]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
jfs: fix error path in ialloc
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
45                            struct i915_address_space *vm,
46                            unsigned alignment,
47                            bool map_and_fenceable,
48                            bool nonblocking);
49 static int i915_gem_phys_pwrite(struct drm_device *dev,
50                                 struct drm_i915_gem_object *obj,
51                                 struct drm_i915_gem_pwrite *args,
52                                 struct drm_file *file);
53
54 static void i915_gem_write_fence(struct drm_device *dev, int reg,
55                                  struct drm_i915_gem_object *obj);
56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57                                          struct drm_i915_fence_reg *fence,
58                                          bool enable);
59
60 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
61                                     struct shrink_control *sc);
62 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
63 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67                                   enum i915_cache_level level)
68 {
69         return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75                 return true;
76
77         return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82         if (obj->tiling_mode)
83                 i915_gem_release_mmap(obj);
84
85         /* As we do not have an associated fence register, we will force
86          * a tiling change if we ever need to acquire one.
87          */
88         obj->fence_dirty = false;
89         obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94                                   size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count++;
98         dev_priv->mm.object_memory += size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103                                      size_t size)
104 {
105         spin_lock(&dev_priv->mm.object_stat_lock);
106         dev_priv->mm.object_count--;
107         dev_priv->mm.object_memory -= size;
108         spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114         int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117                    i915_terminally_wedged(error))
118         if (EXIT_COND)
119                 return 0;
120
121         /*
122          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123          * userspace. If it takes that long something really bad is going on and
124          * we should simply try to bail out and fail as gracefully as possible.
125          */
126         ret = wait_event_interruptible_timeout(error->reset_queue,
127                                                EXIT_COND,
128                                                10*HZ);
129         if (ret == 0) {
130                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131                 return -EIO;
132         } else if (ret < 0) {
133                 return ret;
134         }
135 #undef EXIT_COND
136
137         return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         int ret;
144
145         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146         if (ret)
147                 return ret;
148
149         ret = mutex_lock_interruptible(&dev->struct_mutex);
150         if (ret)
151                 return ret;
152
153         WARN_ON(i915_verify_lists(dev));
154         return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160         return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165                     struct drm_file *file)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168         struct drm_i915_gem_init *args = data;
169
170         if (drm_core_check_feature(dev, DRIVER_MODESET))
171                 return -ENODEV;
172
173         if (args->gtt_start >= args->gtt_end ||
174             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175                 return -EINVAL;
176
177         /* GEM with user mode setting was never supported on ilk and later. */
178         if (INTEL_INFO(dev)->gen >= 5)
179                 return -ENODEV;
180
181         mutex_lock(&dev->struct_mutex);
182         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183                                   args->gtt_end);
184         dev_priv->gtt.mappable_end = args->gtt_end;
185         mutex_unlock(&dev->struct_mutex);
186
187         return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192                             struct drm_file *file)
193 {
194         struct drm_i915_private *dev_priv = dev->dev_private;
195         struct drm_i915_gem_get_aperture *args = data;
196         struct drm_i915_gem_object *obj;
197         size_t pinned;
198
199         pinned = 0;
200         mutex_lock(&dev->struct_mutex);
201         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202                 if (obj->pin_count)
203                         pinned += i915_gem_obj_ggtt_size(obj);
204         mutex_unlock(&dev->struct_mutex);
205
206         args->aper_size = dev_priv->gtt.base.total;
207         args->aper_available_size = args->aper_size - pinned;
208
209         return 0;
210 }
211
212 void *i915_gem_object_alloc(struct drm_device *dev)
213 {
214         struct drm_i915_private *dev_priv = dev->dev_private;
215         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
216 }
217
218 void i915_gem_object_free(struct drm_i915_gem_object *obj)
219 {
220         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221         kmem_cache_free(dev_priv->slab, obj);
222 }
223
224 static int
225 i915_gem_create(struct drm_file *file,
226                 struct drm_device *dev,
227                 uint64_t size,
228                 uint32_t *handle_p)
229 {
230         struct drm_i915_gem_object *obj;
231         int ret;
232         u32 handle;
233
234         size = roundup(size, PAGE_SIZE);
235         if (size == 0)
236                 return -EINVAL;
237
238         /* Allocate the new object */
239         obj = i915_gem_alloc_object(dev, size);
240         if (obj == NULL)
241                 return -ENOMEM;
242
243         ret = drm_gem_handle_create(file, &obj->base, &handle);
244         /* drop reference from allocate - handle holds it now */
245         drm_gem_object_unreference_unlocked(&obj->base);
246         if (ret)
247                 return ret;
248
249         *handle_p = handle;
250         return 0;
251 }
252
253 int
254 i915_gem_dumb_create(struct drm_file *file,
255                      struct drm_device *dev,
256                      struct drm_mode_create_dumb *args)
257 {
258         /* have to work out size/pitch and return them */
259         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
260         args->size = args->pitch * args->height;
261         return i915_gem_create(file, dev,
262                                args->size, &args->handle);
263 }
264
265 /**
266  * Creates a new mm object and returns a handle to it.
