]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Serialize GTT/Aperture accesses on BXT
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79  */
80
81 #define DRIVER_NAME             "i915"
82 #define DRIVER_DESC             "Intel Graphics"
83 #define DRIVER_DATE             "20170515"
84 #define DRIVER_TIMESTAMP        1494832308
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88  * which may not necessarily be a user visible problem.  This will either
89  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90  * enable distros and users to tailor their preferred amount of i915 abrt
91  * spam.
92  */
93 #define I915_STATE_WARN(condition, format...) ({                        \
94         int __ret_warn_on = !!(condition);                              \
95         if (unlikely(__ret_warn_on))                                    \
96                 if (!WARN(i915.verbose_state_checks, format))           \
97                         DRM_ERROR(format);                              \
98         unlikely(__ret_warn_on);                                        \
99 })
100
101 #define I915_STATE_WARN_ON(x)                                           \
102         I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106         __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109         uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113         uint_fixed_16_16_t fp; \
114         fp.val = UINT_MAX; \
115         fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120         if (val.val == 0)
121                 return true;
122         return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val)
126 {
127         uint_fixed_16_16_t fp;
128
129         WARN_ON(val >> 16);
130
131         fp.val = val << 16;
132         return fp;
133 }
134
135 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137         return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp)
141 {
142         return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1,
146                                                  uint_fixed_16_16_t min2)
147 {
148         uint_fixed_16_16_t min;
149
150         min.val = min(min1.val, min2.val);
151         return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1,
155                                                  uint_fixed_16_16_t max2)
156 {
157         uint_fixed_16_16_t max;
158
159         max.val = max(max1.val, max2.val);
160         return max;
161 }
162
163 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
164                                             uint_fixed_16_16_t d)
165 {
166         return DIV_ROUND_UP(val.val, d.val);
167 }
168
169 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
170                                                 uint_fixed_16_16_t mul)
171 {
172         uint64_t intermediate_val;
173         uint32_t result;
174
175         intermediate_val = (uint64_t) val * mul.val;
176         intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
177         WARN_ON(intermediate_val >> 32);
178         result = clamp_t(uint32_t, intermediate_val, 0, ~0);
179         return result;
180 }
181
182 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
183                                              uint_fixed_16_16_t mul)
184 {
185         uint64_t intermediate_val;
186         uint_fixed_16_16_t fp;
187
188         intermediate_val = (uint64_t) val.val * mul.val;
189         intermediate_val = intermediate_val >> 16;
190         WARN_ON(intermediate_val >> 32);
191         fp.val = clamp_t(uint32_t, intermediate_val, 0, ~0);
192         return fp;
193 }
194
195 static inline uint_fixed_16_16_t fixed_16_16_div(uint32_t val, uint32_t d)
196 {
197         uint_fixed_16_16_t fp, res;
198
199         fp = u32_to_fixed_16_16(val);
200         res.val = DIV_ROUND_UP(fp.val, d);
201         return res;
202 }
203
204 static inline uint_fixed_16_16_t fixed_16_16_div_u64(uint32_t val, uint32_t d)
205 {
206         uint_fixed_16_16_t res;
207         uint64_t interm_val;
208
209         interm_val = (uint64_t)val << 16;
210         interm_val = DIV_ROUND_UP_ULL(interm_val, d);
211         WARN_ON(interm_val >> 32);
212         res.val = (uint32_t) interm_val;
213
214         return res;
215 }
216
217 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
218                                                 uint_fixed_16_16_t d)
219 {
220         uint64_t interm_val;
221
222         interm_val = (uint64_t)val << 16;
223         interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
224         WARN_ON(interm_val >> 32);
225         return clamp_t(uint32_t, interm_val, 0, ~0);
226 }
227
228 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val,
229                                                      uint_fixed_16_16_t mul)
230 {
231         uint64_t intermediate_val;
232         uint_fixed_16_16_t fp;
233
234         intermediate_val = (uint64_t) val * mul.val;
235         WARN_ON(intermediate_val >> 32);
236         fp.val = (uint32_t) intermediate_val;
237         return fp;
238 }
239
240 static inline const char *yesno(bool v)
241 {
242         return v ? "yes" : "no";
243 }
244
245 static inline const char *onoff(bool v)
246 {
247         return v ? "on" : "off";
248 }
249
250 static inline const char *enableddisabled(bool v)
251 {
252         return v ? "enabled" : "disabled";
253 }
254
255 enum pipe {
256         INVALID_PIPE = -1,
257         PIPE_A = 0,
258         PIPE_B,
259         PIPE_C,
260         _PIPE_EDP,
261         I915_MAX_PIPES = _PIPE_EDP
262 };
263 #define pipe_name(p) ((p) + 'A')
264
265 enum transcoder {
266         TRANSCODER_A = 0,
267         TRANSCODER_B,
268         TRANSCODER_C,
269         TRANSCODER_EDP,
270         TRANSCODER_DSI_A,
271         TRANSCODER_DSI_C,
272         I915_MAX_TRANSCODERS
273 };
274
275 static inline const char *transcoder_name(enum transcoder transcoder)
276 {
277         switch (transcoder) {
278         case TRANSCODER_A:
279                 return "A";
280         case TRANSCODER_B:
281                 return "B";
282         case TRANSCODER_C:
283                 return "C";
284         case TRANSCODER_EDP:
285                 return "EDP";
286         case TRANSCODER_DSI_A:
287                 return "DSI A";
288         case TRANSCODER_DSI_C:
289                 return "DSI C";
290         default:
291                 return "<invalid>";
292         }
293 }
294
295 static inline bool transcoder_is_dsi(enum transcoder transcoder)
296 {
297         return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
298 }
299
300 /*
301  * Global legacy plane identifier. Valid only for primary/sprite
302  * planes on pre-g4x, and only for primary planes on g4x+.
303  */
304 enum plane {
305         PLANE_A,
306         PLANE_B,
307         PLANE_C,
308 };
309 #define plane_name(p) ((p) + 'A')
310
311 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
312
313 /*
314  * Per-pipe plane identifier.
315  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
316  * number of planes per CRTC.  Not all platforms really have this many planes,
317  * which means some arrays of size I915_MAX_PLANES may have unused entries
318  * between the topmost sprite plane and the cursor plane.
319  *
320  * This is expected to be passed to various register macros
321  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
322  */
323 enum plane_id {
324         PLANE_PRIMARY,
325         PLANE_SPRITE0,
326         PLANE_SPRITE1,
327         PLANE_SPRITE2,
328         PLANE_CURSOR,
329         I915_MAX_PLANES,
330 };
331
332 #define for_each_plane_id_on_crtc(__crtc, __p) \
333         for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
334                 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
335
336 enum port {
337         PORT_NONE = -1,
338         PORT_A = 0,
339         PORT_B,
340         PORT_C,
341         PORT_D,
342         PORT_E,
343         I915_MAX_PORTS
344 };
345 #define port_name(p) ((p) + 'A')
346
347 #define I915_NUM_PHYS_VLV 2
348
349 enum dpio_channel {
350         DPIO_CH0,
351         DPIO_CH1
352 };
353
354 enum dpio_phy {
355         DPIO_PHY0,
356         DPIO_PHY1,
357         DPIO_PHY2,
358 };
359
360 enum intel_display_power_domain {
361         POWER_DOMAIN_PIPE_A,
362         POWER_DOMAIN_PIPE_B,
363         POWER_DOMAIN_PIPE_C,
364         POWER_DOMAIN_PIPE_A_PANEL_FITTER,
365         POWER_DOMAIN_PIPE_B_PANEL_FITTER,
366         POWER_DOMAIN_PIPE_C_PANEL_FITTER,
367         POWER_DOMAIN_TRANSCODER_A,
368         POWER_DOMAIN_TRANSCODER_B,
369         POWER_DOMAIN_TRANSCODER_C,
370         POWER_DOMAIN_TRANSCODER_EDP,
371         POWER_DOMAIN_TRANSCODER_DSI_A,
372         POWER_DOMAIN_TRANSCODER_DSI_C,
373         POWER_DOMAIN_PORT_DDI_A_LANES,
374         POWER_DOMAIN_PORT_DDI_B_LANES,
375         POWER_DOMAIN_PORT_DDI_C_LANES,
376         POWER_DOMAIN_PORT_DDI_D_LANES,
377         POWER_DOMAIN_PORT_DDI_E_LANES,
378         POWER_DOMAIN_PORT_DDI_A_IO,
379         POWER_DOMAIN_PORT_DDI_B_IO,
380         POWER_DOMAIN_PORT_DDI_C_IO,
381         POWER_DOMAIN_PORT_DDI_D_IO,
382         POWER_DOMAIN_PORT_DDI_E_IO,
383         POWER_DOMAIN_PORT_DSI,
384         POWER_DOMAIN_PORT_CRT,
385         POWER_DOMAIN_PORT_OTHER,
386         POWER_DOMAIN_VGA,
387         POWER_DOMAIN_AUDIO,
388         POWER_DOMAIN_PLLS,
389         POWER_DOMAIN_AUX_A,
390         POWER_DOMAIN_AUX_B,
391         POWER_DOMAIN_AUX_C,
392         POWER_DOMAIN_AUX_D,
393         POWER_DOMAIN_GMBUS,
394         POWER_DOMAIN_MODESET,
395         POWER_DOMAIN_INIT,
396
397         POWER_DOMAIN_NUM,
398 };
399
400 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
401 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
402                 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
403 #define POWER_DOMAIN_TRANSCODER(tran) \
404         ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
405          (tran) + POWER_DOMAIN_TRANSCODER_A)
406
407 enum hpd_pin {
408         HPD_NONE = 0,
409         HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
410         HPD_CRT,
411         HPD_SDVO_B,
412         HPD_SDVO_C,
413         HPD_PORT_A,
414         HPD_PORT_B,
415         HPD_PORT_C,
416         HPD_PORT_D,
417         HPD_PORT_E,
418         HPD_NUM_PINS
419 };
420
421 #define for_each_hpd_pin(__pin) \
422         for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
423
424 #define HPD_STORM_DEFAULT_THRESHOLD 5
425
426 struct i915_hotplug {
427         struct work_struct hotplug_work;
428
429         struct {
430                 unsigned long last_jiffies;
431                 int count;
432                 enum {
433                         HPD_ENABLED = 0,
434                         HPD_DISABLED = 1,
435                         HPD_MARK_DISABLED = 2
436                 } state;
437         } stats[HPD_NUM_PINS];
438         u32 event_bits;
439         struct delayed_work reenable_work;
440
441         struct intel_digital_port *irq_port[I915_MAX_PORTS];
442         u32 long_port_mask;
443         u32 short_port_mask;
444         struct work_struct dig_port_work;
445
446         struct work_struct poll_init_work;
447         bool poll_enabled;
448
449         unsigned int hpd_storm_threshold;
450
451         /*
452          * if we get a HPD irq from DP and a HPD irq from non-DP
453          * the non-DP HPD could block the workqueue on a mode config
454          * mutex getting, that userspace may have taken. However
455          * userspace is waiting on the DP workqueue to run which is
456          * blocked behind the non-DP one.
457          */
458         struct workqueue_struct *dp_wq;
459 };
460
461 #define I915_GEM_GPU_DOMAINS \
462         (I915_GEM_DOMAIN_RENDER | \
463          I915_GEM_DOMAIN_SAMPLER | \
464          I915_GEM_DOMAIN_COMMAND | \
465          I915_GEM_DOMAIN_INSTRUCTION | \
466          I915_GEM_DOMAIN_VERTEX)
467
468 #define for_each_pipe(__dev_priv, __p) \
469         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
470 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
471         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
472                 for_each_if ((__mask) & (1 << (__p)))
473 #define for_each_universal_plane(__dev_priv, __pipe, __p)               \
474         for ((__p) = 0;                                                 \
475              (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
476              (__p)++)
477 #define for_each_sprite(__dev_priv, __p, __s)                           \
478         for ((__s) = 0;                                                 \
479              (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];        \
480              (__s)++)
481
482 #define for_each_port_masked(__port, __ports_mask) \
483         for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)  \
484                 for_each_if ((__ports_mask) & (1 << (__port)))
485
486 #define for_each_crtc(dev, crtc) \
487         list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
488
489 #define for_each_intel_plane(dev, intel_plane) \
490         list_for_each_entry(intel_plane,                        \
491                             &(dev)->mode_config.plane_list,     \
492                             base.head)
493
494 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)         \
495         list_for_each_entry(intel_plane,                                \
496                             &(dev)->mode_config.plane_list,             \
497                             base.head)                                  \
498                 for_each_if ((plane_mask) &                             \
499                              (1 << drm_plane_index(&intel_plane->base)))
500
501 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)      \
502         list_for_each_entry(intel_plane,                                \
503                             &(dev)->mode_config.plane_list,             \
504                             base.head)                                  \
505                 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
506
507 #define for_each_intel_crtc(dev, intel_crtc)                            \
508         list_for_each_entry(intel_crtc,                                 \
509                             &(dev)->mode_config.crtc_list,              \
510                             base.head)
511
512 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)            \
513         list_for_each_entry(intel_crtc,                                 \
514                             &(dev)->mode_config.crtc_list,              \
515                             base.head)                                  \
516                 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
517
518 #define for_each_intel_encoder(dev, intel_encoder)              \
519         list_for_each_entry(intel_encoder,                      \
520                             &(dev)->mode_config.encoder_list,   \
521                             base.head)
522
523 #define for_each_intel_connector_iter(intel_connector, iter) \
524         while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
525
526 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
527         list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
528                 for_each_if ((intel_encoder)->base.crtc == (__crtc))
529
530 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
531         list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
532                 for_each_if ((intel_connector)->base.encoder == (__encoder))
533
534 #define for_each_power_domain(domain, mask)                             \
535         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
536                 for_each_if (BIT_ULL(domain) & (mask))
537
538 #define for_each_power_well(__dev_priv, __power_well)                           \
539         for ((__power_well) = (__dev_priv)->power_domains.power_wells;  \
540              (__power_well) - (__dev_priv)->power_domains.power_wells < \
541                 (__dev_priv)->power_domains.power_well_count;           \
542              (__power_well)++)
543
544 #define for_each_power_well_rev(__dev_priv, __power_well)                       \
545         for ((__power_well) = (__dev_priv)->power_domains.power_wells +         \
546                               (__dev_priv)->power_domains.power_well_count - 1; \
547              (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;     \
548              (__power_well)--)
549
550 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)     \
551         for_each_power_well(__dev_priv, __power_well)                           \
552                 for_each_if ((__power_well)->domains & (__domain_mask))
553
554 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
555         for_each_power_well_rev(__dev_priv, __power_well)                       \
556                 for_each_if ((__power_well)->domains & (__domain_mask))
557
558 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
559         for ((__i) = 0; \
560              (__i) < (__state)->base.dev->mode_config.num_total_plane && \
561                      ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
562                       (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
563              (__i)++) \
564                 for_each_if (plane_state)
565
566 struct drm_i915_private;
567 struct i915_mm_struct;
568 struct i915_mmu_object;
569
570 struct drm_i915_file_private {
571         struct drm_i915_private *dev_priv;
572         struct drm_file *file;
573
574         struct {
575                 spinlock_t lock;
576                 struct list_head request_list;
577 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
578  * chosen to prevent the CPU getting more than a frame ahead of the GPU
579  * (when using lax throttling for the frontbuffer). We also use it to
580  * offer free GPU waitboosts for severely congested workloads.
581  */
582 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
583         } mm;
584         struct idr context_idr;
585
586         struct intel_rps_client {
587                 struct list_head link;
588                 unsigned boosts;
589         } rps;
590
591         unsigned int bsd_engine;
592
593 /* Client can have a maximum of 3 contexts banned before
594  * it is denied of creating new contexts. As one context
595  * ban needs 4 consecutive hangs, and more if there is
596  * progress in between, this is a last resort stop gap measure
597  * to limit the badly behaving clients access to gpu.
