]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Reject bind_to_gtt() early if object > aperture
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj, 0);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static int
325 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
326 {
327         int ret;
328
329         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
330
331         /* If we've insufficient memory to map in the pages, attempt
332          * to make some space by throwing out some old buffers.
333          */
334         if (ret == -ENOMEM) {
335                 struct drm_device *dev = obj->dev;
336
337                 ret = i915_gem_evict_something(dev, obj->size);
338                 if (ret)
339                         return ret;
340
341                 ret = i915_gem_object_get_pages(obj, 0);
342         }
343
344         return ret;
345 }
346
347 /**
348  * This is the fallback shmem pread path, which allocates temporary storage
349  * in kernel space to copy_to_user into outside of the struct_mutex, so we
350  * can copy out of the object's backing pages while holding the struct mutex
351  * and not take page faults.
352  */
353 static int
354 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
355                           struct drm_i915_gem_pread *args,
356                           struct drm_file *file_priv)
357 {
358         struct drm_i915_gem_object *obj_priv = obj->driver_private;
359         struct mm_struct *mm = current->mm;
360         struct page **user_pages;
361         ssize_t remain;
362         loff_t offset, pinned_pages, i;
363         loff_t first_data_page, last_data_page, num_pages;
364         int shmem_page_index, shmem_page_offset;
365         int data_page_index,  data_page_offset;
366         int page_length;
367         int ret;
368         uint64_t data_ptr = args->data_ptr;
369         int do_bit17_swizzling;
370
371         remain = args->size;
372
373         /* Pin the user pages containing the data.  We can't fault while
374          * holding the struct mutex, yet we want to hold it while
375          * dereferencing the user data.
376          */
377         first_data_page = data_ptr / PAGE_SIZE;
378         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
379         num_pages = last_data_page - first_data_page + 1;
380
381         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
382         if (user_pages == NULL)
383                 return -ENOMEM;
384
385         down_read(&mm->mmap_sem);
386         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
387                                       num_pages, 1, 0, user_pages, NULL);
388         up_read(&mm->mmap_sem);
389         if (pinned_pages < num_pages) {
390                 ret = -EFAULT;
391                 goto fail_put_user_pages;
392         }
393
394         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
395
396         mutex_lock(&dev->struct_mutex);
397
398         ret = i915_gem_object_get_pages_or_evict(obj);
399         if (ret)
400                 goto fail_unlock;
401
402         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
403                                                         args->size);
404         if (ret != 0)
405                 goto fail_put_pages;
406
407         obj_priv = obj->driver_private;
408         offset = args->offset;
409
410         while (remain > 0) {
411                 /* Operation in this page
412                  *
413                  * shmem_page_index = page number within shmem file
414                  * shmem_page_offset = offset within page in shmem file
415                  * data_page_index = page number in get_user_pages return
416                  * data_page_offset = offset with data_page_index page.
417                  * page_length = bytes to copy for this page
418                  */
419                 shmem_page_index = offset / PAGE_SIZE;
420                 shmem_page_offset = offset & ~PAGE_MASK;
421                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
422                 data_page_offset = data_ptr & ~PAGE_MASK;
423
424                 page_length = remain;
425                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
426                         page_length = PAGE_SIZE - shmem_page_offset;
427                 if ((data_page_offset + page_length) > PAGE_SIZE)
428                         page_length = PAGE_SIZE - data_page_offset;
429
430                 if (do_bit17_swizzling) {
431                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
432                                                     shmem_page_offset,
433                                                     user_pages[data_page_index],
434                                                     data_page_offset,
435                                                     page_length,
436                                                     1);
437                 } else {
438                         ret = slow_shmem_copy(user_pages[data_page_index],
439                                               data_page_offset,
440                                               obj_priv->pages[shmem_page_index],
441                                               shmem_page_offset,
442                                               page_length);
443                 }
444                 if (ret)
445                         goto fail_put_pages;
446
447                 remain -= page_length;
448                 data_ptr += page_length;
449                 offset += page_length;
450         }
451
452 fail_put_pages:
453         i915_gem_object_put_pages(obj);
454 fail_unlock:
455         mutex_unlock(&dev->struct_mutex);
456 fail_put_user_pages:
457         for (i = 0; i < pinned_pages; i++) {
458                 SetPageDirty(user_pages[i]);
459                 page_cache_release(user_pages[i]);
460         }
461         drm_free_large(user_pages);
462
463         return ret;
464 }
465
466 /**
467  * Reads data from the object referenced by handle.
468  *
469  * On error, the contents of *data are undefined.
470  */
471 int
472 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
473                      struct drm_file *file_priv)
474 {
475         struct drm_i915_gem_pread *args = data;
476         struct drm_gem_object *obj;
477         struct drm_i915_gem_object *obj_priv;
478         int ret;
479
480         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
481         if (obj == NULL)
482                 return -EBADF;
483         obj_priv = obj->driver_private;
484
485         /* Bounds check source.
486          *
487          * XXX: This could use review for overflow issues...
488          */
489         if (args->offset > obj->size || args->size > obj->size ||
490             args->offset + args->size > obj->size) {
491                 drm_gem_object_unreference(obj);
492                 return -EINVAL;
493         }
494
495         if (i915_gem_object_needs_bit17_swizzle(obj)) {
496                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
497         } else {
498                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
499                 if (ret != 0)
500                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
501                                                         file_priv);
502         }
503
504         drm_gem_object_unreference(obj);
505
506         return ret;
507 }
508
509 /* This is the fast write path which cannot handle
510  * page faults in the source data
511  */
512
513 static inline int
514 fast_user_write(struct io_mapping *mapping,
515                 loff_t page_base, int page_offset,
516                 char __user *user_data,
517                 int length)
518 {
519         char *vaddr_atomic;
520         unsigned long unwritten;
521
522         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
523         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
524                                                       user_data, length);
525         io_mapping_unmap_atomic(vaddr_atomic);
526         if (unwritten)
527                 return -EFAULT;
528         return 0;
529 }
530
531 /* Here's the write path which can sleep for
532  * page faults
533  */
534
535 static inline int
536 slow_kernel_write(struct io_mapping *mapping,
537                   loff_t gtt_base, int gtt_offset,
538                   struct page *user_page, int user_offset,
539                   int length)
540 {
541         char *src_vaddr, *dst_vaddr;
542         unsigned long unwritten;
543
544         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
545         src_vaddr = kmap_atomic(user_page, KM_USER1);
546         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
547                                                       src_vaddr + user_offset,
548                                                       length);
549         kunmap_atomic(src_vaddr, KM_USER1);
550         io_mapping_unmap_atomic(dst_vaddr);
551         if (unwritten)
552                 return -EFAULT;
553         return 0;
554 }
555
556 static inline int
557 fast_shmem_write(struct page **pages,
558                  loff_t page_base, int page_offset,
559                  char __user *data,
560                  int length)
561 {
562         char __iomem *vaddr;
563         unsigned long unwritten;
564
565         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
566         if (vaddr == NULL)
567                 return -ENOMEM;
568         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
569         kunmap_atomic(vaddr, KM_USER0);
570
571         if (unwritten)
572                 return -EFAULT;
573         return 0;
574 }
575
576 /**
577  * This is the fast pwrite path, where we copy the data directly from the
578  * user into the GTT, uncached.
579  */
580 static int
581 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
582                          struct drm_i915_gem_pwrite *args,
583                          struct drm_file *file_priv)
584 {
585         struct drm_i915_gem_object *obj_priv = obj->driver_private;
586         drm_i915_private_t *dev_priv = dev->dev_private;
587         ssize_t remain;
588         loff_t offset, page_base;
589         char __user *user_data;
590         int page_offset, page_length;
591         int ret;
592
593         user_data = (char __user *) (uintptr_t) args->data_ptr;
594         remain = args->size;
595         if (!access_ok(VERIFY_READ, user_data, remain))
596                 return -EFAULT;
597
598
599         mutex_lock(&dev->struct_mutex);
600         ret = i915_gem_object_pin(obj, 0);
601         if (ret) {
602                 mutex_unlock(&dev->struct_mutex);
603                 return ret;
604         }
605         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
606         if (ret)
607                 goto fail;
608
609         obj_priv = obj->driver_private;
610         offset = obj_priv->gtt_offset + args->offset;
611
612         while (remain > 0) {
613                 /* Operation in this page
614                  *
615                  * page_base = page offset within aperture
616                  * page_offset = offset within page
617                  * page_length = bytes to copy for this page
618                  */
619                 page_base = (offset & ~(PAGE_SIZE-1));
620                 page_offset = offset & (PAGE_SIZE-1);
621                 page_length = remain;
622                 if ((page_offset + remain) > PAGE_SIZE)
623                         page_length = PAGE_SIZE - page_offset;
624
625                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
626                                        page_offset, user_data, page_length);
627
628                 /* If we get a fault while copying data, then (presumably) our
629                  * source page isn't available.  Return the error and we'll
630                  * retry in the slow path.
631                  */
632                 if (ret)
633                         goto fail;
634
635                 remain -= page_length;
636                 user_data += page_length;
637                 offset += page_length;
638         }
639
640 fail:
641         i915_gem_object_unpin(obj);
642         mutex_unlock(&dev->struct_mutex);
643
644         return ret;
645 }
646
647 /**
648  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
649  * the memory and maps it using kmap_atomic for copying.
650  *
651  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
652  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
653  */
654 static int
655 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
656                          struct drm_i915_gem_pwrite *args,
657                          struct drm_file *file_priv)
658 {
659         struct drm_i915_gem_object *obj_priv = obj->driver_private;
660         drm_i915_private_t *dev_priv = dev->dev_private;
661         ssize_t remain;
662         loff_t gtt_page_base, offset;
663         loff_t first_data_page, last_data_page, num_pages;
664         loff_t pinned_pages, i;
665         struct page **user_pages;
666         struct mm_struct *mm = current->mm;
667         int gtt_page_offset, data_page_offset, data_page_index, page_length;
668         int ret;
669         uint64_t data_ptr = args->data_ptr;
670
671         remain = args->size;
672
673         /* Pin the user pages containing the data.  We can't fault while
674          * holding the struct mutex, and all of the pwrite implementations
675          * want to hold it while dereferencing the user data.
676          */
677         first_data_page = data_ptr / PAGE_SIZE;
678         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
679         num_pages = last_data_page - first_data_page + 1;
680
681         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
682         if (user_pages == NULL)
683                 return -ENOMEM;
684
685         down_read(&mm->mmap_sem);
686         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
687                                       num_pages, 0, 0, user_pages, NULL);
688         up_read(&mm->mmap_sem);
689         if (pinned_pages < num_pages) {
690                 ret = -EFAULT;
691                 goto out_unpin_pages;
692         }
693
694         mutex_lock(&dev->struct_mutex);
695         ret = i915_gem_object_pin(obj, 0);
696         if (ret)
697                 goto out_unlock;
698
699         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
700         if (ret)
701                 goto out_unpin_object;
702
703         obj_priv = obj->driver_private;
704         offset = obj_priv->gtt_offset + args->offset;
705
706         while (remain > 0) {
707                 /* Operation in this page
708                  *
709                  * gtt_page_base = page offset within aperture
710                  * gtt_page_offset = offset within page in aperture
711                  * data_page_index = page number in get_user_pages return
712                  * data_page_offset = offset with data_page_index page.
713                  * page_length = bytes to copy for this page
714                  */
715                 gtt_page_base = offset & PAGE_MASK;
716                 gtt_page_offset = offset & ~PAGE_MASK;
717                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
718                 data_page_offset = data_ptr & ~PAGE_MASK;
719
720                 page_length = remain;
721                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
722                         page_length = PAGE_SIZE - gtt_page_offset;
723                 if ((data_page_offset + page_length) > PAGE_SIZE)
724                         page_length = PAGE_SIZE - data_page_offset;
725
726                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
727                                         gtt_page_base, gtt_page_offset,
728                                         user_pages[data_page_index],
729                                         data_page_offset,
730                                         page_length);
731
732                 /* If we get a fault while copying data, then (presumably) our
733                  * source page isn't available.  Return the error and we'll
734                  * retry in the slow path.
735                  */
736                 if (ret)
737                         goto out_unpin_object;
738
739                 remain -= page_length;
740                 offset += page_length;
741                 data_ptr += page_length;
742         }
743
744 out_unpin_object:
745         i915_gem_object_unpin(obj);
746 out_unlock:
747         mutex_unlock(&dev->struct_mutex);
748 out_unpin_pages:
749         for (i = 0; i < pinned_pages; i++)
750                 page_cache_release(user_pages[i]);
751         drm_free_large(user_pages);
752
753         return ret;
754 }
755
756 /**
757  * This is the fast shmem pwrite path, which attempts to directly
758  * copy_from_user into the kmapped pages backing the object.
759  */
760 static int
761 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
762                            struct drm_i915_gem_pwrite *args,
763                            struct drm_file *file_priv)
764 {
765         struct drm_i915_gem_object *obj_priv = obj->driver_private;
766         ssize_t remain;
767         loff_t offset, page_base;
768         char __user *user_data;
769         int page_offset, page_length;
770         int ret;
771
772         user_data = (char __user *) (uintptr_t) args->data_ptr;
773         remain = args->size;
774
775         mutex_lock(&dev->struct_mutex);
776
777         ret = i915_gem_object_get_pages(obj, 0);
778         if (ret != 0)
779                 goto fail_unlock;
780
781         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
782         if (ret != 0)
783                 goto fail_put_pages;
784
785         obj_priv = obj->driver_private;
786         offset = args->offset;
787         obj_priv->dirty = 1;
788
789         while (remain > 0) {
790                 /* Operation in this page
791                  *
792                  * page_base = page offset within aperture
793                  * page_offset = offset within page
794                  * page_length = bytes to copy for this page
795                  */
796                 page_base = (offset & ~(PAGE_SIZE-1));
797                 page_offset = offset & (PAGE_SIZE-1);
798                 page_length = remain;
799                 if ((page_offset + remain) > PAGE_SIZE)
800                         page_length = PAGE_SIZE - page_offset;
801
802                 ret = fast_shmem_write(obj_priv->pages,
803                                        page_base, page_offset,
804                                        user_data, page_length);
805                 if (ret)
806                         goto fail_put_pages;
807
808                 remain -= page_length;
809                 user_data += page_length;
810                 offset += page_length;
811         }
812
813 fail_put_pages:
814         i915_gem_object_put_pages(obj);
815 fail_unlock:
816         mutex_unlock(&dev->struct_mutex);
817
818         return ret;
819 }
820
821 /**
822  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
823  * the memory and maps it using kmap_atomic for copying.
824  *
825  * This avoids taking mmap_sem for faulting on the user's address while the
826  * struct_mutex is held.
827  */
828 static int
829 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
830                            struct drm_i915_gem_pwrite *args,
831                            struct drm_file *file_priv)
832 {
833         struct drm_i915_gem_object *obj_priv = obj->driver_private;
834         struct mm_struct *mm = current->mm;
835         struct page **user_pages;
836         ssize_t remain;
837         loff_t offset, pinned_pages, i;
838         loff_t first_data_page, last_data_page, num_pages;
839         int shmem_page_index, shmem_page_offset;
840         int data_page_index,  data_page_offset;
841         int page_length;
842         int ret;
843         uint64_t data_ptr = args->data_ptr;
844         int do_bit17_swizzling;
845
846         remain = args->size;
847
848         /* Pin the user pages containing the data.  We can't fault while
849          * holding the struct mutex, and all of the pwrite implementations
850          * want to hold it while dereferencing the user data.
851          */
852         first_data_page = data_ptr / PAGE_SIZE;
853         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
854         num_pages = last_data_page - first_data_page + 1;
855
856         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
857         if (user_pages == NULL)
858                 return -ENOMEM;
859
860         down_read(&mm->mmap_sem);
861         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
862                                       num_pages, 0, 0, user_pages, NULL);
863         up_read(&mm->mmap_sem);
864         if (pinned_pages < num_pages) {
865                 ret = -EFAULT;
866                 goto fail_put_user_pages;
867         }
868
869         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
870
871         mutex_lock(&dev->struct_mutex);
872
873         ret = i915_gem_object_get_pages_or_evict(obj);
874         if (ret)
875                 goto fail_unlock;
876
877         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
878         if (ret != 0)
879                 goto fail_put_pages;
880
881         obj_priv = obj->driver_private;
882         offset = args->offset;
883         obj_priv->dirty = 1;
884
885         while (remain > 0) {
886                 /* Operation in this page
887                  *
888                  * shmem_page_index = page number within shmem file
889                  * shmem_page_offset = offset within page in shmem file
890                  * data_page_index = page number in get_user_pages return
891                  * data_page_offset = offset with data_page_index page.
892                  * page_length = bytes to copy for this page
893                  */
894                 shmem_page_index = offset / PAGE_SIZE;
895                 shmem_page_offset = offset & ~PAGE_MASK;
896                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
897                 data_page_offset = data_ptr & ~PAGE_MASK;
898
899                 page_length = remain;
900                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
901                         page_length = PAGE_SIZE - shmem_page_offset;
902                 if ((data_page_offset + page_length) > PAGE_SIZE)
903                         page_length = PAGE_SIZE - data_page_offset;
904
905                 if (do_bit17_swizzling) {
906                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
907                                                     shmem_page_offset,
908                                                     user_pages[data_page_index],
909                                                     data_page_offset,
910                                                     page_length,
911                                                     0);
912                 } else {
913                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
914                                               shmem_page_offset,
915                                               user_pages[data_page_index],
916                                               data_page_offset,
917                                               page_length);
918                 }
919                 if (ret)
920                         goto fail_put_pages;
921
922                 remain -= page_length;
923                 data_ptr += page_length;
924                 offset += page_length;
925         }
926
927 fail_put_pages:
928         i915_gem_object_put_pages(obj);
929 fail_unlock:
930         mutex_unlock(&dev->struct_mutex);
931 fail_put_user_pages:
932         for (i = 0; i < pinned_pages; i++)
933                 page_cache_release(user_pages[i]);
934         drm_free_large(user_pages);
935
936         return ret;
937 }
938
939 /**
940  * Writes data to the object referenced by handle.
941  *
942  * On error, the contents of the buffer that were to be modified are undefined.
943  */
944 int
945 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
946                       struct drm_file *file_priv)
947 {
948         struct drm_i915_gem_pwrite *args = data;
949         struct drm_gem_object *obj;
950         struct drm_i915_gem_object *obj_priv;
951         int ret = 0;
952
953         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
954         if (obj == NULL)
955                 return -EBADF;
956         obj_priv = obj->driver_private;
957
958         /* Bounds check destination.
959          *
960          * XXX: This could use review for overflow issues...
961          */
962         if (args->offset > obj->size || args->size > obj->size ||
963             args->offset + args->size > obj->size) {
964                 drm_gem_object_unreference(obj);
965                 return -EINVAL;
966         }
967
968         /* We can only do the GTT pwrite on untiled buffers, as otherwise
969          * it would end up going through the fenced access, and we'll get
970          * different detiling behavior between reading and writing.
971          * pread/pwrite currently are reading and writing from the CPU
972          * perspective, requiring manual detiling by the client.
973          */
974         if (obj_priv->phys_obj)
975                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
976         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
977                  dev->gtt_total != 0) {
978                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
979                 if (ret == -EFAULT) {
980                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
981                                                        file_priv);
982                 }
983         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
984                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
985         } else {
986                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
987                 if (ret == -EFAULT) {
988                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
989                                                          file_priv);
990                 }
991         }
992
993 #if WATCH_PWRITE
994         if (ret)
995                 DRM_INFO("pwrite failed %d\n", ret);
996 #endif
997
998         drm_gem_object_unreference(obj);
999
1000         return ret;
1001 }
1002
1003 /**
1004  * Called when user space prepares to use an object with the CPU, either
1005  * through the mmap ioctl's mapping or a GTT mapping.
