]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
drm/i915: Introduce i915_gem_active for request tracking
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94         return obj->active ? '*' : ' ';
95 }
96
97 static char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         return obj->pin_display ? 'p' : ' ';
100 }
101
102 static char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104         switch (obj->tiling_mode) {
105         default:
106         case I915_TILING_NONE: return ' ';
107         case I915_TILING_X: return 'X';
108         case I915_TILING_Y: return 'Y';
109         }
110 }
111
112 static char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114         return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124         u64 size = 0;
125         struct i915_vma *vma;
126
127         list_for_each_entry(vma, &obj->vma_list, obj_link) {
128                 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
129                         size += vma->node.size;
130         }
131
132         return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139         struct intel_engine_cs *engine;
140         struct i915_vma *vma;
141         int pin_count = 0;
142         enum intel_engine_id id;
143
144         lockdep_assert_held(&obj->base.dev->struct_mutex);
145
146         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
147                    &obj->base,
148                    get_active_flag(obj),
149                    get_pin_flag(obj),
150                    get_tiling_flag(obj),
151                    get_global_flag(obj),
152                    get_pin_mapped_flag(obj),
153                    obj->base.size / 1024,
154                    obj->base.read_domains,
155                    obj->base.write_domain);
156         for_each_engine_id(engine, dev_priv, id)
157                 seq_printf(m, "%x ",
158                            i915_gem_request_get_seqno(obj->last_read[id].request));
159         seq_printf(m, "] %x %x%s%s%s",
160                    i915_gem_request_get_seqno(obj->last_write.request),
161                    i915_gem_request_get_seqno(obj->last_fence.request),
162                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
163                    obj->dirty ? " dirty" : "",
164                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165         if (obj->base.name)
166                 seq_printf(m, " (name: %d)", obj->base.name);
167         list_for_each_entry(vma, &obj->vma_list, obj_link) {
168                 if (vma->pin_count > 0)
169                         pin_count++;
170         }
171         seq_printf(m, " (pinned x %d)", pin_count);
172         if (obj->pin_display)
173                 seq_printf(m, " (display)");
174         if (obj->fence_reg != I915_FENCE_REG_NONE)
175                 seq_printf(m, " (fence: %d)", obj->fence_reg);
176         list_for_each_entry(vma, &obj->vma_list, obj_link) {
177                 if (!drm_mm_node_allocated(&vma->node))
178                         continue;
179
180                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
181                            vma->is_ggtt ? "g" : "pp",
182                            vma->node.start, vma->node.size);
183                 if (vma->is_ggtt)
184                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
185                 seq_puts(m, ")");
186         }
187         if (obj->stolen)
188                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
189         if (obj->pin_display || obj->fault_mappable) {
190                 char s[3], *t = s;
191                 if (obj->pin_display)
192                         *t++ = 'p';
193                 if (obj->fault_mappable)
194                         *t++ = 'f';
195                 *t = '\0';
196                 seq_printf(m, " (%s mappable)", s);
197         }
198         if (obj->last_write.request)
199                 seq_printf(m, " (%s)", obj->last_write.request->engine->name);
200         if (obj->frontbuffer_bits)
201                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
202 }
203
204 static int i915_gem_object_list_info(struct seq_file *m, void *data)
205 {
206         struct drm_info_node *node = m->private;
207         uintptr_t list = (uintptr_t) node->info_ent->data;
208         struct list_head *head;
209         struct drm_device *dev = node->minor->dev;
210         struct drm_i915_private *dev_priv = to_i915(dev);
211         struct i915_ggtt *ggtt = &dev_priv->ggtt;
212         struct i915_vma *vma;
213         u64 total_obj_size, total_gtt_size;
214         int count, ret;
215
216         ret = mutex_lock_interruptible(&dev->struct_mutex);
217         if (ret)
218                 return ret;
219
220         /* FIXME: the user of this interface might want more than just GGTT */
221         switch (list) {
222         case ACTIVE_LIST:
223                 seq_puts(m, "Active:\n");
224                 head = &ggtt->base.active_list;
225                 break;
226         case INACTIVE_LIST:
227                 seq_puts(m, "Inactive:\n");
228                 head = &ggtt->base.inactive_list;
229                 break;
230         default:
231                 mutex_unlock(&dev->struct_mutex);
232                 return -EINVAL;
233         }
234
235         total_obj_size = total_gtt_size = count = 0;
236         list_for_each_entry(vma, head, vm_link) {
237                 seq_printf(m, "   ");
238                 describe_obj(m, vma->obj);
239                 seq_printf(m, "\n");
240                 total_obj_size += vma->obj->base.size;
241                 total_gtt_size += vma->node.size;
242                 count++;
243         }
244         mutex_unlock(&dev->struct_mutex);
245
246         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
247                    count, total_obj_size, total_gtt_size);
248         return 0;
249 }
250
251 static int obj_rank_by_stolen(void *priv,
252                               struct list_head *A, struct list_head *B)
253 {
254         struct drm_i915_gem_object *a =
255                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
256         struct drm_i915_gem_object *b =
257                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
258
259         if (a->stolen->start < b->stolen->start)
260                 return -1;
261         if (a->stolen->start > b->stolen->start)
262                 return 1;
263         return 0;
264 }
265
266 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
267 {
268         struct drm_info_node *node = m->private;
269         struct drm_device *dev = node->minor->dev;
270         struct drm_i915_private *dev_priv = to_i915(dev);
271         struct drm_i915_gem_object *obj;
272         u64 total_obj_size, total_gtt_size;
273         LIST_HEAD(stolen);
274         int count, ret;
275
276         ret = mutex_lock_interruptible(&dev->struct_mutex);
277         if (ret)
278                 return ret;
279
280         total_obj_size = total_gtt_size = count = 0;
281         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
282                 if (obj->stolen == NULL)
283                         continue;
284
285                 list_add(&obj->obj_exec_link, &stolen);
286
287                 total_obj_size += obj->base.size;
288                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
289                 count++;
290         }
291         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
292                 if (obj->stolen == NULL)
293                         continue;
294
295                 list_add(&obj->obj_exec_link, &stolen);
296
297                 total_obj_size += obj->base.size;
298                 count++;
299         }
300         list_sort(NULL, &stolen, obj_rank_by_stolen);
301         seq_puts(m, "Stolen:\n");
302         while (!list_empty(&stolen)) {
303                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
304                 seq_puts(m, "   ");
305                 describe_obj(m, obj);
306                 seq_putc(m, '\n');
307                 list_del_init(&obj->obj_exec_link);
308         }
309         mutex_unlock(&dev->struct_mutex);
310
311         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
312                    count, total_obj_size, total_gtt_size);
313         return 0;
314 }
315
316 #define count_objects(list, member) do { \
317         list_for_each_entry(obj, list, member) { \
318                 size += i915_gem_obj_total_ggtt_size(obj); \
319                 ++count; \
320                 if (obj->map_and_fenceable) { \
321                         mappable_size += i915_gem_obj_ggtt_size(obj); \
322                         ++mappable_count; \
323                 } \
324         } \
325 } while (0)
326
327 struct file_stats {
328         struct drm_i915_file_private *file_priv;
329         unsigned long count;
330         u64 total, unbound;
331         u64 global, shared;
332         u64 active, inactive;
333 };
334
335 static int per_file_stats(int id, void *ptr, void *data)
336 {
337         struct drm_i915_gem_object *obj = ptr;
338         struct file_stats *stats = data;
339         struct i915_vma *vma;
340
341         stats->count++;
342         stats->total += obj->base.size;
343         if (!obj->bind_count)
344                 stats->unbound += obj->base.size;
345         if (obj->base.name || obj->base.dma_buf)
346                 stats->shared += obj->base.size;
347
348         list_for_each_entry(vma, &obj->vma_list, obj_link) {
349                 if (!drm_mm_node_allocated(&vma->node))
350                         continue;
351
352                 if (vma->is_ggtt) {
353                         stats->global += vma->node.size;
354                 } else {
355                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
356
357                         if (ppgtt->base.file != stats->file_priv)
358                                 continue;
359                 }
360
361                 if (obj->active) /* XXX per-vma statistic */
362                         stats->active += vma->node.size;
363                 else
364                         stats->inactive += vma->node.size;
365         }
366
367         return 0;
368 }
369
370 #define print_file_stats(m, name, stats) do { \
371         if (stats.count) \
372                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
373                            name, \
374                            stats.count, \
375                            stats.total, \
376                            stats.active, \
377                            stats.inactive, \
378                            stats.global, \
379                            stats.shared, \
380                            stats.unbound); \
381 } while (0)
382
383 static void print_batch_pool_stats(struct seq_file *m,
384                                    struct drm_i915_private *dev_priv)
385 {
386         struct drm_i915_gem_object *obj;
387         struct file_stats stats;
388         struct intel_engine_cs *engine;
389         int j;
390
391         memset(&stats, 0, sizeof(stats));
392
393         for_each_engine(engine, dev_priv) {
394                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
395                         list_for_each_entry(obj,
396                                             &engine->batch_pool.cache_list[j],
397                                             batch_pool_link)
398                                 per_file_stats(0, obj, &stats);
399                 }
400         }
401
402         print_file_stats(m, "[k]batch pool", stats);
403 }
404
405 static int per_file_ctx_stats(int id, void *ptr, void *data)
406 {
407         struct i915_gem_context *ctx = ptr;
408         int n;
409
410         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
411                 if (ctx->engine[n].state)
412                         per_file_stats(0, ctx->engine[n].state, data);
413                 if (ctx->engine[n].ring)
414                         per_file_stats(0, ctx->engine[n].ring->obj, data);
415         }
416
417         return 0;
418 }
419
420 static void print_context_stats(struct seq_file *m,
421                                 struct drm_i915_private *dev_priv)
422 {
423         struct file_stats stats;
424         struct drm_file *file;
425
426         memset(&stats, 0, sizeof(stats));
427
428         mutex_lock(&dev_priv->drm.struct_mutex);
429         if (dev_priv->kernel_context)
430                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
431
432         list_for_each_entry(file, &dev_priv->drm.filelist, lhead) {
433                 struct drm_i915_file_private *fpriv = file->driver_priv;
434                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
435         }
436         mutex_unlock(&dev_priv->drm.struct_mutex);
437
438         print_file_stats(m, "[k]contexts", stats);
439 }
440
441 #define count_vmas(list, member) do { \
442         list_for_each_entry(vma, list, member) { \
443                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
444                 ++count; \
445                 if (vma->obj->map_and_fenceable) { \
446                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
447                         ++mappable_count; \
448                 } \
449         } \
450 } while (0)
451
452 static int i915_gem_object_info(struct seq_file *m, void* data)
453 {
454         struct drm_info_node *node = m->private;
455         struct drm_device *dev = node->minor->dev;
456         struct drm_i915_private *dev_priv = to_i915(dev);
457         struct i915_ggtt *ggtt = &dev_priv->ggtt;
458         u32 count, mappable_count, purgeable_count;
459         u64 size, mappable_size, purgeable_size;
460         unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
461         u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
462         struct drm_i915_gem_object *obj;
463         struct drm_file *file;
464         struct i915_vma *vma;
465         int ret;
466
467         ret = mutex_lock_interruptible(&dev->struct_mutex);
468         if (ret)
469                 return ret;
470
471         seq_printf(m, "%u objects, %zu bytes\n",
472                    dev_priv->mm.object_count,
473                    dev_priv->mm.object_memory);
474
475         size = count = mappable_size = mappable_count = 0;
476         count_objects(&dev_priv->mm.bound_list, global_list);
477         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
478                    count, mappable_count, size, mappable_size);
479
480         size = count = mappable_size = mappable_count = 0;
481         count_vmas(&ggtt->base.active_list, vm_link);
482         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
483                    count, mappable_count, size, mappable_size);
484
485         size = count = mappable_size = mappable_count = 0;
486         count_vmas(&ggtt->base.inactive_list, vm_link);
487         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
488                    count, mappable_count, size, mappable_size);
489
490         size = count = purgeable_size = purgeable_count = 0;
491         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
492                 size += obj->base.size, ++count;
493                 if (obj->madv == I915_MADV_DONTNEED)
494                         purgeable_size += obj->base.size, ++purgeable_count;
495                 if (obj->mapping) {
496                         pin_mapped_count++;
497                         pin_mapped_size += obj->base.size;
498                         if (obj->pages_pin_count == 0) {
499                                 pin_mapped_purgeable_count++;
500                                 pin_mapped_purgeable_size += obj->base.size;
501                         }
502                 }
503         }
504         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
505
506         size = count = mappable_size = mappable_count = 0;
507         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
508                 if (obj->fault_mappable) {
509                         size += i915_gem_obj_ggtt_size(obj);
510                         ++count;
511                 }
512                 if (obj->pin_display) {
513                         mappable_size += i915_gem_obj_ggtt_size(obj);
514                         ++mappable_count;
515                 }
516                 if (obj->madv == I915_MADV_DONTNEED) {
517                         purgeable_size += obj->base.size;
518                         ++purgeable_count;
519                 }
520                 if (obj->mapping) {
521                         pin_mapped_count++;
522                         pin_mapped_size += obj->base.size;
523                         if (obj->pages_pin_count == 0) {
524                                 pin_mapped_purgeable_count++;
525                                 pin_mapped_purgeable_size += obj->base.size;
526                         }
527                 }
528         }
529         seq_printf(m, "%u purgeable objects, %llu bytes\n",
530                    purgeable_count, purgeable_size);
531         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
532                    mappable_count, mappable_size);
533         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
534                    count, size);
535         seq_printf(m,
536                    "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
537                    pin_mapped_count, pin_mapped_purgeable_count,
538                    pin_mapped_size, pin_mapped_purgeable_size);
539
540         seq_printf(m, "%llu [%llu] gtt total\n",
541                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
542
543         seq_putc(m, '\n');
544         print_batch_pool_stats(m, dev_priv);
545         mutex_unlock(&dev->struct_mutex);
546
547         mutex_lock(&dev->filelist_mutex);
548         print_context_stats(m, dev_priv);
549         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
550                 struct file_stats stats;
551                 struct task_struct *task;
552
553                 memset(&stats, 0, sizeof(stats));
554                 stats.file_priv = file->driver_priv;
555                 spin_lock(&file->table_lock);
556                 idr_for_each(&file->object_idr, per_file_stats, &stats);
557                 spin_unlock(&file->table_lock);
558                 /*
559                  * Although we have a valid reference on file->pid, that does
560                  * not guarantee that the task_struct who called get_pid() is
561                  * still alive (e.g. get_pid(current) => fork() => exit()).
562                  * Therefore, we need to protect this ->comm access using RCU.
563                  */
564                 rcu_read_lock();
565                 task = pid_task(file->pid, PIDTYPE_PID);
566                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
567                 rcu_read_unlock();
568         }
569         mutex_unlock(&dev->filelist_mutex);
570
571         return 0;
572 }
573
574 static int i915_gem_gtt_info(struct seq_file *m, void *data)
575 {
576         struct drm_info_node *node = m->private;
577         struct drm_device *dev = node->minor->dev;
578         uintptr_t list = (uintptr_t) node->info_ent->data;
579         struct drm_i915_private *dev_priv = to_i915(dev);
580         struct drm_i915_gem_object *obj;
581         u64 total_obj_size, total_gtt_size;
582         int count, ret;
583
584         ret = mutex_lock_interruptible(&dev->struct_mutex);
585         if (ret)
586                 return ret;
587
588         total_obj_size = total_gtt_size = count = 0;
589         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
590                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
591                         continue;
592
593                 seq_puts(m, "   ");
594                 describe_obj(m, obj);
595                 seq_putc(m, '\n');
596                 total_obj_size += obj->base.size;
597                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
598                 count++;
599         }
600
601         mutex_unlock(&dev->struct_mutex);
602
603         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
604                    count, total_obj_size, total_gtt_size);
605
606         return 0;
607 }
608
609 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
610 {
611         struct drm_info_node *node = m->private;
612         struct drm_device *dev = node->minor->dev;
613         struct drm_i915_private *dev_priv = to_i915(dev);
614         struct intel_crtc *crtc;
615         int ret;
616
617         ret = mutex_lock_interruptible(&dev->struct_mutex);
618         if (ret)
619                 return ret;
620
621         for_each_intel_crtc(dev, crtc) {
622                 const char pipe = pipe_name(crtc->pipe);
623                 const char plane = plane_name(crtc->plane);
624                 struct intel_flip_work *work;
625
626                 spin_lock_irq(&dev->event_lock);
627                 work = crtc->flip_work;
628                 if (work == NULL) {
629                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
630                                    pipe, plane);
631                 } else {
632                         u32 pending;
633                         u32 addr;
634
635                         pending = atomic_read(&work->pending);
636                         if (pending) {
637                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
638                                            pipe, plane);
639                         } else {
640                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
641                                            pipe, plane);
642                         }
643                         if (work->flip_queued_req) {
644                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
645
646                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
647                                            engine->name,
648                                            i915_gem_request_get_seqno(work->flip_queued_req),
649                                            dev_priv->next_seqno,
650                                            intel_engine_get_seqno(engine),
651                                            i915_gem_request_completed(work->flip_queued_req));
652                         } else
653                                 seq_printf(m, "Flip not associated with any ring\n");
654                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
655                                    work->flip_queued_vblank,
656                                    work->flip_ready_vblank,
657                                    intel_crtc_get_vblank_counter(crtc));
658                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
659
660                         if (INTEL_INFO(dev)->gen >= 4)
661                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
662                         else
663                                 addr = I915_READ(DSPADDR(crtc->plane));
664                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
665
666                         if (work->pending_flip_obj) {
667                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
668                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
669                         }
670                 }
671                 spin_unlock_irq(&dev->event_lock);
672         }
673
674         mutex_unlock(&dev->struct_mutex);
675
676         return 0;
677 }
678
679 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
680 {
681         struct drm_info_node *node = m->private;
682         struct drm_device *dev = node->minor->dev;
683         struct drm_i915_private *dev_priv = to_i915(dev);
684         struct drm_i915_gem_object *obj;
685         struct intel_engine_cs *engine;
686         int total = 0;
687         int ret, j;
688
689         ret = mutex_lock_interruptible(&dev->struct_mutex);
690         if (ret)
691                 return ret;
692
693         for_each_engine(engine, dev_priv) {
694                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
695                         int count;
696
697                         count = 0;
698                         list_for_each_entry(obj,
699                                             &engine->batch_pool.cache_list[j],
700                                             batch_pool_link)
701                                 count++;
702                         seq_printf(m, "%s cache[%d]: %d objects\n",
703                                    engine->name, j, count);
704
705                         list_for_each_entry(obj,
706                                             &engine->batch_pool.cache_list[j],
707                                             batch_pool_link) {
708                                 seq_puts(m, "   ");
709                                 describe_obj(m, obj);
710                                 seq_putc(m, '\n');
711                         }
712
713                         total += count;
714                 }
715         }
716
717         seq_printf(m, "total: %d\n", total);
718
719         mutex_unlock(&dev->struct_mutex);
720
721         return 0;
722 }
723
724 static int i915_gem_request_info(struct seq_file *m, void *data)
725 {
726         struct drm_info_node *node = m->private;
727         struct drm_device *dev = node->minor->dev;
728         struct drm_i915_private *dev_priv = to_i915(dev);
729         struct intel_engine_cs *engine;
730         struct drm_i915_gem_request *req;
731         int ret, any;
732
733         ret = mutex_lock_interruptible(&dev->struct_mutex);
734         if (ret)
735                 return ret;
736
737         any = 0;
738         for_each_engine(engine, dev_priv) {
739                 int count;
740
741                 count = 0;
742                 list_for_each_entry(req, &engine->request_list, list)
743                         count++;
744                 if (count == 0)
745                         continue;
746
747                 seq_printf(m, "%s requests: %d\n", engine->name, count);
748                 list_for_each_entry(req, &engine->request_list, list) {
749                         struct task_struct *task;
750
751                         rcu_read_lock();
752                         task = NULL;
753                         if (req->pid)
754                                 task = pid_task(req->pid, PIDTYPE_PID);
755                         seq_printf(m, "    %x @ %d: %s [%d]\n",
756                                    req->fence.seqno,
757                                    (int) (jiffies - req->emitted_jiffies),
758                                    task ? task->comm : "<unknown>",
759                                    task ? task->pid : -1);
760                         rcu_read_unlock();
761                 }
762
763                 any++;
764         }
765         mutex_unlock(&dev->struct_mutex);
766
767         if (any == 0)
768                 seq_puts(m, "No requests\n");
769
770         return 0;
771 }
772
773 static void i915_ring_seqno_info(struct seq_file *m,
774                                  struct intel_engine_cs *engine)
775 {
776         struct intel_breadcrumbs *b = &engine->breadcrumbs;
777         struct rb_node *rb;
778
779         seq_printf(m, "Current sequence (%s): %x\n",
780                    engine->name, intel_engine_get_seqno(engine));
781         seq_printf(m, "Current user interrupts (%s): %lx\n",
782                    engine->name, READ_ONCE(engine->breadcrumbs.irq_wakeups));
783
784         spin_lock(&b->lock);
785         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
786                 struct intel_wait *w = container_of(rb, typeof(*w), node);
787
788                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
789                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
790         }
791         spin_unlock(&b->lock);
792 }
793
794 static int i915_gem_seqno_info(struct seq_file *m, void *data)
795 {
796         struct drm_info_node *node = m->private;
797         struct drm_device *dev = node->minor->dev;
798         struct drm_i915_private *dev_priv = to_i915(dev);
799         struct intel_engine_cs *engine;
800         int ret;
801
802         ret = mutex_lock_interruptible(&dev->struct_mutex);
803         if (ret)
804                 return ret;
805         intel_runtime_pm_get(dev_priv);
806
807         for_each_engine(engine, dev_priv)
808                 i915_ring_seqno_info(m, engine);
809
810         intel_runtime_pm_put(dev_priv);
811         mutex_unlock(&dev->struct_mutex);
812
813         return 0;
814 }
815
816
817 static int i915_interrupt_info(struct seq_file *m, void *data)
818 {
819         struct drm_info_node *node = m->private;
820         struct drm_device *dev = node->minor->dev;
821         struct drm_i915_private *dev_priv = to_i915(dev);
822         struct intel_engine_cs *engine;
823         int ret, i, pipe;
824
