]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge branch 'drm-nouveau-fixes' of git://anongit.freedesktop.org/git/nouveau/linux...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44                                                     unsigned alignment,
45                                                     bool map_and_fenceable);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47                                 struct drm_i915_gem_object *obj,
48                                 struct drm_i915_gem_pwrite *args,
49                                 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52                                  struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54                                          struct drm_i915_fence_reg *fence,
55                                          bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58                                     struct shrink_control *sc);
59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60
61 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62 {
63         if (obj->tiling_mode)
64                 i915_gem_release_mmap(obj);
65
66         /* As we do not have an associated fence register, we will force
67          * a tiling change if we ever need to acquire one.
68          */
69         obj->fence_dirty = false;
70         obj->fence_reg = I915_FENCE_REG_NONE;
71 }
72
73 /* some bookkeeping */
74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75                                   size_t size)
76 {
77         dev_priv->mm.object_count++;
78         dev_priv->mm.object_memory += size;
79 }
80
81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82                                      size_t size)
83 {
84         dev_priv->mm.object_count--;
85         dev_priv->mm.object_memory -= size;
86 }
87
88 static int
89 i915_gem_wait_for_error(struct drm_device *dev)
90 {
91         struct drm_i915_private *dev_priv = dev->dev_private;
92         struct completion *x = &dev_priv->error_completion;
93         unsigned long flags;
94         int ret;
95
96         if (!atomic_read(&dev_priv->mm.wedged))
97                 return 0;
98
99         /*
100          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101          * userspace. If it takes that long something really bad is going on and
102          * we should simply try to bail out and fail as gracefully as possible.
103          */
104         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
105         if (ret == 0) {
106                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
107                 return -EIO;
108         } else if (ret < 0) {
109                 return ret;
110         }
111
112         if (atomic_read(&dev_priv->mm.wedged)) {
113                 /* GPU is hung, bump the completion count to account for
114                  * the token we just consumed so that we never hit zero and
115                  * end up waiting upon a subsequent completion event that
116                  * will never happen.
117                  */
118                 spin_lock_irqsave(&x->wait.lock, flags);
119                 x->done++;
120                 spin_unlock_irqrestore(&x->wait.lock, flags);
121         }
122         return 0;
123 }
124
125 int i915_mutex_lock_interruptible(struct drm_device *dev)
126 {
127         int ret;
128
129         ret = i915_gem_wait_for_error(dev);
130         if (ret)
131                 return ret;
132
133         ret = mutex_lock_interruptible(&dev->struct_mutex);
134         if (ret)
135                 return ret;
136
137         WARN_ON(i915_verify_lists(dev));
138         return 0;
139 }
140
141 static inline bool
142 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
143 {
144         return !obj->active;
145 }
146
147 int
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149                     struct drm_file *file)
150 {
151         struct drm_i915_gem_init *args = data;
152
153         if (drm_core_check_feature(dev, DRIVER_MODESET))
154                 return -ENODEV;
155
156         if (args->gtt_start >= args->gtt_end ||
157             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
158                 return -EINVAL;
159
160         /* GEM with user mode setting was never supported on ilk and later. */
161         if (INTEL_INFO(dev)->gen >= 5)
162                 return -ENODEV;
163
164         mutex_lock(&dev->struct_mutex);
165         i915_gem_init_global_gtt(dev, args->gtt_start,
166                                  args->gtt_end, args->gtt_end);
167         mutex_unlock(&dev->struct_mutex);
168
169         return 0;
170 }
171
172 int
173 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174                             struct drm_file *file)
175 {
176         struct drm_i915_private *dev_priv = dev->dev_private;
177         struct drm_i915_gem_get_aperture *args = data;
178         struct drm_i915_gem_object *obj;
179         size_t pinned;
180
181         pinned = 0;
182         mutex_lock(&dev->struct_mutex);
183         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
184                 if (obj->pin_count)
185                         pinned += obj->gtt_space->size;
186         mutex_unlock(&dev->struct_mutex);
187
188         args->aper_size = dev_priv->mm.gtt_total;
189         args->aper_available_size = args->aper_size - pinned;
190
191         return 0;
192 }
193
194 static int
195 i915_gem_create(struct drm_file *file,
196                 struct drm_device *dev,
197                 uint64_t size,
198                 uint32_t *handle_p)
199 {
200         struct drm_i915_gem_object *obj;
201         int ret;
202         u32 handle;
203
204         size = roundup(size, PAGE_SIZE);
205         if (size == 0)
206                 return -EINVAL;
207
208         /* Allocate the new object */
209         obj = i915_gem_alloc_object(dev, size);
210         if (obj == NULL)
211                 return -ENOMEM;
212
213         ret = drm_gem_handle_create(file, &obj->base, &handle);
214         if (ret) {
215                 drm_gem_object_release(&obj->base);
216                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
217                 kfree(obj);
218                 return ret;
219         }
220
221         /* drop reference from allocate - handle holds it now */
222         drm_gem_object_unreference(&obj->base);
223         trace_i915_gem_object_create(obj);
224
225         *handle_p = handle;
226         return 0;
227 }
228
229 int
230 i915_gem_dumb_create(struct drm_file *file,
231                      struct drm_device *dev,
232                      struct drm_mode_create_dumb *args)
233 {
234         /* have to work out size/pitch and return them */
235         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
236         args->size = args->pitch * args->height;
237         return i915_gem_create(file, dev,
238                                args->size, &args->handle);
239 }
240
241 int i915_gem_dumb_destroy(struct drm_file *file,
242                           struct drm_device *dev,
243                           uint32_t handle)
244 {
245         return drm_gem_handle_delete(file, handle);
246 }
247
248 /**
249  * Creates a new mm object and returns a handle to it.
250  */
251 int
252 i915_gem_create_ioctl(struct drm_device *dev, void *data,
253                       struct drm_file *file)
254 {
255         struct drm_i915_gem_create *args = data;
256
257         return i915_gem_create(file, dev,
258                                args->size, &args->handle);
259 }
260
261 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
262 {
263         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
264
265         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
266                 obj->tiling_mode != I915_TILING_NONE;
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271                         const char *gpu_vaddr, int gpu_offset,
272                         int length)
273 {
274         int ret, cpu_offset = 0;
275
276         while (length > 0) {
277                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278                 int this_length = min(cacheline_end - gpu_offset, length);
279                 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282                                      gpu_vaddr + swizzled_gpu_offset,
283                                      this_length);
284                 if (ret)
285                         return ret + length;
286
287                 cpu_offset += this_length;
288                 gpu_offset += this_length;
289                 length -= this_length;
290         }
291
292         return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297                           const char __user *cpu_vaddr,
298                           int length)
299 {
300         int ret, cpu_offset = 0;
301
302         while (length > 0) {
303                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304                 int this_length = min(cacheline_end - gpu_offset, length);
305                 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308                                        cpu_vaddr + cpu_offset,
309                                        this_length);
310                 if (ret)
311                         return ret + length;
312
313                 cpu_offset += this_length;
314                 gpu_offset += this_length;
315                 length -= this_length;
316         }
317
318         return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326                  char __user *user_data,
327                  bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329         char *vaddr;
330         int ret;
331
332         if (unlikely(page_do_bit17_swizzling))
333                 return -EINVAL;
334
335         vaddr = kmap_atomic(page);
336         if (needs_clflush)
337                 drm_clflush_virt_range(vaddr + shmem_page_offset,
338                                        page_length);
339         ret = __copy_to_user_inatomic(user_data,
340                                       vaddr + shmem_page_offset,
341                                       page_length);
342         kunmap_atomic(vaddr);
343
344         return ret;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349                              bool swizzled)
350 {
351         if (unlikely(swizzled)) {
352                 unsigned long start = (unsigned long) addr;
353                 unsigned long end = (unsigned long) addr + length;
354
355                 /* For swizzling simply ensure that we always flush both
356                  * channels. Lame, but simple and it works. Swizzled
357                  * pwrite/pread is far from a hotpath - current userspace
358                  * doesn't use it at all. */
359                 start = round_down(start, 128);
360                 end = round_up(end, 128);
361
362                 drm_clflush_virt_range((void *)start, end - start);
363         } else {
364                 drm_clflush_virt_range(addr, length);
365         }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373                  char __user *user_data,
374                  bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376         char *vaddr;
377         int ret;
378
379         vaddr = kmap(page);
380         if (needs_clflush)
381                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382                                              page_length,
383                                              page_do_bit17_swizzling);
384
385         if (page_do_bit17_swizzling)
386                 ret = __copy_to_user_swizzled(user_data,
387                                               vaddr, shmem_page_offset,
388                                               page_length);
389         else
390                 ret = __copy_to_user(user_data,
391                                      vaddr + shmem_page_offset,
392                                      page_length);
393         kunmap(page);
394
395         return ret;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400                      struct drm_i915_gem_object *obj,
401                      struct drm_i915_gem_pread *args,
402                      struct drm_file *file)
403 {
404         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
405         char __user *user_data;
406         ssize_t remain;
407         loff_t offset;
408         int shmem_page_offset, page_length, ret = 0;
409         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410         int hit_slowpath = 0;
411         int prefaulted = 0;
412         int needs_clflush = 0;
413         int release_page;
414
415         user_data = (char __user *) (uintptr_t) args->data_ptr;
416         remain = args->size;
417
418         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
419
420         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
421                 /* If we're not in the cpu read domain, set ourself into the gtt
422                  * read domain and manually flush cachelines (if required). This
423                  * optimizes for the case when the gpu will dirty the data
424                  * anyway again before the next pread happens. */
425                 if (obj->cache_level == I915_CACHE_NONE)
426                         needs_clflush = 1;
427                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
428                 if (ret)
429                         return ret;
430         }
431
432         offset = args->offset;
433
434         while (remain > 0) {
435                 struct page *page;
436
437                 /* Operation in this page
438                  *
439                  * shmem_page_offset = offset within page in shmem file
440                  * page_length = bytes to copy for this page
441                  */
442                 shmem_page_offset = offset_in_page(offset);
443                 page_length = remain;
444                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
445                         page_length = PAGE_SIZE - shmem_page_offset;
446
447                 if (obj->pages) {
448                         page = obj->pages[offset >> PAGE_SHIFT];
449                         release_page = 0;
450                 } else {
451                         page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
452                         if (IS_ERR(page)) {
453                                 ret = PTR_ERR(page);
454                                 goto out;
455                         }
456                         release_page = 1;
457                 }
458
459                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
460                         (page_to_phys(page) & (1 << 17)) != 0;
461
462                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
463                                        user_data, page_do_bit17_swizzling,
464                                        needs_clflush);
465                 if (ret == 0)
466                         goto next_page;
467
468                 hit_slowpath = 1;
469                 page_cache_get(page);
470                 mutex_unlock(&dev->struct_mutex);
471
472                 if (!prefaulted) {
473                         ret = fault_in_multipages_writeable(user_data, remain);
474                         /* Userspace is tricking us, but we've already clobbered
475                          * its pages with the prefault and promised to write the
476                          * data up to the first fault. Hence ignore any errors
477                          * and just continue. */
478                         (void)ret;
479                         prefaulted = 1;
480                 }
481
482                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
483                                        user_data, page_do_bit17_swizzling,
484                                        needs_clflush);
485
486                 mutex_lock(&dev->struct_mutex);
487                 page_cache_release(page);
488 next_page:
489                 mark_page_accessed(page);
490                 if (release_page)
491                         page_cache_release(page);
492
493                 if (ret) {
494                         ret = -EFAULT;
495                         goto out;
496                 }
497
498                 remain -= page_length;
499                 user_data += page_length;
500                 offset += page_length;
501         }
502
503 out:
504         if (hit_slowpath) {
505                 /* Fixup: Kill any reinstated backing storage pages */
506                 if (obj->madv == __I915_MADV_PURGED)
507                         i915_gem_object_truncate(obj);
508         }
509
510         return ret;
511 }
512
513 /**
514  * Reads data from the object referenced by handle.
515  *
516  * On error, the contents of *data are undefined.
517  */
518 int
519 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
520                      struct drm_file *file)
521 {
522         struct drm_i915_gem_pread *args = data;
523         struct drm_i915_gem_object *obj;
524         int ret = 0;
525
526         if (args->size == 0)
527                 return 0;
528
529         if (!access_ok(VERIFY_WRITE,
530                        (char __user *)(uintptr_t)args->data_ptr,
531                        args->size))
532                 return -EFAULT;
533
534         ret = i915_mutex_lock_interruptible(dev);
535         if (ret)
536                 return ret;
537
538         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539         if (&obj->base == NULL) {
540                 ret = -ENOENT;
541                 goto unlock;
542         }
543
544         /* Bounds check source.  */
545         if (args->offset > obj->base.size ||
546             args->size > obj->base.size - args->offset) {
547                 ret = -EINVAL;
548                 goto out;
549         }
550
551         /* prime objects have no backing filp to GEM pread/pwrite
552          * pages from.
553          */
554         if (!obj->base.filp) {
555                 ret = -EINVAL;
556                 goto out;
557         }
558
559         trace_i915_gem_object_pread(obj, args->offset, args->size);
560
561         ret = i915_gem_shmem_pread(dev, obj, args, file);
562
563 out:
564         drm_gem_object_unreference(&obj->base);
565 unlock:
566         mutex_unlock(&dev->struct_mutex);
567         return ret;
568 }
569
570 /* This is the fast write path which cannot handle
571  * page faults in the source data
572  */
573
574 static inline int
575 fast_user_write(struct io_mapping *mapping,
576                 loff_t page_base, int page_offset,
577                 char __user *user_data,
578                 int length)
579 {
580         void __iomem *vaddr_atomic;
581         void *vaddr;
582         unsigned long unwritten;
583
584         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585         /* We can use the cpu mem copy function because this is X86. */
586         vaddr = (void __force*)vaddr_atomic + page_offset;
587         unwritten = __copy_from_user_inatomic_nocache(vaddr,
588                                                       user_data, length);
589         io_mapping_unmap_atomic(vaddr_atomic);
590         return unwritten;
591 }
592
593 /**
594  * This is the fast pwrite path, where we copy the data directly from the
595  * user into the GTT, uncached.
596  */
597 static int
598 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
599                          struct drm_i915_gem_object *obj,
600                          struct drm_i915_gem_pwrite *args,
601                          struct drm_file *file)
602 {
603         drm_i915_private_t *dev_priv = dev->dev_private;
604         ssize_t remain;
605         loff_t offset, page_base;
606         char __user *user_data;
607         int page_offset, page_length, ret;
608
609         ret = i915_gem_object_pin(obj, 0, true);
610         if (ret)
611                 goto out;
612
613         ret = i915_gem_object_set_to_gtt_domain(obj, true);
614         if (ret)
615                 goto out_unpin;
616
617         ret = i915_gem_object_put_fence(obj);
618         if (ret)
619                 goto out_unpin;
620
621         user_data = (char __user *) (uintptr_t) args->data_ptr;
622         remain = args->size;
623
624         offset = obj->gtt_offset + args->offset;
625
626         while (remain > 0) {
627                 /* Operation in this page
628                  *
629                  * page_base = page offset within aperture
630                  * page_offset = offset within page
631                  * page_length = bytes to copy for this page
632                  */
633                 page_base = offset & PAGE_MASK;
634                 page_offset = offset_in_page(offset);
635                 page_length = remain;
636                 if ((page_offset + remain) > PAGE_SIZE)
637                         page_length = PAGE_SIZE - page_offset;
638
639                 /* If we get a fault while copying data, then (presumably) our
640                  * source page isn't available.  Return the error and we'll
641                  * retry in the slow path.