267  */
268 int
269 i915_gem_create_ioctl(struct drm_device *dev, void *data,
270                       struct drm_file *file)
271 {
272         struct drm_i915_gem_create *args = data;
273
274         return i915_gem_create(file, dev,
275                                args->size, &args->handle);
276 }
277
278 static inline int
279 __copy_to_user_swizzled(char __user *cpu_vaddr,
280                         const char *gpu_vaddr, int gpu_offset,
281                         int length)
282 {
283         int ret, cpu_offset = 0;
284
285         while (length > 0) {
286                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287                 int this_length = min(cacheline_end - gpu_offset, length);
288                 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291                                      gpu_vaddr + swizzled_gpu_offset,
292                                      this_length);
293                 if (ret)
294                         return ret + length;
295
296                 cpu_offset += this_length;
297                 gpu_offset += this_length;
298                 length -= this_length;
299         }
300
301         return 0;
302 }
303
304 static inline int
305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306                           const char __user *cpu_vaddr,
307                           int length)
308 {
309         int ret, cpu_offset = 0;
310
311         while (length > 0) {
312                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313                 int this_length = min(cacheline_end - gpu_offset, length);
314                 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317                                        cpu_vaddr + cpu_offset,
318                                        this_length);
319                 if (ret)
320                         return ret + length;
321
322                 cpu_offset += this_length;
323                 gpu_offset += this_length;
324                 length -= this_length;
325         }
326
327         return 0;
328 }
329
330 /* Per-page copy function for the shmem pread fastpath.
331  * Flushes invalid cachelines before reading the target if
332  * needs_clflush is set. */
333 static int
334 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
335                  char __user *user_data,
336                  bool page_do_bit17_swizzling, bool needs_clflush)
337 {
338         char *vaddr;
339         int ret;
340
341         if (unlikely(page_do_bit17_swizzling))
342                 return -EINVAL;
343
344         vaddr = kmap_atomic(page);
345         if (needs_clflush)
346                 drm_clflush_virt_range(vaddr + shmem_page_offset,
347                                        page_length);
348         ret = __copy_to_user_inatomic(user_data,
349                                       vaddr + shmem_page_offset,
350                                       page_length);
351         kunmap_atomic(vaddr);
352
353         return ret ? -EFAULT : 0;
354 }
355
356 static void
357 shmem_clflush_swizzled_range(char *addr, unsigned long length,
358                              bool swizzled)
359 {
360         if (unlikely(swizzled)) {
361                 unsigned long start = (unsigned long) addr;
362                 unsigned long end = (unsigned long) addr + length;
363
364                 /* For swizzling simply ensure that we always flush both
365                  * channels. Lame, but simple and it works. Swizzled
366                  * pwrite/pread is far from a hotpath - current userspace
367                  * doesn't use it at all. */
368                 start = round_down(start, 128);
369                 end = round_up(end, 128);
370
371                 drm_clflush_virt_range((void *)start, end - start);
372         } else {
373                 drm_clflush_virt_range(addr, length);
374         }
375
376 }
377
378 /* Only difference to the fast-path function is that this can handle bit17
379  * and uses non-atomic copy and kmap functions. */
380 static int
381 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
382                  char __user *user_data,
383                  bool page_do_bit17_swizzling, bool needs_clflush)
384 {
385         char *vaddr;
386         int ret;
387
388         vaddr = kmap(page);
389         if (needs_clflush)
390                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
391                                              page_length,
392                                              page_do_bit17_swizzling);
393
394         if (page_do_bit17_swizzling)
395                 ret = __copy_to_user_swizzled(user_data,
396                                               vaddr, shmem_page_offset,
397                                               page_length);
398         else
399                 ret = __copy_to_user(user_data,
400                                      vaddr + shmem_page_offset,
401                                      page_length);
402         kunmap(page);
403
404         return ret ? - EFAULT : 0;
405 }
406
407 static int
408 i915_gem_shmem_pread(struct drm_device *dev,
409                      struct drm_i915_gem_object *obj,
410                      struct drm_i915_gem_pread *args,
411                      struct drm_file *file)
412 {
413         char __user *user_data;
414         ssize_t remain;
415         loff_t offset;
416         int shmem_page_offset, page_length, ret = 0;
417         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
418         int prefaulted = 0;
419         int needs_clflush = 0;
420         struct sg_page_iter sg_iter;
421
422         user_data = to_user_ptr(args->data_ptr);
423         remain = args->size;
424
425         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
426
427         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
428                 /* If we're not in the cpu read domain, set ourself into the gtt
429                  * read domain and manually flush cachelines (if required). This
430                  * optimizes for the case when the gpu will dirty the data
431                  * anyway again before the next pread happens. */
432                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
433                 if (i915_gem_obj_bound_any(obj)) {
434                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
435                         if (ret)
436                                 return ret;
437                 }
438         }
439
440         ret = i915_gem_object_get_pages(obj);
441         if (ret)
442                 return ret;
443
444         i915_gem_object_pin_pages(obj);
445
446         offset = args->offset;
447
448         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
449                          offset >> PAGE_SHIFT) {
450                 struct page *page = sg_page_iter_page(&sg_iter);
451
452                 if (remain <= 0)
453                         break;
454
455                 /* Operation in this page
456                  *
457                  * shmem_page_offset = offset within page in shmem file
458                  * page_length = bytes to copy for this page
459                  */
460                 shmem_page_offset = offset_in_page(offset);
461                 page_length = remain;
462                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463                         page_length = PAGE_SIZE - shmem_page_offset;
464
465                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
466                         (page_to_phys(page) & (1 << 17)) != 0;
467
468                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
469                                        user_data, page_do_bit17_swizzling,
470                                        needs_clflush);
471                 if (ret == 0)
472                         goto next_page;
473
474                 mutex_unlock(&dev->struct_mutex);
475
476                 if (likely(!i915_prefault_disable) && !prefaulted) {
477                         ret = fault_in_multipages_writeable(user_data, remain);
478                         /* Userspace is tricking us, but we've already clobbered
479                          * its pages with the prefault and promised to write the
480                          * data up to the first fault. Hence ignore any errors
481                          * and just continue. */
482                         (void)ret;
483                         prefaulted = 1;
484                 }
485
486                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487                                        user_data, page_do_bit17_swizzling,
488                                        needs_clflush);
489
490                 mutex_lock(&dev->struct_mutex);
491
492 next_page:
493                 mark_page_accessed(page);
494
495                 if (ret)
496                         goto out;
497
498                 remain -= page_length;
499                 user_data += page_length;
500                 offset += page_length;
501         }
502
503 out:
504         i915_gem_object_unpin_pages(obj);
505
506         return ret;
507 }
508
509 /**
510  * Reads data from the object referenced by handle.