825         ret = mutex_lock_interruptible(&dev->struct_mutex);
826         if (ret)
827                 return ret;
828         intel_runtime_pm_get(dev_priv);
829
830         if (IS_CHERRYVIEW(dev)) {
831                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
832                            I915_READ(GEN8_MASTER_IRQ));
833
834                 seq_printf(m, "Display IER:\t%08x\n",
835                            I915_READ(VLV_IER));
836                 seq_printf(m, "Display IIR:\t%08x\n",
837                            I915_READ(VLV_IIR));
838                 seq_printf(m, "Display IIR_RW:\t%08x\n",
839                            I915_READ(VLV_IIR_RW));
840                 seq_printf(m, "Display IMR:\t%08x\n",
841                            I915_READ(VLV_IMR));
842                 for_each_pipe(dev_priv, pipe)
843                         seq_printf(m, "Pipe %c stat:\t%08x\n",
844                                    pipe_name(pipe),
845                                    I915_READ(PIPESTAT(pipe)));
846
847                 seq_printf(m, "Port hotplug:\t%08x\n",
848                            I915_READ(PORT_HOTPLUG_EN));
849                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
850                            I915_READ(VLV_DPFLIPSTAT));
851                 seq_printf(m, "DPINVGTT:\t%08x\n",
852                            I915_READ(DPINVGTT));
853
854                 for (i = 0; i < 4; i++) {
855                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
856                                    i, I915_READ(GEN8_GT_IMR(i)));
857                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
858                                    i, I915_READ(GEN8_GT_IIR(i)));
859                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
860                                    i, I915_READ(GEN8_GT_IER(i)));
861                 }
862
863                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
864                            I915_READ(GEN8_PCU_IMR));
865                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
866                            I915_READ(GEN8_PCU_IIR));
867                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
868                            I915_READ(GEN8_PCU_IER));
869         } else if (INTEL_INFO(dev)->gen >= 8) {
870                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
871                            I915_READ(GEN8_MASTER_IRQ));
872
873                 for (i = 0; i < 4; i++) {
874                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
875                                    i, I915_READ(GEN8_GT_IMR(i)));
876                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
877                                    i, I915_READ(GEN8_GT_IIR(i)));
878                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
879                                    i, I915_READ(GEN8_GT_IER(i)));
880                 }
881
882                 for_each_pipe(dev_priv, pipe) {
883                         enum intel_display_power_domain power_domain;
884
885                         power_domain = POWER_DOMAIN_PIPE(pipe);
886                         if (!intel_display_power_get_if_enabled(dev_priv,
887                                                                 power_domain)) {
888                                 seq_printf(m, "Pipe %c power disabled\n",
889                                            pipe_name(pipe));
890                                 continue;
891                         }
892                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
893                                    pipe_name(pipe),
894                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
895                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
896                                    pipe_name(pipe),
897                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
898                         seq_printf(m, "Pipe %c IER:\t%08x\n",
899                                    pipe_name(pipe),
900                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
901
902                         intel_display_power_put(dev_priv, power_domain);
903                 }
904
905                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
906                            I915_READ(GEN8_DE_PORT_IMR));
907                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
908                            I915_READ(GEN8_DE_PORT_IIR));
909                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
910                            I915_READ(GEN8_DE_PORT_IER));
911
912                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
913                            I915_READ(GEN8_DE_MISC_IMR));
914                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
915                            I915_READ(GEN8_DE_MISC_IIR));
916                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
917                            I915_READ(GEN8_DE_MISC_IER));
918
919                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
920                            I915_READ(GEN8_PCU_IMR));
921                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
922                            I915_READ(GEN8_PCU_IIR));
923                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
924                            I915_READ(GEN8_PCU_IER));
925         } else if (IS_VALLEYVIEW(dev)) {
926                 seq_printf(m, "Display IER:\t%08x\n",
927                            I915_READ(VLV_IER));
928                 seq_printf(m, "Display IIR:\t%08x\n",
929                            I915_READ(VLV_IIR));
930                 seq_printf(m, "Display IIR_RW:\t%08x\n",
931                            I915_READ(VLV_IIR_RW));
932                 seq_printf(m, "Display IMR:\t%08x\n",
933                            I915_READ(VLV_IMR));
934                 for_each_pipe(dev_priv, pipe)
935                         seq_printf(m, "Pipe %c stat:\t%08x\n",
936                                    pipe_name(pipe),
937                                    I915_READ(PIPESTAT(pipe)));
938
939                 seq_printf(m, "Master IER:\t%08x\n",
940                            I915_READ(VLV_MASTER_IER));
941
942                 seq_printf(m, "Render IER:\t%08x\n",
943                            I915_READ(GTIER));
944                 seq_printf(m, "Render IIR:\t%08x\n",
945                            I915_READ(GTIIR));
946                 seq_printf(m, "Render IMR:\t%08x\n",
947                            I915_READ(GTIMR));
948
949                 seq_printf(m, "PM IER:\t\t%08x\n",
950                            I915_READ(GEN6_PMIER));
951                 seq_printf(m, "PM IIR:\t\t%08x\n",
952                            I915_READ(GEN6_PMIIR));
953                 seq_printf(m, "PM IMR:\t\t%08x\n",
954                            I915_READ(GEN6_PMIMR));
955
956                 seq_printf(m, "Port hotplug:\t%08x\n",
957                            I915_READ(PORT_HOTPLUG_EN));
958                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
959                            I915_READ(VLV_DPFLIPSTAT));
960                 seq_printf(m, "DPINVGTT:\t%08x\n",
961                            I915_READ(DPINVGTT));
962
963         } else if (!HAS_PCH_SPLIT(dev)) {
964                 seq_printf(m, "Interrupt enable:    %08x\n",
965                            I915_READ(IER));
966                 seq_printf(m, "Interrupt identity:  %08x\n",
967                            I915_READ(IIR));
968                 seq_printf(m, "Interrupt mask:      %08x\n",
969                            I915_READ(IMR));
970                 for_each_pipe(dev_priv, pipe)
971                         seq_printf(m, "Pipe %c stat:         %08x\n",
972                                    pipe_name(pipe),
973                                    I915_READ(PIPESTAT(pipe)));
974         } else {
975                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
976                            I915_READ(DEIER));
977                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
978                            I915_READ(DEIIR));
979                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
980                            I915_READ(DEIMR));
981                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
982                            I915_READ(SDEIER));
983                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
984                            I915_READ(SDEIIR));
985                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
986                            I915_READ(SDEIMR));
987                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
988                            I915_READ(GTIER));
989                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
990                            I915_READ(GTIIR));
991                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
992                            I915_READ(GTIMR));
993         }
994         for_each_engine(engine, dev_priv) {
995                 if (INTEL_INFO(dev)->gen >= 6) {
996                         seq_printf(m,
997                                    "Graphics Interrupt mask (%s):       %08x\n",
998                                    engine->name, I915_READ_IMR(engine));
999                 }
1000                 i915_ring_seqno_info(m, engine);
1001         }
1002         intel_runtime_pm_put(dev_priv);
1003         mutex_unlock(&dev->struct_mutex);
1004
1005         return 0;
1006 }
1007
1008 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
1009 {
1010         struct drm_info_node *node = m->private;
1011         struct drm_device *dev = node->minor->dev;
1012         struct drm_i915_private *dev_priv = to_i915(dev);
1013         int i, ret;
1014
1015         ret = mutex_lock_interruptible(&dev->struct_mutex);
1016         if (ret)
1017                 return ret;
1018
1019         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
1020         for (i = 0; i < dev_priv->num_fence_regs; i++) {
1021                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
1022
1023                 seq_printf(m, "Fence %d, pin count = %d, object = ",
1024                            i, dev_priv->fence_regs[i].pin_count);
1025                 if (obj == NULL)
1026                         seq_puts(m, "unused");
1027                 else
1028                         describe_obj(m, obj);
1029                 seq_putc(m, '\n');
1030         }
1031
1032         mutex_unlock(&dev->struct_mutex);
1033         return 0;
1034 }
1035
1036 static int i915_hws_info(struct seq_file *m, void *data)
1037 {
1038         struct drm_info_node *node = m->private;
1039         struct drm_device *dev = node->minor->dev;
1040         struct drm_i915_private *dev_priv = to_i915(dev);
1041         struct intel_engine_cs *engine;
1042         const u32 *hws;
1043         int i;
1044
1045         engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1046         hws = engine->status_page.page_addr;
1047         if (hws == NULL)
1048                 return 0;
1049
1050         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1051                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1052                            i * 4,
1053                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1054         }
1055         return 0;
1056 }
1057
1058 static ssize_t
1059 i915_error_state_write(struct file *filp,
1060                        const char __user *ubuf,
1061                        size_t cnt,
1062                        loff_t *ppos)
1063 {
1064         struct i915_error_state_file_priv *error_priv = filp->private_data;
1065         struct drm_device *dev = error_priv->dev;
1066         int ret;
1067
1068         DRM_DEBUG_DRIVER("Resetting error state\n");
1069
1070         ret = mutex_lock_interruptible(&dev->struct_mutex);
1071         if (ret)
1072                 return ret;
1073
1074         i915_destroy_error_state(dev);
1075         mutex_unlock(&dev->struct_mutex);
1076
1077         return cnt;
1078 }
1079
1080 static int i915_error_state_open(struct inode *inode, struct file *file)
1081 {
1082         struct drm_device *dev = inode->i_private;
1083         struct i915_error_state_file_priv *error_priv;
1084
1085         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1086         if (!error_priv)
1087                 return -ENOMEM;
1088
1089         error_priv->dev = dev;
1090
1091         i915_error_state_get(dev, error_priv);
1092
1093         file->private_data = error_priv;
1094
1095         return 0;
1096 }
1097
1098 static int i915_error_state_release(struct inode *inode, struct file *file)
1099 {
1100         struct i915_error_state_file_priv *error_priv = file->private_data;
1101
1102         i915_error_state_put(error_priv);
1103         kfree(error_priv);
1104
1105         return 0;
1106 }
1107
1108 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1109                                      size_t count, loff_t *pos)
1110 {
1111         struct i915_error_state_file_priv *error_priv = file->private_data;
1112         struct drm_i915_error_state_buf error_str;
1113         loff_t tmp_pos = 0;
1114         ssize_t ret_count = 0;
1115         int ret;
1116
1117         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1118         if (ret)
1119                 return ret;
1120
1121         ret = i915_error_state_to_str(&error_str, error_priv);
1122         if (ret)
1123                 goto out;
1124
1125         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1126                                             error_str.buf,
1127                                             error_str.bytes);
1128
1129         if (ret_count < 0)
1130                 ret = ret_count;
1131         else
1132                 *pos = error_str.start + ret_count;
1133 out:
1134         i915_error_state_buf_release(&error_str);
1135         return ret ?: ret_count;
1136 }
1137
1138 static const struct file_operations i915_error_state_fops = {
1139         .owner = THIS_MODULE,
1140         .open = i915_error_state_open,
1141         .read = i915_error_state_read,
1142         .write = i915_error_state_write,
1143         .llseek = default_llseek,
1144         .release = i915_error_state_release,
1145 };
1146
1147 static int
1148 i915_next_seqno_get(void *data, u64 *val)
1149 {
1150         struct drm_device *dev = data;
1151         struct drm_i915_private *dev_priv = to_i915(dev);
1152         int ret;
1153
1154         ret = mutex_lock_interruptible(&dev->struct_mutex);
1155         if (ret)
1156                 return ret;
1157
1158         *val = dev_priv->next_seqno;
1159         mutex_unlock(&dev->struct_mutex);
1160
1161         return 0;
1162 }
1163
1164 static int
1165 i915_next_seqno_set(void *data, u64 val)
1166 {
1167         struct drm_device *dev = data;
1168         int ret;
1169
1170         ret = mutex_lock_interruptible(&dev->struct_mutex);
1171         if (ret)
1172                 return ret;
1173
1174         ret = i915_gem_set_seqno(dev, val);
1175         mutex_unlock(&dev->struct_mutex);
1176
1177         return ret;
1178 }
1179
1180 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1181                         i915_next_seqno_get, i915_next_seqno_set,
1182                         "0x%llx\n");
1183
1184 static int i915_frequency_info(struct seq_file *m, void *unused)
1185 {
1186         struct drm_info_node *node = m->private;
1187         struct drm_device *dev = node->minor->dev;
1188         struct drm_i915_private *dev_priv = to_i915(dev);
1189         int ret = 0;
1190
1191         intel_runtime_pm_get(dev_priv);
1192
1193         if (IS_GEN5(dev)) {
1194                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1195                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1196
1197                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1198                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1199                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1200                            MEMSTAT_VID_SHIFT);
1201                 seq_printf(m, "Current P-state: %d\n",
1202                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1203         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1204                 u32 freq_sts;
1205
1206                 mutex_lock(&dev_priv->rps.hw_lock);
1207                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1208                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1209                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1210
1211                 seq_printf(m, "actual GPU freq: %d MHz\n",
1212                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1213
1214                 seq_printf(m, "current GPU freq: %d MHz\n",
1215                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1216
1217                 seq_printf(m, "max GPU freq: %d MHz\n",
1218                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1219
1220                 seq_printf(m, "min GPU freq: %d MHz\n",
1221                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1222
1223                 seq_printf(m, "idle GPU freq: %d MHz\n",
1224                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1225
1226                 seq_printf(m,
1227                            "efficient (RPe) frequency: %d MHz\n",
1228                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1229                 mutex_unlock(&dev_priv->rps.hw_lock);
1230         } else if (INTEL_INFO(dev)->gen >= 6) {
1231                 u32 rp_state_limits;
1232                 u32 gt_perf_status;
1233                 u32 rp_state_cap;
1234                 u32 rpmodectl, rpinclimit, rpdeclimit;
1235                 u32 rpstat, cagf, reqf;
1236                 u32 rpupei, rpcurup, rpprevup;
1237                 u32 rpdownei, rpcurdown, rpprevdown;
1238                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1239                 int max_freq;
1240
1241                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1242                 if (IS_BROXTON(dev)) {
1243                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1244                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1245                 } else {
1246                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1247                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1248                 }
1249
1250                 /* RPSTAT1 is in the GT power well */
1251                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1252                 if (ret)
1253                         goto out;
1254
1255                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1256
1257                 reqf = I915_READ(GEN6_RPNSWREQ);
1258                 if (IS_GEN9(dev))
1259                         reqf >>= 23;
1260                 else {
1261                         reqf &= ~GEN6_TURBO_DISABLE;
1262                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1263                                 reqf >>= 24;
1264                         else
1265                                 reqf >>= 25;
1266                 }
1267                 reqf = intel_gpu_freq(dev_priv, reqf);
1268
1269                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1270                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1271                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1272
1273                 rpstat = I915_READ(GEN6_RPSTAT1);
1274                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1275                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1276                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1277                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1278                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1279                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1280                 if (IS_GEN9(dev))
1281                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1282                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1283                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1284                 else
1285                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1286                 cagf = intel_gpu_freq(dev_priv, cagf);
1287
1288                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1289                 mutex_unlock(&dev->struct_mutex);
1290
1291                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1292                         pm_ier = I915_READ(GEN6_PMIER);
1293                         pm_imr = I915_READ(GEN6_PMIMR);
1294                         pm_isr = I915_READ(GEN6_PMISR);
1295                         pm_iir = I915_READ(GEN6_PMIIR);
1296                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1297                 } else {
1298                         pm_ier = I915_READ(GEN8_GT_IER(2));
1299                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1300                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1301                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1302                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1303                 }
1304                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1305                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1306                 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1307                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1308                 seq_printf(m, "Render p-state ratio: %d\n",
1309                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1310                 seq_printf(m, "Render p-state VID: %d\n",
1311                            gt_perf_status & 0xff);
1312                 seq_printf(m, "Render p-state limit: %d\n",
1313                            rp_state_limits & 0xff);
1314                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1315                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1316                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1317                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1318                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1319                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1320                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1321                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1322                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1323                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1324                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1325                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1326                 seq_printf(m, "Up threshold: %d%%\n",
1327                            dev_priv->rps.up_threshold);
1328
1329                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1330                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1331                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1332                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1333                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1334                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1335                 seq_printf(m, "Down threshold: %d%%\n",
1336                            dev_priv->rps.down_threshold);
1337
1338                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1339                             rp_state_cap >> 16) & 0xff;
1340                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1341                              GEN9_FREQ_SCALER : 1);
1342                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1343                            intel_gpu_freq(dev_priv, max_freq));
1344
1345                 max_freq = (rp_state_cap & 0xff00) >> 8;
1346                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1347                              GEN9_FREQ_SCALER : 1);
1348                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1349                            intel_gpu_freq(dev_priv, max_freq));
1350
1351                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1352                             rp_state_cap >> 0) & 0xff;
1353                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1354                              GEN9_FREQ_SCALER : 1);
1355                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1356                            intel_gpu_freq(dev_priv, max_freq));
1357                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1358                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1359
1360                 seq_printf(m, "Current freq: %d MHz\n",
1361                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1362                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1363                 seq_printf(m, "Idle freq: %d MHz\n",
1364                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1365                 seq_printf(m, "Min freq: %d MHz\n",
1366                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1367                 seq_printf(m, "Boost freq: %d MHz\n",
1368                            intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1369                 seq_printf(m, "Max freq: %d MHz\n",
1370                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1371                 seq_printf(m,
1372                            "efficient (RPe) frequency: %d MHz\n",
1373                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1374         } else {
1375                 seq_puts(m, "no P-state info available\n");
1376         }
1377
1378         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1379         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1380         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1381
1382 out:
1383         intel_runtime_pm_put(dev_priv);
1384         return ret;
1385 }
1386
1387 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1388 {
1389         struct drm_info_node *node = m->private;
1390         struct drm_device *dev = node->minor->dev;
1391         struct drm_i915_private *dev_priv = to_i915(dev);
1392         struct intel_engine_cs *engine;
1393         u64 acthd[I915_NUM_ENGINES];
1394         u32 seqno[I915_NUM_ENGINES];
1395         u32 instdone[I915_NUM_INSTDONE_REG];
1396         enum intel_engine_id id;
1397         int j;
1398
1399         if (!i915.enable_hangcheck) {
1400                 seq_printf(m, "Hangcheck disabled\n");
1401                 return 0;
1402         }
1403
1404         intel_runtime_pm_get(dev_priv);
1405
1406         for_each_engine_id(engine, dev_priv, id) {
1407                 acthd[id] = intel_engine_get_active_head(engine);
1408                 seqno[id] = intel_engine_get_seqno(engine);
1409         }
1410
1411         i915_get_extra_instdone(dev_priv, instdone);
1412
1413         intel_runtime_pm_put(dev_priv);
1414
1415         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1416                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1417                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1418                                             jiffies));
1419         } else
1420                 seq_printf(m, "Hangcheck inactive\n");
1421
1422         for_each_engine_id(engine, dev_priv, id) {
1423                 seq_printf(m, "%s:\n", engine->name);
1424                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1425                            engine->hangcheck.seqno,
1426                            seqno[id],
1427                            engine->last_submitted_seqno);
1428                 seq_printf(m, "\twaiters? %d\n",
1429                            intel_engine_has_waiter(engine));
1430                 seq_printf(m, "\tuser interrupts = %lx [current %lx]\n",
1431                            engine->hangcheck.user_interrupts,
1432                            READ_ONCE(engine->breadcrumbs.irq_wakeups));
1433                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1434                            (long long)engine->hangcheck.acthd,
1435                            (long long)acthd[id]);
1436                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1437                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1438
1439                 if (engine->id == RCS) {
1440                         seq_puts(m, "\tinstdone read =");
1441
1442                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1443                                 seq_printf(m, " 0x%08x", instdone[j]);
1444
1445                         seq_puts(m, "\n\tinstdone accu =");
1446