642                  */
643                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
644                                     page_offset, user_data, page_length)) {
645                         ret = -EFAULT;
646                         goto out_unpin;
647                 }
648
649                 remain -= page_length;
650                 user_data += page_length;
651                 offset += page_length;
652         }
653
654 out_unpin:
655         i915_gem_object_unpin(obj);
656 out:
657         return ret;
658 }
659
660 /* Per-page copy function for the shmem pwrite fastpath.
661  * Flushes invalid cachelines before writing to the target if
662  * needs_clflush_before is set and flushes out any written cachelines after
663  * writing if needs_clflush is set. */
664 static int
665 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
666                   char __user *user_data,
667                   bool page_do_bit17_swizzling,
668                   bool needs_clflush_before,
669                   bool needs_clflush_after)
670 {
671         char *vaddr;
672         int ret;
673
674         if (unlikely(page_do_bit17_swizzling))
675                 return -EINVAL;
676
677         vaddr = kmap_atomic(page);
678         if (needs_clflush_before)
679                 drm_clflush_virt_range(vaddr + shmem_page_offset,
680                                        page_length);
681         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
682                                                 user_data,
683                                                 page_length);
684         if (needs_clflush_after)
685                 drm_clflush_virt_range(vaddr + shmem_page_offset,
686                                        page_length);
687         kunmap_atomic(vaddr);
688
689         return ret;
690 }
691
692 /* Only difference to the fast-path function is that this can handle bit17
693  * and uses non-atomic copy and kmap functions. */
694 static int
695 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
696                   char __user *user_data,
697                   bool page_do_bit17_swizzling,
698                   bool needs_clflush_before,
699                   bool needs_clflush_after)
700 {
701         char *vaddr;
702         int ret;
703
704         vaddr = kmap(page);
705         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
706                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707                                              page_length,
708                                              page_do_bit17_swizzling);
709         if (page_do_bit17_swizzling)
710                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
711                                                 user_data,
712                                                 page_length);
713         else
714                 ret = __copy_from_user(vaddr + shmem_page_offset,
715                                        user_data,
716                                        page_length);
717         if (needs_clflush_after)
718                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
719                                              page_length,
720                                              page_do_bit17_swizzling);
721         kunmap(page);
722
723         return ret;
724 }
725
726 static int
727 i915_gem_shmem_pwrite(struct drm_device *dev,
728                       struct drm_i915_gem_object *obj,
729                       struct drm_i915_gem_pwrite *args,
730                       struct drm_file *file)
731 {
732         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
733         ssize_t remain;
734         loff_t offset;
735         char __user *user_data;
736         int shmem_page_offset, page_length, ret = 0;
737         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738         int hit_slowpath = 0;
739         int needs_clflush_after = 0;
740         int needs_clflush_before = 0;
741         int release_page;
742
743         user_data = (char __user *) (uintptr_t) args->data_ptr;
744         remain = args->size;
745
746         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
747
748         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
749                 /* If we're not in the cpu write domain, set ourself into the gtt
750                  * write domain and manually flush cachelines (if required). This
751                  * optimizes for the case when the gpu will use the data
752                  * right away and we therefore have to clflush anyway. */
753                 if (obj->cache_level == I915_CACHE_NONE)
754                         needs_clflush_after = 1;
755                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
756                 if (ret)
757                         return ret;
758         }
759         /* Same trick applies for invalidate partially written cachelines before
760          * writing.  */
761         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
762             && obj->cache_level == I915_CACHE_NONE)
763                 needs_clflush_before = 1;
764
765         offset = args->offset;
766         obj->dirty = 1;
767
768         while (remain > 0) {
769                 struct page *page;
770                 int partial_cacheline_write;
771
772                 /* Operation in this page
773                  *
774                  * shmem_page_offset = offset within page in shmem file
775                  * page_length = bytes to copy for this page
776                  */
777                 shmem_page_offset = offset_in_page(offset);
778
779                 page_length = remain;
780                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781                         page_length = PAGE_SIZE - shmem_page_offset;
782
783                 /* If we don't overwrite a cacheline completely we need to be
784                  * careful to have up-to-date data by first clflushing. Don't
785                  * overcomplicate things and flush the entire patch. */
786                 partial_cacheline_write = needs_clflush_before &&
787                         ((shmem_page_offset | page_length)
788                                 & (boot_cpu_data.x86_clflush_size - 1));
789
790                 if (obj->pages) {
791                         page = obj->pages[offset >> PAGE_SHIFT];
792                         release_page = 0;
793                 } else {
794                         page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
795                         if (IS_ERR(page)) {
796                                 ret = PTR_ERR(page);
797                                 goto out;
798                         }
799                         release_page = 1;
800                 }
801
802                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803                         (page_to_phys(page) & (1 << 17)) != 0;
804
805                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806                                         user_data, page_do_bit17_swizzling,
807                                         partial_cacheline_write,
808                                         needs_clflush_after);
809                 if (ret == 0)
810                         goto next_page;
811
812                 hit_slowpath = 1;
813                 page_cache_get(page);
814                 mutex_unlock(&dev->struct_mutex);
815
816                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
817                                         user_data, page_do_bit17_swizzling,
818                                         partial_cacheline_write,
819                                         needs_clflush_after);
820
821                 mutex_lock(&dev->struct_mutex);
822                 page_cache_release(page);
823 next_page:
824                 set_page_dirty(page);
825                 mark_page_accessed(page);
826                 if (release_page)
827                         page_cache_release(page);
828
829                 if (ret) {
830                         ret = -EFAULT;
831                         goto out;
832                 }
833
834                 remain -= page_length;
835                 user_data += page_length;
836                 offset += page_length;
837         }
838
839 out:
840         if (hit_slowpath) {
841                 /* Fixup: Kill any reinstated backing storage pages */
842                 if (obj->madv == __I915_MADV_PURGED)
843                         i915_gem_object_truncate(obj);
844                 /* and flush dirty cachelines in case the object isn't in the cpu write
845                  * domain anymore. */
846                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847                         i915_gem_clflush_object(obj);
848                         intel_gtt_chipset_flush();
849                 }
850         }
851
852         if (needs_clflush_after)
853                 intel_gtt_chipset_flush();
854
855         return ret;
856 }
857
858 /**
859  * Writes data to the object referenced by handle.
860  *
861  * On error, the contents of the buffer that were to be modified are undefined.
862  */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865                       struct drm_file *file)
866 {
867         struct drm_i915_gem_pwrite *args = data;
868         struct drm_i915_gem_object *obj;
869         int ret;
870
871         if (args->size == 0)
872                 return 0;
873
874         if (!access_ok(VERIFY_READ,
875                        (char __user *)(uintptr_t)args->data_ptr,
876                        args->size))
877                 return -EFAULT;
878
879         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880                                            args->size);
881         if (ret)
882                 return -EFAULT;
883
884         ret = i915_mutex_lock_interruptible(dev);
885         if (ret)
886                 return ret;
887
888         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889         if (&obj->base == NULL) {
890                 ret = -ENOENT;
891                 goto unlock;
892         }
893
894         /* Bounds check destination. */
895         if (args->offset > obj->base.size ||
896             args->size > obj->base.size - args->offset) {
897                 ret = -EINVAL;
898                 goto out;
899         }
900
901         /* prime objects have no backing filp to GEM pread/pwrite
902          * pages from.
903          */
904         if (!obj->base.filp) {
905                 ret = -EINVAL;
906                 goto out;
907         }
908
909         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911         ret = -EFAULT;
912         /* We can only do the GTT pwrite on untiled buffers, as otherwise
913          * it would end up going through the fenced access, and we'll get
914          * different detiling behavior between reading and writing.
915          * pread/pwrite currently are reading and writing from the CPU
916          * perspective, requiring manual detiling by the client.
917          */
918         if (obj->phys_obj) {
919                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920                 goto out;
921         }
922
923         if (obj->gtt_space &&
924             obj->cache_level == I915_CACHE_NONE &&
925             obj->tiling_mode == I915_TILING_NONE &&
926             obj->map_and_fenceable &&
927             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
928                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
929                 /* Note that the gtt paths might fail with non-page-backed user
930                  * pointers (e.g. gtt mappings when moving data between
931                  * textures). Fallback to the shmem path in that case. */
932         }
933
934         if (ret == -EFAULT)
935                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
936
937 out:
938         drm_gem_object_unreference(&obj->base);
939 unlock:
940         mutex_unlock(&dev->struct_mutex);
941         return ret;
942 }
943
944 /**
945  * Called when user space prepares to use an object with the CPU, either
946  * through the mmap ioctl's mapping or a GTT mapping.
947  */
948 int
949 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
950                           struct drm_file *file)
951 {
952         struct drm_i915_gem_set_domain *args = data;
953         struct drm_i915_gem_object *obj;
954         uint32_t read_domains = args->read_domains;
955         uint32_t write_domain = args->write_domain;
956         int ret;
957
958         /* Only handle setting domains to types used by the CPU. */
959         if (write_domain & I915_GEM_GPU_DOMAINS)
960                 return -EINVAL;
961
962         if (read_domains & I915_GEM_GPU_DOMAINS)
963                 return -EINVAL;
964
965         /* Having something in the write domain implies it's in the read
966          * domain, and only that read domain.  Enforce that in the request.
967          */
968         if (write_domain != 0 && read_domains != write_domain)
969                 return -EINVAL;
970
971         ret = i915_mutex_lock_interruptible(dev);
972         if (ret)
973                 return ret;
974
975         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
976         if (&obj->base == NULL) {
977                 ret = -ENOENT;
978                 goto unlock;
979         }
980
981         if (read_domains & I915_GEM_DOMAIN_GTT) {
982                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
983
984                 /* Silently promote "you're not bound, there was nothing to do"
985                  * to success, since the client was just asking us to
986                  * make sure everything was done.
987                  */
988                 if (ret == -EINVAL)
989                         ret = 0;
990         } else {
991                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
992         }
993
994         drm_gem_object_unreference(&obj->base);
995 unlock:
996         mutex_unlock(&dev->struct_mutex);
997         return ret;
998 }
999
1000 /**
1001  * Called when user space has done writes to this buffer
1002  */
1003 int
1004 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1005                          struct drm_file *file)
1006 {
1007         struct drm_i915_gem_sw_finish *args = data;
1008         struct drm_i915_gem_object *obj;
1009         int ret = 0;
1010
1011         ret = i915_mutex_lock_interruptible(dev);
1012         if (ret)
1013                 return ret;
1014
1015         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1016         if (&obj->base == NULL) {
1017                 ret = -ENOENT;
1018                 goto unlock;
1019         }
1020
1021         /* Pinned buffers may be scanout, so flush the cache */
1022         if (obj->pin_count)
1023                 i915_gem_object_flush_cpu_write_domain(obj);
1024
1025         drm_gem_object_unreference(&obj->base);
1026 unlock:
1027         mutex_unlock(&dev->struct_mutex);
1028         return ret;
1029 }
1030
1031 /**
1032  * Maps the contents of an object, returning the address it is mapped
1033  * into.
1034  *
1035  * While the mapping holds a reference on the contents of the object, it doesn't
1036  * imply a ref on the object itself.
1037  */
1038 int
1039 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1040                     struct drm_file *file)
1041 {
1042         struct drm_i915_gem_mmap *args = data;
1043         struct drm_gem_object *obj;
1044         unsigned long addr;
1045
1046         obj = drm_gem_object_lookup(dev, file, args->handle);
1047         if (obj == NULL)
1048                 return -ENOENT;
1049
1050         /* prime objects have no backing filp to GEM mmap
1051          * pages from.
1052          */
1053         if (!obj->filp) {
1054                 drm_gem_object_unreference_unlocked(obj);
1055                 return -EINVAL;
1056         }
1057
1058         addr = vm_mmap(obj->filp, 0, args->size,
1059                        PROT_READ | PROT_WRITE, MAP_SHARED,
1060                        args->offset);
1061         drm_gem_object_unreference_unlocked(obj);
1062         if (IS_ERR((void *)addr))
1063                 return addr;
1064
1065         args->addr_ptr = (uint64_t) addr;
1066
1067         return 0;
1068 }
1069
1070 /**
1071  * i915_gem_fault - fault a page into the GTT
1072  * vma: VMA in question
1073  * vmf: fault info
1074  *
1075  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1076  * from userspace.  The fault handler takes care of binding the object to
1077  * the GTT (if needed), allocating and programming a fence register (again,
1078  * only if needed based on whether the old reg is still valid or the object
1079  * is tiled) and inserting a new PTE into the faulting process.
1080  *
1081  * Note that the faulting process may involve evicting existing objects
1082  * from the GTT and/or fence registers to make room.  So performance may
1083  * suffer if the GTT working set is large or there are few fence registers
1084  * left.
1085  */
1086 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1087 {
1088         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1089         struct drm_device *dev = obj->base.dev;
1090         drm_i915_private_t *dev_priv = dev->dev_private;
1091         pgoff_t page_offset;
1092         unsigned long pfn;
1093         int ret = 0;
1094         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1095
1096         /* We don't use vmf->pgoff since that has the fake offset */
1097         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1098                 PAGE_SHIFT;
1099
1100         ret = i915_mutex_lock_interruptible(dev);
1101         if (ret)
1102                 goto out;
1103
1104         trace_i915_gem_object_fault(obj, page_offset, true, write);
1105
1106         /* Now bind it into the GTT if needed */
1107         if (!obj->map_and_fenceable) {
1108                 ret = i915_gem_object_unbind(obj);
1109                 if (ret)
1110                         goto unlock;
1111         }
1112         if (!obj->gtt_space) {
1113                 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1114                 if (ret)
1115                         goto unlock;
1116
1117                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1118                 if (ret)
1119                         goto unlock;
1120         }
1121
1122         if (!obj->has_global_gtt_mapping)
1123                 i915_gem_gtt_bind_object(obj, obj->cache_level);
1124
1125         ret = i915_gem_object_get_fence(obj);
1126         if (ret)
1127                 goto unlock;
1128
1129         if (i915_gem_object_is_inactive(obj))
1130                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1131
1132         obj->fault_mappable = true;
1133
1134         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1135                 page_offset;
1136
1137         /* Finally, remap it using the new GTT offset */
1138         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1139 unlock:
1140         mutex_unlock(&dev->struct_mutex);
1141 out:
1142         switch (ret) {
1143         case -EIO:
1144                 /* If this -EIO is due to a gpu hang, give the reset code a
1145                  * chance to clean up the mess. Otherwise return the proper
1146                  * SIGBUS. */
1147                 if (!atomic_read(&dev_priv->mm.wedged))
1148                         return VM_FAULT_SIGBUS;
1149         case -EAGAIN:
1150                 /* Give the error handler a chance to run and move the
1151                  * objects off the GPU active list. Next time we service the
1152                  * fault, we should be able to transition the page into the
1153                  * GTT without touching the GPU (and so avoid further
1154                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1155                  * with coherency, just lost writes.