511  *
512  * On error, the contents of *data are undefined.
513  */
514 int
515 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
516                      struct drm_file *file)
517 {
518         struct drm_i915_gem_pread *args = data;
519         struct drm_i915_gem_object *obj;
520         int ret = 0;
521
522         if (args->size == 0)
523                 return 0;
524
525         if (!access_ok(VERIFY_WRITE,
526                        to_user_ptr(args->data_ptr),
527                        args->size))
528                 return -EFAULT;
529
530         ret = i915_mutex_lock_interruptible(dev);
531         if (ret)
532                 return ret;
533
534         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
535         if (&obj->base == NULL) {
536                 ret = -ENOENT;
537                 goto unlock;
538         }
539
540         /* Bounds check source.  */
541         if (args->offset > obj->base.size ||
542             args->size > obj->base.size - args->offset) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         /* prime objects have no backing filp to GEM pread/pwrite
548          * pages from.
549          */
550         if (!obj->base.filp) {
551                 ret = -EINVAL;
552                 goto out;
553         }
554
555         trace_i915_gem_object_pread(obj, args->offset, args->size);
556
557         ret = i915_gem_shmem_pread(dev, obj, args, file);
558
559 out:
560         drm_gem_object_unreference(&obj->base);
561 unlock:
562         mutex_unlock(&dev->struct_mutex);
563         return ret;
564 }
565
566 /* This is the fast write path which cannot handle
567  * page faults in the source data
568  */
569
570 static inline int
571 fast_user_write(struct io_mapping *mapping,
572                 loff_t page_base, int page_offset,
573                 char __user *user_data,
574                 int length)
575 {
576         void __iomem *vaddr_atomic;
577         void *vaddr;
578         unsigned long unwritten;
579
580         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
581         /* We can use the cpu mem copy function because this is X86. */
582         vaddr = (void __force*)vaddr_atomic + page_offset;
583         unwritten = __copy_from_user_inatomic_nocache(vaddr,
584                                                       user_data, length);
585         io_mapping_unmap_atomic(vaddr_atomic);
586         return unwritten;
587 }
588
589 /**
590  * This is the fast pwrite path, where we copy the data directly from the
591  * user into the GTT, uncached.
592  */
593 static int
594 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
595                          struct drm_i915_gem_object *obj,
596                          struct drm_i915_gem_pwrite *args,
597                          struct drm_file *file)
598 {
599         drm_i915_private_t *dev_priv = dev->dev_private;
600         ssize_t remain;
601         loff_t offset, page_base;
602         char __user *user_data;
603         int page_offset, page_length, ret;
604
605         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
606         if (ret)
607                 goto out;
608
609         ret = i915_gem_object_set_to_gtt_domain(obj, true);
610         if (ret)
611                 goto out_unpin;
612
613         ret = i915_gem_object_put_fence(obj);
614         if (ret)
615                 goto out_unpin;
616
617         user_data = to_user_ptr(args->data_ptr);
618         remain = args->size;
619
620         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
621
622         while (remain > 0) {
623                 /* Operation in this page
624                  *
625                  * page_base = page offset within aperture
626                  * page_offset = offset within page
627                  * page_length = bytes to copy for this page
628                  */
629                 page_base = offset & PAGE_MASK;
630                 page_offset = offset_in_page(offset);
631                 page_length = remain;
632                 if ((page_offset + remain) > PAGE_SIZE)
633                         page_length = PAGE_SIZE - page_offset;
634
635                 /* If we get a fault while copying data, then (presumably) our
636                  * source page isn't available.  Return the error and we'll
637                  * retry in the slow path.
638                  */
639                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
640                                     page_offset, user_data, page_length)) {
641                         ret = -EFAULT;
642                         goto out_unpin;
643                 }
644
645                 remain -= page_length;
646                 user_data += page_length;
647                 offset += page_length;
648         }
649
650 out_unpin:
651         i915_gem_object_unpin(obj);
652 out:
653         return ret;
654 }
655
656 /* Per-page copy function for the shmem pwrite fastpath.