1447                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1448                                 seq_printf(m, " 0x%08x",
1449                                            engine->hangcheck.instdone[j]);
1450
1451                         seq_puts(m, "\n");
1452                 }
1453         }
1454
1455         return 0;
1456 }
1457
1458 static int ironlake_drpc_info(struct seq_file *m)
1459 {
1460         struct drm_info_node *node = m->private;
1461         struct drm_device *dev = node->minor->dev;
1462         struct drm_i915_private *dev_priv = to_i915(dev);
1463         u32 rgvmodectl, rstdbyctl;
1464         u16 crstandvid;
1465         int ret;
1466
1467         ret = mutex_lock_interruptible(&dev->struct_mutex);
1468         if (ret)
1469                 return ret;
1470         intel_runtime_pm_get(dev_priv);
1471
1472         rgvmodectl = I915_READ(MEMMODECTL);
1473         rstdbyctl = I915_READ(RSTDBYCTL);
1474         crstandvid = I915_READ16(CRSTANDVID);
1475
1476         intel_runtime_pm_put(dev_priv);
1477         mutex_unlock(&dev->struct_mutex);
1478
1479         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1480         seq_printf(m, "Boost freq: %d\n",
1481                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1482                    MEMMODE_BOOST_FREQ_SHIFT);
1483         seq_printf(m, "HW control enabled: %s\n",
1484                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1485         seq_printf(m, "SW control enabled: %s\n",
1486                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1487         seq_printf(m, "Gated voltage change: %s\n",
1488                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1489         seq_printf(m, "Starting frequency: P%d\n",
1490                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1491         seq_printf(m, "Max P-state: P%d\n",
1492                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1493         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1494         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1495         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1496         seq_printf(m, "Render standby enabled: %s\n",
1497                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1498         seq_puts(m, "Current RS state: ");
1499         switch (rstdbyctl & RSX_STATUS_MASK) {
1500         case RSX_STATUS_ON:
1501                 seq_puts(m, "on\n");
1502                 break;
1503         case RSX_STATUS_RC1:
1504                 seq_puts(m, "RC1\n");
1505                 break;
1506         case RSX_STATUS_RC1E:
1507                 seq_puts(m, "RC1E\n");
1508                 break;
1509         case RSX_STATUS_RS1:
1510                 seq_puts(m, "RS1\n");
1511                 break;
1512         case RSX_STATUS_RS2:
1513                 seq_puts(m, "RS2 (RC6)\n");
1514                 break;
1515         case RSX_STATUS_RS3:
1516                 seq_puts(m, "RC3 (RC6+)\n");
1517                 break;
1518         default:
1519                 seq_puts(m, "unknown\n");
1520                 break;
1521         }
1522
1523         return 0;
1524 }
1525
1526 static int i915_forcewake_domains(struct seq_file *m, void *data)
1527 {
1528         struct drm_info_node *node = m->private;
1529         struct drm_device *dev = node->minor->dev;
1530         struct drm_i915_private *dev_priv = to_i915(dev);
1531         struct intel_uncore_forcewake_domain *fw_domain;
1532
1533         spin_lock_irq(&dev_priv->uncore.lock);
1534         for_each_fw_domain(fw_domain, dev_priv) {
1535                 seq_printf(m, "%s.wake_count = %u\n",
1536                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1537                            fw_domain->wake_count);
1538         }
1539         spin_unlock_irq(&dev_priv->uncore.lock);
1540
1541         return 0;
1542 }
1543
1544 static int vlv_drpc_info(struct seq_file *m)
1545 {
1546         struct drm_info_node *node = m->private;
1547         struct drm_device *dev = node->minor->dev;
1548         struct drm_i915_private *dev_priv = to_i915(dev);
1549         u32 rpmodectl1, rcctl1, pw_status;
1550
1551         intel_runtime_pm_get(dev_priv);
1552
1553         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1554         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1555         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1556
1557         intel_runtime_pm_put(dev_priv);
1558
1559         seq_printf(m, "Video Turbo Mode: %s\n",
1560                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1561         seq_printf(m, "Turbo enabled: %s\n",
1562                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1563         seq_printf(m, "HW control enabled: %s\n",
1564                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1565         seq_printf(m, "SW control enabled: %s\n",
1566                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1567                           GEN6_RP_MEDIA_SW_MODE));
1568         seq_printf(m, "RC6 Enabled: %s\n",
1569                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1570                                         GEN6_RC_CTL_EI_MODE(1))));
1571         seq_printf(m, "Render Power Well: %s\n",
1572                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1573         seq_printf(m, "Media Power Well: %s\n",
1574                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1575
1576         seq_printf(m, "Render RC6 residency since boot: %u\n",
1577                    I915_READ(VLV_GT_RENDER_RC6));
1578         seq_printf(m, "Media RC6 residency since boot: %u\n",
1579                    I915_READ(VLV_GT_MEDIA_RC6));
1580
1581         return i915_forcewake_domains(m, NULL);
1582 }
1583
1584 static int gen6_drpc_info(struct seq_file *m)
1585 {
1586         struct drm_info_node *node = m->private;
1587         struct drm_device *dev = node->minor->dev;
1588         struct drm_i915_private *dev_priv = to_i915(dev);
1589         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1590         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1591         unsigned forcewake_count;
1592         int count = 0, ret;
1593
1594         ret = mutex_lock_interruptible(&dev->struct_mutex);
1595         if (ret)
1596                 return ret;
1597         intel_runtime_pm_get(dev_priv);
1598
1599         spin_lock_irq(&dev_priv->uncore.lock);
1600         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1601         spin_unlock_irq(&dev_priv->uncore.lock);
1602
1603         if (forcewake_count) {
1604                 seq_puts(m, "RC information inaccurate because somebody "
1605                             "holds a forcewake reference \n");
1606         } else {
1607                 /* NB: we cannot use forcewake, else we read the wrong values */
1608                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1609                         udelay(10);
1610                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1611         }
1612
1613         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1614         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1615
1616         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1617         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1618         if (INTEL_INFO(dev)->gen >= 9) {
1619                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1620                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1621         }
1622         mutex_unlock(&dev->struct_mutex);
1623         mutex_lock(&dev_priv->rps.hw_lock);
1624         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1625         mutex_unlock(&dev_priv->rps.hw_lock);
1626
1627         intel_runtime_pm_put(dev_priv);
1628
1629         seq_printf(m, "Video Turbo Mode: %s\n",
1630                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1631         seq_printf(m, "HW control enabled: %s\n",
1632                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1633         seq_printf(m, "SW control enabled: %s\n",
1634                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1635                           GEN6_RP_MEDIA_SW_MODE));
1636         seq_printf(m, "RC1e Enabled: %s\n",
1637                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1638         seq_printf(m, "RC6 Enabled: %s\n",
1639                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1640         if (INTEL_INFO(dev)->gen >= 9) {
1641                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1642                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1643                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1644                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1645         }
1646         seq_printf(m, "Deep RC6 Enabled: %s\n",
1647                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1648         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1649                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1650         seq_puts(m, "Current RC state: ");
1651         switch (gt_core_status & GEN6_RCn_MASK) {
1652         case GEN6_RC0:
1653                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1654                         seq_puts(m, "Core Power Down\n");
1655                 else
1656                         seq_puts(m, "on\n");
1657                 break;
1658         case GEN6_RC3:
1659                 seq_puts(m, "RC3\n");
1660                 break;
1661         case GEN6_RC6:
1662                 seq_puts(m, "RC6\n");
1663                 break;
1664         case GEN6_RC7:
1665                 seq_puts(m, "RC7\n");
1666                 break;
1667         default:
1668                 seq_puts(m, "Unknown\n");
1669                 break;
1670         }
1671
1672         seq_printf(m, "Core Power Down: %s\n",
1673                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1674         if (INTEL_INFO(dev)->gen >= 9) {
1675                 seq_printf(m, "Render Power Well: %s\n",
1676                         (gen9_powergate_status &
1677                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1678                 seq_printf(m, "Media Power Well: %s\n",
1679                         (gen9_powergate_status &
1680                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1681         }
1682
1683         /* Not exactly sure what this is */
1684         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1685                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1686         seq_printf(m, "RC6 residency since boot: %u\n",
1687                    I915_READ(GEN6_GT_GFX_RC6));
1688         seq_printf(m, "RC6+ residency since boot: %u\n",
1689                    I915_READ(GEN6_GT_GFX_RC6p));
1690         seq_printf(m, "RC6++ residency since boot: %u\n",
1691                    I915_READ(GEN6_GT_GFX_RC6pp));
1692
1693         seq_printf(m, "RC6   voltage: %dmV\n",
1694                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1695         seq_printf(m, "RC6+  voltage: %dmV\n",
1696                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1697         seq_printf(m, "RC6++ voltage: %dmV\n",
1698                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1699         return i915_forcewake_domains(m, NULL);
1700 }
1701
1702 static int i915_drpc_info(struct seq_file *m, void *unused)
1703 {
1704         struct drm_info_node *node = m->private;
1705         struct drm_device *dev = node->minor->dev;
1706
1707         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1708                 return vlv_drpc_info(m);
1709         else if (INTEL_INFO(dev)->gen >= 6)
1710                 return gen6_drpc_info(m);
1711         else
1712                 return ironlake_drpc_info(m);
1713 }
1714
1715 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1716 {
1717         struct drm_info_node *node = m->private;
1718         struct drm_device *dev = node->minor->dev;
1719         struct drm_i915_private *dev_priv = to_i915(dev);
1720
1721         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1722                    dev_priv->fb_tracking.busy_bits);
1723
1724         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1725                    dev_priv->fb_tracking.flip_bits);
1726
1727         return 0;
1728 }
1729
1730 static int i915_fbc_status(struct seq_file *m, void *unused)
1731 {
1732         struct drm_info_node *node = m->private;
1733         struct drm_device *dev = node->minor->dev;
1734         struct drm_i915_private *dev_priv = to_i915(dev);
1735
1736         if (!HAS_FBC(dev)) {
1737                 seq_puts(m, "FBC unsupported on this chipset\n");
1738                 return 0;
1739         }
1740
1741         intel_runtime_pm_get(dev_priv);
1742         mutex_lock(&dev_priv->fbc.lock);
1743
1744         if (intel_fbc_is_active(dev_priv))
1745                 seq_puts(m, "FBC enabled\n");
1746         else
1747                 seq_printf(m, "FBC disabled: %s\n",
1748                            dev_priv->fbc.no_fbc_reason);
1749
1750         if (INTEL_INFO(dev_priv)->gen >= 7)
1751                 seq_printf(m, "Compressing: %s\n",
1752                            yesno(I915_READ(FBC_STATUS2) &
1753                                  FBC_COMPRESSION_MASK));
1754
1755         mutex_unlock(&dev_priv->fbc.lock);
1756         intel_runtime_pm_put(dev_priv);
1757
1758         return 0;
1759 }
1760
1761 static int i915_fbc_fc_get(void *data, u64 *val)
1762 {
1763         struct drm_device *dev = data;
1764         struct drm_i915_private *dev_priv = to_i915(dev);
1765
1766         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1767                 return -ENODEV;
1768
1769         *val = dev_priv->fbc.false_color;
1770
1771         return 0;
1772 }
1773
1774 static int i915_fbc_fc_set(void *data, u64 val)
1775 {
1776         struct drm_device *dev = data;
1777         struct drm_i915_private *dev_priv = to_i915(dev);
1778         u32 reg;
1779
1780         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1781                 return -ENODEV;
1782
1783         mutex_lock(&dev_priv->fbc.lock);
1784
1785         reg = I915_READ(ILK_DPFC_CONTROL);
1786         dev_priv->fbc.false_color = val;
1787
1788         I915_WRITE(ILK_DPFC_CONTROL, val ?
1789                    (reg | FBC_CTL_FALSE_COLOR) :
1790                    (reg & ~FBC_CTL_FALSE_COLOR));
1791
1792         mutex_unlock(&dev_priv->fbc.lock);
1793         return 0;
1794 }
1795
1796 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1797                         i915_fbc_fc_get, i915_fbc_fc_set,
1798                         "%llu\n");
1799
1800 static int i915_ips_status(struct seq_file *m, void *unused)
1801 {
1802         struct drm_info_node *node = m->private;
1803         struct drm_device *dev = node->minor->dev;
1804         struct drm_i915_private *dev_priv = to_i915(dev);
1805
1806         if (!HAS_IPS(dev)) {
1807                 seq_puts(m, "not supported\n");
1808                 return 0;
1809         }
1810
1811         intel_runtime_pm_get(dev_priv);
1812
1813         seq_printf(m, "Enabled by kernel parameter: %s\n",
1814                    yesno(i915.enable_ips));
1815
1816         if (INTEL_INFO(dev)->gen >= 8) {
1817                 seq_puts(m, "Currently: unknown\n");
1818         } else {
1819                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1820                         seq_puts(m, "Currently: enabled\n");
1821                 else
1822                         seq_puts(m, "Currently: disabled\n");
1823         }
1824
1825         intel_runtime_pm_put(dev_priv);
1826
1827         return 0;
1828 }
1829
1830 static int i915_sr_status(struct seq_file *m, void *unused)
1831 {
1832         struct drm_info_node *node = m->private;
1833         struct drm_device *dev = node->minor->dev;
1834         struct drm_i915_private *dev_priv = to_i915(dev);
1835         bool sr_enabled = false;
1836
1837         intel_runtime_pm_get(dev_priv);
1838
1839         if (HAS_PCH_SPLIT(dev))
1840                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1841         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1842                  IS_I945G(dev) || IS_I945GM(dev))
1843                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1844         else if (IS_I915GM(dev))
1845                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1846         else if (IS_PINEVIEW(dev))
1847                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1848         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1849                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1850
1851         intel_runtime_pm_put(dev_priv);
1852
1853         seq_printf(m, "self-refresh: %s\n",
1854                    sr_enabled ? "enabled" : "disabled");
1855
1856         return 0;
1857 }
1858
1859 static int i915_emon_status(struct seq_file *m, void *unused)
1860 {
1861         struct drm_info_node *node = m->private;
1862         struct drm_device *dev = node->minor->dev;
1863         struct drm_i915_private *dev_priv = to_i915(dev);
1864         unsigned long temp, chipset, gfx;
1865         int ret;
1866
1867         if (!IS_GEN5(dev))
1868                 return -ENODEV;
1869
1870         ret = mutex_lock_interruptible(&dev->struct_mutex);
1871         if (ret)
1872                 return ret;
1873
1874         temp = i915_mch_val(dev_priv);
1875         chipset = i915_chipset_val(dev_priv);
1876         gfx = i915_gfx_val(dev_priv);
1877         mutex_unlock(&dev->struct_mutex);
1878
1879         seq_printf(m, "GMCH temp: %ld\n", temp);
1880         seq_printf(m, "Chipset power: %ld\n", chipset);
1881         seq_printf(m, "GFX power: %ld\n", gfx);
1882         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1883
1884         return 0;
1885 }
1886
1887 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1888 {
1889         struct drm_info_node *node = m->private;
1890         struct drm_device *dev = node->minor->dev;
1891         struct drm_i915_private *dev_priv = to_i915(dev);
1892         int ret = 0;
1893         int gpu_freq, ia_freq;
1894         unsigned int max_gpu_freq, min_gpu_freq;
1895
1896         if (!HAS_CORE_RING_FREQ(dev)) {
1897                 seq_puts(m, "unsupported on this chipset\n");
1898                 return 0;
1899         }
1900
1901         intel_runtime_pm_get(dev_priv);
1902
1903         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1904         if (ret)
1905                 goto out;
1906
1907         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1908                 /* Convert GT frequency to 50 HZ units */
1909                 min_gpu_freq =
1910                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1911                 max_gpu_freq =
1912                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1913         } else {
1914                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1915                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1916         }
1917
1918         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1919
1920         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1921                 ia_freq = gpu_freq;
1922                 sandybridge_pcode_read(dev_priv,
1923                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1924                                        &ia_freq);
1925                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1926                            intel_gpu_freq(dev_priv, (gpu_freq *
1927                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1928                                  GEN9_FREQ_SCALER : 1))),
1929                            ((ia_freq >> 0) & 0xff) * 100,
1930                            ((ia_freq >> 8) & 0xff) * 100);
1931         }
1932
1933         mutex_unlock(&dev_priv->rps.hw_lock);
1934
1935 out:
1936         intel_runtime_pm_put(dev_priv);
1937         return ret;
1938 }
1939
1940 static int i915_opregion(struct seq_file *m, void *unused)
1941 {
1942         struct drm_info_node *node = m->private;
1943         struct drm_device *dev = node->minor->dev;
1944         struct drm_i915_private *dev_priv = to_i915(dev);
1945         struct intel_opregion *opregion = &dev_priv->opregion;
1946         int ret;
1947
1948         ret = mutex_lock_interruptible(&dev->struct_mutex);
1949         if (ret)
1950                 goto out;
1951
1952         if (opregion->header)
1953                 seq_write(m, opregion->header, OPREGION_SIZE);
1954
1955         mutex_unlock(&dev->struct_mutex);
1956
1957 out:
1958         return 0;
1959 }
1960
1961 static int i915_vbt(struct seq_file *m, void *unused)
1962 {
1963         struct drm_info_node *node = m->private;
1964         struct drm_device *dev = node->minor->dev;
1965         struct drm_i915_private *dev_priv = to_i915(dev);
1966         struct intel_opregion *opregion = &dev_priv->opregion;
1967
1968         if (opregion->vbt)
1969                 seq_write(m, opregion->vbt, opregion->vbt_size);
1970
1971         return 0;
1972 }
1973
1974 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1975 {
1976         struct drm_info_node *node = m->private;
1977         struct drm_device *dev = node->minor->dev;
1978         struct intel_framebuffer *fbdev_fb = NULL;
1979         struct drm_framebuffer *drm_fb;
1980         int ret;
1981
1982         ret = mutex_lock_interruptible(&dev->struct_mutex);
1983         if (ret)
1984                 return ret;
1985
1986 #ifdef CONFIG_DRM_FBDEV_EMULATION
1987         if (to_i915(dev)->fbdev) {
1988                 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1989
1990                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1991                            fbdev_fb->base.width,
1992                            fbdev_fb->base.height,
1993                            fbdev_fb->base.depth,
1994                            fbdev_fb->base.bits_per_pixel,
1995                            fbdev_fb->base.modifier[0],
1996                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1997                 describe_obj(m, fbdev_fb->obj);
1998                 seq_putc(m, '\n');
1999         }
2000 #endif
2001
2002         mutex_lock(&dev->mode_config.fb_lock);
2003         drm_for_each_fb(drm_fb, dev) {
2004                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
2005                 if (fb == fbdev_fb)
2006                         continue;
2007
2008                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
2009                            fb->base.width,
2010                            fb->base.height,
2011                            fb->base.depth,
2012                            fb->base.bits_per_pixel,
2013                            fb->base.modifier[0],
2014                            drm_framebuffer_read_refcount(&fb->base));
2015                 describe_obj(m, fb->obj);
2016                 seq_putc(m, '\n');
2017         }
2018         mutex_unlock(&dev->mode_config.fb_lock);
2019         mutex_unlock(&dev->struct_mutex);
2020
2021         return 0;
2022 }
2023
2024 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
2025 {
2026         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
2027                    ring->space, ring->head, ring->tail,
2028                    ring->last_retired_head);
2029 }
2030
2031 static int i915_context_status(struct seq_file *m, void *unused)
2032 {
2033         struct drm_info_node *node = m->private;
2034         struct drm_device *dev = node->minor->dev;
2035         struct drm_i915_private *dev_priv = to_i915(dev);
2036         struct intel_engine_cs *engine;
2037         struct i915_gem_context *ctx;
2038         int ret;
2039
2040         ret = mutex_lock_interruptible(&dev->struct_mutex);
2041         if (ret)
2042                 return ret;
2043
2044         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2045                 seq_printf(m, "HW context %u ", ctx->hw_id);
2046                 if (IS_ERR(ctx->file_priv)) {
2047                         seq_puts(m, "(deleted) ");
2048                 } else if (ctx->file_priv) {
2049                         struct pid *pid = ctx->file_priv->file->pid;
2050                         struct task_struct *task;
2051
2052                         task = get_pid_task(pid, PIDTYPE_PID);
2053                         if (task) {
2054                                 seq_printf(m, "(%s [%d]) ",
2055                                            task->comm, task->pid);
2056                                 put_task_struct(task);
2057                         }
2058                 } else {
2059                         seq_puts(m, "(kernel) ");
2060                 }
2061
2062                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
2063                 seq_putc(m, '\n');
2064
2065                 for_each_engine(engine, dev_priv) {
2066                         struct intel_context *ce = &ctx->engine[engine->id];
2067
2068                         seq_printf(m, "%s: ", engine->name);
2069                         seq_putc(m, ce->initialised ? 'I' : 'i');
2070                         if (ce->state)
2071                                 describe_obj(m, ce->state);
2072                         if (ce->ring)
2073                                 describe_ctx_ring(m, ce->ring);
2074                         seq_putc(m, '\n');
2075                 }
2076
2077                 seq_putc(m, '\n');
2078         }
2079
2080         mutex_unlock(&dev->struct_mutex);
2081
2082         return 0;
2083 }
2084
2085 static void i915_dump_lrc_obj(struct seq_file *m,
2086                               struct i915_gem_context *ctx,
2087                               struct intel_engine_cs *engine)
2088 {
2089         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2090         struct page *page;
2091         uint32_t *reg_state;
2092         int j;
2093         unsigned long ggtt_offset = 0;
2094
2095         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2096
2097         if (ctx_obj == NULL) {
2098                 seq_puts(m, "\tNot allocated\n");
2099                 return;
2100         }
2101
2102         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2103                 seq_puts(m, "\tNot bound in GGTT\n");
2104         else
2105                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2106
2107         if (i915_gem_object_get_pages(ctx_obj)) {
2108                 seq_puts(m, "\tFailed to get pages for context object\n");
2109                 return;
2110         }
2111
2112         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2113         if (!WARN_ON(page == NULL)) {
2114                 reg_state = kmap_atomic(page);
2115
2116                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2117                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2118                                    ggtt_offset + 4096 + (j * 4),
2119                                    reg_state[j], reg_state[j + 1],
2120                                    reg_state[j + 2], reg_state[j + 3]);
2121                 }
2122                 kunmap_atomic(reg_state);
2123         }
2124
2125         seq_putc(m, '\n');
2126 }
2127
2128 static int i915_dump_lrc(struct seq_file *m, void *unused)
2129 {
2130         struct drm_info_node *node = (struct drm_info_node *) m->private;
2131         struct drm_device *dev = node->minor->dev;
2132         struct drm_i915_private *dev_priv = to_i915(dev);
2133         struct intel_engine_cs *engine;
2134         struct i915_gem_context *ctx;
2135         int ret;
2136
2137         if (!i915.enable_execlists) {
2138                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2139                 return 0;
2140         }
2141
2142         ret = mutex_lock_interruptible(&dev->struct_mutex);
2143         if (ret)
2144                 return ret;
2145
2146         list_for_each_entry(ctx, &dev_priv->context_list, link)
2147                 for_each_engine(engine, dev_priv)
2148                         i915_dump_lrc_obj(m, ctx, engine);
2149
2150         mutex_unlock(&dev->struct_mutex);
2151
2152         return 0;
2153 }
2154
2155 static int i915_execlists(struct seq_file *m, void *data)
2156 {
2157         struct drm_info_node *node = (struct drm_info_node *)m->private;
2158         struct drm_device *dev = node->minor->dev;
2159         struct drm_i915_private *dev_priv = to_i915(dev);
2160         struct intel_engine_cs *engine;
2161         u32 status_pointer;
2162         u8 read_pointer;
2163         u8 write_pointer;
2164         u32 status;
2165         u32 ctx_id;
2166         struct list_head *cursor;
2167         int i, ret;
2168
2169         if (!i915.enable_execlists) {
2170                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2171                 return 0;
2172         }
2173
2174         ret = mutex_lock_interruptible(&dev->struct_mutex);