1156                  */
1157                 set_need_resched();
1158         case 0:
1159         case -ERESTARTSYS:
1160         case -EINTR:
1161                 return VM_FAULT_NOPAGE;
1162         case -ENOMEM:
1163                 return VM_FAULT_OOM;
1164         default:
1165                 return VM_FAULT_SIGBUS;
1166         }
1167 }
1168
1169 /**
1170  * i915_gem_release_mmap - remove physical page mappings
1171  * @obj: obj in question
1172  *
1173  * Preserve the reservation of the mmapping with the DRM core code, but
1174  * relinquish ownership of the pages back to the system.
1175  *
1176  * It is vital that we remove the page mapping if we have mapped a tiled
1177  * object through the GTT and then lose the fence register due to
1178  * resource pressure. Similarly if the object has been moved out of the
1179  * aperture, than pages mapped into userspace must be revoked. Removing the
1180  * mapping will then trigger a page fault on the next user access, allowing
1181  * fixup by i915_gem_fault().
1182  */
1183 void
1184 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1185 {
1186         if (!obj->fault_mappable)
1187                 return;
1188
1189         if (obj->base.dev->dev_mapping)
1190                 unmap_mapping_range(obj->base.dev->dev_mapping,
1191                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1192                                     obj->base.size, 1);
1193
1194         obj->fault_mappable = false;
1195 }
1196
1197 static uint32_t
1198 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1199 {
1200         uint32_t gtt_size;
1201
1202         if (INTEL_INFO(dev)->gen >= 4 ||
1203             tiling_mode == I915_TILING_NONE)
1204                 return size;
1205
1206         /* Previous chips need a power-of-two fence region when tiling */
1207         if (INTEL_INFO(dev)->gen == 3)
1208                 gtt_size = 1024*1024;
1209         else
1210                 gtt_size = 512*1024;
1211
1212         while (gtt_size < size)
1213                 gtt_size <<= 1;
1214
1215         return gtt_size;
1216 }
1217
1218 /**
1219  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1220  * @obj: object to check
1221  *
1222  * Return the required GTT alignment for an object, taking into account
1223  * potential fence register mapping.
1224  */
1225 static uint32_t
1226 i915_gem_get_gtt_alignment(struct drm_device *dev,
1227                            uint32_t size,
1228                            int tiling_mode)
1229 {
1230         /*
1231          * Minimum alignment is 4k (GTT page size), but might be greater
1232          * if a fence register is needed for the object.
1233          */
1234         if (INTEL_INFO(dev)->gen >= 4 ||
1235             tiling_mode == I915_TILING_NONE)
1236                 return 4096;
1237
1238         /*
1239          * Previous chips need to be aligned to the size of the smallest
1240          * fence register that can contain the object.
1241          */
1242         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1243 }
1244
1245 /**
1246  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1247  *                                       unfenced object
1248  * @dev: the device
1249  * @size: size of the object
1250  * @tiling_mode: tiling mode of the object
1251  *
1252  * Return the required GTT alignment for an object, only taking into account
1253  * unfenced tiled surface requirements.
1254  */
1255 uint32_t
1256 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1257                                     uint32_t size,
1258                                     int tiling_mode)
1259 {
1260         /*
1261          * Minimum alignment is 4k (GTT page size) for sane hw.
1262          */
1263         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1264             tiling_mode == I915_TILING_NONE)
1265                 return 4096;
1266
1267         /* Previous hardware however needs to be aligned to a power-of-two
1268          * tile height. The simplest method for determining this is to reuse
1269          * the power-of-tile object size.
1270          */
1271         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1272 }
1273
1274 int
1275 i915_gem_mmap_gtt(struct drm_file *file,
1276                   struct drm_device *dev,
1277                   uint32_t handle,
1278                   uint64_t *offset)
1279 {
1280         struct drm_i915_private *dev_priv = dev->dev_private;
1281         struct drm_i915_gem_object *obj;
1282         int ret;
1283
1284         ret = i915_mutex_lock_interruptible(dev);
1285         if (ret)
1286                 return ret;
1287
1288         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1289         if (&obj->base == NULL) {
1290                 ret = -ENOENT;
1291                 goto unlock;
1292         }
1293
1294         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1295                 ret = -E2BIG;
1296                 goto out;
1297         }
1298
1299         if (obj->madv != I915_MADV_WILLNEED) {
1300                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1301                 ret = -EINVAL;
1302                 goto out;
1303         }
1304
1305         if (!obj->base.map_list.map) {
1306                 ret = drm_gem_create_mmap_offset(&obj->base);
1307                 if (ret)
1308                         goto out;
1309         }
1310
1311         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1312
1313 out:
1314         drm_gem_object_unreference(&obj->base);
1315 unlock:
1316         mutex_unlock(&dev->struct_mutex);
1317         return ret;
1318 }
1319
1320 /**
1321  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1322  * @dev: DRM device
1323  * @data: GTT mapping ioctl data
1324  * @file: GEM object info
1325  *
1326  * Simply returns the fake offset to userspace so it can mmap it.
1327  * The mmap call will end up in drm_gem_mmap(), which will set things
1328  * up so we can get faults in the handler above.
1329  *
1330  * The fault handler will take care of binding the object into the GTT
1331  * (since it may have been evicted to make room for something), allocating
1332  * a fence register, and mapping the appropriate aperture address into
1333  * userspace.
1334  */
1335 int
1336 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1337                         struct drm_file *file)
1338 {
1339         struct drm_i915_gem_mmap_gtt *args = data;
1340
1341         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1342 }
1343
1344 int
1345 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1346                               gfp_t gfpmask)
1347 {
1348         int page_count, i;
1349         struct address_space *mapping;
1350         struct inode *inode;
1351         struct page *page;
1352
1353         if (obj->pages || obj->sg_table)
1354                 return 0;
1355
1356         /* Get the list of pages out of our struct file.  They'll be pinned
1357          * at this point until we release them.
1358          */
1359         page_count = obj->base.size / PAGE_SIZE;
1360         BUG_ON(obj->pages != NULL);
1361         obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1362         if (obj->pages == NULL)
1363                 return -ENOMEM;
1364
1365         inode = obj->base.filp->f_path.dentry->d_inode;
1366         mapping = inode->i_mapping;
1367         gfpmask |= mapping_gfp_mask(mapping);
1368
1369         for (i = 0; i < page_count; i++) {
1370                 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1371                 if (IS_ERR(page))
1372                         goto err_pages;
1373
1374                 obj->pages[i] = page;
1375         }
1376
1377         if (i915_gem_object_needs_bit17_swizzle(obj))
1378                 i915_gem_object_do_bit_17_swizzle(obj);
1379
1380         return 0;
1381
1382 err_pages:
1383         while (i--)
1384                 page_cache_release(obj->pages[i]);
1385
1386         drm_free_large(obj->pages);
1387         obj->pages = NULL;
1388         return PTR_ERR(page);
1389 }
1390
1391 static void
1392 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1393 {
1394         int page_count = obj->base.size / PAGE_SIZE;
1395         int i;
1396
1397         if (!obj->pages)
1398                 return;
1399
1400         BUG_ON(obj->madv == __I915_MADV_PURGED);
1401
1402         if (i915_gem_object_needs_bit17_swizzle(obj))
1403                 i915_gem_object_save_bit_17_swizzle(obj);
1404
1405         if (obj->madv == I915_MADV_DONTNEED)
1406                 obj->dirty = 0;
1407
1408         for (i = 0; i < page_count; i++) {
1409                 if (obj->dirty)
1410                         set_page_dirty(obj->pages[i]);
1411
1412                 if (obj->madv == I915_MADV_WILLNEED)
1413                         mark_page_accessed(obj->pages[i]);
1414
1415                 page_cache_release(obj->pages[i]);
1416         }
1417         obj->dirty = 0;
1418
1419         drm_free_large(obj->pages);
1420         obj->pages = NULL;
1421 }
1422
1423 void
1424 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1425                                struct intel_ring_buffer *ring,
1426                                u32 seqno)
1427 {
1428         struct drm_device *dev = obj->base.dev;
1429         struct drm_i915_private *dev_priv = dev->dev_private;
1430
1431         BUG_ON(ring == NULL);
1432         obj->ring = ring;
1433
1434         /* Add a reference if we're newly entering the active list. */
1435         if (!obj->active) {
1436                 drm_gem_object_reference(&obj->base);
1437                 obj->active = 1;
1438         }
1439
1440         /* Move from whatever list we were on to the tail of execution. */
1441         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1442         list_move_tail(&obj->ring_list, &ring->active_list);
1443
1444         obj->last_rendering_seqno = seqno;
1445
1446         if (obj->fenced_gpu_access) {
1447                 obj->last_fenced_seqno = seqno;
1448
1449                 /* Bump MRU to take account of the delayed flush */
1450                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1451                         struct drm_i915_fence_reg *reg;
1452
1453                         reg = &dev_priv->fence_regs[obj->fence_reg];
1454                         list_move_tail(&reg->lru_list,
1455                                        &dev_priv->mm.fence_list);
1456                 }
1457         }
1458 }
1459
1460 static void
1461 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1462 {
1463         list_del_init(&obj->ring_list);
1464         obj->last_rendering_seqno = 0;
1465         obj->last_fenced_seqno = 0;
1466 }
1467
1468 static void
1469 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1470 {
1471         struct drm_device *dev = obj->base.dev;
1472         drm_i915_private_t *dev_priv = dev->dev_private;
1473
1474         BUG_ON(!obj->active);
1475         list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1476
1477         i915_gem_object_move_off_active(obj);
1478 }
1479
1480 static void
1481 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1482 {
1483         struct drm_device *dev = obj->base.dev;
1484         struct drm_i915_private *dev_priv = dev->dev_private;
1485
1486         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1487
1488         BUG_ON(!list_empty(&obj->gpu_write_list));
1489         BUG_ON(!obj->active);
1490         obj->ring = NULL;
1491
1492         i915_gem_object_move_off_active(obj);
1493         obj->fenced_gpu_access = false;
1494
1495         obj->active = 0;
1496         obj->pending_gpu_write = false;
1497         drm_gem_object_unreference(&obj->base);
1498
1499         WARN_ON(i915_verify_lists(dev));
1500 }
1501
1502 /* Immediately discard the backing storage */
1503 static void
1504 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1505 {
1506         struct inode *inode;
1507
1508         /* Our goal here is to return as much of the memory as
1509          * is possible back to the system as we are called from OOM.
1510          * To do this we must instruct the shmfs to drop all of its
1511          * backing pages, *now*.
1512          */
1513         inode = obj->base.filp->f_path.dentry->d_inode;
1514         shmem_truncate_range(inode, 0, (loff_t)-1);
1515
1516         if (obj->base.map_list.map)
1517                 drm_gem_free_mmap_offset(&obj->base);
1518
1519         obj->madv = __I915_MADV_PURGED;
1520 }
1521
1522 static inline int
1523 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1524 {
1525         return obj->madv == I915_MADV_DONTNEED;
1526 }
1527
1528 static void
1529 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1530                                uint32_t flush_domains)
1531 {
1532         struct drm_i915_gem_object *obj, *next;
1533
1534         list_for_each_entry_safe(obj, next,
1535                                  &ring->gpu_write_list,
1536                                  gpu_write_list) {
1537                 if (obj->base.write_domain & flush_domains) {
1538                         uint32_t old_write_domain = obj->base.write_domain;
1539
1540                         obj->base.write_domain = 0;
1541                         list_del_init(&obj->gpu_write_list);
1542                         i915_gem_object_move_to_active(obj, ring,
1543                                                        i915_gem_next_request_seqno(ring));
1544
1545                         trace_i915_gem_object_change_domain(obj,
1546                                                             obj->base.read_domains,
1547                                                             old_write_domain);
1548                 }
1549         }
1550 }
1551
1552 static u32
1553 i915_gem_get_seqno(struct drm_device *dev)
1554 {
1555         drm_i915_private_t *dev_priv = dev->dev_private;
1556         u32 seqno = dev_priv->next_seqno;
1557
1558         /* reserve 0 for non-seqno */
1559         if (++dev_priv->next_seqno == 0)
1560                 dev_priv->next_seqno = 1;
1561
1562         return seqno;
1563 }
1564
1565 u32
1566 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1567 {
1568         if (ring->outstanding_lazy_request == 0)
1569                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1570
1571         return ring->outstanding_lazy_request;
1572 }
1573
1574 int
1575 i915_add_request(struct intel_ring_buffer *ring,
1576                  struct drm_file *file,
1577                  struct drm_i915_gem_request *request)
1578 {
1579         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1580         uint32_t seqno;
1581         u32 request_ring_position;
1582         int was_empty;
1583         int ret;
1584
1585         /*
1586          * Emit any outstanding flushes - execbuf can fail to emit the flush
1587          * after having emitted the batchbuffer command. Hence we need to fix
1588          * things up similar to emitting the lazy request. The difference here
1589          * is that the flush _must_ happen before the next request, no matter
1590          * what.
1591          */
1592         if (ring->gpu_caches_dirty) {
1593                 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1594                 if (ret)
1595                         return ret;
1596
1597                 ring->gpu_caches_dirty = false;
1598         }
1599
1600         BUG_ON(request == NULL);
1601         seqno = i915_gem_next_request_seqno(ring);
1602
1603         /* Record the position of the start of the request so that
1604          * should we detect the updated seqno part-way through the
1605          * GPU processing the request, we never over-estimate the
1606          * position of the head.
