]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge remote-tracking branch 'device-mapper/for-next'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->pin_display)
95                 return "p";
96         else
97                 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (obj->tiling_mode) {
103         default:
104         case I915_TILING_NONE: return " ";
105         case I915_TILING_X: return "X";
106         case I915_TILING_Y: return "Y";
107         }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117         u64 size = 0;
118         struct i915_vma *vma;
119
120         list_for_each_entry(vma, &obj->vma_list, vma_link) {
121                 if (i915_is_ggtt(vma->vm) &&
122                     drm_mm_node_allocated(&vma->node))
123                         size += vma->node.size;
124         }
125
126         return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133         struct intel_engine_cs *ring;
134         struct i915_vma *vma;
135         int pin_count = 0;
136         int i;
137
138         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139                    &obj->base,
140                    obj->active ? "*" : " ",
141                    get_pin_flag(obj),
142                    get_tiling_flag(obj),
143                    get_global_flag(obj),
144                    obj->base.size / 1024,
145                    obj->base.read_domains,
146                    obj->base.write_domain);
147         for_each_ring(ring, dev_priv, i)
148                 seq_printf(m, "%x ",
149                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
150         seq_printf(m, "] %x %x%s%s%s",
151                    i915_gem_request_get_seqno(obj->last_write_req),
152                    i915_gem_request_get_seqno(obj->last_fenced_req),
153                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154                    obj->dirty ? " dirty" : "",
155                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156         if (obj->base.name)
157                 seq_printf(m, " (name: %d)", obj->base.name);
158         list_for_each_entry(vma, &obj->vma_list, vma_link) {
159                 if (vma->pin_count > 0)
160                         pin_count++;
161         }
162         seq_printf(m, " (pinned x %d)", pin_count);
163         if (obj->pin_display)
164                 seq_printf(m, " (display)");
165         if (obj->fence_reg != I915_FENCE_REG_NONE)
166                 seq_printf(m, " (fence: %d)", obj->fence_reg);
167         list_for_each_entry(vma, &obj->vma_list, vma_link) {
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_is_ggtt(vma->vm) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_is_ggtt(vma->vm))
172                         seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173                 else
174                         seq_puts(m, ")");
175         }
176         if (obj->stolen)
177                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178         if (obj->pin_display || obj->fault_mappable) {
179                 char s[3], *t = s;
180                 if (obj->pin_display)
181                         *t++ = 'p';
182                 if (obj->fault_mappable)
183                         *t++ = 'f';
184                 *t = '\0';
185                 seq_printf(m, " (%s mappable)", s);
186         }
187         if (obj->last_write_req != NULL)
188                 seq_printf(m, " (%s)",
189                            i915_gem_request_get_ring(obj->last_write_req)->name);
190         if (obj->frontbuffer_bits)
191                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198         seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203         struct drm_info_node *node = m->private;
204         uintptr_t list = (uintptr_t) node->info_ent->data;
205         struct list_head *head;
206         struct drm_device *dev = node->minor->dev;
207         struct drm_i915_private *dev_priv = dev->dev_private;
208         struct i915_address_space *vm = &dev_priv->gtt.base;
209         struct i915_vma *vma;
210         u64 total_obj_size, total_gtt_size;
211         int count, ret;
212
213         ret = mutex_lock_interruptible(&dev->struct_mutex);
214         if (ret)
215                 return ret;
216
217         /* FIXME: the user of this interface might want more than just GGTT */
218         switch (list) {
219         case ACTIVE_LIST:
220                 seq_puts(m, "Active:\n");
221                 head = &vm->active_list;
222                 break;
223         case INACTIVE_LIST:
224                 seq_puts(m, "Inactive:\n");
225                 head = &vm->inactive_list;
226                 break;
227         default:
228                 mutex_unlock(&dev->struct_mutex);
229                 return -EINVAL;
230         }
231
232         total_obj_size = total_gtt_size = count = 0;
233         list_for_each_entry(vma, head, mm_list) {
234                 seq_printf(m, "   ");
235                 describe_obj(m, vma->obj);
236                 seq_printf(m, "\n");
237                 total_obj_size += vma->obj->base.size;
238                 total_gtt_size += vma->node.size;
239                 count++;
240         }
241         mutex_unlock(&dev->struct_mutex);
242
243         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244                    count, total_obj_size, total_gtt_size);
245         return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249                               struct list_head *A, struct list_head *B)
250 {
251         struct drm_i915_gem_object *a =
252                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253         struct drm_i915_gem_object *b =
254                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256         if (a->stolen->start < b->stolen->start)
257                 return -1;
258         if (a->stolen->start > b->stolen->start)
259                 return 1;
260         return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265         struct drm_info_node *node = m->private;
266         struct drm_device *dev = node->minor->dev;
267         struct drm_i915_private *dev_priv = dev->dev_private;
268         struct drm_i915_gem_object *obj;
269         u64 total_obj_size, total_gtt_size;
270         LIST_HEAD(stolen);
271         int count, ret;
272
273         ret = mutex_lock_interruptible(&dev->struct_mutex);
274         if (ret)
275                 return ret;
276
277         total_obj_size = total_gtt_size = count = 0;
278         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279                 if (obj->stolen == NULL)
280                         continue;
281
282                 list_add(&obj->obj_exec_link, &stolen);
283
284                 total_obj_size += obj->base.size;
285                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286                 count++;
287         }
288         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289                 if (obj->stolen == NULL)
290                         continue;
291
292                 list_add(&obj->obj_exec_link, &stolen);
293
294                 total_obj_size += obj->base.size;
295                 count++;
296         }
297         list_sort(NULL, &stolen, obj_rank_by_stolen);
298         seq_puts(m, "Stolen:\n");
299         while (!list_empty(&stolen)) {
300                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301                 seq_puts(m, "   ");
302                 describe_obj(m, obj);
303                 seq_putc(m, '\n');
304                 list_del_init(&obj->obj_exec_link);
305         }
306         mutex_unlock(&dev->struct_mutex);
307
308         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309                    count, total_obj_size, total_gtt_size);
310         return 0;
311 }
312
313 #define count_objects(list, member) do { \
314         list_for_each_entry(obj, list, member) { \
315                 size += i915_gem_obj_total_ggtt_size(obj); \
316                 ++count; \
317                 if (obj->map_and_fenceable) { \
318                         mappable_size += i915_gem_obj_ggtt_size(obj); \
319                         ++mappable_count; \
320                 } \
321         } \
322 } while (0)
323
324 struct file_stats {
325         struct drm_i915_file_private *file_priv;
326         unsigned long count;
327         u64 total, unbound;
328         u64 global, shared;
329         u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334         struct drm_i915_gem_object *obj = ptr;
335         struct file_stats *stats = data;
336         struct i915_vma *vma;
337
338         stats->count++;
339         stats->total += obj->base.size;
340
341         if (obj->base.name || obj->base.dma_buf)
342                 stats->shared += obj->base.size;
343
344         if (USES_FULL_PPGTT(obj->base.dev)) {
345                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346                         struct i915_hw_ppgtt *ppgtt;
347
348                         if (!drm_mm_node_allocated(&vma->node))
349                                 continue;
350
351                         if (i915_is_ggtt(vma->vm)) {
352                                 stats->global += obj->base.size;
353                                 continue;
354                         }
355
356                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357                         if (ppgtt->file_priv != stats->file_priv)
358                                 continue;
359
360                         if (obj->active) /* XXX per-vma statistic */
361                                 stats->active += obj->base.size;
362                         else
363                                 stats->inactive += obj->base.size;
364
365                         return 0;
366                 }
367         } else {
368                 if (i915_gem_obj_ggtt_bound(obj)) {
369                         stats->global += obj->base.size;
370                         if (obj->active)
371                                 stats->active += obj->base.size;
372                         else
373                                 stats->inactive += obj->base.size;
374                         return 0;
375                 }
376         }
377
378         if (!list_empty(&obj->global_list))
379                 stats->unbound += obj->base.size;
380
381         return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385         if (stats.count) \
386                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387                            name, \
388                            stats.count, \
389                            stats.total, \
390                            stats.active, \
391                            stats.inactive, \
392                            stats.global, \
393                            stats.shared, \
394                            stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398                                    struct drm_i915_private *dev_priv)
399 {
400         struct drm_i915_gem_object *obj;
401         struct file_stats stats;
402         struct intel_engine_cs *ring;
403         int i, j;
404
405         memset(&stats, 0, sizeof(stats));
406
407         for_each_ring(ring, dev_priv, i) {
408                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409                         list_for_each_entry(obj,
410                                             &ring->batch_pool.cache_list[j],
411                                             batch_pool_link)
412                                 per_file_stats(0, obj, &stats);
413                 }
414         }
415
416         print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420         list_for_each_entry(vma, list, member) { \
421                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422                 ++count; \
423                 if (vma->obj->map_and_fenceable) { \
424                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425                         ++mappable_count; \
426                 } \
427         } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432         struct drm_info_node *node = m->private;
433         struct drm_device *dev = node->minor->dev;
434         struct drm_i915_private *dev_priv = dev->dev_private;
435         u32 count, mappable_count, purgeable_count;
436         u64 size, mappable_size, purgeable_size;
437         struct drm_i915_gem_object *obj;
438         struct i915_address_space *vm = &dev_priv->gtt.base;
439         struct drm_file *file;
440         struct i915_vma *vma;
441         int ret;
442
443         ret = mutex_lock_interruptible(&dev->struct_mutex);
444         if (ret)
445                 return ret;
446
447         seq_printf(m, "%u objects, %zu bytes\n",
448                    dev_priv->mm.object_count,
449                    dev_priv->mm.object_memory);
450
451         size = count = mappable_size = mappable_count = 0;
452         count_objects(&dev_priv->mm.bound_list, global_list);
453         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454                    count, mappable_count, size, mappable_size);
455
456         size = count = mappable_size = mappable_count = 0;
457         count_vmas(&vm->active_list, mm_list);
458         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459                    count, mappable_count, size, mappable_size);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_vmas(&vm->inactive_list, mm_list);
463         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = purgeable_size = purgeable_count = 0;
467         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468                 size += obj->base.size, ++count;
469                 if (obj->madv == I915_MADV_DONTNEED)
470                         purgeable_size += obj->base.size, ++purgeable_count;
471         }
472         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474         size = count = mappable_size = mappable_count = 0;
475         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476                 if (obj->fault_mappable) {
477                         size += i915_gem_obj_ggtt_size(obj);
478                         ++count;
479                 }
480                 if (obj->pin_display) {
481                         mappable_size += i915_gem_obj_ggtt_size(obj);
482                         ++mappable_count;
483                 }
484                 if (obj->madv == I915_MADV_DONTNEED) {
485                         purgeable_size += obj->base.size;
486                         ++purgeable_count;
487                 }
488         }
489         seq_printf(m, "%u purgeable objects, %llu bytes\n",
490                    purgeable_count, purgeable_size);
491         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492                    mappable_count, mappable_size);
493         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494                    count, size);
495
496         seq_printf(m, "%llu [%llu] gtt total\n",
497                    dev_priv->gtt.base.total,
498                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500         seq_putc(m, '\n');
501         print_batch_pool_stats(m, dev_priv);
502         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503                 struct file_stats stats;
504                 struct task_struct *task;
505
506                 memset(&stats, 0, sizeof(stats));
507                 stats.file_priv = file->driver_priv;
508                 spin_lock(&file->table_lock);
509                 idr_for_each(&file->object_idr, per_file_stats, &stats);
510                 spin_unlock(&file->table_lock);
511                 /*
512                  * Although we have a valid reference on file->pid, that does
513                  * not guarantee that the task_struct who called get_pid() is
514                  * still alive (e.g. get_pid(current) => fork() => exit()).
515                  * Therefore, we need to protect this ->comm access using RCU.
516                  */
517                 rcu_read_lock();
518                 task = pid_task(file->pid, PIDTYPE_PID);
519                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520                 rcu_read_unlock();
521         }
522
523         mutex_unlock(&dev->struct_mutex);
524
525         return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530         struct drm_info_node *node = m->private;
531         struct drm_device *dev = node->minor->dev;
532         uintptr_t list = (uintptr_t) node->info_ent->data;
533         struct drm_i915_private *dev_priv = dev->dev_private;
534         struct drm_i915_gem_object *obj;
535         u64 total_obj_size, total_gtt_size;
536         int count, ret;
537
538         ret = mutex_lock_interruptible(&dev->struct_mutex);
539         if (ret)
540                 return ret;
541
542         total_obj_size = total_gtt_size = count = 0;
543         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545                         continue;
546
547                 seq_puts(m, "   ");
548                 describe_obj(m, obj);
549                 seq_putc(m, '\n');
550                 total_obj_size += obj->base.size;
551                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552                 count++;
553         }
554
555         mutex_unlock(&dev->struct_mutex);
556
557         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558                    count, total_obj_size, total_gtt_size);
559
560         return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565         struct drm_info_node *node = m->private;
566         struct drm_device *dev = node->minor->dev;
567         struct drm_i915_private *dev_priv = dev->dev_private;
568         struct intel_crtc *crtc;
569         int ret;
570
571         ret = mutex_lock_interruptible(&dev->struct_mutex);
572         if (ret)
573                 return ret;
574
575         for_each_intel_crtc(dev, crtc) {
576                 const char pipe = pipe_name(crtc->pipe);
577                 const char plane = plane_name(crtc->plane);
578                 struct intel_unpin_work *work;
579
580                 spin_lock_irq(&dev->event_lock);
581                 work = crtc->unpin_work;
582                 if (work == NULL) {
583                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584                                    pipe, plane);
585                 } else {
586                         u32 addr;
587
588                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590                                            pipe, plane);
591                         } else {
592                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593                                            pipe, plane);
594                         }
595                         if (work->flip_queued_req) {
596                                 struct intel_engine_cs *ring =
597                                         i915_gem_request_get_ring(work->flip_queued_req);
598
599                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600                                            ring->name,
601                                            i915_gem_request_get_seqno(work->flip_queued_req),
602                                            dev_priv->next_seqno,
603                                            ring->get_seqno(ring, true),
604                                            i915_gem_request_completed(work->flip_queued_req, true));
605                         } else
606                                 seq_printf(m, "Flip not associated with any ring\n");
607                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608                                    work->flip_queued_vblank,
609                                    work->flip_ready_vblank,
610                                    drm_crtc_vblank_count(&crtc->base));
611                         if (work->enable_stall_check)
612                                 seq_puts(m, "Stall check enabled, ");
613                         else
614                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617                         if (INTEL_INFO(dev)->gen >= 4)
618                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619                         else
620                                 addr = I915_READ(DSPADDR(crtc->plane));
621                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623                         if (work->pending_flip_obj) {
624                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626                         }
627                 }
628                 spin_unlock_irq(&dev->event_lock);
629         }
630
631         mutex_unlock(&dev->struct_mutex);
632
633         return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638         struct drm_info_node *node = m->private;
639         struct drm_device *dev = node->minor->dev;
640         struct drm_i915_private *dev_priv = dev->dev_private;
641         struct drm_i915_gem_object *obj;
642         struct intel_engine_cs *ring;
643         int total = 0;
644         int ret, i, j;
645
646         ret = mutex_lock_interruptible(&dev->struct_mutex);
647         if (ret)
648                 return ret;
649
650         for_each_ring(ring, dev_priv, i) {
651                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652                         int count;
653
654                         count = 0;
655                         list_for_each_entry(obj,
656                                             &ring->batch_pool.cache_list[j],
657                                             batch_pool_link)
658                                 count++;
659                         seq_printf(m, "%s cache[%d]: %d objects\n",
660                                    ring->name, j, count);
661
662                         list_for_each_entry(obj,
663                                             &ring->batch_pool.cache_list[j],
664                                             batch_pool_link) {
665                                 seq_puts(m, "   ");
666                                 describe_obj(m, obj);
667                                 seq_putc(m, '\n');
668                         }
669
670                         total += count;
671                 }
672         }
673
674         seq_printf(m, "total: %d\n", total);
675
676         mutex_unlock(&dev->struct_mutex);
677
678         return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683         struct drm_info_node *node = m->private;
684         struct drm_device *dev = node->minor->dev;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct intel_engine_cs *ring;
687         struct drm_i915_gem_request *req;
688         int ret, any, i;
689
690         ret = mutex_lock_interruptible(&dev->struct_mutex);
691         if (ret)
692                 return ret;
693
694         any = 0;
695         for_each_ring(ring, dev_priv, i) {
696                 int count;
697
698                 count = 0;
699                 list_for_each_entry(req, &ring->request_list, list)
700                         count++;
701                 if (count == 0)
702                         continue;
703
704                 seq_printf(m, "%s requests: %d\n", ring->name, count);
705                 list_for_each_entry(req, &ring->request_list, list) {
706                         struct task_struct *task;
707
708                         rcu_read_lock();
709                         task = NULL;
710                         if (req->pid)
711                                 task = pid_task(req->pid, PIDTYPE_PID);
712                         seq_printf(m, "    %x @ %d: %s [%d]\n",
713                                    req->seqno,
714                                    (int) (jiffies - req->emitted_jiffies),
715                                    task ? task->comm : "<unknown>",
716                                    task ? task->pid : -1);
717                         rcu_read_unlock();
718                 }
719
720                 any++;
721         }
722         mutex_unlock(&dev->struct_mutex);
723
724         if (any == 0)
725                 seq_puts(m, "No requests\n");
726
727         return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731                                  struct intel_engine_cs *ring)
732 {
733         if (ring->get_seqno) {
734                 seq_printf(m, "Current sequence (%s): %x\n",
735                            ring->name, ring->get_seqno(ring, false));
736         }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741         struct drm_info_node *node = m->private;
742         struct drm_device *dev = node->minor->dev;
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         struct intel_engine_cs *ring;
745         int ret, i;
746
747         ret = mutex_lock_interruptible(&dev->struct_mutex);
748         if (ret)
749                 return ret;
750         intel_runtime_pm_get(dev_priv);
751
752         for_each_ring(ring, dev_priv, i)
753                 i915_ring_seqno_info(m, ring);
754
755         intel_runtime_pm_put(dev_priv);
756         mutex_unlock(&dev->struct_mutex);
757
758         return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764         struct drm_info_node *node = m->private;
765         struct drm_device *dev = node->minor->dev;
766         struct drm_i915_private *dev_priv = dev->dev_private;
767         struct intel_engine_cs *ring;
768         int ret, i, pipe;
769
770         ret = mutex_lock_interruptible(&dev->struct_mutex);
771         if (ret)
772                 return ret;
773         intel_runtime_pm_get(dev_priv);
774
775         if (IS_CHERRYVIEW(dev)) {
776                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777                            I915_READ(GEN8_MASTER_IRQ));
778
779                 seq_printf(m, "Display IER:\t%08x\n",
780                            I915_READ(VLV_IER));
781                 seq_printf(m, "Display IIR:\t%08x\n",
782                            I915_READ(VLV_IIR));
783                 seq_printf(m, "Display IIR_RW:\t%08x\n",
784                            I915_READ(VLV_IIR_RW));
785                 seq_printf(m, "Display IMR:\t%08x\n",
786                            I915_READ(VLV_IMR));
787                 for_each_pipe(dev_priv, pipe)
788                         seq_printf(m, "Pipe %c stat:\t%08x\n",
789                                    pipe_name(pipe),
790                                    I915_READ(PIPESTAT(pipe)));
791
792                 seq_printf(m, "Port hotplug:\t%08x\n",
793                            I915_READ(PORT_HOTPLUG_EN));
794                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795                            I915_READ(VLV_DPFLIPSTAT));
796                 seq_printf(m, "DPINVGTT:\t%08x\n",
797                            I915_READ(DPINVGTT));
798
799                 for (i = 0; i < 4; i++) {
800                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801                                    i, I915_READ(GEN8_GT_IMR(i)));
802                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803                                    i, I915_READ(GEN8_GT_IIR(i)));
804                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805                                    i, I915_READ(GEN8_GT_IER(i)));
806                 }
807
808                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809                            I915_READ(GEN8_PCU_IMR));
810                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811                            I915_READ(GEN8_PCU_IIR));
812                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813                            I915_READ(GEN8_PCU_IER));
814         } else if (INTEL_INFO(dev)->gen >= 8) {
815                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816                            I915_READ(GEN8_MASTER_IRQ));
817
818                 for (i = 0; i < 4; i++) {
819                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820                                    i, I915_READ(GEN8_GT_IMR(i)));
821                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822                                    i, I915_READ(GEN8_GT_IIR(i)));
823                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824                                    i, I915_READ(GEN8_GT_IER(i)));
825                 }
826
827                 for_each_pipe(dev_priv, pipe) {
828                         if (!intel_display_power_is_enabled(dev_priv,
829                                                 POWER_DOMAIN_PIPE(pipe))) {
830                                 seq_printf(m, "Pipe %c power disabled\n",
831                                            pipe_name(pipe));
832                                 continue;
833                         }
834                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
835                                    pipe_name(pipe),
836                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
838                                    pipe_name(pipe),
839                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840                         seq_printf(m, "Pipe %c IER:\t%08x\n",
841                                    pipe_name(pipe),
842                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
843                 }
844
845                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846                            I915_READ(GEN8_DE_PORT_IMR));
