
2392         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2393                 return -ENODEV;
2394
2395         spin_lock_irq(&pipe_crc->lock);
2396
2397         if (pipe_crc->opened) {
2398                 spin_unlock_irq(&pipe_crc->lock);
2399                 return -EBUSY; /* already open */
2400         }
2401
2402         pipe_crc->opened = true;
2403         filep->private_data = inode->i_private;
2404
2405         spin_unlock_irq(&pipe_crc->lock);
2406
2407         return 0;
2408 }
2409
2410 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2411 {
2412         struct pipe_crc_info *info = inode->i_private;
2413         struct drm_i915_private *dev_priv = info->dev->dev_private;
2414         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2415
2416         spin_lock_irq(&pipe_crc->lock);
2417         pipe_crc->opened = false;
2418         spin_unlock_irq(&pipe_crc->lock);
2419
2420         return 0;
2421 }
2422
2423 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2424 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2425 /* account for \'0' */
2426 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2427
2428 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2429 {
2430         assert_spin_locked(&pipe_crc->lock);
2431         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2432                         INTEL_PIPE_CRC_ENTRIES_NR);
2433 }
2434
2435 static ssize_t
2436 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2437                    loff_t *pos)
2438 {
2439         struct pipe_crc_info *info = filep->private_data;
2440         struct drm_device *dev = info->dev;
2441         struct drm_i915_private *dev_priv = dev->dev_private;
2442         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2443         char buf[PIPE_CRC_BUFFER_LEN];
2444         int head, tail, n_entries, n;
2445         ssize_t bytes_read;
2446
2447         /*
2448          * Don't allow user space to provide buffers not big enough to hold
2449          * a line of data.
2450          */
2451         if (count < PIPE_CRC_LINE_LEN)
2452                 return -EINVAL;
2453
2454         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2455                 return 0;
2456
2457         /* nothing to read */
2458         spin_lock_irq(&pipe_crc->lock);
2459         while (pipe_crc_data_count(pipe_crc) == 0) {
2460                 int ret;
2461
2462                 if (filep->f_flags & O_NONBLOCK) {
2463                         spin_unlock_irq(&pipe_crc->lock);
2464                         return -EAGAIN;
2465                 }
2466
2467                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2468                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2469                 if (ret) {
2470                         spin_unlock_irq(&pipe_crc->lock);
2471                         return ret;
2472                 }
2473         }
2474
2475         /* We now have one or more entries to read */
2476         head = pipe_crc->head;
2477         tail = pipe_crc->tail;
2478         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2479                         count / PIPE_CRC_LINE_LEN);
2480         spin_unlock_irq(&pipe_crc->lock);
2481
2482         bytes_read = 0;
2483         n = 0;
2484         do {
2485                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2486                 int ret;
2487
2488                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2489                                        "%8u %8x %8x %8x %8x %8x\n",
2490                                        entry->frame, entry->crc[0],
2491                                        entry->crc[1], entry->crc[2],
2492                                        entry->crc[3], entry->crc[4]);
2493
2494                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2495                                    buf, PIPE_CRC_LINE_LEN);
2496                 if (ret == PIPE_CRC_LINE_LEN)
2497                         return -EFAULT;
2498
2499                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2500                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2501                 n++;
2502         } while (--n_entries);
2503
2504         spin_lock_irq(&pipe_crc->lock);
2505         pipe_crc->tail = tail;
2506         spin_unlock_irq(&pipe_crc->lock);
2507
2508         return bytes_read;
2509 }
2510
2511 static const struct file_operations i915_pipe_crc_fops = {
2512         .owner = THIS_MODULE,
2513         .open = i915_pipe_crc_open,
2514         .read = i915_pipe_crc_read,
2515         .release = i915_pipe_crc_release,
2516 };
2517
2518 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2519         {
2520                 .name = "i915_pipe_A_crc",
2521                 .pipe = PIPE_A,
2522         },
2523         {
2524                 .name = "i915_pipe_B_crc",
2525                 .pipe = PIPE_B,
2526         },
2527         {
2528                 .name = "i915_pipe_C_crc",
2529                 .pipe = PIPE_C,
2530         },
2531 };
2532
2533 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2534                                 enum pipe pipe)
2535 {
2536         struct drm_device *dev = minor->dev;
2537         struct dentry *ent;
2538         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2539
2540         info->dev = dev;
2541         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2542                                   &i915_pipe_crc_fops);
2543         if (!ent)
2544                 return -ENOMEM;
2545
2546         return drm_add_fake_info_node(minor, ent, info);
2547 }
2548
2549 static const char * const pipe_crc_sources[] = {
2550         "none",
2551         "plane1",
2552         "plane2",
2553         "pf",
2554         "pipe",
2555         "TV",
2556         "DP-B",
2557         "DP-C",
2558         "DP-D",
2559         "auto",
2560 };
2561
2562 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2563 {
2564         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2565         return pipe_crc_sources[source];
2566 }
2567
2568 static int display_crc_ctl_show(struct seq_file *m, void *data)
2569 {
2570         struct drm_device *dev = m->private;
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572         int i;
2573
2574         for (i = 0; i < I915_MAX_PIPES; i++)
2575                 seq_printf(m, "%c %s\n", pipe_name(i),
2576                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2577
2578         return 0;
2579 }
2580
2581 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2582 {
2583         struct drm_device *dev = inode->i_private;
