]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
26eba87ca35c86a1b02e403f57ca7c0d131f7e98
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *ring)
1145 {
1146         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151         unsigned long timeout;
1152
1153         if (i915_gem_request_get_ring(req)->irq_refcount)
1154                 return -EBUSY;
1155
1156         timeout = jiffies + 1;
1157         while (!need_resched()) {
1158                 if (i915_gem_request_completed(req, true))
1159                         return 0;
1160
1161                 if (time_after_eq(jiffies, timeout))
1162                         break;
1163
1164                 cpu_relax_lowlatency();
1165         }
1166         if (i915_gem_request_completed(req, false))
1167                 return 0;
1168
1169         return -EAGAIN;
1170 }
1171
1172 /**
1173  * __i915_wait_request - wait until execution of request has finished
1174  * @req: duh!
1175  * @reset_counter: reset sequence associated with the given request
1176  * @interruptible: do an interruptible wait (normally yes)
1177  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178  *
1179  * Note: It is of utmost importance that the passed in seqno and reset_counter
1180  * values have been read by the caller in an smp safe manner. Where read-side
1181  * locks are involved, it is sufficient to read the reset_counter before
1182  * unlocking the lock that protects the seqno. For lockless tricks, the
1183  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184  * inserted.
1185  *
1186  * Returns 0 if the request was found within the alloted time. Else returns the
1187  * errno with remaining time filled in timeout argument.
1188  */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190                         unsigned reset_counter,
1191                         bool interruptible,
1192                         s64 *timeout,
1193                         struct intel_rps_client *rps)
1194 {
1195         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196         struct drm_device *dev = ring->dev;
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         const bool irq_test_in_progress =
1199                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200         DEFINE_WAIT(wait);
1201         unsigned long timeout_expire;
1202         s64 before, now;
1203         int ret;
1204
1205         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206
1207         if (list_empty(&req->list))
1208                 return 0;
1209
1210         if (i915_gem_request_completed(req, true))
1211                 return 0;
1212
1213         timeout_expire = timeout ?
1214                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1215
1216         if (INTEL_INFO(dev_priv)->gen >= 6)
1217                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1218
1219         /* Record current time in case interrupted by signal, or wedged */
1220         trace_i915_gem_request_wait_begin(req);
1221         before = ktime_get_raw_ns();
1222
1223         /* Optimistic spin for the next jiffie before touching IRQs */
1224         ret = __i915_spin_request(req);
1225         if (ret == 0)
1226                 goto out;
1227
1228         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229                 ret = -ENODEV;
1230                 goto out;
1231         }
1232
1233         for (;;) {
1234                 struct timer_list timer;
1235
1236                 prepare_to_wait(&ring->irq_queue, &wait,
1237                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1238
1239                 /* We need to check whether any gpu reset happened in between
1240                  * the caller grabbing the seqno and now ... */
1241                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243                          * is truely gone. */
1244                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245                         if (ret == 0)
1246                                 ret = -EAGAIN;
1247                         break;
1248                 }
1249
1250                 if (i915_gem_request_completed(req, false)) {
1251                         ret = 0;
1252                         break;
1253                 }
1254
1255                 if (interruptible && signal_pending(current)) {
1256                         ret = -ERESTARTSYS;
1257                         break;
1258                 }
1259
1260                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1261                         ret = -ETIME;
1262                         break;
1263                 }
1264
1265                 timer.function = NULL;
1266                 if (timeout || missed_irq(dev_priv, ring)) {
1267                         unsigned long expire;
1268
1269                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1270                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1271                         mod_timer(&timer, expire);
1272                 }
1273
1274                 io_schedule();
1275
1276                 if (timer.function) {
1277                         del_singleshot_timer_sync(&timer);
1278                         destroy_timer_on_stack(&timer);
1279                 }
1280         }
1281         if (!irq_test_in_progress)
1282                 ring->irq_put(ring);
1283
1284         finish_wait(&ring->irq_queue, &wait);
1285
1286 out:
1287         now = ktime_get_raw_ns();
1288         trace_i915_gem_request_wait_end(req);
1289
1290         if (timeout) {
1291                 s64 tres = *timeout - (now - before);
1292
1293                 *timeout = tres < 0 ? 0 : tres;
1294
1295                 /*
1296                  * Apparently ktime isn't accurate enough and occasionally has a
1297                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298                  * things up to make the test happy. We allow up to 1 jiffy.
1299                  *
1300                  * This is a regrssion from the timespec->ktime conversion.
1301                  */
1302                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303                         *timeout = 0;
1304         }
1305
1306         return ret;
1307 }
1308
1309 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310                                    struct drm_file *file)
1311 {
1312         struct drm_i915_private *dev_private;
1313         struct drm_i915_file_private *file_priv;
1314
1315         WARN_ON(!req || !file || req->file_priv);
1316
1317         if (!req || !file)
1318                 return -EINVAL;
1319
1320         if (req->file_priv)
1321                 return -EINVAL;
1322
1323         dev_private = req->ring->dev->dev_private;
1324         file_priv = file->driver_priv;
1325
1326         spin_lock(&file_priv->mm.lock);
1327         req->file_priv = file_priv;
1328         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329         spin_unlock(&file_priv->mm.lock);
1330
1331         req->pid = get_pid(task_pid(current));
1332
1333         return 0;
1334 }
1335
1336 static inline void
1337 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338 {
1339         struct drm_i915_file_private *file_priv = request->file_priv;
1340
1341         if (!file_priv)
1342                 return;
1343
1344         spin_lock(&file_priv->mm.lock);
1345         list_del(&request->client_list);
1346         request->file_priv = NULL;
1347         spin_unlock(&file_priv->mm.lock);
1348
1349         put_pid(request->pid);
1350         request->pid = NULL;
1351 }
1352
1353 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354 {
1355         trace_i915_gem_request_retire(request);
1356
1357         /* We know the GPU must have read the request to have
1358          * sent us the seqno + interrupt, so use the position
1359          * of tail of the request to update the last known position
1360          * of the GPU head.
1361          *
1362          * Note this requires that we are always called in request
1363          * completion order.
1364          */
1365         request->ringbuf->last_retired_head = request->postfix;
1366
1367         list_del_init(&request->list);
1368         i915_gem_request_remove_from_client(request);
1369
1370         i915_gem_request_unreference(request);
1371 }
1372
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376         struct intel_engine_cs *engine = req->ring;
1377         struct drm_i915_gem_request *tmp;
1378
1379         lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381         if (list_empty(&req->list))
1382                 return;
1383
1384         do {
1385                 tmp = list_first_entry(&engine->request_list,
1386                                        typeof(*tmp), list);
1387
1388                 i915_gem_request_retire(tmp);
1389         } while (tmp != req);
1390
1391         WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393
1394 /**
1395  * Waits for a request to be signaled, and cleans up the
1396  * request and object lists appropriately for that event.
1397  */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401         struct drm_device *dev;
1402         struct drm_i915_private *dev_priv;
1403         bool interruptible;
1404         int ret;
1405
1406         BUG_ON(req == NULL);
1407
1408         dev = req->ring->dev;
1409         dev_priv = dev->dev_private;
1410         interruptible = dev_priv->mm.interruptible;
1411
1412         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415         if (ret)
1416                 return ret;
1417
1418         ret = __i915_wait_request(req,
1419                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1420                                   interruptible, NULL, NULL);
1421         if (ret)
1422                 return ret;
1423
1424         __i915_gem_request_retire__upto(req);
1425         return 0;
1426 }
1427
1428 /**
1429  * Ensures that all rendering to the object has completed and the object is
1430  * safe to unbind from the GTT or access from the CPU.
1431  */
1432 int
1433 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1434                                bool readonly)
1435 {
1436         int ret, i;
1437
1438         if (!obj->active)
1439                 return 0;
1440
1441         if (readonly) {
1442                 if (obj->last_write_req != NULL) {
1443                         ret = i915_wait_request(obj->last_write_req);
1444                         if (ret)
1445                                 return ret;
1446
1447                         i = obj->last_write_req->ring->id;
1448                         if (obj->last_read_req[i] == obj->last_write_req)
1449                                 i915_gem_object_retire__read(obj, i);
1450                         else
1451                                 i915_gem_object_retire__write(obj);
1452                 }
1453         } else {
1454                 for (i = 0; i < I915_NUM_RINGS; i++) {
1455                         if (obj->last_read_req[i] == NULL)
1456                                 continue;
1457
1458                         ret = i915_wait_request(obj->last_read_req[i]);
1459                         if (ret)
1460                                 return ret;
1461
1462                         i915_gem_object_retire__read(obj, i);
1463                 }
1464                 RQ_BUG_ON(obj->active);
1465         }
1466
1467         return 0;
1468 }
1469
1470 static void
1471 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1472                                struct drm_i915_gem_request *req)
1473 {
1474         int ring = req->ring->id;
1475
1476         if (obj->last_read_req[ring] == req)
1477                 i915_gem_object_retire__read(obj, ring);
1478         else if (obj->last_write_req == req)
1479                 i915_gem_object_retire__write(obj);
1480
1481         __i915_gem_request_retire__upto(req);
1482 }
1483
1484 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1485  * as the object state may change during this call.
1486  */
1487 static __must_check int
1488 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1489                                             struct intel_rps_client *rps,
1490                                             bool readonly)
1491 {
1492         struct drm_device *dev = obj->base.dev;
1493         struct drm_i915_private *dev_priv = dev->dev_private;
1494         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1495         unsigned reset_counter;
1496         int ret, i, n = 0;
1497
1498         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1499         BUG_ON(!dev_priv->mm.interruptible);
1500
1501         if (!obj->active)
1502                 return 0;
1503
1504         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1505         if (ret)
1506                 return ret;
1507
1508         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1509
1510         if (readonly) {
1511                 struct drm_i915_gem_request *req;
1512
1513                 req = obj->last_write_req;
1514                 if (req == NULL)
1515                         return 0;
1516
1517                 requests[n++] = i915_gem_request_reference(req);
1518         } else {
1519                 for (i = 0; i < I915_NUM_RINGS; i++) {
1520                         struct drm_i915_gem_request *req;
1521
1522                         req = obj->last_read_req[i];
1523                         if (req == NULL)
1524                                 continue;
1525
1526                         requests[n++] = i915_gem_request_reference(req);
1527                 }
1528         }
1529
1530         mutex_unlock(&dev->struct_mutex);
1531         for (i = 0; ret == 0 && i < n; i++)
1532                 ret = __i915_wait_request(requests[i], reset_counter, true,
1533                                           NULL, rps);
1534         mutex_lock(&dev->struct_mutex);
1535
1536         for (i = 0; i < n; i++) {
1537                 if (ret == 0)
1538                         i915_gem_object_retire_request(obj, requests[i]);
1539                 i915_gem_request_unreference(requests[i]);
1540         }
1541
1542         return ret;
1543 }
1544
1545 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1546 {
1547         struct drm_i915_file_private *fpriv = file->driver_priv;
1548         return &fpriv->rps;
1549 }
1550
1551 /**
1552  * Called when user space prepares to use an object with the CPU, either
1553  * through the mmap ioctl's mapping or a GTT mapping.
1554  */
1555 int
1556 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557                           struct drm_file *file)
1558 {
1559         struct drm_i915_gem_set_domain *args = data;
1560         struct drm_i915_gem_object *obj;
1561         uint32_t read_domains = args->read_domains;
1562         uint32_t write_domain = args->write_domain;
1563         int ret;
1564
1565         /* Only handle setting domains to types used by the CPU. */
1566         if (write_domain & I915_GEM_GPU_DOMAINS)
1567                 return -EINVAL;
1568
1569         if (read_domains & I915_GEM_GPU_DOMAINS)
1570                 return -EINVAL;
1571
1572         /* Having something in the write domain implies it's in the read
1573          * domain, and only that read domain.  Enforce that in the request.
1574          */
1575         if (write_domain != 0 && read_domains != write_domain)
1576                 return -EINVAL;
1577
1578         ret = i915_mutex_lock_interruptible(dev);
1579         if (ret)
1580                 return ret;
1581
1582         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1583         if (&obj->base == NULL) {
1584                 ret = -ENOENT;
1585                 goto unlock;
1586         }
1587
1588         /* Try to flush the object off the GPU without holding the lock.
1589          * We will repeat the flush holding the lock in the normal manner
1590          * to catch cases where we are gazumped.
1591          */
1592         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1593                                                           to_rps_client(file),
1594                                                           !write_domain);
1595         if (ret)
1596                 goto unref;
1597
1598         if (read_domains & I915_GEM_DOMAIN_GTT)
1599                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1600         else
1601                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1602
1603         if (write_domain != 0)
1604                 intel_fb_obj_invalidate(obj,
1605                                         write_domain == I915_GEM_DOMAIN_GTT ?
1606                                         ORIGIN_GTT : ORIGIN_CPU);
1607
1608 unref:
1609         drm_gem_object_unreference(&obj->base);
1610 unlock:
1611         mutex_unlock(&dev->struct_mutex);
1612         return ret;
1613 }
1614
1615 /**
1616  * Called when user space has done writes to this buffer
1617  */
1618 int
1619 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620                          struct drm_file *file)
1621 {
1622         struct drm_i915_gem_sw_finish *args = data;
1623         struct drm_i915_gem_object *obj;
1624         int ret = 0;
1625
1626         ret = i915_mutex_lock_interruptible(dev);
1627         if (ret)
1628                 return ret;
1629
1630         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1631         if (&obj->base == NULL) {
1632                 ret = -ENOENT;
1633                 goto unlock;
1634         }
1635
1636         /* Pinned buffers may be scanout, so flush the cache */
1637         if (obj->pin_display)
1638                 i915_gem_object_flush_cpu_write_domain(obj);
1639
1640         drm_gem_object_unreference(&obj->base);
1641 unlock:
1642         mutex_unlock(&dev->struct_mutex);
1643         return ret;
1644 }
1645
1646 /**
1647  * Maps the contents of an object, returning the address it is mapped
1648  * into.
1649  *
1650  * While the mapping holds a reference on the contents of the object, it doesn't
1651  * imply a ref on the object itself.
1652  *
1653  * IMPORTANT:
1654  *
1655  * DRM driver writers who look a this function as an example for how to do GEM
1656  * mmap support, please don't implement mmap support like here. The modern way
1657  * to implement DRM mmap support is with an mmap offset ioctl (like
1658  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1659  * That way debug tooling like valgrind will understand what's going on, hiding
1660  * the mmap call in a driver private ioctl will break that. The i915 driver only
1661  * does cpu mmaps this way because we didn't know better.
1662  */
1663 int
1664 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1665                     struct drm_file *file)
1666 {
1667         struct drm_i915_gem_mmap *args = data;
1668         struct drm_gem_object *obj;
1669         unsigned long addr;
1670
1671         if (args->flags & ~(I915_MMAP_WC))
1672                 return -EINVAL;
1673
1674         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1675                 return -ENODEV;
1676
1677         obj = drm_gem_object_lookup(dev, file, args->handle);
1678         if (obj == NULL)
1679                 return -ENOENT;
1680
1681         /* prime objects have no backing filp to GEM mmap
1682          * pages from.