847                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848                            I915_READ(GEN8_DE_PORT_IIR));
849                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850                            I915_READ(GEN8_DE_PORT_IER));
851
852                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853                            I915_READ(GEN8_DE_MISC_IMR));
854                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855                            I915_READ(GEN8_DE_MISC_IIR));
856                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857                            I915_READ(GEN8_DE_MISC_IER));
858
859                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
860                            I915_READ(GEN8_PCU_IMR));
861                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
862                            I915_READ(GEN8_PCU_IIR));
863                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
864                            I915_READ(GEN8_PCU_IER));
865         } else if (IS_VALLEYVIEW(dev)) {
866                 seq_printf(m, "Display IER:\t%08x\n",
867                            I915_READ(VLV_IER));
868                 seq_printf(m, "Display IIR:\t%08x\n",
869                            I915_READ(VLV_IIR));
870                 seq_printf(m, "Display IIR_RW:\t%08x\n",
871                            I915_READ(VLV_IIR_RW));
872                 seq_printf(m, "Display IMR:\t%08x\n",
873                            I915_READ(VLV_IMR));
874                 for_each_pipe(dev_priv, pipe)
875                         seq_printf(m, "Pipe %c stat:\t%08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878
879                 seq_printf(m, "Master IER:\t%08x\n",
880                            I915_READ(VLV_MASTER_IER));
881
882                 seq_printf(m, "Render IER:\t%08x\n",
883                            I915_READ(GTIER));
884                 seq_printf(m, "Render IIR:\t%08x\n",
885                            I915_READ(GTIIR));
886                 seq_printf(m, "Render IMR:\t%08x\n",
887                            I915_READ(GTIMR));
888
889                 seq_printf(m, "PM IER:\t\t%08x\n",
890                            I915_READ(GEN6_PMIER));
891                 seq_printf(m, "PM IIR:\t\t%08x\n",
892                            I915_READ(GEN6_PMIIR));
893                 seq_printf(m, "PM IMR:\t\t%08x\n",
894                            I915_READ(GEN6_PMIMR));
895
896                 seq_printf(m, "Port hotplug:\t%08x\n",
897                            I915_READ(PORT_HOTPLUG_EN));
898                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899                            I915_READ(VLV_DPFLIPSTAT));
900                 seq_printf(m, "DPINVGTT:\t%08x\n",
901                            I915_READ(DPINVGTT));
902
903         } else if (!HAS_PCH_SPLIT(dev)) {
904                 seq_printf(m, "Interrupt enable:    %08x\n",
905                            I915_READ(IER));
906                 seq_printf(m, "Interrupt identity:  %08x\n",
907                            I915_READ(IIR));
908                 seq_printf(m, "Interrupt mask:      %08x\n",
909                            I915_READ(IMR));
910                 for_each_pipe(dev_priv, pipe)
911                         seq_printf(m, "Pipe %c stat:         %08x\n",
912                                    pipe_name(pipe),
913                                    I915_READ(PIPESTAT(pipe)));
914         } else {
915                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
916                            I915_READ(DEIER));
917                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
918                            I915_READ(DEIIR));
919                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
920                            I915_READ(DEIMR));
921                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
922                            I915_READ(SDEIER));
923                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
924                            I915_READ(SDEIIR));
925                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
926                            I915_READ(SDEIMR));
927                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
928                            I915_READ(GTIER));
929                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
930                            I915_READ(GTIIR));
931                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
932                            I915_READ(GTIMR));
933         }
934         for_each_ring(ring, dev_priv, i) {
935                 if (INTEL_INFO(dev)->gen >= 6) {
936                         seq_printf(m,
937                                    "Graphics Interrupt mask (%s):       %08x\n",
938                                    ring->name, I915_READ_IMR(ring));
939                 }
940                 i915_ring_seqno_info(m, ring);
941         }
942         intel_runtime_pm_put(dev_priv);
943         mutex_unlock(&dev->struct_mutex);
944
945         return 0;
946 }
947
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950         struct drm_info_node *node = m->private;
951         struct drm_device *dev = node->minor->dev;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953         int i, ret;
954
955         ret = mutex_lock_interruptible(&dev->struct_mutex);
956         if (ret)
957                 return ret;
958
959         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960         for (i = 0; i < dev_priv->num_fence_regs; i++) {
961                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962
963                 seq_printf(m, "Fence %d, pin count = %d, object = ",
964                            i, dev_priv->fence_regs[i].pin_count);
965                 if (obj == NULL)
966                         seq_puts(m, "unused");
967                 else
968                         describe_obj(m, obj);
969                 seq_putc(m, '\n');
970         }
971
972         mutex_unlock(&dev->struct_mutex);
973         return 0;
974 }
975
976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978         struct drm_info_node *node = m->private;
979         struct drm_device *dev = node->minor->dev;
980         struct drm_i915_private *dev_priv = dev->dev_private;
981         struct intel_engine_cs *ring;
982         const u32 *hws;
983         int i;
984
985         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986         hws = ring->status_page.page_addr;
987         if (hws == NULL)
988                 return 0;
989
990         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992                            i * 4,
993                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994         }
995         return 0;
996 }
997
998 static ssize_t
999 i915_error_state_write(struct file *filp,
1000                        const char __user *ubuf,
1001                        size_t cnt,
1002                        loff_t *ppos)
1003 {
1004         struct i915_error_state_file_priv *error_priv = filp->private_data;
1005         struct drm_device *dev = error_priv->dev;
1006         int ret;
1007
1008         DRM_DEBUG_DRIVER("Resetting error state\n");
1009
1010         ret = mutex_lock_interruptible(&dev->struct_mutex);
1011         if (ret)
1012                 return ret;
1013
1014         i915_destroy_error_state(dev);
1015         mutex_unlock(&dev->struct_mutex);
1016
1017         return cnt;
1018 }
1019
1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022         struct drm_device *dev = inode->i_private;
1023         struct i915_error_state_file_priv *error_priv;
1024
1025         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026         if (!error_priv)
1027                 return -ENOMEM;
1028
1029         error_priv->dev = dev;
1030
1031         i915_error_state_get(dev, error_priv);
1032
1033         file->private_data = error_priv;
1034
1035         return 0;
1036 }
1037
1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040         struct i915_error_state_file_priv *error_priv = file->private_data;
1041
1042         i915_error_state_put(error_priv);
1043         kfree(error_priv);
1044
1045         return 0;
1046 }
1047
1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049                                      size_t count, loff_t *pos)
1050 {
1051         struct i915_error_state_file_priv *error_priv = file->private_data;
1052         struct drm_i915_error_state_buf error_str;
1053         loff_t tmp_pos = 0;
1054         ssize_t ret_count = 0;
1055         int ret;
1056
1057         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058         if (ret)
1059                 return ret;
1060
1061         ret = i915_error_state_to_str(&error_str, error_priv);
1062         if (ret)
1063                 goto out;
1064
1065         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066                                             error_str.buf,
1067                                             error_str.bytes);
1068
1069         if (ret_count < 0)
1070                 ret = ret_count;
1071         else
1072                 *pos = error_str.start + ret_count;
1073 out:
1074         i915_error_state_buf_release(&error_str);
1075         return ret ?: ret_count;
1076 }
1077
1078 static const struct file_operations i915_error_state_fops = {
1079         .owner = THIS_MODULE,
1080         .open = i915_error_state_open,
1081         .read = i915_error_state_read,
1082         .write = i915_error_state_write,
1083         .llseek = default_llseek,
1084         .release = i915_error_state_release,
1085 };
1086
1087 static int
1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090         struct drm_device *dev = data;
1091         struct drm_i915_private *dev_priv = dev->dev_private;
1092         int ret;
1093
1094         ret = mutex_lock_interruptible(&dev->struct_mutex);
1095         if (ret)
1096                 return ret;
1097
1098         *val = dev_priv->next_seqno;
1099         mutex_unlock(&dev->struct_mutex);
1100
1101         return 0;
1102 }
1103
1104 static int
1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107         struct drm_device *dev = data;
1108         int ret;
1109
1110         ret = mutex_lock_interruptible(&dev->struct_mutex);
1111         if (ret)
1112                 return ret;
1113
1114         ret = i915_gem_set_seqno(dev, val);
1115         mutex_unlock(&dev->struct_mutex);
1116
1117         return ret;
1118 }
1119
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121                         i915_next_seqno_get, i915_next_seqno_set,
1122                         "0x%llx\n");
1123
1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126         struct drm_info_node *node = m->private;
1127         struct drm_device *dev = node->minor->dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         int ret = 0;
1130
1131         intel_runtime_pm_get(dev_priv);
1132
1133         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134
1135         if (IS_GEN5(dev)) {
1136                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1137                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138
1139                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142                            MEMSTAT_VID_SHIFT);
1143                 seq_printf(m, "Current P-state: %d\n",
1144                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1146                 u32 freq_sts;
1147
1148                 mutex_lock(&dev_priv->rps.hw_lock);
1149                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1150                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1151                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1152
1153                 seq_printf(m, "actual GPU freq: %d MHz\n",
1154                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1155
1156                 seq_printf(m, "current GPU freq: %d MHz\n",
1157                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1158
1159                 seq_printf(m, "max GPU freq: %d MHz\n",
1160                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1161
1162                 seq_printf(m, "min GPU freq: %d MHz\n",
1163                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1164
1165                 seq_printf(m, "idle GPU freq: %d MHz\n",
1166                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1167
1168                 seq_printf(m,
1169                            "efficient (RPe) frequency: %d MHz\n",
1170                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1171                 mutex_unlock(&dev_priv->rps.hw_lock);
1172         } else if (INTEL_INFO(dev)->gen >= 6) {
1173                 u32 rp_state_limits;
1174                 u32 gt_perf_status;
1175                 u32 rp_state_cap;
1176                 u32 rpmodectl, rpinclimit, rpdeclimit;
1177                 u32 rpstat, cagf, reqf;
1178                 u32 rpupei, rpcurup, rpprevup;
1179                 u32 rpdownei, rpcurdown, rpprevdown;
1180                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1181                 int max_freq;
1182
1183                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1184                 if (IS_BROXTON(dev)) {
1185                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1186                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1187                 } else {
1188                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1189                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1190                 }
1191
1192                 /* RPSTAT1 is in the GT power well */
1193                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1194                 if (ret)
1195                         goto out;
1196
1197                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1198
1199                 reqf = I915_READ(GEN6_RPNSWREQ);
1200                 if (IS_GEN9(dev))
1201                         reqf >>= 23;
1202                 else {
1203                         reqf &= ~GEN6_TURBO_DISABLE;
1204                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1205                                 reqf >>= 24;
1206                         else
1207                                 reqf >>= 25;
1208                 }
1209                 reqf = intel_gpu_freq(dev_priv, reqf);
1210
1211                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1212                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1213                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1214
1215                 rpstat = I915_READ(GEN6_RPSTAT1);
1216                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1217                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1218                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1219                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1220                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1221                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1222                 if (IS_GEN9(dev))
1223                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1224                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1225                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1226                 else
1227                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1228                 cagf = intel_gpu_freq(dev_priv, cagf);
1229
1230                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1231                 mutex_unlock(&dev->struct_mutex);
1232
1233                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1234                         pm_ier = I915_READ(GEN6_PMIER);
1235                         pm_imr = I915_READ(GEN6_PMIMR);
1236                         pm_isr = I915_READ(GEN6_PMISR);
1237                         pm_iir = I915_READ(GEN6_PMIIR);
1238                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1239                 } else {
1240                         pm_ier = I915_READ(GEN8_GT_IER(2));
1241                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1242                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1243                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1244                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1245                 }
1246                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1247                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1248                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1249                 seq_printf(m, "Render p-state ratio: %d\n",
1250                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1251                 seq_printf(m, "Render p-state VID: %d\n",
1252                            gt_perf_status & 0xff);
1253                 seq_printf(m, "Render p-state limit: %d\n",
1254                            rp_state_limits & 0xff);
1255                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1256                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1257                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1258                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1259                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1260                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1261                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1262                            GEN6_CURICONT_MASK);
1263                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1264                            GEN6_CURBSYTAVG_MASK);
1265                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1266                            GEN6_CURBSYTAVG_MASK);
1267                 seq_printf(m, "Up threshold: %d%%\n",
1268                            dev_priv->rps.up_threshold);
1269
1270                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1271                            GEN6_CURIAVG_MASK);
1272                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1273                            GEN6_CURBSYTAVG_MASK);
1274                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1275                            GEN6_CURBSYTAVG_MASK);
1276                 seq_printf(m, "Down threshold: %d%%\n",
1277                            dev_priv->rps.down_threshold);
1278
1279                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1280                             rp_state_cap >> 16) & 0xff;
1281                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1282                              GEN9_FREQ_SCALER : 1);
1283                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1284                            intel_gpu_freq(dev_priv, max_freq));
1285
1286                 max_freq = (rp_state_cap & 0xff00) >> 8;
1287                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1288                              GEN9_FREQ_SCALER : 1);
1289                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1290                            intel_gpu_freq(dev_priv, max_freq));
1291
1292                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1293                             rp_state_cap >> 0) & 0xff;
1294                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1295                              GEN9_FREQ_SCALER : 1);
1296                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1297                            intel_gpu_freq(dev_priv, max_freq));
1298                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1299                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300
1301                 seq_printf(m, "Current freq: %d MHz\n",
1302                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1303                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1304                 seq_printf(m, "Idle freq: %d MHz\n",
1305                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306                 seq_printf(m, "Min freq: %d MHz\n",
1307                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1308                 seq_printf(m, "Max freq: %d MHz\n",
1309                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1310                 seq_printf(m,
1311                            "efficient (RPe) frequency: %d MHz\n",
1312                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1313         } else {
1314                 seq_puts(m, "no P-state info available\n");
1315         }
1316
1317         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1318         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1319         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1320
1321 out:
1322         intel_runtime_pm_put(dev_priv);
1323         return ret;
1324 }
1325
1326 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1327 {
1328         struct drm_info_node *node = m->private;
1329         struct drm_device *dev = node->minor->dev;
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331         struct intel_engine_cs *ring;
1332         u64 acthd[I915_NUM_RINGS];
1333         u32 seqno[I915_NUM_RINGS];
1334         u32 instdone[I915_NUM_INSTDONE_REG];
1335         int i, j;
1336
1337         if (!i915.enable_hangcheck) {
1338                 seq_printf(m, "Hangcheck disabled\n");
1339                 return 0;
1340         }
1341
1342         intel_runtime_pm_get(dev_priv);
1343
1344         for_each_ring(ring, dev_priv, i) {
1345                 seqno[i] = ring->get_seqno(ring, false);
1346                 acthd[i] = intel_ring_get_active_head(ring);
1347         }
1348
1349         i915_get_extra_instdone(dev, instdone);
1350
1351         intel_runtime_pm_put(dev_priv);
1352
1353         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1354                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1355                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1356                                             jiffies));
1357         } else
1358                 seq_printf(m, "Hangcheck inactive\n");
1359
1360         for_each_ring(ring, dev_priv, i) {
1361                 seq_printf(m, "%s:\n", ring->name);
1362                 seq_printf(m, "\tseqno = %x [current %x]\n",
1363                            ring->hangcheck.seqno, seqno[i]);
1364                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1365                            (long long)ring->hangcheck.acthd,
1366                            (long long)acthd[i]);
1367                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1368                            (long long)ring->hangcheck.max_acthd);
1369                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1370                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1371
1372                 if (ring->id == RCS) {
1373                         seq_puts(m, "\tinstdone read =");
1374
1375                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1376                                 seq_printf(m, " 0x%08x", instdone[j]);
1377
1378                         seq_puts(m, "\n\tinstdone accu =");
1379
1380                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1381                                 seq_printf(m, " 0x%08x",
1382                                            ring->hangcheck.instdone[j]);
1383
1384                         seq_puts(m, "\n");
1385                 }
1386         }
1387
1388         return 0;
1389 }
1390
1391 static int ironlake_drpc_info(struct seq_file *m)
1392 {
1393         struct drm_info_node *node = m->private;
1394         struct drm_device *dev = node->minor->dev;
1395         struct drm_i915_private *dev_priv = dev->dev_private;
1396         u32 rgvmodectl, rstdbyctl;
1397         u16 crstandvid;
1398         int ret;
1399
1400         ret = mutex_lock_interruptible(&dev->struct_mutex);
1401         if (ret)
1402                 return ret;
1403         intel_runtime_pm_get(dev_priv);
1404
1405         rgvmodectl = I915_READ(MEMMODECTL);
1406         rstdbyctl = I915_READ(RSTDBYCTL);
1407         crstandvid = I915_READ16(CRSTANDVID);
1408
1409         intel_runtime_pm_put(dev_priv);
1410         mutex_unlock(&dev->struct_mutex);
1411
1412         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1413         seq_printf(m, "Boost freq: %d\n",
1414                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1415                    MEMMODE_BOOST_FREQ_SHIFT);
1416         seq_printf(m, "HW control enabled: %s\n",
1417                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1418         seq_printf(m, "SW control enabled: %s\n",
1419                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1420         seq_printf(m, "Gated voltage change: %s\n",
1421                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1422         seq_printf(m, "Starting frequency: P%d\n",
1423                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1424         seq_printf(m, "Max P-state: P%d\n",
1425                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1426         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1427         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1428         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1429         seq_printf(m, "Render standby enabled: %s\n",
1430                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1431         seq_puts(m, "Current RS state: ");
1432         switch (rstdbyctl & RSX_STATUS_MASK) {
1433         case RSX_STATUS_ON:
1434                 seq_puts(m, "on\n");
1435                 break;
1436         case RSX_STATUS_RC1:
1437                 seq_puts(m, "RC1\n");
1438                 break;
1439         case RSX_STATUS_RC1E:
1440                 seq_puts(m, "RC1E\n");
1441                 break;
1442         case RSX_STATUS_RS1:
1443                 seq_puts(m, "RS1\n");
1444                 break;
1445         case RSX_STATUS_RS2:
1446                 seq_puts(m, "RS2 (RC6)\n");
1447                 break;
1448         case RSX_STATUS_RS3:
1449                 seq_puts(m, "RC3 (RC6+)\n");
1450                 break;
1451         default:
1452                 seq_puts(m, "unknown\n");
1453                 break;
1454         }
1455
1456         return 0;
1457 }
1458
1459 static int i915_forcewake_domains(struct seq_file *m, void *data)
1460 {
1461         struct drm_info_node *node = m->private;
1462         struct drm_device *dev = node->minor->dev;
1463         struct drm_i915_private *dev_priv = dev->dev_private;
1464         struct intel_uncore_forcewake_domain *fw_domain;
1465         int i;
1466
1467         spin_lock_irq(&dev_priv->uncore.lock);
1468         for_each_fw_domain(fw_domain, dev_priv, i) {
1469                 seq_printf(m, "%s.wake_count = %u\n",
1470                            intel_uncore_forcewake_domain_to_str(i),
1471                            fw_domain->wake_count);
1472         }
1473         spin_unlock_irq(&dev_priv->uncore.lock);
1474
1475         return 0;
1476 }
1477
1478 static int vlv_drpc_info(struct seq_file *m)
1479 {
1480         struct drm_info_node *node = m->private;
1481         struct drm_device *dev = node->minor->dev;
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         u32 rpmodectl1, rcctl1, pw_status;
1484
1485         intel_runtime_pm_get(dev_priv);
1486
1487         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1488         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1489         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1490
1491         intel_runtime_pm_put(dev_priv);
1492
1493         seq_printf(m, "Video Turbo Mode: %s\n",
1494                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1495         seq_printf(m, "Turbo enabled: %s\n",
1496                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1497         seq_printf(m, "HW control enabled: %s\n",
1498                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1499         seq_printf(m, "SW control enabled: %s\n",
1500                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1501                           GEN6_RP_MEDIA_SW_MODE));
1502         seq_printf(m, "RC6 Enabled: %s\n",
1503                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1504                                         GEN6_RC_CTL_EI_MODE(1))));
1505         seq_printf(m, "Render Power Well: %s\n",
1506                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1507         seq_printf(m, "Media Power Well: %s\n",
1508                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1509
1510         seq_printf(m, "Render RC6 residency since boot: %u\n",
1511                    I915_READ(VLV_GT_RENDER_RC6));
1512         seq_printf(m, "Media RC6 residency since boot: %u\n",
1513                    I915_READ(VLV_GT_MEDIA_RC6));
1514
1515         return i915_forcewake_domains(m, NULL);
1516 }
1517
1518 static int gen6_drpc_info(struct seq_file *m)
1519 {
1520         struct drm_info_node *node = m->private;
1521         struct drm_device *dev = node->minor->dev;
1522         struct drm_i915_private *dev_priv = dev->dev_private;