1006  */
1007 int
1008 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1009                           struct drm_file *file_priv)
1010 {
1011         struct drm_i915_private *dev_priv = dev->dev_private;
1012         struct drm_i915_gem_set_domain *args = data;
1013         struct drm_gem_object *obj;
1014         struct drm_i915_gem_object *obj_priv;
1015         uint32_t read_domains = args->read_domains;
1016         uint32_t write_domain = args->write_domain;
1017         int ret;
1018
1019         if (!(dev->driver->driver_features & DRIVER_GEM))
1020                 return -ENODEV;
1021
1022         /* Only handle setting domains to types used by the CPU. */
1023         if (write_domain & I915_GEM_GPU_DOMAINS)
1024                 return -EINVAL;
1025
1026         if (read_domains & I915_GEM_GPU_DOMAINS)
1027                 return -EINVAL;
1028
1029         /* Having something in the write domain implies it's in the read
1030          * domain, and only that read domain.  Enforce that in the request.
1031          */
1032         if (write_domain != 0 && read_domains != write_domain)
1033                 return -EINVAL;
1034
1035         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1036         if (obj == NULL)
1037                 return -EBADF;
1038         obj_priv = obj->driver_private;
1039
1040         mutex_lock(&dev->struct_mutex);
1041
1042         intel_mark_busy(dev, obj);
1043
1044 #if WATCH_BUF
1045         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1046                  obj, obj->size, read_domains, write_domain);
1047 #endif
1048         if (read_domains & I915_GEM_DOMAIN_GTT) {
1049                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1050
1051                 /* Update the LRU on the fence for the CPU access that's
1052                  * about to occur.
1053                  */
1054                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1055                         list_move_tail(&obj_priv->fence_list,
1056                                        &dev_priv->mm.fence_list);
1057                 }
1058
1059                 /* Silently promote "you're not bound, there was nothing to do"
1060                  * to success, since the client was just asking us to
1061                  * make sure everything was done.
1062                  */
1063                 if (ret == -EINVAL)
1064                         ret = 0;
1065         } else {
1066                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1067         }
1068
1069         drm_gem_object_unreference(obj);
1070         mutex_unlock(&dev->struct_mutex);
1071         return ret;
1072 }
1073
1074 /**
1075  * Called when user space has done writes to this buffer
1076  */
1077 int
1078 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1079                       struct drm_file *file_priv)
1080 {
1081         struct drm_i915_gem_sw_finish *args = data;
1082         struct drm_gem_object *obj;
1083         struct drm_i915_gem_object *obj_priv;
1084         int ret = 0;
1085
1086         if (!(dev->driver->driver_features & DRIVER_GEM))
1087                 return -ENODEV;
1088
1089         mutex_lock(&dev->struct_mutex);
1090         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1091         if (obj == NULL) {
1092                 mutex_unlock(&dev->struct_mutex);
1093                 return -EBADF;
1094         }
1095
1096 #if WATCH_BUF
1097         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1098                  __func__, args->handle, obj, obj->size);
1099 #endif
1100         obj_priv = obj->driver_private;
1101
1102         /* Pinned buffers may be scanout, so flush the cache */
1103         if (obj_priv->pin_count)
1104                 i915_gem_object_flush_cpu_write_domain(obj);
1105
1106         drm_gem_object_unreference(obj);
1107         mutex_unlock(&dev->struct_mutex);
1108         return ret;
1109 }
1110
1111 /**
1112  * Maps the contents of an object, returning the address it is mapped
1113  * into.
1114  *
1115  * While the mapping holds a reference on the contents of the object, it doesn't
1116  * imply a ref on the object itself.
1117  */
1118 int
1119 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1120                    struct drm_file *file_priv)
1121 {
1122         struct drm_i915_gem_mmap *args = data;
1123         struct drm_gem_object *obj;
1124         loff_t offset;
1125         unsigned long addr;
1126
1127         if (!(dev->driver->driver_features & DRIVER_GEM))
1128                 return -ENODEV;
1129
1130         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1131         if (obj == NULL)
1132                 return -EBADF;
1133
1134         offset = args->offset;
1135
1136         down_write(&current->mm->mmap_sem);
1137         addr = do_mmap(obj->filp, 0, args->size,
1138                        PROT_READ | PROT_WRITE, MAP_SHARED,
1139                        args->offset);
1140         up_write(&current->mm->mmap_sem);
1141         mutex_lock(&dev->struct_mutex);
1142         drm_gem_object_unreference(obj);
1143         mutex_unlock(&dev->struct_mutex);
1144         if (IS_ERR((void *)addr))
1145                 return addr;
1146
1147         args->addr_ptr = (uint64_t) addr;
1148
1149         return 0;
1150 }
1151
1152 /**
1153  * i915_gem_fault - fault a page into the GTT
1154  * vma: VMA in question
1155  * vmf: fault info
1156  *
1157  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1158  * from userspace.  The fault handler takes care of binding the object to
1159  * the GTT (if needed), allocating and programming a fence register (again,
1160  * only if needed based on whether the old reg is still valid or the object
1161  * is tiled) and inserting a new PTE into the faulting process.
1162  *
1163  * Note that the faulting process may involve evicting existing objects
1164  * from the GTT and/or fence registers to make room.  So performance may
1165  * suffer if the GTT working set is large or there are few fence registers
1166  * left.
1167  */
1168 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1169 {
1170         struct drm_gem_object *obj = vma->vm_private_data;
1171         struct drm_device *dev = obj->dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1174         pgoff_t page_offset;
1175         unsigned long pfn;
1176         int ret = 0;
1177         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1178
1179         /* We don't use vmf->pgoff since that has the fake offset */
1180         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1181                 PAGE_SHIFT;
1182
1183         /* Now bind it into the GTT if needed */
1184         mutex_lock(&dev->struct_mutex);
1185         if (!obj_priv->gtt_space) {
1186                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1187                 if (ret)
1188                         goto unlock;
1189
1190                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191
1192                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1193                 if (ret)
1194                         goto unlock;
1195         }
1196
1197         /* Need a new fence register? */
1198         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1199                 ret = i915_gem_object_get_fence_reg(obj);
1200                 if (ret)
1201                         goto unlock;
1202         }
1203
1204         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1205                 page_offset;
1206
1207         /* Finally, remap it using the new GTT offset */
1208         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1209 unlock:
1210         mutex_unlock(&dev->struct_mutex);
1211
1212         switch (ret) {
1213         case 0:
1214         case -ERESTARTSYS:
1215                 return VM_FAULT_NOPAGE;
1216         case -ENOMEM:
1217         case -EAGAIN:
1218                 return VM_FAULT_OOM;
1219         default:
1220                 return VM_FAULT_SIGBUS;
1221         }
1222 }
1223
1224 /**
1225  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1226  * @obj: obj in question
1227  *
1228  * GEM memory mapping works by handing back to userspace a fake mmap offset
1229  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1230  * up the object based on the offset and sets up the various memory mapping
1231  * structures.
1232  *
1233  * This routine allocates and attaches a fake offset for @obj.
1234  */
1235 static int
1236 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1237 {
1238         struct drm_device *dev = obj->dev;
1239         struct drm_gem_mm *mm = dev->mm_private;
1240         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1241         struct drm_map_list *list;
1242         struct drm_local_map *map;
1243         int ret = 0;
1244
1245         /* Set the object up for mmap'ing */
1246         list = &obj->map_list;
1247         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1248         if (!list->map)
1249                 return -ENOMEM;
1250
1251         map = list->map;
1252         map->type = _DRM_GEM;
1253         map->size = obj->size;
1254         map->handle = obj;
1255
1256         /* Get a DRM GEM mmap offset allocated... */
1257         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1258                                                     obj->size / PAGE_SIZE, 0, 0);
1259         if (!list->file_offset_node) {
1260                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1261                 ret = -ENOMEM;
1262                 goto out_free_list;
1263         }
1264
1265         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1266                                                   obj->size / PAGE_SIZE, 0);
1267         if (!list->file_offset_node) {
1268                 ret = -ENOMEM;
1269                 goto out_free_list;
1270         }
1271
1272         list->hash.key = list->file_offset_node->start;
1273         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1274                 DRM_ERROR("failed to add to map hash\n");
1275                 ret = -ENOMEM;
1276                 goto out_free_mm;
1277         }
1278
1279         /* By now we should be all set, any drm_mmap request on the offset
1280          * below will get to our mmap & fault handler */
1281         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1282
1283         return 0;
1284
1285 out_free_mm:
1286         drm_mm_put_block(list->file_offset_node);
1287 out_free_list:
1288         kfree(list->map);
1289
1290         return ret;
1291 }
1292
1293 /**
1294  * i915_gem_release_mmap - remove physical page mappings
1295  * @obj: obj in question
1296  *
1297  * Preserve the reservation of the mmapping with the DRM core code, but
1298  * relinquish ownership of the pages back to the system.
1299  *
1300  * It is vital that we remove the page mapping if we have mapped a tiled
1301  * object through the GTT and then lose the fence register due to
1302  * resource pressure. Similarly if the object has been moved out of the
1303  * aperture, than pages mapped into userspace must be revoked. Removing the
1304  * mapping will then trigger a page fault on the next user access, allowing
1305  * fixup by i915_gem_fault().
1306  */
1307 void
1308 i915_gem_release_mmap(struct drm_gem_object *obj)
1309 {
1310         struct drm_device *dev = obj->dev;
1311         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1312
1313         if (dev->dev_mapping)
1314                 unmap_mapping_range(dev->dev_mapping,
1315                                     obj_priv->mmap_offset, obj->size, 1);
1316 }
1317
1318 static void
1319 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1320 {
1321         struct drm_device *dev = obj->dev;
1322         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1323         struct drm_gem_mm *mm = dev->mm_private;
1324         struct drm_map_list *list;
1325
1326         list = &obj->map_list;
1327         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1328
1329         if (list->file_offset_node) {
1330                 drm_mm_put_block(list->file_offset_node);
1331                 list->file_offset_node = NULL;
1332         }
1333
1334         if (list->map) {
1335                 kfree(list->map);
1336                 list->map = NULL;
1337         }
1338
1339         obj_priv->mmap_offset = 0;
1340 }
1341
1342 /**
1343  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1344  * @obj: object to check
1345  *
1346  * Return the required GTT alignment for an object, taking into account
1347  * potential fence register mapping if needed.
1348  */
1349 static uint32_t
1350 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1351 {
1352         struct drm_device *dev = obj->dev;
1353         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1354         int start, i;
1355
1356         /*
1357          * Minimum alignment is 4k (GTT page size), but might be greater
1358          * if a fence register is needed for the object.
1359          */
1360         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1361                 return 4096;
1362
1363         /*
1364          * Previous chips need to be aligned to the size of the smallest
1365          * fence register that can contain the object.
1366          */
1367         if (IS_I9XX(dev))
1368                 start = 1024*1024;
1369         else
1370                 start = 512*1024;
1371
1372         for (i = start; i < obj->size; i <<= 1)
1373                 ;
1374
1375         return i;
1376 }
1377
1378 /**
1379  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1380  * @dev: DRM device
1381  * @data: GTT mapping ioctl data
1382  * @file_priv: GEM object info
1383  *
1384  * Simply returns the fake offset to userspace so it can mmap it.
1385  * The mmap call will end up in drm_gem_mmap(), which will set things
1386  * up so we can get faults in the handler above.
1387  *
1388  * The fault handler will take care of binding the object into the GTT
1389  * (since it may have been evicted to make room for something), allocating
1390  * a fence register, and mapping the appropriate aperture address into
1391  * userspace.
1392  */
1393 int
1394 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1395                         struct drm_file *file_priv)
1396 {
1397         struct drm_i915_gem_mmap_gtt *args = data;
1398         struct drm_i915_private *dev_priv = dev->dev_private;
1399         struct drm_gem_object *obj;
1400         struct drm_i915_gem_object *obj_priv;
1401         int ret;
1402
1403         if (!(dev->driver->driver_features & DRIVER_GEM))
1404                 return -ENODEV;
1405
1406         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1407         if (obj == NULL)
1408                 return -EBADF;
1409
1410         mutex_lock(&dev->struct_mutex);
1411
1412         obj_priv = obj->driver_private;
1413
1414         if (obj_priv->madv != I915_MADV_WILLNEED) {
1415                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1416                 drm_gem_object_unreference(obj);
1417                 mutex_unlock(&dev->struct_mutex);
1418                 return -EINVAL;
1419         }
1420
1421
1422         if (!obj_priv->mmap_offset) {
1423                 ret = i915_gem_create_mmap_offset(obj);
1424                 if (ret) {
1425                         drm_gem_object_unreference(obj);
1426                         mutex_unlock(&dev->struct_mutex);
1427                         return ret;
1428                 }
1429         }
1430
1431         args->offset = obj_priv->mmap_offset;
1432
1433         /*
1434          * Pull it into the GTT so that we have a page list (makes the
1435          * initial fault faster and any subsequent flushing possible).
1436          */
1437         if (!obj_priv->agp_mem) {
1438                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1439                 if (ret) {
1440                         drm_gem_object_unreference(obj);
1441                         mutex_unlock(&dev->struct_mutex);
1442                         return ret;
1443                 }
1444                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1445         }
1446
1447         drm_gem_object_unreference(obj);
1448         mutex_unlock(&dev->struct_mutex);
1449
1450         return 0;
1451 }
1452
1453 void
1454 i915_gem_object_put_pages(struct drm_gem_object *obj)
1455 {
1456         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1457         int page_count = obj->size / PAGE_SIZE;
1458         int i;
1459
1460         BUG_ON(obj_priv->pages_refcount == 0);
1461         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1462
1463         if (--obj_priv->pages_refcount != 0)
1464                 return;
1465
1466         if (obj_priv->tiling_mode != I915_TILING_NONE)
1467                 i915_gem_object_save_bit_17_swizzle(obj);
1468
1469         if (obj_priv->madv == I915_MADV_DONTNEED)
1470                 obj_priv->dirty = 0;
1471
1472         for (i = 0; i < page_count; i++) {
1473                 if (obj_priv->dirty)
1474                         set_page_dirty(obj_priv->pages[i]);
1475
1476                 if (obj_priv->madv == I915_MADV_WILLNEED)
1477                         mark_page_accessed(obj_priv->pages[i]);
1478
1479                 page_cache_release(obj_priv->pages[i]);
1480         }
1481         obj_priv->dirty = 0;
1482
1483         drm_free_large(obj_priv->pages);
1484         obj_priv->pages = NULL;
1485 }
1486
1487 static void
1488 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1489 {
1490         struct drm_device *dev = obj->dev;
1491         drm_i915_private_t *dev_priv = dev->dev_private;
1492         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1493
1494         /* Add a reference if we're newly entering the active list. */
1495         if (!obj_priv->active) {
1496                 drm_gem_object_reference(obj);
1497                 obj_priv->active = 1;
1498         }
1499         /* Move from whatever list we were on to the tail of execution. */
1500         spin_lock(&dev_priv->mm.active_list_lock);
1501         list_move_tail(&obj_priv->list,
1502                        &dev_priv->mm.active_list);
1503         spin_unlock(&dev_priv->mm.active_list_lock);
1504         obj_priv->last_rendering_seqno = seqno;
1505 }
1506
1507 static void
1508 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1509 {
1510         struct drm_device *dev = obj->dev;
1511         drm_i915_private_t *dev_priv = dev->dev_private;
1512         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1513
1514         BUG_ON(!obj_priv->active);
1515         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1516         obj_priv->last_rendering_seqno = 0;
1517 }
1518
1519 /* Immediately discard the backing storage */
1520 static void
1521 i915_gem_object_truncate(struct drm_gem_object *obj)
1522 {
1523         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1524         struct inode *inode;
1525
1526         inode = obj->filp->f_path.dentry->d_inode;
1527         if (inode->i_op->truncate)
1528                 inode->i_op->truncate (inode);
1529
1530         obj_priv->madv = __I915_MADV_PURGED;
1531 }
1532
1533 static inline int
1534 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1535 {
1536         return obj_priv->madv == I915_MADV_DONTNEED;
1537 }
1538
1539 static void
1540 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1541 {
1542         struct drm_device *dev = obj->dev;
1543         drm_i915_private_t *dev_priv = dev->dev_private;
1544         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1545
1546         i915_verify_inactive(dev, __FILE__, __LINE__);
1547         if (obj_priv->pin_count != 0)
1548                 list_del_init(&obj_priv->list);
1549         else
1550                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1551
1552         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1553
1554         obj_priv->last_rendering_seqno = 0;
1555         if (obj_priv->active) {
1556                 obj_priv->active = 0;
1557                 drm_gem_object_unreference(obj);
1558         }
1559         i915_verify_inactive(dev, __FILE__, __LINE__);
1560 }
1561
1562 #define PIPE_CONTROL_FLUSH(addr)                                        \
1563         OUT_RING(GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |          \
1564                  PIPE_CONTROL_DEPTH_STALL);                             \
1565         OUT_RING(addr | PIPE_CONTROL_GLOBAL_GTT);                       \
1566         OUT_RING(0);                                                    \
1567         OUT_RING(0);                                                    \
1568
1569 /**
1570  * Creates a new sequence number, emitting a write of it to the status page
1571  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1572  *
1573  * Must be called with struct_lock held.
1574  *
1575  * Returned sequence numbers are nonzero on success.
1576  */
1577 uint32_t
1578 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1579                  uint32_t flush_domains)
1580 {
1581         drm_i915_private_t *dev_priv = dev->dev_private;
1582         struct drm_i915_file_private *i915_file_priv = NULL;
1583         struct drm_i915_gem_request *request;
1584         uint32_t seqno;
1585         int was_empty;
1586         RING_LOCALS;
1587
1588         if (file_priv != NULL)
1589                 i915_file_priv = file_priv->driver_priv;
1590
1591         request = kzalloc(sizeof(*request), GFP_KERNEL);
1592         if (request == NULL)
1593                 return 0;
1594
1595         /* Grab the seqno we're going to make this request be, and bump the
1596          * next (skipping 0 so it can be the reserved no-seqno value).
1597          */
1598         seqno = dev_priv->mm.next_gem_seqno;
1599         dev_priv->mm.next_gem_seqno++;
1600         if (dev_priv->mm.next_gem_seqno == 0)
1601                 dev_priv->mm.next_gem_seqno++;
1602
1603         if (HAS_PIPE_CONTROL(dev)) {
1604                 u32 scratch_addr = dev_priv->seqno_gfx_addr + 128;
1605
1606                 /*
1607                  * Workaround qword write incoherence by flushing the
1608                  * PIPE_NOTIFY buffers out to memory before requesting
1609                  * an interrupt.