1683          */
1684         if (!obj->filp) {
1685                 drm_gem_object_unreference_unlocked(obj);
1686                 return -EINVAL;
1687         }
1688
1689         addr = vm_mmap(obj->filp, 0, args->size,
1690                        PROT_READ | PROT_WRITE, MAP_SHARED,
1691                        args->offset);
1692         if (args->flags & I915_MMAP_WC) {
1693                 struct mm_struct *mm = current->mm;
1694                 struct vm_area_struct *vma;
1695
1696                 down_write(&mm->mmap_sem);
1697                 vma = find_vma(mm, addr);
1698                 if (vma)
1699                         vma->vm_page_prot =
1700                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1701                 else
1702                         addr = -ENOMEM;
1703                 up_write(&mm->mmap_sem);
1704         }
1705         drm_gem_object_unreference_unlocked(obj);
1706         if (IS_ERR((void *)addr))
1707                 return addr;
1708
1709         args->addr_ptr = (uint64_t) addr;
1710
1711         return 0;
1712 }
1713
1714 /**
1715  * i915_gem_fault - fault a page into the GTT
1716  * @vma: VMA in question
1717  * @vmf: fault info
1718  *
1719  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1720  * from userspace.  The fault handler takes care of binding the object to
1721  * the GTT (if needed), allocating and programming a fence register (again,
1722  * only if needed based on whether the old reg is still valid or the object
1723  * is tiled) and inserting a new PTE into the faulting process.
1724  *
1725  * Note that the faulting process may involve evicting existing objects
1726  * from the GTT and/or fence registers to make room.  So performance may
1727  * suffer if the GTT working set is large or there are few fence registers
1728  * left.
1729  */
1730 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731 {
1732         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1733         struct drm_device *dev = obj->base.dev;
1734         struct drm_i915_private *dev_priv = dev->dev_private;
1735         struct i915_ggtt_view view = i915_ggtt_view_normal;
1736         pgoff_t page_offset;
1737         unsigned long pfn;
1738         int ret = 0;
1739         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1740
1741         intel_runtime_pm_get(dev_priv);
1742
1743         /* We don't use vmf->pgoff since that has the fake offset */
1744         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1745                 PAGE_SHIFT;
1746
1747         ret = i915_mutex_lock_interruptible(dev);
1748         if (ret)
1749                 goto out;
1750
1751         trace_i915_gem_object_fault(obj, page_offset, true, write);
1752
1753         /* Try to flush the object off the GPU first without holding the lock.
1754          * Upon reacquiring the lock, we will perform our sanity checks and then
1755          * repeat the flush holding the lock in the normal manner to catch cases
1756          * where we are gazumped.
1757          */
1758         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1759         if (ret)
1760                 goto unlock;
1761
1762         /* Access to snoopable pages through the GTT is incoherent. */
1763         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1764                 ret = -EFAULT;
1765                 goto unlock;
1766         }
1767
1768         /* Use a partial view if the object is bigger than the aperture. */
1769         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1770             obj->tiling_mode == I915_TILING_NONE) {
1771                 static const unsigned int chunk_size = 256; // 1 MiB
1772
1773                 memset(&view, 0, sizeof(view));
1774                 view.type = I915_GGTT_VIEW_PARTIAL;
1775                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1776                 view.params.partial.size =
1777                         min_t(unsigned int,
1778                               chunk_size,
1779                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1780                               view.params.partial.offset);
1781         }
1782
1783         /* Now pin it into the GTT if needed */
1784         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1785         if (ret)
1786                 goto unlock;
1787
1788         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1789         if (ret)
1790                 goto unpin;
1791
1792         ret = i915_gem_object_get_fence(obj);
1793         if (ret)
1794                 goto unpin;
1795
1796         /* Finally, remap it using the new GTT offset */
1797         pfn = dev_priv->gtt.mappable_base +
1798                 i915_gem_obj_ggtt_offset_view(obj, &view);
1799         pfn >>= PAGE_SHIFT;
1800
1801         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1802                 /* Overriding existing pages in partial view does not cause
1803                  * us any trouble as TLBs are still valid because the fault
1804                  * is due to userspace losing part of the mapping or never
1805                  * having accessed it before (at this partials' range).
1806                  */
1807                 unsigned long base = vma->vm_start +
1808                                      (view.params.partial.offset << PAGE_SHIFT);
1809                 unsigned int i;
1810
1811                 for (i = 0; i < view.params.partial.size; i++) {
1812                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1813                         if (ret)
1814                                 break;
1815                 }
1816
1817                 obj->fault_mappable = true;
1818         } else {
1819                 if (!obj->fault_mappable) {
1820                         unsigned long size = min_t(unsigned long,
1821                                                    vma->vm_end - vma->vm_start,
1822                                                    obj->base.size);
1823                         int i;
1824
1825                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1826                                 ret = vm_insert_pfn(vma,
1827                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1828                                                     pfn + i);
1829                                 if (ret)
1830                                         break;
1831                         }
1832
1833                         obj->fault_mappable = true;
1834                 } else
1835                         ret = vm_insert_pfn(vma,
1836                                             (unsigned long)vmf->virtual_address,
1837                                             pfn + page_offset);
1838         }
1839 unpin:
1840         i915_gem_object_ggtt_unpin_view(obj, &view);
1841 unlock:
1842         mutex_unlock(&dev->struct_mutex);
1843 out:
1844         switch (ret) {
1845         case -EIO:
1846                 /*
1847                  * We eat errors when the gpu is terminally wedged to avoid
1848                  * userspace unduly crashing (gl has no provisions for mmaps to
1849                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850                  * and so needs to be reported.
1851                  */
1852                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1853                         ret = VM_FAULT_SIGBUS;
1854                         break;
1855                 }
1856         case -EAGAIN:
1857                 /*
1858                  * EAGAIN means the gpu is hung and we'll wait for the error
1859                  * handler to reset everything when re-faulting in
1860                  * i915_mutex_lock_interruptible.
1861                  */
1862         case 0:
1863         case -ERESTARTSYS:
1864         case -EINTR:
1865         case -EBUSY:
1866                 /*
1867                  * EBUSY is ok: this just means that another thread
1868                  * already did the job.
1869                  */
1870                 ret = VM_FAULT_NOPAGE;
1871                 break;
1872         case -ENOMEM:
1873                 ret = VM_FAULT_OOM;
1874                 break;
1875         case -ENOSPC:
1876         case -EFAULT:
1877                 ret = VM_FAULT_SIGBUS;
1878                 break;
1879         default:
1880                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1881                 ret = VM_FAULT_SIGBUS;
1882                 break;
1883         }
1884
1885         intel_runtime_pm_put(dev_priv);
1886         return ret;
1887 }
1888
1889 /**
1890  * i915_gem_release_mmap - remove physical page mappings
1891  * @obj: obj in question
1892  *
1893  * Preserve the reservation of the mmapping with the DRM core code, but
1894  * relinquish ownership of the pages back to the system.
1895  *
1896  * It is vital that we remove the page mapping if we have mapped a tiled
1897  * object through the GTT and then lose the fence register due to
1898  * resource pressure. Similarly if the object has been moved out of the
1899  * aperture, than pages mapped into userspace must be revoked. Removing the
1900  * mapping will then trigger a page fault on the next user access, allowing
1901  * fixup by i915_gem_fault().
1902  */
1903 void
1904 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1905 {
1906         if (!obj->fault_mappable)
1907                 return;
1908
1909         drm_vma_node_unmap(&obj->base.vma_node,
1910                            obj->base.dev->anon_inode->i_mapping);
1911         obj->fault_mappable = false;
1912 }
1913
1914 void
1915 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1916 {
1917         struct drm_i915_gem_object *obj;
1918
1919         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1920                 i915_gem_release_mmap(obj);
1921 }
1922
1923 uint32_t
1924 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1925 {
1926         uint32_t gtt_size;
1927
1928         if (INTEL_INFO(dev)->gen >= 4 ||
1929             tiling_mode == I915_TILING_NONE)
1930                 return size;
1931
1932         /* Previous chips need a power-of-two fence region when tiling */
1933         if (INTEL_INFO(dev)->gen == 3)
1934                 gtt_size = 1024*1024;
1935         else
1936                 gtt_size = 512*1024;
1937
1938         while (gtt_size < size)
1939                 gtt_size <<= 1;
1940
1941         return gtt_size;
1942 }
1943
1944 /**
1945  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1946  * @obj: object to check
1947  *
1948  * Return the required GTT alignment for an object, taking into account
1949  * potential fence register mapping.
1950  */
1951 uint32_t
1952 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1953                            int tiling_mode, bool fenced)
1954 {
1955         /*
1956          * Minimum alignment is 4k (GTT page size), but might be greater
1957          * if a fence register is needed for the object.
1958          */
1959         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1960             tiling_mode == I915_TILING_NONE)
1961                 return 4096;
1962
1963         /*
1964          * Previous chips need to be aligned to the size of the smallest
1965          * fence register that can contain the object.
1966          */
1967         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1968 }
1969
1970 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1971 {
1972         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1973         int ret;
1974
1975         if (drm_vma_node_has_offset(&obj->base.vma_node))
1976                 return 0;
1977
1978         dev_priv->mm.shrinker_no_lock_stealing = true;
1979
1980         ret = drm_gem_create_mmap_offset(&obj->base);
1981         if (ret != -ENOSPC)
1982                 goto out;
1983
1984         /* Badly fragmented mmap space? The only way we can recover
1985          * space is by destroying unwanted objects. We can't randomly release
1986          * mmap_offsets as userspace expects them to be persistent for the
1987          * lifetime of the objects. The closest we can is to release the
1988          * offsets on purgeable objects by truncating it and marking it purged,
1989          * which prevents userspace from ever using that object again.
1990          */
1991         i915_gem_shrink(dev_priv,
1992                         obj->base.size >> PAGE_SHIFT,
1993                         I915_SHRINK_BOUND |
1994                         I915_SHRINK_UNBOUND |
1995                         I915_SHRINK_PURGEABLE);
1996         ret = drm_gem_create_mmap_offset(&obj->base);
1997         if (ret != -ENOSPC)
1998                 goto out;
1999
2000         i915_gem_shrink_all(dev_priv);
2001         ret = drm_gem_create_mmap_offset(&obj->base);
2002 out:
2003         dev_priv->mm.shrinker_no_lock_stealing = false;
2004
2005         return ret;
2006 }
2007
2008 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2009 {
2010         drm_gem_free_mmap_offset(&obj->base);
2011 }
2012
2013 int
2014 i915_gem_mmap_gtt(struct drm_file *file,
2015                   struct drm_device *dev,
2016                   uint32_t handle,
2017                   uint64_t *offset)
2018 {
2019         struct drm_i915_gem_object *obj;
2020         int ret;
2021
2022         ret = i915_mutex_lock_interruptible(dev);
2023         if (ret)
2024                 return ret;
2025
2026         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2027         if (&obj->base == NULL) {
2028                 ret = -ENOENT;
2029                 goto unlock;
2030         }
2031
2032         if (obj->madv != I915_MADV_WILLNEED) {
2033                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2034                 ret = -EFAULT;
2035                 goto out;
2036         }
2037
2038         ret = i915_gem_object_create_mmap_offset(obj);
2039         if (ret)
2040                 goto out;
2041
2042         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2043
2044 out:
2045         drm_gem_object_unreference(&obj->base);
2046 unlock:
2047         mutex_unlock(&dev->struct_mutex);
2048         return ret;
2049 }
2050
2051 /**
2052  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2053  * @dev: DRM device
2054  * @data: GTT mapping ioctl data
2055  * @file: GEM object info
2056  *
2057  * Simply returns the fake offset to userspace so it can mmap it.
2058  * The mmap call will end up in drm_gem_mmap(), which will set things
2059  * up so we can get faults in the handler above.
2060  *
2061  * The fault handler will take care of binding the object into the GTT
2062  * (since it may have been evicted to make room for something), allocating
2063  * a fence register, and mapping the appropriate aperture address into
2064  * userspace.
2065  */
2066 int
2067 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2068                         struct drm_file *file)
2069 {
2070         struct drm_i915_gem_mmap_gtt *args = data;
2071
2072         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2073 }
2074
2075 /* Immediately discard the backing storage */
2076 static void
2077 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2078 {
2079         i915_gem_object_free_mmap_offset(obj);
2080
2081         if (obj->base.filp == NULL)
2082                 return;
2083
2084         /* Our goal here is to return as much of the memory as
2085          * is possible back to the system as we are called from OOM.
2086          * To do this we must instruct the shmfs to drop all of its
2087          * backing pages, *now*.
2088          */
2089         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2090         obj->madv = __I915_MADV_PURGED;
2091 }
2092
2093 /* Try to discard unwanted pages */
2094 static void
2095 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2096 {
2097         struct address_space *mapping;
2098
2099         switch (obj->madv) {
2100         case I915_MADV_DONTNEED:
2101                 i915_gem_object_truncate(obj);
2102         case __I915_MADV_PURGED:
2103                 return;
2104         }
2105
2106         if (obj->base.filp == NULL)
2107                 return;
2108
2109         mapping = file_inode(obj->base.filp)->i_mapping,
2110         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2111 }
2112
2113 static void
2114 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2115 {
2116         struct sg_page_iter sg_iter;
2117         int ret;
2118
2119         BUG_ON(obj->madv == __I915_MADV_PURGED);
2120
2121         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2122         if (ret) {
2123                 /* In the event of a disaster, abandon all caches and
2124                  * hope for the best.
2125                  */
2126                 WARN_ON(ret != -EIO);
2127                 i915_gem_clflush_object(obj, true);
2128                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2129         }
2130
2131         i915_gem_gtt_finish_object(obj);
2132
2133         if (i915_gem_object_needs_bit17_swizzle(obj))
2134                 i915_gem_object_save_bit_17_swizzle(obj);
2135
2136         if (obj->madv == I915_MADV_DONTNEED)
2137                 obj->dirty = 0;
2138
2139         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2140                 struct page *page = sg_page_iter_page(&sg_iter);
2141
2142                 if (obj->dirty)
2143                         set_page_dirty(page);
2144
2145                 if (obj->madv == I915_MADV_WILLNEED)
2146                         mark_page_accessed(page);
2147
2148                 page_cache_release(page);
2149         }
2150         obj->dirty = 0;
2151
2152         sg_free_table(obj->pages);
2153         kfree(obj->pages);
2154 }
2155
2156 int
2157 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2158 {
2159         const struct drm_i915_gem_object_ops *ops = obj->ops;
2160
2161         if (obj->pages == NULL)
2162                 return 0;
2163
2164         if (obj->pages_pin_count)
2165                 return -EBUSY;
2166
2167         BUG_ON(i915_gem_obj_bound_any(obj));
2168
2169         /* ->put_pages might need to allocate memory for the bit17 swizzle
2170          * array, hence protect them from being reaped by removing them from gtt
2171          * lists early. */
2172         list_del(&obj->global_list);
2173
2174         ops->put_pages(obj);
2175         obj->pages = NULL;
2176
2177         i915_gem_object_invalidate(obj);
2178
2179         return 0;
2180 }
2181
2182 static int
2183 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2184 {
2185         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2186         int page_count, i;
2187         struct address_space *mapping;
2188         struct sg_table *st;
2189         struct scatterlist *sg;
2190         struct sg_page_iter sg_iter;
2191         struct page *page;
2192         unsigned long last_pfn = 0;     /* suppress gcc warning */
2193         int ret;
2194         gfp_t gfp;
2195
2196         /* Assert that the object is not currently in any GPU domain. As it
2197          * wasn't in the GTT, there shouldn't be any way it could have been in
2198          * a GPU cache
2199          */
2200         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2201         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2202
2203         st = kmalloc(sizeof(*st), GFP_KERNEL);
2204         if (st == NULL)
2205                 return -ENOMEM;
2206
2207         page_count = obj->base.size / PAGE_SIZE;
2208         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2209                 kfree(st);
2210                 return -ENOMEM;
2211         }
2212
2213         /* Get the list of pages out of our struct file.  They'll be pinned
2214          * at this point until we release them.