1523         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1524         unsigned forcewake_count;
1525         int count = 0, ret;
1526
1527         ret = mutex_lock_interruptible(&dev->struct_mutex);
1528         if (ret)
1529                 return ret;
1530         intel_runtime_pm_get(dev_priv);
1531
1532         spin_lock_irq(&dev_priv->uncore.lock);
1533         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1534         spin_unlock_irq(&dev_priv->uncore.lock);
1535
1536         if (forcewake_count) {
1537                 seq_puts(m, "RC information inaccurate because somebody "
1538                             "holds a forcewake reference \n");
1539         } else {
1540                 /* NB: we cannot use forcewake, else we read the wrong values */
1541                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1542                         udelay(10);
1543                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1544         }
1545
1546         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1547         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1548
1549         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1550         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1551         mutex_unlock(&dev->struct_mutex);
1552         mutex_lock(&dev_priv->rps.hw_lock);
1553         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1554         mutex_unlock(&dev_priv->rps.hw_lock);
1555
1556         intel_runtime_pm_put(dev_priv);
1557
1558         seq_printf(m, "Video Turbo Mode: %s\n",
1559                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1560         seq_printf(m, "HW control enabled: %s\n",
1561                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1562         seq_printf(m, "SW control enabled: %s\n",
1563                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1564                           GEN6_RP_MEDIA_SW_MODE));
1565         seq_printf(m, "RC1e Enabled: %s\n",
1566                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1567         seq_printf(m, "RC6 Enabled: %s\n",
1568                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1569         seq_printf(m, "Deep RC6 Enabled: %s\n",
1570                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1571         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1572                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1573         seq_puts(m, "Current RC state: ");
1574         switch (gt_core_status & GEN6_RCn_MASK) {
1575         case GEN6_RC0:
1576                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1577                         seq_puts(m, "Core Power Down\n");
1578                 else
1579                         seq_puts(m, "on\n");
1580                 break;
1581         case GEN6_RC3:
1582                 seq_puts(m, "RC3\n");
1583                 break;
1584         case GEN6_RC6:
1585                 seq_puts(m, "RC6\n");
1586                 break;
1587         case GEN6_RC7:
1588                 seq_puts(m, "RC7\n");
1589                 break;
1590         default:
1591                 seq_puts(m, "Unknown\n");
1592                 break;
1593         }
1594
1595         seq_printf(m, "Core Power Down: %s\n",
1596                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1597
1598         /* Not exactly sure what this is */
1599         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1600                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1601         seq_printf(m, "RC6 residency since boot: %u\n",
1602                    I915_READ(GEN6_GT_GFX_RC6));
1603         seq_printf(m, "RC6+ residency since boot: %u\n",
1604                    I915_READ(GEN6_GT_GFX_RC6p));
1605         seq_printf(m, "RC6++ residency since boot: %u\n",
1606                    I915_READ(GEN6_GT_GFX_RC6pp));
1607
1608         seq_printf(m, "RC6   voltage: %dmV\n",
1609                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1610         seq_printf(m, "RC6+  voltage: %dmV\n",
1611                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1612         seq_printf(m, "RC6++ voltage: %dmV\n",
1613                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1614         return 0;
1615 }
1616
1617 static int i915_drpc_info(struct seq_file *m, void *unused)
1618 {
1619         struct drm_info_node *node = m->private;
1620         struct drm_device *dev = node->minor->dev;
1621
1622         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1623                 return vlv_drpc_info(m);
1624         else if (INTEL_INFO(dev)->gen >= 6)
1625                 return gen6_drpc_info(m);
1626         else
1627                 return ironlake_drpc_info(m);
1628 }
1629
1630 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1631 {
1632         struct drm_info_node *node = m->private;
1633         struct drm_device *dev = node->minor->dev;
1634         struct drm_i915_private *dev_priv = dev->dev_private;
1635
1636         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1637                    dev_priv->fb_tracking.busy_bits);
1638
1639         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1640                    dev_priv->fb_tracking.flip_bits);
1641
1642         return 0;
1643 }
1644
1645 static int i915_fbc_status(struct seq_file *m, void *unused)
1646 {
1647         struct drm_info_node *node = m->private;
1648         struct drm_device *dev = node->minor->dev;
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650
1651         if (!HAS_FBC(dev)) {
1652                 seq_puts(m, "FBC unsupported on this chipset\n");
1653                 return 0;
1654         }
1655
1656         intel_runtime_pm_get(dev_priv);
1657         mutex_lock(&dev_priv->fbc.lock);
1658
1659         if (intel_fbc_is_active(dev_priv))
1660                 seq_puts(m, "FBC enabled\n");
1661         else
1662                 seq_printf(m, "FBC disabled: %s\n",
1663                            dev_priv->fbc.no_fbc_reason);
1664
1665         if (INTEL_INFO(dev_priv)->gen >= 7)
1666                 seq_printf(m, "Compressing: %s\n",
1667                            yesno(I915_READ(FBC_STATUS2) &
1668                                  FBC_COMPRESSION_MASK));
1669
1670         mutex_unlock(&dev_priv->fbc.lock);
1671         intel_runtime_pm_put(dev_priv);
1672
1673         return 0;
1674 }
1675
1676 static int i915_fbc_fc_get(void *data, u64 *val)
1677 {
1678         struct drm_device *dev = data;
1679         struct drm_i915_private *dev_priv = dev->dev_private;
1680
1681         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1682                 return -ENODEV;
1683
1684         *val = dev_priv->fbc.false_color;
1685
1686         return 0;
1687 }
1688
1689 static int i915_fbc_fc_set(void *data, u64 val)
1690 {
1691         struct drm_device *dev = data;
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         u32 reg;
1694
1695         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1696                 return -ENODEV;
1697
1698         mutex_lock(&dev_priv->fbc.lock);
1699
1700         reg = I915_READ(ILK_DPFC_CONTROL);
1701         dev_priv->fbc.false_color = val;
1702
1703         I915_WRITE(ILK_DPFC_CONTROL, val ?
1704                    (reg | FBC_CTL_FALSE_COLOR) :
1705                    (reg & ~FBC_CTL_FALSE_COLOR));
1706
1707         mutex_unlock(&dev_priv->fbc.lock);
1708         return 0;
1709 }
1710
1711 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1712                         i915_fbc_fc_get, i915_fbc_fc_set,
1713                         "%llu\n");
1714
1715 static int i915_ips_status(struct seq_file *m, void *unused)
1716 {
1717         struct drm_info_node *node = m->private;
1718         struct drm_device *dev = node->minor->dev;
1719         struct drm_i915_private *dev_priv = dev->dev_private;
1720
1721         if (!HAS_IPS(dev)) {
1722                 seq_puts(m, "not supported\n");
1723                 return 0;
1724         }
1725
1726         intel_runtime_pm_get(dev_priv);
1727
1728         seq_printf(m, "Enabled by kernel parameter: %s\n",
1729                    yesno(i915.enable_ips));
1730
1731         if (INTEL_INFO(dev)->gen >= 8) {
1732                 seq_puts(m, "Currently: unknown\n");
1733         } else {
1734                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1735                         seq_puts(m, "Currently: enabled\n");
1736                 else
1737                         seq_puts(m, "Currently: disabled\n");
1738         }
1739
1740         intel_runtime_pm_put(dev_priv);
1741
1742         return 0;
1743 }
1744
1745 static int i915_sr_status(struct seq_file *m, void *unused)
1746 {
1747         struct drm_info_node *node = m->private;
1748         struct drm_device *dev = node->minor->dev;
1749         struct drm_i915_private *dev_priv = dev->dev_private;
1750         bool sr_enabled = false;
1751
1752         intel_runtime_pm_get(dev_priv);
1753
1754         if (HAS_PCH_SPLIT(dev))
1755                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1756         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1757                  IS_I945G(dev) || IS_I945GM(dev))
1758                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1759         else if (IS_I915GM(dev))
1760                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1761         else if (IS_PINEVIEW(dev))
1762                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1763         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1764                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1765
1766         intel_runtime_pm_put(dev_priv);
1767
1768         seq_printf(m, "self-refresh: %s\n",
1769                    sr_enabled ? "enabled" : "disabled");
1770
1771         return 0;
1772 }
1773
1774 static int i915_emon_status(struct seq_file *m, void *unused)
1775 {
1776         struct drm_info_node *node = m->private;
1777         struct drm_device *dev = node->minor->dev;
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         unsigned long temp, chipset, gfx;
1780         int ret;
1781
1782         if (!IS_GEN5(dev))
1783                 return -ENODEV;
1784
1785         ret = mutex_lock_interruptible(&dev->struct_mutex);
1786         if (ret)
1787                 return ret;
1788
1789         temp = i915_mch_val(dev_priv);
1790         chipset = i915_chipset_val(dev_priv);
1791         gfx = i915_gfx_val(dev_priv);
1792         mutex_unlock(&dev->struct_mutex);
1793
1794         seq_printf(m, "GMCH temp: %ld\n", temp);
1795         seq_printf(m, "Chipset power: %ld\n", chipset);
1796         seq_printf(m, "GFX power: %ld\n", gfx);
1797         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1798
1799         return 0;
1800 }
1801
1802 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1803 {
1804         struct drm_info_node *node = m->private;
1805         struct drm_device *dev = node->minor->dev;
1806         struct drm_i915_private *dev_priv = dev->dev_private;
1807         int ret = 0;
1808         int gpu_freq, ia_freq;
1809         unsigned int max_gpu_freq, min_gpu_freq;
1810
1811         if (!HAS_CORE_RING_FREQ(dev)) {
1812                 seq_puts(m, "unsupported on this chipset\n");
1813                 return 0;
1814         }
1815
1816         intel_runtime_pm_get(dev_priv);
1817
1818         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1819
1820         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1821         if (ret)
1822                 goto out;
1823
1824         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1825                 /* Convert GT frequency to 50 HZ units */
1826                 min_gpu_freq =
1827                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1828                 max_gpu_freq =
1829                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1830         } else {
1831                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1832                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1833         }
1834
1835         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1836
1837         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1838                 ia_freq = gpu_freq;
1839                 sandybridge_pcode_read(dev_priv,
1840                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1841                                        &ia_freq);
1842                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1843                            intel_gpu_freq(dev_priv, (gpu_freq *
1844                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1845                                  GEN9_FREQ_SCALER : 1))),
1846                            ((ia_freq >> 0) & 0xff) * 100,
1847                            ((ia_freq >> 8) & 0xff) * 100);
1848         }
1849
1850         mutex_unlock(&dev_priv->rps.hw_lock);
1851
1852 out:
1853         intel_runtime_pm_put(dev_priv);
1854         return ret;
1855 }
1856
1857 static int i915_opregion(struct seq_file *m, void *unused)
1858 {
1859         struct drm_info_node *node = m->private;
1860         struct drm_device *dev = node->minor->dev;
1861         struct drm_i915_private *dev_priv = dev->dev_private;
1862         struct intel_opregion *opregion = &dev_priv->opregion;
1863         int ret;
1864
1865         ret = mutex_lock_interruptible(&dev->struct_mutex);
1866         if (ret)
1867                 goto out;
1868
1869         if (opregion->header)
1870                 seq_write(m, opregion->header, OPREGION_SIZE);
1871
1872         mutex_unlock(&dev->struct_mutex);
1873
1874 out:
1875         return 0;
1876 }
1877
1878 static int i915_vbt(struct seq_file *m, void *unused)
1879 {
1880         struct drm_info_node *node = m->private;
1881         struct drm_device *dev = node->minor->dev;
1882         struct drm_i915_private *dev_priv = dev->dev_private;
1883         struct intel_opregion *opregion = &dev_priv->opregion;
1884
1885         if (opregion->vbt)
1886                 seq_write(m, opregion->vbt, opregion->vbt_size);
1887
1888         return 0;
1889 }
1890
1891 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1892 {
1893         struct drm_info_node *node = m->private;
1894         struct drm_device *dev = node->minor->dev;
1895         struct intel_framebuffer *fbdev_fb = NULL;
1896         struct drm_framebuffer *drm_fb;
1897
1898 #ifdef CONFIG_DRM_FBDEV_EMULATION
1899        if (to_i915(dev)->fbdev) {
1900                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1901
1902                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1903                          fbdev_fb->base.width,
1904                          fbdev_fb->base.height,
1905                          fbdev_fb->base.depth,
1906                          fbdev_fb->base.bits_per_pixel,
1907                          fbdev_fb->base.modifier[0],
1908                          atomic_read(&fbdev_fb->base.refcount.refcount));
1909                describe_obj(m, fbdev_fb->obj);
1910                seq_putc(m, '\n');
1911        }
1912 #endif
1913
1914         mutex_lock(&dev->mode_config.fb_lock);
1915         drm_for_each_fb(drm_fb, dev) {
1916                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1917                 if (fb == fbdev_fb)
1918                         continue;
1919
1920                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1921                            fb->base.width,
1922                            fb->base.height,
1923                            fb->base.depth,
1924                            fb->base.bits_per_pixel,
1925                            fb->base.modifier[0],
1926                            atomic_read(&fb->base.refcount.refcount));
1927                 describe_obj(m, fb->obj);
1928                 seq_putc(m, '\n');
1929         }
1930         mutex_unlock(&dev->mode_config.fb_lock);
1931
1932         return 0;
1933 }
1934
1935 static void describe_ctx_ringbuf(struct seq_file *m,
1936                                  struct intel_ringbuffer *ringbuf)
1937 {
1938         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1939                    ringbuf->space, ringbuf->head, ringbuf->tail,
1940                    ringbuf->last_retired_head);
1941 }
1942
1943 static int i915_context_status(struct seq_file *m, void *unused)
1944 {
1945         struct drm_info_node *node = m->private;
1946         struct drm_device *dev = node->minor->dev;
1947         struct drm_i915_private *dev_priv = dev->dev_private;
1948         struct intel_engine_cs *ring;
1949         struct intel_context *ctx;
1950         int ret, i;
1951
1952         ret = mutex_lock_interruptible(&dev->struct_mutex);
1953         if (ret)
1954                 return ret;
1955
1956         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1957                 if (!i915.enable_execlists &&
1958                     ctx->legacy_hw_ctx.rcs_state == NULL)
1959                         continue;
1960
1961                 seq_puts(m, "HW context ");
1962                 describe_ctx(m, ctx);
1963                 if (ctx == dev_priv->kernel_context)
1964                         seq_printf(m, "(kernel context) ");
1965
1966                 if (i915.enable_execlists) {
1967                         seq_putc(m, '\n');
1968                         for_each_ring(ring, dev_priv, i) {
1969                                 struct drm_i915_gem_object *ctx_obj =
1970                                         ctx->engine[i].state;
1971                                 struct intel_ringbuffer *ringbuf =
1972                                         ctx->engine[i].ringbuf;
1973
1974                                 seq_printf(m, "%s: ", ring->name);
1975                                 if (ctx_obj)
1976                                         describe_obj(m, ctx_obj);
1977                                 if (ringbuf)
1978                                         describe_ctx_ringbuf(m, ringbuf);
1979                                 seq_putc(m, '\n');
1980                         }
1981                 } else {
1982                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1983                 }
1984
1985                 seq_putc(m, '\n');
1986         }
1987
1988         mutex_unlock(&dev->struct_mutex);
1989
1990         return 0;
1991 }
1992
1993 static void i915_dump_lrc_obj(struct seq_file *m,
1994                               struct intel_context *ctx,
1995                               struct intel_engine_cs *ring)
1996 {
1997         struct page *page;
1998         uint32_t *reg_state;
1999         int j;
2000         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
2001         unsigned long ggtt_offset = 0;
2002
2003         if (ctx_obj == NULL) {
2004                 seq_printf(m, "Context on %s with no gem object\n",
2005                            ring->name);
2006                 return;
2007         }
2008
2009         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
2010                    intel_execlists_ctx_id(ctx, ring));
2011
2012         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2013                 seq_puts(m, "\tNot bound in GGTT\n");
2014         else
2015                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2016
2017         if (i915_gem_object_get_pages(ctx_obj)) {
2018                 seq_puts(m, "\tFailed to get pages for context object\n");
2019                 return;
2020         }
2021
2022         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2023         if (!WARN_ON(page == NULL)) {
2024                 reg_state = kmap_atomic(page);
2025
2026                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2027                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2028                                    ggtt_offset + 4096 + (j * 4),
2029                                    reg_state[j], reg_state[j + 1],
2030                                    reg_state[j + 2], reg_state[j + 3]);
2031                 }
2032                 kunmap_atomic(reg_state);
2033         }
2034
2035         seq_putc(m, '\n');
2036 }
2037
2038 static int i915_dump_lrc(struct seq_file *m, void *unused)
2039 {
2040         struct drm_info_node *node = (struct drm_info_node *) m->private;
2041         struct drm_device *dev = node->minor->dev;
2042         struct drm_i915_private *dev_priv = dev->dev_private;
2043         struct intel_engine_cs *ring;
2044         struct intel_context *ctx;
2045         int ret, i;
2046
2047         if (!i915.enable_execlists) {
2048                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2049                 return 0;
2050         }
2051
2052         ret = mutex_lock_interruptible(&dev->struct_mutex);
2053         if (ret)
2054                 return ret;
2055
2056         list_for_each_entry(ctx, &dev_priv->context_list, link)
2057                 if (ctx != dev_priv->kernel_context)
2058                         for_each_ring(ring, dev_priv, i)
2059                                 i915_dump_lrc_obj(m, ctx, ring);
2060
2061         mutex_unlock(&dev->struct_mutex);
2062
2063         return 0;
2064 }
2065
2066 static int i915_execlists(struct seq_file *m, void *data)
2067 {
2068         struct drm_info_node *node = (struct drm_info_node *)m->private;
2069         struct drm_device *dev = node->minor->dev;
2070         struct drm_i915_private *dev_priv = dev->dev_private;
2071         struct intel_engine_cs *ring;
2072         u32 status_pointer;
2073         u8 read_pointer;
2074         u8 write_pointer;
2075         u32 status;
2076         u32 ctx_id;
2077         struct list_head *cursor;
2078         int ring_id, i;
2079         int ret;
2080
2081         if (!i915.enable_execlists) {
2082                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2083                 return 0;
2084         }
2085
2086         ret = mutex_lock_interruptible(&dev->struct_mutex);
2087         if (ret)
2088                 return ret;
2089
2090         intel_runtime_pm_get(dev_priv);
2091
2092         for_each_ring(ring, dev_priv, ring_id) {
2093                 struct drm_i915_gem_request *head_req = NULL;
2094                 int count = 0;
2095                 unsigned long flags;
2096
2097                 seq_printf(m, "%s\n", ring->name);
2098
2099                 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2100                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2101                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2102                            status, ctx_id);
2103
2104                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2105                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2106
2107                 read_pointer = ring->next_context_status_buffer;
2108                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2109                 if (read_pointer > write_pointer)
2110                         write_pointer += GEN8_CSB_ENTRIES;
2111                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2112                            read_pointer, write_pointer);
2113
2114                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2115                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2116                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2117
2118                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2119                                    i, status, ctx_id);
2120                 }
2121
2122                 spin_lock_irqsave(&ring->execlist_lock, flags);
2123                 list_for_each(cursor, &ring->execlist_queue)
2124                         count++;
2125                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2126                                 struct drm_i915_gem_request, execlist_link);
2127                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2128
2129                 seq_printf(m, "\t%d requests in queue\n", count);
2130                 if (head_req) {
2131                         seq_printf(m, "\tHead request id: %u\n",
2132                                    intel_execlists_ctx_id(head_req->ctx, ring));
2133                         seq_printf(m, "\tHead request tail: %u\n",
2134                                    head_req->tail);
2135                 }
2136
2137                 seq_putc(m, '\n');
2138         }
2139
2140         intel_runtime_pm_put(dev_priv);
2141         mutex_unlock(&dev->struct_mutex);
2142
2143         return 0;
2144 }
2145
2146 static const char *swizzle_string(unsigned swizzle)
2147 {
2148         switch (swizzle) {
2149         case I915_BIT_6_SWIZZLE_NONE:
2150                 return "none";
2151         case I915_BIT_6_SWIZZLE_9:
2152                 return "bit9";
2153         case I915_BIT_6_SWIZZLE_9_10:
2154                 return "bit9/bit10";
2155         case I915_BIT_6_SWIZZLE_9_11:
2156                 return "bit9/bit11";
2157         case I915_BIT_6_SWIZZLE_9_10_11:
2158                 return "bit9/bit10/bit11";
2159         case I915_BIT_6_SWIZZLE_9_17:
2160                 return "bit9/bit17";
2161         case I915_BIT_6_SWIZZLE_9_10_17:
2162                 return "bit9/bit10/bit17";
2163         case I915_BIT_6_SWIZZLE_UNKNOWN:
2164                 return "unknown";
2165         }
2166
2167         return "bug";
2168 }
2169
2170 static int i915_swizzle_info(struct seq_file *m, void *data)
2171 {
2172         struct drm_info_node *node = m->private;
2173         struct drm_device *dev = node->minor->dev;
2174         struct drm_i915_private *dev_priv = dev->dev_private;
2175         int ret;
2176
2177         ret = mutex_lock_interruptible(&dev->struct_mutex);
2178         if (ret)
2179                 return ret;
2180         intel_runtime_pm_get(dev_priv);
2181
2182         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2183                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2184         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2185                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2186
2187         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2188                 seq_printf(m, "DDC = 0x%08x\n",
2189                            I915_READ(DCC));
2190                 seq_printf(m, "DDC2 = 0x%08x\n",
2191                            I915_READ(DCC2));
2192                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2193                            I915_READ16(C0DRB3));
2194                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2195                            I915_READ16(C1DRB3));
2196         } else if (INTEL_INFO(dev)->gen >= 6) {
2197                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2198                            I915_READ(MAD_DIMM_C0));
2199                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2200                            I915_READ(MAD_DIMM_C1));
2201                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2202                            I915_READ(MAD_DIMM_C2));
2203                 seq_printf(m, "TILECTL = 0x%08x\n",
2204                            I915_READ(TILECTL));
2205                 if (INTEL_INFO(dev)->gen >= 8)
2206                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2207                                    I915_READ(GAMTARBMODE));
2208                 else
2209                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2210                                    I915_READ(ARB_MODE));
2211                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2212                            I915_READ(DISP_ARB_CTL));
2213         }
2214
2215         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2216                 seq_puts(m, "L-shaped memory detected\n");
2217
2218         intel_runtime_pm_put(dev_priv);
2219         mutex_unlock(&dev->struct_mutex);
2220
2221         return 0;
2222 }
2223
2224 static int per_file_ctx(int id, void *ptr, void *data)
2225 {
2226         struct intel_context *ctx = ptr;
2227         struct seq_file *m = data;
2228         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2229
2230         if (!ppgtt) {
2231                 seq_printf(m, "  no ppgtt for context %d\n",
2232                            ctx->user_handle);
2233                 return 0;
2234         }
2235
2236         if (i915_gem_context_is_default(ctx))
2237                 seq_puts(m, "  default context:\n");
2238         else
2239                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2240         ppgtt->debug_dump(ppgtt, m);
2241
2242         return 0;
2243 }
2244
2245 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2246 {
2247         struct drm_i915_private *dev_priv = dev->dev_private;
2248         struct intel_engine_cs *ring;
2249         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2250         int unused, i;
2251
2252         if (!ppgtt)
2253                 return;
2254
2255         for_each_ring(ring, dev_priv, unused) {
2256                 seq_printf(m, "%s\n", ring->name);
2257                 for (i = 0; i < 4; i++) {
2258                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2259                         pdp <<= 32;
2260                         pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2261                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2262                 }
2263         }
2264 }
2265