598  */
599 #define I915_MAX_CLIENT_CONTEXT_BANS 3
600         int context_bans;
601 };
602
603 /* Used by dp and fdi links */
604 struct intel_link_m_n {
605         uint32_t        tu;
606         uint32_t        gmch_m;
607         uint32_t        gmch_n;
608         uint32_t        link_m;
609         uint32_t        link_n;
610 };
611
612 void intel_link_compute_m_n(int bpp, int nlanes,
613                             int pixel_clock, int link_clock,
614                             struct intel_link_m_n *m_n);
615
616 /* Interface history:
617  *
618  * 1.1: Original.
619  * 1.2: Add Power Management
620  * 1.3: Add vblank support
621  * 1.4: Fix cmdbuffer path, add heap destroy
622  * 1.5: Add vblank pipe configuration
623  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
624  *      - Support vertical blank on secondary display pipe
625  */
626 #define DRIVER_MAJOR            1
627 #define DRIVER_MINOR            6
628 #define DRIVER_PATCHLEVEL       0
629
630 struct opregion_header;
631 struct opregion_acpi;
632 struct opregion_swsci;
633 struct opregion_asle;
634
635 struct intel_opregion {
636         struct opregion_header *header;
637         struct opregion_acpi *acpi;
638         struct opregion_swsci *swsci;
639         u32 swsci_gbda_sub_functions;
640         u32 swsci_sbcb_sub_functions;
641         struct opregion_asle *asle;
642         void *rvda;
643         const void *vbt;
644         u32 vbt_size;
645         u32 *lid_state;
646         struct work_struct asle_work;
647 };
648 #define OPREGION_SIZE            (8*1024)
649
650 struct intel_overlay;
651 struct intel_overlay_error_state;
652
653 struct sdvo_device_mapping {
654         u8 initialized;
655         u8 dvo_port;
656         u8 slave_addr;
657         u8 dvo_wiring;
658         u8 i2c_pin;
659         u8 ddc_pin;
660 };
661
662 struct intel_connector;
663 struct intel_encoder;
664 struct intel_atomic_state;
665 struct intel_crtc_state;
666 struct intel_initial_plane_config;
667 struct intel_crtc;
668 struct intel_limit;
669 struct dpll;
670 struct intel_cdclk_state;
671
672 struct drm_i915_display_funcs {
673         void (*get_cdclk)(struct drm_i915_private *dev_priv,
674                           struct intel_cdclk_state *cdclk_state);
675         void (*set_cdclk)(struct drm_i915_private *dev_priv,
676                           const struct intel_cdclk_state *cdclk_state);
677         int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
678         int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
679         int (*compute_intermediate_wm)(struct drm_device *dev,
680                                        struct intel_crtc *intel_crtc,
681                                        struct intel_crtc_state *newstate);
682         void (*initial_watermarks)(struct intel_atomic_state *state,
683                                    struct intel_crtc_state *cstate);
684         void (*atomic_update_watermarks)(struct intel_atomic_state *state,
685                                          struct intel_crtc_state *cstate);
686         void (*optimize_watermarks)(struct intel_atomic_state *state,
687                                     struct intel_crtc_state *cstate);
688         int (*compute_global_watermarks)(struct drm_atomic_state *state);
689         void (*update_wm)(struct intel_crtc *crtc);
690         int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
691         /* Returns the active state of the crtc, and if the crtc is active,
692          * fills out the pipe-config with the hw state. */
693         bool (*get_pipe_config)(struct intel_crtc *,
694                                 struct intel_crtc_state *);
695         void (*get_initial_plane_config)(struct intel_crtc *,
696                                          struct intel_initial_plane_config *);
697         int (*crtc_compute_clock)(struct intel_crtc *crtc,
698                                   struct intel_crtc_state *crtc_state);
699         void (*crtc_enable)(struct intel_crtc_state *pipe_config,
700                             struct drm_atomic_state *old_state);
701         void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
702                              struct drm_atomic_state *old_state);
703         void (*update_crtcs)(struct drm_atomic_state *state,
704                              unsigned int *crtc_vblank_mask);
705         void (*audio_codec_enable)(struct drm_connector *connector,
706                                    struct intel_encoder *encoder,
707                                    const struct drm_display_mode *adjusted_mode);
708         void (*audio_codec_disable)(struct intel_encoder *encoder);
709         void (*fdi_link_train)(struct intel_crtc *crtc,
710                                const struct intel_crtc_state *crtc_state);
711         void (*init_clock_gating)(struct drm_i915_private *dev_priv);
712         int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
713                           struct drm_framebuffer *fb,
714                           struct drm_i915_gem_object *obj,
715                           struct drm_i915_gem_request *req,
716                           uint32_t flags);
717         void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
718         /* clock updates for mode set */
719         /* cursor updates */
720         /* render clock increase/decrease */
721         /* display clock increase/decrease */
722         /* pll clock increase/decrease */
723
724         void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
725         void (*load_luts)(struct drm_crtc_state *crtc_state);
726 };
727
728 #define CSR_VERSION(major, minor)       ((major) << 16 | (minor))
729 #define CSR_VERSION_MAJOR(version)      ((version) >> 16)
730 #define CSR_VERSION_MINOR(version)      ((version) & 0xffff)
731
732 struct intel_csr {
733         struct work_struct work;
734         const char *fw_path;
735         uint32_t *dmc_payload;
736         uint32_t dmc_fw_size;
737         uint32_t version;
738         uint32_t mmio_count;
739         i915_reg_t mmioaddr[8];
740         uint32_t mmiodata[8];
741         uint32_t dc_state;
742         uint32_t allowed_dc_mask;
743 };
744
745 #define DEV_INFO_FOR_EACH_FLAG(func) \
746         func(is_mobile); \
747         func(is_lp); \
748         func(is_alpha_support); \
749         /* Keep has_* in alphabetical order */ \
750         func(has_64bit_reloc); \
751         func(has_aliasing_ppgtt); \
752         func(has_csr); \
753         func(has_ddi); \
754         func(has_decoupled_mmio); \
755         func(has_dp_mst); \
756         func(has_fbc); \
757         func(has_fpga_dbg); \
758         func(has_full_ppgtt); \
759         func(has_full_48bit_ppgtt); \
760         func(has_gmbus_irq); \
761         func(has_gmch_display); \
762         func(has_guc); \
763         func(has_hotplug); \
764         func(has_l3_dpf); \
765         func(has_llc); \
766         func(has_logical_ring_contexts); \
767         func(has_overlay); \
768         func(has_pipe_cxsr); \
769         func(has_pooled_eu); \
770         func(has_psr); \
771         func(has_rc6); \
772         func(has_rc6p); \
773         func(has_resource_streamer); \
774         func(has_runtime_pm); \
775         func(has_snoop); \
776         func(unfenced_needs_alignment); \
777         func(cursor_needs_physical); \
778         func(hws_needs_physical); \
779         func(overlay_needs_physical); \
780         func(supports_tv);
781
782 struct sseu_dev_info {
783         u8 slice_mask;
784         u8 subslice_mask;
785         u8 eu_total;
786         u8 eu_per_subslice;
787         u8 min_eu_in_pool;
788         /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
789         u8 subslice_7eu[3];
790         u8 has_slice_pg:1;
791         u8 has_subslice_pg:1;
792         u8 has_eu_pg:1;
793 };
794
795 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
796 {
797         return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
798 }
799
800 /* Keep in gen based order, and chronological order within a gen */
801 enum intel_platform {
802         INTEL_PLATFORM_UNINITIALIZED = 0,
803         INTEL_I830,
804         INTEL_I845G,
805         INTEL_I85X,
806         INTEL_I865G,
807         INTEL_I915G,
808         INTEL_I915GM,
809         INTEL_I945G,
810         INTEL_I945GM,
811         INTEL_G33,
812         INTEL_PINEVIEW,
813         INTEL_I965G,
814         INTEL_I965GM,
815         INTEL_G45,
816         INTEL_GM45,
817         INTEL_IRONLAKE,
818         INTEL_SANDYBRIDGE,
819         INTEL_IVYBRIDGE,
820         INTEL_VALLEYVIEW,
821         INTEL_HASWELL,
822         INTEL_BROADWELL,
823         INTEL_CHERRYVIEW,
824         INTEL_SKYLAKE,
825         INTEL_BROXTON,
826         INTEL_KABYLAKE,
827         INTEL_GEMINILAKE,
828         INTEL_MAX_PLATFORMS
829 };
830
831 struct intel_device_info {
832         u32 display_mmio_offset;
833         u16 device_id;
834         u8 num_pipes;
835         u8 num_sprites[I915_MAX_PIPES];
836         u8 num_scalers[I915_MAX_PIPES];
837         u8 gen;
838         u16 gen_mask;
839         enum intel_platform platform;
840         u8 ring_mask; /* Rings supported by the HW */
841         u8 num_rings;
842 #define DEFINE_FLAG(name) u8 name:1
843         DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
844 #undef DEFINE_FLAG
845         u16 ddb_size; /* in blocks */
846         /* Register offsets for the various display pipes and transcoders */
847         int pipe_offsets[I915_MAX_TRANSCODERS];
848         int trans_offsets[I915_MAX_TRANSCODERS];
849         int palette_offsets[I915_MAX_PIPES];
850         int cursor_offsets[I915_MAX_PIPES];
851
852         /* Slice/subslice/EU info */
853         struct sseu_dev_info sseu;
854
855         struct color_luts {
856                 u16 degamma_lut_size;
857                 u16 gamma_lut_size;
858         } color;
859 };
860
861 struct intel_display_error_state;
862
863 struct i915_gpu_state {
864         struct kref ref;
865         struct timeval time;
866         struct timeval boottime;
867         struct timeval uptime;
868
869         struct drm_i915_private *i915;
870
871         char error_msg[128];
872         bool simulated;
873         bool awake;
874         bool wakelock;
875         bool suspended;
876         int iommu;
877         u32 reset_count;
878         u32 suspend_count;
879         struct intel_device_info device_info;
880         struct i915_params params;
881
882         /* Generic register state */
883         u32 eir;
884         u32 pgtbl_er;
885         u32 ier;
886         u32 gtier[4], ngtier;
887         u32 ccid;
888         u32 derrmr;
889         u32 forcewake;
890         u32 error; /* gen6+ */
891         u32 err_int; /* gen7 */
892         u32 fault_data0; /* gen8, gen9 */
893         u32 fault_data1; /* gen8, gen9 */
894         u32 done_reg;
895         u32 gac_eco;
896         u32 gam_ecochk;
897         u32 gab_ctl;
898         u32 gfx_mode;
899
900         u32 nfence;
901         u64 fence[I915_MAX_NUM_FENCES];
902         struct intel_overlay_error_state *overlay;
903         struct intel_display_error_state *display;
904         struct drm_i915_error_object *semaphore;
905         struct drm_i915_error_object *guc_log;
906
907         struct drm_i915_error_engine {
908                 int engine_id;
909                 /* Software tracked state */
910                 bool waiting;
911                 int num_waiters;
912                 unsigned long hangcheck_timestamp;
913                 bool hangcheck_stalled;
914                 enum intel_engine_hangcheck_action hangcheck_action;
915                 struct i915_address_space *vm;
916                 int num_requests;
917
918                 /* position of active request inside the ring */
919                 u32 rq_head, rq_post, rq_tail;
920
921                 /* our own tracking of ring head and tail */
922                 u32 cpu_ring_head;
923                 u32 cpu_ring_tail;
924
925                 u32 last_seqno;
926
927                 /* Register state */
928                 u32 start;
929                 u32 tail;
930                 u32 head;
931                 u32 ctl;
932                 u32 mode;
933                 u32 hws;
934                 u32 ipeir;
935                 u32 ipehr;
936                 u32 bbstate;
937                 u32 instpm;
938                 u32 instps;
939                 u32 seqno;
940                 u64 bbaddr;
941                 u64 acthd;
942                 u32 fault_reg;
943                 u64 faddr;
944                 u32 rc_psmi; /* sleep state */
945                 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
946                 struct intel_instdone instdone;
947
948                 struct drm_i915_error_context {
949                         char comm[TASK_COMM_LEN];
950                         pid_t pid;
951                         u32 handle;
952                         u32 hw_id;
953                         int ban_score;
954                         int active;
955                         int guilty;
956                 } context;
957
958                 struct drm_i915_error_object {
959                         u64 gtt_offset;
960                         u64 gtt_size;
961                         int page_count;
962                         int unused;
963                         u32 *pages[0];
964                 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
965
966                 struct drm_i915_error_object **user_bo;
967                 long user_bo_count;
968
969                 struct drm_i915_error_object *wa_ctx;
970
971                 struct drm_i915_error_request {
972                         long jiffies;
973                         pid_t pid;
974                         u32 context;
975                         int ban_score;
976                         u32 seqno;
977                         u32 head;
978                         u32 tail;
979                 } *requests, execlist[2];
980
981                 struct drm_i915_error_waiter {
982                         char comm[TASK_COMM_LEN];
983                         pid_t pid;
984                         u32 seqno;
985                 } *waiters;
986
987                 struct {
988                         u32 gfx_mode;
989                         union {
990                                 u64 pdp[4];
991                                 u32 pp_dir_base;
992                         };
993                 } vm_info;
994         } engine[I915_NUM_ENGINES];
995
996         struct drm_i915_error_buffer {
997                 u32 size;
998                 u32 name;
999                 u32 rseqno[I915_NUM_ENGINES], wseqno;
1000                 u64 gtt_offset;
1001                 u32 read_domains;
1002                 u32 write_domain;
1003                 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1004                 u32 tiling:2;
1005                 u32 dirty:1;
1006                 u32 purgeable:1;
1007                 u32 userptr:1;
1008                 s32 engine:4;
1009                 u32 cache_level:3;
1010         } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1011         u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1012         struct i915_address_space *active_vm[I915_NUM_ENGINES];
1013 };
1014
1015 enum i915_cache_level {
1016         I915_CACHE_NONE = 0,
1017         I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1018         I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1019                               caches, eg sampler/render caches, and the
1020                               large Last-Level-Cache. LLC is coherent with
1021                               the CPU, but L3 is only visible to the GPU. */
1022         I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1023 };
1024
1025 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1026
1027 enum fb_op_origin {
1028         ORIGIN_GTT,
1029         ORIGIN_CPU,
1030         ORIGIN_CS,
1031         ORIGIN_FLIP,
1032         ORIGIN_DIRTYFB,
1033 };
1034
1035 struct intel_fbc {
1036         /* This is always the inner lock when overlapping with struct_mutex and
1037          * it's the outer lock when overlapping with stolen_lock. */
1038         struct mutex lock;
1039         unsigned threshold;
1040         unsigned int possible_framebuffer_bits;
1041         unsigned int busy_bits;
1042         unsigned int visible_pipes_mask;
1043         struct intel_crtc *crtc;
1044
1045         struct drm_mm_node compressed_fb;
1046         struct drm_mm_node *compressed_llb;
1047
1048         bool false_color;
1049
1050         bool enabled;
1051         bool active;
1052
1053         bool underrun_detected;
1054         struct work_struct underrun_work;
1055
1056         struct intel_fbc_state_cache {
1057                 struct i915_vma *vma;
1058
1059                 struct {
1060                         unsigned int mode_flags;
1061                         uint32_t hsw_bdw_pixel_rate;
1062                 } crtc;
1063
1064                 struct {
1065                         unsigned int rotation;
1066                         int src_w;
1067                         int src_h;
1068                         bool visible;
1069                 } plane;
1070
1071                 struct {
1072                         const struct drm_format_info *format;
1073                         unsigned int stride;
1074                 } fb;
1075         } state_cache;
1076
1077         struct intel_fbc_reg_params {
1078                 struct i915_vma *vma;
1079
1080                 struct {
1081                         enum pipe pipe;
1082                         enum plane plane;
1083                         unsigned int fence_y_offset;
1084                 } crtc;
1085
1086                 struct {
1087                         const struct drm_format_info *format;
1088                         unsigned int stride;
1089                 } fb;
1090
1091                 int cfb_size;
1092         } params;
1093
1094         struct intel_fbc_work {
1095                 bool scheduled;
1096                 u32 scheduled_vblank;
1097                 struct work_struct work;
1098         } work;
1099
1100         const char *no_fbc_reason;
1101 };
1102
1103 /*
1104  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1105  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1106  * parsing for same resolution.