2215          *
2216          * Fail silently without starting the shrinker
2217          */
2218         mapping = file_inode(obj->base.filp)->i_mapping;
2219         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2220         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2221         sg = st->sgl;
2222         st->nents = 0;
2223         for (i = 0; i < page_count; i++) {
2224                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2225                 if (IS_ERR(page)) {
2226                         i915_gem_shrink(dev_priv,
2227                                         page_count,
2228                                         I915_SHRINK_BOUND |
2229                                         I915_SHRINK_UNBOUND |
2230                                         I915_SHRINK_PURGEABLE);
2231                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2232                 }
2233                 if (IS_ERR(page)) {
2234                         /* We've tried hard to allocate the memory by reaping
2235                          * our own buffer, now let the real VM do its job and
2236                          * go down in flames if truly OOM.
2237                          */
2238                         i915_gem_shrink_all(dev_priv);
2239                         page = shmem_read_mapping_page(mapping, i);
2240                         if (IS_ERR(page)) {
2241                                 ret = PTR_ERR(page);
2242                                 goto err_pages;
2243                         }
2244                 }
2245 #ifdef CONFIG_SWIOTLB
2246                 if (swiotlb_nr_tbl()) {
2247                         st->nents++;
2248                         sg_set_page(sg, page, PAGE_SIZE, 0);
2249                         sg = sg_next(sg);
2250                         continue;
2251                 }
2252 #endif
2253                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2254                         if (i)
2255                                 sg = sg_next(sg);
2256                         st->nents++;
2257                         sg_set_page(sg, page, PAGE_SIZE, 0);
2258                 } else {
2259                         sg->length += PAGE_SIZE;
2260                 }
2261                 last_pfn = page_to_pfn(page);
2262
2263                 /* Check that the i965g/gm workaround works. */
2264                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2265         }
2266 #ifdef CONFIG_SWIOTLB
2267         if (!swiotlb_nr_tbl())
2268 #endif
2269                 sg_mark_end(sg);
2270         obj->pages = st;
2271
2272         ret = i915_gem_gtt_prepare_object(obj);
2273         if (ret)
2274                 goto err_pages;
2275
2276         if (i915_gem_object_needs_bit17_swizzle(obj))
2277                 i915_gem_object_do_bit_17_swizzle(obj);
2278
2279         if (obj->tiling_mode != I915_TILING_NONE &&
2280             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281                 i915_gem_object_pin_pages(obj);
2282
2283         return 0;
2284
2285 err_pages:
2286         sg_mark_end(sg);
2287         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2288                 page_cache_release(sg_page_iter_page(&sg_iter));
2289         sg_free_table(st);
2290         kfree(st);
2291
2292         /* shmemfs first checks if there is enough memory to allocate the page
2293          * and reports ENOSPC should there be insufficient, along with the usual
2294          * ENOMEM for a genuine allocation failure.
2295          *
2296          * We use ENOSPC in our driver to mean that we have run out of aperture
2297          * space and so want to translate the error from shmemfs back to our
2298          * usual understanding of ENOMEM.
2299          */
2300         if (ret == -ENOSPC)
2301                 ret = -ENOMEM;
2302
2303         return ret;
2304 }
2305
2306 /* Ensure that the associated pages are gathered from the backing storage
2307  * and pinned into our object. i915_gem_object_get_pages() may be called
2308  * multiple times before they are released by a single call to
2309  * i915_gem_object_put_pages() - once the pages are no longer referenced
2310  * either as a result of memory pressure (reaping pages under the shrinker)
2311  * or as the object is itself released.
2312  */
2313 int
2314 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315 {
2316         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317         const struct drm_i915_gem_object_ops *ops = obj->ops;
2318         int ret;
2319
2320         if (obj->pages)
2321                 return 0;
2322
2323         if (obj->madv != I915_MADV_WILLNEED) {
2324                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2325                 return -EFAULT;
2326         }
2327
2328         BUG_ON(obj->pages_pin_count);
2329
2330         ret = ops->get_pages(obj);
2331         if (ret)
2332                 return ret;
2333
2334         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2335
2336         obj->get_page.sg = obj->pages->sgl;
2337         obj->get_page.last = 0;
2338
2339         return 0;
2340 }
2341
2342 void i915_vma_move_to_active(struct i915_vma *vma,
2343                              struct drm_i915_gem_request *req)
2344 {
2345         struct drm_i915_gem_object *obj = vma->obj;
2346         struct intel_engine_cs *ring;
2347
2348         ring = i915_gem_request_get_ring(req);
2349
2350         /* Add a reference if we're newly entering the active list. */
2351         if (obj->active == 0)
2352                 drm_gem_object_reference(&obj->base);
2353         obj->active |= intel_ring_flag(ring);
2354
2355         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2357
2358         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2359 }
2360
2361 static void
2362 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2363 {
2364         RQ_BUG_ON(obj->last_write_req == NULL);
2365         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2366
2367         i915_gem_request_assign(&obj->last_write_req, NULL);
2368         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2369 }
2370
2371 static void
2372 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2373 {
2374         struct i915_vma *vma;
2375
2376         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2377         RQ_BUG_ON(!(obj->active & (1 << ring)));
2378
2379         list_del_init(&obj->ring_list[ring]);
2380         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2381
2382         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2383                 i915_gem_object_retire__write(obj);
2384
2385         obj->active &= ~(1 << ring);
2386         if (obj->active)
2387                 return;
2388
2389         /* Bump our place on the bound list to keep it roughly in LRU order
2390          * so that we don't steal from recently used but inactive objects
2391          * (unless we are forced to ofc!)
2392          */
2393         list_move_tail(&obj->global_list,
2394                        &to_i915(obj->base.dev)->mm.bound_list);
2395
2396         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2397                 if (!list_empty(&vma->mm_list))
2398                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2399         }
2400
2401         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2402         drm_gem_object_unreference(&obj->base);
2403 }
2404
2405 static int
2406 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2407 {
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         struct intel_engine_cs *ring;
2410         int ret, i, j;
2411
2412         /* Carefully retire all requests without writing to the rings */
2413         for_each_ring(ring, dev_priv, i) {
2414                 ret = intel_ring_idle(ring);
2415                 if (ret)
2416                         return ret;
2417         }
2418         i915_gem_retire_requests(dev);
2419
2420         /* Finally reset hw state */
2421         for_each_ring(ring, dev_priv, i) {
2422                 intel_ring_init_seqno(ring, seqno);
2423
2424                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2425                         ring->semaphore.sync_seqno[j] = 0;
2426         }
2427
2428         return 0;
2429 }
2430
2431 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2432 {
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         int ret;
2435
2436         if (seqno == 0)
2437                 return -EINVAL;
2438
2439         /* HWS page needs to be set less than what we
2440          * will inject to ring
2441          */
2442         ret = i915_gem_init_seqno(dev, seqno - 1);
2443         if (ret)
2444                 return ret;
2445
2446         /* Carefully set the last_seqno value so that wrap
2447          * detection still works
2448          */
2449         dev_priv->next_seqno = seqno;
2450         dev_priv->last_seqno = seqno - 1;
2451         if (dev_priv->last_seqno == 0)
2452                 dev_priv->last_seqno--;
2453
2454         return 0;
2455 }
2456
2457 int
2458 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2459 {
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461
2462         /* reserve 0 for non-seqno */
2463         if (dev_priv->next_seqno == 0) {
2464                 int ret = i915_gem_init_seqno(dev, 0);
2465                 if (ret)
2466                         return ret;
2467
2468                 dev_priv->next_seqno = 1;
2469         }
2470
2471         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2472         return 0;
2473 }
2474
2475 /*
2476  * NB: This function is not allowed to fail. Doing so would mean the the
2477  * request is not being tracked for completion but the work itself is
2478  * going to happen on the hardware. This would be a Bad Thing(tm).
2479  */
2480 void __i915_add_request(struct drm_i915_gem_request *request,
2481                         struct drm_i915_gem_object *obj,
2482                         bool flush_caches)
2483 {
2484         struct intel_engine_cs *ring;
2485         struct drm_i915_private *dev_priv;
2486         struct intel_ringbuffer *ringbuf;
2487         u32 request_start;
2488         int ret;
2489
2490         if (WARN_ON(request == NULL))
2491                 return;
2492
2493         ring = request->ring;
2494         dev_priv = ring->dev->dev_private;
2495         ringbuf = request->ringbuf;
2496
2497         /*
2498          * To ensure that this call will not fail, space for its emissions
2499          * should already have been reserved in the ring buffer. Let the ring
2500          * know that it is time to use that space up.
2501          */
2502         intel_ring_reserved_space_use(ringbuf);
2503
2504         request_start = intel_ring_get_tail(ringbuf);
2505         /*
2506          * Emit any outstanding flushes - execbuf can fail to emit the flush
2507          * after having emitted the batchbuffer command. Hence we need to fix
2508          * things up similar to emitting the lazy request. The difference here
2509          * is that the flush _must_ happen before the next request, no matter
2510          * what.
2511          */
2512         if (flush_caches) {
2513                 if (i915.enable_execlists)
2514                         ret = logical_ring_flush_all_caches(request);
2515                 else
2516                         ret = intel_ring_flush_all_caches(request);
2517                 /* Not allowed to fail! */
2518                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2519         }
2520
2521         /* Record the position of the start of the request so that
2522          * should we detect the updated seqno part-way through the
2523          * GPU processing the request, we never over-estimate the
2524          * position of the head.
2525          */
2526         request->postfix = intel_ring_get_tail(ringbuf);
2527
2528         if (i915.enable_execlists)
2529                 ret = ring->emit_request(request);
2530         else {
2531                 ret = ring->add_request(request);
2532
2533                 request->tail = intel_ring_get_tail(ringbuf);
2534         }
2535         /* Not allowed to fail! */
2536         WARN(ret, "emit|add_request failed: %d!\n", ret);
2537
2538         request->head = request_start;
2539
2540         /* Whilst this request exists, batch_obj will be on the
2541          * active_list, and so will hold the active reference. Only when this
2542          * request is retired will the the batch_obj be moved onto the
2543          * inactive_list and lose its active reference. Hence we do not need
2544          * to explicitly hold another reference here.
2545          */
2546         request->batch_obj = obj;
2547
2548         request->emitted_jiffies = jiffies;
2549         ring->last_submitted_seqno = request->seqno;
2550         list_add_tail(&request->list, &ring->request_list);
2551
2552         trace_i915_gem_request_add(request);
2553
2554         i915_queue_hangcheck(ring->dev);
2555
2556         queue_delayed_work(dev_priv->wq,
2557                            &dev_priv->mm.retire_work,
2558                            round_jiffies_up_relative(HZ));
2559         intel_mark_busy(dev_priv->dev);
2560
2561         /* Sanity check that the reserved size was large enough. */
2562         intel_ring_reserved_space_end(ringbuf);
2563 }
2564
2565 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2566                                    const struct intel_context *ctx)
2567 {
2568         unsigned long elapsed;
2569
2570         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2571
2572         if (ctx->hang_stats.banned)
2573                 return true;
2574
2575         if (ctx->hang_stats.ban_period_seconds &&
2576             elapsed <= ctx->hang_stats.ban_period_seconds) {
2577                 if (!i915_gem_context_is_default(ctx)) {
2578                         DRM_DEBUG("context hanging too fast, banning!\n");
2579                         return true;
2580                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2581                         if (i915_stop_ring_allow_warn(dev_priv))
2582                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2583                         return true;
2584                 }
2585         }
2586
2587         return false;
2588 }
2589
2590 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2591                                   struct intel_context *ctx,
2592                                   const bool guilty)
2593 {
2594         struct i915_ctx_hang_stats *hs;
2595
2596         if (WARN_ON(!ctx))
2597                 return;
2598
2599         hs = &ctx->hang_stats;
2600
2601         if (guilty) {
2602                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2603                 hs->batch_active++;
2604                 hs->guilty_ts = get_seconds();
2605         } else {
2606                 hs->batch_pending++;
2607         }
2608 }
2609
2610 void i915_gem_request_free(struct kref *req_ref)
2611 {
2612         struct drm_i915_gem_request *req = container_of(req_ref,
2613                                                  typeof(*req), ref);
2614         struct intel_context *ctx = req->ctx;
2615
2616         if (req->file_priv)
2617                 i915_gem_request_remove_from_client(req);
2618
2619         if (ctx) {
2620                 if (i915.enable_execlists) {
2621                         if (ctx != req->ring->default_context)
2622                                 intel_lr_context_unpin(req);
2623                 }
2624
2625                 i915_gem_context_unreference(ctx);
2626         }
2627
2628         kmem_cache_free(req->i915->requests, req);
2629 }
2630
2631 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2632                            struct intel_context *ctx,
2633                            struct drm_i915_gem_request **req_out)
2634 {
2635         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2636         struct drm_i915_gem_request *req;
2637         int ret;
2638
2639         if (!req_out)
2640                 return -EINVAL;
2641
2642         *req_out = NULL;
2643
2644         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2645         if (req == NULL)
2646                 return -ENOMEM;
2647
2648         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2649         if (ret)
2650                 goto err;
2651
2652         kref_init(&req->ref);
2653         req->i915 = dev_priv;
2654         req->ring = ring;
2655         req->ctx  = ctx;
2656         i915_gem_context_reference(req->ctx);
2657
2658         if (i915.enable_execlists)
2659                 ret = intel_logical_ring_alloc_request_extras(req);
2660         else
2661                 ret = intel_ring_alloc_request_extras(req);
2662         if (ret) {
2663                 i915_gem_context_unreference(req->ctx);
2664                 goto err;
2665         }
2666
2667         /*
2668          * Reserve space in the ring buffer for all the commands required to
2669          * eventually emit this request. This is to guarantee that the
2670          * i915_add_request() call can't fail. Note that the reserve may need
2671          * to be redone if the request is not actually submitted straight
2672          * away, e.g. because a GPU scheduler has deferred it.
2673          */
2674         if (i915.enable_execlists)
2675                 ret = intel_logical_ring_reserve_space(req);
2676         else
2677                 ret = intel_ring_reserve_space(req);
2678         if (ret) {
2679                 /*
2680                  * At this point, the request is fully allocated even if not
2681                  * fully prepared. Thus it can be cleaned up using the proper
2682                  * free code.