2175         if (ret)
2176                 return ret;
2177
2178         intel_runtime_pm_get(dev_priv);
2179
2180         for_each_engine(engine, dev_priv) {
2181                 struct drm_i915_gem_request *head_req = NULL;
2182                 int count = 0;
2183
2184                 seq_printf(m, "%s\n", engine->name);
2185
2186                 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2187                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2188                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2189                            status, ctx_id);
2190
2191                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2192                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2193
2194                 read_pointer = engine->next_context_status_buffer;
2195                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2196                 if (read_pointer > write_pointer)
2197                         write_pointer += GEN8_CSB_ENTRIES;
2198                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2199                            read_pointer, write_pointer);
2200
2201                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2202                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2203                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2204
2205                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2206                                    i, status, ctx_id);
2207                 }
2208
2209                 spin_lock_bh(&engine->execlist_lock);
2210                 list_for_each(cursor, &engine->execlist_queue)
2211                         count++;
2212                 head_req = list_first_entry_or_null(&engine->execlist_queue,
2213                                                     struct drm_i915_gem_request,
2214                                                     execlist_link);
2215                 spin_unlock_bh(&engine->execlist_lock);
2216
2217                 seq_printf(m, "\t%d requests in queue\n", count);
2218                 if (head_req) {
2219                         seq_printf(m, "\tHead request context: %u\n",
2220                                    head_req->ctx->hw_id);
2221                         seq_printf(m, "\tHead request tail: %u\n",
2222                                    head_req->tail);
2223                 }
2224
2225                 seq_putc(m, '\n');
2226         }
2227
2228         intel_runtime_pm_put(dev_priv);
2229         mutex_unlock(&dev->struct_mutex);
2230
2231         return 0;
2232 }
2233
2234 static const char *swizzle_string(unsigned swizzle)
2235 {
2236         switch (swizzle) {
2237         case I915_BIT_6_SWIZZLE_NONE:
2238                 return "none";
2239         case I915_BIT_6_SWIZZLE_9:
2240                 return "bit9";
2241         case I915_BIT_6_SWIZZLE_9_10:
2242                 return "bit9/bit10";
2243         case I915_BIT_6_SWIZZLE_9_11:
2244                 return "bit9/bit11";
2245         case I915_BIT_6_SWIZZLE_9_10_11:
2246                 return "bit9/bit10/bit11";
2247         case I915_BIT_6_SWIZZLE_9_17:
2248                 return "bit9/bit17";
2249         case I915_BIT_6_SWIZZLE_9_10_17:
2250                 return "bit9/bit10/bit17";
2251         case I915_BIT_6_SWIZZLE_UNKNOWN:
2252                 return "unknown";
2253         }
2254
2255         return "bug";
2256 }
2257
2258 static int i915_swizzle_info(struct seq_file *m, void *data)
2259 {
2260         struct drm_info_node *node = m->private;
2261         struct drm_device *dev = node->minor->dev;
2262         struct drm_i915_private *dev_priv = to_i915(dev);
2263         int ret;
2264
2265         ret = mutex_lock_interruptible(&dev->struct_mutex);
2266         if (ret)
2267                 return ret;
2268         intel_runtime_pm_get(dev_priv);
2269
2270         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2271                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2272         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2273                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2274
2275         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2276                 seq_printf(m, "DDC = 0x%08x\n",
2277                            I915_READ(DCC));
2278                 seq_printf(m, "DDC2 = 0x%08x\n",
2279                            I915_READ(DCC2));
2280                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2281                            I915_READ16(C0DRB3));
2282                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2283                            I915_READ16(C1DRB3));
2284         } else if (INTEL_INFO(dev)->gen >= 6) {
2285                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2286                            I915_READ(MAD_DIMM_C0));
2287                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2288                            I915_READ(MAD_DIMM_C1));
2289                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2290                            I915_READ(MAD_DIMM_C2));
2291                 seq_printf(m, "TILECTL = 0x%08x\n",
2292                            I915_READ(TILECTL));
2293                 if (INTEL_INFO(dev)->gen >= 8)
2294                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2295                                    I915_READ(GAMTARBMODE));
2296                 else
2297                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2298                                    I915_READ(ARB_MODE));
2299                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2300                            I915_READ(DISP_ARB_CTL));
2301         }
2302
2303         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2304                 seq_puts(m, "L-shaped memory detected\n");
2305
2306         intel_runtime_pm_put(dev_priv);
2307         mutex_unlock(&dev->struct_mutex);
2308
2309         return 0;
2310 }
2311
2312 static int per_file_ctx(int id, void *ptr, void *data)
2313 {
2314         struct i915_gem_context *ctx = ptr;
2315         struct seq_file *m = data;
2316         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2317
2318         if (!ppgtt) {
2319                 seq_printf(m, "  no ppgtt for context %d\n",
2320                            ctx->user_handle);
2321                 return 0;
2322         }
2323
2324         if (i915_gem_context_is_default(ctx))
2325                 seq_puts(m, "  default context:\n");
2326         else
2327                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2328         ppgtt->debug_dump(ppgtt, m);
2329
2330         return 0;
2331 }
2332
2333 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2334 {
2335         struct drm_i915_private *dev_priv = to_i915(dev);
2336         struct intel_engine_cs *engine;
2337         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2338         int i;
2339
2340         if (!ppgtt)
2341                 return;
2342
2343         for_each_engine(engine, dev_priv) {
2344                 seq_printf(m, "%s\n", engine->name);
2345                 for (i = 0; i < 4; i++) {
2346                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2347                         pdp <<= 32;
2348                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2349                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2350                 }
2351         }
2352 }
2353
2354 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2355 {
2356         struct drm_i915_private *dev_priv = to_i915(dev);
2357         struct intel_engine_cs *engine;
2358
2359         if (IS_GEN6(dev_priv))
2360                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2361
2362         for_each_engine(engine, dev_priv) {
2363                 seq_printf(m, "%s\n", engine->name);
2364                 if (IS_GEN7(dev_priv))
2365                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2366                                    I915_READ(RING_MODE_GEN7(engine)));
2367                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2368                            I915_READ(RING_PP_DIR_BASE(engine)));
2369                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2370                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2371                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2372                            I915_READ(RING_PP_DIR_DCLV(engine)));
2373         }
2374         if (dev_priv->mm.aliasing_ppgtt) {
2375                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2376
2377                 seq_puts(m, "aliasing PPGTT:\n");
2378                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2379
2380                 ppgtt->debug_dump(ppgtt, m);
2381         }
2382
2383         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2384 }
2385
2386 static int i915_ppgtt_info(struct seq_file *m, void *data)
2387 {
2388         struct drm_info_node *node = m->private;
2389         struct drm_device *dev = node->minor->dev;
2390         struct drm_i915_private *dev_priv = to_i915(dev);
2391         struct drm_file *file;
2392
2393         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2394         if (ret)
2395                 return ret;
2396         intel_runtime_pm_get(dev_priv);
2397
2398         if (INTEL_INFO(dev)->gen >= 8)
2399                 gen8_ppgtt_info(m, dev);
2400         else if (INTEL_INFO(dev)->gen >= 6)
2401                 gen6_ppgtt_info(m, dev);
2402
2403         mutex_lock(&dev->filelist_mutex);
2404         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2405                 struct drm_i915_file_private *file_priv = file->driver_priv;
2406                 struct task_struct *task;
2407
2408                 task = get_pid_task(file->pid, PIDTYPE_PID);
2409                 if (!task) {
2410                         ret = -ESRCH;
2411                         goto out_unlock;
2412                 }
2413                 seq_printf(m, "\nproc: %s\n", task->comm);
2414                 put_task_struct(task);
2415                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2416                              (void *)(unsigned long)m);
2417         }
2418 out_unlock:
2419         mutex_unlock(&dev->filelist_mutex);
2420
2421         intel_runtime_pm_put(dev_priv);
2422         mutex_unlock(&dev->struct_mutex);
2423
2424         return ret;
2425 }
2426
2427 static int count_irq_waiters(struct drm_i915_private *i915)
2428 {
2429         struct intel_engine_cs *engine;
2430         int count = 0;
2431
2432         for_each_engine(engine, i915)
2433                 count += intel_engine_has_waiter(engine);
2434
2435         return count;
2436 }
2437
2438 static int i915_rps_boost_info(struct seq_file *m, void *data)
2439 {
2440         struct drm_info_node *node = m->private;
2441         struct drm_device *dev = node->minor->dev;
2442         struct drm_i915_private *dev_priv = to_i915(dev);
2443         struct drm_file *file;
2444
2445         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2446         seq_printf(m, "GPU busy? %s [%x]\n",
2447                    yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2448         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2449         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2450                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2451                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2452                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2453                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2454                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2455
2456         mutex_lock(&dev->filelist_mutex);
2457         spin_lock(&dev_priv->rps.client_lock);
2458         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2459                 struct drm_i915_file_private *file_priv = file->driver_priv;
2460                 struct task_struct *task;
2461
2462                 rcu_read_lock();
2463                 task = pid_task(file->pid, PIDTYPE_PID);
2464                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2465                            task ? task->comm : "<unknown>",
2466                            task ? task->pid : -1,
2467                            file_priv->rps.boosts,
2468                            list_empty(&file_priv->rps.link) ? "" : ", active");
2469                 rcu_read_unlock();
2470         }
2471         seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2472         spin_unlock(&dev_priv->rps.client_lock);
2473         mutex_unlock(&dev->filelist_mutex);
2474
2475         return 0;
2476 }
2477
2478 static int i915_llc(struct seq_file *m, void *data)
2479 {
2480         struct drm_info_node *node = m->private;
2481         struct drm_device *dev = node->minor->dev;
2482         struct drm_i915_private *dev_priv = to_i915(dev);
2483         const bool edram = INTEL_GEN(dev_priv) > 8;
2484
2485         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2486         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2487                    intel_uncore_edram_size(dev_priv)/1024/1024);
2488
2489         return 0;
2490 }
2491
2492 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2493 {
2494         struct drm_info_node *node = m->private;
2495         struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
2496         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2497         u32 tmp, i;
2498
2499         if (!HAS_GUC_UCODE(dev_priv))
2500                 return 0;
2501
2502         seq_printf(m, "GuC firmware status:\n");
2503         seq_printf(m, "\tpath: %s\n",
2504                 guc_fw->guc_fw_path);
2505         seq_printf(m, "\tfetch: %s\n",
2506                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2507         seq_printf(m, "\tload: %s\n",
2508                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2509         seq_printf(m, "\tversion wanted: %d.%d\n",
2510                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2511         seq_printf(m, "\tversion found: %d.%d\n",
2512                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2513         seq_printf(m, "\theader: offset is %d; size = %d\n",
2514                 guc_fw->header_offset, guc_fw->header_size);
2515         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2516                 guc_fw->ucode_offset, guc_fw->ucode_size);
2517         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2518                 guc_fw->rsa_offset, guc_fw->rsa_size);
2519
2520         tmp = I915_READ(GUC_STATUS);
2521
2522         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2523         seq_printf(m, "\tBootrom status = 0x%x\n",
2524                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2525         seq_printf(m, "\tuKernel status = 0x%x\n",
2526                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2527         seq_printf(m, "\tMIA Core status = 0x%x\n",
2528                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2529         seq_puts(m, "\nScratch registers:\n");
2530         for (i = 0; i < 16; i++)
2531                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2532
2533         return 0;
2534 }
2535
2536 static void i915_guc_client_info(struct seq_file *m,
2537                                  struct drm_i915_private *dev_priv,
2538                                  struct i915_guc_client *client)
2539 {
2540         struct intel_engine_cs *engine;
2541         uint64_t tot = 0;
2542
2543         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2544                 client->priority, client->ctx_index, client->proc_desc_offset);
2545         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2546                 client->doorbell_id, client->doorbell_offset, client->cookie);
2547         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2548                 client->wq_size, client->wq_offset, client->wq_tail);
2549
2550         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2551         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2552         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2553         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2554
2555         for_each_engine(engine, dev_priv) {
2556                 seq_printf(m, "\tSubmissions: %llu %s\n",
2557                                 client->submissions[engine->id],
2558                                 engine->name);
2559                 tot += client->submissions[engine->id];
2560         }
2561         seq_printf(m, "\tTotal: %llu\n", tot);
2562 }
2563
2564 static int i915_guc_info(struct seq_file *m, void *data)
2565 {
2566         struct drm_info_node *node = m->private;
2567         struct drm_device *dev = node->minor->dev;
2568         struct drm_i915_private *dev_priv = to_i915(dev);
2569         struct intel_guc guc;
2570         struct i915_guc_client client = {};
2571         struct intel_engine_cs *engine;
2572         u64 total = 0;
2573
2574         if (!HAS_GUC_SCHED(dev_priv))
2575                 return 0;
2576
2577         if (mutex_lock_interruptible(&dev->struct_mutex))
2578                 return 0;
2579
2580         /* Take a local copy of the GuC data, so we can dump it at leisure */
2581         guc = dev_priv->guc;
2582         if (guc.execbuf_client)
2583                 client = *guc.execbuf_client;
2584
2585         mutex_unlock(&dev->struct_mutex);
2586
2587         seq_printf(m, "Doorbell map:\n");
2588         seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2589         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2590
2591         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2592         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2593         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2594         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2595         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2596
2597         seq_printf(m, "\nGuC submissions:\n");
2598         for_each_engine(engine, dev_priv) {
2599                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2600                         engine->name, guc.submissions[engine->id],
2601                         guc.last_seqno[engine->id]);
2602                 total += guc.submissions[engine->id];
2603         }
2604         seq_printf(m, "\t%s: %llu\n", "Total", total);
2605
2606         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2607         i915_guc_client_info(m, dev_priv, &client);
2608
2609         /* Add more as required ... */
2610
2611         return 0;
2612 }
2613
2614 static int i915_guc_log_dump(struct seq_file *m, void *data)
2615 {
2616         struct drm_info_node *node = m->private;
2617         struct drm_device *dev = node->minor->dev;
2618         struct drm_i915_private *dev_priv = to_i915(dev);
2619         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2620         u32 *log;
2621         int i = 0, pg;
2622
2623         if (!log_obj)
2624                 return 0;
2625
2626         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2627                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2628
2629                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2630                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2631                                    *(log + i), *(log + i + 1),
2632                                    *(log + i + 2), *(log + i + 3));
2633
2634                 kunmap_atomic(log);
2635         }
2636
2637         seq_putc(m, '\n');
2638
2639         return 0;
2640 }
2641
2642 static int i915_edp_psr_status(struct seq_file *m, void *data)
2643 {
2644         struct drm_info_node *node = m->private;
2645         struct drm_device *dev = node->minor->dev;
2646         struct drm_i915_private *dev_priv = to_i915(dev);
2647         u32 psrperf = 0;
2648         u32 stat[3];
2649         enum pipe pipe;
2650         bool enabled = false;
2651
2652         if (!HAS_PSR(dev)) {
2653                 seq_puts(m, "PSR not supported\n");
2654                 return 0;
2655         }
2656
2657         intel_runtime_pm_get(dev_priv);
2658
2659         mutex_lock(&dev_priv->psr.lock);
2660         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2661         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2662         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2663         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2664         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2665                    dev_priv->psr.busy_frontbuffer_bits);
2666         seq_printf(m, "Re-enable work scheduled: %s\n",
2667                    yesno(work_busy(&dev_priv->psr.work.work)));
2668
2669         if (HAS_DDI(dev))
2670                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2671         else {
2672                 for_each_pipe(dev_priv, pipe) {
2673                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2674                                 VLV_EDP_PSR_CURR_STATE_MASK;
2675                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2676                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2677                                 enabled = true;
2678                 }
2679         }
2680
2681         seq_printf(m, "Main link in standby mode: %s\n",
2682                    yesno(dev_priv->psr.link_standby));
2683
2684         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2685
2686         if (!HAS_DDI(dev))
2687                 for_each_pipe(dev_priv, pipe) {
2688                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2689                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2690                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2691                 }
2692         seq_puts(m, "\n");
2693
2694         /*
2695          * VLV/CHV PSR has no kind of performance counter
2696          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2697          */
2698         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2699                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2700                         EDP_PSR_PERF_CNT_MASK;
2701
2702                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2703         }
2704         mutex_unlock(&dev_priv->psr.lock);
2705
2706         intel_runtime_pm_put(dev_priv);
2707         return 0;
2708 }
2709
2710 static int i915_sink_crc(struct seq_file *m, void *data)
2711 {
2712         struct drm_info_node *node = m->private;
2713         struct drm_device *dev = node->minor->dev;
2714         struct intel_connector *connector;
2715         struct intel_dp *intel_dp = NULL;
2716         int ret;
2717         u8 crc[6];
2718
2719         drm_modeset_lock_all(dev);
2720         for_each_intel_connector(dev, connector) {
2721                 struct drm_crtc *crtc;
2722
2723                 if (!connector->base.state->best_encoder)
2724                         continue;
2725
2726                 crtc = connector->base.state->crtc;
2727                 if (!crtc->state->active)
2728                         continue;
2729
2730                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2731                         continue;
2732
2733                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2734
2735                 ret = intel_dp_sink_crc(intel_dp, crc);
2736                 if (ret)
2737                         goto out;
2738
2739                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2740                            crc[0], crc[1], crc[2],
2741                            crc[3], crc[4], crc[5]);
2742                 goto out;
2743         }
2744         ret = -ENODEV;
2745 out:
2746         drm_modeset_unlock_all(dev);
2747         return ret;
2748 }
2749
2750 static int i915_energy_uJ(struct seq_file *m, void *data)
2751 {
2752         struct drm_info_node *node = m->private;
2753         struct drm_device *dev = node->minor->dev;
2754         struct drm_i915_private *dev_priv = to_i915(dev);
2755         u64 power;
2756         u32 units;
2757
2758         if (INTEL_INFO(dev)->gen < 6)
2759                 return -ENODEV;
2760
2761         intel_runtime_pm_get(dev_priv);
2762
2763         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2764         power = (power & 0x1f00) >> 8;
2765         units = 1000000 / (1 << power); /* convert to uJ */
2766         power = I915_READ(MCH_SECP_NRG_STTS);
2767         power *= units;
2768
2769         intel_runtime_pm_put(dev_priv);
2770
2771         seq_printf(m, "%llu", (long long unsigned)power);
2772
2773         return 0;
2774 }
2775
2776 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2777 {
2778         struct drm_info_node *node = m->private;
2779         struct drm_device *dev = node->minor->dev;
2780         struct drm_i915_private *dev_priv = to_i915(dev);
2781
2782         if (!HAS_RUNTIME_PM(dev_priv))
2783                 seq_puts(m, "Runtime power management not supported\n");
2784
2785         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2786         seq_printf(m, "IRQs disabled: %s\n",
2787                    yesno(!intel_irqs_enabled(dev_priv)));
2788 #ifdef CONFIG_PM
2789         seq_printf(m, "Usage count: %d\n",
2790                    atomic_read(&dev->dev->power.usage_count));
2791 #else
2792         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2793 #endif
2794         seq_printf(m, "PCI device power state: %s [%d]\n",
2795                    pci_power_name(dev_priv->drm.pdev->current_state),
2796                    dev_priv->drm.pdev->current_state);
2797
2798         return 0;
2799 }
2800
2801 static int i915_power_domain_info(struct seq_file *m, void *unused)
2802 {
2803         struct drm_info_node *node = m->private;
2804         struct drm_device *dev = node->minor->dev;
2805         struct drm_i915_private *dev_priv = to_i915(dev);
2806         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2807         int i;
2808
2809         mutex_lock(&power_domains->lock);
2810
2811         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2812         for (i = 0; i < power_domains->power_well_count; i++) {
2813                 struct i915_power_well *power_well;
2814                 enum intel_display_power_domain power_domain;
2815
2816                 power_well = &power_domains->power_wells[i];
2817                 seq_printf(m, "%-25s %d\n", power_well->name,
2818                            power_well->count);
2819
2820                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2821                      power_domain++) {
2822                         if (!(BIT(power_domain) & power_well->domains))
2823                                 continue;
2824
2825                         seq_printf(m, "  %-23s %d\n",
2826                                  intel_display_power_domain_str(power_domain),
2827                                  power_domains->domain_use_count[power_domain]);
2828                 }
2829         }
2830
2831         mutex_unlock(&power_domains->lock);
2832
2833         return 0;
2834 }
2835
2836 static int i915_dmc_info(struct seq_file *m, void *unused)
2837 {
2838         struct drm_info_node *node = m->private;
2839         struct drm_device *dev = node->minor->dev;
2840         struct drm_i915_private *dev_priv = to_i915(dev);
2841         struct intel_csr *csr;
2842
2843         if (!HAS_CSR(dev)) {
2844                 seq_puts(m, "not supported\n");
2845                 return 0;
2846         }
2847
2848         csr = &dev_priv->csr;
2849
2850         intel_runtime_pm_get(dev_priv);
2851
2852         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2853         seq_printf(m, "path: %s\n", csr->fw_path);
2854
2855         if (!csr->dmc_payload)
2856                 goto out;
2857
2858         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2859                    CSR_VERSION_MINOR(csr->version));
2860
2861         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2862                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2863                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2864                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2865                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2866         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2867                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2868                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2869         }
2870
2871 out:
2872         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2873         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2874         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2875
2876         intel_runtime_pm_put(dev_priv);
2877
2878         return 0;
2879 }
2880
2881 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2882                                  struct drm_display_mode *mode)