1610                  */
1611                 BEGIN_LP_RING(32);
1612                 OUT_RING(GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |
1613                          PIPE_CONTROL_WC_FLUSH | PIPE_CONTROL_TC_FLUSH);
1614                 OUT_RING(dev_priv->seqno_gfx_addr | PIPE_CONTROL_GLOBAL_GTT);
1615                 OUT_RING(seqno);
1616                 OUT_RING(0);
1617                 PIPE_CONTROL_FLUSH(scratch_addr);
1618                 scratch_addr += 128; /* write to separate cachelines */
1619                 PIPE_CONTROL_FLUSH(scratch_addr);
1620                 scratch_addr += 128;
1621                 PIPE_CONTROL_FLUSH(scratch_addr);
1622                 scratch_addr += 128;
1623                 PIPE_CONTROL_FLUSH(scratch_addr);
1624                 scratch_addr += 128;
1625                 PIPE_CONTROL_FLUSH(scratch_addr);
1626                 scratch_addr += 128;
1627                 PIPE_CONTROL_FLUSH(scratch_addr);
1628                 OUT_RING(GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |
1629                          PIPE_CONTROL_WC_FLUSH | PIPE_CONTROL_TC_FLUSH |
1630                          PIPE_CONTROL_NOTIFY);
1631                 OUT_RING(dev_priv->seqno_gfx_addr | PIPE_CONTROL_GLOBAL_GTT);
1632                 OUT_RING(seqno);
1633                 OUT_RING(0);
1634                 ADVANCE_LP_RING();
1635         } else {
1636                 BEGIN_LP_RING(4);
1637                 OUT_RING(MI_STORE_DWORD_INDEX);
1638                 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1639                 OUT_RING(seqno);
1640
1641                 OUT_RING(MI_USER_INTERRUPT);
1642                 ADVANCE_LP_RING();
1643         }
1644
1645         DRM_DEBUG_DRIVER("%d\n", seqno);
1646
1647         request->seqno = seqno;
1648         request->emitted_jiffies = jiffies;
1649         was_empty = list_empty(&dev_priv->mm.request_list);
1650         list_add_tail(&request->list, &dev_priv->mm.request_list);
1651         if (i915_file_priv) {
1652                 list_add_tail(&request->client_list,
1653                               &i915_file_priv->mm.request_list);
1654         } else {
1655                 INIT_LIST_HEAD(&request->client_list);
1656         }
1657
1658         /* Associate any objects on the flushing list matching the write
1659          * domain we're flushing with our flush.
1660          */
1661         if (flush_domains != 0) {
1662                 struct drm_i915_gem_object *obj_priv, *next;
1663
1664                 list_for_each_entry_safe(obj_priv, next,
1665                                          &dev_priv->mm.gpu_write_list,
1666                                          gpu_write_list) {
1667                         struct drm_gem_object *obj = obj_priv->obj;
1668
1669                         if ((obj->write_domain & flush_domains) ==
1670                             obj->write_domain) {
1671                                 uint32_t old_write_domain = obj->write_domain;
1672
1673                                 obj->write_domain = 0;
1674                                 list_del_init(&obj_priv->gpu_write_list);
1675                                 i915_gem_object_move_to_active(obj, seqno);
1676
1677                                 trace_i915_gem_object_change_domain(obj,
1678                                                                     obj->read_domains,
1679                                                                     old_write_domain);
1680                         }
1681                 }
1682
1683         }
1684
1685         if (!dev_priv->mm.suspended) {
1686                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1687                 if (was_empty)
1688                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1689         }
1690         return seqno;
1691 }
1692
1693 /**
1694  * Command execution barrier
1695  *
1696  * Ensures that all commands in the ring are finished
1697  * before signalling the CPU
1698  */
1699 static uint32_t
1700 i915_retire_commands(struct drm_device *dev)
1701 {
1702         drm_i915_private_t *dev_priv = dev->dev_private;
1703         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1704         uint32_t flush_domains = 0;
1705         RING_LOCALS;
1706
1707         /* The sampler always gets flushed on i965 (sigh) */
1708         if (IS_I965G(dev))
1709                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1710         BEGIN_LP_RING(2);
1711         OUT_RING(cmd);
1712         OUT_RING(0); /* noop */
1713         ADVANCE_LP_RING();
1714         return flush_domains;
1715 }
1716
1717 /**
1718  * Moves buffers associated only with the given active seqno from the active
1719  * to inactive list, potentially freeing them.
1720  */
1721 static void
1722 i915_gem_retire_request(struct drm_device *dev,
1723                         struct drm_i915_gem_request *request)
1724 {
1725         drm_i915_private_t *dev_priv = dev->dev_private;
1726
1727         trace_i915_gem_request_retire(dev, request->seqno);
1728
1729         /* Move any buffers on the active list that are no longer referenced
1730          * by the ringbuffer to the flushing/inactive lists as appropriate.
1731          */
1732         spin_lock(&dev_priv->mm.active_list_lock);
1733         while (!list_empty(&dev_priv->mm.active_list)) {
1734                 struct drm_gem_object *obj;
1735                 struct drm_i915_gem_object *obj_priv;
1736
1737                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1738                                             struct drm_i915_gem_object,
1739                                             list);
1740                 obj = obj_priv->obj;
1741
1742                 /* If the seqno being retired doesn't match the oldest in the
1743                  * list, then the oldest in the list must still be newer than
1744                  * this seqno.
1745                  */
1746                 if (obj_priv->last_rendering_seqno != request->seqno)
1747                         goto out;
1748
1749 #if WATCH_LRU
1750                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1751                          __func__, request->seqno, obj);
1752 #endif
1753
1754                 if (obj->write_domain != 0)
1755                         i915_gem_object_move_to_flushing(obj);
1756                 else {
1757                         /* Take a reference on the object so it won't be
1758                          * freed while the spinlock is held.  The list
1759                          * protection for this spinlock is safe when breaking
1760                          * the lock like this since the next thing we do
1761                          * is just get the head of the list again.
1762                          */
1763                         drm_gem_object_reference(obj);
1764                         i915_gem_object_move_to_inactive(obj);
1765                         spin_unlock(&dev_priv->mm.active_list_lock);
1766                         drm_gem_object_unreference(obj);
1767                         spin_lock(&dev_priv->mm.active_list_lock);
1768                 }
1769         }
1770 out:
1771         spin_unlock(&dev_priv->mm.active_list_lock);
1772 }
1773
1774 /**
1775  * Returns true if seq1 is later than seq2.
1776  */
1777 bool
1778 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1779 {
1780         return (int32_t)(seq1 - seq2) >= 0;
1781 }
1782
1783 uint32_t
1784 i915_get_gem_seqno(struct drm_device *dev)
1785 {
1786         drm_i915_private_t *dev_priv = dev->dev_private;
1787
1788         if (HAS_PIPE_CONTROL(dev))
1789                 return ((volatile u32 *)(dev_priv->seqno_page))[0];
1790         else
1791                 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1792 }
1793
1794 /**
1795  * This function clears the request list as sequence numbers are passed.
1796  */
1797 void
1798 i915_gem_retire_requests(struct drm_device *dev)
1799 {
1800         drm_i915_private_t *dev_priv = dev->dev_private;
1801         uint32_t seqno;
1802
1803         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1804                 return;
1805
1806         seqno = i915_get_gem_seqno(dev);
1807
1808         while (!list_empty(&dev_priv->mm.request_list)) {
1809                 struct drm_i915_gem_request *request;
1810                 uint32_t retiring_seqno;
1811
1812                 request = list_first_entry(&dev_priv->mm.request_list,
1813                                            struct drm_i915_gem_request,
1814                                            list);
1815                 retiring_seqno = request->seqno;
1816
1817                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1818                     atomic_read(&dev_priv->mm.wedged)) {
1819                         i915_gem_retire_request(dev, request);
1820
1821                         list_del(&request->list);
1822                         list_del(&request->client_list);
1823                         kfree(request);
1824                 } else
1825                         break;
1826         }
1827
1828         if (unlikely (dev_priv->trace_irq_seqno &&
1829                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1830                 i915_user_irq_put(dev);
1831                 dev_priv->trace_irq_seqno = 0;
1832         }
1833 }
1834
1835 void
1836 i915_gem_retire_work_handler(struct work_struct *work)
1837 {
1838         drm_i915_private_t *dev_priv;
1839         struct drm_device *dev;
1840
1841         dev_priv = container_of(work, drm_i915_private_t,
1842                                 mm.retire_work.work);
1843         dev = dev_priv->dev;
1844
1845         mutex_lock(&dev->struct_mutex);
1846         i915_gem_retire_requests(dev);
1847         if (!dev_priv->mm.suspended &&
1848             !list_empty(&dev_priv->mm.request_list))
1849                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1850         mutex_unlock(&dev->struct_mutex);
1851 }
1852
1853 int
1854 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1855 {
1856         drm_i915_private_t *dev_priv = dev->dev_private;
1857         u32 ier;
1858         int ret = 0;
1859
1860         BUG_ON(seqno == 0);
1861
1862         if (atomic_read(&dev_priv->mm.wedged))
1863                 return -EIO;
1864
1865         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1866                 if (HAS_PCH_SPLIT(dev))
1867                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1868                 else
1869                         ier = I915_READ(IER);
1870                 if (!ier) {
1871                         DRM_ERROR("something (likely vbetool) disabled "
1872                                   "interrupts, re-enabling\n");
1873                         i915_driver_irq_preinstall(dev);
1874                         i915_driver_irq_postinstall(dev);
1875                 }
1876
1877                 trace_i915_gem_request_wait_begin(dev, seqno);
1878
1879                 dev_priv->mm.waiting_gem_seqno = seqno;
1880                 i915_user_irq_get(dev);
1881                 if (interruptible)
1882                         ret = wait_event_interruptible(dev_priv->irq_queue,
1883                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1884                                 atomic_read(&dev_priv->mm.wedged));
1885                 else
1886                         wait_event(dev_priv->irq_queue,
1887                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1888                                 atomic_read(&dev_priv->mm.wedged));
1889
1890                 i915_user_irq_put(dev);
1891                 dev_priv->mm.waiting_gem_seqno = 0;
1892
1893                 trace_i915_gem_request_wait_end(dev, seqno);
1894         }
1895         if (atomic_read(&dev_priv->mm.wedged))
1896                 ret = -EIO;
1897
1898         if (ret && ret != -ERESTARTSYS)
1899                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1900                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1901
1902         /* Directly dispatch request retiring.  While we have the work queue
1903          * to handle this, the waiter on a request often wants an associated
1904          * buffer to have made it to the inactive list, and we would need
1905          * a separate wait queue to handle that.
1906          */
1907         if (ret == 0)
1908                 i915_gem_retire_requests(dev);
1909
1910         return ret;
1911 }
1912
1913 /**
1914  * Waits for a sequence number to be signaled, and cleans up the
1915  * request and object lists appropriately for that event.
1916  */
1917 static int
1918 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1919 {
1920         return i915_do_wait_request(dev, seqno, 1);
1921 }
1922
1923 static void
1924 i915_gem_flush(struct drm_device *dev,
1925                uint32_t invalidate_domains,
1926                uint32_t flush_domains)
1927 {
1928         drm_i915_private_t *dev_priv = dev->dev_private;
1929         uint32_t cmd;
1930         RING_LOCALS;
1931
1932 #if WATCH_EXEC
1933         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1934                   invalidate_domains, flush_domains);
1935 #endif
1936         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1937                                      invalidate_domains, flush_domains);
1938
1939         if (flush_domains & I915_GEM_DOMAIN_CPU)
1940                 drm_agp_chipset_flush(dev);
1941
1942         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1943                 /*
1944                  * read/write caches:
1945                  *
1946                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1947                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1948                  * also flushed at 2d versus 3d pipeline switches.
1949                  *
1950                  * read-only caches:
1951                  *
1952                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1953                  * MI_READ_FLUSH is set, and is always flushed on 965.
1954                  *
1955                  * I915_GEM_DOMAIN_COMMAND may not exist?
1956                  *
1957                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1958                  * invalidated when MI_EXE_FLUSH is set.
1959                  *
1960                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1961                  * invalidated with every MI_FLUSH.
1962                  *
1963                  * TLBs:
1964                  *
1965                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1966                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1967                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1968                  * are flushed at any MI_FLUSH.
1969                  */
1970
1971                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1972                 if ((invalidate_domains|flush_domains) &
1973                     I915_GEM_DOMAIN_RENDER)
1974                         cmd &= ~MI_NO_WRITE_FLUSH;
1975                 if (!IS_I965G(dev)) {
1976                         /*
1977                          * On the 965, the sampler cache always gets flushed
1978                          * and this bit is reserved.
1979                          */
1980                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1981                                 cmd |= MI_READ_FLUSH;
1982                 }
1983                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1984                         cmd |= MI_EXE_FLUSH;
1985
1986 #if WATCH_EXEC
1987                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1988 #endif
1989                 BEGIN_LP_RING(2);
1990                 OUT_RING(cmd);
1991                 OUT_RING(MI_NOOP);
1992                 ADVANCE_LP_RING();
1993         }
1994 }
1995
1996 /**
1997  * Ensures that all rendering to the object has completed and the object is
1998  * safe to unbind from the GTT or access from the CPU.
1999  */
2000 static int
2001 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
2002 {
2003         struct drm_device *dev = obj->dev;
2004         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2005         int ret;
2006
2007         /* This function only exists to support waiting for existing rendering,
2008          * not for emitting required flushes.
2009          */
2010         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2011
2012         /* If there is rendering queued on the buffer being evicted, wait for
2013          * it.
2014          */
2015         if (obj_priv->active) {
2016 #if WATCH_BUF
2017                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2018                           __func__, obj, obj_priv->last_rendering_seqno);
2019 #endif
2020                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
2021                 if (ret != 0)
2022                         return ret;
2023         }
2024
2025         return 0;
2026 }
2027
2028 /**
2029  * Unbinds an object from the GTT aperture.
2030  */
2031 int
2032 i915_gem_object_unbind(struct drm_gem_object *obj)
2033 {
2034         struct drm_device *dev = obj->dev;
2035         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2036         int ret = 0;
2037
2038 #if WATCH_BUF
2039         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2040         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2041 #endif
2042         if (obj_priv->gtt_space == NULL)
2043                 return 0;
2044
2045         if (obj_priv->pin_count != 0) {
2046                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2047                 return -EINVAL;
2048         }
2049
2050         /* blow away mappings if mapped through GTT */
2051         i915_gem_release_mmap(obj);
2052
2053         /* Move the object to the CPU domain to ensure that
2054          * any possible CPU writes while it's not in the GTT
2055          * are flushed when we go to remap it. This will
2056          * also ensure that all pending GPU writes are finished
2057          * before we unbind.
2058          */
2059         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2060         if (ret) {
2061                 if (ret != -ERESTARTSYS)
2062                         DRM_ERROR("set_domain failed: %d\n", ret);
2063                 return ret;
2064         }
2065
2066         BUG_ON(obj_priv->active);
2067
2068         /* release the fence reg _after_ flushing */
2069         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2070                 i915_gem_clear_fence_reg(obj);
2071
2072         if (obj_priv->agp_mem != NULL) {
2073                 drm_unbind_agp(obj_priv->agp_mem);
2074                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2075                 obj_priv->agp_mem = NULL;
2076         }
2077
2078         i915_gem_object_put_pages(obj);
2079         BUG_ON(obj_priv->pages_refcount);
2080
2081         if (obj_priv->gtt_space) {
2082                 atomic_dec(&dev->gtt_count);
2083                 atomic_sub(obj->size, &dev->gtt_memory);
2084
2085                 drm_mm_put_block(obj_priv->gtt_space);
2086                 obj_priv->gtt_space = NULL;
2087         }
2088
2089         /* Remove ourselves from the LRU list if present. */
2090         if (!list_empty(&obj_priv->list))
2091                 list_del_init(&obj_priv->list);
2092
2093         if (i915_gem_object_is_purgeable(obj_priv))
2094                 i915_gem_object_truncate(obj);
2095
2096         trace_i915_gem_object_unbind(obj);
2097
2098         return 0;
2099 }
2100
2101 static struct drm_gem_object *
2102 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2103 {
2104         drm_i915_private_t *dev_priv = dev->dev_private;
2105         struct drm_i915_gem_object *obj_priv;
2106         struct drm_gem_object *best = NULL;
2107         struct drm_gem_object *first = NULL;
2108
2109         /* Try to find the smallest clean object */
2110         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2111                 struct drm_gem_object *obj = obj_priv->obj;
2112                 if (obj->size >= min_size) {
2113                         if ((!obj_priv->dirty ||
2114                              i915_gem_object_is_purgeable(obj_priv)) &&
2115                             (!best || obj->size < best->size)) {
2116                                 best = obj;
2117                                 if (best->size == min_size)
2118                                         return best;
2119                         }
2120                         if (!first)
2121                             first = obj;
2122                 }
2123         }
2124
2125         return best ? best : first;
2126 }
2127
2128 static int
2129 i915_gem_evict_everything(struct drm_device *dev)
2130 {
2131         drm_i915_private_t *dev_priv = dev->dev_private;
2132         int ret;
2133         uint32_t seqno;
2134         bool lists_empty;
2135
2136         spin_lock(&dev_priv->mm.active_list_lock);
2137         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2138                        list_empty(&dev_priv->mm.flushing_list) &&
2139                        list_empty(&dev_priv->mm.active_list));
2140         spin_unlock(&dev_priv->mm.active_list_lock);
2141
2142         if (lists_empty)
2143                 return -ENOSPC;
2144
2145         /* Flush everything (on to the inactive lists) and evict */
2146         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2147         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2148         if (seqno == 0)
2149                 return -ENOMEM;
2150
2151         ret = i915_wait_request(dev, seqno);
2152         if (ret)
2153                 return ret;
2154
2155         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2156
2157         ret = i915_gem_evict_from_inactive_list(dev);
2158         if (ret)
2159                 return ret;
2160
2161         spin_lock(&dev_priv->mm.active_list_lock);
2162         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2163                        list_empty(&dev_priv->mm.flushing_list) &&
2164                        list_empty(&dev_priv->mm.active_list));
2165         spin_unlock(&dev_priv->mm.active_list_lock);
2166         BUG_ON(!lists_empty);
2167
2168         return 0;
2169 }
2170
2171 static int
2172 i915_gem_evict_something(struct drm_device *dev, int min_size)
2173 {
2174         drm_i915_private_t *dev_priv = dev->dev_private;
2175         struct drm_gem_object *obj;
2176         int ret;
2177
2178         for (;;) {
2179                 i915_gem_retire_requests(dev);
2180
2181                 /* If there's an inactive buffer available now, grab it
2182                  * and be done.
2183                  */
2184                 obj = i915_gem_find_inactive_object(dev, min_size);
2185                 if (obj) {
2186                         struct drm_i915_gem_object *obj_priv;
2187
2188 #if WATCH_LRU
2189                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2190 #endif
2191                         obj_priv = obj->driver_private;
2192                         BUG_ON(obj_priv->pin_count != 0);
2193                         BUG_ON(obj_priv->active);
2194
2195                         /* Wait on the rendering and unbind the buffer. */
2196                         return i915_gem_object_unbind(obj);
2197                 }
2198
2199                 /* If we didn't get anything, but the ring is still processing
2200                  * things, wait for the next to finish and hopefully leave us
2201                  * a buffer to evict.
2202                  */
2203                 if (!list_empty(&dev_priv->mm.request_list)) {
2204                         struct drm_i915_gem_request *request;
2205
2206                         request = list_first_entry(&dev_priv->mm.request_list,
2207                                                    struct drm_i915_gem_request,
2208                                                    list);
2209
2210                         ret = i915_wait_request(dev, request->seqno);
2211                         if (ret)
2212                                 return ret;
2213
2214                         continue;
2215                 }
2216
2217                 /* If we didn't have anything on the request list but there
2218                  * are buffers awaiting a flush, emit one and try again.
2219                  * When we wait on it, those buffers waiting for that flush
2220                  * will get moved to inactive.