657  * Flushes invalid cachelines before writing to the target if
658  * needs_clflush_before is set and flushes out any written cachelines after
659  * writing if needs_clflush is set. */
660 static int
661 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
662                   char __user *user_data,
663                   bool page_do_bit17_swizzling,
664                   bool needs_clflush_before,
665                   bool needs_clflush_after)
666 {
667         char *vaddr;
668         int ret;
669
670         if (unlikely(page_do_bit17_swizzling))
671                 return -EINVAL;
672
673         vaddr = kmap_atomic(page);
674         if (needs_clflush_before)
675                 drm_clflush_virt_range(vaddr + shmem_page_offset,
676                                        page_length);
677         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
678                                                 user_data,
679                                                 page_length);
680         if (needs_clflush_after)
681                 drm_clflush_virt_range(vaddr + shmem_page_offset,
682                                        page_length);
683         kunmap_atomic(vaddr);
684
685         return ret ? -EFAULT : 0;
686 }
687
688 /* Only difference to the fast-path function is that this can handle bit17
689  * and uses non-atomic copy and kmap functions. */
690 static int
691 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
692                   char __user *user_data,
693                   bool page_do_bit17_swizzling,
694                   bool needs_clflush_before,
695                   bool needs_clflush_after)
696 {
697         char *vaddr;
698         int ret;
699
700         vaddr = kmap(page);
701         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
702                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
703                                              page_length,
704                                              page_do_bit17_swizzling);
705         if (page_do_bit17_swizzling)
706                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
707                                                 user_data,
708                                                 page_length);
709         else
710                 ret = __copy_from_user(vaddr + shmem_page_offset,
711                                        user_data,
712                                        page_length);
713         if (needs_clflush_after)
714                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
715                                              page_length,
716                                              page_do_bit17_swizzling);
717         kunmap(page);
718
719         return ret ? -EFAULT : 0;
720 }
721
722 static int
723 i915_gem_shmem_pwrite(struct drm_device *dev,
724                       struct drm_i915_gem_object *obj,
725                       struct drm_i915_gem_pwrite *args,
726                       struct drm_file *file)
727 {
728         ssize_t remain;
729         loff_t offset;
730         char __user *user_data;
731         int shmem_page_offset, page_length, ret = 0;
732         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
733         int hit_slowpath = 0;
734         int needs_clflush_after = 0;
735         int needs_clflush_before = 0;
736         struct sg_page_iter sg_iter;
737
738         user_data = to_user_ptr(args->data_ptr);
739         remain = args->size;
740
741         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
742
743         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744                 /* If we're not in the cpu write domain, set ourself into the gtt
745                  * write domain and manually flush cachelines (if required). This
746                  * optimizes for the case when the gpu will use the data
747                  * right away and we therefore have to clflush anyway. */
748                 needs_clflush_after = cpu_write_needs_clflush(obj);
749                 if (i915_gem_obj_bound_any(obj)) {
750                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
751                         if (ret)
752                                 return ret;
753                 }
754         }
755         /* Same trick applies to invalidate partially written cachelines read
756          * before writing. */
757         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
758                 needs_clflush_before =
759                         !cpu_cache_is_coherent(dev, obj->cache_level);
760
761         ret = i915_gem_object_get_pages(obj);
762         if (ret)
763                 return ret;
764
765         i915_gem_object_pin_pages(obj);
766
767         offset = args->offset;
768         obj->dirty = 1;
769
770         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
771                          offset >> PAGE_SHIFT) {
772                 struct page *page = sg_page_iter_page(&sg_iter);
773                 int partial_cacheline_write;
774
775                 if (remain <= 0)
776                         break;
777
778                 /* Operation in this page
779                  *
780                  * shmem_page_offset = offset within page in shmem file
781                  * page_length = bytes to copy for this page
782                  */
783                 shmem_page_offset = offset_in_page(offset);
784
785                 page_length = remain;
786                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
787                         page_length = PAGE_SIZE - shmem_page_offset;
788
789                 /* If we don't overwrite a cacheline completely we need to be
790                  * careful to have up-to-date data by first clflushing. Don't
791                  * overcomplicate things and flush the entire patch. */
792                 partial_cacheline_write = needs_clflush_before &&
793                         ((shmem_page_offset | page_length)
794                                 & (boot_cpu_data.x86_clflush_size - 1));
795
796                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
797                         (page_to_phys(page) & (1 << 17)) != 0;
798
799                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
800                                         user_data, page_do_bit17_swizzling,
801                                         partial_cacheline_write,
802                                         needs_clflush_after);
803                 if (ret == 0)
804                         goto next_page;
805
806                 hit_slowpath = 1;
807                 mutex_unlock(&dev->struct_mutex);
808                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
809                                         user_data, page_do_bit17_swizzling,
810                                         partial_cacheline_write,
811                                         needs_clflush_after);
812
813                 mutex_lock(&dev->struct_mutex);
814
815 next_page:
816                 set_page_dirty(page);
817                 mark_page_accessed(page);
818
819                 if (ret)
820                         goto out;
821
822                 remain -= page_length;
823                 user_data += page_length;
824                 offset += page_length;
825         }
826
827 out:
828         i915_gem_object_unpin_pages(obj);
829
830         if (hit_slowpath) {
831                 /*
832                  * Fixup: Flush cpu caches in case we didn't flush the dirty
833                  * cachelines in-line while writing and the object moved
834                  * out of the cpu write domain while we've dropped the lock.
835                  */
836                 if (!needs_clflush_after &&
837                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
838                         if (i915_gem_clflush_object(obj, obj->pin_display))
839                                 i915_gem_chipset_flush(dev);
840                 }
841         }
842
843         if (needs_clflush_after)
844                 i915_gem_chipset_flush(dev);
845
846         return ret;
847 }
848
849 /**
850  * Writes data to the object referenced by handle.
851  *
852  * On error, the contents of the buffer that were to be modified are undefined.
853  */
854 int
855 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856                       struct drm_file *file)
857 {
858         struct drm_i915_gem_pwrite *args = data;
859         struct drm_i915_gem_object *obj;
860         int ret;
861
862         if (args->size == 0)
863                 return 0;
864
865         if (!access_ok(VERIFY_READ,
866                        to_user_ptr(args->data_ptr),
867                        args->size))
868                 return -EFAULT;
869
870         if (likely(!i915_prefault_disable)) {
871                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
872                                                    args->size);
873                 if (ret)
874                         return -EFAULT;
875         }
876
877         ret = i915_mutex_lock_interruptible(dev);
878         if (ret)
879                 return ret;
880
881         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
882         if (&obj->base == NULL) {
883                 ret = -ENOENT;
884                 goto unlock;
885         }
886
887         /* Bounds check destination. */
888         if (args->offset > obj->base.size ||
889             args->size > obj->base.size - args->offset) {
890                 ret = -EINVAL;
891                 goto out;
892         }
893
894         /* prime objects have no backing filp to GEM pread/pwrite
895          * pages from.