2266 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2267 {
2268         struct drm_i915_private *dev_priv = dev->dev_private;
2269         struct intel_engine_cs *ring;
2270         int i;
2271
2272         if (INTEL_INFO(dev)->gen == 6)
2273                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2274
2275         for_each_ring(ring, dev_priv, i) {
2276                 seq_printf(m, "%s\n", ring->name);
2277                 if (INTEL_INFO(dev)->gen == 7)
2278                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2279                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2280                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2281                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2282         }
2283         if (dev_priv->mm.aliasing_ppgtt) {
2284                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2285
2286                 seq_puts(m, "aliasing PPGTT:\n");
2287                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2288
2289                 ppgtt->debug_dump(ppgtt, m);
2290         }
2291
2292         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2293 }
2294
2295 static int i915_ppgtt_info(struct seq_file *m, void *data)
2296 {
2297         struct drm_info_node *node = m->private;
2298         struct drm_device *dev = node->minor->dev;
2299         struct drm_i915_private *dev_priv = dev->dev_private;
2300         struct drm_file *file;
2301
2302         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2303         if (ret)
2304                 return ret;
2305         intel_runtime_pm_get(dev_priv);
2306
2307         if (INTEL_INFO(dev)->gen >= 8)
2308                 gen8_ppgtt_info(m, dev);
2309         else if (INTEL_INFO(dev)->gen >= 6)
2310                 gen6_ppgtt_info(m, dev);
2311
2312         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2313                 struct drm_i915_file_private *file_priv = file->driver_priv;
2314                 struct task_struct *task;
2315
2316                 task = get_pid_task(file->pid, PIDTYPE_PID);
2317                 if (!task) {
2318                         ret = -ESRCH;
2319                         goto out_put;
2320                 }
2321                 seq_printf(m, "\nproc: %s\n", task->comm);
2322                 put_task_struct(task);
2323                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2324                              (void *)(unsigned long)m);
2325         }
2326
2327 out_put:
2328         intel_runtime_pm_put(dev_priv);
2329         mutex_unlock(&dev->struct_mutex);
2330
2331         return ret;
2332 }
2333
2334 static int count_irq_waiters(struct drm_i915_private *i915)
2335 {
2336         struct intel_engine_cs *ring;
2337         int count = 0;
2338         int i;
2339
2340         for_each_ring(ring, i915, i)
2341                 count += ring->irq_refcount;
2342
2343         return count;
2344 }
2345
2346 static int i915_rps_boost_info(struct seq_file *m, void *data)
2347 {
2348         struct drm_info_node *node = m->private;
2349         struct drm_device *dev = node->minor->dev;
2350         struct drm_i915_private *dev_priv = dev->dev_private;
2351         struct drm_file *file;
2352
2353         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2354         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2355         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2356         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2357                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2358                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2359                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2360                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2361                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2362         spin_lock(&dev_priv->rps.client_lock);
2363         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2364                 struct drm_i915_file_private *file_priv = file->driver_priv;
2365                 struct task_struct *task;
2366
2367                 rcu_read_lock();
2368                 task = pid_task(file->pid, PIDTYPE_PID);
2369                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2370                            task ? task->comm : "<unknown>",
2371                            task ? task->pid : -1,
2372                            file_priv->rps.boosts,
2373                            list_empty(&file_priv->rps.link) ? "" : ", active");
2374                 rcu_read_unlock();
2375         }
2376         seq_printf(m, "Semaphore boosts: %d%s\n",
2377                    dev_priv->rps.semaphores.boosts,
2378                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2379         seq_printf(m, "MMIO flip boosts: %d%s\n",
2380                    dev_priv->rps.mmioflips.boosts,
2381                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2382         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2383         spin_unlock(&dev_priv->rps.client_lock);
2384
2385         return 0;
2386 }
2387
2388 static int i915_llc(struct seq_file *m, void *data)
2389 {
2390         struct drm_info_node *node = m->private;
2391         struct drm_device *dev = node->minor->dev;
2392         struct drm_i915_private *dev_priv = dev->dev_private;
2393
2394         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2395         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2396         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2397
2398         return 0;
2399 }
2400
2401 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2402 {
2403         struct drm_info_node *node = m->private;
2404         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2405         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2406         u32 tmp, i;
2407
2408         if (!HAS_GUC_UCODE(dev_priv->dev))
2409                 return 0;
2410
2411         seq_printf(m, "GuC firmware status:\n");
2412         seq_printf(m, "\tpath: %s\n",
2413                 guc_fw->guc_fw_path);
2414         seq_printf(m, "\tfetch: %s\n",
2415                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2416         seq_printf(m, "\tload: %s\n",
2417                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2418         seq_printf(m, "\tversion wanted: %d.%d\n",
2419                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2420         seq_printf(m, "\tversion found: %d.%d\n",
2421                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2422         seq_printf(m, "\theader: offset is %d; size = %d\n",
2423                 guc_fw->header_offset, guc_fw->header_size);
2424         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2425                 guc_fw->ucode_offset, guc_fw->ucode_size);
2426         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2427                 guc_fw->rsa_offset, guc_fw->rsa_size);
2428
2429         tmp = I915_READ(GUC_STATUS);
2430
2431         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2432         seq_printf(m, "\tBootrom status = 0x%x\n",
2433                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2434         seq_printf(m, "\tuKernel status = 0x%x\n",
2435                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2436         seq_printf(m, "\tMIA Core status = 0x%x\n",
2437                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2438         seq_puts(m, "\nScratch registers:\n");
2439         for (i = 0; i < 16; i++)
2440                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2441
2442         return 0;
2443 }
2444
2445 static void i915_guc_client_info(struct seq_file *m,
2446                                  struct drm_i915_private *dev_priv,
2447                                  struct i915_guc_client *client)
2448 {
2449         struct intel_engine_cs *ring;
2450         uint64_t tot = 0;
2451         uint32_t i;
2452
2453         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2454                 client->priority, client->ctx_index, client->proc_desc_offset);
2455         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2456                 client->doorbell_id, client->doorbell_offset, client->cookie);
2457         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2458                 client->wq_size, client->wq_offset, client->wq_tail);
2459
2460         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2461         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2462         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2463
2464         for_each_ring(ring, dev_priv, i) {
2465                 seq_printf(m, "\tSubmissions: %llu %s\n",
2466                                 client->submissions[ring->guc_id],
2467                                 ring->name);
2468                 tot += client->submissions[ring->guc_id];
2469         }
2470         seq_printf(m, "\tTotal: %llu\n", tot);
2471 }
2472
2473 static int i915_guc_info(struct seq_file *m, void *data)
2474 {
2475         struct drm_info_node *node = m->private;
2476         struct drm_device *dev = node->minor->dev;
2477         struct drm_i915_private *dev_priv = dev->dev_private;
2478         struct intel_guc guc;
2479         struct i915_guc_client client = {};
2480         struct intel_engine_cs *ring;
2481         enum intel_ring_id i;
2482         u64 total = 0;
2483
2484         if (!HAS_GUC_SCHED(dev_priv->dev))
2485                 return 0;
2486
2487         if (mutex_lock_interruptible(&dev->struct_mutex))
2488                 return 0;
2489
2490         /* Take a local copy of the GuC data, so we can dump it at leisure */
2491         guc = dev_priv->guc;
2492         if (guc.execbuf_client)
2493                 client = *guc.execbuf_client;
2494
2495         mutex_unlock(&dev->struct_mutex);
2496
2497         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2498         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2499         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2500         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2501         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2502
2503         seq_printf(m, "\nGuC submissions:\n");
2504         for_each_ring(ring, dev_priv, i) {
2505                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2506                         ring->name, guc.submissions[ring->guc_id],
2507                         guc.last_seqno[ring->guc_id]);
2508                 total += guc.submissions[ring->guc_id];
2509         }
2510         seq_printf(m, "\t%s: %llu\n", "Total", total);
2511
2512         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2513         i915_guc_client_info(m, dev_priv, &client);
2514
2515         /* Add more as required ... */
2516
2517         return 0;
2518 }
2519
2520 static int i915_guc_log_dump(struct seq_file *m, void *data)
2521 {
2522         struct drm_info_node *node = m->private;
2523         struct drm_device *dev = node->minor->dev;
2524         struct drm_i915_private *dev_priv = dev->dev_private;
2525         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2526         u32 *log;
2527         int i = 0, pg;
2528
2529         if (!log_obj)
2530                 return 0;
2531
2532         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2533                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2534
2535                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2536                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2537                                    *(log + i), *(log + i + 1),
2538                                    *(log + i + 2), *(log + i + 3));
2539
2540                 kunmap_atomic(log);
2541         }
2542
2543         seq_putc(m, '\n');
2544
2545         return 0;
2546 }
2547
2548 static int i915_edp_psr_status(struct seq_file *m, void *data)
2549 {
2550         struct drm_info_node *node = m->private;
2551         struct drm_device *dev = node->minor->dev;
2552         struct drm_i915_private *dev_priv = dev->dev_private;
2553         u32 psrperf = 0;
2554         u32 stat[3];
2555         enum pipe pipe;
2556         bool enabled = false;
2557
2558         if (!HAS_PSR(dev)) {
2559                 seq_puts(m, "PSR not supported\n");
2560                 return 0;
2561         }
2562
2563         intel_runtime_pm_get(dev_priv);
2564
2565         mutex_lock(&dev_priv->psr.lock);
2566         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2567         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2568         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2569         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2570         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2571                    dev_priv->psr.busy_frontbuffer_bits);
2572         seq_printf(m, "Re-enable work scheduled: %s\n",
2573                    yesno(work_busy(&dev_priv->psr.work.work)));
2574
2575         if (HAS_DDI(dev))
2576                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2577         else {
2578                 for_each_pipe(dev_priv, pipe) {
2579                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2580                                 VLV_EDP_PSR_CURR_STATE_MASK;
2581                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2582                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2583                                 enabled = true;
2584                 }
2585         }
2586
2587         seq_printf(m, "Main link in standby mode: %s\n",
2588                    yesno(dev_priv->psr.link_standby));
2589
2590         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2591
2592         if (!HAS_DDI(dev))
2593                 for_each_pipe(dev_priv, pipe) {
2594                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2595                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2596                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2597                 }
2598         seq_puts(m, "\n");
2599
2600         /*
2601          * VLV/CHV PSR has no kind of performance counter
2602          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2603          */
2604         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2605                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2606                         EDP_PSR_PERF_CNT_MASK;
2607
2608                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2609         }
2610         mutex_unlock(&dev_priv->psr.lock);
2611
2612         intel_runtime_pm_put(dev_priv);
2613         return 0;
2614 }
2615
2616 static int i915_sink_crc(struct seq_file *m, void *data)
2617 {
2618         struct drm_info_node *node = m->private;
2619         struct drm_device *dev = node->minor->dev;
2620         struct intel_encoder *encoder;
2621         struct intel_connector *connector;
2622         struct intel_dp *intel_dp = NULL;
2623         int ret;
2624         u8 crc[6];
2625
2626         drm_modeset_lock_all(dev);
2627         for_each_intel_connector(dev, connector) {
2628
2629                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2630                         continue;
2631
2632                 if (!connector->base.encoder)
2633                         continue;
2634
2635                 encoder = to_intel_encoder(connector->base.encoder);
2636                 if (encoder->type != INTEL_OUTPUT_EDP)
2637                         continue;
2638
2639                 intel_dp = enc_to_intel_dp(&encoder->base);
2640
2641                 ret = intel_dp_sink_crc(intel_dp, crc);
2642                 if (ret)
2643                         goto out;
2644
2645                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2646                            crc[0], crc[1], crc[2],
2647                            crc[3], crc[4], crc[5]);
2648                 goto out;
2649         }
2650         ret = -ENODEV;
2651 out:
2652         drm_modeset_unlock_all(dev);
2653         return ret;
2654 }
2655
2656 static int i915_energy_uJ(struct seq_file *m, void *data)
2657 {
2658         struct drm_info_node *node = m->private;
2659         struct drm_device *dev = node->minor->dev;
2660         struct drm_i915_private *dev_priv = dev->dev_private;
2661         u64 power;
2662         u32 units;
2663
2664         if (INTEL_INFO(dev)->gen < 6)
2665                 return -ENODEV;
2666
2667         intel_runtime_pm_get(dev_priv);
2668
2669         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2670         power = (power & 0x1f00) >> 8;
2671         units = 1000000 / (1 << power); /* convert to uJ */
2672         power = I915_READ(MCH_SECP_NRG_STTS);
2673         power *= units;
2674
2675         intel_runtime_pm_put(dev_priv);
2676
2677         seq_printf(m, "%llu", (long long unsigned)power);
2678
2679         return 0;
2680 }
2681
2682 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2683 {
2684         struct drm_info_node *node = m->private;
2685         struct drm_device *dev = node->minor->dev;
2686         struct drm_i915_private *dev_priv = dev->dev_private;
2687
2688         if (!HAS_RUNTIME_PM(dev)) {
2689                 seq_puts(m, "not supported\n");
2690                 return 0;
2691         }
2692
2693         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2694         seq_printf(m, "IRQs disabled: %s\n",
2695                    yesno(!intel_irqs_enabled(dev_priv)));
2696 #ifdef CONFIG_PM
2697         seq_printf(m, "Usage count: %d\n",
2698                    atomic_read(&dev->dev->power.usage_count));
2699 #else
2700         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2701 #endif
2702
2703         return 0;
2704 }
2705
2706 static int i915_power_domain_info(struct seq_file *m, void *unused)
2707 {
2708         struct drm_info_node *node = m->private;
2709         struct drm_device *dev = node->minor->dev;
2710         struct drm_i915_private *dev_priv = dev->dev_private;
2711         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2712         int i;
2713
2714         mutex_lock(&power_domains->lock);
2715
2716         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2717         for (i = 0; i < power_domains->power_well_count; i++) {
2718                 struct i915_power_well *power_well;
2719                 enum intel_display_power_domain power_domain;
2720
2721                 power_well = &power_domains->power_wells[i];
2722                 seq_printf(m, "%-25s %d\n", power_well->name,
2723                            power_well->count);
2724
2725                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2726                      power_domain++) {
2727                         if (!(BIT(power_domain) & power_well->domains))
2728                                 continue;
2729
2730                         seq_printf(m, "  %-23s %d\n",
2731                                  intel_display_power_domain_str(power_domain),
2732                                  power_domains->domain_use_count[power_domain]);
2733                 }
2734         }
2735
2736         mutex_unlock(&power_domains->lock);
2737
2738         return 0;
2739 }
2740
2741 static int i915_dmc_info(struct seq_file *m, void *unused)
2742 {
2743         struct drm_info_node *node = m->private;
2744         struct drm_device *dev = node->minor->dev;
2745         struct drm_i915_private *dev_priv = dev->dev_private;
2746         struct intel_csr *csr;
2747
2748         if (!HAS_CSR(dev)) {
2749                 seq_puts(m, "not supported\n");
2750                 return 0;
2751         }
2752
2753         csr = &dev_priv->csr;
2754
2755         intel_runtime_pm_get(dev_priv);
2756
2757         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2758         seq_printf(m, "path: %s\n", csr->fw_path);
2759
2760         if (!csr->dmc_payload)
2761                 goto out;
2762
2763         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2764                    CSR_VERSION_MINOR(csr->version));
2765
2766         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2767                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2768                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2769                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2770                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2771         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2772                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2773                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2774         }
2775
2776 out:
2777         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2778         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2779         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2780
2781         intel_runtime_pm_put(dev_priv);
2782
2783         return 0;
2784 }
2785
2786 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2787                                  struct drm_display_mode *mode)
2788 {
2789         int i;
2790
2791         for (i = 0; i < tabs; i++)
2792                 seq_putc(m, '\t');
2793
2794         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2795                    mode->base.id, mode->name,
2796                    mode->vrefresh, mode->clock,
2797                    mode->hdisplay, mode->hsync_start,
2798                    mode->hsync_end, mode->htotal,
2799                    mode->vdisplay, mode->vsync_start,
2800                    mode->vsync_end, mode->vtotal,
2801                    mode->type, mode->flags);
2802 }
2803
2804 static void intel_encoder_info(struct seq_file *m,
2805                                struct intel_crtc *intel_crtc,
2806                                struct intel_encoder *intel_encoder)
2807 {
2808         struct drm_info_node *node = m->private;
2809         struct drm_device *dev = node->minor->dev;
2810         struct drm_crtc *crtc = &intel_crtc->base;
2811         struct intel_connector *intel_connector;
2812         struct drm_encoder *encoder;
2813
2814         encoder = &intel_encoder->base;
2815         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2816                    encoder->base.id, encoder->name);
2817         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2818                 struct drm_connector *connector = &intel_connector->base;
2819                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2820                            connector->base.id,
2821                            connector->name,
2822                            drm_get_connector_status_name(connector->status));
2823                 if (connector->status == connector_status_connected) {
2824                         struct drm_display_mode *mode = &crtc->mode;
2825                         seq_printf(m, ", mode:\n");
2826                         intel_seq_print_mode(m, 2, mode);
2827                 } else {
2828                         seq_putc(m, '\n');
2829                 }
2830         }
2831 }
2832
2833 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2834 {
2835         struct drm_info_node *node = m->private;
2836         struct drm_device *dev = node->minor->dev;
2837         struct drm_crtc *crtc = &intel_crtc->base;
2838         struct intel_encoder *intel_encoder;
2839         struct drm_plane_state *plane_state = crtc->primary->state;
2840         struct drm_framebuffer *fb = plane_state->fb;
2841
2842         if (fb)
2843                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2844                            fb->base.id, plane_state->src_x >> 16,
2845                            plane_state->src_y >> 16, fb->width, fb->height);
2846         else
2847                 seq_puts(m, "\tprimary plane disabled\n");
2848         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2849                 intel_encoder_info(m, intel_crtc, intel_encoder);
2850 }
2851
2852 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2853 {
2854         struct drm_display_mode *mode = panel->fixed_mode;
2855
2856         seq_printf(m, "\tfixed mode:\n");
2857         intel_seq_print_mode(m, 2, mode);
2858 }
2859
2860 static void intel_dp_info(struct seq_file *m,
2861                           struct intel_connector *intel_connector)
2862 {
2863         struct intel_encoder *intel_encoder = intel_connector->encoder;
2864         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2865
2866         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2867         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2868         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2869                 intel_panel_info(m, &intel_connector->panel);
2870 }
2871
2872 static void intel_dp_mst_info(struct seq_file *m,
2873                           struct intel_connector *intel_connector)
2874 {
2875         struct intel_encoder *intel_encoder = intel_connector->encoder;
2876         struct intel_dp_mst_encoder *intel_mst =
2877                 enc_to_mst(&intel_encoder->base);
2878         struct intel_digital_port *intel_dig_port = intel_mst->primary;
2879         struct intel_dp *intel_dp = &intel_dig_port->dp;
2880         bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2881                                         intel_connector->port);
2882
2883         seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2884 }
2885
2886 static void intel_hdmi_info(struct seq_file *m,
2887                             struct intel_connector *intel_connector)
2888 {
2889         struct intel_encoder *intel_encoder = intel_connector->encoder;
2890         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2891
2892         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2893 }
2894
2895 static void intel_lvds_info(struct seq_file *m,
2896                             struct intel_connector *intel_connector)
2897 {
2898         intel_panel_info(m, &intel_connector->panel);
2899 }
2900
2901 static void intel_connector_info(struct seq_file *m,
2902                                  struct drm_connector *connector)
2903 {
2904         struct intel_connector *intel_connector = to_intel_connector(connector);
2905         struct intel_encoder *intel_encoder = intel_connector->encoder;
2906         struct drm_display_mode *mode;
2907
2908         seq_printf(m, "connector %d: type %s, status: %s\n",
2909                    connector->base.id, connector->name,
2910                    drm_get_connector_status_name(connector->status));
2911         if (connector->status == connector_status_connected) {
2912                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2913                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2914                            connector->display_info.width_mm,
2915                            connector->display_info.height_mm);
2916                 seq_printf(m, "\tsubpixel order: %s\n",
2917                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2918                 seq_printf(m, "\tCEA rev: %d\n",
2919                            connector->display_info.cea_rev);
2920         }
2921         if (intel_encoder) {
2922                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2923                     intel_encoder->type == INTEL_OUTPUT_EDP)
2924                         intel_dp_info(m, intel_connector);
2925                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2926                         intel_hdmi_info(m, intel_connector);
2927                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2928                         intel_lvds_info(m, intel_connector);
2929                 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2930                         intel_dp_mst_info(m, intel_connector);
2931         }
2932
2933         seq_printf(m, "\tmodes:\n");
2934         list_for_each_entry(mode, &connector->modes, head)
2935                 intel_seq_print_mode(m, 2, mode);
2936 }
2937
2938 static bool cursor_active(struct drm_device *dev, int pipe)
2939 {
2940         struct drm_i915_private *dev_priv = dev->dev_private;
2941         u32 state;
2942
2943         if (IS_845G(dev) || IS_I865G(dev))
2944                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2945         else
2946                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2947
2948         return state;
2949 }
2950
2951 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2952 {
2953         struct drm_i915_private *dev_priv = dev->dev_private;
2954         u32 pos;
2955
2956         pos = I915_READ(CURPOS(pipe));
2957
2958         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2959         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2960                 *x = -*x;
2961
2962         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2963         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2964                 *y = -*y;
2965
2966         return cursor_active(dev, pipe);
2967 }
2968
2969 static const char *plane_type(enum drm_plane_type type)
2970 {
2971         switch (type) {
2972         case DRM_PLANE_TYPE_OVERLAY:
2973                 return "OVL";
2974         case DRM_PLANE_TYPE_PRIMARY:
2975                 return "PRI";
2976         case DRM_PLANE_TYPE_CURSOR:
2977                 return "CUR";
2978         /*
2979          * Deliberately omitting default: to generate compiler warnings
2980          * when a new drm_plane_type gets added.