2683                  */
2684                 i915_gem_request_cancel(req);
2685                 return ret;
2686         }
2687
2688         *req_out = req;
2689         return 0;
2690
2691 err:
2692         kmem_cache_free(dev_priv->requests, req);
2693         return ret;
2694 }
2695
2696 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2697 {
2698         intel_ring_reserved_space_cancel(req->ringbuf);
2699
2700         i915_gem_request_unreference(req);
2701 }
2702
2703 struct drm_i915_gem_request *
2704 i915_gem_find_active_request(struct intel_engine_cs *ring)
2705 {
2706         struct drm_i915_gem_request *request;
2707
2708         list_for_each_entry(request, &ring->request_list, list) {
2709                 if (i915_gem_request_completed(request, false))
2710                         continue;
2711
2712                 return request;
2713         }
2714
2715         return NULL;
2716 }
2717
2718 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2719                                        struct intel_engine_cs *ring)
2720 {
2721         struct drm_i915_gem_request *request;
2722         bool ring_hung;
2723
2724         request = i915_gem_find_active_request(ring);
2725
2726         if (request == NULL)
2727                 return;
2728
2729         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2730
2731         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2732
2733         list_for_each_entry_continue(request, &ring->request_list, list)
2734                 i915_set_reset_status(dev_priv, request->ctx, false);
2735 }
2736
2737 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2738                                         struct intel_engine_cs *ring)
2739 {
2740         struct intel_ringbuffer *buffer;
2741
2742         while (!list_empty(&ring->active_list)) {
2743                 struct drm_i915_gem_object *obj;
2744
2745                 obj = list_first_entry(&ring->active_list,
2746                                        struct drm_i915_gem_object,
2747                                        ring_list[ring->id]);
2748
2749                 i915_gem_object_retire__read(obj, ring->id);
2750         }
2751
2752         /*
2753          * Clear the execlists queue up before freeing the requests, as those
2754          * are the ones that keep the context and ringbuffer backing objects
2755          * pinned in place.
2756          */
2757
2758         if (i915.enable_execlists) {
2759                 spin_lock_irq(&ring->execlist_lock);
2760
2761                 /* list_splice_tail_init checks for empty lists */
2762                 list_splice_tail_init(&ring->execlist_queue,
2763                                       &ring->execlist_retired_req_list);
2764
2765                 spin_unlock_irq(&ring->execlist_lock);
2766                 intel_execlists_retire_requests(ring);
2767         }
2768
2769         /*
2770          * We must free the requests after all the corresponding objects have
2771          * been moved off active lists. Which is the same order as the normal
2772          * retire_requests function does. This is important if object hold
2773          * implicit references on things like e.g. ppgtt address spaces through
2774          * the request.
2775          */
2776         while (!list_empty(&ring->request_list)) {
2777                 struct drm_i915_gem_request *request;
2778
2779                 request = list_first_entry(&ring->request_list,
2780                                            struct drm_i915_gem_request,
2781                                            list);
2782
2783                 i915_gem_request_retire(request);
2784         }
2785
2786         /* Having flushed all requests from all queues, we know that all
2787          * ringbuffers must now be empty. However, since we do not reclaim
2788          * all space when retiring the request (to prevent HEADs colliding
2789          * with rapid ringbuffer wraparound) the amount of available space
2790          * upon reset is less than when we start. Do one more pass over
2791          * all the ringbuffers to reset last_retired_head.
2792          */
2793         list_for_each_entry(buffer, &ring->buffers, link) {
2794                 buffer->last_retired_head = buffer->tail;
2795                 intel_ring_update_space(buffer);
2796         }
2797 }
2798
2799 void i915_gem_reset(struct drm_device *dev)
2800 {
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         struct intel_engine_cs *ring;
2803         int i;
2804
2805         /*
2806          * Before we free the objects from the requests, we need to inspect
2807          * them for finding the guilty party. As the requests only borrow
2808          * their reference to the objects, the inspection must be done first.
2809          */
2810         for_each_ring(ring, dev_priv, i)
2811                 i915_gem_reset_ring_status(dev_priv, ring);
2812
2813         for_each_ring(ring, dev_priv, i)
2814                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2815
2816         i915_gem_context_reset(dev);
2817
2818         i915_gem_restore_fences(dev);
2819
2820         WARN_ON(i915_verify_lists(dev));
2821 }
2822
2823 /**
2824  * This function clears the request list as sequence numbers are passed.
2825  */
2826 void
2827 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2828 {
2829         WARN_ON(i915_verify_lists(ring->dev));
2830
2831         /* Retire requests first as we use it above for the early return.
2832          * If we retire requests last, we may use a later seqno and so clear
2833          * the requests lists without clearing the active list, leading to
2834          * confusion.
2835          */
2836         while (!list_empty(&ring->request_list)) {
2837                 struct drm_i915_gem_request *request;
2838
2839                 request = list_first_entry(&ring->request_list,
2840                                            struct drm_i915_gem_request,
2841                                            list);
2842
2843                 if (!i915_gem_request_completed(request, true))
2844                         break;
2845
2846                 i915_gem_request_retire(request);
2847         }
2848
2849         /* Move any buffers on the active list that are no longer referenced
2850          * by the ringbuffer to the flushing/inactive lists as appropriate,
2851          * before we free the context associated with the requests.
2852          */
2853         while (!list_empty(&ring->active_list)) {
2854                 struct drm_i915_gem_object *obj;
2855
2856                 obj = list_first_entry(&ring->active_list,
2857                                       struct drm_i915_gem_object,
2858                                       ring_list[ring->id]);
2859
2860                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2861                         break;
2862
2863                 i915_gem_object_retire__read(obj, ring->id);
2864         }
2865
2866         if (unlikely(ring->trace_irq_req &&
2867                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2868                 ring->irq_put(ring);
2869                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2870         }
2871
2872         WARN_ON(i915_verify_lists(ring->dev));
2873 }
2874
2875 bool
2876 i915_gem_retire_requests(struct drm_device *dev)
2877 {
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_engine_cs *ring;
2880         bool idle = true;
2881         int i;
2882
2883         for_each_ring(ring, dev_priv, i) {
2884                 i915_gem_retire_requests_ring(ring);
2885                 idle &= list_empty(&ring->request_list);
2886                 if (i915.enable_execlists) {
2887                         unsigned long flags;
2888
2889                         spin_lock_irqsave(&ring->execlist_lock, flags);
2890                         idle &= list_empty(&ring->execlist_queue);
2891                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2892
2893                         intel_execlists_retire_requests(ring);
2894                 }
2895         }
2896
2897         if (idle)
2898                 mod_delayed_work(dev_priv->wq,
2899                                    &dev_priv->mm.idle_work,
2900                                    msecs_to_jiffies(100));
2901
2902         return idle;
2903 }
2904
2905 static void
2906 i915_gem_retire_work_handler(struct work_struct *work)
2907 {
2908         struct drm_i915_private *dev_priv =
2909                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2910         struct drm_device *dev = dev_priv->dev;
2911         bool idle;
2912
2913         /* Come back later if the device is busy... */
2914         idle = false;
2915         if (mutex_trylock(&dev->struct_mutex)) {
2916                 idle = i915_gem_retire_requests(dev);
2917                 mutex_unlock(&dev->struct_mutex);
2918         }
2919         if (!idle)
2920                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2921                                    round_jiffies_up_relative(HZ));
2922 }
2923
2924 static void
2925 i915_gem_idle_work_handler(struct work_struct *work)
2926 {
2927         struct drm_i915_private *dev_priv =
2928                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2929         struct drm_device *dev = dev_priv->dev;
2930         struct intel_engine_cs *ring;
2931         int i;
2932
2933         for_each_ring(ring, dev_priv, i)
2934                 if (!list_empty(&ring->request_list))
2935                         return;
2936
2937         intel_mark_idle(dev);
2938
2939         if (mutex_trylock(&dev->struct_mutex)) {
2940                 struct intel_engine_cs *ring;
2941                 int i;
2942
2943                 for_each_ring(ring, dev_priv, i)
2944                         i915_gem_batch_pool_fini(&ring->batch_pool);
2945
2946                 mutex_unlock(&dev->struct_mutex);
2947         }
2948 }
2949
2950 /**
2951  * Ensures that an object will eventually get non-busy by flushing any required
2952  * write domains, emitting any outstanding lazy request and retiring and
2953  * completed requests.
2954  */
2955 static int
2956 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2957 {
2958         int i;
2959
2960         if (!obj->active)
2961                 return 0;
2962
2963         for (i = 0; i < I915_NUM_RINGS; i++) {
2964                 struct drm_i915_gem_request *req;
2965
2966                 req = obj->last_read_req[i];
2967                 if (req == NULL)
2968                         continue;
2969
2970                 if (list_empty(&req->list))
2971                         goto retire;
2972
2973                 if (i915_gem_request_completed(req, true)) {
2974                         __i915_gem_request_retire__upto(req);
2975 retire:
2976                         i915_gem_object_retire__read(obj, i);
2977                 }
2978         }
2979
2980         return 0;
2981 }
2982
2983 /**
2984  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2985  * @DRM_IOCTL_ARGS: standard ioctl arguments
2986  *
2987  * Returns 0 if successful, else an error is returned with the remaining time in
2988  * the timeout parameter.
2989  *  -ETIME: object is still busy after timeout
2990  *  -ERESTARTSYS: signal interrupted the wait
2991  *  -ENONENT: object doesn't exist
2992  * Also possible, but rare:
2993  *  -EAGAIN: GPU wedged
2994  *  -ENOMEM: damn
2995  *  -ENODEV: Internal IRQ fail
2996  *  -E?: The add request failed
2997  *
2998  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2999  * non-zero timeout parameter the wait ioctl will wait for the given number of
3000  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3001  * without holding struct_mutex the object may become re-busied before this
3002  * function completes. A similar but shorter * race condition exists in the busy
3003  * ioctl
3004  */
3005 int
3006 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3007 {
3008         struct drm_i915_private *dev_priv = dev->dev_private;
3009         struct drm_i915_gem_wait *args = data;
3010         struct drm_i915_gem_object *obj;
3011         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3012         unsigned reset_counter;
3013         int i, n = 0;
3014         int ret;
3015
3016         if (args->flags != 0)
3017                 return -EINVAL;
3018
3019         ret = i915_mutex_lock_interruptible(dev);
3020         if (ret)
3021                 return ret;
3022
3023         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3024         if (&obj->base == NULL) {
3025                 mutex_unlock(&dev->struct_mutex);
3026                 return -ENOENT;
3027         }
3028
3029         /* Need to make sure the object gets inactive eventually. */
3030         ret = i915_gem_object_flush_active(obj);
3031         if (ret)
3032                 goto out;
3033
3034         if (!obj->active)
3035                 goto out;
3036
3037         /* Do this after OLR check to make sure we make forward progress polling
3038          * on this IOCTL with a timeout == 0 (like busy ioctl)
3039          */
3040         if (args->timeout_ns == 0) {
3041                 ret = -ETIME;
3042                 goto out;
3043         }
3044
3045         drm_gem_object_unreference(&obj->base);
3046         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3047
3048         for (i = 0; i < I915_NUM_RINGS; i++) {
3049                 if (obj->last_read_req[i] == NULL)
3050                         continue;
3051
3052                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3053         }
3054
3055         mutex_unlock(&dev->struct_mutex);
3056
3057         for (i = 0; i < n; i++) {
3058                 if (ret == 0)
3059                         ret = __i915_wait_request(req[i], reset_counter, true,
3060                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3061                                                   to_rps_client(file));
3062                 i915_gem_request_unreference__unlocked(req[i]);
3063         }
3064         return ret;
3065
3066 out:
3067         drm_gem_object_unreference(&obj->base);
3068         mutex_unlock(&dev->struct_mutex);
3069         return ret;
3070 }
3071
3072 static int
3073 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3074                        struct intel_engine_cs *to,
3075                        struct drm_i915_gem_request *from_req,
3076                        struct drm_i915_gem_request **to_req)
3077 {
3078         struct intel_engine_cs *from;
3079         int ret;
3080
3081         from = i915_gem_request_get_ring(from_req);
3082         if (to == from)
3083                 return 0;
3084
3085         if (i915_gem_request_completed(from_req, true))
3086                 return 0;
3087
3088         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3089                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3090                 ret = __i915_wait_request(from_req,
3091                                           atomic_read(&i915->gpu_error.reset_counter),
3092                                           i915->mm.interruptible,
3093                                           NULL,
3094                                           &i915->rps.semaphores);
3095                 if (ret)
3096                         return ret;
3097
3098                 i915_gem_object_retire_request(obj, from_req);
3099         } else {
3100                 int idx = intel_ring_sync_index(from, to);
3101                 u32 seqno = i915_gem_request_get_seqno(from_req);
3102
3103                 WARN_ON(!to_req);
3104
3105                 if (seqno <= from->semaphore.sync_seqno[idx])
3106                         return 0;
3107
3108                 if (*to_req == NULL) {
3109                         ret = i915_gem_request_alloc(to, to->default_context, to_req);
3110                         if (ret)
3111                                 return ret;
3112                 }
3113
3114                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3115                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3116                 if (ret)
3117                         return ret;
3118
3119                 /* We use last_read_req because sync_to()
3120                  * might have just caused seqno wrap under
3121                  * the radar.
3122                  */
3123                 from->semaphore.sync_seqno[idx] =
3124                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3125         }
3126
3127         return 0;
3128 }
3129
3130 /**
3131  * i915_gem_object_sync - sync an object to a ring.
3132  *
3133  * @obj: object which may be in use on another ring.
3134  * @to: ring we wish to use the object on. May be NULL.
3135  * @to_req: request we wish to use the object for. See below.
3136  *          This will be allocated and returned if a request is
3137  *          required but not passed in.
3138  *
3139  * This code is meant to abstract object synchronization with the GPU.
3140  * Calling with NULL implies synchronizing the object with the CPU
3141  * rather than a particular GPU ring. Conceptually we serialise writes
3142  * between engines inside the GPU. We only allow one engine to write
3143  * into a buffer at any time, but multiple readers. To ensure each has
3144  * a coherent view of memory, we must:
3145  *
3146  * - If there is an outstanding write request to the object, the new
3147  *   request must wait for it to complete (either CPU or in hw, requests
3148  *   on the same ring will be naturally ordered).
3149  *
3150  * - If we are a write request (pending_write_domain is set), the new
3151  *   request must wait for outstanding read requests to complete.
3152  *
3153  * For CPU synchronisation (NULL to) no request is required. For syncing with
3154  * rings to_req must be non-NULL. However, a request does not have to be
3155  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3156  * request will be allocated automatically and returned through *to_req. Note
3157  * that it is not guaranteed that commands will be emitted (because the system
3158  * might already be idle). Hence there is no need to create a request that
3159  * might never have any work submitted. Note further that if a request is
3160  * returned in *to_req, it is the responsibility of the caller to submit
3161  * that request (after potentially adding more work to it).
3162  *
3163  * Returns 0 if successful, else propagates up the lower layer error.