1107  */
1108 enum drrs_refresh_rate_type {
1109         DRRS_HIGH_RR,
1110         DRRS_LOW_RR,
1111         DRRS_MAX_RR, /* RR count */
1112 };
1113
1114 enum drrs_support_type {
1115         DRRS_NOT_SUPPORTED = 0,
1116         STATIC_DRRS_SUPPORT = 1,
1117         SEAMLESS_DRRS_SUPPORT = 2
1118 };
1119
1120 struct intel_dp;
1121 struct i915_drrs {
1122         struct mutex mutex;
1123         struct delayed_work work;
1124         struct intel_dp *dp;
1125         unsigned busy_frontbuffer_bits;
1126         enum drrs_refresh_rate_type refresh_rate_type;
1127         enum drrs_support_type type;
1128 };
1129
1130 struct i915_psr {
1131         struct mutex lock;
1132         bool sink_support;
1133         bool source_ok;
1134         struct intel_dp *enabled;
1135         bool active;
1136         struct delayed_work work;
1137         unsigned busy_frontbuffer_bits;
1138         bool psr2_support;
1139         bool aux_frame_sync;
1140         bool link_standby;
1141         bool y_cord_support;
1142         bool colorimetry_support;
1143         bool alpm;
1144 };
1145
1146 enum intel_pch {
1147         PCH_NONE = 0,   /* No PCH present */
1148         PCH_IBX,        /* Ibexpeak PCH */
1149         PCH_CPT,        /* Cougarpoint PCH */
1150         PCH_LPT,        /* Lynxpoint PCH */
1151         PCH_SPT,        /* Sunrisepoint PCH */
1152         PCH_KBP,        /* Kabypoint PCH */
1153         PCH_NOP,
1154 };
1155
1156 enum intel_sbi_destination {
1157         SBI_ICLK,
1158         SBI_MPHY,
1159 };
1160
1161 #define QUIRK_PIPEA_FORCE (1<<0)
1162 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1163 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1164 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1165 #define QUIRK_PIPEB_FORCE (1<<4)
1166 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1167
1168 struct intel_fbdev;
1169 struct intel_fbc_work;
1170
1171 struct intel_gmbus {
1172         struct i2c_adapter adapter;
1173 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1174         u32 force_bit;
1175         u32 reg0;
1176         i915_reg_t gpio_reg;
1177         struct i2c_algo_bit_data bit_algo;
1178         struct drm_i915_private *dev_priv;
1179 };
1180
1181 struct i915_suspend_saved_registers {
1182         u32 saveDSPARB;
1183         u32 saveFBC_CONTROL;
1184         u32 saveCACHE_MODE_0;
1185         u32 saveMI_ARB_STATE;
1186         u32 saveSWF0[16];
1187         u32 saveSWF1[16];
1188         u32 saveSWF3[3];
1189         uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1190         u32 savePCH_PORT_HOTPLUG;
1191         u16 saveGCDGMBUS;
1192 };
1193
1194 struct vlv_s0ix_state {
1195         /* GAM */
1196         u32 wr_watermark;
1197         u32 gfx_prio_ctrl;
1198         u32 arb_mode;
1199         u32 gfx_pend_tlb0;
1200         u32 gfx_pend_tlb1;
1201         u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1202         u32 media_max_req_count;
1203         u32 gfx_max_req_count;
1204         u32 render_hwsp;
1205         u32 ecochk;
1206         u32 bsd_hwsp;
1207         u32 blt_hwsp;
1208         u32 tlb_rd_addr;
1209
1210         /* MBC */
1211         u32 g3dctl;
1212         u32 gsckgctl;
1213         u32 mbctl;
1214
1215         /* GCP */
1216         u32 ucgctl1;
1217         u32 ucgctl3;
1218         u32 rcgctl1;
1219         u32 rcgctl2;
1220         u32 rstctl;
1221         u32 misccpctl;
1222
1223         /* GPM */
1224         u32 gfxpause;
1225         u32 rpdeuhwtc;
1226         u32 rpdeuc;
1227         u32 ecobus;
1228         u32 pwrdwnupctl;
1229         u32 rp_down_timeout;
1230         u32 rp_deucsw;
1231         u32 rcubmabdtmr;
1232         u32 rcedata;
1233         u32 spare2gh;
1234
1235         /* Display 1 CZ domain */
1236         u32 gt_imr;
1237         u32 gt_ier;
1238         u32 pm_imr;
1239         u32 pm_ier;
1240         u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1241
1242         /* GT SA CZ domain */
1243         u32 tilectl;
1244         u32 gt_fifoctl;
1245         u32 gtlc_wake_ctrl;
1246         u32 gtlc_survive;
1247         u32 pmwgicz;
1248
1249         /* Display 2 CZ domain */
1250         u32 gu_ctl0;
1251         u32 gu_ctl1;
1252         u32 pcbr;
1253         u32 clock_gate_dis2;
1254 };
1255
1256 struct intel_rps_ei {
1257         ktime_t ktime;
1258         u32 render_c0;
1259         u32 media_c0;
1260 };
1261
1262 struct intel_gen6_power_mgmt {
1263         /*
1264          * work, interrupts_enabled and pm_iir are protected by
1265          * dev_priv->irq_lock
1266          */
1267         struct work_struct work;
1268         bool interrupts_enabled;
1269         u32 pm_iir;
1270
1271         /* PM interrupt bits that should never be masked */
1272         u32 pm_intrmsk_mbz;
1273
1274         /* Frequencies are stored in potentially platform dependent multiples.
1275          * In other words, *_freq needs to be multiplied by X to be interesting.
1276          * Soft limits are those which are used for the dynamic reclocking done
1277          * by the driver (raise frequencies under heavy loads, and lower for
1278          * lighter loads). Hard limits are those imposed by the hardware.
1279          *
1280          * A distinction is made for overclocking, which is never enabled by
1281          * default, and is considered to be above the hard limit if it's
1282          * possible at all.
1283          */
1284         u8 cur_freq;            /* Current frequency (cached, may not == HW) */
1285         u8 min_freq_softlimit;  /* Minimum frequency permitted by the driver */
1286         u8 max_freq_softlimit;  /* Max frequency permitted by the driver */
1287         u8 max_freq;            /* Maximum frequency, RP0 if not overclocking */
1288         u8 min_freq;            /* AKA RPn. Minimum frequency */
1289         u8 boost_freq;          /* Frequency to request when wait boosting */
1290         u8 idle_freq;           /* Frequency to request when we are idle */
1291         u8 efficient_freq;      /* AKA RPe. Pre-determined balanced frequency */
1292         u8 rp1_freq;            /* "less than" RP0 power/freqency */
1293         u8 rp0_freq;            /* Non-overclocked max frequency. */
1294         u16 gpll_ref_freq;      /* vlv/chv GPLL reference frequency */
1295
1296         u8 up_threshold; /* Current %busy required to uplock */
1297         u8 down_threshold; /* Current %busy required to downclock */
1298
1299         int last_adj;
1300         enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1301
1302         spinlock_t client_lock;
1303         struct list_head clients;
1304         bool client_boost;
1305
1306         bool enabled;
1307         struct delayed_work autoenable_work;
1308         unsigned boosts;
1309
1310         /* manual wa residency calculations */
1311         struct intel_rps_ei ei;
1312
1313         /*
1314          * Protects RPS/RC6 register access and PCU communication.
1315          * Must be taken after struct_mutex if nested. Note that
1316          * this lock may be held for long periods of time when
1317          * talking to hw - so only take it when talking to hw!
1318          */
1319         struct mutex hw_lock;
1320 };
1321
1322 /* defined intel_pm.c */
1323 extern spinlock_t mchdev_lock;
1324
1325 struct intel_ilk_power_mgmt {
1326         u8 cur_delay;
1327         u8 min_delay;
1328         u8 max_delay;
1329         u8 fmax;
1330         u8 fstart;
1331
1332         u64 last_count1;
1333         unsigned long last_time1;
1334         unsigned long chipset_power;
1335         u64 last_count2;
1336         u64 last_time2;
1337         unsigned long gfx_power;
1338         u8 corr;
1339
1340         int c_m;
1341         int r_t;
1342 };
1343
1344 struct drm_i915_private;
1345 struct i915_power_well;
1346
1347 struct i915_power_well_ops {
1348         /*
1349          * Synchronize the well's hw state to match the current sw state, for
1350          * example enable/disable it based on the current refcount. Called
1351          * during driver init and resume time, possibly after first calling
1352          * the enable/disable handlers.
1353          */
1354         void (*sync_hw)(struct drm_i915_private *dev_priv,
1355                         struct i915_power_well *power_well);
1356         /*
1357          * Enable the well and resources that depend on it (for example
1358          * interrupts located on the well). Called after the 0->1 refcount
1359          * transition.
1360          */
1361         void (*enable)(struct drm_i915_private *dev_priv,
1362                        struct i915_power_well *power_well);
1363         /*
1364          * Disable the well and resources that depend on it. Called after
1365          * the 1->0 refcount transition.
1366          */
1367         void (*disable)(struct drm_i915_private *dev_priv,
1368                         struct i915_power_well *power_well);
1369         /* Returns the hw enabled state. */
1370         bool (*is_enabled)(struct drm_i915_private *dev_priv,
1371                            struct i915_power_well *power_well);
1372 };
1373
1374 /* Power well structure for haswell */
1375 struct i915_power_well {
1376         const char *name;
1377         bool always_on;
1378         /* power well enable/disable usage count */
1379         int count;
1380         /* cached hw enabled state */
1381         bool hw_enabled;
1382         u64 domains;
1383         /* unique identifier for this power well */
1384         unsigned long id;
1385         /*
1386          * Arbitraty data associated with this power well. Platform and power
1387          * well specific.
1388          */
1389         unsigned long data;
1390         const struct i915_power_well_ops *ops;
1391 };
1392
1393 struct i915_power_domains {
1394         /*
1395          * Power wells needed for initialization at driver init and suspend
1396          * time are on. They are kept on until after the first modeset.
1397          */
1398         bool init_power_on;
1399         bool initializing;
1400         int power_well_count;
1401
1402         struct mutex lock;
1403         int domain_use_count[POWER_DOMAIN_NUM];
1404         struct i915_power_well *power_wells;
1405 };
1406
1407 #define MAX_L3_SLICES 2
1408 struct intel_l3_parity {
1409         u32 *remap_info[MAX_L3_SLICES];
1410         struct work_struct error_work;
1411         int which_slice;
1412 };
1413
1414 struct i915_gem_mm {
1415         /** Memory allocator for GTT stolen memory */
1416         struct drm_mm stolen;
1417         /** Protects the usage of the GTT stolen memory allocator. This is
1418          * always the inner lock when overlapping with struct_mutex. */
1419         struct mutex stolen_lock;
1420
1421         /** List of all objects in gtt_space. Used to restore gtt
1422          * mappings on resume */
1423         struct list_head bound_list;
1424         /**
1425          * List of objects which are not bound to the GTT (thus
1426          * are idle and not used by the GPU). These objects may or may
1427          * not actually have any pages attached.
1428          */
1429         struct list_head unbound_list;
1430
1431         /** List of all objects in gtt_space, currently mmaped by userspace.
1432          * All objects within this list must also be on bound_list.
1433          */
1434         struct list_head userfault_list;
1435
1436         /**
1437          * List of objects which are pending destruction.
1438          */
1439         struct llist_head free_list;
1440         struct work_struct free_work;
1441
1442         /** Usable portion of the GTT for GEM */
1443         dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1444
1445         /** PPGTT used for aliasing the PPGTT with the GTT */
1446         struct i915_hw_ppgtt *aliasing_ppgtt;
1447
1448         struct notifier_block oom_notifier;
1449         struct notifier_block vmap_notifier;
1450         struct shrinker shrinker;
1451
1452         /** LRU list of objects with fence regs on them. */
1453         struct list_head fence_list;
1454
1455         u64 unordered_timeline;
1456
1457         /* the indicator for dispatch video commands on two BSD rings */
1458         atomic_t bsd_engine_dispatch_index;
1459
1460         /** Bit 6 swizzling required for X tiling */
1461         uint32_t bit_6_swizzle_x;
1462         /** Bit 6 swizzling required for Y tiling */
1463         uint32_t bit_6_swizzle_y;
1464
1465         /* accounting, useful for userland debugging */
1466         spinlock_t object_stat_lock;
1467         u64 object_memory;
1468         u32 object_count;
1469 };
1470
1471 struct drm_i915_error_state_buf {
1472         struct drm_i915_private *i915;
1473         unsigned bytes;
1474         unsigned size;
1475         int err;
1476         u8 *buf;
1477         loff_t start;
1478         loff_t pos;
1479 };
1480
1481 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1482 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1483
1484 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1485 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1486
1487 struct i915_gpu_error {
1488         /* For hangcheck timer */
1489 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1490 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1491
1492         struct delayed_work hangcheck_work;
1493
1494         /* For reset and error_state handling. */
1495         spinlock_t lock;
1496         /* Protected by the above dev->gpu_error.lock. */
1497         struct i915_gpu_state *first_error;
1498
1499         unsigned long missed_irq_rings;
1500
1501         /**
1502          * State variable controlling the reset flow and count
1503          *
1504          * This is a counter which gets incremented when reset is triggered,
1505          *
1506          * Before the reset commences, the I915_RESET_BACKOFF bit is set
1507          * meaning that any waiters holding onto the struct_mutex should
1508          * relinquish the lock immediately in order for the reset to start.
1509          *
1510          * If reset is not completed succesfully, the I915_WEDGE bit is
1511          * set meaning that hardware is terminally sour and there is no
1512          * recovery. All waiters on the reset_queue will be woken when
1513          * that happens.
1514          *
1515          * This counter is used by the wait_seqno code to notice that reset
1516          * event happened and it needs to restart the entire ioctl (since most
1517          * likely the seqno it waited for won't ever signal anytime soon).
1518          *
1519          * This is important for lock-free wait paths, where no contended lock
1520          * naturally enforces the correct ordering between the bail-out of the
1521          * waiter and the gpu reset work code.
1522          */
1523         unsigned long reset_count;
1524
1525         /**
1526          * flags: Control various stages of the GPU reset
1527          *
1528          * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1529          * other users acquiring the struct_mutex. To do this we set the
1530          * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1531          * and then check for that bit before acquiring the struct_mutex (in
1532          * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1533          * secondary role in preventing two concurrent global reset attempts.
1534          *
1535          * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1536          * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1537          * but it may be held by some long running waiter (that we cannot
1538          * interrupt without causing trouble). Once we are ready to do the GPU
1539          * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1540          * they already hold the struct_mutex and want to participate they can
1541          * inspect the bit and do the reset directly, otherwise the worker
1542          * waits for the struct_mutex.
1543          *
1544          * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1545          * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1546          * i915_gem_request_alloc(), this bit is checked and the sequence
1547          * aborted (with -EIO reported to userspace) if set.
1548          */
1549         unsigned long flags;
1550 #define I915_RESET_BACKOFF      0
1551 #define I915_RESET_HANDOFF      1
1552 #define I915_WEDGED             (BITS_PER_LONG - 1)
1553
1554         /**
1555          * Waitqueue to signal when a hang is detected. Used to for waiters
1556          * to release the struct_mutex for the reset to procede.
1557          */
1558         wait_queue_head_t wait_queue;
1559
1560         /**
1561          * Waitqueue to signal when the reset has completed. Used by clients
1562          * that wait for dev_priv->mm.wedged to settle.
1563          */
1564         wait_queue_head_t reset_queue;
1565
1566         /* For missed irq/seqno simulation. */
1567         unsigned long test_irq_rings;
1568 };
1569
1570 enum modeset_restore {
1571         MODESET_ON_LID_OPEN,
1572         MODESET_DONE,
1573         MODESET_SUSPENDED,
1574 };
1575
1576 #define DP_AUX_A 0x40
1577 #define DP_AUX_B 0x10
1578 #define DP_AUX_C 0x20
1579 #define DP_AUX_D 0x30
1580
1581 #define DDC_PIN_B  0x05
1582 #define DDC_PIN_C  0x04
1583 #define DDC_PIN_D  0x06
1584
1585 struct ddi_vbt_port_info {
1586         /*
1587          * This is an index in the HDMI/DVI DDI buffer translation table.