2883 {
2884         int i;
2885
2886         for (i = 0; i < tabs; i++)
2887                 seq_putc(m, '\t');
2888
2889         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2890                    mode->base.id, mode->name,
2891                    mode->vrefresh, mode->clock,
2892                    mode->hdisplay, mode->hsync_start,
2893                    mode->hsync_end, mode->htotal,
2894                    mode->vdisplay, mode->vsync_start,
2895                    mode->vsync_end, mode->vtotal,
2896                    mode->type, mode->flags);
2897 }
2898
2899 static void intel_encoder_info(struct seq_file *m,
2900                                struct intel_crtc *intel_crtc,
2901                                struct intel_encoder *intel_encoder)
2902 {
2903         struct drm_info_node *node = m->private;
2904         struct drm_device *dev = node->minor->dev;
2905         struct drm_crtc *crtc = &intel_crtc->base;
2906         struct intel_connector *intel_connector;
2907         struct drm_encoder *encoder;
2908
2909         encoder = &intel_encoder->base;
2910         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2911                    encoder->base.id, encoder->name);
2912         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2913                 struct drm_connector *connector = &intel_connector->base;
2914                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2915                            connector->base.id,
2916                            connector->name,
2917                            drm_get_connector_status_name(connector->status));
2918                 if (connector->status == connector_status_connected) {
2919                         struct drm_display_mode *mode = &crtc->mode;
2920                         seq_printf(m, ", mode:\n");
2921                         intel_seq_print_mode(m, 2, mode);
2922                 } else {
2923                         seq_putc(m, '\n');
2924                 }
2925         }
2926 }
2927
2928 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2929 {
2930         struct drm_info_node *node = m->private;
2931         struct drm_device *dev = node->minor->dev;
2932         struct drm_crtc *crtc = &intel_crtc->base;
2933         struct intel_encoder *intel_encoder;
2934         struct drm_plane_state *plane_state = crtc->primary->state;
2935         struct drm_framebuffer *fb = plane_state->fb;
2936
2937         if (fb)
2938                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2939                            fb->base.id, plane_state->src_x >> 16,
2940                            plane_state->src_y >> 16, fb->width, fb->height);
2941         else
2942                 seq_puts(m, "\tprimary plane disabled\n");
2943         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2944                 intel_encoder_info(m, intel_crtc, intel_encoder);
2945 }
2946
2947 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2948 {
2949         struct drm_display_mode *mode = panel->fixed_mode;
2950
2951         seq_printf(m, "\tfixed mode:\n");
2952         intel_seq_print_mode(m, 2, mode);
2953 }
2954
2955 static void intel_dp_info(struct seq_file *m,
2956                           struct intel_connector *intel_connector)
2957 {
2958         struct intel_encoder *intel_encoder = intel_connector->encoder;
2959         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2960
2961         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2962         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2963         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2964                 intel_panel_info(m, &intel_connector->panel);
2965 }
2966
2967 static void intel_hdmi_info(struct seq_file *m,
2968                             struct intel_connector *intel_connector)
2969 {
2970         struct intel_encoder *intel_encoder = intel_connector->encoder;
2971         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2972
2973         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2974 }
2975
2976 static void intel_lvds_info(struct seq_file *m,
2977                             struct intel_connector *intel_connector)
2978 {
2979         intel_panel_info(m, &intel_connector->panel);
2980 }
2981
2982 static void intel_connector_info(struct seq_file *m,
2983                                  struct drm_connector *connector)
2984 {
2985         struct intel_connector *intel_connector = to_intel_connector(connector);
2986         struct intel_encoder *intel_encoder = intel_connector->encoder;
2987         struct drm_display_mode *mode;
2988
2989         seq_printf(m, "connector %d: type %s, status: %s\n",
2990                    connector->base.id, connector->name,
2991                    drm_get_connector_status_name(connector->status));
2992         if (connector->status == connector_status_connected) {
2993                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2994                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2995                            connector->display_info.width_mm,
2996                            connector->display_info.height_mm);
2997                 seq_printf(m, "\tsubpixel order: %s\n",
2998                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2999                 seq_printf(m, "\tCEA rev: %d\n",
3000                            connector->display_info.cea_rev);
3001         }
3002
3003         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3004                 return;
3005
3006         switch (connector->connector_type) {
3007         case DRM_MODE_CONNECTOR_DisplayPort:
3008         case DRM_MODE_CONNECTOR_eDP:
3009                 intel_dp_info(m, intel_connector);
3010                 break;
3011         case DRM_MODE_CONNECTOR_LVDS:
3012                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3013                         intel_lvds_info(m, intel_connector);
3014                 break;
3015         case DRM_MODE_CONNECTOR_HDMIA:
3016                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3017                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3018                         intel_hdmi_info(m, intel_connector);
3019                 break;
3020         default:
3021                 break;
3022         }
3023
3024         seq_printf(m, "\tmodes:\n");
3025         list_for_each_entry(mode, &connector->modes, head)
3026                 intel_seq_print_mode(m, 2, mode);
3027 }
3028
3029 static bool cursor_active(struct drm_device *dev, int pipe)
3030 {
3031         struct drm_i915_private *dev_priv = to_i915(dev);
3032         u32 state;
3033
3034         if (IS_845G(dev) || IS_I865G(dev))
3035                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3036         else
3037                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3038
3039         return state;
3040 }
3041
3042 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
3043 {
3044         struct drm_i915_private *dev_priv = to_i915(dev);
3045         u32 pos;
3046
3047         pos = I915_READ(CURPOS(pipe));
3048
3049         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3050         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3051                 *x = -*x;
3052
3053         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3054         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3055                 *y = -*y;
3056
3057         return cursor_active(dev, pipe);
3058 }
3059
3060 static const char *plane_type(enum drm_plane_type type)
3061 {
3062         switch (type) {
3063         case DRM_PLANE_TYPE_OVERLAY:
3064                 return "OVL";
3065         case DRM_PLANE_TYPE_PRIMARY:
3066                 return "PRI";
3067         case DRM_PLANE_TYPE_CURSOR:
3068                 return "CUR";
3069         /*
3070          * Deliberately omitting default: to generate compiler warnings
3071          * when a new drm_plane_type gets added.
3072          */
3073         }
3074
3075         return "unknown";
3076 }
3077
3078 static const char *plane_rotation(unsigned int rotation)
3079 {
3080         static char buf[48];
3081         /*
3082          * According to doc only one DRM_ROTATE_ is allowed but this
3083          * will print them all to visualize if the values are misused
3084          */
3085         snprintf(buf, sizeof(buf),
3086                  "%s%s%s%s%s%s(0x%08x)",
3087                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3088                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3089                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3090                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3091                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3092                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3093                  rotation);
3094
3095         return buf;
3096 }
3097
3098 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3099 {
3100         struct drm_info_node *node = m->private;
3101         struct drm_device *dev = node->minor->dev;
3102         struct intel_plane *intel_plane;
3103
3104         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3105                 struct drm_plane_state *state;
3106                 struct drm_plane *plane = &intel_plane->base;
3107
3108                 if (!plane->state) {
3109                         seq_puts(m, "plane->state is NULL!\n");
3110                         continue;
3111                 }
3112
3113                 state = plane->state;
3114
3115                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3116                            plane->base.id,
3117                            plane_type(intel_plane->base.type),
3118                            state->crtc_x, state->crtc_y,
3119                            state->crtc_w, state->crtc_h,
3120                            (state->src_x >> 16),
3121                            ((state->src_x & 0xffff) * 15625) >> 10,
3122                            (state->src_y >> 16),
3123                            ((state->src_y & 0xffff) * 15625) >> 10,
3124                            (state->src_w >> 16),
3125                            ((state->src_w & 0xffff) * 15625) >> 10,
3126                            (state->src_h >> 16),
3127                            ((state->src_h & 0xffff) * 15625) >> 10,
3128                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3129                            plane_rotation(state->rotation));
3130         }
3131 }
3132
3133 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3134 {
3135         struct intel_crtc_state *pipe_config;
3136         int num_scalers = intel_crtc->num_scalers;
3137         int i;
3138
3139         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3140
3141         /* Not all platformas have a scaler */
3142         if (num_scalers) {
3143                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3144                            num_scalers,
3145                            pipe_config->scaler_state.scaler_users,
3146                            pipe_config->scaler_state.scaler_id);
3147
3148                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3149                         struct intel_scaler *sc =
3150                                         &pipe_config->scaler_state.scalers[i];
3151
3152                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3153                                    i, yesno(sc->in_use), sc->mode);
3154                 }
3155                 seq_puts(m, "\n");
3156         } else {
3157                 seq_puts(m, "\tNo scalers available on this platform\n");
3158         }
3159 }
3160
3161 static int i915_display_info(struct seq_file *m, void *unused)
3162 {
3163         struct drm_info_node *node = m->private;
3164         struct drm_device *dev = node->minor->dev;
3165         struct drm_i915_private *dev_priv = to_i915(dev);
3166         struct intel_crtc *crtc;
3167         struct drm_connector *connector;
3168
3169         intel_runtime_pm_get(dev_priv);
3170         drm_modeset_lock_all(dev);
3171         seq_printf(m, "CRTC info\n");
3172         seq_printf(m, "---------\n");
3173         for_each_intel_crtc(dev, crtc) {
3174                 bool active;
3175                 struct intel_crtc_state *pipe_config;
3176                 int x, y;
3177
3178                 pipe_config = to_intel_crtc_state(crtc->base.state);
3179
3180                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3181                            crtc->base.base.id, pipe_name(crtc->pipe),
3182                            yesno(pipe_config->base.active),
3183                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3184                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3185
3186                 if (pipe_config->base.active) {
3187                         intel_crtc_info(m, crtc);
3188
3189                         active = cursor_position(dev, crtc->pipe, &x, &y);
3190                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3191                                    yesno(crtc->cursor_base),
3192                                    x, y, crtc->base.cursor->state->crtc_w,
3193                                    crtc->base.cursor->state->crtc_h,
3194                                    crtc->cursor_addr, yesno(active));
3195                         intel_scaler_info(m, crtc);
3196                         intel_plane_info(m, crtc);
3197                 }
3198
3199                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3200                            yesno(!crtc->cpu_fifo_underrun_disabled),
3201                            yesno(!crtc->pch_fifo_underrun_disabled));
3202         }
3203
3204         seq_printf(m, "\n");
3205         seq_printf(m, "Connector info\n");
3206         seq_printf(m, "--------------\n");
3207         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3208                 intel_connector_info(m, connector);
3209         }
3210         drm_modeset_unlock_all(dev);
3211         intel_runtime_pm_put(dev_priv);
3212
3213         return 0;
3214 }
3215
3216 static int i915_semaphore_status(struct seq_file *m, void *unused)
3217 {
3218         struct drm_info_node *node = (struct drm_info_node *) m->private;
3219         struct drm_device *dev = node->minor->dev;
3220         struct drm_i915_private *dev_priv = to_i915(dev);
3221         struct intel_engine_cs *engine;
3222         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3223         enum intel_engine_id id;
3224         int j, ret;
3225
3226         if (!i915.semaphores) {
3227                 seq_puts(m, "Semaphores are disabled\n");
3228                 return 0;
3229         }
3230
3231         ret = mutex_lock_interruptible(&dev->struct_mutex);
3232         if (ret)
3233                 return ret;
3234         intel_runtime_pm_get(dev_priv);
3235
3236         if (IS_BROADWELL(dev)) {
3237                 struct page *page;
3238                 uint64_t *seqno;
3239
3240                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3241
3242                 seqno = (uint64_t *)kmap_atomic(page);
3243                 for_each_engine_id(engine, dev_priv, id) {
3244                         uint64_t offset;
3245
3246                         seq_printf(m, "%s\n", engine->name);
3247
3248                         seq_puts(m, "  Last signal:");
3249                         for (j = 0; j < num_rings; j++) {
3250                                 offset = id * I915_NUM_ENGINES + j;
3251                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3252                                            seqno[offset], offset * 8);
3253                         }
3254                         seq_putc(m, '\n');
3255
3256                         seq_puts(m, "  Last wait:  ");
3257                         for (j = 0; j < num_rings; j++) {
3258                                 offset = id + (j * I915_NUM_ENGINES);
3259                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3260                                            seqno[offset], offset * 8);
3261                         }
3262                         seq_putc(m, '\n');
3263
3264                 }
3265                 kunmap_atomic(seqno);
3266         } else {
3267                 seq_puts(m, "  Last signal:");
3268                 for_each_engine(engine, dev_priv)
3269                         for (j = 0; j < num_rings; j++)
3270                                 seq_printf(m, "0x%08x\n",
3271                                            I915_READ(engine->semaphore.mbox.signal[j]));
3272                 seq_putc(m, '\n');
3273         }
3274
3275         seq_puts(m, "\nSync seqno:\n");
3276         for_each_engine(engine, dev_priv) {
3277                 for (j = 0; j < num_rings; j++)
3278                         seq_printf(m, "  0x%08x ",
3279                                    engine->semaphore.sync_seqno[j]);
3280                 seq_putc(m, '\n');
3281         }
3282         seq_putc(m, '\n');
3283
3284         intel_runtime_pm_put(dev_priv);
3285         mutex_unlock(&dev->struct_mutex);
3286         return 0;
3287 }
3288
3289 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3290 {
3291         struct drm_info_node *node = (struct drm_info_node *) m->private;
3292         struct drm_device *dev = node->minor->dev;
3293         struct drm_i915_private *dev_priv = to_i915(dev);
3294         int i;
3295
3296         drm_modeset_lock_all(dev);
3297         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3298                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3299
3300                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3301                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3302                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3303                 seq_printf(m, " tracked hardware state:\n");
3304                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3305                 seq_printf(m, " dpll_md: 0x%08x\n",
3306                            pll->config.hw_state.dpll_md);
3307                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3308                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3309                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3310         }
3311         drm_modeset_unlock_all(dev);
3312
3313         return 0;
3314 }
3315
3316 static int i915_wa_registers(struct seq_file *m, void *unused)
3317 {
3318         int i;
3319         int ret;
3320         struct intel_engine_cs *engine;
3321         struct drm_info_node *node = (struct drm_info_node *) m->private;
3322         struct drm_device *dev = node->minor->dev;
3323         struct drm_i915_private *dev_priv = to_i915(dev);
3324         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3325         enum intel_engine_id id;
3326
3327         ret = mutex_lock_interruptible(&dev->struct_mutex);
3328         if (ret)
3329                 return ret;
3330
3331         intel_runtime_pm_get(dev_priv);
3332
3333         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3334         for_each_engine_id(engine, dev_priv, id)
3335                 seq_printf(m, "HW whitelist count for %s: %d\n",
3336                            engine->name, workarounds->hw_whitelist_count[id]);
3337         for (i = 0; i < workarounds->count; ++i) {
3338                 i915_reg_t addr;
3339                 u32 mask, value, read;
3340                 bool ok;
3341
3342                 addr = workarounds->reg[i].addr;
3343                 mask = workarounds->reg[i].mask;
3344                 value = workarounds->reg[i].value;
3345                 read = I915_READ(addr);
3346                 ok = (value & mask) == (read & mask);
3347                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3348                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3349         }
3350
3351         intel_runtime_pm_put(dev_priv);
3352         mutex_unlock(&dev->struct_mutex);
3353
3354         return 0;
3355 }
3356
3357 static int i915_ddb_info(struct seq_file *m, void *unused)
3358 {
3359         struct drm_info_node *node = m->private;
3360         struct drm_device *dev = node->minor->dev;
3361         struct drm_i915_private *dev_priv = to_i915(dev);
3362         struct skl_ddb_allocation *ddb;
3363         struct skl_ddb_entry *entry;
3364         enum pipe pipe;
3365         int plane;
3366
3367         if (INTEL_INFO(dev)->gen < 9)
3368                 return 0;
3369
3370         drm_modeset_lock_all(dev);
3371
3372         ddb = &dev_priv->wm.skl_hw.ddb;
3373
3374         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3375
3376         for_each_pipe(dev_priv, pipe) {
3377                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3378
3379                 for_each_plane(dev_priv, pipe, plane) {
3380                         entry = &ddb->plane[pipe][plane];
3381                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3382                                    entry->start, entry->end,
3383                                    skl_ddb_entry_size(entry));
3384                 }
3385
3386                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3387                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3388                            entry->end, skl_ddb_entry_size(entry));
3389         }
3390
3391         drm_modeset_unlock_all(dev);
3392
3393         return 0;
3394 }
3395
3396 static void drrs_status_per_crtc(struct seq_file *m,
3397                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3398 {
3399         struct drm_i915_private *dev_priv = to_i915(dev);
3400         struct i915_drrs *drrs = &dev_priv->drrs;
3401         int vrefresh = 0;
3402         struct drm_connector *connector;
3403
3404         drm_for_each_connector(connector, dev) {
3405                 if (connector->state->crtc != &intel_crtc->base)
3406                         continue;
3407
3408                 seq_printf(m, "%s:\n", connector->name);
3409         }
3410
3411         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3412                 seq_puts(m, "\tVBT: DRRS_type: Static");
3413         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3414                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3415         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3416                 seq_puts(m, "\tVBT: DRRS_type: None");
3417         else
3418                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3419
3420         seq_puts(m, "\n\n");
3421
3422         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3423                 struct intel_panel *panel;
3424
3425                 mutex_lock(&drrs->mutex);
3426                 /* DRRS Supported */
3427                 seq_puts(m, "\tDRRS Supported: Yes\n");
3428
3429                 /* disable_drrs() will make drrs->dp NULL */
3430                 if (!drrs->dp) {
3431                         seq_puts(m, "Idleness DRRS: Disabled");
3432                         mutex_unlock(&drrs->mutex);
3433                         return;
3434                 }
3435
3436                 panel = &drrs->dp->attached_connector->panel;
3437                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3438                                         drrs->busy_frontbuffer_bits);
3439
3440                 seq_puts(m, "\n\t\t");
3441                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3442                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3443                         vrefresh = panel->fixed_mode->vrefresh;
3444                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3445                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3446                         vrefresh = panel->downclock_mode->vrefresh;
3447                 } else {
3448                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3449                                                 drrs->refresh_rate_type);
3450                         mutex_unlock(&drrs->mutex);
3451                         return;
3452                 }
3453                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3454
3455                 seq_puts(m, "\n\t\t");
3456                 mutex_unlock(&drrs->mutex);
3457         } else {
3458                 /* DRRS not supported. Print the VBT parameter*/
3459                 seq_puts(m, "\tDRRS Supported : No");
3460         }
3461         seq_puts(m, "\n");
3462 }
3463
3464 static int i915_drrs_status(struct seq_file *m, void *unused)
3465 {
3466         struct drm_info_node *node = m->private;
3467         struct drm_device *dev = node->minor->dev;
3468         struct intel_crtc *intel_crtc;
3469         int active_crtc_cnt = 0;
3470
3471         drm_modeset_lock_all(dev);
3472         for_each_intel_crtc(dev, intel_crtc) {
3473                 if (intel_crtc->base.state->active) {
3474                         active_crtc_cnt++;
3475                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3476
3477                         drrs_status_per_crtc(m, dev, intel_crtc);
3478                 }
3479         }
3480         drm_modeset_unlock_all(dev);
3481
3482         if (!active_crtc_cnt)
3483                 seq_puts(m, "No active crtc found\n");
3484
3485         return 0;
3486 }
3487
3488 struct pipe_crc_info {
3489         const char *name;
3490         struct drm_device *dev;
3491         enum pipe pipe;
3492 };
3493
3494 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3495 {
3496         struct drm_info_node *node = (struct drm_info_node *) m->private;
3497         struct drm_device *dev = node->minor->dev;
3498         struct intel_encoder *intel_encoder;
3499         struct intel_digital_port *intel_dig_port;
3500         struct drm_connector *connector;
3501
3502         drm_modeset_lock_all(dev);
3503         drm_for_each_connector(connector, dev) {
3504                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3505                         continue;
3506
3507                 intel_encoder = intel_attached_encoder(connector);
3508                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3509                         continue;
3510
3511                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3512                 if (!intel_dig_port->dp.can_mst)
3513                         continue;
3514
3515                 seq_printf(m, "MST Source Port %c\n",
3516                            port_name(intel_dig_port->port));
3517                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3518         }
3519         drm_modeset_unlock_all(dev);
3520         return 0;
3521 }
3522
3523 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3524 {
3525         struct pipe_crc_info *info = inode->i_private;
3526         struct drm_i915_private *dev_priv = to_i915(info->dev);
3527         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3528
3529         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3530                 return -ENODEV;
3531
3532         spin_lock_irq(&pipe_crc->lock);
3533
3534         if (pipe_crc->opened) {
3535                 spin_unlock_irq(&pipe_crc->lock);
3536                 return -EBUSY; /* already open */
3537         }
3538
3539         pipe_crc->opened = true;
3540         filep->private_data = inode->i_private;
3541
3542         spin_unlock_irq(&pipe_crc->lock);
3543
3544         return 0;
3545 }
3546
3547 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3548 {
3549         struct pipe_crc_info *info = inode->i_private;
3550         struct drm_i915_private *dev_priv = to_i915(info->dev);
3551         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3552
3553         spin_lock_irq(&pipe_crc->lock);
3554         pipe_crc->opened = false;
3555         spin_unlock_irq(&pipe_crc->lock);
3556
3557         return 0;
3558 }
3559
3560 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3561 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3562 /* account for \'0' */
3563 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3564
3565 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3566 {
3567         assert_spin_locked(&pipe_crc->lock);
3568         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3569                         INTEL_PIPE_CRC_ENTRIES_NR);
3570 }
3571
3572 static ssize_t
3573 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3574                    loff_t *pos)
3575 {
3576         struct pipe_crc_info *info = filep->private_data;
3577         struct drm_device *dev = info->dev;
3578         struct drm_i915_private *dev_priv = to_i915(dev);
3579         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3580         char buf[PIPE_CRC_BUFFER_LEN];
3581         int n_entries;
3582         ssize_t bytes_read;
3583
3584         /*
3585          * Don't allow user space to provide buffers not big enough to hold
3586          * a line of data.