2981          */
2982         }
2983
2984         return "unknown";
2985 }
2986
2987 static const char *plane_rotation(unsigned int rotation)
2988 {
2989         static char buf[48];
2990         /*
2991          * According to doc only one DRM_ROTATE_ is allowed but this
2992          * will print them all to visualize if the values are misused
2993          */
2994         snprintf(buf, sizeof(buf),
2995                  "%s%s%s%s%s%s(0x%08x)",
2996                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2997                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2998                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
2999                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3000                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3001                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3002                  rotation);
3003
3004         return buf;
3005 }
3006
3007 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3008 {
3009         struct drm_info_node *node = m->private;
3010         struct drm_device *dev = node->minor->dev;
3011         struct intel_plane *intel_plane;
3012
3013         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3014                 struct drm_plane_state *state;
3015                 struct drm_plane *plane = &intel_plane->base;
3016
3017                 if (!plane->state) {
3018                         seq_puts(m, "plane->state is NULL!\n");
3019                         continue;
3020                 }
3021
3022                 state = plane->state;
3023
3024                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3025                            plane->base.id,
3026                            plane_type(intel_plane->base.type),
3027                            state->crtc_x, state->crtc_y,
3028                            state->crtc_w, state->crtc_h,
3029                            (state->src_x >> 16),
3030                            ((state->src_x & 0xffff) * 15625) >> 10,
3031                            (state->src_y >> 16),
3032                            ((state->src_y & 0xffff) * 15625) >> 10,
3033                            (state->src_w >> 16),
3034                            ((state->src_w & 0xffff) * 15625) >> 10,
3035                            (state->src_h >> 16),
3036                            ((state->src_h & 0xffff) * 15625) >> 10,
3037                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3038                            plane_rotation(state->rotation));
3039         }
3040 }
3041
3042 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3043 {
3044         struct intel_crtc_state *pipe_config;
3045         int num_scalers = intel_crtc->num_scalers;
3046         int i;
3047
3048         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3049
3050         /* Not all platformas have a scaler */
3051         if (num_scalers) {
3052                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3053                            num_scalers,
3054                            pipe_config->scaler_state.scaler_users,
3055                            pipe_config->scaler_state.scaler_id);
3056
3057                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3058                         struct intel_scaler *sc =
3059                                         &pipe_config->scaler_state.scalers[i];
3060
3061                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3062                                    i, yesno(sc->in_use), sc->mode);
3063                 }
3064                 seq_puts(m, "\n");
3065         } else {
3066                 seq_puts(m, "\tNo scalers available on this platform\n");
3067         }
3068 }
3069
3070 static int i915_display_info(struct seq_file *m, void *unused)
3071 {
3072         struct drm_info_node *node = m->private;
3073         struct drm_device *dev = node->minor->dev;
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         struct intel_crtc *crtc;
3076         struct drm_connector *connector;
3077
3078         intel_runtime_pm_get(dev_priv);
3079         drm_modeset_lock_all(dev);
3080         seq_printf(m, "CRTC info\n");
3081         seq_printf(m, "---------\n");
3082         for_each_intel_crtc(dev, crtc) {
3083                 bool active;
3084                 struct intel_crtc_state *pipe_config;
3085                 int x, y;
3086
3087                 pipe_config = to_intel_crtc_state(crtc->base.state);
3088
3089                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3090                            crtc->base.base.id, pipe_name(crtc->pipe),
3091                            yesno(pipe_config->base.active),
3092                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3093                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3094
3095                 if (pipe_config->base.active) {
3096                         intel_crtc_info(m, crtc);
3097
3098                         active = cursor_position(dev, crtc->pipe, &x, &y);
3099                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3100                                    yesno(crtc->cursor_base),
3101                                    x, y, crtc->base.cursor->state->crtc_w,
3102                                    crtc->base.cursor->state->crtc_h,
3103                                    crtc->cursor_addr, yesno(active));
3104                         intel_scaler_info(m, crtc);
3105                         intel_plane_info(m, crtc);
3106                 }
3107
3108                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3109                            yesno(!crtc->cpu_fifo_underrun_disabled),
3110                            yesno(!crtc->pch_fifo_underrun_disabled));
3111         }
3112
3113         seq_printf(m, "\n");
3114         seq_printf(m, "Connector info\n");
3115         seq_printf(m, "--------------\n");
3116         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3117                 intel_connector_info(m, connector);
3118         }
3119         drm_modeset_unlock_all(dev);
3120         intel_runtime_pm_put(dev_priv);
3121
3122         return 0;
3123 }
3124
3125 static int i915_semaphore_status(struct seq_file *m, void *unused)
3126 {
3127         struct drm_info_node *node = (struct drm_info_node *) m->private;
3128         struct drm_device *dev = node->minor->dev;
3129         struct drm_i915_private *dev_priv = dev->dev_private;
3130         struct intel_engine_cs *ring;
3131         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3132         int i, j, ret;
3133
3134         if (!i915_semaphore_is_enabled(dev)) {
3135                 seq_puts(m, "Semaphores are disabled\n");
3136                 return 0;
3137         }
3138
3139         ret = mutex_lock_interruptible(&dev->struct_mutex);
3140         if (ret)
3141                 return ret;
3142         intel_runtime_pm_get(dev_priv);
3143
3144         if (IS_BROADWELL(dev)) {
3145                 struct page *page;
3146                 uint64_t *seqno;
3147
3148                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3149
3150                 seqno = (uint64_t *)kmap_atomic(page);
3151                 for_each_ring(ring, dev_priv, i) {
3152                         uint64_t offset;
3153
3154                         seq_printf(m, "%s\n", ring->name);
3155
3156                         seq_puts(m, "  Last signal:");
3157                         for (j = 0; j < num_rings; j++) {
3158                                 offset = i * I915_NUM_RINGS + j;
3159                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3160                                            seqno[offset], offset * 8);
3161                         }
3162                         seq_putc(m, '\n');
3163
3164                         seq_puts(m, "  Last wait:  ");
3165                         for (j = 0; j < num_rings; j++) {
3166                                 offset = i + (j * I915_NUM_RINGS);
3167                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3168                                            seqno[offset], offset * 8);
3169                         }
3170                         seq_putc(m, '\n');
3171
3172                 }
3173                 kunmap_atomic(seqno);
3174         } else {
3175                 seq_puts(m, "  Last signal:");
3176                 for_each_ring(ring, dev_priv, i)
3177                         for (j = 0; j < num_rings; j++)
3178                                 seq_printf(m, "0x%08x\n",
3179                                            I915_READ(ring->semaphore.mbox.signal[j]));
3180                 seq_putc(m, '\n');
3181         }
3182
3183         seq_puts(m, "\nSync seqno:\n");
3184         for_each_ring(ring, dev_priv, i) {
3185                 for (j = 0; j < num_rings; j++) {
3186                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3187                 }
3188                 seq_putc(m, '\n');
3189         }
3190         seq_putc(m, '\n');
3191
3192         intel_runtime_pm_put(dev_priv);
3193         mutex_unlock(&dev->struct_mutex);
3194         return 0;
3195 }
3196
3197 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3198 {
3199         struct drm_info_node *node = (struct drm_info_node *) m->private;
3200         struct drm_device *dev = node->minor->dev;
3201         struct drm_i915_private *dev_priv = dev->dev_private;
3202         int i;
3203
3204         drm_modeset_lock_all(dev);
3205         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3206                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3207
3208                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3209                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3210                            pll->config.crtc_mask, pll->active, yesno(pll->on));
3211                 seq_printf(m, " tracked hardware state:\n");
3212                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3213                 seq_printf(m, " dpll_md: 0x%08x\n",
3214                            pll->config.hw_state.dpll_md);
3215                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3216                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3217                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3218         }
3219         drm_modeset_unlock_all(dev);
3220
3221         return 0;
3222 }
3223
3224 static int i915_wa_registers(struct seq_file *m, void *unused)
3225 {
3226         int i;
3227         int ret;
3228         struct intel_engine_cs *ring;
3229         struct drm_info_node *node = (struct drm_info_node *) m->private;
3230         struct drm_device *dev = node->minor->dev;
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3233
3234         ret = mutex_lock_interruptible(&dev->struct_mutex);
3235         if (ret)
3236                 return ret;
3237
3238         intel_runtime_pm_get(dev_priv);
3239
3240         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3241         for_each_ring(ring, dev_priv, i)
3242                 seq_printf(m, "HW whitelist count for %s: %d\n",
3243                            ring->name, workarounds->hw_whitelist_count[i]);
3244         for (i = 0; i < workarounds->count; ++i) {
3245                 i915_reg_t addr;
3246                 u32 mask, value, read;
3247                 bool ok;
3248
3249                 addr = workarounds->reg[i].addr;
3250                 mask = workarounds->reg[i].mask;
3251                 value = workarounds->reg[i].value;
3252                 read = I915_READ(addr);
3253                 ok = (value & mask) == (read & mask);
3254                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3255                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3256         }
3257
3258         intel_runtime_pm_put(dev_priv);
3259         mutex_unlock(&dev->struct_mutex);
3260
3261         return 0;
3262 }
3263
3264 static int i915_ddb_info(struct seq_file *m, void *unused)
3265 {
3266         struct drm_info_node *node = m->private;
3267         struct drm_device *dev = node->minor->dev;
3268         struct drm_i915_private *dev_priv = dev->dev_private;
3269         struct skl_ddb_allocation *ddb;
3270         struct skl_ddb_entry *entry;
3271         enum pipe pipe;
3272         int plane;
3273
3274         if (INTEL_INFO(dev)->gen < 9)
3275                 return 0;
3276
3277         drm_modeset_lock_all(dev);
3278
3279         ddb = &dev_priv->wm.skl_hw.ddb;
3280
3281         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3282
3283         for_each_pipe(dev_priv, pipe) {
3284                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3285
3286                 for_each_plane(dev_priv, pipe, plane) {
3287                         entry = &ddb->plane[pipe][plane];
3288                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3289                                    entry->start, entry->end,
3290                                    skl_ddb_entry_size(entry));
3291                 }
3292
3293                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3294                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3295                            entry->end, skl_ddb_entry_size(entry));
3296         }
3297
3298         drm_modeset_unlock_all(dev);
3299
3300         return 0;
3301 }
3302
3303 static void drrs_status_per_crtc(struct seq_file *m,
3304                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3305 {
3306         struct intel_encoder *intel_encoder;
3307         struct drm_i915_private *dev_priv = dev->dev_private;
3308         struct i915_drrs *drrs = &dev_priv->drrs;
3309         int vrefresh = 0;
3310
3311         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3312                 /* Encoder connected on this CRTC */
3313                 switch (intel_encoder->type) {
3314                 case INTEL_OUTPUT_EDP:
3315                         seq_puts(m, "eDP:\n");
3316                         break;
3317                 case INTEL_OUTPUT_DSI:
3318                         seq_puts(m, "DSI:\n");
3319                         break;
3320                 case INTEL_OUTPUT_HDMI:
3321                         seq_puts(m, "HDMI:\n");
3322                         break;
3323                 case INTEL_OUTPUT_DISPLAYPORT:
3324                         seq_puts(m, "DP:\n");
3325                         break;
3326                 default:
3327                         seq_printf(m, "Other encoder (id=%d).\n",
3328                                                 intel_encoder->type);
3329                         return;
3330                 }
3331         }
3332
3333         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3334                 seq_puts(m, "\tVBT: DRRS_type: Static");
3335         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3336                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3337         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3338                 seq_puts(m, "\tVBT: DRRS_type: None");
3339         else
3340                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3341
3342         seq_puts(m, "\n\n");
3343
3344         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3345                 struct intel_panel *panel;
3346
3347                 mutex_lock(&drrs->mutex);
3348                 /* DRRS Supported */
3349                 seq_puts(m, "\tDRRS Supported: Yes\n");
3350
3351                 /* disable_drrs() will make drrs->dp NULL */
3352                 if (!drrs->dp) {
3353                         seq_puts(m, "Idleness DRRS: Disabled");
3354                         mutex_unlock(&drrs->mutex);
3355                         return;
3356                 }
3357
3358                 panel = &drrs->dp->attached_connector->panel;
3359                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3360                                         drrs->busy_frontbuffer_bits);
3361
3362                 seq_puts(m, "\n\t\t");
3363                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3364                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3365                         vrefresh = panel->fixed_mode->vrefresh;
3366                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3367                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3368                         vrefresh = panel->downclock_mode->vrefresh;
3369                 } else {
3370                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3371                                                 drrs->refresh_rate_type);
3372                         mutex_unlock(&drrs->mutex);
3373                         return;
3374                 }
3375                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3376
3377                 seq_puts(m, "\n\t\t");
3378                 mutex_unlock(&drrs->mutex);
3379         } else {
3380                 /* DRRS not supported. Print the VBT parameter*/
3381                 seq_puts(m, "\tDRRS Supported : No");
3382         }
3383         seq_puts(m, "\n");
3384 }
3385
3386 static int i915_drrs_status(struct seq_file *m, void *unused)
3387 {
3388         struct drm_info_node *node = m->private;
3389         struct drm_device *dev = node->minor->dev;
3390         struct intel_crtc *intel_crtc;
3391         int active_crtc_cnt = 0;
3392
3393         for_each_intel_crtc(dev, intel_crtc) {
3394                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3395
3396                 if (intel_crtc->base.state->active) {
3397                         active_crtc_cnt++;
3398                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3399
3400                         drrs_status_per_crtc(m, dev, intel_crtc);
3401                 }
3402
3403                 drm_modeset_unlock(&intel_crtc->base.mutex);
3404         }
3405
3406         if (!active_crtc_cnt)
3407                 seq_puts(m, "No active crtc found\n");
3408
3409         return 0;
3410 }
3411
3412 struct pipe_crc_info {
3413         const char *name;
3414         struct drm_device *dev;
3415         enum pipe pipe;
3416 };
3417
3418 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3419 {
3420         struct drm_info_node *node = (struct drm_info_node *) m->private;
3421         struct drm_device *dev = node->minor->dev;
3422         struct drm_encoder *encoder;
3423         struct intel_encoder *intel_encoder;
3424         struct intel_digital_port *intel_dig_port;
3425         drm_modeset_lock_all(dev);
3426         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3427                 intel_encoder = to_intel_encoder(encoder);
3428                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3429                         continue;
3430                 intel_dig_port = enc_to_dig_port(encoder);
3431                 if (!intel_dig_port->dp.can_mst)
3432                         continue;
3433
3434                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3435         }
3436         drm_modeset_unlock_all(dev);
3437         return 0;
3438 }
3439
3440 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3441 {
3442         struct pipe_crc_info *info = inode->i_private;
3443         struct drm_i915_private *dev_priv = info->dev->dev_private;
3444         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3445
3446         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3447                 return -ENODEV;
3448
3449         spin_lock_irq(&pipe_crc->lock);
3450
3451         if (pipe_crc->opened) {
3452                 spin_unlock_irq(&pipe_crc->lock);
3453                 return -EBUSY; /* already open */
3454         }
3455
3456         pipe_crc->opened = true;
3457         filep->private_data = inode->i_private;
3458
3459         spin_unlock_irq(&pipe_crc->lock);
3460
3461         return 0;
3462 }
3463
3464 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3465 {
3466         struct pipe_crc_info *info = inode->i_private;
3467         struct drm_i915_private *dev_priv = info->dev->dev_private;
3468         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3469
3470         spin_lock_irq(&pipe_crc->lock);
3471         pipe_crc->opened = false;
3472         spin_unlock_irq(&pipe_crc->lock);
3473
3474         return 0;
3475 }
3476
3477 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3478 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3479 /* account for \'0' */
3480 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3481
3482 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3483 {
3484         assert_spin_locked(&pipe_crc->lock);
3485         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3486                         INTEL_PIPE_CRC_ENTRIES_NR);
3487 }
3488
3489 static ssize_t
3490 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3491                    loff_t *pos)
3492 {
3493         struct pipe_crc_info *info = filep->private_data;
3494         struct drm_device *dev = info->dev;
3495         struct drm_i915_private *dev_priv = dev->dev_private;
3496         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3497         char buf[PIPE_CRC_BUFFER_LEN];
3498         int n_entries;
3499         ssize_t bytes_read;
3500
3501         /*
3502          * Don't allow user space to provide buffers not big enough to hold
3503          * a line of data.