1588          * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1589          * populate this field.
1590          */
1591 #define HDMI_LEVEL_SHIFT_UNKNOWN        0xff
1592         uint8_t hdmi_level_shift;
1593
1594         uint8_t supports_dvi:1;
1595         uint8_t supports_hdmi:1;
1596         uint8_t supports_dp:1;
1597         uint8_t supports_edp:1;
1598
1599         uint8_t alternate_aux_channel;
1600         uint8_t alternate_ddc_pin;
1601
1602         uint8_t dp_boost_level;
1603         uint8_t hdmi_boost_level;
1604 };
1605
1606 enum psr_lines_to_wait {
1607         PSR_0_LINES_TO_WAIT = 0,
1608         PSR_1_LINE_TO_WAIT,
1609         PSR_4_LINES_TO_WAIT,
1610         PSR_8_LINES_TO_WAIT
1611 };
1612
1613 struct intel_vbt_data {
1614         struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1615         struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1616
1617         /* Feature bits */
1618         unsigned int int_tv_support:1;
1619         unsigned int lvds_dither:1;
1620         unsigned int lvds_vbt:1;
1621         unsigned int int_crt_support:1;
1622         unsigned int lvds_use_ssc:1;
1623         unsigned int display_clock_mode:1;
1624         unsigned int fdi_rx_polarity_inverted:1;
1625         unsigned int panel_type:4;
1626         int lvds_ssc_freq;
1627         unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1628
1629         enum drrs_support_type drrs_type;
1630
1631         struct {
1632                 int rate;
1633                 int lanes;
1634                 int preemphasis;
1635                 int vswing;
1636                 bool low_vswing;
1637                 bool initialized;
1638                 bool support;
1639                 int bpp;
1640                 struct edp_power_seq pps;
1641         } edp;
1642
1643         struct {
1644                 bool full_link;
1645                 bool require_aux_wakeup;
1646                 int idle_frames;
1647                 enum psr_lines_to_wait lines_to_wait;
1648                 int tp1_wakeup_time;
1649                 int tp2_tp3_wakeup_time;
1650         } psr;
1651
1652         struct {
1653                 u16 pwm_freq_hz;
1654                 bool present;
1655                 bool active_low_pwm;
1656                 u8 min_brightness;      /* min_brightness/255 of max */
1657                 u8 controller;          /* brightness controller number */
1658                 enum intel_backlight_type type;
1659         } backlight;
1660
1661         /* MIPI DSI */
1662         struct {
1663                 u16 panel_id;
1664                 struct mipi_config *config;
1665                 struct mipi_pps_data *pps;
1666                 u8 seq_version;
1667                 u32 size;
1668                 u8 *data;
1669                 const u8 *sequence[MIPI_SEQ_MAX];
1670         } dsi;
1671
1672         int crt_ddc_pin;
1673
1674         int child_dev_num;
1675         union child_device_config *child_dev;
1676
1677         struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1678         struct sdvo_device_mapping sdvo_mappings[2];
1679 };
1680
1681 enum intel_ddb_partitioning {
1682         INTEL_DDB_PART_1_2,
1683         INTEL_DDB_PART_5_6, /* IVB+ */
1684 };
1685
1686 struct intel_wm_level {
1687         bool enable;
1688         uint32_t pri_val;
1689         uint32_t spr_val;
1690         uint32_t cur_val;
1691         uint32_t fbc_val;
1692 };
1693
1694 struct ilk_wm_values {
1695         uint32_t wm_pipe[3];
1696         uint32_t wm_lp[3];
1697         uint32_t wm_lp_spr[3];
1698         uint32_t wm_linetime[3];
1699         bool enable_fbc_wm;
1700         enum intel_ddb_partitioning partitioning;
1701 };
1702
1703 struct g4x_pipe_wm {
1704         uint16_t plane[I915_MAX_PLANES];
1705         uint16_t fbc;
1706 };
1707
1708 struct g4x_sr_wm {
1709         uint16_t plane;
1710         uint16_t cursor;
1711         uint16_t fbc;
1712 };
1713
1714 struct vlv_wm_ddl_values {
1715         uint8_t plane[I915_MAX_PLANES];
1716 };
1717
1718 struct vlv_wm_values {
1719         struct g4x_pipe_wm pipe[3];
1720         struct g4x_sr_wm sr;
1721         struct vlv_wm_ddl_values ddl[3];
1722         uint8_t level;
1723         bool cxsr;
1724 };
1725
1726 struct g4x_wm_values {
1727         struct g4x_pipe_wm pipe[2];
1728         struct g4x_sr_wm sr;
1729         struct g4x_sr_wm hpll;
1730         bool cxsr;
1731         bool hpll_en;
1732         bool fbc_en;
1733 };
1734
1735 struct skl_ddb_entry {
1736         uint16_t start, end;    /* in number of blocks, 'end' is exclusive */
1737 };
1738
1739 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1740 {
1741         return entry->end - entry->start;
1742 }
1743
1744 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1745                                        const struct skl_ddb_entry *e2)
1746 {
1747         if (e1->start == e2->start && e1->end == e2->end)
1748                 return true;
1749
1750         return false;
1751 }
1752
1753 struct skl_ddb_allocation {
1754         struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1755         struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1756 };
1757
1758 struct skl_wm_values {
1759         unsigned dirty_pipes;
1760         struct skl_ddb_allocation ddb;
1761 };
1762
1763 struct skl_wm_level {
1764         bool plane_en;
1765         uint16_t plane_res_b;
1766         uint8_t plane_res_l;
1767 };
1768
1769 /*
1770  * This struct helps tracking the state needed for runtime PM, which puts the
1771  * device in PCI D3 state. Notice that when this happens, nothing on the
1772  * graphics device works, even register access, so we don't get interrupts nor
1773  * anything else.
1774  *
1775  * Every piece of our code that needs to actually touch the hardware needs to
1776  * either call intel_runtime_pm_get or call intel_display_power_get with the
1777  * appropriate power domain.
1778  *
1779  * Our driver uses the autosuspend delay feature, which means we'll only really
1780  * suspend if we stay with zero refcount for a certain amount of time. The
1781  * default value is currently very conservative (see intel_runtime_pm_enable), but
1782  * it can be changed with the standard runtime PM files from sysfs.
1783  *
1784  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1785  * goes back to false exactly before we reenable the IRQs. We use this variable
1786  * to check if someone is trying to enable/disable IRQs while they're supposed
1787  * to be disabled. This shouldn't happen and we'll print some error messages in
1788  * case it happens.
1789  *
1790  * For more, read the Documentation/power/runtime_pm.txt.
1791  */
1792 struct i915_runtime_pm {
1793         atomic_t wakeref_count;
1794         bool suspended;
1795         bool irqs_enabled;
1796 };
1797
1798 enum intel_pipe_crc_source {
1799         INTEL_PIPE_CRC_SOURCE_NONE,
1800         INTEL_PIPE_CRC_SOURCE_PLANE1,
1801         INTEL_PIPE_CRC_SOURCE_PLANE2,
1802         INTEL_PIPE_CRC_SOURCE_PF,
1803         INTEL_PIPE_CRC_SOURCE_PIPE,
1804         /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1805         INTEL_PIPE_CRC_SOURCE_TV,
1806         INTEL_PIPE_CRC_SOURCE_DP_B,
1807         INTEL_PIPE_CRC_SOURCE_DP_C,
1808         INTEL_PIPE_CRC_SOURCE_DP_D,
1809         INTEL_PIPE_CRC_SOURCE_AUTO,
1810         INTEL_PIPE_CRC_SOURCE_MAX,
1811 };
1812
1813 struct intel_pipe_crc_entry {
1814         uint32_t frame;
1815         uint32_t crc[5];
1816 };
1817
1818 #define INTEL_PIPE_CRC_ENTRIES_NR       128
1819 struct intel_pipe_crc {
1820         spinlock_t lock;
1821         bool opened;            /* exclusive access to the result file */
1822         struct intel_pipe_crc_entry *entries;
1823         enum intel_pipe_crc_source source;
1824         int head, tail;
1825         wait_queue_head_t wq;
1826         int skipped;
1827 };
1828
1829 struct i915_frontbuffer_tracking {
1830         spinlock_t lock;
1831
1832         /*
1833          * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1834          * scheduled flips.
1835          */
1836         unsigned busy_bits;
1837         unsigned flip_bits;
1838 };
1839
1840 struct i915_wa_reg {
1841         i915_reg_t addr;
1842         u32 value;
1843         /* bitmask representing WA bits */
1844         u32 mask;
1845 };
1846
1847 /*
1848  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1849  * allowing it for RCS as we don't foresee any requirement of having
1850  * a whitelist for other engines. When it is really required for
1851  * other engines then the limit need to be increased.
1852  */
1853 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1854
1855 struct i915_workarounds {
1856         struct i915_wa_reg reg[I915_MAX_WA_REGS];
1857         u32 count;
1858         u32 hw_whitelist_count[I915_NUM_ENGINES];
1859 };
1860
1861 struct i915_virtual_gpu {
1862         bool active;
1863 };
1864
1865 /* used in computing the new watermarks state */
1866 struct intel_wm_config {
1867         unsigned int num_pipes_active;
1868         bool sprites_enabled;
1869         bool sprites_scaled;
1870 };
1871
1872 struct i915_oa_format {
1873         u32 format;
1874         int size;
1875 };
1876
1877 struct i915_oa_reg {
1878         i915_reg_t addr;
1879         u32 value;
1880 };
1881
1882 struct i915_perf_stream;
1883
1884 /**
1885  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1886  */
1887 struct i915_perf_stream_ops {
1888         /**
1889          * @enable: Enables the collection of HW samples, either in response to
1890          * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1891          * without `I915_PERF_FLAG_DISABLED`.
1892          */
1893         void (*enable)(struct i915_perf_stream *stream);
1894
1895         /**
1896          * @disable: Disables the collection of HW samples, either in response
1897          * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1898          * the stream.
1899          */
1900         void (*disable)(struct i915_perf_stream *stream);
1901
1902         /**
1903          * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1904          * once there is something ready to read() for the stream
1905          */
1906         void (*poll_wait)(struct i915_perf_stream *stream,
1907                           struct file *file,
1908                           poll_table *wait);
1909
1910         /**
1911          * @wait_unlocked: For handling a blocking read, wait until there is
1912          * something to ready to read() for the stream. E.g. wait on the same
1913          * wait queue that would be passed to poll_wait().
1914          */
1915         int (*wait_unlocked)(struct i915_perf_stream *stream);
1916
1917         /**
1918          * @read: Copy buffered metrics as records to userspace
1919          * **buf**: the userspace, destination buffer
1920          * **count**: the number of bytes to copy, requested by userspace
1921          * **offset**: zero at the start of the read, updated as the read
1922          * proceeds, it represents how many bytes have been copied so far and
1923          * the buffer offset for copying the next record.
1924          *
1925          * Copy as many buffered i915 perf samples and records for this stream
1926          * to userspace as will fit in the given buffer.
1927          *
1928          * Only write complete records; returning -%ENOSPC if there isn't room
1929          * for a complete record.
1930          *
1931          * Return any error condition that results in a short read such as
1932          * -%ENOSPC or -%EFAULT, even though these may be squashed before
1933          * returning to userspace.
1934          */
1935         int (*read)(struct i915_perf_stream *stream,
1936                     char __user *buf,
1937                     size_t count,
1938                     size_t *offset);
1939
1940         /**
1941          * @destroy: Cleanup any stream specific resources.
1942          *
1943          * The stream will always be disabled before this is called.
1944          */
1945         void (*destroy)(struct i915_perf_stream *stream);
1946 };
1947
1948 /**
1949  * struct i915_perf_stream - state for a single open stream FD
1950  */
1951 struct i915_perf_stream {
1952         /**
1953          * @dev_priv: i915 drm device
1954          */
1955         struct drm_i915_private *dev_priv;
1956
1957         /**
1958          * @link: Links the stream into ``&drm_i915_private->streams``
1959          */
1960         struct list_head link;
1961
1962         /**
1963          * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1964          * properties given when opening a stream, representing the contents
1965          * of a single sample as read() by userspace.
1966          */
1967         u32 sample_flags;
1968
1969         /**
1970          * @sample_size: Considering the configured contents of a sample
1971          * combined with the required header size, this is the total size
1972          * of a single sample record.
1973          */
1974         int sample_size;
1975
1976         /**
1977          * @ctx: %NULL if measuring system-wide across all contexts or a
1978          * specific context that is being monitored.
1979          */
1980         struct i915_gem_context *ctx;
1981
1982         /**
1983          * @enabled: Whether the stream is currently enabled, considering
1984          * whether the stream was opened in a disabled state and based
1985          * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1986          */
1987         bool enabled;
1988
1989         /**
1990          * @ops: The callbacks providing the implementation of this specific
1991          * type of configured stream.
1992          */
1993         const struct i915_perf_stream_ops *ops;
1994 };
1995
1996 /**
1997  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1998  */
1999 struct i915_oa_ops {
2000         /**
2001          * @init_oa_buffer: Resets the head and tail pointers of the
2002          * circular buffer for periodic OA reports.
2003          *
2004          * Called when first opening a stream for OA metrics, but also may be
2005          * called in response to an OA buffer overflow or other error
2006          * condition.
2007          *
2008          * Note it may be necessary to clear the full OA buffer here as part of
2009          * maintaining the invariable that new reports must be written to
2010          * zeroed memory for us to be able to reliable detect if an expected
2011          * report has not yet landed in memory.  (At least on Haswell the OA
2012          * buffer tail pointer is not synchronized with reports being visible
2013          * to the CPU)
2014          */
2015         void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2016
2017         /**
2018          * @enable_metric_set: Applies any MUX configuration to set up the
2019          * Boolean and Custom (B/C) counters that are part of the counter
2020          * reports being sampled. May apply system constraints such as
2021          * disabling EU clock gating as required.
2022          */
2023         int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2024
2025         /**
2026          * @disable_metric_set: Remove system constraints associated with using
2027          * the OA unit.
2028          */
2029         void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2030
2031         /**
2032          * @oa_enable: Enable periodic sampling
2033          */
2034         void (*oa_enable)(struct drm_i915_private *dev_priv);
2035
2036         /**
2037          * @oa_disable: Disable periodic sampling
2038          */
2039         void (*oa_disable)(struct drm_i915_private *dev_priv);
2040
2041         /**
2042          * @read: Copy data from the circular OA buffer into a given userspace
2043          * buffer.
2044          */
2045         int (*read)(struct i915_perf_stream *stream,
2046                     char __user *buf,
2047                     size_t count,
2048                     size_t *offset);
2049
2050         /**
2051          * @oa_buffer_check: Check for OA buffer data + update tail
2052          *
2053          * This is either called via fops or the poll check hrtimer (atomic
2054          * ctx) without any locks taken.
2055          *
2056          * It's safe to read OA config state here unlocked, assuming that this
2057          * is only called while the stream is enabled, while the global OA
2058          * configuration can't be modified.
2059          *
2060          * Efficiency is more important than avoiding some false positives
2061          * here, which will be handled gracefully - likely resulting in an
2062          * %EAGAIN error for userspace.
2063          */
2064         bool (*oa_buffer_check)(struct drm_i915_private *dev_priv);
2065 };
2066
2067 struct intel_cdclk_state {
2068         unsigned int cdclk, vco, ref;
2069 };
2070
2071 struct drm_i915_private {
2072         struct drm_device drm;
2073
2074         struct kmem_cache *objects;
2075         struct kmem_cache *vmas;
2076         struct kmem_cache *requests;
2077         struct kmem_cache *dependencies;
2078         struct kmem_cache *priorities;
2079
2080         const struct intel_device_info info;
2081
2082         void __iomem *regs;
2083
2084         struct intel_uncore uncore;
2085
2086         struct i915_virtual_gpu vgpu;
2087
2088         struct intel_gvt *gvt;
2089
2090         struct intel_huc huc;
2091         struct intel_guc guc;
2092
2093         struct intel_csr csr;
2094
2095         struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2096
2097         /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2098          * controller on different i2c buses. */
2099         struct mutex gmbus_mutex;
2100
2101         /**
2102          * Base address of the gmbus and gpio block.