2584
2585         return single_open(file, display_crc_ctl_show, dev);
2586 }
2587
2588 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2589                                  uint32_t *val)
2590 {
2591         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2592                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2593
2594         switch (*source) {
2595         case INTEL_PIPE_CRC_SOURCE_PIPE:
2596                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2597                 break;
2598         case INTEL_PIPE_CRC_SOURCE_NONE:
2599                 *val = 0;
2600                 break;
2601         default:
2602                 return -EINVAL;
2603         }
2604
2605         return 0;
2606 }
2607
2608 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2609                                      enum intel_pipe_crc_source *source)
2610 {
2611         struct intel_encoder *encoder;
2612         struct intel_crtc *crtc;
2613         struct intel_digital_port *dig_port;
2614         int ret = 0;
2615
2616         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2617
2618         drm_modeset_lock_all(dev);
2619         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2620                             base.head) {
2621                 if (!encoder->base.crtc)
2622                         continue;
2623
2624                 crtc = to_intel_crtc(encoder->base.crtc);
2625
2626                 if (crtc->pipe != pipe)
2627                         continue;
2628
2629                 switch (encoder->type) {
2630                 case INTEL_OUTPUT_TVOUT:
2631                         *source = INTEL_PIPE_CRC_SOURCE_TV;
2632                         break;
2633                 case INTEL_OUTPUT_DISPLAYPORT:
2634                 case INTEL_OUTPUT_EDP:
2635                         dig_port = enc_to_dig_port(&encoder->base);
2636                         switch (dig_port->port) {
2637                         case PORT_B:
2638                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2639                                 break;
2640                         case PORT_C:
2641                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2642                                 break;
2643                         case PORT_D:
2644                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2645                                 break;
2646                         default:
2647                                 WARN(1, "nonexisting DP port %c\n",
2648                                      port_name(dig_port->port));
2649                                 break;
2650                         }
2651                         break;
2652                 }
2653         }
2654         drm_modeset_unlock_all(dev);
2655
2656         return ret;
2657 }
2658
2659 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2660                                 enum pipe pipe,
2661                                 enum intel_pipe_crc_source *source,
2662                                 uint32_t *val)
2663 {
2664         struct drm_i915_private *dev_priv = dev->dev_private;
2665         bool need_stable_symbols = false;
2666
2667         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2668                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2669                 if (ret)
2670                         return ret;
2671         }
2672
2673         switch (*source) {
2674         case INTEL_PIPE_CRC_SOURCE_PIPE:
2675                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2676                 break;
2677         case INTEL_PIPE_CRC_SOURCE_DP_B:
2678                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2679                 need_stable_symbols = true;
2680                 break;
2681         case INTEL_PIPE_CRC_SOURCE_DP_C:
2682                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2683                 need_stable_symbols = true;
2684                 break;
2685         case INTEL_PIPE_CRC_SOURCE_NONE:
2686                 *val = 0;
2687                 break;
2688         default:
2689                 return -EINVAL;
2690         }
2691
2692         /*
2693          * When the pipe CRC tap point is after the transcoders we need
2694          * to tweak symbol-level features to produce a deterministic series of
2695          * symbols for a given frame. We need to reset those features only once
2696          * a frame (instead of every nth symbol):
2697          *   - DC-balance: used to ensure a better clock recovery from the data
2698          *     link (SDVO)
2699          *   - DisplayPort scrambling: used for EMI reduction
2700          */
2701         if (need_stable_symbols) {
2702                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2703
2704                 tmp |= DC_BALANCE_RESET_VLV;
2705                 if (pipe == PIPE_A)
2706                         tmp |= PIPE_A_SCRAMBLE_RESET;
2707                 else
2708                         tmp |= PIPE_B_SCRAMBLE_RESET;
2709
2710                 I915_WRITE(PORT_DFT2_G4X, tmp);
2711         }
2712
2713         return 0;
2714 }
2715
2716 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2717                                  enum pipe pipe,
2718                                  enum intel_pipe_crc_source *source,
2719                                  uint32_t *val)
2720 {
2721         struct drm_i915_private *dev_priv = dev->dev_private;
2722         bool need_stable_symbols = false;
2723
2724         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2725                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2726                 if (ret)
2727                         return ret;
2728         }
2729
2730         switch (*source) {
2731         case INTEL_PIPE_CRC_SOURCE_PIPE:
2732                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2733                 break;
2734         case INTEL_PIPE_CRC_SOURCE_TV:
2735                 if (!SUPPORTS_TV(dev))
2736                         return -EINVAL;
2737                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2738                 break;
2739         case INTEL_PIPE_CRC_SOURCE_DP_B:
2740                 if (!IS_G4X(dev))
2741                         return -EINVAL;
2742                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2743                 need_stable_symbols = true;
2744                 break;
2745         case INTEL_PIPE_CRC_SOURCE_DP_C:
2746                 if (!IS_G4X(dev))
2747                         return -EINVAL;
2748                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2749                 need_stable_symbols = true;