3504          */
3505         if (count < PIPE_CRC_LINE_LEN)
3506                 return -EINVAL;
3507
3508         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3509                 return 0;
3510
3511         /* nothing to read */
3512         spin_lock_irq(&pipe_crc->lock);
3513         while (pipe_crc_data_count(pipe_crc) == 0) {
3514                 int ret;
3515
3516                 if (filep->f_flags & O_NONBLOCK) {
3517                         spin_unlock_irq(&pipe_crc->lock);
3518                         return -EAGAIN;
3519                 }
3520
3521                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3522                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3523                 if (ret) {
3524                         spin_unlock_irq(&pipe_crc->lock);
3525                         return ret;
3526                 }
3527         }
3528
3529         /* We now have one or more entries to read */
3530         n_entries = count / PIPE_CRC_LINE_LEN;
3531
3532         bytes_read = 0;
3533         while (n_entries > 0) {
3534                 struct intel_pipe_crc_entry *entry =
3535                         &pipe_crc->entries[pipe_crc->tail];
3536                 int ret;
3537
3538                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3539                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3540                         break;
3541
3542                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3543                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3544
3545                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3546                                        "%8u %8x %8x %8x %8x %8x\n",
3547                                        entry->frame, entry->crc[0],
3548                                        entry->crc[1], entry->crc[2],
3549                                        entry->crc[3], entry->crc[4]);
3550
3551                 spin_unlock_irq(&pipe_crc->lock);
3552
3553                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3554                 if (ret == PIPE_CRC_LINE_LEN)
3555                         return -EFAULT;
3556
3557                 user_buf += PIPE_CRC_LINE_LEN;
3558                 n_entries--;
3559
3560                 spin_lock_irq(&pipe_crc->lock);
3561         }
3562
3563         spin_unlock_irq(&pipe_crc->lock);
3564
3565         return bytes_read;
3566 }
3567
3568 static const struct file_operations i915_pipe_crc_fops = {
3569         .owner = THIS_MODULE,
3570         .open = i915_pipe_crc_open,
3571         .read = i915_pipe_crc_read,
3572         .release = i915_pipe_crc_release,
3573 };
3574
3575 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3576         {
3577                 .name = "i915_pipe_A_crc",
3578                 .pipe = PIPE_A,
3579         },
3580         {
3581                 .name = "i915_pipe_B_crc",
3582                 .pipe = PIPE_B,
3583         },
3584         {
3585                 .name = "i915_pipe_C_crc",
3586                 .pipe = PIPE_C,
3587         },
3588 };
3589
3590 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3591                                 enum pipe pipe)
3592 {
3593         struct drm_device *dev = minor->dev;
3594         struct dentry *ent;
3595         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3596
3597         info->dev = dev;
3598         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3599                                   &i915_pipe_crc_fops);
3600         if (!ent)
3601                 return -ENOMEM;
3602
3603         return drm_add_fake_info_node(minor, ent, info);
3604 }
3605
3606 static const char * const pipe_crc_sources[] = {
3607         "none",
3608         "plane1",
3609         "plane2",
3610         "pf",
3611         "pipe",
3612         "TV",
3613         "DP-B",
3614         "DP-C",
3615         "DP-D",
3616         "auto",
3617 };
3618
3619 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3620 {
3621         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3622         return pipe_crc_sources[source];
3623 }
3624
3625 static int display_crc_ctl_show(struct seq_file *m, void *data)
3626 {
3627         struct drm_device *dev = m->private;
3628         struct drm_i915_private *dev_priv = dev->dev_private;
3629         int i;
3630
3631         for (i = 0; i < I915_MAX_PIPES; i++)
3632                 seq_printf(m, "%c %s\n", pipe_name(i),
3633                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3634
3635         return 0;
3636 }
3637
3638 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3639 {
3640         struct drm_device *dev = inode->i_private;
3641
3642         return single_open(file, display_crc_ctl_show, dev);
3643 }
3644
3645 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3646                                  uint32_t *val)
3647 {
3648         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3649                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3650
3651         switch (*source) {
3652         case INTEL_PIPE_CRC_SOURCE_PIPE:
3653                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3654                 break;
3655         case INTEL_PIPE_CRC_SOURCE_NONE:
3656                 *val = 0;
3657                 break;
3658         default:
3659                 return -EINVAL;
3660         }
3661
3662         return 0;
3663 }
3664
3665 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3666                                      enum intel_pipe_crc_source *source)
3667 {
3668         struct intel_encoder *encoder;
3669         struct intel_crtc *crtc;
3670         struct intel_digital_port *dig_port;
3671         int ret = 0;
3672
3673         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3674
3675         drm_modeset_lock_all(dev);
3676         for_each_intel_encoder(dev, encoder) {
3677                 if (!encoder->base.crtc)
3678                         continue;
3679
3680                 crtc = to_intel_crtc(encoder->base.crtc);
3681
3682                 if (crtc->pipe != pipe)
3683                         continue;
3684
3685                 switch (encoder->type) {
3686                 case INTEL_OUTPUT_TVOUT:
3687                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3688                         break;
3689                 case INTEL_OUTPUT_DISPLAYPORT:
3690                 case INTEL_OUTPUT_EDP:
3691                         dig_port = enc_to_dig_port(&encoder->base);
3692                         switch (dig_port->port) {
3693                         case PORT_B:
3694                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3695                                 break;
3696                         case PORT_C:
3697                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3698                                 break;
3699                         case PORT_D:
3700                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3701                                 break;
3702                         default:
3703                                 WARN(1, "nonexisting DP port %c\n",
3704                                      port_name(dig_port->port));
3705                                 break;
3706                         }
3707                         break;
3708                 default:
3709                         break;
3710                 }
3711         }
3712         drm_modeset_unlock_all(dev);
3713
3714         return ret;
3715 }
3716
3717 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3718                                 enum pipe pipe,
3719                                 enum intel_pipe_crc_source *source,
3720                                 uint32_t *val)
3721 {
3722         struct drm_i915_private *dev_priv = dev->dev_private;
3723         bool need_stable_symbols = false;
3724
3725         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3726                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3727                 if (ret)
3728                         return ret;
3729         }
3730
3731         switch (*source) {
3732         case INTEL_PIPE_CRC_SOURCE_PIPE:
3733                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3734                 break;
3735         case INTEL_PIPE_CRC_SOURCE_DP_B:
3736                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3737                 need_stable_symbols = true;
3738                 break;
3739         case INTEL_PIPE_CRC_SOURCE_DP_C:
3740                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3741                 need_stable_symbols = true;
3742                 break;
3743         case INTEL_PIPE_CRC_SOURCE_DP_D:
3744                 if (!IS_CHERRYVIEW(dev))
3745                         return -EINVAL;
3746                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3747                 need_stable_symbols = true;
3748                 break;
3749         case INTEL_PIPE_CRC_SOURCE_NONE:
3750                 *val = 0;
3751                 break;
3752         default:
3753                 return -EINVAL;
3754         }
3755
3756         /*
3757          * When the pipe CRC tap point is after the transcoders we need
3758          * to tweak symbol-level features to produce a deterministic series of
3759          * symbols for a given frame. We need to reset those features only once
3760          * a frame (instead of every nth symbol):
3761          *   - DC-balance: used to ensure a better clock recovery from the data
3762          *     link (SDVO)
3763          *   - DisplayPort scrambling: used for EMI reduction
3764          */
3765         if (need_stable_symbols) {
3766                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3767
3768                 tmp |= DC_BALANCE_RESET_VLV;
3769                 switch (pipe) {
3770                 case PIPE_A:
3771                         tmp |= PIPE_A_SCRAMBLE_RESET;
3772                         break;
3773                 case PIPE_B:
3774                         tmp |= PIPE_B_SCRAMBLE_RESET;
3775                         break;
3776                 case PIPE_C:
3777                         tmp |= PIPE_C_SCRAMBLE_RESET;
3778                         break;
3779                 default:
3780                         return -EINVAL;
3781                 }
3782                 I915_WRITE(PORT_DFT2_G4X, tmp);
3783         }
3784
3785         return 0;
3786 }
3787
3788 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3789                                  enum pipe pipe,
3790                                  enum intel_pipe_crc_source *source,
3791                                  uint32_t *val)
3792 {
3793         struct drm_i915_private *dev_priv = dev->dev_private;
3794         bool need_stable_symbols = false;
3795
3796         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3797                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3798                 if (ret)
3799                         return ret;
3800         }
3801
3802         switch (*source) {
3803         case INTEL_PIPE_CRC_SOURCE_PIPE:
3804                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3805                 break;
3806         case INTEL_PIPE_CRC_SOURCE_TV:
3807                 if (!SUPPORTS_TV(dev))
3808                         return -EINVAL;
3809                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3810                 break;
3811         case INTEL_PIPE_CRC_SOURCE_DP_B:
3812                 if (!IS_G4X(dev))
3813                         return -EINVAL;
3814                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3815                 need_stable_symbols = true;
3816                 break;
3817         case INTEL_PIPE_CRC_SOURCE_DP_C:
3818                 if (!IS_G4X(dev))
3819                         return -EINVAL;
3820                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3821                 need_stable_symbols = true;
3822                 break;
3823         case INTEL_PIPE_CRC_SOURCE_DP_D:
3824                 if (!IS_G4X(dev))
3825                         return -EINVAL;
3826                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3827                 need_stable_symbols = true;
3828                 break;
3829         case INTEL_PIPE_CRC_SOURCE_NONE:
3830                 *val = 0;
3831                 break;
3832         default:
3833                 return -EINVAL;
3834         }
3835
3836         /*
3837          * When the pipe CRC tap point is after the transcoders we need
3838          * to tweak symbol-level features to produce a deterministic series of
3839          * symbols for a given frame. We need to reset those features only once
3840          * a frame (instead of every nth symbol):
3841          *   - DC-balance: used to ensure a better clock recovery from the data
3842          *     link (SDVO)
3843          *   - DisplayPort scrambling: used for EMI reduction
3844          */
3845         if (need_stable_symbols) {
3846                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3847
3848                 WARN_ON(!IS_G4X(dev));
3849
3850                 I915_WRITE(PORT_DFT_I9XX,
3851                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3852
3853                 if (pipe == PIPE_A)
3854                         tmp |= PIPE_A_SCRAMBLE_RESET;
3855                 else
3856                         tmp |= PIPE_B_SCRAMBLE_RESET;
3857
3858                 I915_WRITE(PORT_DFT2_G4X, tmp);
3859         }
3860
3861         return 0;
3862 }
3863
3864 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3865                                          enum pipe pipe)
3866 {
3867         struct drm_i915_private *dev_priv = dev->dev_private;
3868         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3869
3870         switch (pipe) {
3871         case PIPE_A:
3872                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3873                 break;
3874         case PIPE_B:
3875                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3876                 break;
3877         case PIPE_C:
3878                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3879                 break;
3880         default:
3881                 return;
3882         }
3883         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3884                 tmp &= ~DC_BALANCE_RESET_VLV;
3885         I915_WRITE(PORT_DFT2_G4X, tmp);
3886
3887 }
3888
3889 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3890                                          enum pipe pipe)
3891 {
3892         struct drm_i915_private *dev_priv = dev->dev_private;
3893         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3894
3895         if (pipe == PIPE_A)
3896                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3897         else
3898                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3899         I915_WRITE(PORT_DFT2_G4X, tmp);
3900
3901         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3902                 I915_WRITE(PORT_DFT_I9XX,
3903                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3904         }
3905 }
3906
3907 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3908                                 uint32_t *val)
3909 {
3910         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3911                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3912
3913         switch (*source) {
3914         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3915                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3916                 break;
3917         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3918                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3919                 break;
3920         case INTEL_PIPE_CRC_SOURCE_PIPE:
3921                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3922                 break;
3923         case INTEL_PIPE_CRC_SOURCE_NONE:
3924                 *val = 0;
3925                 break;
3926         default:
3927                 return -EINVAL;
3928         }
3929
3930         return 0;
3931 }
3932
3933 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3934 {
3935         struct drm_i915_private *dev_priv = dev->dev_private;
3936         struct intel_crtc *crtc =
3937                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3938         struct intel_crtc_state *pipe_config;
3939         struct drm_atomic_state *state;
3940         int ret = 0;
3941
3942         drm_modeset_lock_all(dev);
3943         state = drm_atomic_state_alloc(dev);
3944         if (!state) {
3945                 ret = -ENOMEM;
3946                 goto out;
3947         }
3948
3949         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3950         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3951         if (IS_ERR(pipe_config)) {
3952                 ret = PTR_ERR(pipe_config);
3953                 goto out;
3954         }
3955
3956         pipe_config->pch_pfit.force_thru = enable;
3957         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3958             pipe_config->pch_pfit.enabled != enable)
3959                 pipe_config->base.connectors_changed = true;
3960
3961         ret = drm_atomic_commit(state);
3962 out:
3963         drm_modeset_unlock_all(dev);
3964         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3965         if (ret)
3966                 drm_atomic_state_free(state);
3967 }
3968
3969 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3970                                 enum pipe pipe,
3971                                 enum intel_pipe_crc_source *source,
3972                                 uint32_t *val)
3973 {
3974         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3975                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3976
3977         switch (*source) {
3978         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3979                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3980                 break;
3981         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3982                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3983                 break;
3984         case INTEL_PIPE_CRC_SOURCE_PF:
3985                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3986                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
3987
3988                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3989                 break;
3990         case INTEL_PIPE_CRC_SOURCE_NONE:
3991                 *val = 0;
3992                 break;
3993         default:
3994                 return -EINVAL;
3995         }
3996
3997         return 0;
3998 }
3999
4000 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4001                                enum intel_pipe_crc_source source)
4002 {
4003         struct drm_i915_private *dev_priv = dev->dev_private;
4004         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4005         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4006                                                                         pipe));
4007         u32 val = 0; /* shut up gcc */
4008         int ret;
4009
4010         if (pipe_crc->source == source)
4011                 return 0;
4012
4013         /* forbid changing the source without going back to 'none' */
4014         if (pipe_crc->source && source)
4015                 return -EINVAL;
4016
4017         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
4018                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4019                 return -EIO;
4020         }
4021
4022         if (IS_GEN2(dev))
4023                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4024         else if (INTEL_INFO(dev)->gen < 5)
4025                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4026         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4027                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4028         else if (IS_GEN5(dev) || IS_GEN6(dev))
4029                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4030         else
4031                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4032
4033         if (ret != 0)
4034                 return ret;
4035
4036         /* none -> real source transition */
4037         if (source) {
4038                 struct intel_pipe_crc_entry *entries;
4039
4040                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4041                                  pipe_name(pipe), pipe_crc_source_name(source));
4042
4043                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4044                                   sizeof(pipe_crc->entries[0]),
4045                                   GFP_KERNEL);
4046                 if (!entries)
4047                         return -ENOMEM;
4048
4049                 /*
4050                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4051                  * enabled and disabled dynamically based on package C states,
4052                  * user space can't make reliable use of the CRCs, so let's just
4053                  * completely disable it.