896          */
897         if (!obj->base.filp) {
898                 ret = -EINVAL;
899                 goto out;
900         }
901
902         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
903
904         ret = -EFAULT;
905         /* We can only do the GTT pwrite on untiled buffers, as otherwise
906          * it would end up going through the fenced access, and we'll get
907          * different detiling behavior between reading and writing.
908          * pread/pwrite currently are reading and writing from the CPU
909          * perspective, requiring manual detiling by the client.
910          */
911         if (obj->phys_obj) {
912                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
913                 goto out;
914         }
915
916         if (obj->tiling_mode == I915_TILING_NONE &&
917             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
918             cpu_write_needs_clflush(obj)) {
919                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
920                 /* Note that the gtt paths might fail with non-page-backed user
921                  * pointers (e.g. gtt mappings when moving data between
922                  * textures). Fallback to the shmem path in that case. */
923         }
924
925         if (ret == -EFAULT || ret == -ENOSPC)
926                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927
928 out:
929         drm_gem_object_unreference(&obj->base);
930 unlock:
931         mutex_unlock(&dev->struct_mutex);
932         return ret;
933 }
934
935 int
936 i915_gem_check_wedge(struct i915_gpu_error *error,
937                      bool interruptible)
938 {
939         if (i915_reset_in_progress(error)) {
940                 /* Non-interruptible callers can't handle -EAGAIN, hence return
941                  * -EIO unconditionally for these. */
942                 if (!interruptible)
943                         return -EIO;
944
945                 /* Recovery complete, but the reset failed ... */
946                 if (i915_terminally_wedged(error))
947                         return -EIO;
948
949                 return -EAGAIN;
950         }
951
952         return 0;
953 }
954
955 /*
956  * Compare seqno against outstanding lazy request. Emit a request if they are
957  * equal.
958  */
959 static int
960 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
961 {
962         int ret;
963
964         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
965
966         ret = 0;
967         if (seqno == ring->outstanding_lazy_request)
968                 ret = i915_add_request(ring, NULL);
969
970         return ret;
971 }
972
973 /**
974  * __wait_seqno - wait until execution of seqno has finished
975  * @ring: the ring expected to report seqno
976  * @seqno: duh!
977  * @reset_counter: reset sequence associated with the given seqno
978  * @interruptible: do an interruptible wait (normally yes)
979  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
980  *
981  * Note: It is of utmost importance that the passed in seqno and reset_counter
982  * values have been read by the caller in an smp safe manner. Where read-side
983  * locks are involved, it is sufficient to read the reset_counter before
984  * unlocking the lock that protects the seqno. For lockless tricks, the
985  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
986  * inserted.
987  *
988  * Returns 0 if the seqno was found within the alloted time. Else returns the
989  * errno with remaining time filled in timeout argument.
990  */
991 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
992                         unsigned reset_counter,
993                         bool interruptible, struct timespec *timeout)
994 {
995         drm_i915_private_t *dev_priv = ring->dev->dev_private;
996         struct timespec before, now, wait_time={1,0};
997         unsigned long timeout_jiffies;
998         long end;
999         bool wait_forever = true;
1000         int ret;
1001
1002         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1003
1004         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005                 return 0;
1006
1007         trace_i915_gem_request_wait_begin(ring, seqno);
1008
1009         if (timeout != NULL) {
1010                 wait_time = *timeout;
1011                 wait_forever = false;
1012         }
1013
1014         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1015
1016         if (WARN_ON(!ring->irq_get(ring)))
1017                 return -ENODEV;
1018
1019         /* Record current time in case interrupted by signal, or wedged * */
1020         getrawmonotonic(&before);
1021
1022 #define EXIT_COND \
1023         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1024          i915_reset_in_progress(&dev_priv->gpu_error) || \
1025          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1026         do {
1027                 if (interruptible)
1028                         end = wait_event_interruptible_timeout(ring->irq_queue,
1029                                                                EXIT_COND,
1030                                                                timeout_jiffies);
1031                 else
1032                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1033                                                  timeout_jiffies);
1034
1035                 /* We need to check whether any gpu reset happened in between
1036                  * the caller grabbing the seqno and now ... */
1037                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1038                         end = -EAGAIN;
1039
1040                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1041                  * gone. */
1042                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1043                 if (ret)
1044                         end = ret;
1045         } while (end == 0 && wait_forever);
1046
1047         getrawmonotonic(&now);
1048
1049         ring->irq_put(ring);
1050         trace_i915_gem_request_wait_end(ring, seqno);
1051 #undef EXIT_COND
1052
1053         if (timeout) {
1054                 struct timespec sleep_time = timespec_sub(now, before);
1055                 *timeout = timespec_sub(*timeout, sleep_time);
1056                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1057                         set_normalized_timespec(timeout, 0, 0);
1058         }
1059
1060         switch (end) {
1061         case -EIO:
1062         case -EAGAIN: /* Wedged */
1063         case -ERESTARTSYS: /* Signal */
1064                 return (int)end;
1065         case 0: /* Timeout */
1066                 return -ETIME;
1067         default: /* Completed */
1068                 WARN_ON(end < 0); /* We're not aware of other errors */
1069                 return 0;
1070         }
1071 }
1072
1073 /**
1074  * Waits for a sequence number to be signaled, and cleans up the
1075  * request and object lists appropriately for that event.