3587          */
3588         if (count < PIPE_CRC_LINE_LEN)
3589                 return -EINVAL;
3590
3591         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3592                 return 0;
3593
3594         /* nothing to read */
3595         spin_lock_irq(&pipe_crc->lock);
3596         while (pipe_crc_data_count(pipe_crc) == 0) {
3597                 int ret;
3598
3599                 if (filep->f_flags & O_NONBLOCK) {
3600                         spin_unlock_irq(&pipe_crc->lock);
3601                         return -EAGAIN;
3602                 }
3603
3604                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3605                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3606                 if (ret) {
3607                         spin_unlock_irq(&pipe_crc->lock);
3608                         return ret;
3609                 }
3610         }
3611
3612         /* We now have one or more entries to read */
3613         n_entries = count / PIPE_CRC_LINE_LEN;
3614
3615         bytes_read = 0;
3616         while (n_entries > 0) {
3617                 struct intel_pipe_crc_entry *entry =
3618                         &pipe_crc->entries[pipe_crc->tail];
3619                 int ret;
3620
3621                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3622                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3623                         break;
3624
3625                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3626                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3627
3628                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3629                                        "%8u %8x %8x %8x %8x %8x\n",
3630                                        entry->frame, entry->crc[0],
3631                                        entry->crc[1], entry->crc[2],
3632                                        entry->crc[3], entry->crc[4]);
3633
3634                 spin_unlock_irq(&pipe_crc->lock);
3635
3636                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3637                 if (ret == PIPE_CRC_LINE_LEN)
3638                         return -EFAULT;
3639
3640                 user_buf += PIPE_CRC_LINE_LEN;
3641                 n_entries--;
3642
3643                 spin_lock_irq(&pipe_crc->lock);
3644         }
3645
3646         spin_unlock_irq(&pipe_crc->lock);
3647
3648         return bytes_read;
3649 }
3650
3651 static const struct file_operations i915_pipe_crc_fops = {
3652         .owner = THIS_MODULE,
3653         .open = i915_pipe_crc_open,
3654         .read = i915_pipe_crc_read,
3655         .release = i915_pipe_crc_release,
3656 };
3657
3658 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3659         {
3660                 .name = "i915_pipe_A_crc",
3661                 .pipe = PIPE_A,
3662         },
3663         {
3664                 .name = "i915_pipe_B_crc",
3665                 .pipe = PIPE_B,
3666         },
3667         {
3668                 .name = "i915_pipe_C_crc",
3669                 .pipe = PIPE_C,
3670         },
3671 };
3672
3673 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3674                                 enum pipe pipe)
3675 {
3676         struct drm_device *dev = minor->dev;
3677         struct dentry *ent;
3678         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3679
3680         info->dev = dev;
3681         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3682                                   &i915_pipe_crc_fops);
3683         if (!ent)
3684                 return -ENOMEM;
3685
3686         return drm_add_fake_info_node(minor, ent, info);
3687 }
3688
3689 static const char * const pipe_crc_sources[] = {
3690         "none",
3691         "plane1",
3692         "plane2",
3693         "pf",
3694         "pipe",
3695         "TV",
3696         "DP-B",
3697         "DP-C",
3698         "DP-D",
3699         "auto",
3700 };
3701
3702 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3703 {
3704         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3705         return pipe_crc_sources[source];
3706 }
3707
3708 static int display_crc_ctl_show(struct seq_file *m, void *data)
3709 {
3710         struct drm_device *dev = m->private;
3711         struct drm_i915_private *dev_priv = to_i915(dev);
3712         int i;
3713
3714         for (i = 0; i < I915_MAX_PIPES; i++)
3715                 seq_printf(m, "%c %s\n", pipe_name(i),
3716                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3717
3718         return 0;
3719 }
3720
3721 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3722 {
3723         struct drm_device *dev = inode->i_private;
3724
3725         return single_open(file, display_crc_ctl_show, dev);
3726 }
3727
3728 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3729                                  uint32_t *val)
3730 {
3731         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3732                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3733
3734         switch (*source) {
3735         case INTEL_PIPE_CRC_SOURCE_PIPE:
3736                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3737                 break;
3738         case INTEL_PIPE_CRC_SOURCE_NONE:
3739                 *val = 0;
3740                 break;
3741         default:
3742                 return -EINVAL;
3743         }
3744
3745         return 0;
3746 }
3747
3748 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3749                                      enum intel_pipe_crc_source *source)
3750 {
3751         struct intel_encoder *encoder;
3752         struct intel_crtc *crtc;
3753         struct intel_digital_port *dig_port;
3754         int ret = 0;
3755
3756         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3757
3758         drm_modeset_lock_all(dev);
3759         for_each_intel_encoder(dev, encoder) {
3760                 if (!encoder->base.crtc)
3761                         continue;
3762
3763                 crtc = to_intel_crtc(encoder->base.crtc);
3764
3765                 if (crtc->pipe != pipe)
3766                         continue;
3767
3768                 switch (encoder->type) {
3769                 case INTEL_OUTPUT_TVOUT:
3770                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3771                         break;
3772                 case INTEL_OUTPUT_DP:
3773                 case INTEL_OUTPUT_EDP:
3774                         dig_port = enc_to_dig_port(&encoder->base);
3775                         switch (dig_port->port) {
3776                         case PORT_B:
3777                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3778                                 break;
3779                         case PORT_C:
3780                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3781                                 break;
3782                         case PORT_D:
3783                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3784                                 break;
3785                         default:
3786                                 WARN(1, "nonexisting DP port %c\n",
3787                                      port_name(dig_port->port));
3788                                 break;
3789                         }
3790                         break;
3791                 default:
3792                         break;
3793                 }
3794         }
3795         drm_modeset_unlock_all(dev);
3796
3797         return ret;
3798 }
3799
3800 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3801                                 enum pipe pipe,
3802                                 enum intel_pipe_crc_source *source,
3803                                 uint32_t *val)
3804 {
3805         struct drm_i915_private *dev_priv = to_i915(dev);
3806         bool need_stable_symbols = false;
3807
3808         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3809                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3810                 if (ret)
3811                         return ret;
3812         }
3813
3814         switch (*source) {
3815         case INTEL_PIPE_CRC_SOURCE_PIPE:
3816                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3817                 break;
3818         case INTEL_PIPE_CRC_SOURCE_DP_B:
3819                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3820                 need_stable_symbols = true;
3821                 break;
3822         case INTEL_PIPE_CRC_SOURCE_DP_C:
3823                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3824                 need_stable_symbols = true;
3825                 break;
3826         case INTEL_PIPE_CRC_SOURCE_DP_D:
3827                 if (!IS_CHERRYVIEW(dev))
3828                         return -EINVAL;
3829                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3830                 need_stable_symbols = true;
3831                 break;
3832         case INTEL_PIPE_CRC_SOURCE_NONE:
3833                 *val = 0;
3834                 break;
3835         default:
3836                 return -EINVAL;
3837         }
3838
3839         /*
3840          * When the pipe CRC tap point is after the transcoders we need
3841          * to tweak symbol-level features to produce a deterministic series of
3842          * symbols for a given frame. We need to reset those features only once
3843          * a frame (instead of every nth symbol):
3844          *   - DC-balance: used to ensure a better clock recovery from the data
3845          *     link (SDVO)
3846          *   - DisplayPort scrambling: used for EMI reduction
3847          */
3848         if (need_stable_symbols) {
3849                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3850
3851                 tmp |= DC_BALANCE_RESET_VLV;
3852                 switch (pipe) {
3853                 case PIPE_A:
3854                         tmp |= PIPE_A_SCRAMBLE_RESET;
3855                         break;
3856                 case PIPE_B:
3857                         tmp |= PIPE_B_SCRAMBLE_RESET;
3858                         break;
3859                 case PIPE_C:
3860                         tmp |= PIPE_C_SCRAMBLE_RESET;
3861                         break;
3862                 default:
3863                         return -EINVAL;
3864                 }
3865                 I915_WRITE(PORT_DFT2_G4X, tmp);
3866         }
3867
3868         return 0;
3869 }
3870
3871 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3872                                  enum pipe pipe,
3873                                  enum intel_pipe_crc_source *source,
3874                                  uint32_t *val)
3875 {
3876         struct drm_i915_private *dev_priv = to_i915(dev);
3877         bool need_stable_symbols = false;
3878
3879         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3880                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3881                 if (ret)
3882                         return ret;
3883         }
3884
3885         switch (*source) {
3886         case INTEL_PIPE_CRC_SOURCE_PIPE:
3887                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3888                 break;
3889         case INTEL_PIPE_CRC_SOURCE_TV:
3890                 if (!SUPPORTS_TV(dev))
3891                         return -EINVAL;
3892                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3893                 break;
3894         case INTEL_PIPE_CRC_SOURCE_DP_B:
3895                 if (!IS_G4X(dev))
3896                         return -EINVAL;
3897                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3898                 need_stable_symbols = true;
3899                 break;
3900         case INTEL_PIPE_CRC_SOURCE_DP_C:
3901                 if (!IS_G4X(dev))
3902                         return -EINVAL;
3903                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3904                 need_stable_symbols = true;
3905                 break;
3906         case INTEL_PIPE_CRC_SOURCE_DP_D:
3907                 if (!IS_G4X(dev))
3908                         return -EINVAL;
3909                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3910                 need_stable_symbols = true;
3911                 break;
3912         case INTEL_PIPE_CRC_SOURCE_NONE:
3913                 *val = 0;
3914                 break;
3915         default:
3916                 return -EINVAL;
3917         }
3918
3919         /*
3920          * When the pipe CRC tap point is after the transcoders we need
3921          * to tweak symbol-level features to produce a deterministic series of
3922          * symbols for a given frame. We need to reset those features only once
3923          * a frame (instead of every nth symbol):
3924          *   - DC-balance: used to ensure a better clock recovery from the data
3925          *     link (SDVO)
3926          *   - DisplayPort scrambling: used for EMI reduction
3927          */
3928         if (need_stable_symbols) {
3929                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3930
3931                 WARN_ON(!IS_G4X(dev));
3932
3933                 I915_WRITE(PORT_DFT_I9XX,
3934                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3935
3936                 if (pipe == PIPE_A)
3937                         tmp |= PIPE_A_SCRAMBLE_RESET;
3938                 else
3939                         tmp |= PIPE_B_SCRAMBLE_RESET;
3940
3941                 I915_WRITE(PORT_DFT2_G4X, tmp);
3942         }
3943
3944         return 0;
3945 }
3946
3947 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3948                                          enum pipe pipe)
3949 {
3950         struct drm_i915_private *dev_priv = to_i915(dev);
3951         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3952
3953         switch (pipe) {
3954         case PIPE_A:
3955                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3956                 break;
3957         case PIPE_B:
3958                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3959                 break;
3960         case PIPE_C:
3961                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3962                 break;
3963         default:
3964                 return;
3965         }
3966         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3967                 tmp &= ~DC_BALANCE_RESET_VLV;
3968         I915_WRITE(PORT_DFT2_G4X, tmp);
3969
3970 }
3971
3972 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3973                                          enum pipe pipe)
3974 {
3975         struct drm_i915_private *dev_priv = to_i915(dev);
3976         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3977
3978         if (pipe == PIPE_A)
3979                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3980         else
3981                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3982         I915_WRITE(PORT_DFT2_G4X, tmp);
3983
3984         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3985                 I915_WRITE(PORT_DFT_I9XX,
3986                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3987         }
3988 }
3989
3990 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3991                                 uint32_t *val)
3992 {
3993         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3994                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3995
3996         switch (*source) {
3997         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3998                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3999                 break;
4000         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4001                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
4002                 break;
4003         case INTEL_PIPE_CRC_SOURCE_PIPE:
4004                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
4005                 break;
4006         case INTEL_PIPE_CRC_SOURCE_NONE:
4007                 *val = 0;
4008                 break;
4009         default:
4010                 return -EINVAL;
4011         }
4012
4013         return 0;
4014 }
4015
4016 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
4017 {
4018         struct drm_i915_private *dev_priv = to_i915(dev);
4019         struct intel_crtc *crtc =
4020                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4021         struct intel_crtc_state *pipe_config;
4022         struct drm_atomic_state *state;
4023         int ret = 0;
4024
4025         drm_modeset_lock_all(dev);
4026         state = drm_atomic_state_alloc(dev);
4027         if (!state) {
4028                 ret = -ENOMEM;
4029                 goto out;
4030         }
4031
4032         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4033         pipe_config = intel_atomic_get_crtc_state(state, crtc);
4034         if (IS_ERR(pipe_config)) {
4035                 ret = PTR_ERR(pipe_config);
4036                 goto out;
4037         }
4038
4039         pipe_config->pch_pfit.force_thru = enable;
4040         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4041             pipe_config->pch_pfit.enabled != enable)
4042                 pipe_config->base.connectors_changed = true;
4043
4044         ret = drm_atomic_commit(state);
4045 out:
4046         drm_modeset_unlock_all(dev);
4047         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4048         if (ret)
4049                 drm_atomic_state_free(state);
4050 }
4051
4052 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4053                                 enum pipe pipe,
4054                                 enum intel_pipe_crc_source *source,
4055                                 uint32_t *val)
4056 {
4057         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4058                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4059
4060         switch (*source) {
4061         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4062                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4063                 break;
4064         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4065                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4066                 break;
4067         case INTEL_PIPE_CRC_SOURCE_PF:
4068                 if (IS_HASWELL(dev) && pipe == PIPE_A)
4069                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
4070
4071                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4072                 break;
4073         case INTEL_PIPE_CRC_SOURCE_NONE:
4074                 *val = 0;
4075                 break;
4076         default:
4077                 return -EINVAL;
4078         }
4079
4080         return 0;
4081 }
4082
4083 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4084                                enum intel_pipe_crc_source source)
4085 {
4086         struct drm_i915_private *dev_priv = to_i915(dev);
4087         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4088         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4089                                                                         pipe));
4090         enum intel_display_power_domain power_domain;
4091         u32 val = 0; /* shut up gcc */
4092         int ret;
4093
4094         if (pipe_crc->source == source)
4095                 return 0;
4096
4097         /* forbid changing the source without going back to 'none' */
4098         if (pipe_crc->source && source)
4099                 return -EINVAL;
4100
4101         power_domain = POWER_DOMAIN_PIPE(pipe);
4102         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4103                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4104                 return -EIO;
4105         }
4106
4107         if (IS_GEN2(dev))
4108                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4109         else if (INTEL_INFO(dev)->gen < 5)
4110                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4111         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4112                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4113         else if (IS_GEN5(dev) || IS_GEN6(dev))
4114                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4115         else
4116                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4117
4118         if (ret != 0)
4119                 goto out;
4120
4121         /* none -> real source transition */
4122         if (source) {
4123                 struct intel_pipe_crc_entry *entries;
4124
4125                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4126                                  pipe_name(pipe), pipe_crc_source_name(source));
4127
4128                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4129                                   sizeof(pipe_crc->entries[0]),
4130                                   GFP_KERNEL);
4131                 if (!entries) {
4132                         ret = -ENOMEM;
4133                         goto out;
4134                 }
4135
4136                 /*
4137                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4138                  * enabled and disabled dynamically based on package C states,
4139                  * user space can't make reliable use of the CRCs, so let's just
4140                  * completely disable it.