3164  */
3165 int
3166 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3167                      struct intel_engine_cs *to,
3168                      struct drm_i915_gem_request **to_req)
3169 {
3170         const bool readonly = obj->base.pending_write_domain == 0;
3171         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3172         int ret, i, n;
3173
3174         if (!obj->active)
3175                 return 0;
3176
3177         if (to == NULL)
3178                 return i915_gem_object_wait_rendering(obj, readonly);
3179
3180         n = 0;
3181         if (readonly) {
3182                 if (obj->last_write_req)
3183                         req[n++] = obj->last_write_req;
3184         } else {
3185                 for (i = 0; i < I915_NUM_RINGS; i++)
3186                         if (obj->last_read_req[i])
3187                                 req[n++] = obj->last_read_req[i];
3188         }
3189         for (i = 0; i < n; i++) {
3190                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3191                 if (ret)
3192                         return ret;
3193         }
3194
3195         return 0;
3196 }
3197
3198 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3199 {
3200         u32 old_write_domain, old_read_domains;
3201
3202         /* Force a pagefault for domain tracking on next user access */
3203         i915_gem_release_mmap(obj);
3204
3205         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3206                 return;
3207
3208         /* Wait for any direct GTT access to complete */
3209         mb();
3210
3211         old_read_domains = obj->base.read_domains;
3212         old_write_domain = obj->base.write_domain;
3213
3214         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3215         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3216
3217         trace_i915_gem_object_change_domain(obj,
3218                                             old_read_domains,
3219                                             old_write_domain);
3220 }
3221
3222 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3223 {
3224         struct drm_i915_gem_object *obj = vma->obj;
3225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3226         int ret;
3227
3228         if (list_empty(&vma->vma_link))
3229                 return 0;
3230
3231         if (!drm_mm_node_allocated(&vma->node)) {
3232                 i915_gem_vma_destroy(vma);
3233                 return 0;
3234         }
3235
3236         if (vma->pin_count)
3237                 return -EBUSY;
3238
3239         BUG_ON(obj->pages == NULL);
3240
3241         if (wait) {
3242                 ret = i915_gem_object_wait_rendering(obj, false);
3243                 if (ret)
3244                         return ret;
3245         }
3246
3247         if (i915_is_ggtt(vma->vm) &&
3248             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3249                 i915_gem_object_finish_gtt(obj);
3250
3251                 /* release the fence reg _after_ flushing */
3252                 ret = i915_gem_object_put_fence(obj);
3253                 if (ret)
3254                         return ret;
3255         }
3256
3257         trace_i915_vma_unbind(vma);
3258
3259         vma->vm->unbind_vma(vma);
3260         vma->bound = 0;
3261
3262         list_del_init(&vma->mm_list);
3263         if (i915_is_ggtt(vma->vm)) {
3264                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3265                         obj->map_and_fenceable = false;
3266                 } else if (vma->ggtt_view.pages) {
3267                         sg_free_table(vma->ggtt_view.pages);
3268                         kfree(vma->ggtt_view.pages);
3269                 }
3270                 vma->ggtt_view.pages = NULL;
3271         }
3272
3273         drm_mm_remove_node(&vma->node);
3274         i915_gem_vma_destroy(vma);
3275
3276         /* Since the unbound list is global, only move to that list if
3277          * no more VMAs exist. */
3278         if (list_empty(&obj->vma_list))
3279                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3280
3281         /* And finally now the object is completely decoupled from this vma,
3282          * we can drop its hold on the backing storage and allow it to be
3283          * reaped by the shrinker.
3284          */
3285         i915_gem_object_unpin_pages(obj);
3286
3287         return 0;
3288 }
3289
3290 int i915_vma_unbind(struct i915_vma *vma)
3291 {
3292         return __i915_vma_unbind(vma, true);
3293 }
3294
3295 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3296 {
3297         return __i915_vma_unbind(vma, false);
3298 }
3299
3300 int i915_gpu_idle(struct drm_device *dev)
3301 {
3302         struct drm_i915_private *dev_priv = dev->dev_private;
3303         struct intel_engine_cs *ring;
3304         int ret, i;
3305
3306         /* Flush everything onto the inactive list. */
3307         for_each_ring(ring, dev_priv, i) {
3308                 if (!i915.enable_execlists) {
3309                         struct drm_i915_gem_request *req;
3310
3311                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3312                         if (ret)
3313                                 return ret;
3314
3315                         ret = i915_switch_context(req);
3316                         if (ret) {
3317                                 i915_gem_request_cancel(req);
3318                                 return ret;
3319                         }
3320
3321                         i915_add_request_no_flush(req);
3322                 }
3323
3324                 ret = intel_ring_idle(ring);
3325                 if (ret)
3326                         return ret;
3327         }
3328
3329         WARN_ON(i915_verify_lists(dev));
3330         return 0;
3331 }
3332
3333 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3334                                      unsigned long cache_level)
3335 {
3336         struct drm_mm_node *gtt_space = &vma->node;
3337         struct drm_mm_node *other;
3338
3339         /*
3340          * On some machines we have to be careful when putting differing types
3341          * of snoopable memory together to avoid the prefetcher crossing memory
3342          * domains and dying. During vm initialisation, we decide whether or not
3343          * these constraints apply and set the drm_mm.color_adjust
3344          * appropriately.
3345          */
3346         if (vma->vm->mm.color_adjust == NULL)
3347                 return true;
3348
3349         if (!drm_mm_node_allocated(gtt_space))
3350                 return true;
3351
3352         if (list_empty(&gtt_space->node_list))
3353                 return true;
3354
3355         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3356         if (other->allocated && !other->hole_follows && other->color != cache_level)
3357                 return false;
3358
3359         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3360         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3361                 return false;
3362
3363         return true;
3364 }
3365
3366 /**
3367  * Finds free space in the GTT aperture and binds the object or a view of it
3368  * there.
3369  */
3370 static struct i915_vma *
3371 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3372                            struct i915_address_space *vm,
3373                            const struct i915_ggtt_view *ggtt_view,
3374                            unsigned alignment,
3375                            uint64_t flags)
3376 {
3377         struct drm_device *dev = obj->base.dev;
3378         struct drm_i915_private *dev_priv = dev->dev_private;
3379         u32 fence_alignment, unfenced_alignment;
3380         u32 search_flag, alloc_flag;
3381         u64 start, end;
3382         u64 size, fence_size;
3383         struct i915_vma *vma;
3384         int ret;
3385
3386         if (i915_is_ggtt(vm)) {
3387                 u32 view_size;
3388
3389                 if (WARN_ON(!ggtt_view))
3390                         return ERR_PTR(-EINVAL);
3391
3392                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3393
3394                 fence_size = i915_gem_get_gtt_size(dev,
3395                                                    view_size,
3396                                                    obj->tiling_mode);
3397                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3398                                                              view_size,
3399                                                              obj->tiling_mode,
3400                                                              true);
3401                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3402                                                                 view_size,
3403                                                                 obj->tiling_mode,
3404                                                                 false);
3405                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3406         } else {
3407                 fence_size = i915_gem_get_gtt_size(dev,
3408                                                    obj->base.size,
3409                                                    obj->tiling_mode);
3410                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3411                                                              obj->base.size,
3412                                                              obj->tiling_mode,
3413                                                              true);
3414                 unfenced_alignment =
3415                         i915_gem_get_gtt_alignment(dev,
3416                                                    obj->base.size,
3417                                                    obj->tiling_mode,
3418                                                    false);
3419                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3420         }
3421
3422         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3423         end = vm->total;
3424         if (flags & PIN_MAPPABLE)
3425                 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3426         if (flags & PIN_ZONE_4G)
3427                 end = min_t(u64, end, (1ULL << 32));
3428
3429         if (alignment == 0)
3430                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3431                                                 unfenced_alignment;
3432         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3433                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3434                           ggtt_view ? ggtt_view->type : 0,
3435                           alignment);
3436                 return ERR_PTR(-EINVAL);
3437         }
3438
3439         /* If binding the object/GGTT view requires more space than the entire
3440          * aperture has, reject it early before evicting everything in a vain
3441          * attempt to find space.
3442          */
3443         if (size > end) {
3444                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3445                           ggtt_view ? ggtt_view->type : 0,
3446                           size,
3447                           flags & PIN_MAPPABLE ? "mappable" : "total",
3448                           end);
3449                 return ERR_PTR(-E2BIG);
3450         }
3451
3452         ret = i915_gem_object_get_pages(obj);
3453         if (ret)
3454                 return ERR_PTR(ret);
3455
3456         i915_gem_object_pin_pages(obj);
3457
3458         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3459                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3460
3461         if (IS_ERR(vma))
3462                 goto err_unpin;
3463
3464         if (flags & PIN_OFFSET_FIXED) {
3465                 uint64_t offset = flags & PIN_OFFSET_MASK;
3466
3467                 if (offset & (alignment - 1) || offset + size > end) {
3468                         ret = -EINVAL;
3469                         goto err_free_vma;
3470                 }
3471                 vma->node.start = offset;
3472                 vma->node.size = size;
3473                 vma->node.color = obj->cache_level;
3474                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3475                 if (ret) {
3476                         ret = i915_gem_evict_for_vma(vma);
3477                         if (ret == 0)
3478                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3479                 }
3480                 if (ret)
3481                         goto err_free_vma;
3482         } else {
3483                 if (flags & PIN_HIGH) {
3484                         search_flag = DRM_MM_SEARCH_BELOW;
3485                         alloc_flag = DRM_MM_CREATE_TOP;
3486                 } else {
3487                         search_flag = DRM_MM_SEARCH_DEFAULT;
3488                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3489                 }
3490
3491 search_free:
3492                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3493                                                           size, alignment,
3494                                                           obj->cache_level,
3495                                                           start, end,
3496                                                           search_flag,
3497                                                           alloc_flag);
3498                 if (ret) {
3499                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3500                                                        obj->cache_level,
3501                                                        start, end,
3502                                                        flags);
3503                         if (ret == 0)
3504                                 goto search_free;
3505
3506                         goto err_free_vma;
3507                 }
3508         }
3509         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3510                 ret = -EINVAL;
3511                 goto err_remove_node;
3512         }
3513
3514         trace_i915_vma_bind(vma, flags);
3515         ret = i915_vma_bind(vma, obj->cache_level, flags);
3516         if (ret)
3517                 goto err_remove_node;
3518
3519         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3520         list_add_tail(&vma->mm_list, &vm->inactive_list);
3521
3522         return vma;
3523
3524 err_remove_node:
3525         drm_mm_remove_node(&vma->node);
3526 err_free_vma:
3527         i915_gem_vma_destroy(vma);
3528         vma = ERR_PTR(ret);
3529 err_unpin:
3530         i915_gem_object_unpin_pages(obj);
3531         return vma;
3532 }
3533
3534 bool
3535 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3536                         bool force)
3537 {
3538         /* If we don't have a page list set up, then we're not pinned
3539          * to GPU, and we can ignore the cache flush because it'll happen
3540          * again at bind time.
3541          */
3542         if (obj->pages == NULL)
3543                 return false;
3544
3545         /*
3546          * Stolen memory is always coherent with the GPU as it is explicitly
3547          * marked as wc by the system, or the system is cache-coherent.
3548          */
3549         if (obj->stolen || obj->phys_handle)
3550                 return false;
3551
3552         /* If the GPU is snooping the contents of the CPU cache,
3553          * we do not need to manually clear the CPU cache lines.  However,
3554          * the caches are only snooped when the render cache is
3555          * flushed/invalidated.  As we always have to emit invalidations
3556          * and flushes when moving into and out of the RENDER domain, correct
3557          * snooping behaviour occurs naturally as the result of our domain
3558          * tracking.
3559          */
3560         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3561                 obj->cache_dirty = true;
3562                 return false;
3563         }
3564
3565         trace_i915_gem_object_clflush(obj);
3566         drm_clflush_sg(obj->pages);
3567         obj->cache_dirty = false;
3568
3569         return true;
3570 }
3571
3572 /** Flushes the GTT write domain for the object if it's dirty. */
3573 static void
3574 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3575 {
3576         uint32_t old_write_domain;
3577
3578         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3579                 return;
3580
3581         /* No actual flushing is required for the GTT write domain.  Writes
3582          * to it immediately go to main memory as far as we know, so there's
3583          * no chipset flush.  It also doesn't land in render cache.
3584          *
3585          * However, we do have to enforce the order so that all writes through
3586          * the GTT land before any writes to the device, such as updates to
3587          * the GATT itself.
3588          */
3589         wmb();
3590
3591         old_write_domain = obj->base.write_domain;
3592         obj->base.write_domain = 0;
3593
3594         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3595
3596         trace_i915_gem_object_change_domain(obj,
3597                                             obj->base.read_domains,
3598                                             old_write_domain);
3599 }
3600
3601 /** Flushes the CPU write domain for the object if it's dirty. */
3602 static void
3603 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3604 {
3605         uint32_t old_write_domain;
3606
3607         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3608                 return;
3609
3610         if (i915_gem_clflush_object(obj, obj->pin_display))
3611                 i915_gem_chipset_flush(obj->base.dev);
3612
3613         old_write_domain = obj->base.write_domain;
3614         obj->base.write_domain = 0;
3615
3616         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3617
3618         trace_i915_gem_object_change_domain(obj,
3619                                             obj->base.read_domains,
3620                                             old_write_domain);
3621 }
3622
3623 /**
3624  * Moves a single object to the GTT read, and possibly write domain.
3625  *
3626  * This function returns when the move is complete, including waiting on
3627  * flushes to occur.
3628  */
3629 int
3630 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3631 {
3632         uint32_t old_write_domain, old_read_domains;
3633         struct i915_vma *vma;
3634         int ret;
3635
3636         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3637                 return 0;
3638
3639         ret = i915_gem_object_wait_rendering(obj, !write);
3640         if (ret)
3641                 return ret;
3642
3643         /* Flush and acquire obj->pages so that we are coherent through
3644          * direct access in memory with previous cached writes through
3645          * shmemfs and that our cache domain tracking remains valid.
3646          * For example, if the obj->filp was moved to swap without us
3647          * being notified and releasing the pages, we would mistakenly
3648          * continue to assume that the obj remained out of the CPU cached
3649          * domain.
3650          */
3651         ret = i915_gem_object_get_pages(obj);
3652         if (ret)
3653                 return ret;
3654
3655         i915_gem_object_flush_cpu_write_domain(obj);
3656
3657         /* Serialise direct access to this object with the barriers for
3658          * coherent writes from the GPU, by effectively invalidating the
3659          * GTT domain upon first access.
3660          */
3661         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3662                 mb();
3663
3664         old_write_domain = obj->base.write_domain;
3665         old_read_domains = obj->base.read_domains;
3666
3667         /* It should now be out of any other write domains, and we can update
3668          * the domain values for our changes.
3669          */
3670         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3671         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3672         if (write) {
3673                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3674                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3675                 obj->dirty = 1;
3676         }
3677
3678         trace_i915_gem_object_change_domain(obj,
3679                                             old_read_domains,
3680                                             old_write_domain);
3681
3682         /* And bump the LRU for this access */
3683         vma = i915_gem_obj_to_ggtt(obj);
3684         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3685                 list_move_tail(&vma->mm_list,
3686                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3687
3688         return 0;
3689 }
3690
3691 /**
3692  * Changes the cache-level of an object across all VMA.