2103          */
2104         uint32_t gpio_mmio_base;
2105
2106         /* MMIO base address for MIPI regs */
2107         uint32_t mipi_mmio_base;
2108
2109         uint32_t psr_mmio_base;
2110
2111         uint32_t pps_mmio_base;
2112
2113         wait_queue_head_t gmbus_wait_queue;
2114
2115         struct pci_dev *bridge_dev;
2116         struct i915_gem_context *kernel_context;
2117         struct intel_engine_cs *engine[I915_NUM_ENGINES];
2118         struct i915_vma *semaphore;
2119
2120         struct drm_dma_handle *status_page_dmah;
2121         struct resource mch_res;
2122
2123         /* protects the irq masks */
2124         spinlock_t irq_lock;
2125
2126         /* protects the mmio flip data */
2127         spinlock_t mmio_flip_lock;
2128
2129         bool display_irqs_enabled;
2130
2131         /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2132         struct pm_qos_request pm_qos;
2133
2134         /* Sideband mailbox protection */
2135         struct mutex sb_lock;
2136
2137         /** Cached value of IMR to avoid reads in updating the bitfield */
2138         union {
2139                 u32 irq_mask;
2140                 u32 de_irq_mask[I915_MAX_PIPES];
2141         };
2142         u32 gt_irq_mask;
2143         u32 pm_imr;
2144         u32 pm_ier;
2145         u32 pm_rps_events;
2146         u32 pm_guc_events;
2147         u32 pipestat_irq_mask[I915_MAX_PIPES];
2148
2149         struct i915_hotplug hotplug;
2150         struct intel_fbc fbc;
2151         struct i915_drrs drrs;
2152         struct intel_opregion opregion;
2153         struct intel_vbt_data vbt;
2154
2155         bool preserve_bios_swizzle;
2156
2157         /* overlay */
2158         struct intel_overlay *overlay;
2159
2160         /* backlight registers and fields in struct intel_panel */
2161         struct mutex backlight_lock;
2162
2163         /* LVDS info */
2164         bool no_aux_handshake;
2165
2166         /* protects panel power sequencer state */
2167         struct mutex pps_mutex;
2168
2169         struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2170         int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2171
2172         unsigned int fsb_freq, mem_freq, is_ddr3;
2173         unsigned int skl_preferred_vco_freq;
2174         unsigned int max_cdclk_freq;
2175
2176         unsigned int max_dotclk_freq;
2177         unsigned int rawclk_freq;
2178         unsigned int hpll_freq;
2179         unsigned int czclk_freq;
2180
2181         struct {
2182                 /*
2183                  * The current logical cdclk state.
2184                  * See intel_atomic_state.cdclk.logical
2185                  *
2186                  * For reading holding any crtc lock is sufficient,
2187                  * for writing must hold all of them.
2188                  */
2189                 struct intel_cdclk_state logical;
2190                 /*
2191                  * The current actual cdclk state.
2192                  * See intel_atomic_state.cdclk.actual
2193                  */
2194                 struct intel_cdclk_state actual;
2195                 /* The current hardware cdclk state */
2196                 struct intel_cdclk_state hw;
2197         } cdclk;
2198
2199         /**
2200          * wq - Driver workqueue for GEM.
2201          *
2202          * NOTE: Work items scheduled here are not allowed to grab any modeset
2203          * locks, for otherwise the flushing done in the pageflip code will
2204          * result in deadlocks.
2205          */
2206         struct workqueue_struct *wq;
2207
2208         /* Display functions */
2209         struct drm_i915_display_funcs display;
2210
2211         /* PCH chipset type */
2212         enum intel_pch pch_type;
2213         unsigned short pch_id;
2214
2215         unsigned long quirks;
2216
2217         enum modeset_restore modeset_restore;
2218         struct mutex modeset_restore_lock;
2219         struct drm_atomic_state *modeset_restore_state;
2220         struct drm_modeset_acquire_ctx reset_ctx;
2221
2222         struct list_head vm_list; /* Global list of all address spaces */
2223         struct i915_ggtt ggtt; /* VM representing the global address space */
2224
2225         struct i915_gem_mm mm;
2226         DECLARE_HASHTABLE(mm_structs, 7);
2227         struct mutex mm_lock;
2228
2229         /* The hw wants to have a stable context identifier for the lifetime
2230          * of the context (for OA, PASID, faults, etc). This is limited
2231          * in execlists to 21 bits.
2232          */
2233         struct ida context_hw_ida;
2234 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2235
2236         /* Kernel Modesetting */
2237
2238         struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2239         struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2240         wait_queue_head_t pending_flip_queue;
2241
2242 #ifdef CONFIG_DEBUG_FS
2243         struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2244 #endif
2245
2246         /* dpll and cdclk state is protected by connection_mutex */
2247         int num_shared_dpll;
2248         struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2249         const struct intel_dpll_mgr *dpll_mgr;
2250
2251         /*
2252          * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2253          * Must be global rather than per dpll, because on some platforms
2254          * plls share registers.
2255          */
2256         struct mutex dpll_lock;
2257
2258         unsigned int active_crtcs;
2259         unsigned int min_pixclk[I915_MAX_PIPES];
2260
2261         int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2262
2263         struct i915_workarounds workarounds;
2264
2265         struct i915_frontbuffer_tracking fb_tracking;
2266
2267         struct intel_atomic_helper {
2268                 struct llist_head free_list;
2269                 struct work_struct free_work;
2270         } atomic_helper;
2271
2272         u16 orig_clock;
2273
2274         bool mchbar_need_disable;
2275
2276         struct intel_l3_parity l3_parity;
2277
2278         /* Cannot be determined by PCIID. You must always read a register. */
2279         u32 edram_cap;
2280
2281         /* gen6+ rps state */
2282         struct intel_gen6_power_mgmt rps;
2283
2284         /* ilk-only ips/rps state. Everything in here is protected by the global
2285          * mchdev_lock in intel_pm.c */
2286         struct intel_ilk_power_mgmt ips;
2287
2288         struct i915_power_domains power_domains;
2289
2290         struct i915_psr psr;
2291
2292         struct i915_gpu_error gpu_error;
2293
2294         struct drm_i915_gem_object *vlv_pctx;
2295
2296 #ifdef CONFIG_DRM_FBDEV_EMULATION
2297         /* list of fbdev register on this device */
2298         struct intel_fbdev *fbdev;
2299         struct work_struct fbdev_suspend_work;
2300 #endif
2301
2302         struct drm_property *broadcast_rgb_property;
2303         struct drm_property *force_audio_property;
2304
2305         /* hda/i915 audio component */
2306         struct i915_audio_component *audio_component;
2307         bool audio_component_registered;
2308         /**
2309          * av_mutex - mutex for audio/video sync
2310          *
2311          */
2312         struct mutex av_mutex;
2313
2314         struct list_head context_list;
2315
2316         u32 fdi_rx_config;
2317
2318         /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2319         u32 chv_phy_control;
2320         /*
2321          * Shadows for CHV DPLL_MD regs to keep the state
2322          * checker somewhat working in the presence hardware
2323          * crappiness (can't read out DPLL_MD for pipes B & C).
2324          */
2325         u32 chv_dpll_md[I915_MAX_PIPES];
2326         u32 bxt_phy_grc;
2327
2328         u32 suspend_count;
2329         bool suspended_to_idle;
2330         struct i915_suspend_saved_registers regfile;
2331         struct vlv_s0ix_state vlv_s0ix_state;
2332
2333         enum {
2334                 I915_SAGV_UNKNOWN = 0,
2335                 I915_SAGV_DISABLED,
2336                 I915_SAGV_ENABLED,
2337                 I915_SAGV_NOT_CONTROLLED
2338         } sagv_status;
2339
2340         struct {
2341                 /*
2342                  * Raw watermark latency values:
2343                  * in 0.1us units for WM0,
2344                  * in 0.5us units for WM1+.
2345                  */
2346                 /* primary */
2347                 uint16_t pri_latency[5];
2348                 /* sprite */
2349                 uint16_t spr_latency[5];
2350                 /* cursor */
2351                 uint16_t cur_latency[5];
2352                 /*
2353                  * Raw watermark memory latency values
2354                  * for SKL for all 8 levels
2355                  * in 1us units.
2356                  */
2357                 uint16_t skl_latency[8];
2358
2359                 /* current hardware state */
2360                 union {
2361                         struct ilk_wm_values hw;
2362                         struct skl_wm_values skl_hw;
2363                         struct vlv_wm_values vlv;
2364                         struct g4x_wm_values g4x;
2365                 };
2366
2367                 uint8_t max_level;
2368
2369                 /*
2370                  * Should be held around atomic WM register writing; also
2371                  * protects * intel_crtc->wm.active and
2372                  * cstate->wm.need_postvbl_update.
2373                  */
2374                 struct mutex wm_mutex;
2375
2376                 /*
2377                  * Set during HW readout of watermarks/DDB.  Some platforms
2378                  * need to know when we're still using BIOS-provided values
2379                  * (which we don't fully trust).
2380                  */
2381                 bool distrust_bios_wm;
2382         } wm;
2383
2384         struct i915_runtime_pm pm;
2385
2386         struct {
2387                 bool initialized;
2388
2389                 struct kobject *metrics_kobj;
2390                 struct ctl_table_header *sysctl_header;
2391
2392                 struct mutex lock;
2393                 struct list_head streams;
2394
2395                 spinlock_t hook_lock;
2396
2397                 struct {
2398                         struct i915_perf_stream *exclusive_stream;
2399
2400                         u32 specific_ctx_id;
2401
2402                         struct hrtimer poll_check_timer;
2403                         wait_queue_head_t poll_wq;
2404                         bool pollin;
2405
2406                         /**
2407                          * For rate limiting any notifications of spurious
2408                          * invalid OA reports
2409                          */
2410                         struct ratelimit_state spurious_report_rs;
2411
2412                         bool periodic;
2413                         int period_exponent;
2414
2415                         int metrics_set;
2416
2417                         const struct i915_oa_reg *mux_regs;
2418                         int mux_regs_len;
2419                         const struct i915_oa_reg *b_counter_regs;
2420                         int b_counter_regs_len;
2421
2422                         struct {
2423                                 struct i915_vma *vma;
2424                                 u8 *vaddr;
2425                                 int format;
2426                                 int format_size;
2427
2428                                 /**
2429                                  * Locks reads and writes to all head/tail state
2430                                  *
2431                                  * Consider: the head and tail pointer state
2432                                  * needs to be read consistently from a hrtimer
2433                                  * callback (atomic context) and read() fop
2434                                  * (user context) with tail pointer updates
2435                                  * happening in atomic context and head updates
2436                                  * in user context and the (unlikely)
2437                                  * possibility of read() errors needing to
2438                                  * reset all head/tail state.
2439                                  *
2440                                  * Note: Contention or performance aren't
2441                                  * currently a significant concern here
2442                                  * considering the relatively low frequency of
2443                                  * hrtimer callbacks (5ms period) and that
2444                                  * reads typically only happen in response to a
2445                                  * hrtimer event and likely complete before the
2446                                  * next callback.
2447                                  *
2448                                  * Note: This lock is not held *while* reading
2449                                  * and copying data to userspace so the value
2450                                  * of head observed in htrimer callbacks won't
2451                                  * represent any partial consumption of data.
2452                                  */
2453                                 spinlock_t ptr_lock;
2454
2455                                 /**
2456                                  * One 'aging' tail pointer and one 'aged'
2457                                  * tail pointer ready to used for reading.
2458                                  *
2459                                  * Initial values of 0xffffffff are invalid
2460                                  * and imply that an update is required
2461                                  * (and should be ignored by an attempted
2462                                  * read)
2463                                  */
2464                                 struct {
2465                                         u32 offset;
2466                                 } tails[2];
2467
2468                                 /**
2469                                  * Index for the aged tail ready to read()
2470                                  * data up to.
2471                                  */
2472                                 unsigned int aged_tail_idx;
2473
2474                                 /**
2475                                  * A monotonic timestamp for when the current
2476                                  * aging tail pointer was read; used to
2477                                  * determine when it is old enough to trust.
2478                                  */
2479                                 u64 aging_timestamp;
2480
2481                                 /**
2482                                  * Although we can always read back the head
2483                                  * pointer register, we prefer to avoid
2484                                  * trusting the HW state, just to avoid any
2485                                  * risk that some hardware condition could
2486                                  * somehow bump the head pointer unpredictably
2487                                  * and cause us to forward the wrong OA buffer
2488                                  * data to userspace.
2489                                  */
2490                                 u32 head;
2491                         } oa_buffer;
2492
2493                         u32 gen7_latched_oastatus1;
2494
2495                         struct i915_oa_ops ops;
2496                         const struct i915_oa_format *oa_formats;
2497                         int n_builtin_sets;
2498                 } oa;
2499         } perf;
2500
2501         /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2502         struct {
2503                 void (*resume)(struct drm_i915_private *);
2504                 void (*cleanup_engine)(struct intel_engine_cs *engine);
2505
2506                 struct list_head timelines;
2507                 struct i915_gem_timeline global_timeline;
2508                 u32 active_requests;
2509
2510                 /**
2511                  * Is the GPU currently considered idle, or busy executing
2512                  * userspace requests? Whilst idle, we allow runtime power
2513                  * management to power down the hardware and display clocks.
2514                  * In order to reduce the effect on performance, there
2515                  * is a slight delay before we do so.
2516                  */
2517                 bool awake;
2518
2519                 /**
2520                  * We leave the user IRQ off as much as possible,
2521                  * but this means that requests will finish and never
2522                  * be retired once the system goes idle. Set a timer to
2523                  * fire periodically while the ring is running. When it
2524                  * fires, go retire requests.
2525                  */
2526                 struct delayed_work retire_work;
2527
2528                 /**
2529                  * When we detect an idle GPU, we want to turn on
2530                  * powersaving features. So once we see that there
2531                  * are no more requests outstanding and no more
2532                  * arrive within a small period of time, we fire
2533                  * off the idle_work.
2534                  */
2535                 struct delayed_work idle_work;
2536
2537                 ktime_t last_init_time;
2538         } gt;
2539
2540         /* perform PHY state sanity checks? */
2541         bool chv_phy_assert[2];
2542
2543         bool ipc_enabled;
2544
2545         /* Used to save the pipe-to-encoder mapping for audio */
2546         struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2547
2548         /* necessary resource sharing with HDMI LPE audio driver. */
2549         struct {
2550                 struct platform_device *platdev;
2551                 int     irq;
2552         } lpe_audio;
2553
2554         /*
2555          * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2556          * will be rejected. Instead look for a better place.
2557          */
2558 };
2559
2560 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2561 {
2562         return container_of(dev, struct drm_i915_private, drm);
2563 }
2564
2565 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2566 {
2567         return to_i915(dev_get_drvdata(kdev));
2568 }
2569
2570 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2571 {
2572         return container_of(guc, struct drm_i915_private, guc);
2573 }
2574
2575 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2576 {
2577         return container_of(huc, struct drm_i915_private, huc);
2578 }
2579
2580 /* Simple iterator over all initialised engines */
2581 #define for_each_engine(engine__, dev_priv__, id__) \
2582         for ((id__) = 0; \
2583              (id__) < I915_NUM_ENGINES; \
2584              (id__)++) \
2585                 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2586
2587 /* Iterator over subset of engines selected by mask */
2588 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2589         for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;        \
2590              tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2591
2592 enum hdmi_force_audio {
2593         HDMI_AUDIO_OFF_DVI = -2,        /* no aux data for HDMI-DVI converter */
2594         HDMI_AUDIO_OFF,                 /* force turn off HDMI audio */
2595         HDMI_AUDIO_AUTO,                /* trust EDID */
2596         HDMI_AUDIO_ON,                  /* force turn on HDMI audio */
2597 };
2598
2599 #define I915_GTT_OFFSET_NONE ((u32)-1)
2600
2601 /*
2602  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2603  * considered to be the frontbuffer for the given plane interface-wise. This
2604  * doesn't mean that the hw necessarily already scans it out, but that any
2605  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2606  *
2607  * We have one bit per pipe and per scanout plane type.