2221                  */
2222                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2223                         struct drm_i915_gem_object *obj_priv;
2224
2225                         /* Find an object that we can immediately reuse */
2226                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2227                                 obj = obj_priv->obj;
2228                                 if (obj->size >= min_size)
2229                                         break;
2230
2231                                 obj = NULL;
2232                         }
2233
2234                         if (obj != NULL) {
2235                                 uint32_t seqno;
2236
2237                                 i915_gem_flush(dev,
2238                                                obj->write_domain,
2239                                                obj->write_domain);
2240                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2241                                 if (seqno == 0)
2242                                         return -ENOMEM;
2243
2244                                 ret = i915_wait_request(dev, seqno);
2245                                 if (ret)
2246                                         return ret;
2247
2248                                 continue;
2249                         }
2250                 }
2251
2252                 /* If we didn't do any of the above, there's no single buffer
2253                  * large enough to swap out for the new one, so just evict
2254                  * everything and start again. (This should be rare.)
2255                  */
2256                 if (!list_empty (&dev_priv->mm.inactive_list))
2257                         return i915_gem_evict_from_inactive_list(dev);
2258                 else
2259                         return i915_gem_evict_everything(dev);
2260         }
2261 }
2262
2263 int
2264 i915_gem_object_get_pages(struct drm_gem_object *obj,
2265                           gfp_t gfpmask)
2266 {
2267         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2268         int page_count, i;
2269         struct address_space *mapping;
2270         struct inode *inode;
2271         struct page *page;
2272
2273         if (obj_priv->pages_refcount++ != 0)
2274                 return 0;
2275
2276         /* Get the list of pages out of our struct file.  They'll be pinned
2277          * at this point until we release them.
2278          */
2279         page_count = obj->size / PAGE_SIZE;
2280         BUG_ON(obj_priv->pages != NULL);
2281         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2282         if (obj_priv->pages == NULL) {
2283                 obj_priv->pages_refcount--;
2284                 return -ENOMEM;
2285         }
2286
2287         inode = obj->filp->f_path.dentry->d_inode;
2288         mapping = inode->i_mapping;
2289         for (i = 0; i < page_count; i++) {
2290                 page = read_cache_page_gfp(mapping, i,
2291                                            mapping_gfp_mask (mapping) |
2292                                            __GFP_COLD |
2293                                            gfpmask);
2294                 if (IS_ERR(page))
2295                         goto err_pages;
2296
2297                 obj_priv->pages[i] = page;
2298         }
2299
2300         if (obj_priv->tiling_mode != I915_TILING_NONE)
2301                 i915_gem_object_do_bit_17_swizzle(obj);
2302
2303         return 0;
2304
2305 err_pages:
2306         while (i--)
2307                 page_cache_release(obj_priv->pages[i]);
2308
2309         drm_free_large(obj_priv->pages);
2310         obj_priv->pages = NULL;
2311         obj_priv->pages_refcount--;
2312         return PTR_ERR(page);
2313 }
2314
2315 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2316 {
2317         struct drm_gem_object *obj = reg->obj;
2318         struct drm_device *dev = obj->dev;
2319         drm_i915_private_t *dev_priv = dev->dev_private;
2320         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2321         int regnum = obj_priv->fence_reg;
2322         uint64_t val;
2323
2324         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2325                     0xfffff000) << 32;
2326         val |= obj_priv->gtt_offset & 0xfffff000;
2327         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2328         if (obj_priv->tiling_mode == I915_TILING_Y)
2329                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2330         val |= I965_FENCE_REG_VALID;
2331
2332         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2333 }
2334
2335 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2336 {
2337         struct drm_gem_object *obj = reg->obj;
2338         struct drm_device *dev = obj->dev;
2339         drm_i915_private_t *dev_priv = dev->dev_private;
2340         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2341         int regnum = obj_priv->fence_reg;
2342         int tile_width;
2343         uint32_t fence_reg, val;
2344         uint32_t pitch_val;
2345
2346         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2347             (obj_priv->gtt_offset & (obj->size - 1))) {
2348                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2349                      __func__, obj_priv->gtt_offset, obj->size);
2350                 return;
2351         }
2352
2353         if (obj_priv->tiling_mode == I915_TILING_Y &&
2354             HAS_128_BYTE_Y_TILING(dev))
2355                 tile_width = 128;
2356         else
2357                 tile_width = 512;
2358
2359         /* Note: pitch better be a power of two tile widths */
2360         pitch_val = obj_priv->stride / tile_width;
2361         pitch_val = ffs(pitch_val) - 1;
2362
2363         if (obj_priv->tiling_mode == I915_TILING_Y &&
2364             HAS_128_BYTE_Y_TILING(dev))
2365                 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2366         else
2367                 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2368
2369         val = obj_priv->gtt_offset;
2370         if (obj_priv->tiling_mode == I915_TILING_Y)
2371                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2372         val |= I915_FENCE_SIZE_BITS(obj->size);
2373         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2374         val |= I830_FENCE_REG_VALID;
2375
2376         if (regnum < 8)
2377                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2378         else
2379                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2380         I915_WRITE(fence_reg, val);
2381 }
2382
2383 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2384 {
2385         struct drm_gem_object *obj = reg->obj;
2386         struct drm_device *dev = obj->dev;
2387         drm_i915_private_t *dev_priv = dev->dev_private;
2388         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2389         int regnum = obj_priv->fence_reg;
2390         uint32_t val;
2391         uint32_t pitch_val;
2392         uint32_t fence_size_bits;
2393
2394         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2395             (obj_priv->gtt_offset & (obj->size - 1))) {
2396                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2397                      __func__, obj_priv->gtt_offset);
2398                 return;
2399         }
2400
2401         pitch_val = obj_priv->stride / 128;
2402         pitch_val = ffs(pitch_val) - 1;
2403         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2404
2405         val = obj_priv->gtt_offset;
2406         if (obj_priv->tiling_mode == I915_TILING_Y)
2407                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2408         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2409         WARN_ON(fence_size_bits & ~0x00000f00);
2410         val |= fence_size_bits;
2411         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2412         val |= I830_FENCE_REG_VALID;
2413
2414         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2415 }
2416
2417 /**
2418  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2419  * @obj: object to map through a fence reg
2420  *
2421  * When mapping objects through the GTT, userspace wants to be able to write
2422  * to them without having to worry about swizzling if the object is tiled.
2423  *
2424  * This function walks the fence regs looking for a free one for @obj,
2425  * stealing one if it can't find any.
2426  *
2427  * It then sets up the reg based on the object's properties: address, pitch
2428  * and tiling format.
2429  */
2430 int
2431 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2432 {
2433         struct drm_device *dev = obj->dev;
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2436         struct drm_i915_fence_reg *reg = NULL;
2437         struct drm_i915_gem_object *old_obj_priv = NULL;
2438         int i, ret, avail;
2439
2440         /* Just update our place in the LRU if our fence is getting used. */
2441         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2442                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2443                 return 0;
2444         }
2445
2446         switch (obj_priv->tiling_mode) {
2447         case I915_TILING_NONE:
2448                 WARN(1, "allocating a fence for non-tiled object?\n");
2449                 break;
2450         case I915_TILING_X:
2451                 if (!obj_priv->stride)
2452                         return -EINVAL;
2453                 WARN((obj_priv->stride & (512 - 1)),
2454                      "object 0x%08x is X tiled but has non-512B pitch\n",
2455                      obj_priv->gtt_offset);
2456                 break;
2457         case I915_TILING_Y:
2458                 if (!obj_priv->stride)
2459                         return -EINVAL;
2460                 WARN((obj_priv->stride & (128 - 1)),
2461                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2462                      obj_priv->gtt_offset);
2463                 break;
2464         }
2465
2466         /* First try to find a free reg */
2467         avail = 0;
2468         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2469                 reg = &dev_priv->fence_regs[i];
2470                 if (!reg->obj)
2471                         break;
2472
2473                 old_obj_priv = reg->obj->driver_private;
2474                 if (!old_obj_priv->pin_count)
2475                     avail++;
2476         }
2477
2478         /* None available, try to steal one or wait for a user to finish */
2479         if (i == dev_priv->num_fence_regs) {
2480                 struct drm_gem_object *old_obj = NULL;
2481
2482                 if (avail == 0)
2483                         return -ENOSPC;
2484
2485                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2486                                     fence_list) {
2487                         old_obj = old_obj_priv->obj;
2488
2489                         if (old_obj_priv->pin_count)
2490                                 continue;
2491
2492                         /* Take a reference, as otherwise the wait_rendering
2493                          * below may cause the object to get freed out from
2494                          * under us.
2495                          */
2496                         drm_gem_object_reference(old_obj);
2497
2498                         /* i915 uses fences for GPU access to tiled buffers */
2499                         if (IS_I965G(dev) || !old_obj_priv->active)
2500                                 break;
2501
2502                         /* This brings the object to the head of the LRU if it
2503                          * had been written to.  The only way this should
2504                          * result in us waiting longer than the expected
2505                          * optimal amount of time is if there was a
2506                          * fence-using buffer later that was read-only.
2507                          */
2508                         i915_gem_object_flush_gpu_write_domain(old_obj);
2509                         ret = i915_gem_object_wait_rendering(old_obj);
2510                         if (ret != 0) {
2511                                 drm_gem_object_unreference(old_obj);
2512                                 return ret;
2513                         }
2514
2515                         break;
2516                 }
2517
2518                 /*
2519                  * Zap this virtual mapping so we can set up a fence again
2520                  * for this object next time we need it.
2521                  */
2522                 i915_gem_release_mmap(old_obj);
2523
2524                 i = old_obj_priv->fence_reg;
2525                 reg = &dev_priv->fence_regs[i];
2526
2527                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2528                 list_del_init(&old_obj_priv->fence_list);
2529
2530                 drm_gem_object_unreference(old_obj);
2531         }
2532
2533         obj_priv->fence_reg = i;
2534         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2535
2536         reg->obj = obj;
2537
2538         if (IS_I965G(dev))
2539                 i965_write_fence_reg(reg);
2540         else if (IS_I9XX(dev))
2541                 i915_write_fence_reg(reg);
2542         else
2543                 i830_write_fence_reg(reg);
2544
2545         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2546
2547         return 0;
2548 }
2549
2550 /**
2551  * i915_gem_clear_fence_reg - clear out fence register info
2552  * @obj: object to clear
2553  *
2554  * Zeroes out the fence register itself and clears out the associated
2555  * data structures in dev_priv and obj_priv.
2556  */
2557 static void
2558 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2559 {
2560         struct drm_device *dev = obj->dev;
2561         drm_i915_private_t *dev_priv = dev->dev_private;
2562         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2563
2564         if (IS_I965G(dev))
2565                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2566         else {
2567                 uint32_t fence_reg;
2568
2569                 if (obj_priv->fence_reg < 8)
2570                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2571                 else
2572                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2573                                                        8) * 4;
2574
2575                 I915_WRITE(fence_reg, 0);
2576         }
2577
2578         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2579         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2580         list_del_init(&obj_priv->fence_list);
2581 }
2582
2583 /**
2584  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2585  * to the buffer to finish, and then resets the fence register.
2586  * @obj: tiled object holding a fence register.
2587  *
2588  * Zeroes out the fence register itself and clears out the associated
2589  * data structures in dev_priv and obj_priv.
2590  */
2591 int
2592 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2593 {
2594         struct drm_device *dev = obj->dev;
2595         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2596
2597         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2598                 return 0;
2599
2600         /* On the i915, GPU access to tiled buffers is via a fence,
2601          * therefore we must wait for any outstanding access to complete
2602          * before clearing the fence.
2603          */
2604         if (!IS_I965G(dev)) {
2605                 int ret;
2606
2607                 i915_gem_object_flush_gpu_write_domain(obj);
2608                 i915_gem_object_flush_gtt_write_domain(obj);
2609                 ret = i915_gem_object_wait_rendering(obj);
2610                 if (ret != 0)
2611                         return ret;
2612         }
2613
2614         i915_gem_clear_fence_reg (obj);
2615
2616         return 0;
2617 }
2618
2619 /**
2620  * Finds free space in the GTT aperture and binds the object there.
2621  */
2622 static int
2623 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2624 {
2625         struct drm_device *dev = obj->dev;
2626         drm_i915_private_t *dev_priv = dev->dev_private;
2627         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2628         struct drm_mm_node *free_space;
2629         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2630         int ret;
2631
2632         if (obj_priv->madv != I915_MADV_WILLNEED) {
2633                 DRM_ERROR("Attempting to bind a purgeable object\n");
2634                 return -EINVAL;
2635         }
2636
2637         if (alignment == 0)
2638                 alignment = i915_gem_get_gtt_alignment(obj);
2639         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2640                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2641                 return -EINVAL;
2642         }
2643
2644         /* If the object is bigger than the entire aperture, reject it early
2645          * before evicting everything in a vain attempt to find space.
2646          */
2647         if (obj->size > dev->gtt_total) {
2648                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2649                 return -E2BIG;
2650         }
2651
2652  search_free:
2653         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2654                                         obj->size, alignment, 0);
2655         if (free_space != NULL) {
2656                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2657                                                        alignment);
2658                 if (obj_priv->gtt_space != NULL) {
2659                         obj_priv->gtt_space->private = obj;
2660                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2661                 }
2662         }
2663         if (obj_priv->gtt_space == NULL) {
2664                 /* If the gtt is empty and we're still having trouble
2665                  * fitting our object in, we're out of memory.
2666                  */
2667 #if WATCH_LRU
2668                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2669 #endif
2670                 ret = i915_gem_evict_something(dev, obj->size);
2671                 if (ret)
2672                         return ret;
2673
2674                 goto search_free;
2675         }
2676
2677 #if WATCH_BUF
2678         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2679                  obj->size, obj_priv->gtt_offset);
2680 #endif
2681         ret = i915_gem_object_get_pages(obj, gfpmask);
2682         if (ret) {
2683                 drm_mm_put_block(obj_priv->gtt_space);
2684                 obj_priv->gtt_space = NULL;
2685
2686                 if (ret == -ENOMEM) {
2687                         /* first try to clear up some space from the GTT */
2688                         ret = i915_gem_evict_something(dev, obj->size);
2689                         if (ret) {
2690                                 /* now try to shrink everyone else */
2691                                 if (gfpmask) {
2692                                         gfpmask = 0;
2693                                         goto search_free;
2694                                 }
2695
2696                                 return ret;
2697                         }
2698
2699                         goto search_free;
2700                 }
2701
2702                 return ret;
2703         }
2704
2705         /* Create an AGP memory structure pointing at our pages, and bind it
2706          * into the GTT.
2707          */
2708         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2709                                                obj_priv->pages,
2710                                                obj->size >> PAGE_SHIFT,
2711                                                obj_priv->gtt_offset,
2712                                                obj_priv->agp_type);
2713         if (obj_priv->agp_mem == NULL) {
2714                 i915_gem_object_put_pages(obj);
2715                 drm_mm_put_block(obj_priv->gtt_space);
2716                 obj_priv->gtt_space = NULL;
2717
2718                 ret = i915_gem_evict_something(dev, obj->size);
2719                 if (ret)
2720                         return ret;
2721
2722                 goto search_free;
2723         }
2724         atomic_inc(&dev->gtt_count);
2725         atomic_add(obj->size, &dev->gtt_memory);
2726
2727         /* Assert that the object is not currently in any GPU domain. As it
2728          * wasn't in the GTT, there shouldn't be any way it could have been in
2729          * a GPU cache
2730          */
2731         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2732         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2733
2734         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2735
2736         return 0;
2737 }
2738
2739 void
2740 i915_gem_clflush_object(struct drm_gem_object *obj)
2741 {
2742         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2743
2744         /* If we don't have a page list set up, then we're not pinned
2745          * to GPU, and we can ignore the cache flush because it'll happen
2746          * again at bind time.
2747          */
2748         if (obj_priv->pages == NULL)
2749                 return;
2750
2751         trace_i915_gem_object_clflush(obj);
2752
2753         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2754 }
2755
2756 /** Flushes any GPU write domain for the object if it's dirty. */
2757 static void
2758 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2759 {
2760         struct drm_device *dev = obj->dev;
2761         uint32_t seqno;
2762         uint32_t old_write_domain;
2763
2764         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2765                 return;
2766
2767         /* Queue the GPU write cache flushing we need. */
2768         old_write_domain = obj->write_domain;
2769         i915_gem_flush(dev, 0, obj->write_domain);
2770         seqno = i915_add_request(dev, NULL, obj->write_domain);
2771         BUG_ON(obj->write_domain);
2772         i915_gem_object_move_to_active(obj, seqno);
2773
2774         trace_i915_gem_object_change_domain(obj,
2775                                             obj->read_domains,
2776                                             old_write_domain);
2777 }
2778
2779 /** Flushes the GTT write domain for the object if it's dirty. */
2780 static void
2781 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2782 {
2783         uint32_t old_write_domain;
2784
2785         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2786                 return;
2787
2788         /* No actual flushing is required for the GTT write domain.   Writes
2789          * to it immediately go to main memory as far as we know, so there's
2790          * no chipset flush.  It also doesn't land in render cache.
2791          */
2792         old_write_domain = obj->write_domain;
2793         obj->write_domain = 0;
2794
2795         trace_i915_gem_object_change_domain(obj,
2796                                             obj->read_domains,
2797                                             old_write_domain);
2798 }
2799
2800 /** Flushes the CPU write domain for the object if it's dirty. */
2801 static void
2802 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2803 {
2804         struct drm_device *dev = obj->dev;
2805         uint32_t old_write_domain;
2806
2807         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2808                 return;
2809
2810         i915_gem_clflush_object(obj);
2811         drm_agp_chipset_flush(dev);
2812         old_write_domain = obj->write_domain;
2813         obj->write_domain = 0;
2814
2815         trace_i915_gem_object_change_domain(obj,
2816                                             obj->read_domains,
2817                                             old_write_domain);
2818 }
2819
2820 void
2821 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2822 {
2823         switch (obj->write_domain) {
2824         case I915_GEM_DOMAIN_GTT:
2825                 i915_gem_object_flush_gtt_write_domain(obj);
2826                 break;
2827         case I915_GEM_DOMAIN_CPU:
2828                 i915_gem_object_flush_cpu_write_domain(obj);
2829                 break;
2830         default:
2831                 i915_gem_object_flush_gpu_write_domain(obj);
2832                 break;
2833         }
2834 }
2835
2836 /**
2837  * Moves a single object to the GTT read, and possibly write domain.
2838  *
2839  * This function returns when the move is complete, including waiting on
2840  * flushes to occur.
2841  */
2842 int
2843 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2844 {
2845         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2846         uint32_t old_write_domain, old_read_domains;
2847         int ret;
2848
2849         /* Not valid to be called on unbound objects. */
2850         if (obj_priv->gtt_space == NULL)
2851                 return -EINVAL;
2852
2853         i915_gem_object_flush_gpu_write_domain(obj);
2854         /* Wait on any GPU rendering and flushing to occur. */
2855         ret = i915_gem_object_wait_rendering(obj);
2856         if (ret != 0)
2857                 return ret;
2858
2859         old_write_domain = obj->write_domain;
2860         old_read_domains = obj->read_domains;
2861
2862         /* If we're writing through the GTT domain, then CPU and GPU caches
2863          * will need to be invalidated at next use.
2864          */
2865         if (write)
2866                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2867
2868         i915_gem_object_flush_cpu_write_domain(obj);
2869
2870         /* It should now be out of any other write domains, and we can update
2871          * the domain values for our changes.