1076  */
1077 int
1078 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1079 {
1080         struct drm_device *dev = ring->dev;
1081         struct drm_i915_private *dev_priv = dev->dev_private;
1082         bool interruptible = dev_priv->mm.interruptible;
1083         int ret;
1084
1085         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1086         BUG_ON(seqno == 0);
1087
1088         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1089         if (ret)
1090                 return ret;
1091
1092         ret = i915_gem_check_olr(ring, seqno);
1093         if (ret)
1094                 return ret;
1095
1096         return __wait_seqno(ring, seqno,
1097                             atomic_read(&dev_priv->gpu_error.reset_counter),
1098                             interruptible, NULL);
1099 }
1100
1101 static int
1102 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1103                                      struct intel_ring_buffer *ring)
1104 {
1105         i915_gem_retire_requests_ring(ring);
1106
1107         /* Manually manage the write flush as we may have not yet
1108          * retired the buffer.
1109          *
1110          * Note that the last_write_seqno is always the earlier of
1111          * the two (read/write) seqno, so if we haved successfully waited,
1112          * we know we have passed the last write.
1113          */
1114         obj->last_write_seqno = 0;
1115         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1116
1117         return 0;
1118 }
1119
1120 /**
1121  * Ensures that all rendering to the object has completed and the object is
1122  * safe to unbind from the GTT or access from the CPU.
1123  */
1124 static __must_check int
1125 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1126                                bool readonly)
1127 {
1128         struct intel_ring_buffer *ring = obj->ring;
1129         u32 seqno;
1130         int ret;
1131
1132         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1133         if (seqno == 0)
1134                 return 0;
1135
1136         ret = i915_wait_seqno(ring, seqno);
1137         if (ret)
1138                 return ret;
1139
1140         return i915_gem_object_wait_rendering__tail(obj, ring);
1141 }
1142
1143 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1144  * as the object state may change during this call.
1145  */
1146 static __must_check int
1147 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1148                                             bool readonly)
1149 {
1150         struct drm_device *dev = obj->base.dev;
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         struct intel_ring_buffer *ring = obj->ring;
1153         unsigned reset_counter;
1154         u32 seqno;
1155         int ret;
1156
1157         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1158         BUG_ON(!dev_priv->mm.interruptible);
1159
1160         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1161         if (seqno == 0)
1162                 return 0;
1163
1164         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1165         if (ret)
1166                 return ret;
1167
1168         ret = i915_gem_check_olr(ring, seqno);
1169         if (ret)
1170                 return ret;
1171
1172         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1173         mutex_unlock(&dev->struct_mutex);
1174         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1175         mutex_lock(&dev->struct_mutex);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /**
1183  * Called when user space prepares to use an object with the CPU, either
1184  * through the mmap ioctl's mapping or a GTT mapping.
1185  */
1186 int
1187 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1188                           struct drm_file *file)
1189 {
1190         struct drm_i915_gem_set_domain *args = data;
1191         struct drm_i915_gem_object *obj;
1192         uint32_t read_domains = args->read_domains;
1193         uint32_t write_domain = args->write_domain;
1194         int ret;
1195
1196         /* Only handle setting domains to types used by the CPU. */
1197         if (write_domain & I915_GEM_GPU_DOMAINS)
1198                 return -EINVAL;
1199
1200         if (read_domains & I915_GEM_GPU_DOMAINS)
1201                 return -EINVAL;
1202
1203         /* Having something in the write domain implies it's in the read
1204          * domain, and only that read domain.  Enforce that in the request.
1205          */
1206         if (write_domain != 0 && read_domains != write_domain)
1207                 return -EINVAL;
1208
1209         ret = i915_mutex_lock_interruptible(dev);
1210         if (ret)
1211                 return ret;
1212
1213         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1214         if (&obj->base == NULL) {
1215                 ret = -ENOENT;
1216                 goto unlock;
1217         }
1218
1219         /* Try to flush the object off the GPU without holding the lock.
1220          * We will repeat the flush holding the lock in the normal manner
1221          * to catch cases where we are gazumped.
1222          */
1223         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1224         if (ret)
1225                 goto unref;
1226
1227         if (read_domains & I915_GEM_DOMAIN_GTT) {
1228                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1229
1230                 /* Silently promote "you're not bound, there was nothing to do"
1231                  * to success, since the client was just asking us to
1232                  * make sure everything was done.
1233                  */
1234                 if (ret == -EINVAL)
1235                         ret = 0;
1236         } else {
1237                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1238         }
1239
1240 unref:
1241         drm_gem_object_unreference(&obj->base);
1242 unlock:
1243         mutex_unlock(&dev->struct_mutex);
1244         return ret;
1245 }
1246
1247 /**
1248  * Called when user space has done writes to this buffer
1249  */
1250 int
1251 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1252                          struct drm_file *file)
1253 {
1254         struct drm_i915_gem_sw_finish *args = data;
1255         struct drm_i915_gem_object *obj;
1256         int ret = 0;
1257
1258         ret = i915_mutex_lock_interruptible(dev);
1259         if (ret)
1260                 return ret;
1261
1262         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1263         if (&obj->base == NULL) {
1264                 ret = -ENOENT;
1265                 goto unlock;
1266         }
1267
1268         /* Pinned buffers may be scanout, so flush the cache */
1269         if (obj->pin_display)
1270                 i915_gem_object_flush_cpu_write_domain(obj, true);
1271
1272         drm_gem_object_unreference(&obj->base);
1273 unlock:
1274         mutex_unlock(&dev->struct_mutex);
1275         return ret;
1276 }
1277
1278 /**
1279  * Maps the contents of an object, returning the address it is mapped
1280  * into.
1281  *
1282  * While the mapping holds a reference on the contents of the object, it doesn't
1283  * imply a ref on the object itself.