1607          */
1608         request_ring_position = intel_ring_get_tail(ring);
1609
1610         ret = ring->add_request(ring, &seqno);
1611         if (ret)
1612             return ret;
1613
1614         trace_i915_gem_request_add(ring, seqno);
1615
1616         request->seqno = seqno;
1617         request->ring = ring;
1618         request->tail = request_ring_position;
1619         request->emitted_jiffies = jiffies;
1620         was_empty = list_empty(&ring->request_list);
1621         list_add_tail(&request->list, &ring->request_list);
1622
1623         if (file) {
1624                 struct drm_i915_file_private *file_priv = file->driver_priv;
1625
1626                 spin_lock(&file_priv->mm.lock);
1627                 request->file_priv = file_priv;
1628                 list_add_tail(&request->client_list,
1629                               &file_priv->mm.request_list);
1630                 spin_unlock(&file_priv->mm.lock);
1631         }
1632
1633         ring->outstanding_lazy_request = 0;
1634
1635         if (!dev_priv->mm.suspended) {
1636                 if (i915_enable_hangcheck) {
1637                         mod_timer(&dev_priv->hangcheck_timer,
1638                                   jiffies +
1639                                   msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1640                 }
1641                 if (was_empty)
1642                         queue_delayed_work(dev_priv->wq,
1643                                            &dev_priv->mm.retire_work, HZ);
1644         }
1645
1646         WARN_ON(!list_empty(&ring->gpu_write_list));
1647
1648         return 0;
1649 }
1650
1651 static inline void
1652 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1653 {
1654         struct drm_i915_file_private *file_priv = request->file_priv;
1655
1656         if (!file_priv)
1657                 return;
1658
1659         spin_lock(&file_priv->mm.lock);
1660         if (request->file_priv) {
1661                 list_del(&request->client_list);
1662                 request->file_priv = NULL;
1663         }
1664         spin_unlock(&file_priv->mm.lock);
1665 }
1666
1667 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1668                                       struct intel_ring_buffer *ring)
1669 {
1670         while (!list_empty(&ring->request_list)) {
1671                 struct drm_i915_gem_request *request;
1672
1673                 request = list_first_entry(&ring->request_list,
1674                                            struct drm_i915_gem_request,
1675                                            list);
1676
1677                 list_del(&request->list);
1678                 i915_gem_request_remove_from_client(request);
1679                 kfree(request);
1680         }
1681
1682         while (!list_empty(&ring->active_list)) {
1683                 struct drm_i915_gem_object *obj;
1684
1685                 obj = list_first_entry(&ring->active_list,
1686                                        struct drm_i915_gem_object,
1687                                        ring_list);
1688
1689                 obj->base.write_domain = 0;
1690                 list_del_init(&obj->gpu_write_list);
1691                 i915_gem_object_move_to_inactive(obj);
1692         }
1693 }
1694
1695 static void i915_gem_reset_fences(struct drm_device *dev)
1696 {
1697         struct drm_i915_private *dev_priv = dev->dev_private;
1698         int i;
1699
1700         for (i = 0; i < dev_priv->num_fence_regs; i++) {
1701                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1702
1703                 i915_gem_write_fence(dev, i, NULL);
1704
1705                 if (reg->obj)
1706                         i915_gem_object_fence_lost(reg->obj);
1707
1708                 reg->pin_count = 0;
1709                 reg->obj = NULL;
1710                 INIT_LIST_HEAD(&reg->lru_list);
1711         }
1712
1713         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1714 }
1715
1716 void i915_gem_reset(struct drm_device *dev)
1717 {
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719         struct drm_i915_gem_object *obj;
1720         struct intel_ring_buffer *ring;
1721         int i;
1722
1723         for_each_ring(ring, dev_priv, i)
1724                 i915_gem_reset_ring_lists(dev_priv, ring);
1725
1726         /* Remove anything from the flushing lists. The GPU cache is likely
1727          * to be lost on reset along with the data, so simply move the
1728          * lost bo to the inactive list.
1729          */
1730         while (!list_empty(&dev_priv->mm.flushing_list)) {
1731                 obj = list_first_entry(&dev_priv->mm.flushing_list,
1732                                       struct drm_i915_gem_object,
1733                                       mm_list);
1734
1735                 obj->base.write_domain = 0;
1736                 list_del_init(&obj->gpu_write_list);
1737                 i915_gem_object_move_to_inactive(obj);
1738         }
1739
1740         /* Move everything out of the GPU domains to ensure we do any
1741          * necessary invalidation upon reuse.
1742          */
1743         list_for_each_entry(obj,
1744                             &dev_priv->mm.inactive_list,
1745                             mm_list)
1746         {
1747                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1748         }
1749
1750         /* The fence registers are invalidated so clear them out */
1751         i915_gem_reset_fences(dev);
1752 }
1753
1754 /**
1755  * This function clears the request list as sequence numbers are passed.
1756  */
1757 void
1758 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1759 {
1760         uint32_t seqno;
1761         int i;
1762
1763         if (list_empty(&ring->request_list))
1764                 return;
1765
1766         WARN_ON(i915_verify_lists(ring->dev));
1767
1768         seqno = ring->get_seqno(ring);
1769
1770         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1771                 if (seqno >= ring->sync_seqno[i])
1772                         ring->sync_seqno[i] = 0;
1773
1774         while (!list_empty(&ring->request_list)) {
1775                 struct drm_i915_gem_request *request;
1776
1777                 request = list_first_entry(&ring->request_list,
1778                                            struct drm_i915_gem_request,
1779                                            list);
1780
1781                 if (!i915_seqno_passed(seqno, request->seqno))
1782                         break;
1783
1784                 trace_i915_gem_request_retire(ring, request->seqno);
1785                 /* We know the GPU must have read the request to have
1786                  * sent us the seqno + interrupt, so use the position
1787                  * of tail of the request to update the last known position
1788                  * of the GPU head.
1789                  */
1790                 ring->last_retired_head = request->tail;
1791
1792                 list_del(&request->list);
1793                 i915_gem_request_remove_from_client(request);
1794                 kfree(request);
1795         }
1796
1797         /* Move any buffers on the active list that are no longer referenced
1798          * by the ringbuffer to the flushing/inactive lists as appropriate.
1799          */
1800         while (!list_empty(&ring->active_list)) {
1801                 struct drm_i915_gem_object *obj;
1802
1803                 obj = list_first_entry(&ring->active_list,
1804                                       struct drm_i915_gem_object,
1805                                       ring_list);
1806
1807                 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1808                         break;
1809
1810                 if (obj->base.write_domain != 0)
1811                         i915_gem_object_move_to_flushing(obj);
1812                 else
1813                         i915_gem_object_move_to_inactive(obj);
1814         }
1815
1816         if (unlikely(ring->trace_irq_seqno &&
1817                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1818                 ring->irq_put(ring);
1819                 ring->trace_irq_seqno = 0;
1820         }
1821
1822         WARN_ON(i915_verify_lists(ring->dev));
1823 }
1824
1825 void
1826 i915_gem_retire_requests(struct drm_device *dev)
1827 {
1828         drm_i915_private_t *dev_priv = dev->dev_private;
1829         struct intel_ring_buffer *ring;
1830         int i;
1831
1832         for_each_ring(ring, dev_priv, i)
1833                 i915_gem_retire_requests_ring(ring);
1834 }
1835
1836 static void
1837 i915_gem_retire_work_handler(struct work_struct *work)
1838 {
1839         drm_i915_private_t *dev_priv;
1840         struct drm_device *dev;
1841         struct intel_ring_buffer *ring;
1842         bool idle;
1843         int i;
1844
1845         dev_priv = container_of(work, drm_i915_private_t,
1846                                 mm.retire_work.work);
1847         dev = dev_priv->dev;
1848
1849         /* Come back later if the device is busy... */
1850         if (!mutex_trylock(&dev->struct_mutex)) {
1851                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1852                 return;
1853         }
1854
1855         i915_gem_retire_requests(dev);
1856
1857         /* Send a periodic flush down the ring so we don't hold onto GEM
1858          * objects indefinitely.
1859          */
1860         idle = true;
1861         for_each_ring(ring, dev_priv, i) {
1862                 if (ring->gpu_caches_dirty) {
1863                         struct drm_i915_gem_request *request;
1864
1865                         request = kzalloc(sizeof(*request), GFP_KERNEL);
1866                         if (request == NULL ||
1867                             i915_add_request(ring, NULL, request))
1868                             kfree(request);
1869                 }
1870
1871                 idle &= list_empty(&ring->request_list);
1872         }
1873
1874         if (!dev_priv->mm.suspended && !idle)
1875                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1876
1877         mutex_unlock(&dev->struct_mutex);
1878 }
1879
1880 int
1881 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1882                      bool interruptible)
1883 {
1884         if (atomic_read(&dev_priv->mm.wedged)) {
1885                 struct completion *x = &dev_priv->error_completion;
1886                 bool recovery_complete;
1887                 unsigned long flags;
1888
1889                 /* Give the error handler a chance to run. */
1890                 spin_lock_irqsave(&x->wait.lock, flags);
1891                 recovery_complete = x->done > 0;
1892                 spin_unlock_irqrestore(&x->wait.lock, flags);
1893
1894                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1895                  * -EIO unconditionally for these. */
1896                 if (!interruptible)
1897                         return -EIO;
1898
1899                 /* Recovery complete, but still wedged means reset failure. */
1900                 if (recovery_complete)
1901                         return -EIO;
1902
1903                 return -EAGAIN;
1904         }
1905
1906         return 0;
1907 }
1908
1909 /*
1910  * Compare seqno against outstanding lazy request. Emit a request if they are
1911  * equal.
1912  */
1913 static int
1914 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1915 {
1916         int ret = 0;
1917
1918         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1919
1920         if (seqno == ring->outstanding_lazy_request) {
1921                 struct drm_i915_gem_request *request;
1922
1923                 request = kzalloc(sizeof(*request), GFP_KERNEL);
1924                 if (request == NULL)
1925                         return -ENOMEM;
1926
1927                 ret = i915_add_request(ring, NULL, request);
1928                 if (ret) {
1929                         kfree(request);
1930                         return ret;
1931                 }
1932
1933                 BUG_ON(seqno != request->seqno);
1934         }
1935
1936         return ret;
1937 }
1938
1939 /**
1940  * __wait_seqno - wait until execution of seqno has finished
1941  * @ring: the ring expected to report seqno
1942  * @seqno: duh!
1943  * @interruptible: do an interruptible wait (normally yes)
1944  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1945  *
1946  * Returns 0 if the seqno was found within the alloted time. Else returns the
1947  * errno with remaining time filled in timeout argument.
1948  */
1949 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1950                         bool interruptible, struct timespec *timeout)
1951 {
1952         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1953         struct timespec before, now, wait_time={1,0};
1954         unsigned long timeout_jiffies;
1955         long end;
1956         bool wait_forever = true;
1957         int ret;
1958
1959         if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1960                 return 0;
1961
1962         trace_i915_gem_request_wait_begin(ring, seqno);
1963
1964         if (timeout != NULL) {
1965                 wait_time = *timeout;
1966                 wait_forever = false;
1967         }
1968
1969         timeout_jiffies = timespec_to_jiffies(&wait_time);
1970
1971         if (WARN_ON(!ring->irq_get(ring)))
1972                 return -ENODEV;
1973
1974         /* Record current time in case interrupted by signal, or wedged * */
1975         getrawmonotonic(&before);
1976
1977 #define EXIT_COND \
1978         (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1979         atomic_read(&dev_priv->mm.wedged))
1980         do {
1981                 if (interruptible)
1982                         end = wait_event_interruptible_timeout(ring->irq_queue,
1983                                                                EXIT_COND,
1984                                                                timeout_jiffies);
1985                 else
1986                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1987                                                  timeout_jiffies);
1988
1989                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1990                 if (ret)
1991                         end = ret;
1992         } while (end == 0 && wait_forever);
1993
1994         getrawmonotonic(&now);
1995
1996         ring->irq_put(ring);
1997         trace_i915_gem_request_wait_end(ring, seqno);
1998 #undef EXIT_COND
1999
2000         if (timeout) {
2001                 struct timespec sleep_time = timespec_sub(now, before);
2002                 *timeout = timespec_sub(*timeout, sleep_time);
2003         }
2004
2005         switch (end) {
2006         case -EAGAIN: /* Wedged */
2007         case -ERESTARTSYS: /* Signal */
2008                 return (int)end;
2009         case 0: /* Timeout */
2010                 if (timeout)
2011                         set_normalized_timespec(timeout, 0, 0);
2012                 return -ETIME;
2013         default: /* Completed */
2014                 WARN_ON(end < 0); /* We're not aware of other errors */
2015                 return 0;
2016         }
2017 }
2018
2019 /**
2020  * Waits for a sequence number to be signaled, and cleans up the
2021  * request and object lists appropriately for that event.
2022  */
2023 int
2024 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
2025 {
2026         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2027         int ret = 0;
2028
2029         BUG_ON(seqno == 0);
2030
2031         ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
2032         if (ret)
2033                 return ret;
2034
2035         ret = i915_gem_check_olr(ring, seqno);
2036         if (ret)
2037                 return ret;
2038
2039         ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2040
2041         return ret;
2042 }
2043
2044 /**
2045  * Ensures that all rendering to the object has completed and the object is
2046  * safe to unbind from the GTT or access from the CPU.
2047  */
2048 int
2049 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2050 {
2051         int ret;
2052
2053         /* This function only exists to support waiting for existing rendering,
2054          * not for emitting required flushes.
2055          */
2056         BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2057
2058         /* If there is rendering queued on the buffer being evicted, wait for
2059          * it.
2060          */
2061         if (obj->active) {
2062                 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2063                 if (ret)
2064                         return ret;
2065                 i915_gem_retire_requests_ring(obj->ring);
2066         }
2067
2068         return 0;
2069 }
2070
2071 /**
2072  * Ensures that an object will eventually get non-busy by flushing any required
2073  * write domains, emitting any outstanding lazy request and retiring and
2074  * completed requests.
2075  */
2076 static int
2077 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2078 {
2079         int ret;
2080
2081         if (obj->active) {
2082                 ret = i915_gem_object_flush_gpu_write_domain(obj);
2083                 if (ret)
2084                         return ret;
2085
2086                 ret = i915_gem_check_olr(obj->ring,
2087                                          obj->last_rendering_seqno);
2088                 if (ret)
2089                         return ret;
2090                 i915_gem_retire_requests_ring(obj->ring);
2091         }
2092
2093         return 0;
2094 }
2095
2096 /**
2097  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2098  * @DRM_IOCTL_ARGS: standard ioctl arguments
2099  *
2100  * Returns 0 if successful, else an error is returned with the remaining time in
2101  * the timeout parameter.
2102  *  -ETIME: object is still busy after timeout
2103  *  -ERESTARTSYS: signal interrupted the wait
2104  *  -ENONENT: object doesn't exist
2105  * Also possible, but rare:
2106  *  -EAGAIN: GPU wedged
2107  *  -ENOMEM: damn
2108  *  -ENODEV: Internal IRQ fail
2109  *  -E?: The add request failed
2110  *
2111  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2112  * non-zero timeout parameter the wait ioctl will wait for the given number of
2113  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2114  * without holding struct_mutex the object may become re-busied before this
2115  * function completes. A similar but shorter * race condition exists in the busy
2116  * ioctl
2117  */
2118 int
2119 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2120 {
2121         struct drm_i915_gem_wait *args = data;
2122         struct drm_i915_gem_object *obj;
2123         struct intel_ring_buffer *ring = NULL;
2124         struct timespec timeout_stack, *timeout = NULL;
2125         u32 seqno = 0;
2126         int ret = 0;
2127
2128         if (args->timeout_ns >= 0) {
2129                 timeout_stack = ns_to_timespec(args->timeout_ns);
2130                 timeout = &timeout_stack;
2131         }
2132
2133         ret = i915_mutex_lock_interruptible(dev);
2134         if (ret)
2135                 return ret;
2136
2137         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2138         if (&obj->base == NULL) {
2139                 mutex_unlock(&dev->struct_mutex);
2140                 return -ENOENT;
2141         }
2142
2143         /* Need to make sure the object gets inactive eventually. */
2144         ret = i915_gem_object_flush_active(obj);
2145         if (ret)
2146                 goto out;
2147
2148         if (obj->active) {
2149                 seqno = obj->last_rendering_seqno;
2150                 ring = obj->ring;
2151         }
2152
2153         if (seqno == 0)
2154                  goto out;
2155
2156         /* Do this after OLR check to make sure we make forward progress polling
2157          * on this IOCTL with a 0 timeout (like busy ioctl)
2158          */
2159         if (!args->timeout_ns) {
2160                 ret = -ETIME;
2161                 goto out;
2162         }
2163
2164         drm_gem_object_unreference(&obj->base);
2165         mutex_unlock(&dev->struct_mutex);
2166
2167         ret = __wait_seqno(ring, seqno, true, timeout);
2168         if (timeout) {
2169                 WARN_ON(!timespec_valid(timeout));
2170                 args->timeout_ns = timespec_to_ns(timeout);
2171         }
2172         return ret;
2173
2174 out:
2175         drm_gem_object_unreference(&obj->base);
2176         mutex_unlock(&dev->struct_mutex);
2177         return ret;
2178 }
2179
2180 /**
2181  * i915_gem_object_sync - sync an object to a ring.