4054                  */
4055                 hsw_disable_ips(crtc);
4056
4057                 spin_lock_irq(&pipe_crc->lock);
4058                 kfree(pipe_crc->entries);
4059                 pipe_crc->entries = entries;
4060                 pipe_crc->head = 0;
4061                 pipe_crc->tail = 0;
4062                 spin_unlock_irq(&pipe_crc->lock);
4063         }
4064
4065         pipe_crc->source = source;
4066
4067         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4068         POSTING_READ(PIPE_CRC_CTL(pipe));
4069
4070         /* real source -> none transition */
4071         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4072                 struct intel_pipe_crc_entry *entries;
4073                 struct intel_crtc *crtc =
4074                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4075
4076                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4077                                  pipe_name(pipe));
4078
4079                 drm_modeset_lock(&crtc->base.mutex, NULL);
4080                 if (crtc->base.state->active)
4081                         intel_wait_for_vblank(dev, pipe);
4082                 drm_modeset_unlock(&crtc->base.mutex);
4083
4084                 spin_lock_irq(&pipe_crc->lock);
4085                 entries = pipe_crc->entries;
4086                 pipe_crc->entries = NULL;
4087                 pipe_crc->head = 0;
4088                 pipe_crc->tail = 0;
4089                 spin_unlock_irq(&pipe_crc->lock);
4090
4091                 kfree(entries);
4092
4093                 if (IS_G4X(dev))
4094                         g4x_undo_pipe_scramble_reset(dev, pipe);
4095                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4096                         vlv_undo_pipe_scramble_reset(dev, pipe);
4097                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4098                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4099
4100                 hsw_enable_ips(crtc);
4101         }
4102
4103         return 0;
4104 }
4105
4106 /*
4107  * Parse pipe CRC command strings:
4108  *   command: wsp* object wsp+ name wsp+ source wsp*
4109  *   object: 'pipe'
4110  *   name: (A | B | C)
4111  *   source: (none | plane1 | plane2 | pf)
4112  *   wsp: (#0x20 | #0x9 | #0xA)+
4113  *
4114  * eg.:
4115  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4116  *  "pipe A none"    ->  Stop CRC
4117  */
4118 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4119 {
4120         int n_words = 0;
4121
4122         while (*buf) {
4123                 char *end;
4124
4125                 /* skip leading white space */
4126                 buf = skip_spaces(buf);
4127                 if (!*buf)
4128                         break;  /* end of buffer */
4129
4130                 /* find end of word */
4131                 for (end = buf; *end && !isspace(*end); end++)
4132                         ;
4133
4134                 if (n_words == max_words) {
4135                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4136                                          max_words);
4137                         return -EINVAL; /* ran out of words[] before bytes */
4138                 }
4139
4140                 if (*end)
4141                         *end++ = '\0';
4142                 words[n_words++] = buf;
4143                 buf = end;
4144         }
4145
4146         return n_words;
4147 }
4148
4149 enum intel_pipe_crc_object {
4150         PIPE_CRC_OBJECT_PIPE,
4151 };
4152
4153 static const char * const pipe_crc_objects[] = {
4154         "pipe",
4155 };
4156
4157 static int
4158 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4159 {
4160         int i;
4161
4162         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4163                 if (!strcmp(buf, pipe_crc_objects[i])) {
4164                         *o = i;
4165                         return 0;
4166                     }
4167
4168         return -EINVAL;
4169 }
4170
4171 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4172 {
4173         const char name = buf[0];
4174
4175         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4176                 return -EINVAL;
4177
4178         *pipe = name - 'A';
4179
4180         return 0;
4181 }
4182
4183 static int
4184 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4185 {
4186         int i;
4187
4188         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4189                 if (!strcmp(buf, pipe_crc_sources[i])) {
4190                         *s = i;
4191                         return 0;
4192                     }
4193
4194         return -EINVAL;
4195 }
4196
4197 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4198 {
4199 #define N_WORDS 3
4200         int n_words;
4201         char *words[N_WORDS];
4202         enum pipe pipe;
4203         enum intel_pipe_crc_object object;
4204         enum intel_pipe_crc_source source;
4205
4206         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4207         if (n_words != N_WORDS) {
4208                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4209                                  N_WORDS);
4210                 return -EINVAL;
4211         }
4212
4213         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4214                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4215                 return -EINVAL;
4216         }
4217
4218         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4219                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4220                 return -EINVAL;
4221         }
4222
4223         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4224                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4225                 return -EINVAL;
4226         }
4227
4228         return pipe_crc_set_source(dev, pipe, source);
4229 }
4230
4231 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4232                                      size_t len, loff_t *offp)
4233 {
4234         struct seq_file *m = file->private_data;
4235         struct drm_device *dev = m->private;
4236         char *tmpbuf;
4237         int ret;
4238
4239         if (len == 0)
4240                 return 0;
4241
4242         if (len > PAGE_SIZE - 1) {
4243                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4244                                  PAGE_SIZE);
4245                 return -E2BIG;
4246         }
4247
4248         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4249         if (!tmpbuf)
4250                 return -ENOMEM;
4251
4252         if (copy_from_user(tmpbuf, ubuf, len)) {
4253                 ret = -EFAULT;
4254                 goto out;
4255         }
4256         tmpbuf[len] = '\0';
4257
4258         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4259
4260 out:
4261         kfree(tmpbuf);
4262         if (ret < 0)
4263                 return ret;
4264
4265         *offp += len;
4266         return len;
4267 }
4268
4269 static const struct file_operations i915_display_crc_ctl_fops = {
4270         .owner = THIS_MODULE,
4271         .open = display_crc_ctl_open,
4272         .read = seq_read,
4273         .llseek = seq_lseek,
4274         .release = single_release,
4275         .write = display_crc_ctl_write
4276 };
4277
4278 static ssize_t i915_displayport_test_active_write(struct file *file,
4279                                             const char __user *ubuf,
4280                                             size_t len, loff_t *offp)
4281 {
4282         char *input_buffer;
4283         int status = 0;
4284         struct drm_device *dev;
4285         struct drm_connector *connector;
4286         struct list_head *connector_list;
4287         struct intel_dp *intel_dp;
4288         int val = 0;
4289
4290         dev = ((struct seq_file *)file->private_data)->private;
4291
4292         connector_list = &dev->mode_config.connector_list;
4293
4294         if (len == 0)
4295                 return 0;
4296
4297         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4298         if (!input_buffer)
4299                 return -ENOMEM;
4300
4301         if (copy_from_user(input_buffer, ubuf, len)) {
4302                 status = -EFAULT;
4303                 goto out;
4304         }
4305
4306         input_buffer[len] = '\0';
4307         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4308
4309         list_for_each_entry(connector, connector_list, head) {
4310
4311                 if (connector->connector_type !=
4312                     DRM_MODE_CONNECTOR_DisplayPort)
4313                         continue;
4314
4315                 if (connector->status == connector_status_connected &&
4316                     connector->encoder != NULL) {
4317                         intel_dp = enc_to_intel_dp(connector->encoder);
4318                         status = kstrtoint(input_buffer, 10, &val);
4319                         if (status < 0)
4320                                 goto out;
4321                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4322                         /* To prevent erroneous activation of the compliance
4323                          * testing code, only accept an actual value of 1 here
4324                          */
4325                         if (val == 1)
4326                                 intel_dp->compliance_test_active = 1;
4327                         else
4328                                 intel_dp->compliance_test_active = 0;
4329                 }
4330         }
4331 out:
4332         kfree(input_buffer);
4333         if (status < 0)
4334                 return status;
4335
4336         *offp += len;
4337         return len;
4338 }
4339
4340 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4341 {
4342         struct drm_device *dev = m->private;
4343         struct drm_connector *connector;
4344         struct list_head *connector_list = &dev->mode_config.connector_list;
4345         struct intel_dp *intel_dp;
4346
4347         list_for_each_entry(connector, connector_list, head) {
4348
4349                 if (connector->connector_type !=
4350                     DRM_MODE_CONNECTOR_DisplayPort)
4351                         continue;
4352
4353                 if (connector->status == connector_status_connected &&
4354                     connector->encoder != NULL) {
4355                         intel_dp = enc_to_intel_dp(connector->encoder);
4356                         if (intel_dp->compliance_test_active)
4357                                 seq_puts(m, "1");
4358                         else
4359                                 seq_puts(m, "0");
4360                 } else
4361                         seq_puts(m, "0");
4362         }
4363
4364         return 0;
4365 }
4366
4367 static int i915_displayport_test_active_open(struct inode *inode,
4368                                        struct file *file)
4369 {
4370         struct drm_device *dev = inode->i_private;
4371
4372         return single_open(file, i915_displayport_test_active_show, dev);
4373 }
4374
4375 static const struct file_operations i915_displayport_test_active_fops = {
4376         .owner = THIS_MODULE,
4377         .open = i915_displayport_test_active_open,
4378         .read = seq_read,
4379         .llseek = seq_lseek,
4380         .release = single_release,
4381         .write = i915_displayport_test_active_write
4382 };
4383
4384 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4385 {
4386         struct drm_device *dev = m->private;
4387         struct drm_connector *connector;
4388         struct list_head *connector_list = &dev->mode_config.connector_list;
4389         struct intel_dp *intel_dp;
4390
4391         list_for_each_entry(connector, connector_list, head) {
4392
4393                 if (connector->connector_type !=
4394                     DRM_MODE_CONNECTOR_DisplayPort)
4395                         continue;
4396
4397                 if (connector->status == connector_status_connected &&
4398                     connector->encoder != NULL) {
4399                         intel_dp = enc_to_intel_dp(connector->encoder);
4400                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4401                 } else
4402                         seq_puts(m, "0");
4403         }
4404
4405         return 0;
4406 }
4407 static int i915_displayport_test_data_open(struct inode *inode,
4408                                        struct file *file)
4409 {
4410         struct drm_device *dev = inode->i_private;
4411
4412         return single_open(file, i915_displayport_test_data_show, dev);
4413 }
4414
4415 static const struct file_operations i915_displayport_test_data_fops = {
4416         .owner = THIS_MODULE,
4417         .open = i915_displayport_test_data_open,
4418         .read = seq_read,
4419         .llseek = seq_lseek,
4420         .release = single_release
4421 };
4422
4423 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4424 {
4425         struct drm_device *dev = m->private;
4426         struct drm_connector *connector;
4427         struct list_head *connector_list = &dev->mode_config.connector_list;
4428         struct intel_dp *intel_dp;
4429
4430         list_for_each_entry(connector, connector_list, head) {
4431
4432                 if (connector->connector_type !=
4433                     DRM_MODE_CONNECTOR_DisplayPort)
4434                         continue;
4435
4436                 if (connector->status == connector_status_connected &&
4437                     connector->encoder != NULL) {
4438                         intel_dp = enc_to_intel_dp(connector->encoder);
4439                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4440                 } else
4441                         seq_puts(m, "0");
4442         }
4443
4444         return 0;
4445 }
4446
4447 static int i915_displayport_test_type_open(struct inode *inode,
4448                                        struct file *file)
4449 {
4450         struct drm_device *dev = inode->i_private;
4451
4452         return single_open(file, i915_displayport_test_type_show, dev);
4453 }
4454
4455 static const struct file_operations i915_displayport_test_type_fops = {
4456         .owner = THIS_MODULE,
4457         .open = i915_displayport_test_type_open,
4458         .read = seq_read,
4459         .llseek = seq_lseek,
4460         .release = single_release
4461 };
4462
4463 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4464 {
4465         struct drm_device *dev = m->private;
4466         int level;
4467         int num_levels;
4468
4469         if (IS_CHERRYVIEW(dev))
4470                 num_levels = 3;
4471         else if (IS_VALLEYVIEW(dev))
4472                 num_levels = 1;
4473         else
4474                 num_levels = ilk_wm_max_level(dev) + 1;
4475
4476         drm_modeset_lock_all(dev);
4477
4478         for (level = 0; level < num_levels; level++) {
4479                 unsigned int latency = wm[level];
4480
4481                 /*
4482                  * - WM1+ latency values in 0.5us units
4483                  * - latencies are in us on gen9/vlv/chv
4484                  */
4485                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4486                     IS_CHERRYVIEW(dev))
4487                         latency *= 10;
4488                 else if (level > 0)
4489                         latency *= 5;
4490
4491                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4492                            level, wm[level], latency / 10, latency % 10);
4493         }
4494
4495         drm_modeset_unlock_all(dev);
4496 }
4497
4498 static int pri_wm_latency_show(struct seq_file *m, void *data)
4499 {
4500         struct drm_device *dev = m->private;
4501         struct drm_i915_private *dev_priv = dev->dev_private;
4502         const uint16_t *latencies;
4503
4504         if (INTEL_INFO(dev)->gen >= 9)
4505                 latencies = dev_priv->wm.skl_latency;
4506         else
4507                 latencies = to_i915(dev)->wm.pri_latency;
4508
4509         wm_latency_show(m, latencies);
4510
4511         return 0;
4512 }
4513
4514 static int spr_wm_latency_show(struct seq_file *m, void *data)
4515 {
4516         struct drm_device *dev = m->private;
4517         struct drm_i915_private *dev_priv = dev->dev_private;
4518         const uint16_t *latencies;
4519
4520         if (INTEL_INFO(dev)->gen >= 9)
4521                 latencies = dev_priv->wm.skl_latency;
4522         else
4523                 latencies = to_i915(dev)->wm.spr_latency;
4524
4525         wm_latency_show(m, latencies);
4526
4527         return 0;
4528 }
4529
4530 static int cur_wm_latency_show(struct seq_file *m, void *data)
4531 {
4532         struct drm_device *dev = m->private;
4533         struct drm_i915_private *dev_priv = dev->dev_private;
4534         const uint16_t *latencies;
4535
4536         if (INTEL_INFO(dev)->gen >= 9)
4537                 latencies = dev_priv->wm.skl_latency;
4538         else
4539                 latencies = to_i915(dev)->wm.cur_latency;
4540
4541         wm_latency_show(m, latencies);
4542
4543         return 0;
4544 }
4545
4546 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4547 {
4548         struct drm_device *dev = inode->i_private;
4549
4550         if (INTEL_INFO(dev)->gen < 5)
4551                 return -ENODEV;
4552
4553         return single_open(file, pri_wm_latency_show, dev);
4554 }
4555
4556 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4557 {
4558         struct drm_device *dev = inode->i_private;
4559
4560         if (HAS_GMCH_DISPLAY(dev))
4561                 return -ENODEV;
4562
4563         return single_open(file, spr_wm_latency_show, dev);
4564 }
4565
4566 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4567 {
4568         struct drm_device *dev = inode->i_private;
4569
4570         if (HAS_GMCH_DISPLAY(dev))
4571                 return -ENODEV;
4572
4573         return single_open(file, cur_wm_latency_show, dev);
4574 }
4575
4576 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4577                                 size_t len, loff_t *offp, uint16_t wm[8])
4578 {
4579         struct seq_file *m = file->private_data;
4580         struct drm_device *dev = m->private;
4581         uint16_t new[8] = { 0 };
4582         int num_levels;
4583         int level;
4584         int ret;
4585         char tmp[32];
4586
4587         if (IS_CHERRYVIEW(dev))
4588                 num_levels = 3;
4589         else if (IS_VALLEYVIEW(dev))
4590                 num_levels = 1;
4591         else
4592                 num_levels = ilk_wm_max_level(dev) + 1;
4593
4594         if (len >= sizeof(tmp))
4595                 return -EINVAL;
4596
4597         if (copy_from_user(tmp, ubuf, len))
4598                 return -EFAULT;
4599
4600         tmp[len] = '\0';
4601
4602         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4603                      &new[0], &new[1], &new[2], &new[3],
4604                      &new[4], &new[5], &new[6], &new[7]);
4605         if (ret != num_levels)
4606                 return -EINVAL;
4607
4608         drm_modeset_lock_all(dev);
4609
4610         for (level = 0; level < num_levels; level++)
4611                 wm[level] = new[level];
4612
4613         drm_modeset_unlock_all(dev);
4614
4615         return len;
4616 }
4617
4618
4619 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4620                                     size_t len, loff_t *offp)
4621 {
4622         struct seq_file *m = file->private_data;
4623         struct drm_device *dev = m->private;
4624         struct drm_i915_private *dev_priv = dev->dev_private;
4625         uint16_t *latencies;
4626
4627         if (INTEL_INFO(dev)->gen >= 9)
4628                 latencies = dev_priv->wm.skl_latency;
4629         else
4630                 latencies = to_i915(dev)->wm.pri_latency;
4631
4632         return wm_latency_write(file, ubuf, len, offp, latencies);
4633 }
4634
4635 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4636                                     size_t len, loff_t *offp)
4637 {
4638         struct seq_file *m = file->private_data;
4639         struct drm_device *dev = m->private;
4640         struct drm_i915_private *dev_priv = dev->dev_private;
4641         uint16_t *latencies;
4642
4643         if (INTEL_INFO(dev)->gen >= 9)
4644                 latencies = dev_priv->wm.skl_latency;
4645         else
4646                 latencies = to_i915(dev)->wm.spr_latency;
4647
4648         return wm_latency_write(file, ubuf, len, offp, latencies);
4649 }
4650
4651 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4652                                     size_t len, loff_t *offp)
4653 {
4654         struct seq_file *m = file->private_data;
4655         struct drm_device *dev = m->private;
4656         struct drm_i915_private *dev_priv = dev->dev_private;
4657         uint16_t *latencies;
4658
4659         if (INTEL_INFO(dev)->gen >= 9)
4660                 latencies = dev_priv->wm.skl_latency;
4661         else
4662                 latencies = to_i915(dev)->wm.cur_latency;
4663
4664         return wm_latency_write(file, ubuf, len, offp, latencies);
4665 }
4666
4667 static const struct file_operations i915_pri_wm_latency_fops = {
4668         .owner = THIS_MODULE,
4669         .open = pri_wm_latency_open,
4670         .read = seq_read,
4671         .llseek = seq_lseek,
4672         .release = single_release,
4673         .write = pri_wm_latency_write
4674 };
4675
4676 static const struct file_operations i915_spr_wm_latency_fops = {
4677         .owner = THIS_MODULE,
4678         .open = spr_wm_latency_open,
4679         .read = seq_read,
4680         .llseek = seq_lseek,
4681         .release = single_release,
4682         .write = spr_wm_latency_write
4683 };
4684
4685 static const struct file_operations i915_cur_wm_latency_fops = {
4686         .owner = THIS_MODULE,
4687         .open = cur_wm_latency_open,
4688         .read = seq_read,
4689         .llseek = seq_lseek,
4690         .release = single_release,
4691         .write = cur_wm_latency_write
4692 };
4693
4694 static int
4695 i915_wedged_get(void *data, u64 *val)
4696 {
4697         struct drm_device *dev = data;
4698         struct drm_i915_private *dev_priv = dev->dev_private;
4699
4700         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4701
4702         return 0;
4703 }
4704
4705 static int
4706 i915_wedged_set(void *data, u64 val)
4707 {
4708         struct drm_device *dev = data;
4709         struct drm_i915_private *dev_priv = dev->dev_private;
4710
4711         /*
4712          * There is no safeguard against this debugfs entry colliding
4713          * with the hangcheck calling same i915_handle_error() in
4714          * parallel, causing an explosion. For now we assume that the
4715          * test harness is responsible enough not to inject gpu hangs
4716          * while it is writing to 'i915_wedged'
4717          */
4718
4719         if (i915_reset_in_progress(&dev_priv->gpu_error))
4720                 return -EAGAIN;
4721
4722         intel_runtime_pm_get(dev_priv);
4723
4724         i915_handle_error(dev, val,
4725                           "Manually setting wedged to %llu", val);
4726
4727         intel_runtime_pm_put(dev_priv);
4728
4729         return 0;
4730 }
4731
4732 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4733                         i915_wedged_get, i915_wedged_set,
4734                         "%llu\n");
4735
4736 static int
4737 i915_ring_stop_get(void *data, u64 *val)
4738 {
4739         struct drm_device *dev = data;
4740         struct drm_i915_private *dev_priv = dev->dev_private;
4741
4742         *val = dev_priv->gpu_error.stop_rings;
4743
4744         return 0;
4745 }
4746
4747 static int
4748 i915_ring_stop_set(void *data, u64 val)
4749 {
4750         struct drm_device *dev = data;
4751         struct drm_i915_private *dev_priv = dev->dev_private;
4752         int ret;
4753
4754         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4755
4756         ret = mutex_lock_interruptible(&dev->struct_mutex);
4757         if (ret)
4758                 return ret;
4759
4760         dev_priv->gpu_error.stop_rings = val;
4761         mutex_unlock(&dev->struct_mutex);
4762
4763         return 0;
4764 }
4765
4766 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4767                         i915_ring_stop_get, i915_ring_stop_set,
4768                         "0x%08llx\n");
4769
4770 static int
4771 i915_ring_missed_irq_get(void *data, u64 *val)
4772 {
4773         struct drm_device *dev = data;
4774         struct drm_i915_private *dev_priv = dev->dev_private;
4775
4776         *val = dev_priv->gpu_error.missed_irq_rings;
4777         return 0;
4778 }
4779
4780 static int
4781 i915_ring_missed_irq_set(void *data, u64 val)
4782 {
4783         struct drm_device *dev = data;
4784         struct drm_i915_private *dev_priv = dev->dev_private;
4785         int ret;
4786
4787         /* Lock against concurrent debugfs callers */
4788         ret = mutex_lock_interruptible(&dev->struct_mutex);
4789         if (ret)
4790                 return ret;
4791         dev_priv->gpu_error.missed_irq_rings = val;
4792         mutex_unlock(&dev->struct_mutex);
4793
4794         return 0;
4795 }
4796
4797 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4798                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4799                         "0x%08llx\n");
4800
4801 static int
4802 i915_ring_test_irq_get(void *data, u64 *val)
4803 {
4804         struct drm_device *dev = data;
4805         struct drm_i915_private *dev_priv = dev->dev_private;
4806
4807         *val = dev_priv->gpu_error.test_irq_rings;
4808
4809         return 0;
4810 }
4811
4812 static int
4813 i915_ring_test_irq_set(void *data, u64 val)
4814 {
4815         struct drm_device *dev = data;
4816         struct drm_i915_private *dev_priv = dev->dev_private;
4817         int ret;
4818
4819         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4820
4821         /* Lock against concurrent debugfs callers */
4822         ret = mutex_lock_interruptible(&dev->struct_mutex);
4823         if (ret)
4824                 return ret;
4825
4826         dev_priv->gpu_error.test_irq_rings = val;
4827         mutex_unlock(&dev->struct_mutex);
4828
4829         return 0;
4830 }
4831
4832 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4833                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4834                         "0x%08llx\n");
4835
4836 #define DROP_UNBOUND 0x1
4837 #define DROP_BOUND 0x2
4838 #define DROP_RETIRE 0x4
4839 #define DROP_ACTIVE 0x8
4840 #define DROP_ALL (DROP_UNBOUND | \
4841                   DROP_BOUND | \
4842                   DROP_RETIRE | \
4843                   DROP_ACTIVE)
4844 static int
4845 i915_drop_caches_get(void *data, u64 *val)
4846 {
4847         *val = DROP_ALL;
4848
4849         return 0;
4850 }
4851
4852 static int
4853 i915_drop_caches_set(void *data, u64 val)
4854 {
4855         struct drm_device *dev = data;
4856         struct drm_i915_private *dev_priv = dev->dev_private;
4857         int ret;
4858
4859         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4860
4861         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4862          * on ioctls on -EAGAIN. */
4863         ret = mutex_lock_interruptible(&dev->struct_mutex);
4864         if (ret)
4865                 return ret;
4866
4867         if (val & DROP_ACTIVE) {
4868                 ret = i915_gpu_idle(dev);
4869                 if (ret)
4870                         goto unlock;
4871         }
4872
4873         if (val & (DROP_RETIRE | DROP_ACTIVE))
4874                 i915_gem_retire_requests(dev);
4875
4876         if (val & DROP_BOUND)
4877                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4878
4879         if (val & DROP_UNBOUND)
4880                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4881
4882 unlock:
4883         mutex_unlock(&dev->struct_mutex);
4884
4885         return ret;
4886 }
4887
4888 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4889                         i915_drop_caches_get, i915_drop_caches_set,
4890                         "0x%08llx\n");
4891
4892 static int
4893 i915_max_freq_get(void *data, u64 *val)
4894 {
4895         struct drm_device *dev = data;
4896         struct drm_i915_private *dev_priv = dev->dev_private;
4897         int ret;
4898
4899         if (INTEL_INFO(dev)->gen < 6)
4900                 return -ENODEV;
4901
4902         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4903
4904         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4905         if (ret)
4906                 return ret;
4907
4908         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4909         mutex_unlock(&dev_priv->rps.hw_lock);
4910
4911         return 0;
4912 }
4913
4914 static int
4915 i915_max_freq_set(void *data, u64 val)
4916 {
4917         struct drm_device *dev = data;
4918         struct drm_i915_private *dev_priv = dev->dev_private;
4919         u32 hw_max, hw_min;
4920         int ret;
4921
4922         if (INTEL_INFO(dev)->gen < 6)
4923                 return -ENODEV;
4924
4925         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4926
4927         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4928
4929         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4930         if (ret)
4931                 return ret;
4932
4933         /*
4934          * Turbo will still be enabled, but won't go above the set value.