1284  */
1285 int
1286 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1287                     struct drm_file *file)
1288 {
1289         struct drm_i915_gem_mmap *args = data;
1290         struct drm_gem_object *obj;
1291         unsigned long addr;
1292
1293         obj = drm_gem_object_lookup(dev, file, args->handle);
1294         if (obj == NULL)
1295                 return -ENOENT;
1296
1297         /* prime objects have no backing filp to GEM mmap
1298          * pages from.
1299          */
1300         if (!obj->filp) {
1301                 drm_gem_object_unreference_unlocked(obj);
1302                 return -EINVAL;
1303         }
1304
1305         addr = vm_mmap(obj->filp, 0, args->size,
1306                        PROT_READ | PROT_WRITE, MAP_SHARED,
1307                        args->offset);
1308         drm_gem_object_unreference_unlocked(obj);
1309         if (IS_ERR((void *)addr))
1310                 return addr;
1311
1312         args->addr_ptr = (uint64_t) addr;
1313
1314         return 0;
1315 }
1316
1317 /**
1318  * i915_gem_fault - fault a page into the GTT
1319  * vma: VMA in question
1320  * vmf: fault info
1321  *
1322  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1323  * from userspace.  The fault handler takes care of binding the object to
1324  * the GTT (if needed), allocating and programming a fence register (again,
1325  * only if needed based on whether the old reg is still valid or the object
1326  * is tiled) and inserting a new PTE into the faulting process.
1327  *
1328  * Note that the faulting process may involve evicting existing objects
1329  * from the GTT and/or fence registers to make room.  So performance may
1330  * suffer if the GTT working set is large or there are few fence registers
1331  * left.
1332  */
1333 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1334 {
1335         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1336         struct drm_device *dev = obj->base.dev;
1337         drm_i915_private_t *dev_priv = dev->dev_private;
1338         pgoff_t page_offset;
1339         unsigned long pfn;
1340         int ret = 0;
1341         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1342
1343         /* We don't use vmf->pgoff since that has the fake offset */
1344         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1345                 PAGE_SHIFT;
1346
1347         ret = i915_mutex_lock_interruptible(dev);
1348         if (ret)
1349                 goto out;
1350
1351         trace_i915_gem_object_fault(obj, page_offset, true, write);
1352
1353         /* Access to snoopable pages through the GTT is incoherent. */
1354         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1355                 ret = -EINVAL;
1356                 goto unlock;
1357         }
1358
1359         /* Now bind it into the GTT if needed */
1360         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1361         if (ret)
1362                 goto unlock;
1363
1364         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1365         if (ret)
1366                 goto unpin;
1367
1368         ret = i915_gem_object_get_fence(obj);
1369         if (ret)
1370                 goto unpin;
1371
1372         obj->fault_mappable = true;
1373
1374         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1375         pfn >>= PAGE_SHIFT;
1376         pfn += page_offset;
1377
1378         /* Finally, remap it using the new GTT offset */
1379         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unpin:
1381         i915_gem_object_unpin(obj);
1382 unlock:
1383         mutex_unlock(&dev->struct_mutex);
1384 out:
1385         switch (ret) {
1386         case -EIO:
1387                 /* If this -EIO is due to a gpu hang, give the reset code a
1388                  * chance to clean up the mess. Otherwise return the proper
1389                  * SIGBUS. */
1390                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1391                         return VM_FAULT_SIGBUS;
1392         case -EAGAIN:
1393                 /* Give the error handler a chance to run and move the
1394                  * objects off the GPU active list. Next time we service the
1395                  * fault, we should be able to transition the page into the
1396                  * GTT without touching the GPU (and so avoid further
1397                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1398                  * with coherency, just lost writes.
1399                  */
1400                 set_need_resched();
1401         case 0:
1402         case -ERESTARTSYS:
1403         case -EINTR:
1404         case -EBUSY:
1405                 /*
1406                  * EBUSY is ok: this just means that another thread
1407                  * already did the job.
1408                  */
1409                 return VM_FAULT_NOPAGE;
1410         case -ENOMEM:
1411                 return VM_FAULT_OOM;
1412         case -ENOSPC:
1413                 return VM_FAULT_SIGBUS;
1414         default:
1415                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1416                 return VM_FAULT_SIGBUS;
1417         }
1418 }
1419
1420 /**
1421  * i915_gem_release_mmap - remove physical page mappings
1422  * @obj: obj in question
1423  *
1424  * Preserve the reservation of the mmapping with the DRM core code, but
1425  * relinquish ownership of the pages back to the system.
1426  *
1427  * It is vital that we remove the page mapping if we have mapped a tiled
1428  * object through the GTT and then lose the fence register due to
1429  * resource pressure. Similarly if the object has been moved out of the
1430  * aperture, than pages mapped into userspace must be revoked. Removing the
1431  * mapping will then trigger a page fault on the next user access, allowing
1432  * fixup by i915_gem_fault().
1433  */
1434 void
1435 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1436 {
1437         if (!obj->fault_mappable)
1438                 return;
1439
1440         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1441         obj->fault_mappable = false;
1442 }
1443
1444 uint32_t
1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446 {
1447         uint32_t gtt_size;
1448
1449         if (INTEL_INFO(dev)->gen >= 4 ||
1450             tiling_mode == I915_TILING_NONE)
1451                 return size;
1452
1453         /* Previous chips need a power-of-two fence region when tiling */
1454         if (INTEL_INFO(dev)->gen == 3)
1455                 gtt_size = 1024*1024;
1456         else
1457                 gtt_size = 512*1024;
1458
1459         while (gtt_size < size)
1460                 gtt_size <<= 1;
1461
1462         return gtt_size;
1463 }
1464
1465 /**
1466  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467  * @obj: object to check
1468  *
1469  * Return the required GTT alignment for an object, taking into account
1470  * potential fence register mapping.