2608  */
2609 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2610 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2611 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2612         (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2613 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2614         (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2615 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2616         (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2617 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2618         (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2619 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2620         (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2621
2622 /*
2623  * Optimised SGL iterator for GEM objects
2624  */
2625 static __always_inline struct sgt_iter {
2626         struct scatterlist *sgp;
2627         union {
2628                 unsigned long pfn;
2629                 dma_addr_t dma;
2630         };
2631         unsigned int curr;
2632         unsigned int max;
2633 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2634         struct sgt_iter s = { .sgp = sgl };
2635
2636         if (s.sgp) {
2637                 s.max = s.curr = s.sgp->offset;
2638                 s.max += s.sgp->length;
2639                 if (dma)
2640                         s.dma = sg_dma_address(s.sgp);
2641                 else
2642                         s.pfn = page_to_pfn(sg_page(s.sgp));
2643         }
2644
2645         return s;
2646 }
2647
2648 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2649 {
2650         ++sg;
2651         if (unlikely(sg_is_chain(sg)))
2652                 sg = sg_chain_ptr(sg);
2653         return sg;
2654 }
2655
2656 /**
2657  * __sg_next - return the next scatterlist entry in a list
2658  * @sg:         The current sg entry
2659  *
2660  * Description:
2661  *   If the entry is the last, return NULL; otherwise, step to the next
2662  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2663  *   otherwise just return the pointer to the current element.
2664  **/
2665 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2666 {
2667 #ifdef CONFIG_DEBUG_SG
2668         BUG_ON(sg->sg_magic != SG_MAGIC);
2669 #endif
2670         return sg_is_last(sg) ? NULL : ____sg_next(sg);
2671 }
2672
2673 /**
2674  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2675  * @__dmap:     DMA address (output)
2676  * @__iter:     'struct sgt_iter' (iterator state, internal)
2677  * @__sgt:      sg_table to iterate over (input)
2678  */
2679 #define for_each_sgt_dma(__dmap, __iter, __sgt)                         \
2680         for ((__iter) = __sgt_iter((__sgt)->sgl, true);                 \
2681              ((__dmap) = (__iter).dma + (__iter).curr);                 \
2682              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2683              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2684
2685 /**
2686  * for_each_sgt_page - iterate over the pages of the given sg_table
2687  * @__pp:       page pointer (output)
2688  * @__iter:     'struct sgt_iter' (iterator state, internal)
2689  * @__sgt:      sg_table to iterate over (input)
2690  */
2691 #define for_each_sgt_page(__pp, __iter, __sgt)                          \
2692         for ((__iter) = __sgt_iter((__sgt)->sgl, false);                \
2693              ((__pp) = (__iter).pfn == 0 ? NULL :                       \
2694               pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2695              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2696              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2697
2698 static inline const struct intel_device_info *
2699 intel_info(const struct drm_i915_private *dev_priv)
2700 {
2701         return &dev_priv->info;
2702 }
2703
2704 #define INTEL_INFO(dev_priv)    intel_info((dev_priv))
2705
2706 #define INTEL_GEN(dev_priv)     ((dev_priv)->info.gen)
2707 #define INTEL_DEVID(dev_priv)   ((dev_priv)->info.device_id)
2708
2709 #define REVID_FOREVER           0xff
2710 #define INTEL_REVID(dev_priv)   ((dev_priv)->drm.pdev->revision)
2711
2712 #define GEN_FOREVER (0)
2713 /*
2714  * Returns true if Gen is in inclusive range [Start, End].
2715  *
2716  * Use GEN_FOREVER for unbound start and or end.
2717  */
2718 #define IS_GEN(dev_priv, s, e) ({ \
2719         unsigned int __s = (s), __e = (e); \
2720         BUILD_BUG_ON(!__builtin_constant_p(s)); \
2721         BUILD_BUG_ON(!__builtin_constant_p(e)); \
2722         if ((__s) != GEN_FOREVER) \
2723                 __s = (s) - 1; \
2724         if ((__e) == GEN_FOREVER) \
2725                 __e = BITS_PER_LONG - 1; \
2726         else \
2727                 __e = (e) - 1; \
2728         !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2729 })
2730
2731 /*
2732  * Return true if revision is in range [since,until] inclusive.
2733  *
2734  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2735  */
2736 #define IS_REVID(p, since, until) \
2737         (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2738
2739 #define IS_I830(dev_priv)       ((dev_priv)->info.platform == INTEL_I830)
2740 #define IS_I845G(dev_priv)      ((dev_priv)->info.platform == INTEL_I845G)
2741 #define IS_I85X(dev_priv)       ((dev_priv)->info.platform == INTEL_I85X)
2742 #define IS_I865G(dev_priv)      ((dev_priv)->info.platform == INTEL_I865G)
2743 #define IS_I915G(dev_priv)      ((dev_priv)->info.platform == INTEL_I915G)
2744 #define IS_I915GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I915GM)
2745 #define IS_I945G(dev_priv)      ((dev_priv)->info.platform == INTEL_I945G)
2746 #define IS_I945GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I945GM)
2747 #define IS_I965G(dev_priv)      ((dev_priv)->info.platform == INTEL_I965G)
2748 #define IS_I965GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I965GM)
2749 #define IS_G45(dev_priv)        ((dev_priv)->info.platform == INTEL_G45)
2750 #define IS_GM45(dev_priv)       ((dev_priv)->info.platform == INTEL_GM45)
2751 #define IS_G4X(dev_priv)        (IS_G45(dev_priv) || IS_GM45(dev_priv))
2752 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2753 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2754 #define IS_PINEVIEW(dev_priv)   ((dev_priv)->info.platform == INTEL_PINEVIEW)
2755 #define IS_G33(dev_priv)        ((dev_priv)->info.platform == INTEL_G33)
2756 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2757 #define IS_IVYBRIDGE(dev_priv)  ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2758 #define IS_IVB_GT1(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0156 || \
2759                                  INTEL_DEVID(dev_priv) == 0x0152 || \
2760                                  INTEL_DEVID(dev_priv) == 0x015a)
2761 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2762 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2763 #define IS_HASWELL(dev_priv)    ((dev_priv)->info.platform == INTEL_HASWELL)
2764 #define IS_BROADWELL(dev_priv)  ((dev_priv)->info.platform == INTEL_BROADWELL)
2765 #define IS_SKYLAKE(dev_priv)    ((dev_priv)->info.platform == INTEL_SKYLAKE)
2766 #define IS_BROXTON(dev_priv)    ((dev_priv)->info.platform == INTEL_BROXTON)
2767 #define IS_KABYLAKE(dev_priv)   ((dev_priv)->info.platform == INTEL_KABYLAKE)
2768 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2769 #define IS_MOBILE(dev_priv)     ((dev_priv)->info.is_mobile)
2770 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2771                                     (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2772 #define IS_BDW_ULT(dev_priv)    (IS_BROADWELL(dev_priv) && \
2773                                  ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||       \
2774                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||        \
2775                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2776 /* ULX machines are also considered ULT. */
2777 #define IS_BDW_ULX(dev_priv)    (IS_BROADWELL(dev_priv) && \
2778                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2779 #define IS_BDW_GT3(dev_priv)    (IS_BROADWELL(dev_priv) && \
2780                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2781 #define IS_HSW_ULT(dev_priv)    (IS_HASWELL(dev_priv) && \
2782                                  (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2783 #define IS_HSW_GT3(dev_priv)    (IS_HASWELL(dev_priv) && \
2784                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2785 /* ULX machines are also considered ULT. */
2786 #define IS_HSW_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0A0E || \
2787                                  INTEL_DEVID(dev_priv) == 0x0A1E)
2788 #define IS_SKL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x1906 || \
2789                                  INTEL_DEVID(dev_priv) == 0x1913 || \
2790                                  INTEL_DEVID(dev_priv) == 0x1916 || \
2791                                  INTEL_DEVID(dev_priv) == 0x1921 || \
2792                                  INTEL_DEVID(dev_priv) == 0x1926)
2793 #define IS_SKL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x190E || \
2794                                  INTEL_DEVID(dev_priv) == 0x1915 || \
2795                                  INTEL_DEVID(dev_priv) == 0x191E)
2796 #define IS_KBL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x5906 || \
2797                                  INTEL_DEVID(dev_priv) == 0x5913 || \
2798                                  INTEL_DEVID(dev_priv) == 0x5916 || \
2799                                  INTEL_DEVID(dev_priv) == 0x5921 || \
2800                                  INTEL_DEVID(dev_priv) == 0x5926)
2801 #define IS_KBL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x590E || \
2802                                  INTEL_DEVID(dev_priv) == 0x5915 || \
2803                                  INTEL_DEVID(dev_priv) == 0x591E)
2804 #define IS_SKL_GT3(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2805                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2806 #define IS_SKL_GT4(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2807                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2808
2809 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2810
2811 #define SKL_REVID_A0            0x0
2812 #define SKL_REVID_B0            0x1
2813 #define SKL_REVID_C0            0x2
2814 #define SKL_REVID_D0            0x3
2815 #define SKL_REVID_E0            0x4
2816 #define SKL_REVID_F0            0x5
2817 #define SKL_REVID_G0            0x6
2818 #define SKL_REVID_H0            0x7
2819
2820 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2821
2822 #define BXT_REVID_A0            0x0
2823 #define BXT_REVID_A1            0x1
2824 #define BXT_REVID_B0            0x3
2825 #define BXT_REVID_B_LAST        0x8
2826 #define BXT_REVID_C0            0x9
2827
2828 #define IS_BXT_REVID(dev_priv, since, until) \
2829         (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2830
2831 #define KBL_REVID_A0            0x0
2832 #define KBL_REVID_B0            0x1
2833 #define KBL_REVID_C0            0x2
2834 #define KBL_REVID_D0            0x3
2835 #define KBL_REVID_E0            0x4
2836
2837 #define IS_KBL_REVID(dev_priv, since, until) \
2838         (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2839
2840 #define GLK_REVID_A0            0x0
2841 #define GLK_REVID_A1            0x1
2842
2843 #define IS_GLK_REVID(dev_priv, since, until) \
2844         (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2845
2846 /*
2847  * The genX designation typically refers to the render engine, so render
2848  * capability related checks should use IS_GEN, while display and other checks
2849  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2850  * chips, etc.).
2851  */
2852 #define IS_GEN2(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(1)))
2853 #define IS_GEN3(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(2)))
2854 #define IS_GEN4(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(3)))
2855 #define IS_GEN5(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(4)))
2856 #define IS_GEN6(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(5)))
2857 #define IS_GEN7(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(6)))
2858 #define IS_GEN8(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(7)))
2859 #define IS_GEN9(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(8)))
2860
2861 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2862 #define IS_GEN9_LP(dev_priv)    (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2863 #define IS_GEN9_BC(dev_priv)    (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2864
2865 #define ENGINE_MASK(id) BIT(id)
2866 #define RENDER_RING     ENGINE_MASK(RCS)
2867 #define BSD_RING        ENGINE_MASK(VCS)
2868 #define BLT_RING        ENGINE_MASK(BCS)
2869 #define VEBOX_RING      ENGINE_MASK(VECS)
2870 #define BSD2_RING       ENGINE_MASK(VCS2)
2871 #define ALL_ENGINES     (~0)
2872
2873 #define HAS_ENGINE(dev_priv, id) \
2874         (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2875
2876 #define HAS_BSD(dev_priv)       HAS_ENGINE(dev_priv, VCS)
2877 #define HAS_BSD2(dev_priv)      HAS_ENGINE(dev_priv, VCS2)
2878 #define HAS_BLT(dev_priv)       HAS_ENGINE(dev_priv, BCS)
2879 #define HAS_VEBOX(dev_priv)     HAS_ENGINE(dev_priv, VECS)
2880
2881 #define HAS_LLC(dev_priv)       ((dev_priv)->info.has_llc)
2882 #define HAS_SNOOP(dev_priv)     ((dev_priv)->info.has_snoop)
2883 #define HAS_EDRAM(dev_priv)     (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2884 #define HAS_WT(dev_priv)        ((IS_HASWELL(dev_priv) || \
2885                                  IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2886
2887 #define HWS_NEEDS_PHYSICAL(dev_priv)    ((dev_priv)->info.hws_needs_physical)
2888
2889 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2890                 ((dev_priv)->info.has_logical_ring_contexts)
2891 #define USES_PPGTT(dev_priv)            (i915.enable_ppgtt)
2892 #define USES_FULL_PPGTT(dev_priv)       (i915.enable_ppgtt >= 2)
2893 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2894
2895 #define HAS_OVERLAY(dev_priv)            ((dev_priv)->info.has_overlay)
2896 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2897                 ((dev_priv)->info.overlay_needs_physical)
2898
2899 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2900 #define HAS_BROKEN_CS_TLB(dev_priv)     (IS_I830(dev_priv) || IS_I845G(dev_priv))
2901
2902 /* WaRsDisableCoarsePowerGating:skl,bxt */
2903 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2904         (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2905
2906 /*
2907  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2908  * even when in MSI mode. This results in spurious interrupt warnings if the
2909  * legacy irq no. is shared with another device. The kernel then disables that
2910  * interrupt source and so prevents the other device from working properly.
2911  */
2912 #define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
2913 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2914
2915 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2916  * rows, which changed the alignment requirements and fence programming.
2917  */
2918 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2919                                          !(IS_I915G(dev_priv) || \
2920                                          IS_I915GM(dev_priv)))
2921 #define SUPPORTS_TV(dev_priv)           ((dev_priv)->info.supports_tv)
2922 #define I915_HAS_HOTPLUG(dev_priv)      ((dev_priv)->info.has_hotplug)
2923
2924 #define HAS_FW_BLC(dev_priv)    (INTEL_GEN(dev_priv) > 2)
2925 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2926 #define HAS_FBC(dev_priv)       ((dev_priv)->info.has_fbc)
2927 #define HAS_CUR_FBC(dev_priv)   (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
2928
2929 #define HAS_IPS(dev_priv)       (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2930
2931 #define HAS_DP_MST(dev_priv)    ((dev_priv)->info.has_dp_mst)
2932
2933 #define HAS_DDI(dev_priv)                ((dev_priv)->info.has_ddi)
2934 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2935 #define HAS_PSR(dev_priv)                ((dev_priv)->info.has_psr)
2936 #define HAS_RC6(dev_priv)                ((dev_priv)->info.has_rc6)
2937 #define HAS_RC6p(dev_priv)               ((dev_priv)->info.has_rc6p)
2938
2939 #define HAS_CSR(dev_priv)       ((dev_priv)->info.has_csr)
2940
2941 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2942 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2943
2944 /*
2945  * For now, anything with a GuC requires uCode loading, and then supports
2946  * command submission once loaded. But these are logically independent
2947  * properties, so we have separate macros to test them.