4935          */
4936         val = intel_freq_opcode(dev_priv, val);
4937
4938         hw_max = dev_priv->rps.max_freq;
4939         hw_min = dev_priv->rps.min_freq;
4940
4941         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4942                 mutex_unlock(&dev_priv->rps.hw_lock);
4943                 return -EINVAL;
4944         }
4945
4946         dev_priv->rps.max_freq_softlimit = val;
4947
4948         intel_set_rps(dev, val);
4949
4950         mutex_unlock(&dev_priv->rps.hw_lock);
4951
4952         return 0;
4953 }
4954
4955 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4956                         i915_max_freq_get, i915_max_freq_set,
4957                         "%llu\n");
4958
4959 static int
4960 i915_min_freq_get(void *data, u64 *val)
4961 {
4962         struct drm_device *dev = data;
4963         struct drm_i915_private *dev_priv = dev->dev_private;
4964         int ret;
4965
4966         if (INTEL_INFO(dev)->gen < 6)
4967                 return -ENODEV;
4968
4969         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4970
4971         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4972         if (ret)
4973                 return ret;
4974
4975         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4976         mutex_unlock(&dev_priv->rps.hw_lock);
4977
4978         return 0;
4979 }
4980
4981 static int
4982 i915_min_freq_set(void *data, u64 val)
4983 {
4984         struct drm_device *dev = data;
4985         struct drm_i915_private *dev_priv = dev->dev_private;
4986         u32 hw_max, hw_min;
4987         int ret;
4988
4989         if (INTEL_INFO(dev)->gen < 6)
4990                 return -ENODEV;
4991
4992         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4993
4994         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4995
4996         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4997         if (ret)
4998                 return ret;
4999
5000         /*
5001          * Turbo will still be enabled, but won't go below the set value.
5002          */
5003         val = intel_freq_opcode(dev_priv, val);
5004
5005         hw_max = dev_priv->rps.max_freq;
5006         hw_min = dev_priv->rps.min_freq;
5007
5008         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5009                 mutex_unlock(&dev_priv->rps.hw_lock);
5010                 return -EINVAL;
5011         }
5012
5013         dev_priv->rps.min_freq_softlimit = val;
5014
5015         intel_set_rps(dev, val);
5016
5017         mutex_unlock(&dev_priv->rps.hw_lock);
5018
5019         return 0;
5020 }
5021
5022 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5023                         i915_min_freq_get, i915_min_freq_set,
5024                         "%llu\n");
5025
5026 static int
5027 i915_cache_sharing_get(void *data, u64 *val)
5028 {
5029         struct drm_device *dev = data;
5030         struct drm_i915_private *dev_priv = dev->dev_private;
5031         u32 snpcr;
5032         int ret;
5033
5034         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5035                 return -ENODEV;
5036
5037         ret = mutex_lock_interruptible(&dev->struct_mutex);
5038         if (ret)
5039                 return ret;
5040         intel_runtime_pm_get(dev_priv);
5041
5042         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5043
5044         intel_runtime_pm_put(dev_priv);
5045         mutex_unlock(&dev_priv->dev->struct_mutex);
5046
5047         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5048
5049         return 0;
5050 }
5051
5052 static int
5053 i915_cache_sharing_set(void *data, u64 val)
5054 {
5055         struct drm_device *dev = data;
5056         struct drm_i915_private *dev_priv = dev->dev_private;
5057         u32 snpcr;
5058
5059         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5060                 return -ENODEV;
5061
5062         if (val > 3)
5063                 return -EINVAL;
5064
5065         intel_runtime_pm_get(dev_priv);
5066         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5067
5068         /* Update the cache sharing policy here as well */
5069         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5070         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5071         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5072         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5073
5074         intel_runtime_pm_put(dev_priv);
5075         return 0;
5076 }
5077
5078 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5079                         i915_cache_sharing_get, i915_cache_sharing_set,
5080                         "%llu\n");
5081
5082 struct sseu_dev_status {
5083         unsigned int slice_total;
5084         unsigned int subslice_total;
5085         unsigned int subslice_per_slice;
5086         unsigned int eu_total;
5087         unsigned int eu_per_subslice;
5088 };
5089
5090 static void cherryview_sseu_device_status(struct drm_device *dev,
5091                                           struct sseu_dev_status *stat)
5092 {
5093         struct drm_i915_private *dev_priv = dev->dev_private;
5094         int ss_max = 2;
5095         int ss;
5096         u32 sig1[ss_max], sig2[ss_max];
5097
5098         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5099         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5100         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5101         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5102
5103         for (ss = 0; ss < ss_max; ss++) {
5104                 unsigned int eu_cnt;
5105
5106                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5107                         /* skip disabled subslice */
5108                         continue;
5109
5110                 stat->slice_total = 1;
5111                 stat->subslice_per_slice++;
5112                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5113                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5114                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5115                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5116                 stat->eu_total += eu_cnt;
5117                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5118         }
5119         stat->subslice_total = stat->subslice_per_slice;
5120 }
5121
5122 static void gen9_sseu_device_status(struct drm_device *dev,
5123                                     struct sseu_dev_status *stat)
5124 {
5125         struct drm_i915_private *dev_priv = dev->dev_private;
5126         int s_max = 3, ss_max = 4;
5127         int s, ss;
5128         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5129
5130         /* BXT has a single slice and at most 3 subslices. */
5131         if (IS_BROXTON(dev)) {
5132                 s_max = 1;
5133                 ss_max = 3;
5134         }
5135
5136         for (s = 0; s < s_max; s++) {
5137                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5138                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5139                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5140         }
5141
5142         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5143                      GEN9_PGCTL_SSA_EU19_ACK |
5144                      GEN9_PGCTL_SSA_EU210_ACK |
5145                      GEN9_PGCTL_SSA_EU311_ACK;
5146         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5147                      GEN9_PGCTL_SSB_EU19_ACK |
5148                      GEN9_PGCTL_SSB_EU210_ACK |
5149                      GEN9_PGCTL_SSB_EU311_ACK;
5150
5151         for (s = 0; s < s_max; s++) {
5152                 unsigned int ss_cnt = 0;
5153
5154                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5155                         /* skip disabled slice */
5156                         continue;
5157
5158                 stat->slice_total++;
5159
5160                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5161                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5162
5163                 for (ss = 0; ss < ss_max; ss++) {
5164                         unsigned int eu_cnt;
5165
5166                         if (IS_BROXTON(dev) &&
5167                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5168                                 /* skip disabled subslice */
5169                                 continue;
5170
5171                         if (IS_BROXTON(dev))
5172                                 ss_cnt++;
5173
5174                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5175                                                eu_mask[ss%2]);
5176                         stat->eu_total += eu_cnt;
5177                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5178                                                     eu_cnt);
5179                 }
5180
5181                 stat->subslice_total += ss_cnt;
5182                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5183                                                ss_cnt);
5184         }
5185 }
5186
5187 static void broadwell_sseu_device_status(struct drm_device *dev,
5188                                          struct sseu_dev_status *stat)
5189 {
5190         struct drm_i915_private *dev_priv = dev->dev_private;
5191         int s;
5192         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5193
5194         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5195
5196         if (stat->slice_total) {
5197                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5198                 stat->subslice_total = stat->slice_total *
5199                                        stat->subslice_per_slice;
5200                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5201                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5202
5203                 /* subtract fused off EU(s) from enabled slice(s) */
5204                 for (s = 0; s < stat->slice_total; s++) {
5205                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5206
5207                         stat->eu_total -= hweight8(subslice_7eu);
5208                 }
5209         }
5210 }
5211
5212 static int i915_sseu_status(struct seq_file *m, void *unused)
5213 {
5214         struct drm_info_node *node = (struct drm_info_node *) m->private;
5215         struct drm_device *dev = node->minor->dev;
5216         struct sseu_dev_status stat;
5217
5218         if (INTEL_INFO(dev)->gen < 8)
5219                 return -ENODEV;
5220
5221         seq_puts(m, "SSEU Device Info\n");
5222         seq_printf(m, "  Available Slice Total: %u\n",
5223                    INTEL_INFO(dev)->slice_total);
5224         seq_printf(m, "  Available Subslice Total: %u\n",
5225                    INTEL_INFO(dev)->subslice_total);
5226         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5227                    INTEL_INFO(dev)->subslice_per_slice);
5228         seq_printf(m, "  Available EU Total: %u\n",
5229                    INTEL_INFO(dev)->eu_total);
5230         seq_printf(m, "  Available EU Per Subslice: %u\n",
5231                    INTEL_INFO(dev)->eu_per_subslice);
5232         seq_printf(m, "  Has Slice Power Gating: %s\n",
5233                    yesno(INTEL_INFO(dev)->has_slice_pg));
5234         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5235                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5236         seq_printf(m, "  Has EU Power Gating: %s\n",
5237                    yesno(INTEL_INFO(dev)->has_eu_pg));
5238
5239         seq_puts(m, "SSEU Device Status\n");
5240         memset(&stat, 0, sizeof(stat));
5241         if (IS_CHERRYVIEW(dev)) {
5242                 cherryview_sseu_device_status(dev, &stat);
5243         } else if (IS_BROADWELL(dev)) {
5244                 broadwell_sseu_device_status(dev, &stat);
5245         } else if (INTEL_INFO(dev)->gen >= 9) {
5246                 gen9_sseu_device_status(dev, &stat);
5247         }
5248         seq_printf(m, "  Enabled Slice Total: %u\n",
5249                    stat.slice_total);
5250         seq_printf(m, "  Enabled Subslice Total: %u\n",
5251                    stat.subslice_total);
5252         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5253                    stat.subslice_per_slice);
5254         seq_printf(m, "  Enabled EU Total: %u\n",
5255                    stat.eu_total);
5256         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5257                    stat.eu_per_subslice);
5258
5259         return 0;
5260 }
5261
5262 static int i915_forcewake_open(struct inode *inode, struct file *file)
5263 {
5264         struct drm_device *dev = inode->i_private;
5265         struct drm_i915_private *dev_priv = dev->dev_private;
5266
5267         if (INTEL_INFO(dev)->gen < 6)
5268                 return 0;
5269
5270         intel_runtime_pm_get(dev_priv);
5271         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5272
5273         return 0;
5274 }
5275
5276 static int i915_forcewake_release(struct inode *inode, struct file *file)
5277 {
5278         struct drm_device *dev = inode->i_private;
5279         struct drm_i915_private *dev_priv = dev->dev_private;
5280
5281         if (INTEL_INFO(dev)->gen < 6)
5282                 return 0;
5283
5284         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5285         intel_runtime_pm_put(dev_priv);
5286
5287         return 0;
5288 }
5289
5290 static const struct file_operations i915_forcewake_fops = {
5291         .owner = THIS_MODULE,
5292         .open = i915_forcewake_open,
5293         .release = i915_forcewake_release,
5294 };
5295
5296 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5297 {
5298         struct drm_device *dev = minor->dev;
5299         struct dentry *ent;
5300
5301         ent = debugfs_create_file("i915_forcewake_user",
5302                                   S_IRUSR,
5303                                   root, dev,
5304                                   &i915_forcewake_fops);
5305         if (!ent)
5306                 return -ENOMEM;
5307
5308         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5309 }
5310
5311 static int i915_debugfs_create(struct dentry *root,
5312                                struct drm_minor *minor,
5313                                const char *name,
5314                                const struct file_operations *fops)
5315 {
5316         struct drm_device *dev = minor->dev;
5317         struct dentry *ent;
5318
5319         ent = debugfs_create_file(name,
5320                                   S_IRUGO | S_IWUSR,
5321                                   root, dev,
5322                                   fops);
5323         if (!ent)
5324                 return -ENOMEM;
5325
5326         return drm_add_fake_info_node(minor, ent, fops);
5327 }
5328
5329 static const struct drm_info_list i915_debugfs_list[] = {
5330         {"i915_capabilities", i915_capabilities, 0},
5331         {"i915_gem_objects", i915_gem_object_info, 0},
5332         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5333         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5334         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5335         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5336         {"i915_gem_stolen", i915_gem_stolen_list_info },
5337         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5338         {"i915_gem_request", i915_gem_request_info, 0},
5339         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5340         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5341         {"i915_gem_interrupt", i915_interrupt_info, 0},
5342         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5343         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5344         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5345         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5346         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5347         {"i915_guc_info", i915_guc_info, 0},
5348         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5349         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5350         {"i915_frequency_info", i915_frequency_info, 0},
5351         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5352         {"i915_drpc_info", i915_drpc_info, 0},
5353         {"i915_emon_status", i915_emon_status, 0},
5354         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5355         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5356         {"i915_fbc_status", i915_fbc_status, 0},
5357         {"i915_ips_status", i915_ips_status, 0},
5358         {"i915_sr_status", i915_sr_status, 0},
5359         {"i915_opregion", i915_opregion, 0},
5360         {"i915_vbt", i915_vbt, 0},
5361         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5362         {"i915_context_status", i915_context_status, 0},
5363         {"i915_dump_lrc", i915_dump_lrc, 0},
5364         {"i915_execlists", i915_execlists, 0},
5365         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5366         {"i915_swizzle_info", i915_swizzle_info, 0},
5367         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5368         {"i915_llc", i915_llc, 0},
5369         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5370         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5371         {"i915_energy_uJ", i915_energy_uJ, 0},
5372         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5373         {"i915_power_domain_info", i915_power_domain_info, 0},
5374         {"i915_dmc_info", i915_dmc_info, 0},
5375         {"i915_display_info", i915_display_info, 0},
5376         {"i915_semaphore_status", i915_semaphore_status, 0},
5377         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5378         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5379         {"i915_wa_registers", i915_wa_registers, 0},
5380         {"i915_ddb_info", i915_ddb_info, 0},
5381         {"i915_sseu_status", i915_sseu_status, 0},
5382         {"i915_drrs_status", i915_drrs_status, 0},
5383         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5384 };
5385 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5386
5387 static const struct i915_debugfs_files {
5388         const char *name;
5389         const struct file_operations *fops;
5390 } i915_debugfs_files[] = {
5391         {"i915_wedged", &i915_wedged_fops},
5392         {"i915_max_freq", &i915_max_freq_fops},
5393         {"i915_min_freq", &i915_min_freq_fops},
5394         {"i915_cache_sharing", &i915_cache_sharing_fops},
5395         {"i915_ring_stop", &i915_ring_stop_fops},
5396         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5397         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5398         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5399         {"i915_error_state", &i915_error_state_fops},
5400         {"i915_next_seqno", &i915_next_seqno_fops},
5401         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5402         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5403         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5404         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5405         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5406         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5407         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5408         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5409 };
5410
5411 void intel_display_crc_init(struct drm_device *dev)
5412 {
5413         struct drm_i915_private *dev_priv = dev->dev_private;
5414         enum pipe pipe;
5415
5416         for_each_pipe(dev_priv, pipe) {
5417                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5418
5419                 pipe_crc->opened = false;
5420                 spin_lock_init(&pipe_crc->lock);
5421                 init_waitqueue_head(&pipe_crc->wq);
5422         }
5423 }
5424
5425 int i915_debugfs_init(struct drm_minor *minor)
5426 {
5427         int ret, i;
5428
5429         ret = i915_forcewake_create(minor->debugfs_root, minor);
5430         if (ret)
5431                 return ret;
5432
5433         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5434                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5435                 if (ret)
5436                         return ret;
5437         }
5438
5439         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5440                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5441                                           i915_debugfs_files[i].name,
5442                                           i915_debugfs_files[i].fops);
5443                 if (ret)
5444                         return ret;
5445         }
5446
5447         return drm_debugfs_create_files(i915_debugfs_list,
5448                                         I915_DEBUGFS_ENTRIES,
5449                                         minor->debugfs_root, minor);
5450 }
5451
5452 void i915_debugfs_cleanup(struct drm_minor *minor)
5453 {
5454         int i;
5455
5456         drm_debugfs_remove_files(i915_debugfs_list,
5457                                  I915_DEBUGFS_ENTRIES, minor);
5458
5459         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5460                                  1, minor);
5461
5462         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5463                 struct drm_info_list *info_list =
5464                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5465
5466                 drm_debugfs_remove_files(info_list, 1, minor);
5467         }
5468
5469         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5470                 struct drm_info_list *info_list =
5471                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5472
5473                 drm_debugfs_remove_files(info_list, 1, minor);
5474         }
5475 }
5476
5477 struct dpcd_block {
5478         /* DPCD dump start address. */
5479         unsigned int offset;
5480         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5481         unsigned int end;
5482         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5483         size_t size;
5484         /* Only valid for eDP. */
5485         bool edp;
5486 };
5487
5488 static const struct dpcd_block i915_dpcd_debug[] = {
5489         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5490         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5491         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5492         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5493         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5494         { .offset = DP_SET_POWER },
5495         { .offset = DP_EDP_DPCD_REV },
5496         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5497         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5498         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5499 };
5500
5501 static int i915_dpcd_show(struct seq_file *m, void *data)
5502 {
5503         struct drm_connector *connector = m->private;
5504         struct intel_dp *intel_dp =
5505                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5506         uint8_t buf[16];
5507         ssize_t err;
5508         int i;
5509
5510         if (connector->status != connector_status_connected)
5511                 return -ENODEV;
5512
5513         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5514                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5515                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5516
5517                 if (b->edp &&
5518                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5519                         continue;
5520
5521                 /* low tech for now */
5522                 if (WARN_ON(size > sizeof(buf)))
5523                         continue;
5524
5525                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5526                 if (err <= 0) {
5527                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5528                                   size, b->offset, err);
5529                         continue;
5530                 }
5531
5532                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5533         }
5534
5535         return 0;
5536 }
5537
5538 static int i915_dpcd_open(struct inode *inode, struct file *file)
5539 {
5540         return single_open(file, i915_dpcd_show, inode->i_private);
5541 }
5542
5543 static const struct file_operations i915_dpcd_fops = {
5544         .owner = THIS_MODULE,
5545         .open = i915_dpcd_open,
5546         .read = seq_read,
5547         .llseek = seq_lseek,
5548         .release = single_release,
5549 };
5550
5551 /**
5552  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5553  * @connector: pointer to a registered drm_connector
5554  *
5555  * Cleanup will be done by drm_connector_unregister() through a call to
5556  * drm_debugfs_connector_remove().
5557  *
5558  * Returns 0 on success, negative error codes on error.
5559  */
5560 int i915_debugfs_connector_add(struct drm_connector *connector)
5561 {
5562         struct dentry *root = connector->debugfs_entry;
5563
5564         /* The connector must have been registered beforehands. */
5565         if (!root)
5566                 return -ENODEV;
5567
5568         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5569             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5570                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5571                                     &i915_dpcd_fops);
5572
5573         return 0;
5574 }