3693  *
3694  * After this function returns, the object will be in the new cache-level
3695  * across all GTT and the contents of the backing storage will be coherent,
3696  * with respect to the new cache-level. In order to keep the backing storage
3697  * coherent for all users, we only allow a single cache level to be set
3698  * globally on the object and prevent it from being changed whilst the
3699  * hardware is reading from the object. That is if the object is currently
3700  * on the scanout it will be set to uncached (or equivalent display
3701  * cache coherency) and all non-MOCS GPU access will also be uncached so
3702  * that all direct access to the scanout remains coherent.
3703  */
3704 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3705                                     enum i915_cache_level cache_level)
3706 {
3707         struct drm_device *dev = obj->base.dev;
3708         struct i915_vma *vma, *next;
3709         bool bound = false;
3710         int ret = 0;
3711
3712         if (obj->cache_level == cache_level)
3713                 goto out;
3714
3715         /* Inspect the list of currently bound VMA and unbind any that would
3716          * be invalid given the new cache-level. This is principally to
3717          * catch the issue of the CS prefetch crossing page boundaries and
3718          * reading an invalid PTE on older architectures.
3719          */
3720         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3721                 if (!drm_mm_node_allocated(&vma->node))
3722                         continue;
3723
3724                 if (vma->pin_count) {
3725                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3726                         return -EBUSY;
3727                 }
3728
3729                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3730                         ret = i915_vma_unbind(vma);
3731                         if (ret)
3732                                 return ret;
3733                 } else
3734                         bound = true;
3735         }
3736
3737         /* We can reuse the existing drm_mm nodes but need to change the
3738          * cache-level on the PTE. We could simply unbind them all and
3739          * rebind with the correct cache-level on next use. However since
3740          * we already have a valid slot, dma mapping, pages etc, we may as
3741          * rewrite the PTE in the belief that doing so tramples upon less
3742          * state and so involves less work.
3743          */
3744         if (bound) {
3745                 /* Before we change the PTE, the GPU must not be accessing it.
3746                  * If we wait upon the object, we know that all the bound
3747                  * VMA are no longer active.
3748                  */
3749                 ret = i915_gem_object_wait_rendering(obj, false);
3750                 if (ret)
3751                         return ret;
3752
3753                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3754                         /* Access to snoopable pages through the GTT is
3755                          * incoherent and on some machines causes a hard
3756                          * lockup. Relinquish the CPU mmaping to force
3757                          * userspace to refault in the pages and we can
3758                          * then double check if the GTT mapping is still
3759                          * valid for that pointer access.
3760                          */
3761                         i915_gem_release_mmap(obj);
3762
3763                         /* As we no longer need a fence for GTT access,
3764                          * we can relinquish it now (and so prevent having
3765                          * to steal a fence from someone else on the next
3766                          * fence request). Note GPU activity would have
3767                          * dropped the fence as all snoopable access is
3768                          * supposed to be linear.
3769                          */
3770                         ret = i915_gem_object_put_fence(obj);
3771                         if (ret)
3772                                 return ret;
3773                 } else {
3774                         /* We either have incoherent backing store and
3775                          * so no GTT access or the architecture is fully
3776                          * coherent. In such cases, existing GTT mmaps
3777                          * ignore the cache bit in the PTE and we can
3778                          * rewrite it without confusing the GPU or having
3779                          * to force userspace to fault back in its mmaps.
3780                          */
3781                 }
3782
3783                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3784                         if (!drm_mm_node_allocated(&vma->node))
3785                                 continue;
3786
3787                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3788                         if (ret)
3789                                 return ret;
3790                 }
3791         }
3792
3793         list_for_each_entry(vma, &obj->vma_list, vma_link)
3794                 vma->node.color = cache_level;
3795         obj->cache_level = cache_level;
3796
3797 out:
3798         /* Flush the dirty CPU caches to the backing storage so that the
3799          * object is now coherent at its new cache level (with respect
3800          * to the access domain).
3801          */
3802         if (obj->cache_dirty &&
3803             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3804             cpu_write_needs_clflush(obj)) {
3805                 if (i915_gem_clflush_object(obj, true))
3806                         i915_gem_chipset_flush(obj->base.dev);
3807         }
3808
3809         return 0;
3810 }
3811
3812 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3813                                struct drm_file *file)
3814 {
3815         struct drm_i915_gem_caching *args = data;
3816         struct drm_i915_gem_object *obj;
3817
3818         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3819         if (&obj->base == NULL)
3820                 return -ENOENT;
3821
3822         switch (obj->cache_level) {
3823         case I915_CACHE_LLC:
3824         case I915_CACHE_L3_LLC:
3825                 args->caching = I915_CACHING_CACHED;
3826                 break;
3827
3828         case I915_CACHE_WT:
3829                 args->caching = I915_CACHING_DISPLAY;
3830                 break;
3831
3832         default:
3833                 args->caching = I915_CACHING_NONE;
3834                 break;
3835         }
3836
3837         drm_gem_object_unreference_unlocked(&obj->base);
3838         return 0;
3839 }
3840
3841 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3842                                struct drm_file *file)
3843 {
3844         struct drm_i915_private *dev_priv = dev->dev_private;
3845         struct drm_i915_gem_caching *args = data;
3846         struct drm_i915_gem_object *obj;
3847         enum i915_cache_level level;
3848         int ret;
3849
3850         switch (args->caching) {
3851         case I915_CACHING_NONE:
3852                 level = I915_CACHE_NONE;
3853                 break;
3854         case I915_CACHING_CACHED:
3855                 /*
3856                  * Due to a HW issue on BXT A stepping, GPU stores via a
3857                  * snooped mapping may leave stale data in a corresponding CPU
3858                  * cacheline, whereas normally such cachelines would get
3859                  * invalidated.
3860                  */
3861                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3862                         return -ENODEV;
3863
3864                 level = I915_CACHE_LLC;
3865                 break;
3866         case I915_CACHING_DISPLAY:
3867                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3868                 break;
3869         default:
3870                 return -EINVAL;
3871         }
3872
3873         intel_runtime_pm_get(dev_priv);
3874
3875         ret = i915_mutex_lock_interruptible(dev);
3876         if (ret)
3877                 goto rpm_put;
3878
3879         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3880         if (&obj->base == NULL) {
3881                 ret = -ENOENT;
3882                 goto unlock;
3883         }
3884
3885         ret = i915_gem_object_set_cache_level(obj, level);
3886
3887         drm_gem_object_unreference(&obj->base);
3888 unlock:
3889         mutex_unlock(&dev->struct_mutex);
3890 rpm_put:
3891         intel_runtime_pm_put(dev_priv);
3892
3893         return ret;
3894 }
3895
3896 /*
3897  * Prepare buffer for display plane (scanout, cursors, etc).
3898  * Can be called from an uninterruptible phase (modesetting) and allows
3899  * any flushes to be pipelined (for pageflips).
3900  */
3901 int
3902 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3903                                      u32 alignment,
3904                                      const struct i915_ggtt_view *view)
3905 {
3906         u32 old_read_domains, old_write_domain;
3907         int ret;
3908
3909         /* Mark the pin_display early so that we account for the
3910          * display coherency whilst setting up the cache domains.
3911          */
3912         obj->pin_display++;
3913
3914         /* The display engine is not coherent with the LLC cache on gen6.  As
3915          * a result, we make sure that the pinning that is about to occur is
3916          * done with uncached PTEs. This is lowest common denominator for all
3917          * chipsets.
3918          *
3919          * However for gen6+, we could do better by using the GFDT bit instead
3920          * of uncaching, which would allow us to flush all the LLC-cached data
3921          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3922          */
3923         ret = i915_gem_object_set_cache_level(obj,
3924                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3925         if (ret)
3926                 goto err_unpin_display;
3927
3928         /* As the user may map the buffer once pinned in the display plane
3929          * (e.g. libkms for the bootup splash), we have to ensure that we
3930          * always use map_and_fenceable for all scanout buffers.
3931          */
3932         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3933                                        view->type == I915_GGTT_VIEW_NORMAL ?
3934                                        PIN_MAPPABLE : 0);
3935         if (ret)
3936                 goto err_unpin_display;
3937
3938         i915_gem_object_flush_cpu_write_domain(obj);
3939
3940         old_write_domain = obj->base.write_domain;
3941         old_read_domains = obj->base.read_domains;
3942
3943         /* It should now be out of any other write domains, and we can update
3944          * the domain values for our changes.
3945          */
3946         obj->base.write_domain = 0;
3947         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3948
3949         trace_i915_gem_object_change_domain(obj,
3950                                             old_read_domains,
3951                                             old_write_domain);
3952
3953         return 0;
3954
3955 err_unpin_display:
3956         obj->pin_display--;
3957         return ret;
3958 }
3959
3960 void
3961 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3962                                          const struct i915_ggtt_view *view)
3963 {
3964         if (WARN_ON(obj->pin_display == 0))
3965                 return;
3966
3967         i915_gem_object_ggtt_unpin_view(obj, view);
3968
3969         obj->pin_display--;
3970 }
3971
3972 /**
3973  * Moves a single object to the CPU read, and possibly write domain.
3974  *
3975  * This function returns when the move is complete, including waiting on
3976  * flushes to occur.
3977  */
3978 int
3979 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3980 {
3981         uint32_t old_write_domain, old_read_domains;
3982         int ret;
3983
3984         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3985                 return 0;
3986
3987         ret = i915_gem_object_wait_rendering(obj, !write);
3988         if (ret)
3989                 return ret;
3990
3991         i915_gem_object_flush_gtt_write_domain(obj);
3992
3993         old_write_domain = obj->base.write_domain;
3994         old_read_domains = obj->base.read_domains;
3995
3996         /* Flush the CPU cache if it's still invalid. */
3997         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3998                 i915_gem_clflush_object(obj, false);
3999
4000                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4001         }
4002
4003         /* It should now be out of any other write domains, and we can update
4004          * the domain values for our changes.
4005          */
4006         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4007
4008         /* If we're writing through the CPU, then the GPU read domains will
4009          * need to be invalidated at next use.
4010          */
4011         if (write) {
4012                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4013                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4014         }
4015
4016         trace_i915_gem_object_change_domain(obj,
4017                                             old_read_domains,
4018                                             old_write_domain);
4019
4020         return 0;
4021 }
4022
4023 /* Throttle our rendering by waiting until the ring has completed our requests
4024  * emitted over 20 msec ago.
4025  *
4026  * Note that if we were to use the current jiffies each time around the loop,
4027  * we wouldn't escape the function with any frames outstanding if the time to
4028  * render a frame was over 20ms.
4029  *
4030  * This should get us reasonable parallelism between CPU and GPU but also
4031  * relatively low latency when blocking on a particular request to finish.
4032  */
4033 static int
4034 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4035 {
4036         struct drm_i915_private *dev_priv = dev->dev_private;
4037         struct drm_i915_file_private *file_priv = file->driver_priv;
4038         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4039         struct drm_i915_gem_request *request, *target = NULL;
4040         unsigned reset_counter;
4041         int ret;
4042
4043         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4044         if (ret)
4045                 return ret;
4046
4047         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4048         if (ret)
4049                 return ret;
4050
4051         spin_lock(&file_priv->mm.lock);
4052         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4053                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4054                         break;
4055
4056                 /*
4057                  * Note that the request might not have been submitted yet.
4058                  * In which case emitted_jiffies will be zero.
4059                  */
4060                 if (!request->emitted_jiffies)
4061                         continue;
4062
4063                 target = request;
4064         }
4065         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4066         if (target)
4067                 i915_gem_request_reference(target);
4068         spin_unlock(&file_priv->mm.lock);
4069
4070         if (target == NULL)
4071                 return 0;
4072
4073         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4074         if (ret == 0)
4075                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4076
4077         i915_gem_request_unreference__unlocked(target);
4078
4079         return ret;
4080 }
4081
4082 static bool
4083 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4084 {
4085         struct drm_i915_gem_object *obj = vma->obj;
4086
4087         if (alignment &&
4088             vma->node.start & (alignment - 1))
4089                 return true;
4090
4091         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4092                 return true;
4093
4094         if (flags & PIN_OFFSET_BIAS &&
4095             vma->node.start < (flags & PIN_OFFSET_MASK))
4096                 return true;
4097
4098         if (flags & PIN_OFFSET_FIXED &&
4099             vma->node.start != (flags & PIN_OFFSET_MASK))
4100                 return true;
4101
4102         return false;
4103 }
4104
4105 static int
4106 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4107                        struct i915_address_space *vm,
4108                        const struct i915_ggtt_view *ggtt_view,
4109                        uint32_t alignment,
4110                        uint64_t flags)
4111 {
4112         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4113         struct i915_vma *vma;
4114         unsigned bound;
4115         int ret;
4116
4117         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4118                 return -ENODEV;
4119
4120         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4121                 return -EINVAL;
4122
4123         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4124                 return -EINVAL;
4125
4126         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4127                 return -EINVAL;
4128
4129         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4130                           i915_gem_obj_to_vma(obj, vm);
4131
4132         if (IS_ERR(vma))
4133                 return PTR_ERR(vma);
4134
4135         if (vma) {
4136                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4137                         return -EBUSY;
4138
4139                 if (i915_vma_misplaced(vma, alignment, flags)) {
4140                         WARN(vma->pin_count,
4141                              "bo is already pinned in %s with incorrect alignment:"
4142                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4143                              " obj->map_and_fenceable=%d\n",
4144                              ggtt_view ? "ggtt" : "ppgtt",
4145                              upper_32_bits(vma->node.start),
4146                              lower_32_bits(vma->node.start),
4147                              alignment,
4148                              !!(flags & PIN_MAPPABLE),
4149                              obj->map_and_fenceable);
4150                         ret = i915_vma_unbind(vma);
4151                         if (ret)
4152                                 return ret;
4153
4154                         vma = NULL;
4155                 }
4156         }
4157
4158         bound = vma ? vma->bound : 0;
4159         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4160                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4161                                                  flags);
4162                 if (IS_ERR(vma))
4163                         return PTR_ERR(vma);
4164         } else {
4165                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4166                 if (ret)
4167                         return ret;
4168         }
4169
4170         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4171             (bound ^ vma->bound) & GLOBAL_BIND) {
4172                 bool mappable, fenceable;
4173                 u32 fence_size, fence_alignment;
4174
4175                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4176                                                    obj->base.size,
4177                                                    obj->tiling_mode);
4178                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4179                                                              obj->base.size,
4180                                                              obj->tiling_mode,
4181                                                              true);
4182
4183                 fenceable = (vma->node.size == fence_size &&
4184                              (vma->node.start & (fence_alignment - 1)) == 0);
4185
4186                 mappable = (vma->node.start + fence_size <=
4187                             dev_priv->gtt.mappable_end);
4188
4189                 obj->map_and_fenceable = mappable && fenceable;
4190
4191                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4192         }
4193
4194         vma->pin_count++;
4195         return 0;
4196 }
4197
4198 int
4199 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4200                     struct i915_address_space *vm,
4201                     uint32_t alignment,
4202                     uint64_t flags)
4203 {
4204         return i915_gem_object_do_pin(obj, vm,
4205                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4206                                       alignment, flags);
4207 }
4208
4209 int
4210 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4211                          const struct i915_ggtt_view *view,
4212                          uint32_t alignment,
4213                          uint64_t flags)
4214 {
4215         if (WARN_ONCE(!view, "no view specified"))
4216                 return -EINVAL;
4217
4218         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4219                                       alignment, flags | PIN_GLOBAL);
4220 }
4221
4222 void
4223 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4224                                 const struct i915_ggtt_view *view)
4225 {
4226         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4227
4228         BUG_ON(!vma);
4229         WARN_ON(vma->pin_count == 0);
4230         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4231
4232         --vma->pin_count;
4233 }
4234
4235 int
4236 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4237                     struct drm_file *file)
4238 {
4239         struct drm_i915_gem_busy *args = data;
4240         struct drm_i915_gem_object *obj;
4241         int ret;
4242
4243         ret = i915_mutex_lock_interruptible(dev);
4244         if (ret)
4245                 return ret;
4246
4247         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4248         if (&obj->base == NULL) {
4249                 ret = -ENOENT;
4250                 goto unlock;
4251         }
4252
4253         /* Count all active objects as busy, even if they are currently not used
4254          * by the gpu. Users of this interface expect objects to eventually
4255          * become non-busy without any further actions, therefore emit any
4256          * necessary flushes here.