2750                 break;
2751         case INTEL_PIPE_CRC_SOURCE_DP_D:
2752                 if (!IS_G4X(dev))
2753                         return -EINVAL;
2754                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2755                 need_stable_symbols = true;
2756                 break;
2757         case INTEL_PIPE_CRC_SOURCE_NONE:
2758                 *val = 0;
2759                 break;
2760         default:
2761                 return -EINVAL;
2762         }
2763
2764         /*
2765          * When the pipe CRC tap point is after the transcoders we need
2766          * to tweak symbol-level features to produce a deterministic series of
2767          * symbols for a given frame. We need to reset those features only once
2768          * a frame (instead of every nth symbol):
2769          *   - DC-balance: used to ensure a better clock recovery from the data
2770          *     link (SDVO)
2771          *   - DisplayPort scrambling: used for EMI reduction
2772          */
2773         if (need_stable_symbols) {
2774                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2775
2776                 WARN_ON(!IS_G4X(dev));
2777
2778                 I915_WRITE(PORT_DFT_I9XX,
2779                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2780
2781                 if (pipe == PIPE_A)
2782                         tmp |= PIPE_A_SCRAMBLE_RESET;
2783                 else
2784                         tmp |= PIPE_B_SCRAMBLE_RESET;
2785
2786                 I915_WRITE(PORT_DFT2_G4X, tmp);
2787         }
2788
2789         return 0;
2790 }
2791
2792 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2793                                          enum pipe pipe)
2794 {
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2797
2798         if (pipe == PIPE_A)
2799                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2800         else
2801                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2802         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2803                 tmp &= ~DC_BALANCE_RESET_VLV;
2804         I915_WRITE(PORT_DFT2_G4X, tmp);
2805
2806 }
2807
2808 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2809                                          enum pipe pipe)
2810 {
2811         struct drm_i915_private *dev_priv = dev->dev_private;
2812         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2813
2814         if (pipe == PIPE_A)
2815                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2816         else
2817                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2818         I915_WRITE(PORT_DFT2_G4X, tmp);
2819
2820         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2821                 I915_WRITE(PORT_DFT_I9XX,
2822                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2823         }
2824 }
2825
2826 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2827                                 uint32_t *val)
2828 {
2829         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2830                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2831
2832         switch (*source) {
2833         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2834                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2835                 break;
2836         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2837                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2838                 break;
2839         case INTEL_PIPE_CRC_SOURCE_PIPE:
2840                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2841                 break;
2842         case INTEL_PIPE_CRC_SOURCE_NONE:
2843                 *val = 0;
2844                 break;
2845         default:
2846                 return -EINVAL;
2847         }
2848
2849         return 0;
2850 }
2851
2852 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2853                                 uint32_t *val)
2854 {
2855         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2856                 *source = INTEL_PIPE_CRC_SOURCE_PF;
2857
2858         switch (*source) {
2859         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2860                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2861                 break;
2862         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2863                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2864                 break;
2865         case INTEL_PIPE_CRC_SOURCE_PF:
2866                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2867                 break;
2868         case INTEL_PIPE_CRC_SOURCE_NONE:
2869                 *val = 0;
2870                 break;
2871         default:
2872                 return -EINVAL;
2873         }
2874
2875         return 0;
2876 }
2877
2878 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2879                                enum intel_pipe_crc_source source)
2880 {
2881         struct drm_i915_private *dev_priv = dev->dev_private;
2882         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2883         u32 val = 0; /* shut up gcc */
2884         int ret;
2885
2886         if (pipe_crc->source == source)
2887                 return 0;
2888
2889         /* forbid changing the source without going back to 'none' */
2890         if (pipe_crc->source && source)
2891                 return -EINVAL;
2892
2893         if (IS_GEN2(dev))
2894                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2895         else if (INTEL_INFO(dev)->gen < 5)
2896                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2897         else if (IS_VALLEYVIEW(dev))
2898                 ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2899         else if (IS_GEN5(dev) || IS_GEN6(dev))
2900                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
2901         else
2902                 ret = ivb_pipe_crc_ctl_reg(&source, &val);
2903
2904         if (ret != 0)
2905                 return ret;
2906
2907         /* none -> real source transition */
2908         if (source) {
2909                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2910                                  pipe_name(pipe), pipe_crc_source_name(source));
2911
2912                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2913                                             INTEL_PIPE_CRC_ENTRIES_NR,
2914                                             GFP_KERNEL);
2915                 if (!pipe_crc->entries)
2916                         return -ENOMEM;