2182  *
2183  * @obj: object which may be in use on another ring.
2184  * @to: ring we wish to use the object on. May be NULL.
2185  *
2186  * This code is meant to abstract object synchronization with the GPU.
2187  * Calling with NULL implies synchronizing the object with the CPU
2188  * rather than a particular GPU ring.
2189  *
2190  * Returns 0 if successful, else propagates up the lower layer error.
2191  */
2192 int
2193 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2194                      struct intel_ring_buffer *to)
2195 {
2196         struct intel_ring_buffer *from = obj->ring;
2197         u32 seqno;
2198         int ret, idx;
2199
2200         if (from == NULL || to == from)
2201                 return 0;
2202
2203         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2204                 return i915_gem_object_wait_rendering(obj);
2205
2206         idx = intel_ring_sync_index(from, to);
2207
2208         seqno = obj->last_rendering_seqno;
2209         if (seqno <= from->sync_seqno[idx])
2210                 return 0;
2211
2212         ret = i915_gem_check_olr(obj->ring, seqno);
2213         if (ret)
2214                 return ret;
2215
2216         ret = to->sync_to(to, from, seqno);
2217         if (!ret)
2218                 from->sync_seqno[idx] = seqno;
2219
2220         return ret;
2221 }
2222
2223 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2224 {
2225         u32 old_write_domain, old_read_domains;
2226
2227         /* Act a barrier for all accesses through the GTT */
2228         mb();
2229
2230         /* Force a pagefault for domain tracking on next user access */
2231         i915_gem_release_mmap(obj);
2232
2233         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2234                 return;
2235
2236         old_read_domains = obj->base.read_domains;
2237         old_write_domain = obj->base.write_domain;
2238
2239         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2240         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2241
2242         trace_i915_gem_object_change_domain(obj,
2243                                             old_read_domains,
2244                                             old_write_domain);
2245 }
2246
2247 /**
2248  * Unbinds an object from the GTT aperture.
2249  */
2250 int
2251 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2252 {
2253         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2254         int ret = 0;
2255
2256         if (obj->gtt_space == NULL)
2257                 return 0;
2258
2259         if (obj->pin_count)
2260                 return -EBUSY;
2261
2262         ret = i915_gem_object_finish_gpu(obj);
2263         if (ret)
2264                 return ret;
2265         /* Continue on if we fail due to EIO, the GPU is hung so we
2266          * should be safe and we need to cleanup or else we might
2267          * cause memory corruption through use-after-free.
2268          */
2269
2270         i915_gem_object_finish_gtt(obj);
2271
2272         /* Move the object to the CPU domain to ensure that
2273          * any possible CPU writes while it's not in the GTT
2274          * are flushed when we go to remap it.
2275          */
2276         if (ret == 0)
2277                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2278         if (ret == -ERESTARTSYS)
2279                 return ret;
2280         if (ret) {
2281                 /* In the event of a disaster, abandon all caches and
2282                  * hope for the best.
2283                  */
2284                 i915_gem_clflush_object(obj);
2285                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2286         }
2287
2288         /* release the fence reg _after_ flushing */
2289         ret = i915_gem_object_put_fence(obj);
2290         if (ret)
2291                 return ret;
2292
2293         trace_i915_gem_object_unbind(obj);
2294
2295         if (obj->has_global_gtt_mapping)
2296                 i915_gem_gtt_unbind_object(obj);
2297         if (obj->has_aliasing_ppgtt_mapping) {
2298                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2299                 obj->has_aliasing_ppgtt_mapping = 0;
2300         }
2301         i915_gem_gtt_finish_object(obj);
2302
2303         i915_gem_object_put_pages_gtt(obj);
2304
2305         list_del_init(&obj->gtt_list);
2306         list_del_init(&obj->mm_list);
2307         /* Avoid an unnecessary call to unbind on rebind. */
2308         obj->map_and_fenceable = true;
2309
2310         drm_mm_put_block(obj->gtt_space);
2311         obj->gtt_space = NULL;
2312         obj->gtt_offset = 0;
2313
2314         if (i915_gem_object_is_purgeable(obj))
2315                 i915_gem_object_truncate(obj);
2316
2317         return ret;
2318 }
2319
2320 int
2321 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2322                     uint32_t invalidate_domains,
2323                     uint32_t flush_domains)
2324 {
2325         int ret;
2326
2327         if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2328                 return 0;
2329
2330         trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2331
2332         ret = ring->flush(ring, invalidate_domains, flush_domains);
2333         if (ret)
2334                 return ret;
2335
2336         if (flush_domains & I915_GEM_GPU_DOMAINS)
2337                 i915_gem_process_flushing_list(ring, flush_domains);
2338
2339         return 0;
2340 }
2341
2342 static int i915_ring_idle(struct intel_ring_buffer *ring)
2343 {
2344         int ret;
2345
2346         if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2347                 return 0;
2348
2349         if (!list_empty(&ring->gpu_write_list)) {
2350                 ret = i915_gem_flush_ring(ring,
2351                                     I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2352                 if (ret)
2353                         return ret;
2354         }
2355
2356         return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2357 }
2358
2359 int i915_gpu_idle(struct drm_device *dev)
2360 {
2361         drm_i915_private_t *dev_priv = dev->dev_private;
2362         struct intel_ring_buffer *ring;
2363         int ret, i;
2364
2365         /* Flush everything onto the inactive list. */
2366         for_each_ring(ring, dev_priv, i) {
2367                 ret = i915_ring_idle(ring);
2368                 if (ret)
2369                         return ret;
2370
2371                 /* Is the device fubar? */
2372                 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2373                         return -EBUSY;
2374
2375                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2376                 if (ret)
2377                         return ret;
2378         }
2379
2380         return 0;
2381 }
2382
2383 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2384                                         struct drm_i915_gem_object *obj)
2385 {
2386         drm_i915_private_t *dev_priv = dev->dev_private;
2387         uint64_t val;
2388
2389         if (obj) {
2390                 u32 size = obj->gtt_space->size;
2391
2392                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2393                                  0xfffff000) << 32;
2394                 val |= obj->gtt_offset & 0xfffff000;
2395                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2396                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2397
2398                 if (obj->tiling_mode == I915_TILING_Y)
2399                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2400                 val |= I965_FENCE_REG_VALID;
2401         } else
2402                 val = 0;
2403
2404         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2405         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2406 }
2407
2408 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2409                                  struct drm_i915_gem_object *obj)
2410 {
2411         drm_i915_private_t *dev_priv = dev->dev_private;
2412         uint64_t val;
2413
2414         if (obj) {
2415                 u32 size = obj->gtt_space->size;
2416
2417                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2418                                  0xfffff000) << 32;
2419                 val |= obj->gtt_offset & 0xfffff000;
2420                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2421                 if (obj->tiling_mode == I915_TILING_Y)
2422                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2423                 val |= I965_FENCE_REG_VALID;
2424         } else
2425                 val = 0;
2426
2427         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2428         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2429 }
2430
2431 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2432                                  struct drm_i915_gem_object *obj)
2433 {
2434         drm_i915_private_t *dev_priv = dev->dev_private;
2435         u32 val;
2436
2437         if (obj) {
2438                 u32 size = obj->gtt_space->size;
2439                 int pitch_val;
2440                 int tile_width;
2441
2442                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2443                      (size & -size) != size ||
2444                      (obj->gtt_offset & (size - 1)),
2445                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2446                      obj->gtt_offset, obj->map_and_fenceable, size);
2447
2448                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2449                         tile_width = 128;
2450                 else
2451                         tile_width = 512;
2452
2453                 /* Note: pitch better be a power of two tile widths */
2454                 pitch_val = obj->stride / tile_width;
2455                 pitch_val = ffs(pitch_val) - 1;
2456
2457                 val = obj->gtt_offset;
2458                 if (obj->tiling_mode == I915_TILING_Y)
2459                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2460                 val |= I915_FENCE_SIZE_BITS(size);
2461                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2462                 val |= I830_FENCE_REG_VALID;
2463         } else
2464                 val = 0;
2465
2466         if (reg < 8)
2467                 reg = FENCE_REG_830_0 + reg * 4;
2468         else
2469                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2470
2471         I915_WRITE(reg, val);
2472         POSTING_READ(reg);
2473 }
2474
2475 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2476                                 struct drm_i915_gem_object *obj)
2477 {
2478         drm_i915_private_t *dev_priv = dev->dev_private;
2479         uint32_t val;
2480
2481         if (obj) {
2482                 u32 size = obj->gtt_space->size;
2483                 uint32_t pitch_val;
2484
2485                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2486                      (size & -size) != size ||
2487                      (obj->gtt_offset & (size - 1)),
2488                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2489                      obj->gtt_offset, size);
2490
2491                 pitch_val = obj->stride / 128;
2492                 pitch_val = ffs(pitch_val) - 1;
2493
2494                 val = obj->gtt_offset;
2495                 if (obj->tiling_mode == I915_TILING_Y)
2496                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2497                 val |= I830_FENCE_SIZE_BITS(size);
2498                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2499                 val |= I830_FENCE_REG_VALID;
2500         } else
2501                 val = 0;
2502
2503         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2504         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2505 }
2506
2507 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2508                                  struct drm_i915_gem_object *obj)
2509 {
2510         switch (INTEL_INFO(dev)->gen) {
2511         case 7:
2512         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2513         case 5:
2514         case 4: i965_write_fence_reg(dev, reg, obj); break;
2515         case 3: i915_write_fence_reg(dev, reg, obj); break;
2516         case 2: i830_write_fence_reg(dev, reg, obj); break;
2517         default: break;
2518         }
2519 }
2520
2521 static inline int fence_number(struct drm_i915_private *dev_priv,
2522                                struct drm_i915_fence_reg *fence)
2523 {
2524         return fence - dev_priv->fence_regs;
2525 }
2526
2527 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2528                                          struct drm_i915_fence_reg *fence,
2529                                          bool enable)
2530 {
2531         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2532         int reg = fence_number(dev_priv, fence);
2533
2534         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2535
2536         if (enable) {
2537                 obj->fence_reg = reg;
2538                 fence->obj = obj;
2539                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2540         } else {
2541                 obj->fence_reg = I915_FENCE_REG_NONE;
2542                 fence->obj = NULL;
2543                 list_del_init(&fence->lru_list);
2544         }
2545 }
2546
2547 static int
2548 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2549 {
2550         int ret;
2551
2552         if (obj->fenced_gpu_access) {
2553                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2554                         ret = i915_gem_flush_ring(obj->ring,
2555                                                   0, obj->base.write_domain);
2556                         if (ret)
2557                                 return ret;
2558                 }
2559
2560                 obj->fenced_gpu_access = false;
2561         }
2562
2563         if (obj->last_fenced_seqno) {
2564                 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2565                 if (ret)
2566                         return ret;
2567
2568                 obj->last_fenced_seqno = 0;
2569         }
2570
2571         /* Ensure that all CPU reads are completed before installing a fence
2572          * and all writes before removing the fence.
2573          */
2574         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2575                 mb();
2576
2577         return 0;
2578 }
2579
2580 int
2581 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2582 {
2583         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2584         int ret;
2585
2586         ret = i915_gem_object_flush_fence(obj);
2587         if (ret)
2588                 return ret;
2589
2590         if (obj->fence_reg == I915_FENCE_REG_NONE)
2591                 return 0;
2592
2593         i915_gem_object_update_fence(obj,
2594                                      &dev_priv->fence_regs[obj->fence_reg],
2595                                      false);
2596         i915_gem_object_fence_lost(obj);
2597
2598         return 0;
2599 }
2600
2601 static struct drm_i915_fence_reg *
2602 i915_find_fence_reg(struct drm_device *dev)
2603 {
2604         struct drm_i915_private *dev_priv = dev->dev_private;
2605         struct drm_i915_fence_reg *reg, *avail;
2606         int i;
2607
2608         /* First try to find a free reg */
2609         avail = NULL;
2610         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2611                 reg = &dev_priv->fence_regs[i];
2612                 if (!reg->obj)
2613                         return reg;
2614
2615                 if (!reg->pin_count)
2616                         avail = reg;
2617         }
2618
2619         if (avail == NULL)
2620                 return NULL;
2621
2622         /* None available, try to steal one or wait for a user to finish */
2623         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2624                 if (reg->pin_count)
2625                         continue;
2626
2627                 return reg;
2628         }
2629
2630         return NULL;
2631 }
2632
2633 /**
2634  * i915_gem_object_get_fence - set up fencing for an object
2635  * @obj: object to map through a fence reg
2636  *
2637  * When mapping objects through the GTT, userspace wants to be able to write
2638  * to them without having to worry about swizzling if the object is tiled.
2639  * This function walks the fence regs looking for a free one for @obj,
2640  * stealing one if it can't find any.
2641  *
2642  * It then sets up the reg based on the object's properties: address, pitch
2643  * and tiling format.
2644  *
2645  * For an untiled surface, this removes any existing fence.
2646  */
2647 int
2648 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2649 {
2650         struct drm_device *dev = obj->base.dev;
2651         struct drm_i915_private *dev_priv = dev->dev_private;
2652         bool enable = obj->tiling_mode != I915_TILING_NONE;
2653         struct drm_i915_fence_reg *reg;
2654         int ret;
2655
2656         /* Have we updated the tiling parameters upon the object and so
2657          * will need to serialise the write to the associated fence register?
2658          */
2659         if (obj->fence_dirty) {
2660                 ret = i915_gem_object_flush_fence(obj);
2661                 if (ret)
2662                         return ret;
2663         }
2664
2665         /* Just update our place in the LRU if our fence is getting reused. */
2666         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2667                 reg = &dev_priv->fence_regs[obj->fence_reg];
2668                 if (!obj->fence_dirty) {
2669                         list_move_tail(&reg->lru_list,
2670                                        &dev_priv->mm.fence_list);
2671                         return 0;
2672                 }
2673         } else if (enable) {
2674                 reg = i915_find_fence_reg(dev);
2675                 if (reg == NULL)
2676                         return -EDEADLK;
2677
2678                 if (reg->obj) {
2679                         struct drm_i915_gem_object *old = reg->obj;
2680
2681                         ret = i915_gem_object_flush_fence(old);
2682                         if (ret)
2683                                 return ret;
2684
2685                         i915_gem_object_fence_lost(old);
2686                 }
2687         } else
2688                 return 0;
2689
2690         i915_gem_object_update_fence(obj, reg, enable);
2691         obj->fence_dirty = false;
2692
2693         return 0;
2694 }
2695
2696 /**
2697  * Finds free space in the GTT aperture and binds the object there.