4141                  */
4142                 hsw_disable_ips(crtc);
4143
4144                 spin_lock_irq(&pipe_crc->lock);
4145                 kfree(pipe_crc->entries);
4146                 pipe_crc->entries = entries;
4147                 pipe_crc->head = 0;
4148                 pipe_crc->tail = 0;
4149                 spin_unlock_irq(&pipe_crc->lock);
4150         }
4151
4152         pipe_crc->source = source;
4153
4154         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4155         POSTING_READ(PIPE_CRC_CTL(pipe));
4156
4157         /* real source -> none transition */
4158         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4159                 struct intel_pipe_crc_entry *entries;
4160                 struct intel_crtc *crtc =
4161                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4162
4163                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4164                                  pipe_name(pipe));
4165
4166                 drm_modeset_lock(&crtc->base.mutex, NULL);
4167                 if (crtc->base.state->active)
4168                         intel_wait_for_vblank(dev, pipe);
4169                 drm_modeset_unlock(&crtc->base.mutex);
4170
4171                 spin_lock_irq(&pipe_crc->lock);
4172                 entries = pipe_crc->entries;
4173                 pipe_crc->entries = NULL;
4174                 pipe_crc->head = 0;
4175                 pipe_crc->tail = 0;
4176                 spin_unlock_irq(&pipe_crc->lock);
4177
4178                 kfree(entries);
4179
4180                 if (IS_G4X(dev))
4181                         g4x_undo_pipe_scramble_reset(dev, pipe);
4182                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4183                         vlv_undo_pipe_scramble_reset(dev, pipe);
4184                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4185                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4186
4187                 hsw_enable_ips(crtc);
4188         }
4189
4190         ret = 0;
4191
4192 out:
4193         intel_display_power_put(dev_priv, power_domain);
4194
4195         return ret;
4196 }
4197
4198 /*
4199  * Parse pipe CRC command strings:
4200  *   command: wsp* object wsp+ name wsp+ source wsp*
4201  *   object: 'pipe'
4202  *   name: (A | B | C)
4203  *   source: (none | plane1 | plane2 | pf)
4204  *   wsp: (#0x20 | #0x9 | #0xA)+
4205  *
4206  * eg.:
4207  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4208  *  "pipe A none"    ->  Stop CRC
4209  */
4210 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4211 {
4212         int n_words = 0;
4213
4214         while (*buf) {
4215                 char *end;
4216
4217                 /* skip leading white space */
4218                 buf = skip_spaces(buf);
4219                 if (!*buf)
4220                         break;  /* end of buffer */
4221
4222                 /* find end of word */
4223                 for (end = buf; *end && !isspace(*end); end++)
4224                         ;
4225
4226                 if (n_words == max_words) {
4227                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4228                                          max_words);
4229                         return -EINVAL; /* ran out of words[] before bytes */
4230                 }
4231
4232                 if (*end)
4233                         *end++ = '\0';
4234                 words[n_words++] = buf;
4235                 buf = end;
4236         }
4237
4238         return n_words;
4239 }
4240
4241 enum intel_pipe_crc_object {
4242         PIPE_CRC_OBJECT_PIPE,
4243 };
4244
4245 static const char * const pipe_crc_objects[] = {
4246         "pipe",
4247 };
4248
4249 static int
4250 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4251 {
4252         int i;
4253
4254         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4255                 if (!strcmp(buf, pipe_crc_objects[i])) {
4256                         *o = i;
4257                         return 0;
4258                     }
4259
4260         return -EINVAL;
4261 }
4262
4263 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4264 {
4265         const char name = buf[0];
4266
4267         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4268                 return -EINVAL;
4269
4270         *pipe = name - 'A';
4271
4272         return 0;
4273 }
4274
4275 static int
4276 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4277 {
4278         int i;
4279
4280         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4281                 if (!strcmp(buf, pipe_crc_sources[i])) {
4282                         *s = i;
4283                         return 0;
4284                     }
4285
4286         return -EINVAL;
4287 }
4288
4289 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4290 {
4291 #define N_WORDS 3
4292         int n_words;
4293         char *words[N_WORDS];
4294         enum pipe pipe;
4295         enum intel_pipe_crc_object object;
4296         enum intel_pipe_crc_source source;
4297
4298         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4299         if (n_words != N_WORDS) {
4300                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4301                                  N_WORDS);
4302                 return -EINVAL;
4303         }
4304
4305         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4306                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4307                 return -EINVAL;
4308         }
4309
4310         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4311                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4312                 return -EINVAL;
4313         }
4314
4315         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4316                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4317                 return -EINVAL;
4318         }
4319
4320         return pipe_crc_set_source(dev, pipe, source);
4321 }
4322
4323 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4324                                      size_t len, loff_t *offp)
4325 {
4326         struct seq_file *m = file->private_data;
4327         struct drm_device *dev = m->private;
4328         char *tmpbuf;
4329         int ret;
4330
4331         if (len == 0)
4332                 return 0;
4333
4334         if (len > PAGE_SIZE - 1) {
4335                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4336                                  PAGE_SIZE);
4337                 return -E2BIG;
4338         }
4339
4340         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4341         if (!tmpbuf)
4342                 return -ENOMEM;
4343
4344         if (copy_from_user(tmpbuf, ubuf, len)) {
4345                 ret = -EFAULT;
4346                 goto out;
4347         }
4348         tmpbuf[len] = '\0';
4349
4350         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4351
4352 out:
4353         kfree(tmpbuf);
4354         if (ret < 0)
4355                 return ret;
4356
4357         *offp += len;
4358         return len;
4359 }
4360
4361 static const struct file_operations i915_display_crc_ctl_fops = {
4362         .owner = THIS_MODULE,
4363         .open = display_crc_ctl_open,
4364         .read = seq_read,
4365         .llseek = seq_lseek,
4366         .release = single_release,
4367         .write = display_crc_ctl_write
4368 };
4369
4370 static ssize_t i915_displayport_test_active_write(struct file *file,
4371                                             const char __user *ubuf,
4372                                             size_t len, loff_t *offp)
4373 {
4374         char *input_buffer;
4375         int status = 0;
4376         struct drm_device *dev;
4377         struct drm_connector *connector;
4378         struct list_head *connector_list;
4379         struct intel_dp *intel_dp;
4380         int val = 0;
4381
4382         dev = ((struct seq_file *)file->private_data)->private;
4383
4384         connector_list = &dev->mode_config.connector_list;
4385
4386         if (len == 0)
4387                 return 0;
4388
4389         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4390         if (!input_buffer)
4391                 return -ENOMEM;
4392
4393         if (copy_from_user(input_buffer, ubuf, len)) {
4394                 status = -EFAULT;
4395                 goto out;
4396         }
4397
4398         input_buffer[len] = '\0';
4399         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4400
4401         list_for_each_entry(connector, connector_list, head) {
4402
4403                 if (connector->connector_type !=
4404                     DRM_MODE_CONNECTOR_DisplayPort)
4405                         continue;
4406
4407                 if (connector->status == connector_status_connected &&
4408                     connector->encoder != NULL) {
4409                         intel_dp = enc_to_intel_dp(connector->encoder);
4410                         status = kstrtoint(input_buffer, 10, &val);
4411                         if (status < 0)
4412                                 goto out;
4413                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4414                         /* To prevent erroneous activation of the compliance
4415                          * testing code, only accept an actual value of 1 here
4416                          */
4417                         if (val == 1)
4418                                 intel_dp->compliance_test_active = 1;
4419                         else
4420                                 intel_dp->compliance_test_active = 0;
4421                 }
4422         }
4423 out:
4424         kfree(input_buffer);
4425         if (status < 0)
4426                 return status;
4427
4428         *offp += len;
4429         return len;
4430 }
4431
4432 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4433 {
4434         struct drm_device *dev = m->private;
4435         struct drm_connector *connector;
4436         struct list_head *connector_list = &dev->mode_config.connector_list;
4437         struct intel_dp *intel_dp;
4438
4439         list_for_each_entry(connector, connector_list, head) {
4440
4441                 if (connector->connector_type !=
4442                     DRM_MODE_CONNECTOR_DisplayPort)
4443                         continue;
4444
4445                 if (connector->status == connector_status_connected &&
4446                     connector->encoder != NULL) {
4447                         intel_dp = enc_to_intel_dp(connector->encoder);
4448                         if (intel_dp->compliance_test_active)
4449                                 seq_puts(m, "1");
4450                         else
4451                                 seq_puts(m, "0");
4452                 } else
4453                         seq_puts(m, "0");
4454         }
4455
4456         return 0;
4457 }
4458
4459 static int i915_displayport_test_active_open(struct inode *inode,
4460                                        struct file *file)
4461 {
4462         struct drm_device *dev = inode->i_private;
4463
4464         return single_open(file, i915_displayport_test_active_show, dev);
4465 }
4466
4467 static const struct file_operations i915_displayport_test_active_fops = {
4468         .owner = THIS_MODULE,
4469         .open = i915_displayport_test_active_open,
4470         .read = seq_read,
4471         .llseek = seq_lseek,
4472         .release = single_release,
4473         .write = i915_displayport_test_active_write
4474 };
4475
4476 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4477 {
4478         struct drm_device *dev = m->private;
4479         struct drm_connector *connector;
4480         struct list_head *connector_list = &dev->mode_config.connector_list;
4481         struct intel_dp *intel_dp;
4482
4483         list_for_each_entry(connector, connector_list, head) {
4484
4485                 if (connector->connector_type !=
4486                     DRM_MODE_CONNECTOR_DisplayPort)
4487                         continue;
4488
4489                 if (connector->status == connector_status_connected &&
4490                     connector->encoder != NULL) {
4491                         intel_dp = enc_to_intel_dp(connector->encoder);
4492                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4493                 } else
4494                         seq_puts(m, "0");
4495         }
4496
4497         return 0;
4498 }
4499 static int i915_displayport_test_data_open(struct inode *inode,
4500                                        struct file *file)
4501 {
4502         struct drm_device *dev = inode->i_private;
4503
4504         return single_open(file, i915_displayport_test_data_show, dev);
4505 }
4506
4507 static const struct file_operations i915_displayport_test_data_fops = {
4508         .owner = THIS_MODULE,
4509         .open = i915_displayport_test_data_open,
4510         .read = seq_read,
4511         .llseek = seq_lseek,
4512         .release = single_release
4513 };
4514
4515 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4516 {
4517         struct drm_device *dev = m->private;
4518         struct drm_connector *connector;
4519         struct list_head *connector_list = &dev->mode_config.connector_list;
4520         struct intel_dp *intel_dp;
4521
4522         list_for_each_entry(connector, connector_list, head) {
4523
4524                 if (connector->connector_type !=
4525                     DRM_MODE_CONNECTOR_DisplayPort)
4526                         continue;
4527
4528                 if (connector->status == connector_status_connected &&
4529                     connector->encoder != NULL) {
4530                         intel_dp = enc_to_intel_dp(connector->encoder);
4531                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4532                 } else
4533                         seq_puts(m, "0");
4534         }
4535
4536         return 0;
4537 }
4538
4539 static int i915_displayport_test_type_open(struct inode *inode,
4540                                        struct file *file)
4541 {
4542         struct drm_device *dev = inode->i_private;
4543
4544         return single_open(file, i915_displayport_test_type_show, dev);
4545 }
4546
4547 static const struct file_operations i915_displayport_test_type_fops = {
4548         .owner = THIS_MODULE,
4549         .open = i915_displayport_test_type_open,
4550         .read = seq_read,
4551         .llseek = seq_lseek,
4552         .release = single_release
4553 };
4554
4555 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4556 {
4557         struct drm_device *dev = m->private;
4558         int level;
4559         int num_levels;
4560
4561         if (IS_CHERRYVIEW(dev))
4562                 num_levels = 3;
4563         else if (IS_VALLEYVIEW(dev))
4564                 num_levels = 1;
4565         else
4566                 num_levels = ilk_wm_max_level(dev) + 1;
4567
4568         drm_modeset_lock_all(dev);
4569
4570         for (level = 0; level < num_levels; level++) {
4571                 unsigned int latency = wm[level];
4572
4573                 /*
4574                  * - WM1+ latency values in 0.5us units
4575                  * - latencies are in us on gen9/vlv/chv
4576                  */
4577                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4578                     IS_CHERRYVIEW(dev))
4579                         latency *= 10;
4580                 else if (level > 0)
4581                         latency *= 5;
4582
4583                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4584                            level, wm[level], latency / 10, latency % 10);
4585         }
4586
4587         drm_modeset_unlock_all(dev);
4588 }
4589
4590 static int pri_wm_latency_show(struct seq_file *m, void *data)
4591 {
4592         struct drm_device *dev = m->private;
4593         struct drm_i915_private *dev_priv = to_i915(dev);
4594         const uint16_t *latencies;
4595
4596         if (INTEL_INFO(dev)->gen >= 9)
4597                 latencies = dev_priv->wm.skl_latency;
4598         else
4599                 latencies = to_i915(dev)->wm.pri_latency;
4600
4601         wm_latency_show(m, latencies);
4602
4603         return 0;
4604 }
4605
4606 static int spr_wm_latency_show(struct seq_file *m, void *data)
4607 {
4608         struct drm_device *dev = m->private;
4609         struct drm_i915_private *dev_priv = to_i915(dev);
4610         const uint16_t *latencies;
4611
4612         if (INTEL_INFO(dev)->gen >= 9)
4613                 latencies = dev_priv->wm.skl_latency;
4614         else
4615                 latencies = to_i915(dev)->wm.spr_latency;
4616
4617         wm_latency_show(m, latencies);
4618
4619         return 0;
4620 }
4621
4622 static int cur_wm_latency_show(struct seq_file *m, void *data)
4623 {
4624         struct drm_device *dev = m->private;
4625         struct drm_i915_private *dev_priv = to_i915(dev);
4626         const uint16_t *latencies;
4627
4628         if (INTEL_INFO(dev)->gen >= 9)
4629                 latencies = dev_priv->wm.skl_latency;
4630         else
4631                 latencies = to_i915(dev)->wm.cur_latency;
4632
4633         wm_latency_show(m, latencies);
4634
4635         return 0;
4636 }
4637
4638 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4639 {
4640         struct drm_device *dev = inode->i_private;
4641
4642         if (INTEL_INFO(dev)->gen < 5)
4643                 return -ENODEV;
4644
4645         return single_open(file, pri_wm_latency_show, dev);
4646 }
4647
4648 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4649 {
4650         struct drm_device *dev = inode->i_private;
4651
4652         if (HAS_GMCH_DISPLAY(dev))
4653                 return -ENODEV;
4654
4655         return single_open(file, spr_wm_latency_show, dev);
4656 }
4657
4658 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4659 {
4660         struct drm_device *dev = inode->i_private;
4661
4662         if (HAS_GMCH_DISPLAY(dev))
4663                 return -ENODEV;
4664
4665         return single_open(file, cur_wm_latency_show, dev);
4666 }
4667
4668 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4669                                 size_t len, loff_t *offp, uint16_t wm[8])
4670 {
4671         struct seq_file *m = file->private_data;
4672         struct drm_device *dev = m->private;
4673         uint16_t new[8] = { 0 };
4674         int num_levels;
4675         int level;
4676         int ret;
4677         char tmp[32];
4678
4679         if (IS_CHERRYVIEW(dev))
4680                 num_levels = 3;
4681         else if (IS_VALLEYVIEW(dev))
4682                 num_levels = 1;
4683         else
4684                 num_levels = ilk_wm_max_level(dev) + 1;
4685
4686         if (len >= sizeof(tmp))
4687                 return -EINVAL;
4688
4689         if (copy_from_user(tmp, ubuf, len))
4690                 return -EFAULT;
4691
4692         tmp[len] = '\0';
4693
4694         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4695                      &new[0], &new[1], &new[2], &new[3],
4696                      &new[4], &new[5], &new[6], &new[7]);
4697         if (ret != num_levels)
4698                 return -EINVAL;
4699
4700         drm_modeset_lock_all(dev);
4701
4702         for (level = 0; level < num_levels; level++)
4703                 wm[level] = new[level];
4704
4705         drm_modeset_unlock_all(dev);
4706
4707         return len;
4708 }
4709
4710
4711 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4712                                     size_t len, loff_t *offp)
4713 {
4714         struct seq_file *m = file->private_data;
4715         struct drm_device *dev = m->private;
4716         struct drm_i915_private *dev_priv = to_i915(dev);
4717         uint16_t *latencies;
4718
4719         if (INTEL_INFO(dev)->gen >= 9)
4720                 latencies = dev_priv->wm.skl_latency;
4721         else
4722                 latencies = to_i915(dev)->wm.pri_latency;
4723
4724         return wm_latency_write(file, ubuf, len, offp, latencies);
4725 }
4726
4727 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4728                                     size_t len, loff_t *offp)
4729 {
4730         struct seq_file *m = file->private_data;
4731         struct drm_device *dev = m->private;
4732         struct drm_i915_private *dev_priv = to_i915(dev);
4733         uint16_t *latencies;
4734
4735         if (INTEL_INFO(dev)->gen >= 9)
4736                 latencies = dev_priv->wm.skl_latency;
4737         else
4738                 latencies = to_i915(dev)->wm.spr_latency;
4739
4740         return wm_latency_write(file, ubuf, len, offp, latencies);
4741 }
4742
4743 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4744                                     size_t len, loff_t *offp)
4745 {
4746         struct seq_file *m = file->private_data;
4747         struct drm_device *dev = m->private;
4748         struct drm_i915_private *dev_priv = to_i915(dev);
4749         uint16_t *latencies;
4750
4751         if (INTEL_INFO(dev)->gen >= 9)
4752                 latencies = dev_priv->wm.skl_latency;
4753         else
4754                 latencies = to_i915(dev)->wm.cur_latency;
4755
4756         return wm_latency_write(file, ubuf, len, offp, latencies);
4757 }
4758
4759 static const struct file_operations i915_pri_wm_latency_fops = {
4760         .owner = THIS_MODULE,
4761         .open = pri_wm_latency_open,
4762         .read = seq_read,
4763         .llseek = seq_lseek,
4764         .release = single_release,
4765         .write = pri_wm_latency_write
4766 };
4767
4768 static const struct file_operations i915_spr_wm_latency_fops = {
4769         .owner = THIS_MODULE,
4770         .open = spr_wm_latency_open,
4771         .read = seq_read,
4772         .llseek = seq_lseek,
4773         .release = single_release,
4774         .write = spr_wm_latency_write
4775 };
4776
4777 static const struct file_operations i915_cur_wm_latency_fops = {
4778         .owner = THIS_MODULE,
4779         .open = cur_wm_latency_open,
4780         .read = seq_read,
4781         .llseek = seq_lseek,
4782         .release = single_release,
4783         .write = cur_wm_latency_write
4784 };
4785
4786 static int
4787 i915_wedged_get(void *data, u64 *val)
4788 {
4789         struct drm_device *dev = data;
4790         struct drm_i915_private *dev_priv = to_i915(dev);
4791
4792         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4793
4794         return 0;
4795 }
4796
4797 static int
4798 i915_wedged_set(void *data, u64 val)
4799 {
4800         struct drm_device *dev = data;
4801         struct drm_i915_private *dev_priv = to_i915(dev);
4802
4803         /*
4804          * There is no safeguard against this debugfs entry colliding
4805          * with the hangcheck calling same i915_handle_error() in
4806          * parallel, causing an explosion. For now we assume that the
4807          * test harness is responsible enough not to inject gpu hangs
4808          * while it is writing to 'i915_wedged'
4809          */
4810
4811         if (i915_reset_in_progress(&dev_priv->gpu_error))
4812                 return -EAGAIN;
4813
4814         intel_runtime_pm_get(dev_priv);
4815
4816         i915_handle_error(dev_priv, val,
4817                           "Manually setting wedged to %llu", val);
4818
4819         intel_runtime_pm_put(dev_priv);
4820
4821         return 0;
4822 }
4823
4824 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4825                         i915_wedged_get, i915_wedged_set,
4826                         "%llu\n");
4827
4828 static int
4829 i915_ring_missed_irq_get(void *data, u64 *val)
4830 {
4831         struct drm_device *dev = data;
4832         struct drm_i915_private *dev_priv = to_i915(dev);
4833
4834         *val = dev_priv->gpu_error.missed_irq_rings;
4835         return 0;
4836 }
4837
4838 static int
4839 i915_ring_missed_irq_set(void *data, u64 val)
4840 {
4841         struct drm_device *dev = data;
4842         struct drm_i915_private *dev_priv = to_i915(dev);
4843         int ret;
4844
4845         /* Lock against concurrent debugfs callers */
4846         ret = mutex_lock_interruptible(&dev->struct_mutex);
4847         if (ret)
4848                 return ret;
4849         dev_priv->gpu_error.missed_irq_rings = val;
4850         mutex_unlock(&dev->struct_mutex);
4851
4852         return 0;
4853 }
4854
4855 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4856                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4857                         "0x%08llx\n");
4858
4859 static int
4860 i915_ring_test_irq_get(void *data, u64 *val)
4861 {
4862         struct drm_device *dev = data;
4863         struct drm_i915_private *dev_priv = to_i915(dev);
4864
4865         *val = dev_priv->gpu_error.test_irq_rings;
4866
4867         return 0;
4868 }
4869
4870 static int
4871 i915_ring_test_irq_set(void *data, u64 val)
4872 {
4873         struct drm_device *dev = data;
4874         struct drm_i915_private *dev_priv = to_i915(dev);
4875
4876         val &= INTEL_INFO(dev_priv)->ring_mask;
4877         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4878         dev_priv->gpu_error.test_irq_rings = val;
4879
4880         return 0;
4881 }
4882
4883 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4884                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4885                         "0x%08llx\n");
4886
4887 #define DROP_UNBOUND 0x1
4888 #define DROP_BOUND 0x2
4889 #define DROP_RETIRE 0x4
4890 #define DROP_ACTIVE 0x8
4891 #define DROP_ALL (DROP_UNBOUND | \
4892                   DROP_BOUND | \
4893                   DROP_RETIRE | \
4894                   DROP_ACTIVE)
4895 static int
4896 i915_drop_caches_get(void *data, u64 *val)
4897 {
4898         *val = DROP_ALL;
4899
4900         return 0;
4901 }
4902
4903 static int
4904 i915_drop_caches_set(void *data, u64 val)
4905 {
4906         struct drm_device *dev = data;
4907         struct drm_i915_private *dev_priv = to_i915(dev);
4908         int ret;
4909
4910         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4911
4912         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4913          * on ioctls on -EAGAIN. */
4914         ret = mutex_lock_interruptible(&dev->struct_mutex);
4915         if (ret)
4916                 return ret;
4917
4918         if (val & DROP_ACTIVE) {
4919                 ret = i915_gem_wait_for_idle(dev_priv);
4920                 if (ret)
4921                         goto unlock;
4922         }
4923
4924         if (val & (DROP_RETIRE | DROP_ACTIVE))
4925                 i915_gem_retire_requests(dev_priv);
4926
4927         if (val & DROP_BOUND)
4928                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4929
4930         if (val & DROP_UNBOUND)
4931                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4932
4933 unlock:
4934         mutex_unlock(&dev->struct_mutex);
4935
4936         return ret;
4937 }
4938
4939 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4940                         i915_drop_caches_get, i915_drop_caches_set,
4941                         "0x%08llx\n");
4942
4943 static int
4944 i915_max_freq_get(void *data, u64 *val)
4945 {
4946         struct drm_device *dev = data;
4947         struct drm_i915_private *dev_priv = to_i915(dev);
4948
4949         if (INTEL_INFO(dev)->gen < 6)
4950                 return -ENODEV;
4951
4952         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4953         return 0;
4954 }
4955
4956 static int
4957 i915_max_freq_set(void *data, u64 val)
4958 {
4959         struct drm_device *dev = data;
4960         struct drm_i915_private *dev_priv = to_i915(dev);
4961         u32 hw_max, hw_min;
4962         int ret;
4963
4964         if (INTEL_INFO(dev)->gen < 6)
4965                 return -ENODEV;
4966
4967         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4968
4969         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4970         if (ret)
4971                 return ret;
4972
4973         /*
4974          * Turbo will still be enabled, but won't go above the set value.