2917
2918                 spin_lock_irq(&pipe_crc->lock);
2919                 pipe_crc->head = 0;
2920                 pipe_crc->tail = 0;
2921                 spin_unlock_irq(&pipe_crc->lock);
2922         }
2923
2924         pipe_crc->source = source;
2925
2926         I915_WRITE(PIPE_CRC_CTL(pipe), val);
2927         POSTING_READ(PIPE_CRC_CTL(pipe));
2928
2929         /* real source -> none transition */
2930         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2931                 struct intel_pipe_crc_entry *entries;
2932
2933                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2934                                  pipe_name(pipe));
2935
2936                 intel_wait_for_vblank(dev, pipe);
2937
2938                 spin_lock_irq(&pipe_crc->lock);
2939                 entries = pipe_crc->entries;
2940                 pipe_crc->entries = NULL;
2941                 spin_unlock_irq(&pipe_crc->lock);
2942
2943                 kfree(entries);
2944
2945                 if (IS_G4X(dev))
2946                         g4x_undo_pipe_scramble_reset(dev, pipe);
2947                 else if (IS_VALLEYVIEW(dev))
2948                         vlv_undo_pipe_scramble_reset(dev, pipe);
2949         }
2950
2951         return 0;
2952 }
2953
2954 /*
2955  * Parse pipe CRC command strings:
2956  *   command: wsp* object wsp+ name wsp+ source wsp*
2957  *   object: 'pipe'
2958  *   name: (A | B | C)
2959  *   source: (none | plane1 | plane2 | pf)
2960  *   wsp: (#0x20 | #0x9 | #0xA)+
2961  *
2962  * eg.:
2963  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
2964  *  "pipe A none"    ->  Stop CRC
2965  */
2966 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2967 {
2968         int n_words = 0;
2969
2970         while (*buf) {
2971                 char *end;
2972
2973                 /* skip leading white space */
2974                 buf = skip_spaces(buf);
2975                 if (!*buf)
2976                         break;  /* end of buffer */
2977
2978                 /* find end of word */
2979                 for (end = buf; *end && !isspace(*end); end++)
2980                         ;
2981
2982                 if (n_words == max_words) {
2983                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
2984                                          max_words);
2985                         return -EINVAL; /* ran out of words[] before bytes */
2986                 }
2987
2988                 if (*end)
2989                         *end++ = '\0';
2990                 words[n_words++] = buf;
2991                 buf = end;
2992         }
2993
2994         return n_words;
2995 }
2996
2997 enum intel_pipe_crc_object {
2998         PIPE_CRC_OBJECT_PIPE,
2999 };
3000
3001 static const char * const pipe_crc_objects[] = {
3002         "pipe",
3003 };
3004
3005 static int
3006 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3007 {
3008         int i;
3009
3010         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3011                 if (!strcmp(buf, pipe_crc_objects[i])) {
3012                         *o = i;
3013                         return 0;
3014                     }
3015
3016         return -EINVAL;
3017 }
3018
3019 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3020 {
3021         const char name = buf[0];
3022
3023         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3024                 return -EINVAL;
3025
3026         *pipe = name - 'A';
3027
3028         return 0;
3029 }
3030
3031 static int
3032 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3033 {
3034         int i;
3035
3036         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3037                 if (!strcmp(buf, pipe_crc_sources[i])) {
3038                         *s = i;
3039                         return 0;
3040                     }
3041
3042         return -EINVAL;
3043 }
3044
3045 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3046 {
3047 #define N_WORDS 3
3048         int n_words;
3049         char *words[N_WORDS];
3050         enum pipe pipe;
3051         enum intel_pipe_crc_object object;
3052         enum intel_pipe_crc_source source;
3053
3054         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3055         if (n_words != N_WORDS) {
3056                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3057                                  N_WORDS);
3058                 return -EINVAL;
3059         }
3060
3061         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3062                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3063                 return -EINVAL;
3064         }
3065
3066         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3067                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3068                 return -EINVAL;
3069         }
3070
3071         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3072                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3073                 return -EINVAL;
3074         }
3075
3076         return pipe_crc_set_source(dev, pipe, source);
3077 }
3078
3079 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3080                                      size_t len, loff_t *offp)
3081 {
3082         struct seq_file *m = file->private_data;
3083         struct drm_device *dev = m->private;
3084         char *tmpbuf;
3085         int ret;
3086
3087         if (len == 0)
3088                 return 0;
3089
3090         if (len > PAGE_SIZE - 1) {
3091                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3092                                  PAGE_SIZE);
3093                 return -E2BIG;
3094         }
3095
3096         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3097         if (!tmpbuf)
3098                 return -ENOMEM;
3099
3100         if (copy_from_user(tmpbuf, ubuf, len)) {
3101                 ret = -EFAULT;
3102                 goto out;
3103         }
3104         tmpbuf[len] = '\0';
3105
3106         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3107
3108 out:
3109         kfree(tmpbuf);
3110         if (ret < 0)
3111                 return ret;
3112
3113         *offp += len;
3114         return len;
3115 }
3116
3117 static const struct file_operations i915_display_crc_ctl_fops = {
3118         .owner = THIS_MODULE,
3119         .open = display_crc_ctl_open,
3120         .read = seq_read,
3121         .llseek = seq_lseek,
3122         .release = single_release,
3123         .write = display_crc_ctl_write
3124 };
3125
3126 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3127 {
3128         struct drm_device *dev = m->private;