2698  */
2699 static int
2700 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2701                             unsigned alignment,
2702                             bool map_and_fenceable)
2703 {
2704         struct drm_device *dev = obj->base.dev;
2705         drm_i915_private_t *dev_priv = dev->dev_private;
2706         struct drm_mm_node *free_space;
2707         gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2708         u32 size, fence_size, fence_alignment, unfenced_alignment;
2709         bool mappable, fenceable;
2710         int ret;
2711
2712         if (obj->madv != I915_MADV_WILLNEED) {
2713                 DRM_ERROR("Attempting to bind a purgeable object\n");
2714                 return -EINVAL;
2715         }
2716
2717         fence_size = i915_gem_get_gtt_size(dev,
2718                                            obj->base.size,
2719                                            obj->tiling_mode);
2720         fence_alignment = i915_gem_get_gtt_alignment(dev,
2721                                                      obj->base.size,
2722                                                      obj->tiling_mode);
2723         unfenced_alignment =
2724                 i915_gem_get_unfenced_gtt_alignment(dev,
2725                                                     obj->base.size,
2726                                                     obj->tiling_mode);
2727
2728         if (alignment == 0)
2729                 alignment = map_and_fenceable ? fence_alignment :
2730                                                 unfenced_alignment;
2731         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2732                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2733                 return -EINVAL;
2734         }
2735
2736         size = map_and_fenceable ? fence_size : obj->base.size;
2737
2738         /* If the object is bigger than the entire aperture, reject it early
2739          * before evicting everything in a vain attempt to find space.
2740          */
2741         if (obj->base.size >
2742             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2743                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2744                 return -E2BIG;
2745         }
2746
2747  search_free:
2748         if (map_and_fenceable)
2749                 free_space =
2750                         drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2751                                                     size, alignment,
2752                                                     0, dev_priv->mm.gtt_mappable_end,
2753                                                     0);
2754         else
2755                 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2756                                                 size, alignment, 0);
2757
2758         if (free_space != NULL) {
2759                 if (map_and_fenceable)
2760                         obj->gtt_space =
2761                                 drm_mm_get_block_range_generic(free_space,
2762                                                                size, alignment, 0,
2763                                                                0, dev_priv->mm.gtt_mappable_end,
2764                                                                0);
2765                 else
2766                         obj->gtt_space =
2767                                 drm_mm_get_block(free_space, size, alignment);
2768         }
2769         if (obj->gtt_space == NULL) {
2770                 /* If the gtt is empty and we're still having trouble
2771                  * fitting our object in, we're out of memory.
2772                  */
2773                 ret = i915_gem_evict_something(dev, size, alignment,
2774                                                map_and_fenceable);
2775                 if (ret)
2776                         return ret;
2777
2778                 goto search_free;
2779         }
2780
2781         ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2782         if (ret) {
2783                 drm_mm_put_block(obj->gtt_space);
2784                 obj->gtt_space = NULL;
2785
2786                 if (ret == -ENOMEM) {
2787                         /* first try to reclaim some memory by clearing the GTT */
2788                         ret = i915_gem_evict_everything(dev, false);
2789                         if (ret) {
2790                                 /* now try to shrink everyone else */
2791                                 if (gfpmask) {
2792                                         gfpmask = 0;
2793                                         goto search_free;
2794                                 }
2795
2796                                 return -ENOMEM;
2797                         }
2798
2799                         goto search_free;
2800                 }
2801
2802                 return ret;
2803         }
2804
2805         ret = i915_gem_gtt_prepare_object(obj);
2806         if (ret) {
2807                 i915_gem_object_put_pages_gtt(obj);
2808                 drm_mm_put_block(obj->gtt_space);
2809                 obj->gtt_space = NULL;
2810
2811                 if (i915_gem_evict_everything(dev, false))
2812                         return ret;
2813
2814                 goto search_free;
2815         }
2816
2817         if (!dev_priv->mm.aliasing_ppgtt)
2818                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2819
2820         list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2821         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2822
2823         /* Assert that the object is not currently in any GPU domain. As it
2824          * wasn't in the GTT, there shouldn't be any way it could have been in
2825          * a GPU cache
2826          */
2827         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2828         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2829
2830         obj->gtt_offset = obj->gtt_space->start;
2831
2832         fenceable =
2833                 obj->gtt_space->size == fence_size &&
2834                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2835
2836         mappable =
2837                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2838
2839         obj->map_and_fenceable = mappable && fenceable;
2840
2841         trace_i915_gem_object_bind(obj, map_and_fenceable);
2842         return 0;
2843 }
2844
2845 void
2846 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2847 {
2848         /* If we don't have a page list set up, then we're not pinned
2849          * to GPU, and we can ignore the cache flush because it'll happen
2850          * again at bind time.
2851          */
2852         if (obj->pages == NULL)
2853                 return;
2854
2855         /* If the GPU is snooping the contents of the CPU cache,
2856          * we do not need to manually clear the CPU cache lines.  However,
2857          * the caches are only snooped when the render cache is
2858          * flushed/invalidated.  As we always have to emit invalidations
2859          * and flushes when moving into and out of the RENDER domain, correct
2860          * snooping behaviour occurs naturally as the result of our domain
2861          * tracking.
2862          */
2863         if (obj->cache_level != I915_CACHE_NONE)
2864                 return;
2865
2866         trace_i915_gem_object_clflush(obj);
2867
2868         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2869 }
2870
2871 /** Flushes any GPU write domain for the object if it's dirty. */
2872 static int
2873 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2874 {
2875         if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2876                 return 0;
2877
2878         /* Queue the GPU write cache flushing we need. */
2879         return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2880 }
2881
2882 /** Flushes the GTT write domain for the object if it's dirty. */
2883 static void
2884 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2885 {
2886         uint32_t old_write_domain;
2887
2888         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2889                 return;
2890
2891         /* No actual flushing is required for the GTT write domain.  Writes
2892          * to it immediately go to main memory as far as we know, so there's
2893          * no chipset flush.  It also doesn't land in render cache.
2894          *
2895          * However, we do have to enforce the order so that all writes through
2896          * the GTT land before any writes to the device, such as updates to
2897          * the GATT itself.
2898          */
2899         wmb();
2900
2901         old_write_domain = obj->base.write_domain;
2902         obj->base.write_domain = 0;
2903
2904         trace_i915_gem_object_change_domain(obj,
2905                                             obj->base.read_domains,
2906                                             old_write_domain);
2907 }
2908
2909 /** Flushes the CPU write domain for the object if it's dirty. */
2910 static void
2911 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2912 {
2913         uint32_t old_write_domain;
2914
2915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2916                 return;
2917
2918         i915_gem_clflush_object(obj);
2919         intel_gtt_chipset_flush();
2920         old_write_domain = obj->base.write_domain;
2921         obj->base.write_domain = 0;
2922
2923         trace_i915_gem_object_change_domain(obj,
2924                                             obj->base.read_domains,
2925                                             old_write_domain);
2926 }
2927
2928 /**
2929  * Moves a single object to the GTT read, and possibly write domain.
2930  *
2931  * This function returns when the move is complete, including waiting on
2932  * flushes to occur.
2933  */
2934 int
2935 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2936 {
2937         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2938         uint32_t old_write_domain, old_read_domains;
2939         int ret;
2940
2941         /* Not valid to be called on unbound objects. */
2942         if (obj->gtt_space == NULL)
2943                 return -EINVAL;
2944
2945         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2946                 return 0;
2947
2948         ret = i915_gem_object_flush_gpu_write_domain(obj);
2949         if (ret)
2950                 return ret;
2951
2952         if (obj->pending_gpu_write || write) {
2953                 ret = i915_gem_object_wait_rendering(obj);
2954                 if (ret)
2955                         return ret;
2956         }
2957
2958         i915_gem_object_flush_cpu_write_domain(obj);
2959
2960         old_write_domain = obj->base.write_domain;
2961         old_read_domains = obj->base.read_domains;
2962
2963         /* It should now be out of any other write domains, and we can update
2964          * the domain values for our changes.
2965          */
2966         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2967         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2968         if (write) {
2969                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2970                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2971                 obj->dirty = 1;
2972         }
2973
2974         trace_i915_gem_object_change_domain(obj,
2975                                             old_read_domains,
2976                                             old_write_domain);
2977
2978         /* And bump the LRU for this access */
2979         if (i915_gem_object_is_inactive(obj))
2980                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2981
2982         return 0;
2983 }
2984
2985 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2986                                     enum i915_cache_level cache_level)
2987 {
2988         struct drm_device *dev = obj->base.dev;
2989         drm_i915_private_t *dev_priv = dev->dev_private;
2990         int ret;
2991
2992         if (obj->cache_level == cache_level)
2993                 return 0;
2994
2995         if (obj->pin_count) {
2996                 DRM_DEBUG("can not change the cache level of pinned objects\n");
2997                 return -EBUSY;
2998         }
2999
3000         if (obj->gtt_space) {
3001                 ret = i915_gem_object_finish_gpu(obj);
3002                 if (ret)
3003                         return ret;
3004
3005                 i915_gem_object_finish_gtt(obj);
3006
3007                 /* Before SandyBridge, you could not use tiling or fence
3008                  * registers with snooped memory, so relinquish any fences
3009                  * currently pointing to our region in the aperture.
3010                  */
3011                 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3012                         ret = i915_gem_object_put_fence(obj);
3013                         if (ret)
3014                                 return ret;
3015                 }
3016
3017                 if (obj->has_global_gtt_mapping)
3018                         i915_gem_gtt_bind_object(obj, cache_level);
3019                 if (obj->has_aliasing_ppgtt_mapping)
3020                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3021                                                obj, cache_level);
3022         }
3023
3024         if (cache_level == I915_CACHE_NONE) {
3025                 u32 old_read_domains, old_write_domain;
3026
3027                 /* If we're coming from LLC cached, then we haven't
3028                  * actually been tracking whether the data is in the
3029                  * CPU cache or not, since we only allow one bit set
3030                  * in obj->write_domain and have been skipping the clflushes.
3031                  * Just set it to the CPU cache for now.
3032                  */
3033                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3034                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3035
3036                 old_read_domains = obj->base.read_domains;
3037                 old_write_domain = obj->base.write_domain;
3038
3039                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3040                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3041
3042                 trace_i915_gem_object_change_domain(obj,
3043                                                     old_read_domains,
3044                                                     old_write_domain);
3045         }
3046
3047         obj->cache_level = cache_level;
3048         return 0;
3049 }
3050
3051 /*
3052  * Prepare buffer for display plane (scanout, cursors, etc).
3053  * Can be called from an uninterruptible phase (modesetting) and allows
3054  * any flushes to be pipelined (for pageflips).
3055  */
3056 int
3057 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3058                                      u32 alignment,
3059                                      struct intel_ring_buffer *pipelined)
3060 {
3061         u32 old_read_domains, old_write_domain;
3062         int ret;
3063
3064         ret = i915_gem_object_flush_gpu_write_domain(obj);
3065         if (ret)
3066                 return ret;
3067
3068         if (pipelined != obj->ring) {
3069                 ret = i915_gem_object_sync(obj, pipelined);
3070                 if (ret)
3071                         return ret;
3072         }
3073
3074         /* The display engine is not coherent with the LLC cache on gen6.  As
3075          * a result, we make sure that the pinning that is about to occur is
3076          * done with uncached PTEs. This is lowest common denominator for all
3077          * chipsets.
3078          *
3079          * However for gen6+, we could do better by using the GFDT bit instead
3080          * of uncaching, which would allow us to flush all the LLC-cached data
3081          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3082          */
3083         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3084         if (ret)
3085                 return ret;
3086
3087         /* As the user may map the buffer once pinned in the display plane
3088          * (e.g. libkms for the bootup splash), we have to ensure that we
3089          * always use map_and_fenceable for all scanout buffers.
3090          */
3091         ret = i915_gem_object_pin(obj, alignment, true);
3092         if (ret)
3093                 return ret;
3094
3095         i915_gem_object_flush_cpu_write_domain(obj);
3096
3097         old_write_domain = obj->base.write_domain;
3098         old_read_domains = obj->base.read_domains;
3099
3100         /* It should now be out of any other write domains, and we can update
3101          * the domain values for our changes.
3102          */
3103         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3104         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3105
3106         trace_i915_gem_object_change_domain(obj,
3107                                             old_read_domains,
3108                                             old_write_domain);
3109
3110         return 0;
3111 }
3112
3113 int
3114 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3115 {
3116         int ret;
3117
3118         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3119                 return 0;
3120
3121         if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3122                 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3123                 if (ret)
3124                         return ret;
3125         }
3126
3127         ret = i915_gem_object_wait_rendering(obj);
3128         if (ret)
3129                 return ret;
3130
3131         /* Ensure that we invalidate the GPU's caches and TLBs. */
3132         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3133         return 0;
3134 }
3135
3136 /**
3137  * Moves a single object to the CPU read, and possibly write domain.
3138  *
3139  * This function returns when the move is complete, including waiting on
3140  * flushes to occur.
3141  */
3142 int
3143 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3144 {
3145         uint32_t old_write_domain, old_read_domains;
3146         int ret;
3147
3148         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3149                 return 0;
3150
3151         ret = i915_gem_object_flush_gpu_write_domain(obj);
3152         if (ret)
3153                 return ret;
3154
3155         if (write || obj->pending_gpu_write) {
3156                 ret = i915_gem_object_wait_rendering(obj);
3157                 if (ret)
3158                         return ret;
3159         }
3160
3161         i915_gem_object_flush_gtt_write_domain(obj);
3162
3163         old_write_domain = obj->base.write_domain;
3164         old_read_domains = obj->base.read_domains;
3165
3166         /* Flush the CPU cache if it's still invalid. */
3167         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3168                 i915_gem_clflush_object(obj);
3169
3170                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3171         }
3172
3173         /* It should now be out of any other write domains, and we can update
3174          * the domain values for our changes.
3175          */
3176         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3177
3178         /* If we're writing through the CPU, then the GPU read domains will
3179          * need to be invalidated at next use.
3180          */
3181         if (write) {
3182                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3183                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3184         }
3185
3186         trace_i915_gem_object_change_domain(obj,
3187                                             old_read_domains,
3188                                             old_write_domain);
3189
3190         return 0;
3191 }
3192
3193 /* Throttle our rendering by waiting until the ring has completed our requests
3194  * emitted over 20 msec ago.
3195  *
3196  * Note that if we were to use the current jiffies each time around the loop,
3197  * we wouldn't escape the function with any frames outstanding if the time to
3198  * render a frame was over 20ms.
3199  *
3200  * This should get us reasonable parallelism between CPU and GPU but also
3201  * relatively low latency when blocking on a particular request to finish.