2872          */
2873         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2874         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2875         if (write) {
2876                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2877                 obj_priv->dirty = 1;
2878         }
2879
2880         trace_i915_gem_object_change_domain(obj,
2881                                             old_read_domains,
2882                                             old_write_domain);
2883
2884         return 0;
2885 }
2886
2887 /*
2888  * Prepare buffer for display plane. Use uninterruptible for possible flush
2889  * wait, as in modesetting process we're not supposed to be interrupted.
2890  */
2891 int
2892 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2893 {
2894         struct drm_device *dev = obj->dev;
2895         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2896         uint32_t old_write_domain, old_read_domains;
2897         int ret;
2898
2899         /* Not valid to be called on unbound objects. */
2900         if (obj_priv->gtt_space == NULL)
2901                 return -EINVAL;
2902
2903         i915_gem_object_flush_gpu_write_domain(obj);
2904
2905         /* Wait on any GPU rendering and flushing to occur. */
2906         if (obj_priv->active) {
2907 #if WATCH_BUF
2908                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2909                           __func__, obj, obj_priv->last_rendering_seqno);
2910 #endif
2911                 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2912                 if (ret != 0)
2913                         return ret;
2914         }
2915
2916         old_write_domain = obj->write_domain;
2917         old_read_domains = obj->read_domains;
2918
2919         obj->read_domains &= I915_GEM_DOMAIN_GTT;
2920
2921         i915_gem_object_flush_cpu_write_domain(obj);
2922
2923         /* It should now be out of any other write domains, and we can update
2924          * the domain values for our changes.
2925          */
2926         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2927         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2928         obj->write_domain = I915_GEM_DOMAIN_GTT;
2929         obj_priv->dirty = 1;
2930
2931         trace_i915_gem_object_change_domain(obj,
2932                                             old_read_domains,
2933                                             old_write_domain);
2934
2935         return 0;
2936 }
2937
2938 /**
2939  * Moves a single object to the CPU read, and possibly write domain.
2940  *
2941  * This function returns when the move is complete, including waiting on
2942  * flushes to occur.
2943  */
2944 static int
2945 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2946 {
2947         uint32_t old_write_domain, old_read_domains;
2948         int ret;
2949
2950         i915_gem_object_flush_gpu_write_domain(obj);
2951         /* Wait on any GPU rendering and flushing to occur. */
2952         ret = i915_gem_object_wait_rendering(obj);
2953         if (ret != 0)
2954                 return ret;
2955
2956         i915_gem_object_flush_gtt_write_domain(obj);
2957
2958         /* If we have a partially-valid cache of the object in the CPU,
2959          * finish invalidating it and free the per-page flags.
2960          */
2961         i915_gem_object_set_to_full_cpu_read_domain(obj);
2962
2963         old_write_domain = obj->write_domain;
2964         old_read_domains = obj->read_domains;
2965
2966         /* Flush the CPU cache if it's still invalid. */
2967         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2968                 i915_gem_clflush_object(obj);
2969
2970                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2971         }
2972
2973         /* It should now be out of any other write domains, and we can update
2974          * the domain values for our changes.
2975          */
2976         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2977
2978         /* If we're writing through the CPU, then the GPU read domains will
2979          * need to be invalidated at next use.
2980          */
2981         if (write) {
2982                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2983                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2984         }
2985
2986         trace_i915_gem_object_change_domain(obj,
2987                                             old_read_domains,
2988                                             old_write_domain);
2989
2990         return 0;
2991 }
2992
2993 /*
2994  * Set the next domain for the specified object. This
2995  * may not actually perform the necessary flushing/invaliding though,
2996  * as that may want to be batched with other set_domain operations
2997  *
2998  * This is (we hope) the only really tricky part of gem. The goal
2999  * is fairly simple -- track which caches hold bits of the object
3000  * and make sure they remain coherent. A few concrete examples may
3001  * help to explain how it works. For shorthand, we use the notation
3002  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3003  * a pair of read and write domain masks.
3004  *
3005  * Case 1: the batch buffer
3006  *
3007  *      1. Allocated
3008  *      2. Written by CPU
3009  *      3. Mapped to GTT
3010  *      4. Read by GPU
3011  *      5. Unmapped from GTT
3012  *      6. Freed
3013  *
3014  *      Let's take these a step at a time
3015  *
3016  *      1. Allocated
3017  *              Pages allocated from the kernel may still have
3018  *              cache contents, so we set them to (CPU, CPU) always.
3019  *      2. Written by CPU (using pwrite)
3020  *              The pwrite function calls set_domain (CPU, CPU) and
3021  *              this function does nothing (as nothing changes)
3022  *      3. Mapped by GTT
3023  *              This function asserts that the object is not
3024  *              currently in any GPU-based read or write domains
3025  *      4. Read by GPU
3026  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
3027  *              As write_domain is zero, this function adds in the
3028  *              current read domains (CPU+COMMAND, 0).
3029  *              flush_domains is set to CPU.
3030  *              invalidate_domains is set to COMMAND
3031  *              clflush is run to get data out of the CPU caches
3032  *              then i915_dev_set_domain calls i915_gem_flush to
3033  *              emit an MI_FLUSH and drm_agp_chipset_flush
3034  *      5. Unmapped from GTT
3035  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
3036  *              flush_domains and invalidate_domains end up both zero
3037  *              so no flushing/invalidating happens
3038  *      6. Freed
3039  *              yay, done
3040  *
3041  * Case 2: The shared render buffer
3042  *
3043  *      1. Allocated
3044  *      2. Mapped to GTT
3045  *      3. Read/written by GPU
3046  *      4. set_domain to (CPU,CPU)
3047  *      5. Read/written by CPU
3048  *      6. Read/written by GPU
3049  *
3050  *      1. Allocated
3051  *              Same as last example, (CPU, CPU)
3052  *      2. Mapped to GTT
3053  *              Nothing changes (assertions find that it is not in the GPU)
3054  *      3. Read/written by GPU
3055  *              execbuffer calls set_domain (RENDER, RENDER)
3056  *              flush_domains gets CPU
3057  *              invalidate_domains gets GPU
3058  *              clflush (obj)
3059  *              MI_FLUSH and drm_agp_chipset_flush
3060  *      4. set_domain (CPU, CPU)
3061  *              flush_domains gets GPU
3062  *              invalidate_domains gets CPU
3063  *              wait_rendering (obj) to make sure all drawing is complete.
3064  *              This will include an MI_FLUSH to get the data from GPU
3065  *              to memory
3066  *              clflush (obj) to invalidate the CPU cache
3067  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3068  *      5. Read/written by CPU
3069  *              cache lines are loaded and dirtied
3070  *      6. Read written by GPU
3071  *              Same as last GPU access
3072  *
3073  * Case 3: The constant buffer
3074  *
3075  *      1. Allocated
3076  *      2. Written by CPU
3077  *      3. Read by GPU
3078  *      4. Updated (written) by CPU again
3079  *      5. Read by GPU
3080  *
3081  *      1. Allocated
3082  *              (CPU, CPU)
3083  *      2. Written by CPU
3084  *              (CPU, CPU)
3085  *      3. Read by GPU
3086  *              (CPU+RENDER, 0)
3087  *              flush_domains = CPU
3088  *              invalidate_domains = RENDER
3089  *              clflush (obj)
3090  *              MI_FLUSH
3091  *              drm_agp_chipset_flush
3092  *      4. Updated (written) by CPU again
3093  *              (CPU, CPU)
3094  *              flush_domains = 0 (no previous write domain)
3095  *              invalidate_domains = 0 (no new read domains)
3096  *      5. Read by GPU
3097  *              (CPU+RENDER, 0)
3098  *              flush_domains = CPU
3099  *              invalidate_domains = RENDER
3100  *              clflush (obj)
3101  *              MI_FLUSH
3102  *              drm_agp_chipset_flush
3103  */
3104 static void
3105 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3106 {
3107         struct drm_device               *dev = obj->dev;
3108         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
3109         uint32_t                        invalidate_domains = 0;
3110         uint32_t                        flush_domains = 0;
3111         uint32_t                        old_read_domains;
3112
3113         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3114         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3115
3116         intel_mark_busy(dev, obj);
3117
3118 #if WATCH_BUF
3119         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3120                  __func__, obj,
3121                  obj->read_domains, obj->pending_read_domains,
3122                  obj->write_domain, obj->pending_write_domain);
3123 #endif
3124         /*
3125          * If the object isn't moving to a new write domain,
3126          * let the object stay in multiple read domains
3127          */
3128         if (obj->pending_write_domain == 0)
3129                 obj->pending_read_domains |= obj->read_domains;
3130         else
3131                 obj_priv->dirty = 1;
3132
3133         /*
3134          * Flush the current write domain if
3135          * the new read domains don't match. Invalidate
3136          * any read domains which differ from the old
3137          * write domain
3138          */
3139         if (obj->write_domain &&
3140             obj->write_domain != obj->pending_read_domains) {
3141                 flush_domains |= obj->write_domain;
3142                 invalidate_domains |=
3143                         obj->pending_read_domains & ~obj->write_domain;
3144         }
3145         /*
3146          * Invalidate any read caches which may have
3147          * stale data. That is, any new read domains.
3148          */
3149         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3150         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3151 #if WATCH_BUF
3152                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3153                          __func__, flush_domains, invalidate_domains);
3154 #endif
3155                 i915_gem_clflush_object(obj);
3156         }
3157
3158         old_read_domains = obj->read_domains;
3159
3160         /* The actual obj->write_domain will be updated with
3161          * pending_write_domain after we emit the accumulated flush for all
3162          * of our domain changes in execbuffers (which clears objects'
3163          * write_domains).  So if we have a current write domain that we
3164          * aren't changing, set pending_write_domain to that.
3165          */
3166         if (flush_domains == 0 && obj->pending_write_domain == 0)
3167                 obj->pending_write_domain = obj->write_domain;
3168         obj->read_domains = obj->pending_read_domains;
3169
3170         dev->invalidate_domains |= invalidate_domains;
3171         dev->flush_domains |= flush_domains;
3172 #if WATCH_BUF
3173         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3174                  __func__,
3175                  obj->read_domains, obj->write_domain,
3176                  dev->invalidate_domains, dev->flush_domains);
3177 #endif
3178
3179         trace_i915_gem_object_change_domain(obj,
3180                                             old_read_domains,
3181                                             obj->write_domain);
3182 }
3183
3184 /**
3185  * Moves the object from a partially CPU read to a full one.
3186  *
3187  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3188  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3189  */
3190 static void
3191 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3192 {
3193         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3194
3195         if (!obj_priv->page_cpu_valid)
3196                 return;
3197
3198         /* If we're partially in the CPU read domain, finish moving it in.
3199          */
3200         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3201                 int i;
3202
3203                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3204                         if (obj_priv->page_cpu_valid[i])
3205                                 continue;
3206                         drm_clflush_pages(obj_priv->pages + i, 1);
3207                 }
3208         }
3209
3210         /* Free the page_cpu_valid mappings which are now stale, whether
3211          * or not we've got I915_GEM_DOMAIN_CPU.
3212          */
3213         kfree(obj_priv->page_cpu_valid);
3214         obj_priv->page_cpu_valid = NULL;
3215 }
3216
3217 /**
3218  * Set the CPU read domain on a range of the object.
3219  *
3220  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3221  * not entirely valid.  The page_cpu_valid member of the object flags which
3222  * pages have been flushed, and will be respected by
3223  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3224  * of the whole object.
3225  *
3226  * This function returns when the move is complete, including waiting on
3227  * flushes to occur.
3228  */
3229 static int
3230 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3231                                           uint64_t offset, uint64_t size)
3232 {
3233         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3234         uint32_t old_read_domains;
3235         int i, ret;
3236
3237         if (offset == 0 && size == obj->size)
3238                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3239
3240         i915_gem_object_flush_gpu_write_domain(obj);
3241         /* Wait on any GPU rendering and flushing to occur. */
3242         ret = i915_gem_object_wait_rendering(obj);
3243         if (ret != 0)
3244                 return ret;
3245         i915_gem_object_flush_gtt_write_domain(obj);
3246
3247         /* If we're already fully in the CPU read domain, we're done. */
3248         if (obj_priv->page_cpu_valid == NULL &&
3249             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3250                 return 0;
3251
3252         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3253          * newly adding I915_GEM_DOMAIN_CPU
3254          */
3255         if (obj_priv->page_cpu_valid == NULL) {
3256                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3257                                                    GFP_KERNEL);
3258                 if (obj_priv->page_cpu_valid == NULL)
3259                         return -ENOMEM;
3260         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3261                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3262
3263         /* Flush the cache on any pages that are still invalid from the CPU's
3264          * perspective.
3265          */
3266         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3267              i++) {
3268                 if (obj_priv->page_cpu_valid[i])
3269                         continue;
3270
3271                 drm_clflush_pages(obj_priv->pages + i, 1);
3272
3273                 obj_priv->page_cpu_valid[i] = 1;
3274         }
3275
3276         /* It should now be out of any other write domains, and we can update
3277          * the domain values for our changes.
3278          */
3279         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3280
3281         old_read_domains = obj->read_domains;
3282         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3283
3284         trace_i915_gem_object_change_domain(obj,
3285                                             old_read_domains,
3286                                             obj->write_domain);
3287
3288         return 0;
3289 }
3290
3291 /**
3292  * Pin an object to the GTT and evaluate the relocations landing in it.
3293  */
3294 static int
3295 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3296                                  struct drm_file *file_priv,
3297                                  struct drm_i915_gem_exec_object2 *entry,
3298                                  struct drm_i915_gem_relocation_entry *relocs)
3299 {
3300         struct drm_device *dev = obj->dev;
3301         drm_i915_private_t *dev_priv = dev->dev_private;
3302         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3303         int i, ret;
3304         void __iomem *reloc_page;
3305         bool need_fence;
3306
3307         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3308                      obj_priv->tiling_mode != I915_TILING_NONE;
3309
3310         /* Check fence reg constraints and rebind if necessary */
3311         if (need_fence && !i915_obj_fenceable(dev, obj))
3312                 i915_gem_object_unbind(obj);
3313
3314         /* Choose the GTT offset for our buffer and put it there. */
3315         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3316         if (ret)
3317                 return ret;
3318
3319         /*
3320          * Pre-965 chips need a fence register set up in order to
3321          * properly handle blits to/from tiled surfaces.
3322          */
3323         if (need_fence) {
3324                 ret = i915_gem_object_get_fence_reg(obj);
3325                 if (ret != 0) {
3326                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3327                                 DRM_ERROR("Failure to install fence: %d\n",
3328                                           ret);
3329                         i915_gem_object_unpin(obj);
3330                         return ret;
3331                 }
3332         }
3333
3334         entry->offset = obj_priv->gtt_offset;
3335
3336         /* Apply the relocations, using the GTT aperture to avoid cache
3337          * flushing requirements.
3338          */
3339         for (i = 0; i < entry->relocation_count; i++) {
3340                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3341                 struct drm_gem_object *target_obj;
3342                 struct drm_i915_gem_object *target_obj_priv;
3343                 uint32_t reloc_val, reloc_offset;
3344                 uint32_t __iomem *reloc_entry;
3345
3346                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3347                                                    reloc->target_handle);
3348                 if (target_obj == NULL) {
3349                         i915_gem_object_unpin(obj);
3350                         return -EBADF;
3351                 }
3352                 target_obj_priv = target_obj->driver_private;
3353
3354 #if WATCH_RELOC
3355                 DRM_INFO("%s: obj %p offset %08x target %d "
3356                          "read %08x write %08x gtt %08x "
3357                          "presumed %08x delta %08x\n",
3358                          __func__,
3359                          obj,
3360                          (int) reloc->offset,
3361                          (int) reloc->target_handle,
3362                          (int) reloc->read_domains,
3363                          (int) reloc->write_domain,
3364                          (int) target_obj_priv->gtt_offset,
3365                          (int) reloc->presumed_offset,
3366                          reloc->delta);
3367 #endif
3368
3369                 /* The target buffer should have appeared before us in the
3370                  * exec_object list, so it should have a GTT space bound by now.
3371                  */
3372                 if (target_obj_priv->gtt_space == NULL) {
3373                         DRM_ERROR("No GTT space found for object %d\n",
3374                                   reloc->target_handle);
3375                         drm_gem_object_unreference(target_obj);
3376                         i915_gem_object_unpin(obj);
3377                         return -EINVAL;
3378                 }
3379
3380                 /* Validate that the target is in a valid r/w GPU domain */
3381                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3382                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3383                         DRM_ERROR("reloc with read/write CPU domains: "
3384                                   "obj %p target %d offset %d "
3385                                   "read %08x write %08x",
3386                                   obj, reloc->target_handle,
3387                                   (int) reloc->offset,
3388                                   reloc->read_domains,
3389                                   reloc->write_domain);
3390                         drm_gem_object_unreference(target_obj);
3391                         i915_gem_object_unpin(obj);
3392                         return -EINVAL;
3393                 }
3394                 if (reloc->write_domain && target_obj->pending_write_domain &&
3395                     reloc->write_domain != target_obj->pending_write_domain) {
3396                         DRM_ERROR("Write domain conflict: "
3397                                   "obj %p target %d offset %d "
3398                                   "new %08x old %08x\n",
3399                                   obj, reloc->target_handle,
3400                                   (int) reloc->offset,
3401                                   reloc->write_domain,
3402                                   target_obj->pending_write_domain);
3403                         drm_gem_object_unreference(target_obj);
3404                         i915_gem_object_unpin(obj);
3405                         return -EINVAL;
3406                 }
3407
3408                 target_obj->pending_read_domains |= reloc->read_domains;
3409                 target_obj->pending_write_domain |= reloc->write_domain;
3410
3411                 /* If the relocation already has the right value in it, no
3412                  * more work needs to be done.
3413                  */
3414                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3415                         drm_gem_object_unreference(target_obj);
3416                         continue;
3417                 }
3418
3419                 /* Check that the relocation address is valid... */
3420                 if (reloc->offset > obj->size - 4) {
3421                         DRM_ERROR("Relocation beyond object bounds: "
3422                                   "obj %p target %d offset %d size %d.\n",
3423                                   obj, reloc->target_handle,
3424                                   (int) reloc->offset, (int) obj->size);
3425                         drm_gem_object_unreference(target_obj);
3426                         i915_gem_object_unpin(obj);
3427                         return -EINVAL;
3428                 }
3429                 if (reloc->offset & 3) {
3430                         DRM_ERROR("Relocation not 4-byte aligned: "
3431                                   "obj %p target %d offset %d.\n",
3432                                   obj, reloc->target_handle,
3433                                   (int) reloc->offset);
3434                         drm_gem_object_unreference(target_obj);
3435                         i915_gem_object_unpin(obj);
3436                         return -EINVAL;
3437                 }
3438
3439                 /* and points to somewhere within the target object. */
3440                 if (reloc->delta >= target_obj->size) {
3441                         DRM_ERROR("Relocation beyond target object bounds: "
3442                                   "obj %p target %d delta %d size %d.\n",
3443                                   obj, reloc->target_handle,
3444                                   (int) reloc->delta, (int) target_obj->size);
3445                         drm_gem_object_unreference(target_obj);
3446                         i915_gem_object_unpin(obj);
3447                         return -EINVAL;
3448                 }
3449
3450                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3451                 if (ret != 0) {
3452                         drm_gem_object_unreference(target_obj);
3453                         i915_gem_object_unpin(obj);
3454                         return -EINVAL;
3455                 }
3456
3457                 /* Map the page containing the relocation we're going to
3458                  * perform.