2948  */
2949 #define HAS_GUC(dev_priv)       ((dev_priv)->info.has_guc)
2950 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2951 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2952 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2953
2954 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2955
2956 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2957
2958 #define INTEL_PCH_DEVICE_ID_MASK                0xff00
2959 #define INTEL_PCH_IBX_DEVICE_ID_TYPE            0x3b00
2960 #define INTEL_PCH_CPT_DEVICE_ID_TYPE            0x1c00
2961 #define INTEL_PCH_PPT_DEVICE_ID_TYPE            0x1e00
2962 #define INTEL_PCH_LPT_DEVICE_ID_TYPE            0x8c00
2963 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE         0x9c00
2964 #define INTEL_PCH_SPT_DEVICE_ID_TYPE            0xA100
2965 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE         0x9D00
2966 #define INTEL_PCH_KBP_DEVICE_ID_TYPE            0xA200
2967 #define INTEL_PCH_P2X_DEVICE_ID_TYPE            0x7100
2968 #define INTEL_PCH_P3X_DEVICE_ID_TYPE            0x7000
2969 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE           0x2900 /* qemu q35 has 2918 */
2970
2971 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2972 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2973 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2974 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2975 #define HAS_PCH_LPT_LP(dev_priv) \
2976         ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2977 #define HAS_PCH_LPT_H(dev_priv) \
2978         ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2979 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2980 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2981 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2982 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2983
2984 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2985
2986 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv))
2987
2988 /* DPF == dynamic parity feature */
2989 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2990 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2991                                  2 : HAS_L3_DPF(dev_priv))
2992
2993 #define GT_FREQUENCY_MULTIPLIER 50
2994 #define GEN9_FREQ_SCALER 3
2995
2996 #define HAS_DECOUPLED_MMIO(dev_priv) (INTEL_INFO(dev_priv)->has_decoupled_mmio)
2997
2998 #include "i915_trace.h"
2999
3000 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3001 {
3002 #ifdef CONFIG_INTEL_IOMMU
3003         if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
3004                 return true;
3005 #endif
3006         return false;
3007 }
3008
3009 static inline bool
3010 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3011 {
3012 #ifdef CONFIG_INTEL_IOMMU
3013         if (IS_BROXTON(dev_priv) && intel_iommu_gfx_mapped)
3014                 return true;
3015 #endif
3016         return false;
3017 }
3018
3019 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3020                                 int enable_ppgtt);
3021
3022 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3023
3024 /* i915_drv.c */
3025 void __printf(3, 4)
3026 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3027               const char *fmt, ...);
3028
3029 #define i915_report_error(dev_priv, fmt, ...)                              \
3030         __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3031
3032 #ifdef CONFIG_COMPAT
3033 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3034                               unsigned long arg);
3035 #else
3036 #define i915_compat_ioctl NULL
3037 #endif
3038 extern const struct dev_pm_ops i915_pm_ops;
3039
3040 extern int i915_driver_load(struct pci_dev *pdev,
3041                             const struct pci_device_id *ent);
3042 extern void i915_driver_unload(struct drm_device *dev);
3043 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3044 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3045 extern void i915_reset(struct drm_i915_private *dev_priv);
3046 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3047 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3048 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3049 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3050 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3051 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3052 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3053 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3054
3055 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3056 int intel_engines_init(struct drm_i915_private *dev_priv);
3057
3058 /* intel_hotplug.c */
3059 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3060                            u32 pin_mask, u32 long_mask);
3061 void intel_hpd_init(struct drm_i915_private *dev_priv);
3062 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3063 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3064 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3065 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3066 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3067
3068 /* i915_irq.c */
3069 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3070 {
3071         unsigned long delay;
3072
3073         if (unlikely(!i915.enable_hangcheck))
3074                 return;
3075
3076         /* Don't continually defer the hangcheck so that it is always run at
3077          * least once after work has been scheduled on any ring. Otherwise,
3078          * we will ignore a hung ring if a second ring is kept busy.
3079          */
3080
3081         delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3082         queue_delayed_work(system_long_wq,
3083                            &dev_priv->gpu_error.hangcheck_work, delay);
3084 }
3085
3086 __printf(3, 4)
3087 void i915_handle_error(struct drm_i915_private *dev_priv,
3088                        u32 engine_mask,
3089                        const char *fmt, ...);
3090
3091 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3092 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3093 int intel_irq_install(struct drm_i915_private *dev_priv);
3094 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3095
3096 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3097 {
3098         return dev_priv->gvt;
3099 }
3100
3101 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3102 {
3103         return dev_priv->vgpu.active;
3104 }
3105
3106 void
3107 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3108                      u32 status_mask);
3109
3110 void
3111 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3112                       u32 status_mask);
3113
3114 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3115 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3116 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3117                                    uint32_t mask,
3118                                    uint32_t bits);
3119 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3120                             uint32_t interrupt_mask,
3121                             uint32_t enabled_irq_mask);
3122 static inline void
3123 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3124 {
3125         ilk_update_display_irq(dev_priv, bits, bits);
3126 }
3127 static inline void
3128 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3129 {
3130         ilk_update_display_irq(dev_priv, bits, 0);
3131 }
3132 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3133                          enum pipe pipe,
3134                          uint32_t interrupt_mask,
3135                          uint32_t enabled_irq_mask);
3136 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3137                                        enum pipe pipe, uint32_t bits)
3138 {
3139         bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3140 }
3141 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3142                                         enum pipe pipe, uint32_t bits)
3143 {
3144         bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3145 }
3146 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3147                                   uint32_t interrupt_mask,
3148                                   uint32_t enabled_irq_mask);
3149 static inline void
3150 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3151 {
3152         ibx_display_interrupt_update(dev_priv, bits, bits);
3153 }
3154 static inline void
3155 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3156 {
3157         ibx_display_interrupt_update(dev_priv, bits, 0);
3158 }
3159
3160 /* i915_gem.c */
3161 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3162                           struct drm_file *file_priv);
3163 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3164                          struct drm_file *file_priv);
3165 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3166                           struct drm_file *file_priv);
3167 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3168                         struct drm_file *file_priv);
3169 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3170                         struct drm_file *file_priv);
3171 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3172                               struct drm_file *file_priv);
3173 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3174                              struct drm_file *file_priv);
3175 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3176                         struct drm_file *file_priv);
3177 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3178                          struct drm_file *file_priv);
3179 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3180                         struct drm_file *file_priv);
3181 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3182                                struct drm_file *file);
3183 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3184                                struct drm_file *file);
3185 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3186                             struct drm_file *file_priv);
3187 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3188                            struct drm_file *file_priv);
3189 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3190                               struct drm_file *file_priv);
3191 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3192                               struct drm_file *file_priv);
3193 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3194 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3195                            struct drm_file *file);
3196 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3197                                 struct drm_file *file_priv);
3198 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3199                         struct drm_file *file_priv);
3200 void i915_gem_sanitize(struct drm_i915_private *i915);
3201 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3202 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3203 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3204 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3205 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3206
3207 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3208 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3209 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3210                          const struct drm_i915_gem_object_ops *ops);
3211 struct drm_i915_gem_object *
3212 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3213 struct drm_i915_gem_object *
3214 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3215                                  const void *data, size_t size);
3216 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3217 void i915_gem_free_object(struct drm_gem_object *obj);
3218
3219 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3220 {
3221         /* A single pass should suffice to release all the freed objects (along
3222          * most call paths) , but be a little more paranoid in that freeing
3223          * the objects does take a little amount of time, during which the rcu
3224          * callbacks could have added new objects into the freed list, and
3225          * armed the work again.
3226          */
3227         do {
3228                 rcu_barrier();
3229         } while (flush_work(&i915->mm.free_work));
3230 }
3231
3232 struct i915_vma * __must_check
3233 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3234                          const struct i915_ggtt_view *view,
3235                          u64 size,
3236                          u64 alignment,
3237                          u64 flags);
3238
3239 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3240 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3241
3242 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3243
3244 static inline int __sg_page_count(const struct scatterlist *sg)
3245 {
3246         return sg->length >> PAGE_SHIFT;
3247 }
3248
3249 struct scatterlist *
3250 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3251                        unsigned int n, unsigned int *offset);
3252
3253 struct page *
3254 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3255                          unsigned int n);
3256
3257 struct page *
3258 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3259                                unsigned int n);
3260
3261 dma_addr_t
3262 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3263                                 unsigned long n);
3264
3265 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3266                                  struct sg_table *pages);
3267 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3268
3269 static inline int __must_check
3270 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3271 {
3272         might_lock(&obj->mm.lock);
3273
3274         if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3275                 return 0;
3276
3277         return __i915_gem_object_get_pages(obj);
3278 }
3279
3280 static inline void
3281 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3282 {
3283         GEM_BUG_ON(!obj->mm.pages);
3284
3285         atomic_inc(&obj->mm.pages_pin_count);
3286 }
3287
3288 static inline bool
3289 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3290 {
3291         return atomic_read(&obj->mm.pages_pin_count);
3292 }
3293
3294 static inline void
3295 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3296 {
3297         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3298         GEM_BUG_ON(!obj->mm.pages);
3299
3300         atomic_dec(&obj->mm.pages_pin_count);
3301 }
3302
3303 static inline void
3304 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3305 {
3306         __i915_gem_object_unpin_pages(obj);
3307 }
3308
3309 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3310         I915_MM_NORMAL = 0,
3311         I915_MM_SHRINKER
3312 };
3313
3314 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3315                                  enum i915_mm_subclass subclass);
3316 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3317
3318 enum i915_map_type {
3319         I915_MAP_WB = 0,
3320         I915_MAP_WC,
3321 };
3322
3323 /**
3324  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3325  * @obj: the object to map into kernel address space
3326  * @type: the type of mapping, used to select pgprot_t
3327  *
3328  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3329  * pages and then returns a contiguous mapping of the backing storage into
3330  * the kernel address space. Based on the @type of mapping, the PTE will be
3331  * set to either WriteBack or WriteCombine (via pgprot_t).
3332  *
3333  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3334  * mapping is no longer required.
3335  *
3336  * Returns the pointer through which to access the mapped object, or an
3337  * ERR_PTR() on error.
3338  */
3339 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3340                                            enum i915_map_type type);
3341
3342 /**
3343  * i915_gem_object_unpin_map - releases an earlier mapping
3344  * @obj: the object to unmap
3345  *
3346  * After pinning the object and mapping its pages, once you are finished
3347  * with your access, call i915_gem_object_unpin_map() to release the pin
3348  * upon the mapping. Once the pin count reaches zero, that mapping may be
3349  * removed.
3350  */
3351 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3352 {
3353         i915_gem_object_unpin_pages(obj);
3354 }
3355
3356 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3357                                     unsigned int *needs_clflush);
3358 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3359                                      unsigned int *needs_clflush);
3360 #define CLFLUSH_BEFORE  BIT(0)
3361 #define CLFLUSH_AFTER   BIT(1)
3362 #define CLFLUSH_FLAGS   (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3363
3364 static inline void
3365 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3366 {
3367         i915_gem_object_unpin_pages(obj);
3368 }
3369
3370 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3371 void i915_vma_move_to_active(struct i915_vma *vma,
3372                              struct drm_i915_gem_request *req,
3373                              unsigned int flags);
3374 int i915_gem_dumb_create(struct drm_file *file_priv,
3375                          struct drm_device *dev,
3376                          struct drm_mode_create_dumb *args);
3377 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3378                       uint32_t handle, uint64_t *offset);
3379 int i915_gem_mmap_gtt_version(void);
3380
3381 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3382                        struct drm_i915_gem_object *new,
3383                        unsigned frontbuffer_bits);
3384
3385 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3386
3387 struct drm_i915_gem_request *
3388 i915_gem_find_active_request(struct intel_engine_cs *engine);
3389
3390 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3391
3392 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3393 {
3394         return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3395 }
3396
3397 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3398 {
3399         return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3400 }
3401
3402 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3403 {
3404         return unlikely(test_bit(I915_WEDGED, &error->flags));
3405 }
3406
3407 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3408 {
3409         return i915_reset_backoff(error) | i915_terminally_wedged(error);
3410 }
3411
3412 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3413 {
3414         return READ_ONCE(error->reset_count);
3415 }
3416
3417 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3418 void i915_gem_reset(struct drm_i915_private *dev_priv);
3419 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3420 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3421 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3422
3423 void i915_gem_init_mmio(struct drm_i915_private *i915);
3424 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3425 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3426 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3427 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3428 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3429                            unsigned int flags);
3430 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3431 void i915_gem_resume(struct drm_i915_private *dev_priv);
3432 int i915_gem_fault(struct vm_fault *vmf);
3433 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3434                          unsigned int flags,
3435                          long timeout,
3436                          struct intel_rps_client *rps);
3437 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3438                                   unsigned int flags,
3439                                   int priority);
3440 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3441
3442 int __must_check
3443 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3444 int __must_check
3445 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3446 int __must_check
3447 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3448 struct i915_vma * __must_check
3449 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3450                                      u32 alignment,
3451                                      const struct i915_ggtt_view *view);
3452 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3453 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3454                                 int align);
3455 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3456 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3457
3458 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3459                                     enum i915_cache_level cache_level);
3460
3461 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3462                                 struct dma_buf *dma_buf);
3463
3464 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3465                                 struct drm_gem_object *gem_obj, int flags);
3466
3467 static inline struct i915_hw_ppgtt *
3468 i915_vm_to_ppgtt(struct i915_address_space *vm)
3469 {
3470         return container_of(vm, struct i915_hw_ppgtt, base);
3471 }
3472
3473 /* i915_gem_fence_reg.c */
3474 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3475 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3476
3477 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3478 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3479
3480 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3481 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3482                                        struct sg_table *pages);
3483 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3484                                          struct sg_table *pages);
3485
3486 static inline struct i915_gem_context *
3487 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3488 {
3489         struct i915_gem_context *ctx;
3490
3491         lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3492
3493         ctx = idr_find(&file_priv->context_idr, id);
3494         if (!ctx)
3495                 return ERR_PTR(-ENOENT);
3496
3497         return ctx;
3498 }
3499
3500 static inline struct i915_gem_context *
3501 i915_gem_context_get(struct i915_gem_context *ctx)
3502 {
3503         kref_get(&ctx->ref);
3504         return ctx;
3505 }
3506
3507 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3508 {
3509         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3510         kref_put(&ctx->ref, i915_gem_context_free);
3511 }
3512
3513 static inline void i915_gem_context_put_unlocked(struct i915_gem_context *ctx)
3514 {
3515         struct mutex *lock = &ctx->i915->drm.struct_mutex;
3516
3517         if (kref_put_mutex(&ctx->ref, i915_gem_context_free, lock))
3518                 mutex_unlock(lock);
3519 }
3520
3521 static inline struct intel_timeline *
3522 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3523                                  struct intel_engine_cs *engine)
3524 {
3525         struct i915_address_space *vm;
3526
3527         vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3528         return &vm->timeline.engine[engine->id];
3529 }
3530
3531 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3532                          struct drm_file *file);
3533
3534 /* i915_gem_evict.c */
3535 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3536                                           u64 min_size, u64 alignment,
3537                                           unsigned cache_level,
3538                                           u64 start, u64 end,
3539                                           unsigned flags);
3540 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3541                                          struct drm_mm_node *node,
3542                                          unsigned int flags);
3543 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3544
3545 /* belongs in i915_gem_gtt.h */
3546 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3547 {
3548         wmb();
3549         if (INTEL_GEN(dev_priv) < 6)
3550                 intel_gtt_chipset_flush();
3551 }
3552
3553 /* i915_gem_stolen.c */
3554 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3555                                 struct drm_mm_node *node, u64 size,
3556                                 unsigned alignment);
3557 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3558                                          struct drm_mm_node *node, u64 size,
3559                                          unsigned alignment, u64 start,
3560                                          u64 end);
3561 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3562                                  struct drm_mm_node *node);
3563 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3564 void i915_gem_cleanup_stolen(struct drm_device *dev);
3565 struct drm_i915_gem_object *
3566 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3567 struct drm_i915_gem_object *
3568 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3569                                                u32 stolen_offset,
3570                                                u32 gtt_offset,
3571                                                u32 size);
3572
3573 /* i915_gem_internal.c */
3574 struct drm_i915_gem_object *
3575 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3576                                 phys_addr_t size);
3577
3578 /* i915_gem_shrinker.c */