3129         int num_levels = ilk_wm_max_level(dev) + 1;
3130         int level;
3131
3132         drm_modeset_lock_all(dev);
3133
3134         for (level = 0; level < num_levels; level++) {
3135                 unsigned int latency = wm[level];
3136
3137                 /* WM1+ latency values in 0.5us units */
3138                 if (level > 0)
3139                         latency *= 5;
3140
3141                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3142                            level, wm[level],
3143                            latency / 10, latency % 10);
3144         }
3145
3146         drm_modeset_unlock_all(dev);
3147 }
3148
3149 static int pri_wm_latency_show(struct seq_file *m, void *data)
3150 {
3151         struct drm_device *dev = m->private;
3152
3153         wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3154
3155         return 0;
3156 }
3157
3158 static int spr_wm_latency_show(struct seq_file *m, void *data)
3159 {
3160         struct drm_device *dev = m->private;
3161
3162         wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3163
3164         return 0;
3165 }
3166
3167 static int cur_wm_latency_show(struct seq_file *m, void *data)
3168 {
3169         struct drm_device *dev = m->private;
3170
3171         wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3172
3173         return 0;
3174 }
3175
3176 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3177 {
3178         struct drm_device *dev = inode->i_private;
3179
3180         if (!HAS_PCH_SPLIT(dev))
3181                 return -ENODEV;
3182
3183         return single_open(file, pri_wm_latency_show, dev);
3184 }
3185
3186 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3187 {
3188         struct drm_device *dev = inode->i_private;
3189
3190         if (!HAS_PCH_SPLIT(dev))
3191                 return -ENODEV;
3192
3193         return single_open(file, spr_wm_latency_show, dev);
3194 }
3195
3196 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3197 {
3198         struct drm_device *dev = inode->i_private;
3199
3200         if (!HAS_PCH_SPLIT(dev))
3201                 return -ENODEV;
3202
3203         return single_open(file, cur_wm_latency_show, dev);
3204 }
3205
3206 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3207                                 size_t len, loff_t *offp, uint16_t wm[5])
3208 {
3209         struct seq_file *m = file->private_data;
3210         struct drm_device *dev = m->private;
3211         uint16_t new[5] = { 0 };
3212         int num_levels = ilk_wm_max_level(dev) + 1;
3213         int level;
3214         int ret;
3215         char tmp[32];
3216
3217         if (len >= sizeof(tmp))
3218                 return -EINVAL;
3219
3220         if (copy_from_user(tmp, ubuf, len))
3221                 return -EFAULT;
3222
3223         tmp[len] = '\0';
3224
3225         ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3226         if (ret != num_levels)
3227                 return -EINVAL;
3228
3229         drm_modeset_lock_all(dev);
3230
3231         for (level = 0; level < num_levels; level++)
3232                 wm[level] = new[level];
3233
3234         drm_modeset_unlock_all(dev);
3235
3236         return len;
3237 }
3238
3239
3240 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3241                                     size_t len, loff_t *offp)
3242 {
3243         struct seq_file *m = file->private_data;
3244         struct drm_device *dev = m->private;
3245
3246         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3247 }
3248
3249 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3250                                     size_t len, loff_t *offp)
3251 {
3252         struct seq_file *m = file->private_data;
3253         struct drm_device *dev = m->private;
3254
3255         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3256 }
3257
3258 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3259                                     size_t len, loff_t *offp)
3260 {
3261         struct seq_file *m = file->private_data;
3262         struct drm_device *dev = m->private;
3263
3264         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3265 }
3266
3267 static const struct file_operations i915_pri_wm_latency_fops = {
3268         .owner = THIS_MODULE,
3269         .open = pri_wm_latency_open,
3270         .read = seq_read,
3271         .llseek = seq_lseek,
3272         .release = single_release,
3273         .write = pri_wm_latency_write
3274 };
3275
3276 static const struct file_operations i915_spr_wm_latency_fops = {
3277         .owner = THIS_MODULE,
3278         .open = spr_wm_latency_open,
3279         .read = seq_read,
3280         .llseek = seq_lseek,
3281         .release = single_release,
3282         .write = spr_wm_latency_write
3283 };
3284
3285 static const struct file_operations i915_cur_wm_latency_fops = {
3286         .owner = THIS_MODULE,
3287         .open = cur_wm_latency_open,
3288         .read = seq_read,
3289         .llseek = seq_lseek,
3290         .release = single_release,
3291         .write = cur_wm_latency_write
3292 };
3293
3294 static int
3295 i915_wedged_get(void *data, u64 *val)
3296 {
3297         struct drm_device *dev = data;
3298         struct drm_i915_private *dev_priv = dev->dev_private;
3299
3300         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3301
3302         return 0;
3303 }
3304
3305 static int
3306 i915_wedged_set(void *data, u64 val)
3307 {
3308         struct drm_device *dev = data;
3309         struct drm_i915_private *dev_priv = dev->dev_private;
3310
3311         intel_runtime_pm_get(dev_priv);
3312
3313         i915_handle_error(dev, val,
3314                           "Manually setting wedged to %llu", val);
3315
3316         intel_runtime_pm_put(dev_priv);
3317
3318         return 0;
3319 }
3320
3321 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3322                         i915_wedged_get, i915_wedged_set,
3323                         "%llu\n");
3324
3325 static int
3326 i915_ring_stop_get(void *data, u64 *val)
3327 {
3328         struct drm_device *dev = data;
3329         struct drm_i915_private *dev_priv = dev->dev_private;
3330
3331         *val = dev_priv->gpu_error.stop_rings;
3332
3333         return 0;
3334 }
3335
3336 static int
3337 i915_ring_stop_set(void *data, u64 val)
3338 {
3339         struct drm_device *dev = data;
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341         int ret;
3342
3343         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3344
3345         ret = mutex_lock_interruptible(&dev->struct_mutex);
3346         if (ret)