4975          */
4976         val = intel_freq_opcode(dev_priv, val);
4977
4978         hw_max = dev_priv->rps.max_freq;
4979         hw_min = dev_priv->rps.min_freq;
4980
4981         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4982                 mutex_unlock(&dev_priv->rps.hw_lock);
4983                 return -EINVAL;
4984         }
4985
4986         dev_priv->rps.max_freq_softlimit = val;
4987
4988         intel_set_rps(dev_priv, val);
4989
4990         mutex_unlock(&dev_priv->rps.hw_lock);
4991
4992         return 0;
4993 }
4994
4995 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4996                         i915_max_freq_get, i915_max_freq_set,
4997                         "%llu\n");
4998
4999 static int
5000 i915_min_freq_get(void *data, u64 *val)
5001 {
5002         struct drm_device *dev = data;
5003         struct drm_i915_private *dev_priv = to_i915(dev);
5004
5005         if (INTEL_GEN(dev_priv) < 6)
5006                 return -ENODEV;
5007
5008         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5009         return 0;
5010 }
5011
5012 static int
5013 i915_min_freq_set(void *data, u64 val)
5014 {
5015         struct drm_device *dev = data;
5016         struct drm_i915_private *dev_priv = to_i915(dev);
5017         u32 hw_max, hw_min;
5018         int ret;
5019
5020         if (INTEL_GEN(dev_priv) < 6)
5021                 return -ENODEV;
5022
5023         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5024
5025         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5026         if (ret)
5027                 return ret;
5028
5029         /*
5030          * Turbo will still be enabled, but won't go below the set value.
5031          */
5032         val = intel_freq_opcode(dev_priv, val);
5033
5034         hw_max = dev_priv->rps.max_freq;
5035         hw_min = dev_priv->rps.min_freq;
5036
5037         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5038                 mutex_unlock(&dev_priv->rps.hw_lock);
5039                 return -EINVAL;
5040         }
5041
5042         dev_priv->rps.min_freq_softlimit = val;
5043
5044         intel_set_rps(dev_priv, val);
5045
5046         mutex_unlock(&dev_priv->rps.hw_lock);
5047
5048         return 0;
5049 }
5050
5051 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5052                         i915_min_freq_get, i915_min_freq_set,
5053                         "%llu\n");
5054
5055 static int
5056 i915_cache_sharing_get(void *data, u64 *val)
5057 {
5058         struct drm_device *dev = data;
5059         struct drm_i915_private *dev_priv = to_i915(dev);
5060         u32 snpcr;
5061         int ret;
5062
5063         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5064                 return -ENODEV;
5065
5066         ret = mutex_lock_interruptible(&dev->struct_mutex);
5067         if (ret)
5068                 return ret;
5069         intel_runtime_pm_get(dev_priv);
5070
5071         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5072
5073         intel_runtime_pm_put(dev_priv);
5074         mutex_unlock(&dev_priv->drm.struct_mutex);
5075
5076         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5077
5078         return 0;
5079 }
5080
5081 static int
5082 i915_cache_sharing_set(void *data, u64 val)
5083 {
5084         struct drm_device *dev = data;
5085         struct drm_i915_private *dev_priv = to_i915(dev);
5086         u32 snpcr;
5087
5088         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5089                 return -ENODEV;
5090
5091         if (val > 3)
5092                 return -EINVAL;
5093
5094         intel_runtime_pm_get(dev_priv);
5095         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5096
5097         /* Update the cache sharing policy here as well */
5098         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5099         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5100         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5101         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5102
5103         intel_runtime_pm_put(dev_priv);
5104         return 0;
5105 }
5106
5107 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5108                         i915_cache_sharing_get, i915_cache_sharing_set,
5109                         "%llu\n");
5110
5111 struct sseu_dev_status {
5112         unsigned int slice_total;
5113         unsigned int subslice_total;
5114         unsigned int subslice_per_slice;
5115         unsigned int eu_total;
5116         unsigned int eu_per_subslice;
5117 };
5118
5119 static void cherryview_sseu_device_status(struct drm_device *dev,
5120                                           struct sseu_dev_status *stat)
5121 {
5122         struct drm_i915_private *dev_priv = to_i915(dev);
5123         int ss_max = 2;
5124         int ss;
5125         u32 sig1[ss_max], sig2[ss_max];
5126
5127         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5128         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5129         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5130         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5131
5132         for (ss = 0; ss < ss_max; ss++) {
5133                 unsigned int eu_cnt;
5134
5135                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5136                         /* skip disabled subslice */
5137                         continue;
5138
5139                 stat->slice_total = 1;
5140                 stat->subslice_per_slice++;
5141                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5142                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5143                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5144                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5145                 stat->eu_total += eu_cnt;
5146                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5147         }
5148         stat->subslice_total = stat->subslice_per_slice;
5149 }
5150
5151 static void gen9_sseu_device_status(struct drm_device *dev,
5152                                     struct sseu_dev_status *stat)
5153 {
5154         struct drm_i915_private *dev_priv = to_i915(dev);
5155         int s_max = 3, ss_max = 4;
5156         int s, ss;
5157         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5158
5159         /* BXT has a single slice and at most 3 subslices. */
5160         if (IS_BROXTON(dev)) {
5161                 s_max = 1;
5162                 ss_max = 3;
5163         }
5164
5165         for (s = 0; s < s_max; s++) {
5166                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5167                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5168                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5169         }
5170
5171         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5172                      GEN9_PGCTL_SSA_EU19_ACK |
5173                      GEN9_PGCTL_SSA_EU210_ACK |
5174                      GEN9_PGCTL_SSA_EU311_ACK;
5175         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5176                      GEN9_PGCTL_SSB_EU19_ACK |
5177                      GEN9_PGCTL_SSB_EU210_ACK |
5178                      GEN9_PGCTL_SSB_EU311_ACK;
5179
5180         for (s = 0; s < s_max; s++) {
5181                 unsigned int ss_cnt = 0;
5182
5183                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5184                         /* skip disabled slice */
5185                         continue;
5186
5187                 stat->slice_total++;
5188
5189                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5190                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5191
5192                 for (ss = 0; ss < ss_max; ss++) {
5193                         unsigned int eu_cnt;
5194
5195                         if (IS_BROXTON(dev) &&
5196                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5197                                 /* skip disabled subslice */
5198                                 continue;
5199
5200                         if (IS_BROXTON(dev))
5201                                 ss_cnt++;
5202
5203                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5204                                                eu_mask[ss%2]);
5205                         stat->eu_total += eu_cnt;
5206                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5207                                                     eu_cnt);
5208                 }
5209
5210                 stat->subslice_total += ss_cnt;
5211                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5212                                                ss_cnt);
5213         }
5214 }
5215
5216 static void broadwell_sseu_device_status(struct drm_device *dev,
5217                                          struct sseu_dev_status *stat)
5218 {
5219         struct drm_i915_private *dev_priv = to_i915(dev);
5220         int s;
5221         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5222
5223         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5224
5225         if (stat->slice_total) {
5226                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5227                 stat->subslice_total = stat->slice_total *
5228                                        stat->subslice_per_slice;
5229                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5230                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5231
5232                 /* subtract fused off EU(s) from enabled slice(s) */
5233                 for (s = 0; s < stat->slice_total; s++) {
5234                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5235
5236                         stat->eu_total -= hweight8(subslice_7eu);
5237                 }
5238         }
5239 }
5240
5241 static int i915_sseu_status(struct seq_file *m, void *unused)
5242 {
5243         struct drm_info_node *node = (struct drm_info_node *) m->private;
5244         struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
5245         struct drm_device *dev = &dev_priv->drm;
5246         struct sseu_dev_status stat;
5247
5248         if (INTEL_INFO(dev)->gen < 8)
5249                 return -ENODEV;
5250
5251         seq_puts(m, "SSEU Device Info\n");
5252         seq_printf(m, "  Available Slice Total: %u\n",
5253                    INTEL_INFO(dev)->slice_total);
5254         seq_printf(m, "  Available Subslice Total: %u\n",
5255                    INTEL_INFO(dev)->subslice_total);
5256         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5257                    INTEL_INFO(dev)->subslice_per_slice);
5258         seq_printf(m, "  Available EU Total: %u\n",
5259                    INTEL_INFO(dev)->eu_total);
5260         seq_printf(m, "  Available EU Per Subslice: %u\n",
5261                    INTEL_INFO(dev)->eu_per_subslice);
5262         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev)));
5263         if (HAS_POOLED_EU(dev))
5264                 seq_printf(m, "  Min EU in pool: %u\n",
5265                            INTEL_INFO(dev)->min_eu_in_pool);
5266         seq_printf(m, "  Has Slice Power Gating: %s\n",
5267                    yesno(INTEL_INFO(dev)->has_slice_pg));
5268         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5269                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5270         seq_printf(m, "  Has EU Power Gating: %s\n",
5271                    yesno(INTEL_INFO(dev)->has_eu_pg));
5272
5273         seq_puts(m, "SSEU Device Status\n");
5274         memset(&stat, 0, sizeof(stat));
5275
5276         intel_runtime_pm_get(dev_priv);
5277
5278         if (IS_CHERRYVIEW(dev)) {
5279                 cherryview_sseu_device_status(dev, &stat);
5280         } else if (IS_BROADWELL(dev)) {
5281                 broadwell_sseu_device_status(dev, &stat);
5282         } else if (INTEL_INFO(dev)->gen >= 9) {
5283                 gen9_sseu_device_status(dev, &stat);
5284         }
5285
5286         intel_runtime_pm_put(dev_priv);
5287
5288         seq_printf(m, "  Enabled Slice Total: %u\n",
5289                    stat.slice_total);
5290         seq_printf(m, "  Enabled Subslice Total: %u\n",
5291                    stat.subslice_total);
5292         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5293                    stat.subslice_per_slice);
5294         seq_printf(m, "  Enabled EU Total: %u\n",
5295                    stat.eu_total);
5296         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5297                    stat.eu_per_subslice);
5298
5299         return 0;
5300 }
5301
5302 static int i915_forcewake_open(struct inode *inode, struct file *file)
5303 {
5304         struct drm_device *dev = inode->i_private;
5305         struct drm_i915_private *dev_priv = to_i915(dev);
5306
5307         if (INTEL_INFO(dev)->gen < 6)
5308                 return 0;
5309
5310         intel_runtime_pm_get(dev_priv);
5311         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5312
5313         return 0;
5314 }
5315
5316 static int i915_forcewake_release(struct inode *inode, struct file *file)
5317 {
5318         struct drm_device *dev = inode->i_private;
5319         struct drm_i915_private *dev_priv = to_i915(dev);
5320
5321         if (INTEL_INFO(dev)->gen < 6)
5322                 return 0;
5323
5324         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5325         intel_runtime_pm_put(dev_priv);
5326
5327         return 0;
5328 }
5329
5330 static const struct file_operations i915_forcewake_fops = {
5331         .owner = THIS_MODULE,
5332         .open = i915_forcewake_open,
5333         .release = i915_forcewake_release,
5334 };
5335
5336 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5337 {
5338         struct drm_device *dev = minor->dev;
5339         struct dentry *ent;
5340
5341         ent = debugfs_create_file("i915_forcewake_user",
5342                                   S_IRUSR,
5343                                   root, dev,
5344                                   &i915_forcewake_fops);
5345         if (!ent)
5346                 return -ENOMEM;
5347
5348         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5349 }
5350
5351 static int i915_debugfs_create(struct dentry *root,
5352                                struct drm_minor *minor,
5353                                const char *name,
5354                                const struct file_operations *fops)
5355 {
5356         struct drm_device *dev = minor->dev;
5357         struct dentry *ent;
5358
5359         ent = debugfs_create_file(name,
5360                                   S_IRUGO | S_IWUSR,
5361                                   root, dev,
5362                                   fops);
5363         if (!ent)
5364                 return -ENOMEM;
5365
5366         return drm_add_fake_info_node(minor, ent, fops);
5367 }
5368
5369 static const struct drm_info_list i915_debugfs_list[] = {
5370         {"i915_capabilities", i915_capabilities, 0},
5371         {"i915_gem_objects", i915_gem_object_info, 0},
5372         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5373         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5374         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5375         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5376         {"i915_gem_stolen", i915_gem_stolen_list_info },
5377         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5378         {"i915_gem_request", i915_gem_request_info, 0},
5379         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5380         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5381         {"i915_gem_interrupt", i915_interrupt_info, 0},
5382         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5383         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5384         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5385         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5386         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5387         {"i915_guc_info", i915_guc_info, 0},
5388         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5389         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5390         {"i915_frequency_info", i915_frequency_info, 0},
5391         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5392         {"i915_drpc_info", i915_drpc_info, 0},
5393         {"i915_emon_status", i915_emon_status, 0},
5394         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5395         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5396         {"i915_fbc_status", i915_fbc_status, 0},
5397         {"i915_ips_status", i915_ips_status, 0},
5398         {"i915_sr_status", i915_sr_status, 0},
5399         {"i915_opregion", i915_opregion, 0},
5400         {"i915_vbt", i915_vbt, 0},
5401         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5402         {"i915_context_status", i915_context_status, 0},
5403         {"i915_dump_lrc", i915_dump_lrc, 0},
5404         {"i915_execlists", i915_execlists, 0},
5405         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5406         {"i915_swizzle_info", i915_swizzle_info, 0},
5407         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5408         {"i915_llc", i915_llc, 0},
5409         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5410         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5411         {"i915_energy_uJ", i915_energy_uJ, 0},
5412         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5413         {"i915_power_domain_info", i915_power_domain_info, 0},
5414         {"i915_dmc_info", i915_dmc_info, 0},
5415         {"i915_display_info", i915_display_info, 0},
5416         {"i915_semaphore_status", i915_semaphore_status, 0},
5417         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5418         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5419         {"i915_wa_registers", i915_wa_registers, 0},
5420         {"i915_ddb_info", i915_ddb_info, 0},
5421         {"i915_sseu_status", i915_sseu_status, 0},
5422         {"i915_drrs_status", i915_drrs_status, 0},
5423         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5424 };
5425 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5426
5427 static const struct i915_debugfs_files {
5428         const char *name;
5429         const struct file_operations *fops;
5430 } i915_debugfs_files[] = {
5431         {"i915_wedged", &i915_wedged_fops},
5432         {"i915_max_freq", &i915_max_freq_fops},
5433         {"i915_min_freq", &i915_min_freq_fops},
5434         {"i915_cache_sharing", &i915_cache_sharing_fops},
5435         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5436         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5437         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5438         {"i915_error_state", &i915_error_state_fops},
5439         {"i915_next_seqno", &i915_next_seqno_fops},
5440         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5441         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5442         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5443         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5444         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5445         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5446         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5447         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5448 };
5449
5450 void intel_display_crc_init(struct drm_device *dev)
5451 {
5452         struct drm_i915_private *dev_priv = to_i915(dev);
5453         enum pipe pipe;
5454
5455         for_each_pipe(dev_priv, pipe) {
5456                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5457
5458                 pipe_crc->opened = false;
5459                 spin_lock_init(&pipe_crc->lock);
5460                 init_waitqueue_head(&pipe_crc->wq);
5461         }
5462 }
5463
5464 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5465 {
5466         struct drm_minor *minor = dev_priv->drm.primary;
5467         int ret, i;
5468
5469         ret = i915_forcewake_create(minor->debugfs_root, minor);
5470         if (ret)
5471                 return ret;
5472
5473         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5474                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5475                 if (ret)
5476                         return ret;
5477         }
5478
5479         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5480                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5481                                           i915_debugfs_files[i].name,
5482                                           i915_debugfs_files[i].fops);
5483                 if (ret)
5484                         return ret;
5485         }
5486
5487         return drm_debugfs_create_files(i915_debugfs_list,
5488                                         I915_DEBUGFS_ENTRIES,
5489                                         minor->debugfs_root, minor);
5490 }
5491
5492 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5493 {
5494         struct drm_minor *minor = dev_priv->drm.primary;
5495         int i;
5496
5497         drm_debugfs_remove_files(i915_debugfs_list,
5498                                  I915_DEBUGFS_ENTRIES, minor);
5499
5500         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5501                                  1, minor);
5502
5503         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5504                 struct drm_info_list *info_list =
5505                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5506
5507                 drm_debugfs_remove_files(info_list, 1, minor);
5508         }
5509
5510         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5511                 struct drm_info_list *info_list =
5512                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5513
5514                 drm_debugfs_remove_files(info_list, 1, minor);
5515         }
5516 }
5517
5518 struct dpcd_block {
5519         /* DPCD dump start address. */
5520         unsigned int offset;
5521         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5522         unsigned int end;
5523         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5524         size_t size;
5525         /* Only valid for eDP. */
5526         bool edp;
5527 };
5528
5529 static const struct dpcd_block i915_dpcd_debug[] = {
5530         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5531         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5532         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5533         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5534         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5535         { .offset = DP_SET_POWER },
5536         { .offset = DP_EDP_DPCD_REV },
5537         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5538         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5539         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5540 };
5541
5542 static int i915_dpcd_show(struct seq_file *m, void *data)
5543 {
5544         struct drm_connector *connector = m->private;
5545         struct intel_dp *intel_dp =
5546                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5547         uint8_t buf[16];
5548         ssize_t err;
5549         int i;
5550
5551         if (connector->status != connector_status_connected)
5552                 return -ENODEV;
5553
5554         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5555                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5556                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5557
5558                 if (b->edp &&
5559                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5560                         continue;
5561
5562                 /* low tech for now */
5563                 if (WARN_ON(size > sizeof(buf)))
5564                         continue;
5565
5566                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5567                 if (err <= 0) {
5568                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5569                                   size, b->offset, err);
5570                         continue;
5571                 }
5572
5573                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5574         }
5575
5576         return 0;
5577 }
5578
5579 static int i915_dpcd_open(struct inode *inode, struct file *file)
5580 {
5581         return single_open(file, i915_dpcd_show, inode->i_private);
5582 }
5583
5584 static const struct file_operations i915_dpcd_fops = {
5585         .owner = THIS_MODULE,
5586         .open = i915_dpcd_open,
5587         .read = seq_read,
5588         .llseek = seq_lseek,
5589         .release = single_release,
5590 };
5591
5592 /**
5593  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5594  * @connector: pointer to a registered drm_connector
5595  *
5596  * Cleanup will be done by drm_connector_unregister() through a call to
5597  * drm_debugfs_connector_remove().
5598  *
5599  * Returns 0 on success, negative error codes on error.
5600  */
5601 int i915_debugfs_connector_add(struct drm_connector *connector)
5602 {
5603         struct dentry *root = connector->debugfs_entry;
5604
5605         /* The connector must have been registered beforehands. */
5606         if (!root)
5607                 return -ENODEV;
5608
5609         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5610             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5611                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5612                                     &i915_dpcd_fops);
5613
5614         return 0;
5615 }