3459                  */
3460                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3461                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3462                                                       (reloc_offset &
3463                                                        ~(PAGE_SIZE - 1)));
3464                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3465                                                    (reloc_offset & (PAGE_SIZE - 1)));
3466                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3467
3468 #if WATCH_BUF
3469                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3470                           obj, (unsigned int) reloc->offset,
3471                           readl(reloc_entry), reloc_val);
3472 #endif
3473                 writel(reloc_val, reloc_entry);
3474                 io_mapping_unmap_atomic(reloc_page);
3475
3476                 /* The updated presumed offset for this entry will be
3477                  * copied back out to the user.
3478                  */
3479                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3480
3481                 drm_gem_object_unreference(target_obj);
3482         }
3483
3484 #if WATCH_BUF
3485         if (0)
3486                 i915_gem_dump_object(obj, 128, __func__, ~0);
3487 #endif
3488         return 0;
3489 }
3490
3491 /** Dispatch a batchbuffer to the ring
3492  */
3493 static int
3494 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3495                               struct drm_i915_gem_execbuffer2 *exec,
3496                               struct drm_clip_rect *cliprects,
3497                               uint64_t exec_offset)
3498 {
3499         drm_i915_private_t *dev_priv = dev->dev_private;
3500         int nbox = exec->num_cliprects;
3501         int i = 0, count;
3502         uint32_t exec_start, exec_len;
3503         RING_LOCALS;
3504
3505         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3506         exec_len = (uint32_t) exec->batch_len;
3507
3508         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3509
3510         count = nbox ? nbox : 1;
3511
3512         for (i = 0; i < count; i++) {
3513                 if (i < nbox) {
3514                         int ret = i915_emit_box(dev, cliprects, i,
3515                                                 exec->DR1, exec->DR4);
3516                         if (ret)
3517                                 return ret;
3518                 }
3519
3520                 if (IS_I830(dev) || IS_845G(dev)) {
3521                         BEGIN_LP_RING(4);
3522                         OUT_RING(MI_BATCH_BUFFER);
3523                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3524                         OUT_RING(exec_start + exec_len - 4);
3525                         OUT_RING(0);
3526                         ADVANCE_LP_RING();
3527                 } else {
3528                         BEGIN_LP_RING(2);
3529                         if (IS_I965G(dev)) {
3530                                 OUT_RING(MI_BATCH_BUFFER_START |
3531                                          (2 << 6) |
3532                                          MI_BATCH_NON_SECURE_I965);
3533                                 OUT_RING(exec_start);
3534                         } else {
3535                                 OUT_RING(MI_BATCH_BUFFER_START |
3536                                          (2 << 6));
3537                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3538                         }
3539                         ADVANCE_LP_RING();
3540                 }
3541         }
3542
3543         /* XXX breadcrumb */
3544         return 0;
3545 }
3546
3547 /* Throttle our rendering by waiting until the ring has completed our requests
3548  * emitted over 20 msec ago.
3549  *
3550  * Note that if we were to use the current jiffies each time around the loop,
3551  * we wouldn't escape the function with any frames outstanding if the time to
3552  * render a frame was over 20ms.
3553  *
3554  * This should get us reasonable parallelism between CPU and GPU but also
3555  * relatively low latency when blocking on a particular request to finish.
3556  */
3557 static int
3558 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3559 {
3560         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3561         int ret = 0;
3562         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3563
3564         mutex_lock(&dev->struct_mutex);
3565         while (!list_empty(&i915_file_priv->mm.request_list)) {
3566                 struct drm_i915_gem_request *request;
3567
3568                 request = list_first_entry(&i915_file_priv->mm.request_list,
3569                                            struct drm_i915_gem_request,
3570                                            client_list);
3571
3572                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3573                         break;
3574
3575                 ret = i915_wait_request(dev, request->seqno);
3576                 if (ret != 0)
3577                         break;
3578         }
3579         mutex_unlock(&dev->struct_mutex);
3580
3581         return ret;
3582 }
3583
3584 static int
3585 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3586                               uint32_t buffer_count,
3587                               struct drm_i915_gem_relocation_entry **relocs)
3588 {
3589         uint32_t reloc_count = 0, reloc_index = 0, i;
3590         int ret;
3591
3592         *relocs = NULL;
3593         for (i = 0; i < buffer_count; i++) {
3594                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3595                         return -EINVAL;
3596                 reloc_count += exec_list[i].relocation_count;
3597         }
3598
3599         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3600         if (*relocs == NULL) {
3601                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3602                 return -ENOMEM;
3603         }
3604
3605         for (i = 0; i < buffer_count; i++) {
3606                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3607
3608                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3609
3610                 ret = copy_from_user(&(*relocs)[reloc_index],
3611                                      user_relocs,
3612                                      exec_list[i].relocation_count *
3613                                      sizeof(**relocs));
3614                 if (ret != 0) {
3615                         drm_free_large(*relocs);
3616                         *relocs = NULL;
3617                         return -EFAULT;
3618                 }
3619
3620                 reloc_index += exec_list[i].relocation_count;
3621         }
3622
3623         return 0;
3624 }
3625
3626 static int
3627 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3628                             uint32_t buffer_count,
3629                             struct drm_i915_gem_relocation_entry *relocs)
3630 {
3631         uint32_t reloc_count = 0, i;
3632         int ret = 0;
3633
3634         if (relocs == NULL)
3635             return 0;
3636
3637         for (i = 0; i < buffer_count; i++) {
3638                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3639                 int unwritten;
3640
3641                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3642
3643                 unwritten = copy_to_user(user_relocs,
3644                                          &relocs[reloc_count],
3645                                          exec_list[i].relocation_count *
3646                                          sizeof(*relocs));
3647
3648                 if (unwritten) {
3649                         ret = -EFAULT;
3650                         goto err;
3651                 }
3652
3653                 reloc_count += exec_list[i].relocation_count;
3654         }
3655
3656 err:
3657         drm_free_large(relocs);
3658
3659         return ret;
3660 }
3661
3662 static int
3663 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3664                            uint64_t exec_offset)
3665 {
3666         uint32_t exec_start, exec_len;
3667
3668         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3669         exec_len = (uint32_t) exec->batch_len;
3670
3671         if ((exec_start | exec_len) & 0x7)
3672                 return -EINVAL;
3673
3674         if (!exec_start)
3675                 return -EINVAL;
3676
3677         return 0;
3678 }
3679
3680 static int
3681 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3682                                struct drm_gem_object **object_list,
3683                                int count)
3684 {
3685         drm_i915_private_t *dev_priv = dev->dev_private;
3686         struct drm_i915_gem_object *obj_priv;
3687         DEFINE_WAIT(wait);
3688         int i, ret = 0;
3689
3690         for (;;) {
3691                 prepare_to_wait(&dev_priv->pending_flip_queue,
3692                                 &wait, TASK_INTERRUPTIBLE);
3693                 for (i = 0; i < count; i++) {
3694                         obj_priv = object_list[i]->driver_private;
3695                         if (atomic_read(&obj_priv->pending_flip) > 0)
3696                                 break;
3697                 }
3698                 if (i == count)
3699                         break;
3700
3701                 if (!signal_pending(current)) {
3702                         mutex_unlock(&dev->struct_mutex);
3703                         schedule();
3704                         mutex_lock(&dev->struct_mutex);
3705                         continue;
3706                 }
3707                 ret = -ERESTARTSYS;
3708                 break;
3709         }
3710         finish_wait(&dev_priv->pending_flip_queue, &wait);
3711
3712         return ret;
3713 }
3714
3715 int
3716 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3717                        struct drm_file *file_priv,
3718                        struct drm_i915_gem_execbuffer2 *args,
3719                        struct drm_i915_gem_exec_object2 *exec_list)
3720 {
3721         drm_i915_private_t *dev_priv = dev->dev_private;
3722         struct drm_gem_object **object_list = NULL;
3723         struct drm_gem_object *batch_obj;
3724         struct drm_i915_gem_object *obj_priv;
3725         struct drm_clip_rect *cliprects = NULL;
3726         struct drm_i915_gem_relocation_entry *relocs = NULL;
3727         int ret = 0, ret2, i, pinned = 0;
3728         uint64_t exec_offset;
3729         uint32_t seqno, flush_domains, reloc_index;
3730         int pin_tries, flips;
3731
3732 #if WATCH_EXEC
3733         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3734                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3735 #endif
3736
3737         if (args->buffer_count < 1) {
3738                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3739                 return -EINVAL;
3740         }
3741         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3742         if (object_list == NULL) {
3743                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3744                           args->buffer_count);
3745                 ret = -ENOMEM;
3746                 goto pre_mutex_err;
3747         }
3748
3749         if (args->num_cliprects != 0) {
3750                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3751                                     GFP_KERNEL);
3752                 if (cliprects == NULL) {
3753                         ret = -ENOMEM;
3754                         goto pre_mutex_err;
3755                 }
3756
3757                 ret = copy_from_user(cliprects,
3758                                      (struct drm_clip_rect __user *)
3759                                      (uintptr_t) args->cliprects_ptr,
3760                                      sizeof(*cliprects) * args->num_cliprects);
3761                 if (ret != 0) {
3762                         DRM_ERROR("copy %d cliprects failed: %d\n",
3763                                   args->num_cliprects, ret);
3764                         goto pre_mutex_err;
3765                 }
3766         }
3767
3768         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3769                                             &relocs);
3770         if (ret != 0)
3771                 goto pre_mutex_err;
3772
3773         mutex_lock(&dev->struct_mutex);
3774
3775         i915_verify_inactive(dev, __FILE__, __LINE__);
3776
3777         if (atomic_read(&dev_priv->mm.wedged)) {
3778                 mutex_unlock(&dev->struct_mutex);
3779                 ret = -EIO;
3780                 goto pre_mutex_err;
3781         }
3782
3783         if (dev_priv->mm.suspended) {
3784                 mutex_unlock(&dev->struct_mutex);
3785                 ret = -EBUSY;
3786                 goto pre_mutex_err;
3787         }
3788
3789         /* Look up object handles */
3790         flips = 0;
3791         for (i = 0; i < args->buffer_count; i++) {
3792                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3793                                                        exec_list[i].handle);
3794                 if (object_list[i] == NULL) {
3795                         DRM_ERROR("Invalid object handle %d at index %d\n",
3796                                    exec_list[i].handle, i);
3797                         /* prevent error path from reading uninitialized data */
3798                         args->buffer_count = i + 1;
3799                         ret = -EBADF;
3800                         goto err;
3801                 }
3802
3803                 obj_priv = object_list[i]->driver_private;
3804                 if (obj_priv->in_execbuffer) {
3805                         DRM_ERROR("Object %p appears more than once in object list\n",
3806                                    object_list[i]);
3807                         /* prevent error path from reading uninitialized data */
3808                         args->buffer_count = i + 1;
3809                         ret = -EBADF;
3810                         goto err;
3811                 }
3812                 obj_priv->in_execbuffer = true;
3813                 flips += atomic_read(&obj_priv->pending_flip);
3814         }
3815
3816         if (flips > 0) {
3817                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3818                                                      args->buffer_count);
3819                 if (ret)
3820                         goto err;
3821         }
3822
3823         /* Pin and relocate */
3824         for (pin_tries = 0; ; pin_tries++) {
3825                 ret = 0;
3826                 reloc_index = 0;
3827
3828                 for (i = 0; i < args->buffer_count; i++) {
3829                         object_list[i]->pending_read_domains = 0;
3830                         object_list[i]->pending_write_domain = 0;
3831                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3832                                                                file_priv,
3833                                                                &exec_list[i],
3834                                                                &relocs[reloc_index]);
3835                         if (ret)
3836                                 break;
3837                         pinned = i + 1;
3838                         reloc_index += exec_list[i].relocation_count;
3839                 }
3840                 /* success */
3841                 if (ret == 0)
3842                         break;
3843
3844                 /* error other than GTT full, or we've already tried again */
3845                 if (ret != -ENOSPC || pin_tries >= 1) {
3846                         if (ret != -ERESTARTSYS) {
3847                                 unsigned long long total_size = 0;
3848                                 for (i = 0; i < args->buffer_count; i++)
3849                                         total_size += object_list[i]->size;
3850                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3851                                           pinned+1, args->buffer_count,
3852                                           total_size, ret);
3853                                 DRM_ERROR("%d objects [%d pinned], "
3854                                           "%d object bytes [%d pinned], "
3855                                           "%d/%d gtt bytes\n",
3856                                           atomic_read(&dev->object_count),
3857                                           atomic_read(&dev->pin_count),
3858                                           atomic_read(&dev->object_memory),
3859                                           atomic_read(&dev->pin_memory),
3860                                           atomic_read(&dev->gtt_memory),
3861                                           dev->gtt_total);
3862                         }
3863                         goto err;
3864                 }
3865
3866                 /* unpin all of our buffers */
3867                 for (i = 0; i < pinned; i++)
3868                         i915_gem_object_unpin(object_list[i]);
3869                 pinned = 0;
3870
3871                 /* evict everyone we can from the aperture */
3872                 ret = i915_gem_evict_everything(dev);
3873                 if (ret && ret != -ENOSPC)
3874                         goto err;
3875         }
3876
3877         /* Set the pending read domains for the batch buffer to COMMAND */
3878         batch_obj = object_list[args->buffer_count-1];
3879         if (batch_obj->pending_write_domain) {
3880                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3881                 ret = -EINVAL;
3882                 goto err;
3883         }
3884         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3885
3886         /* Sanity check the batch buffer, prior to moving objects */
3887         exec_offset = exec_list[args->buffer_count - 1].offset;
3888         ret = i915_gem_check_execbuffer (args, exec_offset);
3889         if (ret != 0) {
3890                 DRM_ERROR("execbuf with invalid offset/length\n");
3891                 goto err;
3892         }
3893
3894         i915_verify_inactive(dev, __FILE__, __LINE__);
3895
3896         /* Zero the global flush/invalidate flags. These
3897          * will be modified as new domains are computed
3898          * for each object
3899          */
3900         dev->invalidate_domains = 0;
3901         dev->flush_domains = 0;
3902
3903         for (i = 0; i < args->buffer_count; i++) {
3904                 struct drm_gem_object *obj = object_list[i];
3905
3906                 /* Compute new gpu domains and update invalidate/flush */
3907                 i915_gem_object_set_to_gpu_domain(obj);
3908         }
3909
3910         i915_verify_inactive(dev, __FILE__, __LINE__);
3911
3912         if (dev->invalidate_domains | dev->flush_domains) {
3913 #if WATCH_EXEC
3914                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3915                           __func__,
3916                          dev->invalidate_domains,
3917                          dev->flush_domains);
3918 #endif
3919                 i915_gem_flush(dev,
3920                                dev->invalidate_domains,
3921                                dev->flush_domains);
3922                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3923                         (void)i915_add_request(dev, file_priv,
3924                                                dev->flush_domains);
3925         }
3926
3927         for (i = 0; i < args->buffer_count; i++) {
3928                 struct drm_gem_object *obj = object_list[i];
3929                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3930                 uint32_t old_write_domain = obj->write_domain;
3931
3932                 obj->write_domain = obj->pending_write_domain;
3933                 if (obj->write_domain)
3934                         list_move_tail(&obj_priv->gpu_write_list,
3935                                        &dev_priv->mm.gpu_write_list);
3936                 else
3937                         list_del_init(&obj_priv->gpu_write_list);
3938
3939                 trace_i915_gem_object_change_domain(obj,
3940                                                     obj->read_domains,
3941                                                     old_write_domain);
3942         }
3943
3944         i915_verify_inactive(dev, __FILE__, __LINE__);
3945
3946 #if WATCH_COHERENCY
3947         for (i = 0; i < args->buffer_count; i++) {
3948                 i915_gem_object_check_coherency(object_list[i],
3949                                                 exec_list[i].handle);
3950         }
3951 #endif
3952
3953 #if WATCH_EXEC
3954         i915_gem_dump_object(batch_obj,
3955                               args->batch_len,
3956                               __func__,
3957                               ~0);
3958 #endif
3959
3960         /* Exec the batchbuffer */
3961         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3962         if (ret) {
3963                 DRM_ERROR("dispatch failed %d\n", ret);
3964                 goto err;
3965         }
3966
3967         /*
3968          * Ensure that the commands in the batch buffer are
3969          * finished before the interrupt fires
3970          */
3971         flush_domains = i915_retire_commands(dev);
3972
3973         i915_verify_inactive(dev, __FILE__, __LINE__);
3974
3975         /*
3976          * Get a seqno representing the execution of the current buffer,
3977          * which we can wait on.  We would like to mitigate these interrupts,
3978          * likely by only creating seqnos occasionally (so that we have
3979          * *some* interrupts representing completion of buffers that we can
3980          * wait on when trying to clear up gtt space).
3981          */
3982         seqno = i915_add_request(dev, file_priv, flush_domains);
3983         BUG_ON(seqno == 0);
3984         for (i = 0; i < args->buffer_count; i++) {
3985                 struct drm_gem_object *obj = object_list[i];
3986
3987                 i915_gem_object_move_to_active(obj, seqno);
3988 #if WATCH_LRU
3989                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3990 #endif
3991         }
3992 #if WATCH_LRU
3993         i915_dump_lru(dev, __func__);
3994 #endif
3995
3996         i915_verify_inactive(dev, __FILE__, __LINE__);
3997
3998 err:
3999         for (i = 0; i < pinned; i++)
4000                 i915_gem_object_unpin(object_list[i]);
4001
4002         for (i = 0; i < args->buffer_count; i++) {
4003                 if (object_list[i]) {
4004                         obj_priv = object_list[i]->driver_private;
4005                         obj_priv->in_execbuffer = false;
4006                 }
4007                 drm_gem_object_unreference(object_list[i]);
4008         }
4009
4010         mutex_unlock(&dev->struct_mutex);
4011
4012 pre_mutex_err:
4013         /* Copy the updated relocations out regardless of current error
4014          * state.  Failure to update the relocs would mean that the next
4015          * time userland calls execbuf, it would do so with presumed offset
4016          * state that didn't match the actual object state.
4017          */
4018         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4019                                            relocs);
4020         if (ret2 != 0) {
4021                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4022
4023                 if (ret == 0)
4024                         ret = ret2;
4025         }
4026
4027         drm_free_large(object_list);
4028         kfree(cliprects);
4029
4030         return ret;
4031 }
4032
4033 /*
4034  * Legacy execbuffer just creates an exec2 list from the original exec object
4035  * list array and passes it to the real function.