3347                 return ret;
3348
3349         dev_priv->gpu_error.stop_rings = val;
3350         mutex_unlock(&dev->struct_mutex);
3351
3352         return 0;
3353 }
3354
3355 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3356                         i915_ring_stop_get, i915_ring_stop_set,
3357                         "0x%08llx\n");
3358
3359 static int
3360 i915_ring_missed_irq_get(void *data, u64 *val)
3361 {
3362         struct drm_device *dev = data;
3363         struct drm_i915_private *dev_priv = dev->dev_private;
3364
3365         *val = dev_priv->gpu_error.missed_irq_rings;
3366         return 0;
3367 }
3368
3369 static int
3370 i915_ring_missed_irq_set(void *data, u64 val)
3371 {
3372         struct drm_device *dev = data;
3373         struct drm_i915_private *dev_priv = dev->dev_private;
3374         int ret;
3375
3376         /* Lock against concurrent debugfs callers */
3377         ret = mutex_lock_interruptible(&dev->struct_mutex);
3378         if (ret)
3379                 return ret;
3380         dev_priv->gpu_error.missed_irq_rings = val;
3381         mutex_unlock(&dev->struct_mutex);
3382
3383         return 0;
3384 }
3385
3386 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3387                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3388                         "0x%08llx\n");
3389
3390 static int
3391 i915_ring_test_irq_get(void *data, u64 *val)
3392 {
3393         struct drm_device *dev = data;
3394         struct drm_i915_private *dev_priv = dev->dev_private;
3395
3396         *val = dev_priv->gpu_error.test_irq_rings;
3397
3398         return 0;
3399 }
3400
3401 static int
3402 i915_ring_test_irq_set(void *data, u64 val)
3403 {
3404         struct drm_device *dev = data;
3405         struct drm_i915_private *dev_priv = dev->dev_private;
3406         int ret;
3407
3408         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3409
3410         /* Lock against concurrent debugfs callers */
3411         ret = mutex_lock_interruptible(&dev->struct_mutex);
3412         if (ret)
3413                 return ret;
3414
3415         dev_priv->gpu_error.test_irq_rings = val;
3416         mutex_unlock(&dev->struct_mutex);
3417
3418         return 0;
3419 }
3420
3421 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3422                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3423                         "0x%08llx\n");
3424
3425 #define DROP_UNBOUND 0x1
3426 #define DROP_BOUND 0x2
3427 #define DROP_RETIRE 0x4
3428 #define DROP_ACTIVE 0x8
3429 #define DROP_ALL (DROP_UNBOUND | \
3430                   DROP_BOUND | \
3431                   DROP_RETIRE | \
3432                   DROP_ACTIVE)
3433 static int
3434 i915_drop_caches_get(void *data, u64 *val)
3435 {
3436         *val = DROP_ALL;
3437
3438         return 0;
3439 }
3440
3441 static int
3442 i915_drop_caches_set(void *data, u64 val)
3443 {
3444         struct drm_device *dev = data;
3445         struct drm_i915_private *dev_priv = dev->dev_private;
3446         struct drm_i915_gem_object *obj, *next;
3447         struct i915_address_space *vm;
3448         struct i915_vma *vma, *x;
3449         int ret;
3450
3451         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3452
3453         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3454          * on ioctls on -EAGAIN. */
3455         ret = mutex_lock_interruptible(&dev->struct_mutex);
3456         if (ret)
3457                 return ret;
3458
3459         if (val & DROP_ACTIVE) {
3460                 ret = i915_gpu_idle(dev);
3461                 if (ret)
3462                         goto unlock;
3463         }
3464
3465         if (val & (DROP_RETIRE | DROP_ACTIVE))
3466                 i915_gem_retire_requests(dev);
3467
3468         if (val & DROP_BOUND) {
3469                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3470                         list_for_each_entry_safe(vma, x, &vm->inactive_list,
3471                                                  mm_list) {
3472                                 if (vma->pin_count)
3473                                         continue;
3474
3475                                 ret = i915_vma_unbind(vma);
3476                                 if (ret)
3477                                         goto unlock;
3478                         }
3479                 }
3480         }
3481
3482         if (val & DROP_UNBOUND) {
3483                 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
3484                                          global_list)
3485                         if (obj->pages_pin_count == 0) {
3486                                 ret = i915_gem_object_put_pages(obj);
3487                                 if (ret)
3488                                         goto unlock;
3489                         }
3490         }
3491
3492 unlock:
3493         mutex_unlock(&dev->struct_mutex);
3494
3495         return ret;
3496 }
3497
3498 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3499                         i915_drop_caches_get, i915_drop_caches_set,
3500                         "0x%08llx\n");
3501
3502 static int
3503 i915_max_freq_get(void *data, u64 *val)
3504 {
3505         struct drm_device *dev = data;
3506         struct drm_i915_private *dev_priv = dev->dev_private;
3507         int ret;
3508
3509         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3510                 return -ENODEV;
3511
3512         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3513
3514         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3515         if (ret)
3516                 return ret;
3517
3518         if (IS_VALLEYVIEW(dev))
3519                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3520         else
3521                 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3522         mutex_unlock(&dev_priv->rps.hw_lock);
3523
3524         return 0;
3525 }
3526
3527 static int
3528 i915_max_freq_set(void *data, u64 val)
3529 {
3530         struct drm_device *dev = data;
3531         struct drm_i915_private *dev_priv = dev->dev_private;
3532         u32 rp_state_cap, hw_max, hw_min;
3533         int ret;
3534
3535         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3536                 return -ENODEV;
3537
3538         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3539
3540         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3541
3542         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3543         if (ret)
3544                 return ret;
3545
3546         /*
3547          * Turbo will still be enabled, but won't go above the set value.