3202  */
3203 static int
3204 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3205 {
3206         struct drm_i915_private *dev_priv = dev->dev_private;
3207         struct drm_i915_file_private *file_priv = file->driver_priv;
3208         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3209         struct drm_i915_gem_request *request;
3210         struct intel_ring_buffer *ring = NULL;
3211         u32 seqno = 0;
3212         int ret;
3213
3214         if (atomic_read(&dev_priv->mm.wedged))
3215                 return -EIO;
3216
3217         spin_lock(&file_priv->mm.lock);
3218         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3219                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3220                         break;
3221
3222                 ring = request->ring;
3223                 seqno = request->seqno;
3224         }
3225         spin_unlock(&file_priv->mm.lock);
3226
3227         if (seqno == 0)
3228                 return 0;
3229
3230         ret = __wait_seqno(ring, seqno, true, NULL);
3231         if (ret == 0)
3232                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3233
3234         return ret;
3235 }
3236
3237 int
3238 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3239                     uint32_t alignment,
3240                     bool map_and_fenceable)
3241 {
3242         int ret;
3243
3244         BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3245
3246         if (obj->gtt_space != NULL) {
3247                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3248                     (map_and_fenceable && !obj->map_and_fenceable)) {
3249                         WARN(obj->pin_count,
3250                              "bo is already pinned with incorrect alignment:"
3251                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3252                              " obj->map_and_fenceable=%d\n",
3253                              obj->gtt_offset, alignment,
3254                              map_and_fenceable,
3255                              obj->map_and_fenceable);
3256                         ret = i915_gem_object_unbind(obj);
3257                         if (ret)
3258                                 return ret;
3259                 }
3260         }
3261
3262         if (obj->gtt_space == NULL) {
3263                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3264                                                   map_and_fenceable);
3265                 if (ret)
3266                         return ret;
3267         }
3268
3269         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3270                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3271
3272         obj->pin_count++;
3273         obj->pin_mappable |= map_and_fenceable;
3274
3275         return 0;
3276 }
3277
3278 void
3279 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3280 {
3281         BUG_ON(obj->pin_count == 0);
3282         BUG_ON(obj->gtt_space == NULL);
3283
3284         if (--obj->pin_count == 0)
3285                 obj->pin_mappable = false;
3286 }
3287
3288 int
3289 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3290                    struct drm_file *file)
3291 {
3292         struct drm_i915_gem_pin *args = data;
3293         struct drm_i915_gem_object *obj;
3294         int ret;
3295
3296         ret = i915_mutex_lock_interruptible(dev);
3297         if (ret)
3298                 return ret;
3299
3300         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3301         if (&obj->base == NULL) {
3302                 ret = -ENOENT;
3303                 goto unlock;
3304         }
3305
3306         if (obj->madv != I915_MADV_WILLNEED) {
3307                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3308                 ret = -EINVAL;
3309                 goto out;
3310         }
3311
3312         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3313                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3314                           args->handle);
3315                 ret = -EINVAL;
3316                 goto out;
3317         }
3318
3319         obj->user_pin_count++;
3320         obj->pin_filp = file;
3321         if (obj->user_pin_count == 1) {
3322                 ret = i915_gem_object_pin(obj, args->alignment, true);
3323                 if (ret)
3324                         goto out;
3325         }
3326
3327         /* XXX - flush the CPU caches for pinned objects
3328          * as the X server doesn't manage domains yet
3329          */
3330         i915_gem_object_flush_cpu_write_domain(obj);
3331         args->offset = obj->gtt_offset;
3332 out:
3333         drm_gem_object_unreference(&obj->base);
3334 unlock:
3335         mutex_unlock(&dev->struct_mutex);
3336         return ret;
3337 }
3338
3339 int
3340 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3341                      struct drm_file *file)
3342 {
3343         struct drm_i915_gem_pin *args = data;
3344         struct drm_i915_gem_object *obj;
3345         int ret;
3346
3347         ret = i915_mutex_lock_interruptible(dev);
3348         if (ret)
3349                 return ret;
3350
3351         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3352         if (&obj->base == NULL) {
3353                 ret = -ENOENT;
3354                 goto unlock;
3355         }
3356
3357         if (obj->pin_filp != file) {
3358                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3359                           args->handle);
3360                 ret = -EINVAL;
3361                 goto out;
3362         }
3363         obj->user_pin_count--;
3364         if (obj->user_pin_count == 0) {
3365                 obj->pin_filp = NULL;
3366                 i915_gem_object_unpin(obj);
3367         }
3368
3369 out:
3370         drm_gem_object_unreference(&obj->base);
3371 unlock:
3372         mutex_unlock(&dev->struct_mutex);
3373         return ret;
3374 }
3375
3376 int
3377 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3378                     struct drm_file *file)
3379 {
3380         struct drm_i915_gem_busy *args = data;
3381         struct drm_i915_gem_object *obj;
3382         int ret;
3383
3384         ret = i915_mutex_lock_interruptible(dev);
3385         if (ret)
3386                 return ret;
3387
3388         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3389         if (&obj->base == NULL) {
3390                 ret = -ENOENT;
3391                 goto unlock;
3392         }
3393
3394         /* Count all active objects as busy, even if they are currently not used
3395          * by the gpu. Users of this interface expect objects to eventually
3396          * become non-busy without any further actions, therefore emit any
3397          * necessary flushes here.
3398          */
3399         ret = i915_gem_object_flush_active(obj);
3400
3401         args->busy = obj->active;
3402
3403         drm_gem_object_unreference(&obj->base);
3404 unlock:
3405         mutex_unlock(&dev->struct_mutex);
3406         return ret;
3407 }
3408
3409 int
3410 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3411                         struct drm_file *file_priv)
3412 {
3413         return i915_gem_ring_throttle(dev, file_priv);
3414 }
3415
3416 int
3417 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3418                        struct drm_file *file_priv)
3419 {
3420         struct drm_i915_gem_madvise *args = data;
3421         struct drm_i915_gem_object *obj;
3422         int ret;
3423
3424         switch (args->madv) {
3425         case I915_MADV_DONTNEED:
3426         case I915_MADV_WILLNEED:
3427             break;
3428         default:
3429             return -EINVAL;
3430         }
3431
3432         ret = i915_mutex_lock_interruptible(dev);
3433         if (ret)
3434                 return ret;
3435
3436         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3437         if (&obj->base == NULL) {
3438                 ret = -ENOENT;
3439                 goto unlock;
3440         }
3441
3442         if (obj->pin_count) {
3443                 ret = -EINVAL;
3444                 goto out;
3445         }
3446
3447         if (obj->madv != __I915_MADV_PURGED)
3448                 obj->madv = args->madv;
3449
3450         /* if the object is no longer bound, discard its backing storage */
3451         if (i915_gem_object_is_purgeable(obj) &&
3452             obj->gtt_space == NULL)
3453                 i915_gem_object_truncate(obj);
3454
3455         args->retained = obj->madv != __I915_MADV_PURGED;
3456
3457 out:
3458         drm_gem_object_unreference(&obj->base);
3459 unlock:
3460         mutex_unlock(&dev->struct_mutex);
3461         return ret;
3462 }
3463
3464 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3465                                                   size_t size)
3466 {
3467         struct drm_i915_private *dev_priv = dev->dev_private;
3468         struct drm_i915_gem_object *obj;
3469         struct address_space *mapping;
3470         u32 mask;
3471
3472         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3473         if (obj == NULL)
3474                 return NULL;
3475
3476         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3477                 kfree(obj);
3478                 return NULL;
3479         }
3480
3481         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3482         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3483                 /* 965gm cannot relocate objects above 4GiB. */
3484                 mask &= ~__GFP_HIGHMEM;
3485                 mask |= __GFP_DMA32;
3486         }
3487
3488         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3489         mapping_set_gfp_mask(mapping, mask);
3490
3491         i915_gem_info_add_obj(dev_priv, size);
3492
3493         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3494         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3495
3496         if (HAS_LLC(dev)) {
3497                 /* On some devices, we can have the GPU use the LLC (the CPU
3498                  * cache) for about a 10% performance improvement
3499                  * compared to uncached.  Graphics requests other than
3500                  * display scanout are coherent with the CPU in
3501                  * accessing this cache.  This means in this mode we
3502                  * don't need to clflush on the CPU side, and on the
3503                  * GPU side we only need to flush internal caches to
3504                  * get data visible to the CPU.
3505                  *
3506                  * However, we maintain the display planes as UC, and so
3507                  * need to rebind when first used as such.
3508                  */
3509                 obj->cache_level = I915_CACHE_LLC;
3510         } else
3511                 obj->cache_level = I915_CACHE_NONE;
3512
3513         obj->base.driver_private = NULL;
3514         obj->fence_reg = I915_FENCE_REG_NONE;
3515         INIT_LIST_HEAD(&obj->mm_list);
3516         INIT_LIST_HEAD(&obj->gtt_list);
3517         INIT_LIST_HEAD(&obj->ring_list);
3518         INIT_LIST_HEAD(&obj->exec_list);
3519         INIT_LIST_HEAD(&obj->gpu_write_list);
3520         obj->madv = I915_MADV_WILLNEED;
3521         /* Avoid an unnecessary call to unbind on the first bind. */
3522         obj->map_and_fenceable = true;
3523
3524         return obj;
3525 }
3526
3527 int i915_gem_init_object(struct drm_gem_object *obj)
3528 {
3529         BUG();
3530
3531         return 0;
3532 }
3533
3534 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3535 {
3536         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3537         struct drm_device *dev = obj->base.dev;
3538         drm_i915_private_t *dev_priv = dev->dev_private;
3539
3540         trace_i915_gem_object_destroy(obj);
3541
3542         if (gem_obj->import_attach)
3543                 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3544
3545         if (obj->phys_obj)
3546                 i915_gem_detach_phys_object(dev, obj);
3547
3548         obj->pin_count = 0;
3549         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3550                 bool was_interruptible;
3551
3552                 was_interruptible = dev_priv->mm.interruptible;
3553                 dev_priv->mm.interruptible = false;
3554
3555                 WARN_ON(i915_gem_object_unbind(obj));
3556
3557                 dev_priv->mm.interruptible = was_interruptible;
3558         }
3559
3560         if (obj->base.map_list.map)
3561                 drm_gem_free_mmap_offset(&obj->base);
3562
3563         drm_gem_object_release(&obj->base);
3564         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3565
3566         kfree(obj->bit_17);
3567         kfree(obj);
3568 }
3569
3570 int
3571 i915_gem_idle(struct drm_device *dev)
3572 {
3573         drm_i915_private_t *dev_priv = dev->dev_private;
3574         int ret;
3575
3576         mutex_lock(&dev->struct_mutex);
3577
3578         if (dev_priv->mm.suspended) {
3579                 mutex_unlock(&dev->struct_mutex);
3580                 return 0;
3581         }
3582
3583         ret = i915_gpu_idle(dev);
3584         if (ret) {
3585                 mutex_unlock(&dev->struct_mutex);
3586                 return ret;
3587         }
3588         i915_gem_retire_requests(dev);
3589
3590         /* Under UMS, be paranoid and evict. */
3591         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3592                 i915_gem_evict_everything(dev, false);
3593
3594         i915_gem_reset_fences(dev);
3595
3596         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3597          * We need to replace this with a semaphore, or something.
3598          * And not confound mm.suspended!
3599          */
3600         dev_priv->mm.suspended = 1;
3601         del_timer_sync(&dev_priv->hangcheck_timer);
3602
3603         i915_kernel_lost_context(dev);
3604         i915_gem_cleanup_ringbuffer(dev);
3605
3606         mutex_unlock(&dev->struct_mutex);
3607
3608         /* Cancel the retire work handler, which should be idle now. */
3609         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3610
3611         return 0;
3612 }
3613
3614 void i915_gem_l3_remap(struct drm_device *dev)
3615 {
3616         drm_i915_private_t *dev_priv = dev->dev_private;
3617         u32 misccpctl;
3618         int i;
3619
3620         if (!IS_IVYBRIDGE(dev))
3621                 return;
3622
3623         if (!dev_priv->mm.l3_remap_info)
3624                 return;
3625
3626         misccpctl = I915_READ(GEN7_MISCCPCTL);
3627         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3628         POSTING_READ(GEN7_MISCCPCTL);
3629
3630         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3631                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3632                 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3633                         DRM_DEBUG("0x%x was already programmed to %x\n",
3634                                   GEN7_L3LOG_BASE + i, remap);
3635                 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3636                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3637                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3638         }
3639
3640         /* Make sure all the writes land before disabling dop clock gating */
3641         POSTING_READ(GEN7_L3LOG_BASE);
3642
3643         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3644 }
3645
3646 void i915_gem_init_swizzling(struct drm_device *dev)
3647 {
3648         drm_i915_private_t *dev_priv = dev->dev_private;
3649
3650         if (INTEL_INFO(dev)->gen < 5 ||
3651             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3652                 return;
3653
3654         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3655                                  DISP_TILE_SURFACE_SWIZZLING);
3656
3657         if (IS_GEN5(dev))
3658                 return;
3659
3660         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3661         if (IS_GEN6(dev))
3662                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3663         else
3664                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3665 }
3666
3667 void i915_gem_init_ppgtt(struct drm_device *dev)
3668 {
3669         drm_i915_private_t *dev_priv = dev->dev_private;
3670         uint32_t pd_offset;
3671         struct intel_ring_buffer *ring;
3672         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3673         uint32_t __iomem *pd_addr;
3674         uint32_t pd_entry;
3675         int i;
3676
3677         if (!dev_priv->mm.aliasing_ppgtt)
3678                 return;
3679
3680
3681         pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3682         for (i = 0; i < ppgtt->num_pd_entries; i++) {
3683                 dma_addr_t pt_addr;
3684
3685                 if (dev_priv->mm.gtt->needs_dmar)
3686                         pt_addr = ppgtt->pt_dma_addr[i];
3687                 else
3688                         pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3689
3690                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3691                 pd_entry |= GEN6_PDE_VALID;
3692
3693                 writel(pd_entry, pd_addr + i);
3694         }
3695         readl(pd_addr);
3696
3697         pd_offset = ppgtt->pd_offset;
3698         pd_offset /= 64; /* in cachelines, */
3699         pd_offset <<= 16;
3700
3701         if (INTEL_INFO(dev)->gen == 6) {
3702                 uint32_t ecochk, gab_ctl, ecobits;
3703
3704                 ecobits = I915_READ(GAC_ECO_BITS); 
3705                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3706
3707                 gab_ctl = I915_READ(GAB_CTL);
3708                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3709
3710                 ecochk = I915_READ(GAM_ECOCHK);
3711                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3712                                        ECOCHK_PPGTT_CACHE64B);
3713                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3714         } else if (INTEL_INFO(dev)->gen >= 7) {
3715                 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3716                 /* GFX_MODE is per-ring on gen7+ */
3717         }
3718
3719         for_each_ring(ring, dev_priv, i) {
3720                 if (INTEL_INFO(dev)->gen >= 7)
3721                         I915_WRITE(RING_MODE_GEN7(ring),
3722                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3723
3724                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3725                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3726         }
3727 }
3728
3729 int
3730 i915_gem_init_hw(struct drm_device *dev)
3731 {
3732         drm_i915_private_t *dev_priv = dev->dev_private;
3733         int ret;
3734
3735         if (!intel_enable_gtt())
3736                 return -EIO;
3737
3738         i915_gem_l3_remap(dev);
3739
3740         i915_gem_init_swizzling(dev);
3741
3742         ret = intel_init_render_ring_buffer(dev);
3743         if (ret)
3744                 return ret;
3745
3746         if (HAS_BSD(dev)) {
3747                 ret = intel_init_bsd_ring_buffer(dev);
3748                 if (ret)
3749                         goto cleanup_render_ring;
3750         }
3751
3752         if (HAS_BLT(dev)) {
3753                 ret = intel_init_blt_ring_buffer(dev);
3754                 if (ret)
3755                         goto cleanup_bsd_ring;
3756         }
3757
3758         dev_priv->next_seqno = 1;
3759
3760         /*
3761          * XXX: There was some w/a described somewhere suggesting loading
3762          * contexts before PPGTT.