3579 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3580                               unsigned long target,
3581                               unsigned flags);
3582 #define I915_SHRINK_PURGEABLE 0x1
3583 #define I915_SHRINK_UNBOUND 0x2
3584 #define I915_SHRINK_BOUND 0x4
3585 #define I915_SHRINK_ACTIVE 0x8
3586 #define I915_SHRINK_VMAPS 0x10
3587 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3588 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3589 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3590
3591
3592 /* i915_gem_tiling.c */
3593 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3594 {
3595         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3596
3597         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3598                 i915_gem_object_is_tiled(obj);
3599 }
3600
3601 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3602                         unsigned int tiling, unsigned int stride);
3603 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3604                              unsigned int tiling, unsigned int stride);
3605
3606 /* i915_debugfs.c */
3607 #ifdef CONFIG_DEBUG_FS
3608 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3609 int i915_debugfs_connector_add(struct drm_connector *connector);
3610 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3611 #else
3612 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3613 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3614 { return 0; }
3615 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3616 #endif
3617
3618 /* i915_gpu_error.c */
3619 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3620
3621 __printf(2, 3)
3622 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3623 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3624                             const struct i915_gpu_state *gpu);
3625 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3626                               struct drm_i915_private *i915,
3627                               size_t count, loff_t pos);
3628 static inline void i915_error_state_buf_release(
3629         struct drm_i915_error_state_buf *eb)
3630 {
3631         kfree(eb->buf);
3632 }
3633
3634 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3635 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3636                               u32 engine_mask,
3637                               const char *error_msg);
3638
3639 static inline struct i915_gpu_state *
3640 i915_gpu_state_get(struct i915_gpu_state *gpu)
3641 {
3642         kref_get(&gpu->ref);
3643         return gpu;
3644 }
3645
3646 void __i915_gpu_state_free(struct kref *kref);
3647 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3648 {
3649         if (gpu)
3650                 kref_put(&gpu->ref, __i915_gpu_state_free);
3651 }
3652
3653 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3654 void i915_reset_error_state(struct drm_i915_private *i915);
3655
3656 #else
3657
3658 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3659                                             u32 engine_mask,
3660                                             const char *error_msg)
3661 {
3662 }
3663
3664 static inline struct i915_gpu_state *
3665 i915_first_error_state(struct drm_i915_private *i915)
3666 {
3667         return NULL;
3668 }
3669
3670 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3671 {
3672 }
3673
3674 #endif
3675
3676 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3677
3678 /* i915_cmd_parser.c */
3679 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3680 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3681 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3682 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3683                             struct drm_i915_gem_object *batch_obj,
3684                             struct drm_i915_gem_object *shadow_batch_obj,
3685                             u32 batch_start_offset,
3686                             u32 batch_len,
3687                             bool is_master);
3688
3689 /* i915_perf.c */
3690 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3691 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3692 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3693 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3694
3695 /* i915_suspend.c */
3696 extern int i915_save_state(struct drm_i915_private *dev_priv);
3697 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3698
3699 /* i915_sysfs.c */
3700 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3701 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3702
3703 /* intel_lpe_audio.c */
3704 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3705 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3706 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3707 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3708                             enum pipe pipe, enum port port,
3709                             const void *eld, int ls_clock, bool dp_output);
3710
3711 /* intel_i2c.c */
3712 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3713 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3714 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3715                                      unsigned int pin);
3716
3717 extern struct i2c_adapter *
3718 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3719 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3720 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3721 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3722 {
3723         return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3724 }
3725 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3726
3727 /* intel_bios.c */
3728 void intel_bios_init(struct drm_i915_private *dev_priv);
3729 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3730 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3731 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3732 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3733 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3734 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3735 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3736 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3737                                      enum port port);
3738 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3739                                 enum port port);
3740
3741
3742 /* intel_opregion.c */
3743 #ifdef CONFIG_ACPI
3744 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3745 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3746 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3747 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3748 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3749                                          bool enable);
3750 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3751                                          pci_power_t state);
3752 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3753 #else
3754 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3755 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3756 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3757 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3758 {
3759 }
3760 static inline int
3761 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3762 {
3763         return 0;
3764 }
3765 static inline int
3766 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3767 {
3768         return 0;
3769 }
3770 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3771 {
3772         return -ENODEV;
3773 }
3774 #endif
3775
3776 /* intel_acpi.c */
3777 #ifdef CONFIG_ACPI
3778 extern void intel_register_dsm_handler(void);
3779 extern void intel_unregister_dsm_handler(void);
3780 #else
3781 static inline void intel_register_dsm_handler(void) { return; }
3782 static inline void intel_unregister_dsm_handler(void) { return; }
3783 #endif /* CONFIG_ACPI */
3784
3785 /* intel_device_info.c */
3786 static inline struct intel_device_info *
3787 mkwrite_device_info(struct drm_i915_private *dev_priv)
3788 {
3789         return (struct intel_device_info *)&dev_priv->info;
3790 }
3791
3792 const char *intel_platform_name(enum intel_platform platform);
3793 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3794 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3795
3796 /* modesetting */
3797 extern void intel_modeset_init_hw(struct drm_device *dev);
3798 extern int intel_modeset_init(struct drm_device *dev);
3799 extern void intel_modeset_gem_init(struct drm_device *dev);
3800 extern void intel_modeset_cleanup(struct drm_device *dev);
3801 extern int intel_connector_register(struct drm_connector *);
3802 extern void intel_connector_unregister(struct drm_connector *);
3803 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3804                                        bool state);
3805 extern void intel_display_resume(struct drm_device *dev);
3806 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3807 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3808 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3809 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3810 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3811 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3812                                   bool enable);
3813
3814 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3815                         struct drm_file *file);
3816
3817 /* overlay */
3818 extern struct intel_overlay_error_state *
3819 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3820 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3821                                             struct intel_overlay_error_state *error);
3822
3823 extern struct intel_display_error_state *
3824 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3825 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3826                                             struct intel_display_error_state *error);
3827
3828 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3829 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3830 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3831                       u32 reply_mask, u32 reply, int timeout_base_ms);
3832
3833 /* intel_sideband.c */
3834 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3835 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3836 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3837 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3838 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3839 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3840 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3841 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3842 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3843 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3844 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3845 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3846 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3847 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3848                    enum intel_sbi_destination destination);
3849 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3850                      enum intel_sbi_destination destination);
3851 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3852 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3853
3854 /* intel_dpio_phy.c */
3855 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3856                              enum dpio_phy *phy, enum dpio_channel *ch);
3857 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3858                                   enum port port, u32 margin, u32 scale,
3859                                   u32 enable, u32 deemphasis);
3860 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3861 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3862 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3863                             enum dpio_phy phy);
3864 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3865                               enum dpio_phy phy);
3866 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3867                                              uint8_t lane_count);
3868 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3869                                      uint8_t lane_lat_optim_mask);
3870 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3871
3872 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3873                               u32 deemph_reg_value, u32 margin_reg_value,
3874                               bool uniq_trans_scale);
3875 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3876                               bool reset);
3877 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3878 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3879 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3880 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3881
3882 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3883                               u32 demph_reg_value, u32 preemph_reg_value,
3884                               u32 uniqtranscale_reg_value, u32 tx3_demph);
3885 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3886 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3887 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3888
3889 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3890 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3891 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3892                            const i915_reg_t reg);
3893
3894 #define I915_READ8(reg)         dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3895 #define I915_WRITE8(reg, val)   dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3896
3897 #define I915_READ16(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3898 #define I915_WRITE16(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3899 #define I915_READ16_NOTRACE(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3900 #define I915_WRITE16_NOTRACE(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3901
3902 #define I915_READ(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3903 #define I915_WRITE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3904 #define I915_READ_NOTRACE(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3905 #define I915_WRITE_NOTRACE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3906
3907 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3908  * will be implemented using 2 32-bit writes in an arbitrary order with
3909  * an arbitrary delay between them. This can cause the hardware to
3910  * act upon the intermediate value, possibly leading to corruption and
3911  * machine death. For this reason we do not support I915_WRITE64, or
3912  * dev_priv->uncore.funcs.mmio_writeq.
3913  *
3914  * When reading a 64-bit value as two 32-bit values, the delay may cause
3915  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3916  * occasionally a 64-bit register does not actualy support a full readq
3917  * and must be read using two 32-bit reads.
3918  *
3919  * You have been warned.
3920  */
3921 #define I915_READ64(reg)        dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3922
3923 #define I915_READ64_2x32(lower_reg, upper_reg) ({                       \
3924         u32 upper, lower, old_upper, loop = 0;                          \
3925         upper = I915_READ(upper_reg);                                   \
3926         do {                                                            \
3927                 old_upper = upper;                                      \
3928                 lower = I915_READ(lower_reg);                           \
3929                 upper = I915_READ(upper_reg);                           \
3930         } while (upper != old_upper && loop++ < 2);                     \
3931         (u64)upper << 32 | lower; })
3932
3933 #define POSTING_READ(reg)       (void)I915_READ_NOTRACE(reg)
3934 #define POSTING_READ16(reg)     (void)I915_READ16_NOTRACE(reg)
3935
3936 #define __raw_read(x, s) \
3937 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3938                                              i915_reg_t reg) \
3939 { \
3940         return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3941 }
3942
3943 #define __raw_write(x, s) \
3944 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3945                                        i915_reg_t reg, uint##x##_t val) \
3946 { \
3947         write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3948 }
3949 __raw_read(8, b)
3950 __raw_read(16, w)
3951 __raw_read(32, l)
3952 __raw_read(64, q)
3953
3954 __raw_write(8, b)
3955 __raw_write(16, w)
3956 __raw_write(32, l)
3957 __raw_write(64, q)
3958
3959 #undef __raw_read
3960 #undef __raw_write
3961
3962 /* These are untraced mmio-accessors that are only valid to be used inside
3963  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3964  * controlled.
3965  *
3966  * Think twice, and think again, before using these.
3967  *
3968  * As an example, these accessors can possibly be used between:
3969  *
3970  * spin_lock_irq(&dev_priv->uncore.lock);
3971  * intel_uncore_forcewake_get__locked();
3972  *
3973  * and
3974  *
3975  * intel_uncore_forcewake_put__locked();
3976  * spin_unlock_irq(&dev_priv->uncore.lock);
3977  *
3978  *
3979  * Note: some registers may not need forcewake held, so
3980  * intel_uncore_forcewake_{get,put} can be omitted, see
3981  * intel_uncore_forcewake_for_reg().
3982  *
3983  * Certain architectures will die if the same cacheline is concurrently accessed
3984  * by different clients (e.g. on Ivybridge). Access to registers should
3985  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3986  * a more localised lock guarding all access to that bank of registers.
3987  */
3988 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3989 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3990 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3991 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3992
3993 /* "Broadcast RGB" property */
3994 #define INTEL_BROADCAST_RGB_AUTO 0
3995 #define INTEL_BROADCAST_RGB_FULL 1
3996 #define INTEL_BROADCAST_RGB_LIMITED 2
3997
3998 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3999 {
4000         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4001                 return VLV_VGACNTRL;
4002         else if (INTEL_GEN(dev_priv) >= 5)
4003                 return CPU_VGACNTRL;
4004         else
4005                 return VGACNTRL;
4006 }
4007
4008 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4009 {
4010         unsigned long j = msecs_to_jiffies(m);
4011
4012         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4013 }
4014
4015 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4016 {
4017         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4018 }
4019
4020 static inline unsigned long
4021 timespec_to_jiffies_timeout(const struct timespec *value)
4022 {
4023         unsigned long j = timespec_to_jiffies(value);
4024
4025         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4026 }
4027
4028 /*
4029  * If you need to wait X milliseconds between events A and B, but event B
4030  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4031  * when event A happened, then just before event B you call this function and
4032  * pass the timestamp as the first argument, and X as the second argument.
4033  */
4034 static inline void
4035 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4036 {
4037         unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4038
4039         /*
4040          * Don't re-read the value of "jiffies" every time since it may change
4041          * behind our back and break the math.
4042          */
4043         tmp_jiffies = jiffies;
4044         target_jiffies = timestamp_jiffies +
4045                          msecs_to_jiffies_timeout(to_wait_ms);
4046
4047         if (time_after(target_jiffies, tmp_jiffies)) {
4048                 remaining_jiffies = target_jiffies - tmp_jiffies;
4049                 while (remaining_jiffies)
4050                         remaining_jiffies =
4051                             schedule_timeout_uninterruptible(remaining_jiffies);
4052         }
4053 }
4054
4055 static inline bool
4056 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4057 {
4058         struct intel_engine_cs *engine = req->engine;
4059         u32 seqno;
4060
4061         /* Note that the engine may have wrapped around the seqno, and
4062          * so our request->global_seqno will be ahead of the hardware,
4063          * even though it completed the request before wrapping. We catch
4064          * this by kicking all the waiters before resetting the seqno
4065          * in hardware, and also signal the fence.
4066          */
4067         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4068                 return true;
4069
4070         /* The request was dequeued before we were awoken. We check after
4071          * inspecting the hw to confirm that this was the same request
4072          * that generated the HWS update. The memory barriers within
4073          * the request execution are sufficient to ensure that a check
4074          * after reading the value from hw matches this request.
4075          */
4076         seqno = i915_gem_request_global_seqno(req);
4077         if (!seqno)
4078                 return false;
4079
4080         /* Before we do the heavier coherent read of the seqno,
4081          * check the value (hopefully) in the CPU cacheline.
4082          */
4083         if (__i915_gem_request_completed(req, seqno))
4084                 return true;
4085
4086         /* Ensure our read of the seqno is coherent so that we
4087          * do not "miss an interrupt" (i.e. if this is the last
4088          * request and the seqno write from the GPU is not visible
4089          * by the time the interrupt fires, we will see that the
4090          * request is incomplete and go back to sleep awaiting
4091          * another interrupt that will never come.)
4092          *
4093          * Strictly, we only need to do this once after an interrupt,
4094          * but it is easier and safer to do it every time the waiter
4095          * is woken.
4096          */
4097         if (engine->irq_seqno_barrier &&
4098             test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4099                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4100
4101                 /* The ordering of irq_posted versus applying the barrier
4102                  * is crucial. The clearing of the current irq_posted must
4103                  * be visible before we perform the barrier operation,
4104                  * such that if a subsequent interrupt arrives, irq_posted
4105                  * is reasserted and our task rewoken (which causes us to
4106                  * do another __i915_request_irq_complete() immediately
4107                  * and reapply the barrier). Conversely, if the clear
4108                  * occurs after the barrier, then an interrupt that arrived
4109                  * whilst we waited on the barrier would not trigger a
4110                  * barrier on the next pass, and the read may not see the
4111                  * seqno update.
4112                  */
4113                 engine->irq_seqno_barrier(engine);
4114
4115                 /* If we consume the irq, but we are no longer the bottom-half,
4116                  * the real bottom-half may not have serialised their own
4117                  * seqno check with the irq-barrier (i.e. may have inspected
4118                  * the seqno before we believe it coherent since they see
4119                  * irq_posted == false but we are still running).
4120                  */
4121                 spin_lock_irq(&b->irq_lock);
4122                 if (b->irq_wait && b->irq_wait->tsk != current)
4123                         /* Note that if the bottom-half is changed as we
4124                          * are sending the wake-up, the new bottom-half will
4125                          * be woken by whomever made the change. We only have
4126                          * to worry about when we steal the irq-posted for
4127                          * ourself.
4128                          */
4129                         wake_up_process(b->irq_wait->tsk);
4130                 spin_unlock_irq(&b->irq_lock);
4131
4132                 if (__i915_gem_request_completed(req, seqno))
4133                         return true;
4134         }
4135
4136         return false;
4137 }
4138
4139 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4140 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4141
4142 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4143  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4144  * perform the operation. To check beforehand, pass in the parameters to
4145  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4146  * you only need to pass in the minor offsets, page-aligned pointers are
4147  * always valid.
4148  *
4149  * For just checking for SSE4.1, in the foreknowledge that the future use
4150  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4151  */
4152 #define i915_can_memcpy_from_wc(dst, src, len) \
4153         i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4154
4155 #define i915_has_memcpy_from_wc() \
4156         i915_memcpy_from_wc(NULL, NULL, 0)
4157
4158 /* i915_mm.c */
4159 int remap_io_mapping(struct vm_area_struct *vma,
4160                      unsigned long addr, unsigned long pfn, unsigned long size,
4161                      struct io_mapping *iomap);
4162
4163 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj)
4164 {
4165         return (obj->cache_level != I915_CACHE_NONE ||
4166                 HAS_LLC(to_i915(obj->base.dev)));
4167 }
4168
4169 #endif