4036  */
4037 int
4038 i915_gem_execbuffer(struct drm_device *dev, void *data,
4039                     struct drm_file *file_priv)
4040 {
4041         struct drm_i915_gem_execbuffer *args = data;
4042         struct drm_i915_gem_execbuffer2 exec2;
4043         struct drm_i915_gem_exec_object *exec_list = NULL;
4044         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4045         int ret, i;
4046
4047 #if WATCH_EXEC
4048         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4049                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4050 #endif
4051
4052         if (args->buffer_count < 1) {
4053                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4054                 return -EINVAL;
4055         }
4056
4057         /* Copy in the exec list from userland */
4058         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4059         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4060         if (exec_list == NULL || exec2_list == NULL) {
4061                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4062                           args->buffer_count);
4063                 drm_free_large(exec_list);
4064                 drm_free_large(exec2_list);
4065                 return -ENOMEM;
4066         }
4067         ret = copy_from_user(exec_list,
4068                              (struct drm_i915_relocation_entry __user *)
4069                              (uintptr_t) args->buffers_ptr,
4070                              sizeof(*exec_list) * args->buffer_count);
4071         if (ret != 0) {
4072                 DRM_ERROR("copy %d exec entries failed %d\n",
4073                           args->buffer_count, ret);
4074                 drm_free_large(exec_list);
4075                 drm_free_large(exec2_list);
4076                 return -EFAULT;
4077         }
4078
4079         for (i = 0; i < args->buffer_count; i++) {
4080                 exec2_list[i].handle = exec_list[i].handle;
4081                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4082                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4083                 exec2_list[i].alignment = exec_list[i].alignment;
4084                 exec2_list[i].offset = exec_list[i].offset;
4085                 if (!IS_I965G(dev))
4086                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4087                 else
4088                         exec2_list[i].flags = 0;
4089         }
4090
4091         exec2.buffers_ptr = args->buffers_ptr;
4092         exec2.buffer_count = args->buffer_count;
4093         exec2.batch_start_offset = args->batch_start_offset;
4094         exec2.batch_len = args->batch_len;
4095         exec2.DR1 = args->DR1;
4096         exec2.DR4 = args->DR4;
4097         exec2.num_cliprects = args->num_cliprects;
4098         exec2.cliprects_ptr = args->cliprects_ptr;
4099         exec2.flags = 0;
4100
4101         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4102         if (!ret) {
4103                 /* Copy the new buffer offsets back to the user's exec list. */
4104                 for (i = 0; i < args->buffer_count; i++)
4105                         exec_list[i].offset = exec2_list[i].offset;
4106                 /* ... and back out to userspace */
4107                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4108                                    (uintptr_t) args->buffers_ptr,
4109                                    exec_list,
4110                                    sizeof(*exec_list) * args->buffer_count);
4111                 if (ret) {
4112                         ret = -EFAULT;
4113                         DRM_ERROR("failed to copy %d exec entries "
4114                                   "back to user (%d)\n",
4115                                   args->buffer_count, ret);
4116                 }
4117         }
4118
4119         drm_free_large(exec_list);
4120         drm_free_large(exec2_list);
4121         return ret;
4122 }
4123
4124 int
4125 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4126                      struct drm_file *file_priv)
4127 {
4128         struct drm_i915_gem_execbuffer2 *args = data;
4129         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4130         int ret;
4131
4132 #if WATCH_EXEC
4133         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4134                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4135 #endif
4136
4137         if (args->buffer_count < 1) {
4138                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4139                 return -EINVAL;
4140         }
4141
4142         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4143         if (exec2_list == NULL) {
4144                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4145                           args->buffer_count);
4146                 return -ENOMEM;
4147         }
4148         ret = copy_from_user(exec2_list,
4149                              (struct drm_i915_relocation_entry __user *)
4150                              (uintptr_t) args->buffers_ptr,
4151                              sizeof(*exec2_list) * args->buffer_count);
4152         if (ret != 0) {
4153                 DRM_ERROR("copy %d exec entries failed %d\n",
4154                           args->buffer_count, ret);
4155                 drm_free_large(exec2_list);
4156                 return -EFAULT;
4157         }
4158
4159         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4160         if (!ret) {
4161                 /* Copy the new buffer offsets back to the user's exec list. */
4162                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4163                                    (uintptr_t) args->buffers_ptr,
4164                                    exec2_list,
4165                                    sizeof(*exec2_list) * args->buffer_count);
4166                 if (ret) {
4167                         ret = -EFAULT;
4168                         DRM_ERROR("failed to copy %d exec entries "
4169                                   "back to user (%d)\n",
4170                                   args->buffer_count, ret);
4171                 }
4172         }
4173
4174         drm_free_large(exec2_list);
4175         return ret;
4176 }
4177
4178 int
4179 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4180 {
4181         struct drm_device *dev = obj->dev;
4182         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4183         int ret;
4184
4185         i915_verify_inactive(dev, __FILE__, __LINE__);
4186         if (obj_priv->gtt_space == NULL) {
4187                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4188                 if (ret)
4189                         return ret;
4190         }
4191
4192         obj_priv->pin_count++;
4193
4194         /* If the object is not active and not pending a flush,
4195          * remove it from the inactive list
4196          */
4197         if (obj_priv->pin_count == 1) {
4198                 atomic_inc(&dev->pin_count);
4199                 atomic_add(obj->size, &dev->pin_memory);
4200                 if (!obj_priv->active &&
4201                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4202                     !list_empty(&obj_priv->list))
4203                         list_del_init(&obj_priv->list);
4204         }
4205         i915_verify_inactive(dev, __FILE__, __LINE__);
4206
4207         return 0;
4208 }
4209
4210 void
4211 i915_gem_object_unpin(struct drm_gem_object *obj)
4212 {
4213         struct drm_device *dev = obj->dev;
4214         drm_i915_private_t *dev_priv = dev->dev_private;
4215         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4216
4217         i915_verify_inactive(dev, __FILE__, __LINE__);
4218         obj_priv->pin_count--;
4219         BUG_ON(obj_priv->pin_count < 0);
4220         BUG_ON(obj_priv->gtt_space == NULL);
4221
4222         /* If the object is no longer pinned, and is
4223          * neither active nor being flushed, then stick it on
4224          * the inactive list
4225          */
4226         if (obj_priv->pin_count == 0) {
4227                 if (!obj_priv->active &&
4228                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4229                         list_move_tail(&obj_priv->list,
4230                                        &dev_priv->mm.inactive_list);
4231                 atomic_dec(&dev->pin_count);
4232                 atomic_sub(obj->size, &dev->pin_memory);
4233         }
4234         i915_verify_inactive(dev, __FILE__, __LINE__);
4235 }
4236
4237 int
4238 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4239                    struct drm_file *file_priv)
4240 {
4241         struct drm_i915_gem_pin *args = data;
4242         struct drm_gem_object *obj;
4243         struct drm_i915_gem_object *obj_priv;
4244         int ret;
4245
4246         mutex_lock(&dev->struct_mutex);
4247
4248         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4249         if (obj == NULL) {
4250                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4251                           args->handle);
4252                 mutex_unlock(&dev->struct_mutex);
4253                 return -EBADF;
4254         }
4255         obj_priv = obj->driver_private;
4256
4257         if (obj_priv->madv != I915_MADV_WILLNEED) {
4258                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4259                 drm_gem_object_unreference(obj);
4260                 mutex_unlock(&dev->struct_mutex);
4261                 return -EINVAL;
4262         }
4263
4264         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4265                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4266                           args->handle);
4267                 drm_gem_object_unreference(obj);
4268                 mutex_unlock(&dev->struct_mutex);
4269                 return -EINVAL;
4270         }
4271
4272         obj_priv->user_pin_count++;
4273         obj_priv->pin_filp = file_priv;
4274         if (obj_priv->user_pin_count == 1) {
4275                 ret = i915_gem_object_pin(obj, args->alignment);
4276                 if (ret != 0) {
4277                         drm_gem_object_unreference(obj);
4278                         mutex_unlock(&dev->struct_mutex);
4279                         return ret;
4280                 }
4281         }
4282
4283         /* XXX - flush the CPU caches for pinned objects
4284          * as the X server doesn't manage domains yet
4285          */
4286         i915_gem_object_flush_cpu_write_domain(obj);
4287         args->offset = obj_priv->gtt_offset;
4288         drm_gem_object_unreference(obj);
4289         mutex_unlock(&dev->struct_mutex);
4290
4291         return 0;
4292 }
4293
4294 int
4295 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4296                      struct drm_file *file_priv)
4297 {
4298         struct drm_i915_gem_pin *args = data;
4299         struct drm_gem_object *obj;
4300         struct drm_i915_gem_object *obj_priv;
4301
4302         mutex_lock(&dev->struct_mutex);
4303
4304         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4305         if (obj == NULL) {
4306                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4307                           args->handle);
4308                 mutex_unlock(&dev->struct_mutex);
4309                 return -EBADF;
4310         }
4311
4312         obj_priv = obj->driver_private;
4313         if (obj_priv->pin_filp != file_priv) {
4314                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4315                           args->handle);
4316                 drm_gem_object_unreference(obj);
4317                 mutex_unlock(&dev->struct_mutex);
4318                 return -EINVAL;
4319         }
4320         obj_priv->user_pin_count--;
4321         if (obj_priv->user_pin_count == 0) {
4322                 obj_priv->pin_filp = NULL;
4323                 i915_gem_object_unpin(obj);
4324         }
4325
4326         drm_gem_object_unreference(obj);
4327         mutex_unlock(&dev->struct_mutex);
4328         return 0;
4329 }
4330
4331 int
4332 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333                     struct drm_file *file_priv)
4334 {
4335         struct drm_i915_gem_busy *args = data;
4336         struct drm_gem_object *obj;
4337         struct drm_i915_gem_object *obj_priv;
4338
4339         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4340         if (obj == NULL) {
4341                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4342                           args->handle);
4343                 return -EBADF;
4344         }
4345
4346         mutex_lock(&dev->struct_mutex);
4347         /* Update the active list for the hardware's current position.
4348          * Otherwise this only updates on a delayed timer or when irqs are
4349          * actually unmasked, and our working set ends up being larger than
4350          * required.
4351          */
4352         i915_gem_retire_requests(dev);
4353
4354         obj_priv = obj->driver_private;
4355         /* Don't count being on the flushing list against the object being
4356          * done.  Otherwise, a buffer left on the flushing list but not getting
4357          * flushed (because nobody's flushing that domain) won't ever return
4358          * unbusy and get reused by libdrm's bo cache.  The other expected
4359          * consumer of this interface, OpenGL's occlusion queries, also specs
4360          * that the objects get unbusy "eventually" without any interference.
4361          */
4362         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4363
4364         drm_gem_object_unreference(obj);
4365         mutex_unlock(&dev->struct_mutex);
4366         return 0;
4367 }
4368
4369 int
4370 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4371                         struct drm_file *file_priv)
4372 {
4373     return i915_gem_ring_throttle(dev, file_priv);
4374 }
4375
4376 int
4377 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4378                        struct drm_file *file_priv)
4379 {
4380         struct drm_i915_gem_madvise *args = data;
4381         struct drm_gem_object *obj;
4382         struct drm_i915_gem_object *obj_priv;
4383
4384         switch (args->madv) {
4385         case I915_MADV_DONTNEED:
4386         case I915_MADV_WILLNEED:
4387             break;
4388         default:
4389             return -EINVAL;
4390         }
4391
4392         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4393         if (obj == NULL) {
4394                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4395                           args->handle);
4396                 return -EBADF;
4397         }
4398
4399         mutex_lock(&dev->struct_mutex);
4400         obj_priv = obj->driver_private;
4401
4402         if (obj_priv->pin_count) {
4403                 drm_gem_object_unreference(obj);
4404                 mutex_unlock(&dev->struct_mutex);
4405
4406                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4407                 return -EINVAL;
4408         }
4409
4410         if (obj_priv->madv != __I915_MADV_PURGED)
4411                 obj_priv->madv = args->madv;
4412
4413         /* if the object is no longer bound, discard its backing storage */
4414         if (i915_gem_object_is_purgeable(obj_priv) &&
4415             obj_priv->gtt_space == NULL)
4416                 i915_gem_object_truncate(obj);
4417
4418         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4419
4420         drm_gem_object_unreference(obj);
4421         mutex_unlock(&dev->struct_mutex);
4422
4423         return 0;
4424 }
4425
4426 int i915_gem_init_object(struct drm_gem_object *obj)
4427 {
4428         struct drm_i915_gem_object *obj_priv;
4429
4430         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4431         if (obj_priv == NULL)
4432                 return -ENOMEM;
4433
4434         /*
4435          * We've just allocated pages from the kernel,
4436          * so they've just been written by the CPU with
4437          * zeros. They'll need to be clflushed before we
4438          * use them with the GPU.
4439          */
4440         obj->write_domain = I915_GEM_DOMAIN_CPU;
4441         obj->read_domains = I915_GEM_DOMAIN_CPU;
4442
4443         obj_priv->agp_type = AGP_USER_MEMORY;
4444
4445         obj->driver_private = obj_priv;
4446         obj_priv->obj = obj;
4447         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4448         INIT_LIST_HEAD(&obj_priv->list);
4449         INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4450         INIT_LIST_HEAD(&obj_priv->fence_list);
4451         obj_priv->madv = I915_MADV_WILLNEED;
4452
4453         trace_i915_gem_object_create(obj);
4454
4455         return 0;
4456 }
4457
4458 void i915_gem_free_object(struct drm_gem_object *obj)
4459 {
4460         struct drm_device *dev = obj->dev;
4461         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4462
4463         trace_i915_gem_object_destroy(obj);
4464
4465         while (obj_priv->pin_count > 0)
4466                 i915_gem_object_unpin(obj);
4467
4468         if (obj_priv->phys_obj)
4469                 i915_gem_detach_phys_object(dev, obj);
4470
4471         i915_gem_object_unbind(obj);
4472
4473         if (obj_priv->mmap_offset)
4474                 i915_gem_free_mmap_offset(obj);
4475
4476         kfree(obj_priv->page_cpu_valid);
4477         kfree(obj_priv->bit_17);
4478         kfree(obj->driver_private);
4479 }
4480
4481 /** Unbinds all inactive objects. */
4482 static int
4483 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4484 {
4485         drm_i915_private_t *dev_priv = dev->dev_private;
4486
4487         while (!list_empty(&dev_priv->mm.inactive_list)) {
4488                 struct drm_gem_object *obj;
4489                 int ret;
4490
4491                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4492                                        struct drm_i915_gem_object,
4493                                        list)->obj;
4494
4495                 ret = i915_gem_object_unbind(obj);
4496                 if (ret != 0) {
4497                         DRM_ERROR("Error unbinding object: %d\n", ret);
4498                         return ret;
4499                 }
4500         }
4501
4502         return 0;
4503 }
4504
4505 int
4506 i915_gem_idle(struct drm_device *dev)
4507 {
4508         drm_i915_private_t *dev_priv = dev->dev_private;
4509         uint32_t seqno, cur_seqno, last_seqno;
4510         int stuck, ret;
4511
4512         mutex_lock(&dev->struct_mutex);
4513
4514         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4515                 mutex_unlock(&dev->struct_mutex);
4516                 return 0;
4517         }
4518
4519         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4520          * We need to replace this with a semaphore, or something.
4521          */
4522         dev_priv->mm.suspended = 1;
4523         del_timer(&dev_priv->hangcheck_timer);
4524
4525         /* Cancel the retire work handler, wait for it to finish if running
4526          */
4527         mutex_unlock(&dev->struct_mutex);
4528         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4529         mutex_lock(&dev->struct_mutex);
4530
4531         i915_kernel_lost_context(dev);
4532
4533         /* Flush the GPU along with all non-CPU write domains
4534          */
4535         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4536         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4537
4538         if (seqno == 0) {
4539                 mutex_unlock(&dev->struct_mutex);
4540                 return -ENOMEM;
4541         }
4542
4543         dev_priv->mm.waiting_gem_seqno = seqno;
4544         last_seqno = 0;
4545         stuck = 0;
4546         for (;;) {
4547                 cur_seqno = i915_get_gem_seqno(dev);
4548                 if (i915_seqno_passed(cur_seqno, seqno))
4549                         break;
4550                 if (last_seqno == cur_seqno) {
4551                         if (stuck++ > 100) {
4552                                 DRM_ERROR("hardware wedged\n");
4553                                 atomic_set(&dev_priv->mm.wedged, 1);
4554                                 DRM_WAKEUP(&dev_priv->irq_queue);
4555                                 break;
4556                         }
4557                 }
4558                 msleep(10);
4559                 last_seqno = cur_seqno;
4560         }
4561         dev_priv->mm.waiting_gem_seqno = 0;
4562
4563         i915_gem_retire_requests(dev);
4564
4565         spin_lock(&dev_priv->mm.active_list_lock);
4566         if (!atomic_read(&dev_priv->mm.wedged)) {
4567                 /* Active and flushing should now be empty as we've
4568                  * waited for a sequence higher than any pending execbuffer
4569                  */
4570                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4571                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4572                 /* Request should now be empty as we've also waited
4573                  * for the last request in the list
4574                  */
4575                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4576         }
4577
4578         /* Empty the active and flushing lists to inactive.  If there's
4579          * anything left at this point, it means that we're wedged and
4580          * nothing good's going to happen by leaving them there.  So strip
4581          * the GPU domains and just stuff them onto inactive.
4582          */
4583         while (!list_empty(&dev_priv->mm.active_list)) {
4584                 struct drm_gem_object *obj;
4585                 uint32_t old_write_domain;
4586
4587                 obj = list_first_entry(&dev_priv->mm.active_list,
4588                                        struct drm_i915_gem_object,
4589                                        list)->obj;
4590                 old_write_domain = obj->write_domain;
4591                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4592                 i915_gem_object_move_to_inactive(obj);
4593
4594                 trace_i915_gem_object_change_domain(obj,
4595                                                     obj->read_domains,
4596                                                     old_write_domain);
4597         }
4598         spin_unlock(&dev_priv->mm.active_list_lock);
4599
4600         while (!list_empty(&dev_priv->mm.flushing_list)) {
4601                 struct drm_gem_object *obj;
4602                 uint32_t old_write_domain;
4603
4604                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4605                                        struct drm_i915_gem_object,
4606                                        list)->obj;
4607                 old_write_domain = obj->write_domain;
4608                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4609                 i915_gem_object_move_to_inactive(obj);
4610
4611                 trace_i915_gem_object_change_domain(obj,
4612                                                     obj->read_domains,
4613                                                     old_write_domain);
4614         }
4615
4616
4617         /* Move all inactive buffers out of the GTT. */
4618         ret = i915_gem_evict_from_inactive_list(dev);
4619         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4620         if (ret) {
4621                 mutex_unlock(&dev->struct_mutex);
4622                 return ret;
4623         }
4624
4625         i915_gem_cleanup_ringbuffer(dev);
4626         mutex_unlock(&dev->struct_mutex);
4627
4628         return 0;
4629 }
4630
4631 /*
4632  * 965+ support PIPE_CONTROL commands, which provide finer grained control
4633  * over cache flushing.
4634  */
4635 static int
4636 i915_gem_init_pipe_control(struct drm_device *dev)
4637 {
4638         drm_i915_private_t *dev_priv = dev->dev_private;
4639         struct drm_gem_object *obj;
4640         struct drm_i915_gem_object *obj_priv;
4641         int ret;
4642
4643         obj = drm_gem_object_alloc(dev, 4096);
4644         if (obj == NULL) {
4645                 DRM_ERROR("Failed to allocate seqno page\n");
4646                 ret = -ENOMEM;
4647                 goto err;
4648         }
4649         obj_priv = obj->driver_private;
4650         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4651
4652         ret = i915_gem_object_pin(obj, 4096);
4653         if (ret)
4654                 goto err_unref;
4655
4656         dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4657         dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
4658         if (dev_priv->seqno_page == NULL)
4659                 goto err_unpin;
4660
4661         dev_priv->seqno_obj = obj;
4662         memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4663
4664         return 0;
4665
4666 err_unpin:
4667         i915_gem_object_unpin(obj);
4668 err_unref:
4669         drm_gem_object_unreference(obj);
4670 err:
4671         return ret;
4672 }
4673
4674 static int
4675 i915_gem_init_hws(struct drm_device *dev)
4676 {
4677         drm_i915_private_t *dev_priv = dev->dev_private;
4678         struct drm_gem_object *obj;
4679         struct drm_i915_gem_object *obj_priv;
4680         int ret;
4681
4682         /* If we need a physical address for the status page, it's already
4683          * initialized at driver load time.