3548          */
3549         if (IS_VALLEYVIEW(dev)) {
3550                 val = vlv_freq_opcode(dev_priv, val);
3551
3552                 hw_max = valleyview_rps_max_freq(dev_priv);
3553                 hw_min = valleyview_rps_min_freq(dev_priv);
3554         } else {
3555                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3556
3557                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3558                 hw_max = dev_priv->rps.max_freq;
3559                 hw_min = (rp_state_cap >> 16) & 0xff;
3560         }
3561
3562         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3563                 mutex_unlock(&dev_priv->rps.hw_lock);
3564                 return -EINVAL;
3565         }
3566
3567         dev_priv->rps.max_freq_softlimit = val;
3568
3569         if (IS_VALLEYVIEW(dev))
3570                 valleyview_set_rps(dev, val);
3571         else
3572                 gen6_set_rps(dev, val);
3573
3574         mutex_unlock(&dev_priv->rps.hw_lock);
3575
3576         return 0;
3577 }
3578
3579 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3580                         i915_max_freq_get, i915_max_freq_set,
3581                         "%llu\n");
3582
3583 static int
3584 i915_min_freq_get(void *data, u64 *val)
3585 {
3586         struct drm_device *dev = data;
3587         struct drm_i915_private *dev_priv = dev->dev_private;
3588         int ret;
3589
3590         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3591                 return -ENODEV;
3592
3593         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3594
3595         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3596         if (ret)
3597                 return ret;
3598
3599         if (IS_VALLEYVIEW(dev))
3600                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3601         else
3602                 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3603         mutex_unlock(&dev_priv->rps.hw_lock);
3604
3605         return 0;
3606 }
3607
3608 static int
3609 i915_min_freq_set(void *data, u64 val)
3610 {
3611         struct drm_device *dev = data;
3612         struct drm_i915_private *dev_priv = dev->dev_private;
3613         u32 rp_state_cap, hw_max, hw_min;
3614         int ret;
3615
3616         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3617                 return -ENODEV;
3618
3619         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3620
3621         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3622
3623         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3624         if (ret)
3625                 return ret;
3626
3627         /*
3628          * Turbo will still be enabled, but won't go below the set value.
3629          */
3630         if (IS_VALLEYVIEW(dev)) {
3631                 val = vlv_freq_opcode(dev_priv, val);
3632
3633                 hw_max = valleyview_rps_max_freq(dev_priv);
3634                 hw_min = valleyview_rps_min_freq(dev_priv);
3635         } else {
3636                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3637
3638                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3639                 hw_max = dev_priv->rps.max_freq;
3640                 hw_min = (rp_state_cap >> 16) & 0xff;
3641         }
3642
3643         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
3644                 mutex_unlock(&dev_priv->rps.hw_lock);
3645                 return -EINVAL;
3646         }
3647
3648         dev_priv->rps.min_freq_softlimit = val;
3649
3650         if (IS_VALLEYVIEW(dev))
3651                 valleyview_set_rps(dev, val);
3652         else
3653                 gen6_set_rps(dev, val);
3654
3655         mutex_unlock(&dev_priv->rps.hw_lock);
3656
3657         return 0;
3658 }
3659
3660 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3661                         i915_min_freq_get, i915_min_freq_set,
3662                         "%llu\n");
3663
3664 static int
3665 i915_cache_sharing_get(void *data, u64 *val)
3666 {
3667         struct drm_device *dev = data;
3668         struct drm_i915_private *dev_priv = dev->dev_private;
3669         u32 snpcr;
3670         int ret;
3671
3672         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3673                 return -ENODEV;
3674
3675         ret = mutex_lock_interruptible(&dev->struct_mutex);
3676         if (ret)
3677                 return ret;
3678         intel_runtime_pm_get(dev_priv);
3679
3680         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3681
3682         intel_runtime_pm_put(dev_priv);
3683         mutex_unlock(&dev_priv->dev->struct_mutex);
3684
3685         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3686
3687         return 0;
3688 }
3689
3690 static int
3691 i915_cache_sharing_set(void *data, u64 val)
3692 {
3693         struct drm_device *dev = data;
3694         struct drm_i915_private *dev_priv = dev->dev_private;
3695         u32 snpcr;
3696
3697         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3698                 return -ENODEV;
3699
3700         if (val > 3)
3701                 return -EINVAL;
3702
3703         intel_runtime_pm_get(dev_priv);
3704         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3705
3706         /* Update the cache sharing policy here as well */
3707         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3708         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3709         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3710         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3711
3712         intel_runtime_pm_put(dev_priv);
3713         return 0;
3714 }
3715
3716 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3717                         i915_cache_sharing_get, i915_cache_sharing_set,
3718                         "%llu\n");
3719
3720 static int i915_forcewake_open(struct inode *inode, struct file *file)
3721 {
3722         struct drm_device *dev = inode->i_private;
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724
3725         if (INTEL_INFO(dev)->gen < 6)
3726                 return 0;
3727
3728         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3729
3730         return 0;
3731 }
3732
3733 static int i915_forcewake_release(struct inode *inode, struct file *file)
3734 {
3735         struct drm_device *dev = inode->i_private;
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737
3738         if (INTEL_INFO(dev)->gen < 6)
3739                 return 0;
3740
3741         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3742
3743         return 0;
3744 }
3745
3746 static const struct file_operations i915_forcewake_fops = {
3747         .owner = THIS_MODULE,
3748         .open = i915_forcewake_open,
3749         .release = i915_forcewake_release,
3750 };
3751
3752 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3753 {
3754         struct drm_device *dev = minor->dev;
3755         struct dentry *ent;
3756