4257          */
4258         ret = i915_gem_object_flush_active(obj);
4259         if (ret)
4260                 goto unref;
4261
4262         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4263         args->busy = obj->active << 16;
4264         if (obj->last_write_req)
4265                 args->busy |= obj->last_write_req->ring->id;
4266
4267 unref:
4268         drm_gem_object_unreference(&obj->base);
4269 unlock:
4270         mutex_unlock(&dev->struct_mutex);
4271         return ret;
4272 }
4273
4274 int
4275 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4276                         struct drm_file *file_priv)
4277 {
4278         return i915_gem_ring_throttle(dev, file_priv);
4279 }
4280
4281 int
4282 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4283                        struct drm_file *file_priv)
4284 {
4285         struct drm_i915_private *dev_priv = dev->dev_private;
4286         struct drm_i915_gem_madvise *args = data;
4287         struct drm_i915_gem_object *obj;
4288         int ret;
4289
4290         switch (args->madv) {
4291         case I915_MADV_DONTNEED:
4292         case I915_MADV_WILLNEED:
4293             break;
4294         default:
4295             return -EINVAL;
4296         }
4297
4298         ret = i915_mutex_lock_interruptible(dev);
4299         if (ret)
4300                 return ret;
4301
4302         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4303         if (&obj->base == NULL) {
4304                 ret = -ENOENT;
4305                 goto unlock;
4306         }
4307
4308         if (i915_gem_obj_is_pinned(obj)) {
4309                 ret = -EINVAL;
4310                 goto out;
4311         }
4312
4313         if (obj->pages &&
4314             obj->tiling_mode != I915_TILING_NONE &&
4315             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4316                 if (obj->madv == I915_MADV_WILLNEED)
4317                         i915_gem_object_unpin_pages(obj);
4318                 if (args->madv == I915_MADV_WILLNEED)
4319                         i915_gem_object_pin_pages(obj);
4320         }
4321
4322         if (obj->madv != __I915_MADV_PURGED)
4323                 obj->madv = args->madv;
4324
4325         /* if the object is no longer attached, discard its backing storage */
4326         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4327                 i915_gem_object_truncate(obj);
4328
4329         args->retained = obj->madv != __I915_MADV_PURGED;
4330
4331 out:
4332         drm_gem_object_unreference(&obj->base);
4333 unlock:
4334         mutex_unlock(&dev->struct_mutex);
4335         return ret;
4336 }
4337
4338 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4339                           const struct drm_i915_gem_object_ops *ops)
4340 {
4341         int i;
4342
4343         INIT_LIST_HEAD(&obj->global_list);
4344         for (i = 0; i < I915_NUM_RINGS; i++)
4345                 INIT_LIST_HEAD(&obj->ring_list[i]);
4346         INIT_LIST_HEAD(&obj->obj_exec_link);
4347         INIT_LIST_HEAD(&obj->vma_list);
4348         INIT_LIST_HEAD(&obj->batch_pool_link);
4349
4350         obj->ops = ops;
4351
4352         obj->fence_reg = I915_FENCE_REG_NONE;
4353         obj->madv = I915_MADV_WILLNEED;
4354
4355         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4356 }
4357
4358 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4359         .get_pages = i915_gem_object_get_pages_gtt,
4360         .put_pages = i915_gem_object_put_pages_gtt,
4361 };
4362
4363 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4364                                                   size_t size)
4365 {
4366         struct drm_i915_gem_object *obj;
4367         struct address_space *mapping;
4368         gfp_t mask;
4369
4370         obj = i915_gem_object_alloc(dev);
4371         if (obj == NULL)
4372                 return NULL;
4373
4374         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4375                 i915_gem_object_free(obj);
4376                 return NULL;
4377         }
4378
4379         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4380         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4381                 /* 965gm cannot relocate objects above 4GiB. */
4382                 mask &= ~__GFP_HIGHMEM;
4383                 mask |= __GFP_DMA32;
4384         }
4385
4386         mapping = file_inode(obj->base.filp)->i_mapping;
4387         mapping_set_gfp_mask(mapping, mask);
4388
4389         i915_gem_object_init(obj, &i915_gem_object_ops);
4390
4391         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4392         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4393
4394         if (HAS_LLC(dev)) {
4395                 /* On some devices, we can have the GPU use the LLC (the CPU
4396                  * cache) for about a 10% performance improvement
4397                  * compared to uncached.  Graphics requests other than
4398                  * display scanout are coherent with the CPU in
4399                  * accessing this cache.  This means in this mode we
4400                  * don't need to clflush on the CPU side, and on the
4401                  * GPU side we only need to flush internal caches to
4402                  * get data visible to the CPU.
4403                  *
4404                  * However, we maintain the display planes as UC, and so
4405                  * need to rebind when first used as such.
4406                  */
4407                 obj->cache_level = I915_CACHE_LLC;
4408         } else
4409                 obj->cache_level = I915_CACHE_NONE;
4410
4411         trace_i915_gem_object_create(obj);
4412
4413         return obj;
4414 }
4415
4416 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4417 {
4418         /* If we are the last user of the backing storage (be it shmemfs
4419          * pages or stolen etc), we know that the pages are going to be
4420          * immediately released. In this case, we can then skip copying
4421          * back the contents from the GPU.
4422          */
4423
4424         if (obj->madv != I915_MADV_WILLNEED)
4425                 return false;
4426
4427         if (obj->base.filp == NULL)
4428                 return true;
4429
4430         /* At first glance, this looks racy, but then again so would be
4431          * userspace racing mmap against close. However, the first external
4432          * reference to the filp can only be obtained through the
4433          * i915_gem_mmap_ioctl() which safeguards us against the user
4434          * acquiring such a reference whilst we are in the middle of
4435          * freeing the object.
4436          */
4437         return atomic_long_read(&obj->base.filp->f_count) == 1;
4438 }
4439
4440 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4441 {
4442         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4443         struct drm_device *dev = obj->base.dev;
4444         struct drm_i915_private *dev_priv = dev->dev_private;
4445         struct i915_vma *vma, *next;
4446
4447         intel_runtime_pm_get(dev_priv);
4448
4449         trace_i915_gem_object_destroy(obj);
4450
4451         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4452                 int ret;
4453
4454                 vma->pin_count = 0;
4455                 ret = i915_vma_unbind(vma);
4456                 if (WARN_ON(ret == -ERESTARTSYS)) {
4457                         bool was_interruptible;
4458
4459                         was_interruptible = dev_priv->mm.interruptible;
4460                         dev_priv->mm.interruptible = false;
4461
4462                         WARN_ON(i915_vma_unbind(vma));
4463
4464                         dev_priv->mm.interruptible = was_interruptible;
4465                 }
4466         }
4467
4468         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4469          * before progressing. */
4470         if (obj->stolen)
4471                 i915_gem_object_unpin_pages(obj);
4472
4473         WARN_ON(obj->frontbuffer_bits);
4474
4475         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4476             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4477             obj->tiling_mode != I915_TILING_NONE)
4478                 i915_gem_object_unpin_pages(obj);
4479
4480         if (WARN_ON(obj->pages_pin_count))
4481                 obj->pages_pin_count = 0;
4482         if (discard_backing_storage(obj))
4483                 obj->madv = I915_MADV_DONTNEED;
4484         i915_gem_object_put_pages(obj);
4485         i915_gem_object_free_mmap_offset(obj);
4486
4487         BUG_ON(obj->pages);
4488
4489         if (obj->base.import_attach)
4490                 drm_prime_gem_destroy(&obj->base, NULL);
4491
4492         if (obj->ops->release)
4493                 obj->ops->release(obj);
4494
4495         drm_gem_object_release(&obj->base);
4496         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4497
4498         kfree(obj->bit_17);
4499         i915_gem_object_free(obj);
4500
4501         intel_runtime_pm_put(dev_priv);
4502 }
4503
4504 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4505                                      struct i915_address_space *vm)
4506 {
4507         struct i915_vma *vma;
4508         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4509                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4510                     vma->vm == vm)
4511                         return vma;
4512         }
4513         return NULL;
4514 }
4515
4516 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4517                                            const struct i915_ggtt_view *view)
4518 {
4519         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4520         struct i915_vma *vma;
4521
4522         if (WARN_ONCE(!view, "no view specified"))
4523                 return ERR_PTR(-EINVAL);
4524
4525         list_for_each_entry(vma, &obj->vma_list, vma_link)
4526                 if (vma->vm == ggtt &&
4527                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4528                         return vma;
4529         return NULL;
4530 }
4531
4532 void i915_gem_vma_destroy(struct i915_vma *vma)
4533 {
4534         struct i915_address_space *vm = NULL;
4535         WARN_ON(vma->node.allocated);
4536
4537         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4538         if (!list_empty(&vma->exec_list))
4539                 return;
4540
4541         vm = vma->vm;
4542
4543         if (!i915_is_ggtt(vm))
4544                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4545
4546         list_del(&vma->vma_link);
4547
4548         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4549 }
4550
4551 static void
4552 i915_gem_stop_ringbuffers(struct drm_device *dev)
4553 {
4554         struct drm_i915_private *dev_priv = dev->dev_private;
4555         struct intel_engine_cs *ring;
4556         int i;
4557
4558         for_each_ring(ring, dev_priv, i)
4559                 dev_priv->gt.stop_ring(ring);
4560 }
4561
4562 int
4563 i915_gem_suspend(struct drm_device *dev)
4564 {
4565         struct drm_i915_private *dev_priv = dev->dev_private;
4566         int ret = 0;
4567
4568         mutex_lock(&dev->struct_mutex);
4569         ret = i915_gpu_idle(dev);
4570         if (ret)
4571                 goto err;
4572
4573         i915_gem_retire_requests(dev);
4574
4575         i915_gem_stop_ringbuffers(dev);
4576         mutex_unlock(&dev->struct_mutex);
4577
4578         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4579         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4580         flush_delayed_work(&dev_priv->mm.idle_work);
4581
4582         /* Assert that we sucessfully flushed all the work and
4583          * reset the GPU back to its idle, low power state.
4584          */
4585         WARN_ON(dev_priv->mm.busy);
4586
4587         return 0;
4588
4589 err:
4590         mutex_unlock(&dev->struct_mutex);
4591         return ret;
4592 }
4593
4594 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4595 {
4596         struct intel_engine_cs *ring = req->ring;
4597         struct drm_device *dev = ring->dev;
4598         struct drm_i915_private *dev_priv = dev->dev_private;
4599         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4600         int i, ret;
4601
4602         if (!HAS_L3_DPF(dev) || !remap_info)
4603                 return 0;
4604
4605         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4606         if (ret)
4607                 return ret;
4608
4609         /*
4610          * Note: We do not worry about the concurrent register cacheline hang
4611          * here because no other code should access these registers other than
4612          * at initialization time.
4613          */
4614         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4615                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4616                 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4617                 intel_ring_emit(ring, remap_info[i]);
4618         }
4619
4620         intel_ring_advance(ring);
4621
4622         return ret;
4623 }
4624
4625 void i915_gem_init_swizzling(struct drm_device *dev)
4626 {
4627         struct drm_i915_private *dev_priv = dev->dev_private;
4628
4629         if (INTEL_INFO(dev)->gen < 5 ||
4630             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4631                 return;
4632
4633         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4634                                  DISP_TILE_SURFACE_SWIZZLING);
4635
4636         if (IS_GEN5(dev))
4637                 return;
4638
4639         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4640         if (IS_GEN6(dev))
4641                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4642         else if (IS_GEN7(dev))
4643                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4644         else if (IS_GEN8(dev))
4645                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4646         else
4647                 BUG();
4648 }
4649
4650 static void init_unused_ring(struct drm_device *dev, u32 base)
4651 {
4652         struct drm_i915_private *dev_priv = dev->dev_private;
4653
4654         I915_WRITE(RING_CTL(base), 0);
4655         I915_WRITE(RING_HEAD(base), 0);
4656         I915_WRITE(RING_TAIL(base), 0);
4657         I915_WRITE(RING_START(base), 0);
4658 }
4659
4660 static void init_unused_rings(struct drm_device *dev)
4661 {
4662         if (IS_I830(dev)) {
4663                 init_unused_ring(dev, PRB1_BASE);
4664                 init_unused_ring(dev, SRB0_BASE);
4665                 init_unused_ring(dev, SRB1_BASE);
4666                 init_unused_ring(dev, SRB2_BASE);
4667                 init_unused_ring(dev, SRB3_BASE);
4668         } else if (IS_GEN2(dev)) {
4669                 init_unused_ring(dev, SRB0_BASE);
4670                 init_unused_ring(dev, SRB1_BASE);
4671         } else if (IS_GEN3(dev)) {
4672                 init_unused_ring(dev, PRB1_BASE);
4673                 init_unused_ring(dev, PRB2_BASE);
4674         }
4675 }
4676
4677 int i915_gem_init_rings(struct drm_device *dev)
4678 {
4679         struct drm_i915_private *dev_priv = dev->dev_private;
4680         int ret;
4681
4682         ret = intel_init_render_ring_buffer(dev);
4683         if (ret)
4684                 return ret;
4685
4686         if (HAS_BSD(dev)) {
4687                 ret = intel_init_bsd_ring_buffer(dev);
4688                 if (ret)
4689                         goto cleanup_render_ring;
4690         }
4691
4692         if (HAS_BLT(dev)) {
4693                 ret = intel_init_blt_ring_buffer(dev);
4694                 if (ret)
4695                         goto cleanup_bsd_ring;
4696         }
4697
4698         if (HAS_VEBOX(dev)) {
4699                 ret = intel_init_vebox_ring_buffer(dev);
4700                 if (ret)
4701                         goto cleanup_blt_ring;
4702         }
4703
4704         if (HAS_BSD2(dev)) {
4705                 ret = intel_init_bsd2_ring_buffer(dev);
4706                 if (ret)
4707                         goto cleanup_vebox_ring;
4708         }
4709
4710         return 0;
4711
4712 cleanup_vebox_ring:
4713         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4714 cleanup_blt_ring:
4715         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4716 cleanup_bsd_ring:
4717         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4718 cleanup_render_ring:
4719         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4720
4721         return ret;
4722 }
4723
4724 int
4725 i915_gem_init_hw(struct drm_device *dev)
4726 {
4727         struct drm_i915_private *dev_priv = dev->dev_private;
4728         struct intel_engine_cs *ring;
4729         int ret, i, j;
4730
4731         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4732                 return -EIO;
4733
4734         /* Double layer security blanket, see i915_gem_init() */
4735         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4736
4737         if (dev_priv->ellc_size)
4738                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4739
4740         if (IS_HASWELL(dev))
4741                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4742                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4743
4744         if (HAS_PCH_NOP(dev)) {
4745                 if (IS_IVYBRIDGE(dev)) {
4746                         u32 temp = I915_READ(GEN7_MSG_CTL);
4747                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4748                         I915_WRITE(GEN7_MSG_CTL, temp);
4749                 } else if (INTEL_INFO(dev)->gen >= 7) {
4750                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4751                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4752                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4753                 }
4754         }
4755
4756         i915_gem_init_swizzling(dev);
4757
4758         /*
4759          * At least 830 can leave some of the unused rings
4760          * "active" (ie. head != tail) after resume which
4761          * will prevent c3 entry. Makes sure all unused rings
4762          * are totally idle.