4684          */
4685         if (!I915_NEED_GFX_HWS(dev))
4686                 return 0;
4687
4688         obj = drm_gem_object_alloc(dev, 4096);
4689         if (obj == NULL) {
4690                 DRM_ERROR("Failed to allocate status page\n");
4691                 ret = -ENOMEM;
4692                 goto err;
4693         }
4694         obj_priv = obj->driver_private;
4695         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4696
4697         ret = i915_gem_object_pin(obj, 4096);
4698         if (ret != 0) {
4699                 drm_gem_object_unreference(obj);
4700                 goto err_unref;
4701         }
4702
4703         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4704
4705         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4706         if (dev_priv->hw_status_page == NULL) {
4707                 DRM_ERROR("Failed to map status page.\n");
4708                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4709                 ret = -EINVAL;
4710                 goto err_unpin;
4711         }
4712
4713         if (HAS_PIPE_CONTROL(dev)) {
4714                 ret = i915_gem_init_pipe_control(dev);
4715                 if (ret)
4716                         goto err_unpin;
4717         }
4718
4719         dev_priv->hws_obj = obj;
4720         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4721         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4722         I915_READ(HWS_PGA); /* posting read */
4723         DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4724
4725         return 0;
4726
4727 err_unpin:
4728         i915_gem_object_unpin(obj);
4729 err_unref:
4730         drm_gem_object_unreference(obj);
4731 err:
4732         return 0;
4733 }
4734
4735 static void
4736 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4737 {
4738         drm_i915_private_t *dev_priv = dev->dev_private;
4739         struct drm_gem_object *obj;
4740         struct drm_i915_gem_object *obj_priv;
4741
4742         obj = dev_priv->seqno_obj;
4743         obj_priv = obj->driver_private;
4744         kunmap(obj_priv->pages[0]);
4745         i915_gem_object_unpin(obj);
4746         drm_gem_object_unreference(obj);
4747         dev_priv->seqno_obj = NULL;
4748
4749         dev_priv->seqno_page = NULL;
4750 }
4751
4752 static void
4753 i915_gem_cleanup_hws(struct drm_device *dev)
4754 {
4755         drm_i915_private_t *dev_priv = dev->dev_private;
4756         struct drm_gem_object *obj;
4757         struct drm_i915_gem_object *obj_priv;
4758
4759         if (dev_priv->hws_obj == NULL)
4760                 return;
4761
4762         obj = dev_priv->hws_obj;
4763         obj_priv = obj->driver_private;
4764
4765         kunmap(obj_priv->pages[0]);
4766         i915_gem_object_unpin(obj);
4767         drm_gem_object_unreference(obj);
4768         dev_priv->hws_obj = NULL;
4769
4770         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4771         dev_priv->hw_status_page = NULL;
4772
4773         if (HAS_PIPE_CONTROL(dev))
4774                 i915_gem_cleanup_pipe_control(dev);
4775
4776         /* Write high address into HWS_PGA when disabling. */
4777         I915_WRITE(HWS_PGA, 0x1ffff000);
4778 }
4779
4780 int
4781 i915_gem_init_ringbuffer(struct drm_device *dev)
4782 {
4783         drm_i915_private_t *dev_priv = dev->dev_private;
4784         struct drm_gem_object *obj;
4785         struct drm_i915_gem_object *obj_priv;
4786         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4787         int ret;
4788         u32 head;
4789
4790         ret = i915_gem_init_hws(dev);
4791         if (ret != 0)
4792                 return ret;
4793
4794         obj = drm_gem_object_alloc(dev, 128 * 1024);
4795         if (obj == NULL) {
4796                 DRM_ERROR("Failed to allocate ringbuffer\n");
4797                 i915_gem_cleanup_hws(dev);
4798                 return -ENOMEM;
4799         }
4800         obj_priv = obj->driver_private;
4801
4802         ret = i915_gem_object_pin(obj, 4096);
4803         if (ret != 0) {
4804                 drm_gem_object_unreference(obj);
4805                 i915_gem_cleanup_hws(dev);
4806                 return ret;
4807         }
4808
4809         /* Set up the kernel mapping for the ring. */
4810         ring->Size = obj->size;
4811
4812         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4813         ring->map.size = obj->size;
4814         ring->map.type = 0;
4815         ring->map.flags = 0;
4816         ring->map.mtrr = 0;
4817
4818         drm_core_ioremap_wc(&ring->map, dev);
4819         if (ring->map.handle == NULL) {
4820                 DRM_ERROR("Failed to map ringbuffer.\n");
4821                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4822                 i915_gem_object_unpin(obj);
4823                 drm_gem_object_unreference(obj);
4824                 i915_gem_cleanup_hws(dev);
4825                 return -EINVAL;
4826         }
4827         ring->ring_obj = obj;
4828         ring->virtual_start = ring->map.handle;
4829
4830         /* Stop the ring if it's running. */
4831         I915_WRITE(PRB0_CTL, 0);
4832         I915_WRITE(PRB0_TAIL, 0);
4833         I915_WRITE(PRB0_HEAD, 0);
4834
4835         /* Initialize the ring. */
4836         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4837         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4838
4839         /* G45 ring initialization fails to reset head to zero */
4840         if (head != 0) {
4841                 DRM_ERROR("Ring head not reset to zero "
4842                           "ctl %08x head %08x tail %08x start %08x\n",
4843                           I915_READ(PRB0_CTL),
4844                           I915_READ(PRB0_HEAD),
4845                           I915_READ(PRB0_TAIL),
4846                           I915_READ(PRB0_START));
4847                 I915_WRITE(PRB0_HEAD, 0);
4848
4849                 DRM_ERROR("Ring head forced to zero "
4850                           "ctl %08x head %08x tail %08x start %08x\n",
4851                           I915_READ(PRB0_CTL),
4852                           I915_READ(PRB0_HEAD),
4853                           I915_READ(PRB0_TAIL),
4854                           I915_READ(PRB0_START));
4855         }
4856
4857         I915_WRITE(PRB0_CTL,
4858                    ((obj->size - 4096) & RING_NR_PAGES) |
4859                    RING_NO_REPORT |
4860                    RING_VALID);
4861
4862         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4863
4864         /* If the head is still not zero, the ring is dead */
4865         if (head != 0) {
4866                 DRM_ERROR("Ring initialization failed "
4867                           "ctl %08x head %08x tail %08x start %08x\n",
4868                           I915_READ(PRB0_CTL),
4869                           I915_READ(PRB0_HEAD),
4870                           I915_READ(PRB0_TAIL),
4871                           I915_READ(PRB0_START));
4872                 return -EIO;
4873         }
4874
4875         /* Update our cache of the ring state */
4876         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4877                 i915_kernel_lost_context(dev);
4878         else {
4879                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4880                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4881                 ring->space = ring->head - (ring->tail + 8);
4882                 if (ring->space < 0)
4883                         ring->space += ring->Size;
4884         }
4885
4886         return 0;
4887 }
4888
4889 void
4890 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4891 {
4892         drm_i915_private_t *dev_priv = dev->dev_private;
4893
4894         if (dev_priv->ring.ring_obj == NULL)
4895                 return;
4896
4897         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4898
4899         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4900         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4901         dev_priv->ring.ring_obj = NULL;
4902         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4903
4904         i915_gem_cleanup_hws(dev);
4905 }
4906
4907 int
4908 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4909                        struct drm_file *file_priv)
4910 {
4911         drm_i915_private_t *dev_priv = dev->dev_private;
4912         int ret;
4913
4914         if (drm_core_check_feature(dev, DRIVER_MODESET))
4915                 return 0;
4916
4917         if (atomic_read(&dev_priv->mm.wedged)) {
4918                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4919                 atomic_set(&dev_priv->mm.wedged, 0);
4920         }
4921
4922         mutex_lock(&dev->struct_mutex);
4923         dev_priv->mm.suspended = 0;
4924
4925         ret = i915_gem_init_ringbuffer(dev);
4926         if (ret != 0) {
4927                 mutex_unlock(&dev->struct_mutex);
4928                 return ret;
4929         }
4930
4931         spin_lock(&dev_priv->mm.active_list_lock);
4932         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4933         spin_unlock(&dev_priv->mm.active_list_lock);
4934
4935         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4936         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4937         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4938         mutex_unlock(&dev->struct_mutex);
4939
4940         drm_irq_install(dev);
4941
4942         return 0;
4943 }
4944
4945 int
4946 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4947                        struct drm_file *file_priv)
4948 {
4949         if (drm_core_check_feature(dev, DRIVER_MODESET))
4950                 return 0;
4951
4952         drm_irq_uninstall(dev);
4953         return i915_gem_idle(dev);
4954 }
4955
4956 void
4957 i915_gem_lastclose(struct drm_device *dev)
4958 {
4959         int ret;
4960
4961         if (drm_core_check_feature(dev, DRIVER_MODESET))
4962                 return;
4963
4964         ret = i915_gem_idle(dev);
4965         if (ret)
4966                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4967 }
4968
4969 void
4970 i915_gem_load(struct drm_device *dev)
4971 {
4972         int i;
4973         drm_i915_private_t *dev_priv = dev->dev_private;
4974
4975         spin_lock_init(&dev_priv->mm.active_list_lock);
4976         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4977         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4978         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4979         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4980         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4981         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4982         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4983                           i915_gem_retire_work_handler);
4984         dev_priv->mm.next_gem_seqno = 1;
4985
4986         spin_lock(&shrink_list_lock);
4987         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4988         spin_unlock(&shrink_list_lock);
4989
4990         /* Old X drivers will take 0-2 for front, back, depth buffers */
4991         dev_priv->fence_reg_start = 3;
4992
4993         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4994                 dev_priv->num_fence_regs = 16;
4995         else
4996                 dev_priv->num_fence_regs = 8;
4997
4998         /* Initialize fence registers to zero */
4999         if (IS_I965G(dev)) {
5000                 for (i = 0; i < 16; i++)
5001                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
5002         } else {
5003                 for (i = 0; i < 8; i++)
5004                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
5005                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5006                         for (i = 0; i < 8; i++)
5007                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
5008         }
5009         i915_gem_detect_bit_6_swizzle(dev);
5010         init_waitqueue_head(&dev_priv->pending_flip_queue);
5011 }
5012
5013 /*
5014  * Create a physically contiguous memory object for this object
5015  * e.g. for cursor + overlay regs
5016  */
5017 int i915_gem_init_phys_object(struct drm_device *dev,
5018                               int id, int size)
5019 {
5020         drm_i915_private_t *dev_priv = dev->dev_private;
5021         struct drm_i915_gem_phys_object *phys_obj;
5022         int ret;
5023
5024         if (dev_priv->mm.phys_objs[id - 1] || !size)
5025                 return 0;
5026
5027         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
5028         if (!phys_obj)
5029                 return -ENOMEM;
5030
5031         phys_obj->id = id;
5032
5033         phys_obj->handle = drm_pci_alloc(dev, size, 0);
5034         if (!phys_obj->handle) {
5035                 ret = -ENOMEM;
5036                 goto kfree_obj;
5037         }
5038 #ifdef CONFIG_X86
5039         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5040 #endif
5041
5042         dev_priv->mm.phys_objs[id - 1] = phys_obj;
5043
5044         return 0;
5045 kfree_obj:
5046         kfree(phys_obj);
5047         return ret;
5048 }
5049
5050 void i915_gem_free_phys_object(struct drm_device *dev, int id)
5051 {
5052         drm_i915_private_t *dev_priv = dev->dev_private;
5053         struct drm_i915_gem_phys_object *phys_obj;
5054
5055         if (!dev_priv->mm.phys_objs[id - 1])
5056                 return;
5057
5058         phys_obj = dev_priv->mm.phys_objs[id - 1];
5059         if (phys_obj->cur_obj) {
5060                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
5061         }
5062
5063 #ifdef CONFIG_X86
5064         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5065 #endif
5066         drm_pci_free(dev, phys_obj->handle);
5067         kfree(phys_obj);
5068         dev_priv->mm.phys_objs[id - 1] = NULL;
5069 }
5070
5071 void i915_gem_free_all_phys_object(struct drm_device *dev)
5072 {
5073         int i;
5074
5075         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
5076                 i915_gem_free_phys_object(dev, i);
5077 }
5078
5079 void i915_gem_detach_phys_object(struct drm_device *dev,
5080                                  struct drm_gem_object *obj)
5081 {
5082         struct drm_i915_gem_object *obj_priv;
5083         int i;
5084         int ret;
5085         int page_count;
5086
5087         obj_priv = obj->driver_private;
5088         if (!obj_priv->phys_obj)
5089                 return;
5090
5091         ret = i915_gem_object_get_pages(obj, 0);
5092         if (ret)
5093                 goto out;
5094
5095         page_count = obj->size / PAGE_SIZE;
5096
5097         for (i = 0; i < page_count; i++) {
5098                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
5099                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5100
5101                 memcpy(dst, src, PAGE_SIZE);
5102                 kunmap_atomic(dst, KM_USER0);
5103         }
5104         drm_clflush_pages(obj_priv->pages, page_count);
5105         drm_agp_chipset_flush(dev);
5106
5107         i915_gem_object_put_pages(obj);
5108 out:
5109         obj_priv->phys_obj->cur_obj = NULL;
5110         obj_priv->phys_obj = NULL;
5111 }
5112
5113 int
5114 i915_gem_attach_phys_object(struct drm_device *dev,
5115                             struct drm_gem_object *obj, int id)
5116 {
5117         drm_i915_private_t *dev_priv = dev->dev_private;
5118         struct drm_i915_gem_object *obj_priv;
5119         int ret = 0;
5120         int page_count;
5121         int i;
5122
5123         if (id > I915_MAX_PHYS_OBJECT)
5124                 return -EINVAL;
5125
5126         obj_priv = obj->driver_private;
5127
5128         if (obj_priv->phys_obj) {
5129                 if (obj_priv->phys_obj->id == id)
5130                         return 0;
5131                 i915_gem_detach_phys_object(dev, obj);
5132         }
5133
5134
5135         /* create a new object */
5136         if (!dev_priv->mm.phys_objs[id - 1]) {
5137                 ret = i915_gem_init_phys_object(dev, id,
5138                                                 obj->size);
5139                 if (ret) {
5140                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
5141                         goto out;
5142                 }
5143         }
5144
5145         /* bind to the object */
5146         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5147         obj_priv->phys_obj->cur_obj = obj;
5148
5149         ret = i915_gem_object_get_pages(obj, 0);
5150         if (ret) {
5151                 DRM_ERROR("failed to get page list\n");
5152                 goto out;
5153         }
5154
5155         page_count = obj->size / PAGE_SIZE;
5156
5157         for (i = 0; i < page_count; i++) {
5158                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5159                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5160
5161                 memcpy(dst, src, PAGE_SIZE);
5162                 kunmap_atomic(src, KM_USER0);
5163         }
5164
5165         i915_gem_object_put_pages(obj);
5166
5167         return 0;
5168 out:
5169         return ret;
5170 }
5171
5172 static int
5173 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5174                      struct drm_i915_gem_pwrite *args,
5175                      struct drm_file *file_priv)
5176 {
5177         struct drm_i915_gem_object *obj_priv = obj->driver_private;
5178         void *obj_addr;
5179         int ret;
5180         char __user *user_data;
5181
5182         user_data = (char __user *) (uintptr_t) args->data_ptr;
5183         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5184
5185         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5186         ret = copy_from_user(obj_addr, user_data, args->size);
5187         if (ret)
5188                 return -EFAULT;
5189
5190         drm_agp_chipset_flush(dev);
5191         return 0;
5192 }
5193
5194 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5195 {
5196         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5197
5198         /* Clean up our request list when the client is going away, so that
5199          * later retire_requests won't dereference our soon-to-be-gone
5200          * file_priv.
5201          */
5202         mutex_lock(&dev->struct_mutex);
5203         while (!list_empty(&i915_file_priv->mm.request_list))
5204                 list_del_init(i915_file_priv->mm.request_list.next);
5205         mutex_unlock(&dev->struct_mutex);
5206 }
5207
5208 static int
5209 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5210 {
5211         drm_i915_private_t *dev_priv, *next_dev;
5212         struct drm_i915_gem_object *obj_priv, *next_obj;
5213         int cnt = 0;
5214         int would_deadlock = 1;
5215
5216         /* "fast-path" to count number of available objects */
5217         if (nr_to_scan == 0) {
5218                 spin_lock(&shrink_list_lock);
5219                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5220                         struct drm_device *dev = dev_priv->dev;
5221
5222                         if (mutex_trylock(&dev->struct_mutex)) {
5223                                 list_for_each_entry(obj_priv,
5224                                                     &dev_priv->mm.inactive_list,
5225                                                     list)
5226                                         cnt++;
5227                                 mutex_unlock(&dev->struct_mutex);
5228                         }
5229                 }
5230                 spin_unlock(&shrink_list_lock);
5231
5232                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5233         }
5234
5235         spin_lock(&shrink_list_lock);
5236
5237         /* first scan for clean buffers */
5238         list_for_each_entry_safe(dev_priv, next_dev,
5239                                  &shrink_list, mm.shrink_list) {
5240                 struct drm_device *dev = dev_priv->dev;
5241
5242                 if (! mutex_trylock(&dev->struct_mutex))
5243                         continue;
5244
5245                 spin_unlock(&shrink_list_lock);
5246
5247                 i915_gem_retire_requests(dev);
5248
5249                 list_for_each_entry_safe(obj_priv, next_obj,
5250                                          &dev_priv->mm.inactive_list,
5251                                          list) {
5252                         if (i915_gem_object_is_purgeable(obj_priv)) {
5253                                 i915_gem_object_unbind(obj_priv->obj);
5254                                 if (--nr_to_scan <= 0)
5255                                         break;
5256                         }
5257                 }
5258
5259                 spin_lock(&shrink_list_lock);
5260                 mutex_unlock(&dev->struct_mutex);
5261
5262                 would_deadlock = 0;
5263
5264                 if (nr_to_scan <= 0)
5265                         break;
5266         }
5267
5268         /* second pass, evict/count anything still on the inactive list */
5269         list_for_each_entry_safe(dev_priv, next_dev,
5270                                  &shrink_list, mm.shrink_list) {
5271                 struct drm_device *dev = dev_priv->dev;
5272
5273                 if (! mutex_trylock(&dev->struct_mutex))
5274                         continue;
5275
5276                 spin_unlock(&shrink_list_lock);
5277
5278                 list_for_each_entry_safe(obj_priv, next_obj,
5279                                          &dev_priv->mm.inactive_list,
5280                                          list) {
5281                         if (nr_to_scan > 0) {
5282                                 i915_gem_object_unbind(obj_priv->obj);
5283                                 nr_to_scan--;
5284                         } else
5285                                 cnt++;
5286                 }
5287
5288                 spin_lock(&shrink_list_lock);
5289                 mutex_unlock(&dev->struct_mutex);
5290
5291                 would_deadlock = 0;
5292         }
5293
5294         spin_unlock(&shrink_list_lock);
5295
5296         if (would_deadlock)
5297                 return -1;
5298         else if (cnt > 0)
5299                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5300         else
5301                 return 0;
5302 }
5303
5304 static struct shrinker shrinker = {
5305         .shrink = i915_gem_shrink,
5306         .seeks = DEFAULT_SEEKS,
5307 };
5308
5309 __init void
5310 i915_gem_shrinker_init(void)
5311 {
5312     register_shrinker(&shrinker);
5313 }
5314
5315 __exit void
5316 i915_gem_shrinker_exit(void)
5317 {
5318     unregister_shrinker(&shrinker);
5319 }