3757         ent = debugfs_create_file("i915_forcewake_user",
3758                                   S_IRUSR,
3759                                   root, dev,
3760                                   &i915_forcewake_fops);
3761         if (!ent)
3762                 return -ENOMEM;
3763
3764         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3765 }
3766
3767 static int i915_debugfs_create(struct dentry *root,
3768                                struct drm_minor *minor,
3769                                const char *name,
3770                                const struct file_operations *fops)
3771 {
3772         struct drm_device *dev = minor->dev;
3773         struct dentry *ent;
3774
3775         ent = debugfs_create_file(name,
3776                                   S_IRUGO | S_IWUSR,
3777                                   root, dev,
3778                                   fops);
3779         if (!ent)
3780                 return -ENOMEM;
3781
3782         return drm_add_fake_info_node(minor, ent, fops);
3783 }
3784
3785 static const struct drm_info_list i915_debugfs_list[] = {
3786         {"i915_capabilities", i915_capabilities, 0},
3787         {"i915_gem_objects", i915_gem_object_info, 0},
3788         {"i915_gem_gtt", i915_gem_gtt_info, 0},
3789         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3790         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3791         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3792         {"i915_gem_stolen", i915_gem_stolen_list_info },
3793         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3794         {"i915_gem_request", i915_gem_request_info, 0},
3795         {"i915_gem_seqno", i915_gem_seqno_info, 0},
3796         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3797         {"i915_gem_interrupt", i915_interrupt_info, 0},
3798         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3799         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3800         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3801         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3802         {"i915_rstdby_delays", i915_rstdby_delays, 0},
3803         {"i915_frequency_info", i915_frequency_info, 0},
3804         {"i915_delayfreq_table", i915_delayfreq_table, 0},
3805         {"i915_inttoext_table", i915_inttoext_table, 0},
3806         {"i915_drpc_info", i915_drpc_info, 0},
3807         {"i915_emon_status", i915_emon_status, 0},
3808         {"i915_ring_freq_table", i915_ring_freq_table, 0},
3809         {"i915_gfxec", i915_gfxec, 0},
3810         {"i915_fbc_status", i915_fbc_status, 0},
3811         {"i915_ips_status", i915_ips_status, 0},
3812         {"i915_sr_status", i915_sr_status, 0},
3813         {"i915_opregion", i915_opregion, 0},
3814         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3815         {"i915_context_status", i915_context_status, 0},
3816         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3817         {"i915_swizzle_info", i915_swizzle_info, 0},
3818         {"i915_ppgtt_info", i915_ppgtt_info, 0},
3819         {"i915_llc", i915_llc, 0},
3820         {"i915_edp_psr_status", i915_edp_psr_status, 0},
3821         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
3822         {"i915_energy_uJ", i915_energy_uJ, 0},
3823         {"i915_pc8_status", i915_pc8_status, 0},
3824         {"i915_power_domain_info", i915_power_domain_info, 0},
3825         {"i915_display_info", i915_display_info, 0},
3826 };
3827 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3828
3829 static const struct i915_debugfs_files {
3830         const char *name;
3831         const struct file_operations *fops;
3832 } i915_debugfs_files[] = {
3833         {"i915_wedged", &i915_wedged_fops},
3834         {"i915_max_freq", &i915_max_freq_fops},
3835         {"i915_min_freq", &i915_min_freq_fops},
3836         {"i915_cache_sharing", &i915_cache_sharing_fops},
3837         {"i915_ring_stop", &i915_ring_stop_fops},
3838         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3839         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
3840         {"i915_gem_drop_caches", &i915_drop_caches_fops},
3841         {"i915_error_state", &i915_error_state_fops},
3842         {"i915_next_seqno", &i915_next_seqno_fops},
3843         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3844         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
3845         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
3846         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
3847 };
3848
3849 void intel_display_crc_init(struct drm_device *dev)
3850 {
3851         struct drm_i915_private *dev_priv = dev->dev_private;
3852         enum pipe pipe;
3853
3854         for_each_pipe(pipe) {
3855                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3856
3857                 pipe_crc->opened = false;
3858                 spin_lock_init(&pipe_crc->lock);
3859                 init_waitqueue_head(&pipe_crc->wq);
3860         }
3861 }
3862
3863 int i915_debugfs_init(struct drm_minor *minor)
3864 {
3865         int ret, i;
3866
3867         ret = i915_forcewake_create(minor->debugfs_root, minor);
3868         if (ret)
3869                 return ret;
3870
3871         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3872                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3873                 if (ret)
3874                         return ret;
3875         }
3876
3877         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3878                 ret = i915_debugfs_create(minor->debugfs_root, minor,
3879                                           i915_debugfs_files[i].name,
3880                                           i915_debugfs_files[i].fops);
3881                 if (ret)
3882                         return ret;
3883         }
3884
3885         return drm_debugfs_create_files(i915_debugfs_list,
3886                                         I915_DEBUGFS_ENTRIES,
3887                                         minor->debugfs_root, minor);
3888 }
3889
3890 void i915_debugfs_cleanup(struct drm_minor *minor)
3891 {
3892         int i;
3893
3894         drm_debugfs_remove_files(i915_debugfs_list,
3895                                  I915_DEBUGFS_ENTRIES, minor);
3896
3897         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3898                                  1, minor);
3899
3900         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3901                 struct drm_info_list *info_list =
3902                         (struct drm_info_list *)&i915_pipe_crc_data[i];
3903
3904                 drm_debugfs_remove_files(info_list, 1, minor);
3905         }
3906
3907         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3908                 struct drm_info_list *info_list =
3909                         (struct drm_info_list *) i915_debugfs_files[i].fops;
3910
3911                 drm_debugfs_remove_files(info_list, 1, minor);
3912         }
3913 }