3763          */
3764         i915_gem_context_init(dev);
3765         i915_gem_init_ppgtt(dev);
3766
3767         return 0;
3768
3769 cleanup_bsd_ring:
3770         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3771 cleanup_render_ring:
3772         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3773         return ret;
3774 }
3775
3776 static bool
3777 intel_enable_ppgtt(struct drm_device *dev)
3778 {
3779         if (i915_enable_ppgtt >= 0)
3780                 return i915_enable_ppgtt;
3781
3782 #ifdef CONFIG_INTEL_IOMMU
3783         /* Disable ppgtt on SNB if VT-d is on. */
3784         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3785                 return false;
3786 #endif
3787
3788         return true;
3789 }
3790
3791 int i915_gem_init(struct drm_device *dev)
3792 {
3793         struct drm_i915_private *dev_priv = dev->dev_private;
3794         unsigned long gtt_size, mappable_size;
3795         int ret;
3796
3797         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3798         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3799
3800         mutex_lock(&dev->struct_mutex);
3801         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3802                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3803                  * aperture accordingly when using aliasing ppgtt. */
3804                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3805
3806                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3807
3808                 ret = i915_gem_init_aliasing_ppgtt(dev);
3809                 if (ret) {
3810                         mutex_unlock(&dev->struct_mutex);
3811                         return ret;
3812                 }
3813         } else {
3814                 /* Let GEM Manage all of the aperture.
3815                  *
3816                  * However, leave one page at the end still bound to the scratch
3817                  * page.  There are a number of places where the hardware
3818                  * apparently prefetches past the end of the object, and we've
3819                  * seen multiple hangs with the GPU head pointer stuck in a
3820                  * batchbuffer bound at the last page of the aperture.  One page
3821                  * should be enough to keep any prefetching inside of the
3822                  * aperture.
3823                  */
3824                 i915_gem_init_global_gtt(dev, 0, mappable_size,
3825                                          gtt_size);
3826         }
3827
3828         ret = i915_gem_init_hw(dev);
3829         mutex_unlock(&dev->struct_mutex);
3830         if (ret) {
3831                 i915_gem_cleanup_aliasing_ppgtt(dev);
3832                 return ret;
3833         }
3834
3835         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3836         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3837                 dev_priv->dri1.allow_batchbuffer = 1;
3838         return 0;
3839 }
3840
3841 void
3842 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3843 {
3844         drm_i915_private_t *dev_priv = dev->dev_private;
3845         struct intel_ring_buffer *ring;
3846         int i;
3847
3848         for_each_ring(ring, dev_priv, i)
3849                 intel_cleanup_ring_buffer(ring);
3850 }
3851
3852 int
3853 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3854                        struct drm_file *file_priv)
3855 {
3856         drm_i915_private_t *dev_priv = dev->dev_private;
3857         int ret;
3858
3859         if (drm_core_check_feature(dev, DRIVER_MODESET))
3860                 return 0;
3861
3862         if (atomic_read(&dev_priv->mm.wedged)) {
3863                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3864                 atomic_set(&dev_priv->mm.wedged, 0);
3865         }
3866
3867         mutex_lock(&dev->struct_mutex);
3868         dev_priv->mm.suspended = 0;
3869
3870         ret = i915_gem_init_hw(dev);
3871         if (ret != 0) {
3872                 mutex_unlock(&dev->struct_mutex);
3873                 return ret;
3874         }
3875
3876         BUG_ON(!list_empty(&dev_priv->mm.active_list));
3877         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3878         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3879         mutex_unlock(&dev->struct_mutex);
3880
3881         ret = drm_irq_install(dev);
3882         if (ret)
3883                 goto cleanup_ringbuffer;
3884
3885         return 0;
3886
3887 cleanup_ringbuffer:
3888         mutex_lock(&dev->struct_mutex);
3889         i915_gem_cleanup_ringbuffer(dev);
3890         dev_priv->mm.suspended = 1;
3891         mutex_unlock(&dev->struct_mutex);
3892
3893         return ret;
3894 }
3895
3896 int
3897 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3898                        struct drm_file *file_priv)
3899 {
3900         if (drm_core_check_feature(dev, DRIVER_MODESET))
3901                 return 0;
3902
3903         drm_irq_uninstall(dev);
3904         return i915_gem_idle(dev);
3905 }
3906
3907 void
3908 i915_gem_lastclose(struct drm_device *dev)
3909 {
3910         int ret;
3911
3912         if (drm_core_check_feature(dev, DRIVER_MODESET))
3913                 return;
3914
3915         ret = i915_gem_idle(dev);
3916         if (ret)
3917                 DRM_ERROR("failed to idle hardware: %d\n", ret);
3918 }
3919
3920 static void
3921 init_ring_lists(struct intel_ring_buffer *ring)
3922 {
3923         INIT_LIST_HEAD(&ring->active_list);
3924         INIT_LIST_HEAD(&ring->request_list);
3925         INIT_LIST_HEAD(&ring->gpu_write_list);
3926 }
3927
3928 void
3929 i915_gem_load(struct drm_device *dev)
3930 {
3931         int i;
3932         drm_i915_private_t *dev_priv = dev->dev_private;
3933
3934         INIT_LIST_HEAD(&dev_priv->mm.active_list);
3935         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3936         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3937         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3938         INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3939         for (i = 0; i < I915_NUM_RINGS; i++)
3940                 init_ring_lists(&dev_priv->ring[i]);
3941         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3942                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3943         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3944                           i915_gem_retire_work_handler);
3945         init_completion(&dev_priv->error_completion);
3946
3947         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3948         if (IS_GEN3(dev)) {
3949                 I915_WRITE(MI_ARB_STATE,
3950                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3951         }
3952
3953         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3954
3955         /* Old X drivers will take 0-2 for front, back, depth buffers */
3956         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3957                 dev_priv->fence_reg_start = 3;
3958
3959         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3960                 dev_priv->num_fence_regs = 16;
3961         else
3962                 dev_priv->num_fence_regs = 8;
3963
3964         /* Initialize fence registers to zero */
3965         i915_gem_reset_fences(dev);
3966
3967         i915_gem_detect_bit_6_swizzle(dev);
3968         init_waitqueue_head(&dev_priv->pending_flip_queue);
3969
3970         dev_priv->mm.interruptible = true;
3971
3972         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3973         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3974         register_shrinker(&dev_priv->mm.inactive_shrinker);
3975 }
3976
3977 /*
3978  * Create a physically contiguous memory object for this object
3979  * e.g. for cursor + overlay regs
3980  */
3981 static int i915_gem_init_phys_object(struct drm_device *dev,
3982                                      int id, int size, int align)
3983 {
3984         drm_i915_private_t *dev_priv = dev->dev_private;
3985         struct drm_i915_gem_phys_object *phys_obj;
3986         int ret;
3987
3988         if (dev_priv->mm.phys_objs[id - 1] || !size)
3989                 return 0;
3990
3991         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3992         if (!phys_obj)
3993                 return -ENOMEM;
3994
3995         phys_obj->id = id;
3996
3997         phys_obj->handle = drm_pci_alloc(dev, size, align);
3998         if (!phys_obj->handle) {
3999                 ret = -ENOMEM;
4000                 goto kfree_obj;
4001         }
4002 #ifdef CONFIG_X86
4003         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4004 #endif
4005
4006         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4007
4008         return 0;
4009 kfree_obj:
4010         kfree(phys_obj);
4011         return ret;
4012 }
4013
4014 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4015 {
4016         drm_i915_private_t *dev_priv = dev->dev_private;
4017         struct drm_i915_gem_phys_object *phys_obj;
4018
4019         if (!dev_priv->mm.phys_objs[id - 1])
4020                 return;
4021
4022         phys_obj = dev_priv->mm.phys_objs[id - 1];
4023         if (phys_obj->cur_obj) {
4024                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4025         }
4026
4027 #ifdef CONFIG_X86
4028         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4029 #endif
4030         drm_pci_free(dev, phys_obj->handle);
4031         kfree(phys_obj);
4032         dev_priv->mm.phys_objs[id - 1] = NULL;
4033 }
4034
4035 void i915_gem_free_all_phys_object(struct drm_device *dev)
4036 {
4037         int i;
4038
4039         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4040                 i915_gem_free_phys_object(dev, i);
4041 }
4042
4043 void i915_gem_detach_phys_object(struct drm_device *dev,
4044                                  struct drm_i915_gem_object *obj)
4045 {
4046         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4047         char *vaddr;
4048         int i;
4049         int page_count;
4050
4051         if (!obj->phys_obj)
4052                 return;
4053         vaddr = obj->phys_obj->handle->vaddr;
4054
4055         page_count = obj->base.size / PAGE_SIZE;
4056         for (i = 0; i < page_count; i++) {
4057                 struct page *page = shmem_read_mapping_page(mapping, i);
4058                 if (!IS_ERR(page)) {
4059                         char *dst = kmap_atomic(page);
4060                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4061                         kunmap_atomic(dst);
4062
4063                         drm_clflush_pages(&page, 1);
4064
4065                         set_page_dirty(page);
4066                         mark_page_accessed(page);
4067                         page_cache_release(page);
4068                 }
4069         }
4070         intel_gtt_chipset_flush();
4071
4072         obj->phys_obj->cur_obj = NULL;
4073         obj->phys_obj = NULL;
4074 }
4075
4076 int
4077 i915_gem_attach_phys_object(struct drm_device *dev,
4078                             struct drm_i915_gem_object *obj,
4079                             int id,
4080                             int align)
4081 {
4082         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4083         drm_i915_private_t *dev_priv = dev->dev_private;
4084         int ret = 0;
4085         int page_count;
4086         int i;
4087
4088         if (id > I915_MAX_PHYS_OBJECT)
4089                 return -EINVAL;
4090
4091         if (obj->phys_obj) {
4092                 if (obj->phys_obj->id == id)
4093                         return 0;
4094                 i915_gem_detach_phys_object(dev, obj);
4095         }
4096
4097         /* create a new object */
4098         if (!dev_priv->mm.phys_objs[id - 1]) {
4099                 ret = i915_gem_init_phys_object(dev, id,
4100                                                 obj->base.size, align);
4101                 if (ret) {
4102                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4103                                   id, obj->base.size);
4104                         return ret;
4105                 }
4106         }
4107
4108         /* bind to the object */
4109         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4110         obj->phys_obj->cur_obj = obj;
4111
4112         page_count = obj->base.size / PAGE_SIZE;
4113
4114         for (i = 0; i < page_count; i++) {
4115                 struct page *page;
4116                 char *dst, *src;
4117
4118                 page = shmem_read_mapping_page(mapping, i);
4119                 if (IS_ERR(page))
4120                         return PTR_ERR(page);
4121
4122                 src = kmap_atomic(page);
4123                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4124                 memcpy(dst, src, PAGE_SIZE);
4125                 kunmap_atomic(src);
4126
4127                 mark_page_accessed(page);
4128                 page_cache_release(page);
4129         }
4130
4131         return 0;
4132 }
4133
4134 static int
4135 i915_gem_phys_pwrite(struct drm_device *dev,
4136                      struct drm_i915_gem_object *obj,
4137                      struct drm_i915_gem_pwrite *args,
4138                      struct drm_file *file_priv)
4139 {
4140         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4141         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4142
4143         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4144                 unsigned long unwritten;
4145
4146                 /* The physical object once assigned is fixed for the lifetime
4147                  * of the obj, so we can safely drop the lock and continue
4148                  * to access vaddr.
4149                  */
4150                 mutex_unlock(&dev->struct_mutex);
4151                 unwritten = copy_from_user(vaddr, user_data, args->size);
4152                 mutex_lock(&dev->struct_mutex);
4153                 if (unwritten)
4154                         return -EFAULT;
4155         }
4156
4157         intel_gtt_chipset_flush();
4158         return 0;
4159 }
4160
4161 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4162 {
4163         struct drm_i915_file_private *file_priv = file->driver_priv;
4164
4165         /* Clean up our request list when the client is going away, so that
4166          * later retire_requests won't dereference our soon-to-be-gone
4167          * file_priv.
4168          */
4169         spin_lock(&file_priv->mm.lock);
4170         while (!list_empty(&file_priv->mm.request_list)) {
4171                 struct drm_i915_gem_request *request;
4172
4173                 request = list_first_entry(&file_priv->mm.request_list,
4174                                            struct drm_i915_gem_request,
4175                                            client_list);
4176                 list_del(&request->client_list);
4177                 request->file_priv = NULL;
4178         }
4179         spin_unlock(&file_priv->mm.lock);
4180 }
4181
4182 static int
4183 i915_gpu_is_active(struct drm_device *dev)
4184 {
4185         drm_i915_private_t *dev_priv = dev->dev_private;
4186         int lists_empty;
4187
4188         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4189                       list_empty(&dev_priv->mm.active_list);
4190
4191         return !lists_empty;
4192 }
4193
4194 static int
4195 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4196 {
4197         struct drm_i915_private *dev_priv =
4198                 container_of(shrinker,
4199                              struct drm_i915_private,
4200                              mm.inactive_shrinker);
4201         struct drm_device *dev = dev_priv->dev;
4202         struct drm_i915_gem_object *obj, *next;
4203         int nr_to_scan = sc->nr_to_scan;
4204         int cnt;
4205
4206         if (!mutex_trylock(&dev->struct_mutex))
4207                 return 0;
4208
4209         /* "fast-path" to count number of available objects */
4210         if (nr_to_scan == 0) {
4211                 cnt = 0;
4212                 list_for_each_entry(obj,
4213                                     &dev_priv->mm.inactive_list,
4214                                     mm_list)
4215                         cnt++;
4216                 mutex_unlock(&dev->struct_mutex);
4217                 return cnt / 100 * sysctl_vfs_cache_pressure;
4218         }
4219
4220 rescan:
4221         /* first scan for clean buffers */
4222         i915_gem_retire_requests(dev);
4223
4224         list_for_each_entry_safe(obj, next,
4225                                  &dev_priv->mm.inactive_list,
4226                                  mm_list) {
4227                 if (i915_gem_object_is_purgeable(obj)) {
4228                         if (i915_gem_object_unbind(obj) == 0 &&
4229                             --nr_to_scan == 0)
4230                                 break;
4231                 }
4232         }
4233
4234         /* second pass, evict/count anything still on the inactive list */
4235         cnt = 0;
4236         list_for_each_entry_safe(obj, next,
4237                                  &dev_priv->mm.inactive_list,
4238                                  mm_list) {
4239                 if (nr_to_scan &&
4240                     i915_gem_object_unbind(obj) == 0)
4241                         nr_to_scan--;
4242                 else
4243                         cnt++;
4244         }
4245
4246         if (nr_to_scan && i915_gpu_is_active(dev)) {
4247                 /*
4248                  * We are desperate for pages, so as a last resort, wait
4249                  * for the GPU to finish and discard whatever we can.
4250                  * This has a dramatic impact to reduce the number of
4251                  * OOM-killer events whilst running the GPU aggressively.
4252                  */
4253                 if (i915_gpu_idle(dev) == 0)
4254                         goto rescan;
4255         }
4256         mutex_unlock(&dev->struct_mutex);
4257         return cnt / 100 * sysctl_vfs_cache_pressure;
4258 }