4763          */
4764         init_unused_rings(dev);
4765
4766         BUG_ON(!dev_priv->ring[RCS].default_context);
4767
4768         ret = i915_ppgtt_init_hw(dev);
4769         if (ret) {
4770                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4771                 goto out;
4772         }
4773
4774         /* Need to do basic initialisation of all rings first: */
4775         for_each_ring(ring, dev_priv, i) {
4776                 ret = ring->init_hw(ring);
4777                 if (ret)
4778                         goto out;
4779         }
4780
4781         /* We can't enable contexts until all firmware is loaded */
4782         if (HAS_GUC_UCODE(dev)) {
4783                 ret = intel_guc_ucode_load(dev);
4784                 if (ret) {
4785                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4786                         ret = -EIO;
4787                         goto out;
4788                 }
4789         }
4790
4791         /*
4792          * Increment the next seqno by 0x100 so we have a visible break
4793          * on re-initialisation
4794          */
4795         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4796         if (ret)
4797                 goto out;
4798
4799         /* Now it is safe to go back round and do everything else: */
4800         for_each_ring(ring, dev_priv, i) {
4801                 struct drm_i915_gem_request *req;
4802
4803                 WARN_ON(!ring->default_context);
4804
4805                 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4806                 if (ret) {
4807                         i915_gem_cleanup_ringbuffer(dev);
4808                         goto out;
4809                 }
4810
4811                 if (ring->id == RCS) {
4812                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4813                                 i915_gem_l3_remap(req, j);
4814                 }
4815
4816                 ret = i915_ppgtt_init_ring(req);
4817                 if (ret && ret != -EIO) {
4818                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4819                         i915_gem_request_cancel(req);
4820                         i915_gem_cleanup_ringbuffer(dev);
4821                         goto out;
4822                 }
4823
4824                 ret = i915_gem_context_enable(req);
4825                 if (ret && ret != -EIO) {
4826                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4827                         i915_gem_request_cancel(req);
4828                         i915_gem_cleanup_ringbuffer(dev);
4829                         goto out;
4830                 }
4831
4832                 i915_add_request_no_flush(req);
4833         }
4834
4835 out:
4836         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837         return ret;
4838 }
4839
4840 int i915_gem_init(struct drm_device *dev)
4841 {
4842         struct drm_i915_private *dev_priv = dev->dev_private;
4843         int ret;
4844
4845         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4846                         i915.enable_execlists);
4847
4848         mutex_lock(&dev->struct_mutex);
4849
4850         if (!i915.enable_execlists) {
4851                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4852                 dev_priv->gt.init_rings = i915_gem_init_rings;
4853                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4854                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4855         } else {
4856                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4857                 dev_priv->gt.init_rings = intel_logical_rings_init;
4858                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4859                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4860         }
4861
4862         /* This is just a security blanket to placate dragons.
4863          * On some systems, we very sporadically observe that the first TLBs
4864          * used by the CS may be stale, despite us poking the TLB reset. If
4865          * we hold the forcewake during initialisation these problems
4866          * just magically go away.
4867          */
4868         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4869
4870         ret = i915_gem_init_userptr(dev);
4871         if (ret)
4872                 goto out_unlock;
4873
4874         i915_gem_init_global_gtt(dev);
4875
4876         ret = i915_gem_context_init(dev);
4877         if (ret)
4878                 goto out_unlock;
4879
4880         ret = dev_priv->gt.init_rings(dev);
4881         if (ret)
4882                 goto out_unlock;
4883
4884         ret = i915_gem_init_hw(dev);
4885         if (ret == -EIO) {
4886                 /* Allow ring initialisation to fail by marking the GPU as
4887                  * wedged. But we only want to do this where the GPU is angry,
4888                  * for all other failure, such as an allocation failure, bail.
4889                  */
4890                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4891                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4892                 ret = 0;
4893         }
4894
4895 out_unlock:
4896         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4897         mutex_unlock(&dev->struct_mutex);
4898
4899         return ret;
4900 }
4901
4902 void
4903 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4904 {
4905         struct drm_i915_private *dev_priv = dev->dev_private;
4906         struct intel_engine_cs *ring;
4907         int i;
4908
4909         for_each_ring(ring, dev_priv, i)
4910                 dev_priv->gt.cleanup_ring(ring);
4911
4912     if (i915.enable_execlists)
4913             /*
4914              * Neither the BIOS, ourselves or any other kernel
4915              * expects the system to be in execlists mode on startup,
4916              * so we need to reset the GPU back to legacy mode.
4917              */
4918             intel_gpu_reset(dev);
4919 }
4920
4921 static void
4922 init_ring_lists(struct intel_engine_cs *ring)
4923 {
4924         INIT_LIST_HEAD(&ring->active_list);
4925         INIT_LIST_HEAD(&ring->request_list);
4926 }
4927
4928 void
4929 i915_gem_load(struct drm_device *dev)
4930 {
4931         struct drm_i915_private *dev_priv = dev->dev_private;
4932         int i;
4933
4934         dev_priv->objects =
4935                 kmem_cache_create("i915_gem_object",
4936                                   sizeof(struct drm_i915_gem_object), 0,
4937                                   SLAB_HWCACHE_ALIGN,
4938                                   NULL);
4939         dev_priv->vmas =
4940                 kmem_cache_create("i915_gem_vma",
4941                                   sizeof(struct i915_vma), 0,
4942                                   SLAB_HWCACHE_ALIGN,
4943                                   NULL);
4944         dev_priv->requests =
4945                 kmem_cache_create("i915_gem_request",
4946                                   sizeof(struct drm_i915_gem_request), 0,
4947                                   SLAB_HWCACHE_ALIGN,
4948                                   NULL);
4949
4950         INIT_LIST_HEAD(&dev_priv->vm_list);
4951         INIT_LIST_HEAD(&dev_priv->context_list);
4952         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4953         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4954         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4955         for (i = 0; i < I915_NUM_RINGS; i++)
4956                 init_ring_lists(&dev_priv->ring[i]);
4957         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4958                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4959         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4960                           i915_gem_retire_work_handler);
4961         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4962                           i915_gem_idle_work_handler);
4963         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4964
4965         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4966
4967         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4968                 dev_priv->num_fence_regs = 32;
4969         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4970                 dev_priv->num_fence_regs = 16;
4971         else
4972                 dev_priv->num_fence_regs = 8;
4973
4974         if (intel_vgpu_active(dev))
4975                 dev_priv->num_fence_regs =
4976                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4977
4978         /*
4979          * Set initial sequence number for requests.
4980          * Using this number allows the wraparound to happen early,
4981          * catching any obvious problems.
4982          */
4983         dev_priv->next_seqno = ((u32)~0 - 0x1100);
4984         dev_priv->last_seqno = ((u32)~0 - 0x1101);
4985
4986         /* Initialize fence registers to zero */
4987         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4988         i915_gem_restore_fences(dev);
4989
4990         i915_gem_detect_bit_6_swizzle(dev);
4991         init_waitqueue_head(&dev_priv->pending_flip_queue);
4992
4993         dev_priv->mm.interruptible = true;
4994
4995         i915_gem_shrinker_init(dev_priv);
4996
4997         mutex_init(&dev_priv->fb_tracking.lock);
4998 }
4999
5000 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5001 {
5002         struct drm_i915_file_private *file_priv = file->driver_priv;
5003
5004         /* Clean up our request list when the client is going away, so that
5005          * later retire_requests won't dereference our soon-to-be-gone
5006          * file_priv.
5007          */
5008         spin_lock(&file_priv->mm.lock);
5009         while (!list_empty(&file_priv->mm.request_list)) {
5010                 struct drm_i915_gem_request *request;
5011
5012                 request = list_first_entry(&file_priv->mm.request_list,
5013                                            struct drm_i915_gem_request,
5014                                            client_list);
5015                 list_del(&request->client_list);
5016                 request->file_priv = NULL;
5017         }
5018         spin_unlock(&file_priv->mm.lock);
5019
5020         if (!list_empty(&file_priv->rps.link)) {
5021                 spin_lock(&to_i915(dev)->rps.client_lock);
5022                 list_del(&file_priv->rps.link);
5023                 spin_unlock(&to_i915(dev)->rps.client_lock);
5024         }
5025 }
5026
5027 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5028 {
5029         struct drm_i915_file_private *file_priv;
5030         int ret;
5031
5032         DRM_DEBUG_DRIVER("\n");
5033
5034         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5035         if (!file_priv)
5036                 return -ENOMEM;
5037
5038         file->driver_priv = file_priv;
5039         file_priv->dev_priv = dev->dev_private;
5040         file_priv->file = file;
5041         INIT_LIST_HEAD(&file_priv->rps.link);
5042
5043         spin_lock_init(&file_priv->mm.lock);
5044         INIT_LIST_HEAD(&file_priv->mm.request_list);
5045
5046         ret = i915_gem_context_open(dev, file);
5047         if (ret)
5048                 kfree(file_priv);
5049
5050         return ret;
5051 }
5052
5053 /**
5054  * i915_gem_track_fb - update frontbuffer tracking
5055  * @old: current GEM buffer for the frontbuffer slots
5056  * @new: new GEM buffer for the frontbuffer slots
5057  * @frontbuffer_bits: bitmask of frontbuffer slots
5058  *
5059  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5060  * from @old and setting them in @new. Both @old and @new can be NULL.
5061  */
5062 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5063                        struct drm_i915_gem_object *new,
5064                        unsigned frontbuffer_bits)
5065 {
5066         if (old) {
5067                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5068                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5069                 old->frontbuffer_bits &= ~frontbuffer_bits;
5070         }
5071
5072         if (new) {
5073                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5074                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5075                 new->frontbuffer_bits |= frontbuffer_bits;
5076         }
5077 }
5078
5079 /* All the new VM stuff */
5080 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5081                         struct i915_address_space *vm)
5082 {
5083         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5084         struct i915_vma *vma;
5085
5086         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5087
5088         list_for_each_entry(vma, &o->vma_list, vma_link) {
5089                 if (i915_is_ggtt(vma->vm) &&
5090                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5091                         continue;
5092                 if (vma->vm == vm)
5093                         return vma->node.start;
5094         }
5095
5096         WARN(1, "%s vma for this object not found.\n",
5097              i915_is_ggtt(vm) ? "global" : "ppgtt");
5098         return -1;
5099 }
5100
5101 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5102                                   const struct i915_ggtt_view *view)
5103 {
5104         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5105         struct i915_vma *vma;
5106
5107         list_for_each_entry(vma, &o->vma_list, vma_link)
5108                 if (vma->vm == ggtt &&
5109                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5110                         return vma->node.start;
5111
5112         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5113         return -1;
5114 }
5115
5116 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5117                         struct i915_address_space *vm)
5118 {
5119         struct i915_vma *vma;
5120
5121         list_for_each_entry(vma, &o->vma_list, vma_link) {
5122                 if (i915_is_ggtt(vma->vm) &&
5123                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5124                         continue;
5125                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5126                         return true;
5127         }
5128
5129         return false;
5130 }
5131
5132 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5133                                   const struct i915_ggtt_view *view)
5134 {
5135         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5136         struct i915_vma *vma;
5137
5138         list_for_each_entry(vma, &o->vma_list, vma_link)
5139                 if (vma->vm == ggtt &&
5140                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5141                     drm_mm_node_allocated(&vma->node))
5142                         return true;
5143
5144         return false;
5145 }
5146
5147 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5148 {
5149         struct i915_vma *vma;
5150
5151         list_for_each_entry(vma, &o->vma_list, vma_link)
5152                 if (drm_mm_node_allocated(&vma->node))
5153                         return true;
5154
5155         return false;
5156 }
5157
5158 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5159                                 struct i915_address_space *vm)
5160 {
5161         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5162         struct i915_vma *vma;
5163
5164         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5165
5166         BUG_ON(list_empty(&o->vma_list));
5167
5168         list_for_each_entry(vma, &o->vma_list, vma_link) {
5169                 if (i915_is_ggtt(vma->vm) &&
5170                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5171                         continue;
5172                 if (vma->vm == vm)
5173                         return vma->node.size;
5174         }
5175         return 0;
5176 }
5177
5178 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5179 {
5180         struct i915_vma *vma;
5181         list_for_each_entry(vma, &obj->vma_list, vma_link)
5182                 if (vma->pin_count > 0)
5183                         return true;
5184
5185         return false;
5186 }
5187
5188 /* Allocate a new GEM object and fill it with the supplied data */
5189 struct drm_i915_gem_object *
5190 i915_gem_object_create_from_data(struct drm_device *dev,
5191                                  const void *data, size_t size)
5192 {
5193         struct drm_i915_gem_object *obj;
5194         struct sg_table *sg;
5195         size_t bytes;
5196         int ret;
5197
5198         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5199         if (IS_ERR_OR_NULL(obj))
5200                 return obj;
5201
5202         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5203         if (ret)
5204                 goto fail;
5205
5206         ret = i915_gem_object_get_pages(obj);
5207         if (ret)
5208                 goto fail;
5209
5210         i915_gem_object_pin_pages(obj);
5211         sg = obj->pages;
5212         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5213         i915_gem_object_unpin_pages(obj);
5214
5215         if (WARN_ON(bytes != size)) {
5216                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5217                 ret = -EFAULT;
5218                 goto fail;
5219         }
5220
5221         return obj;
5222
5223 fail:
5224         drm_gem_object_unreference(&obj->base);
5225         return ERR_PTR(ret);
5226 }