1471  */
1472 uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1474                            int tiling_mode, bool fenced)
1475 {
1476         /*
1477          * Minimum alignment is 4k (GTT page size), but might be greater
1478          * if a fence register is needed for the object.
1479          */
1480         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1481             tiling_mode == I915_TILING_NONE)
1482                 return 4096;
1483
1484         /*
1485          * Previous chips need to be aligned to the size of the smallest
1486          * fence register that can contain the object.
1487          */
1488         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1489 }
1490
1491 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1492 {
1493         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1494         int ret;
1495
1496         if (drm_vma_node_has_offset(&obj->base.vma_node))
1497                 return 0;
1498
1499         dev_priv->mm.shrinker_no_lock_stealing = true;
1500
1501         ret = drm_gem_create_mmap_offset(&obj->base);
1502         if (ret != -ENOSPC)
1503                 goto out;
1504
1505         /* Badly fragmented mmap space? The only way we can recover
1506          * space is by destroying unwanted objects. We can't randomly release
1507          * mmap_offsets as userspace expects them to be persistent for the
1508          * lifetime of the objects. The closest we can is to release the
1509          * offsets on purgeable objects by truncating it and marking it purged,
1510          * which prevents userspace from ever using that object again.
1511          */
1512         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1513         ret = drm_gem_create_mmap_offset(&obj->base);
1514         if (ret != -ENOSPC)
1515                 goto out;
1516
1517         i915_gem_shrink_all(dev_priv);
1518         ret = drm_gem_create_mmap_offset(&obj->base);
1519 out:
1520         dev_priv->mm.shrinker_no_lock_stealing = false;
1521
1522         return ret;
1523 }
1524
1525 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1526 {
1527         drm_gem_free_mmap_offset(&obj->base);
1528 }
1529
1530 int
1531 i915_gem_mmap_gtt(struct drm_file *file,
1532                   struct drm_device *dev,
1533                   uint32_t handle,
1534                   uint64_t *offset)
1535 {
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537         struct drm_i915_gem_object *obj;
1538         int ret;
1539
1540         ret = i915_mutex_lock_interruptible(dev);
1541         if (ret)
1542                 return ret;
1543
1544         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1545         if (&obj->base == NULL) {
1546                 ret = -ENOENT;
1547                 goto unlock;
1548         }
1549
1550         if (obj->base.size > dev_priv->gtt.mappable_end) {
1551                 ret = -E2BIG;
1552                 goto out;
1553         }
1554
1555         if (obj->madv != I915_MADV_WILLNEED) {
1556                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1557                 ret = -EINVAL;
1558                 goto out;
1559         }
1560
1561         ret = i915_gem_object_create_mmap_offset(obj);
1562         if (ret)
1563                 goto out;
1564
1565         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1566
1567 out:
1568         drm_gem_object_unreference(&obj->base);
1569 unlock:
1570         mutex_unlock(&dev->struct_mutex);
1571         return ret;
1572 }
1573
1574 /**
1575  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1576  * @dev: DRM device
1577  * @data: GTT mapping ioctl data
1578  * @file: GEM object info
1579  *
1580  * Simply returns the fake offset to userspace so it can mmap it.
1581  * The mmap call will end up in drm_gem_mmap(), which will set things
1582  * up so we can get faults in the handler above.
1583  *
1584  * The fault handler will take care of binding the object into the GTT
1585  * (since it may have been evicted to make room for something), allocating
1586  * a fence register, and mapping the appropriate aperture address into
1587  * userspace.
1588  */
1589 int
1590 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1591                         struct drm_file *file)
1592 {
1593         struct drm_i915_gem_mmap_gtt *args = data;
1594
1595         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1596 }
1597
1598 /* Immediately discard the backing storage */
1599 static void
1600 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1601 {
1602         struct inode *inode;
1603
1604         i915_gem_object_free_mmap_offset(obj);
1605
1606         if (obj->base.filp == NULL)
1607                 return;
1608
1609         /* Our goal here is to return as much of the memory as
1610          * is possible back to the system as we are called from OOM.
1611          * To do this we must instruct the shmfs to drop all of its
1612          * backing pages, *now*.
1613          */
1614         inode = file_inode(obj->base.filp);
1615         shmem_truncate_range(inode, 0, (loff_t)-1);
1616
1617         obj->madv = __I915_MADV_PURGED;
1618 }
1619
1620 static inline int
1621 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1622 {
1623         return obj->madv == I915_MADV_DONTNEED;
1624 }
1625
1626 static void
1627 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1628 {
1629         struct sg_page_iter sg_iter;
1630         int ret;
1631
1632         BUG_ON(obj->madv == __I915_MADV_PURGED);
1633
1634         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1635         if (ret) {
1636                 /* In the event of a disaster, abandon all caches and
1637                  * hope for the best.
1638                  */
1639                 WARN_ON(ret != -EIO);
1640                 i915_gem_clflush_object(obj, true);
1641                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1642         }
1643
1644         if (i915_gem_object_needs_bit17_swizzle(obj))
1645                 i915_gem_object_save_bit_17_swizzle(obj);
1646
1647         if (obj->madv == I915_MADV_DONTNEED)
1648                 obj->dirty = 0;
1649
1650         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1651                 struct page *page = sg_page_iter_page(&sg_iter);
1652
1653                 if (obj->dirty)
1654                         set_page_dirty(page);
1655
1656                 if (obj->madv == I915_MADV_WILLNEED)
1657                         mark_page_accessed(page);
1658
1659                 page_cache_release(page);
1660         }
1661         obj->dirty = 0;
1662
1663         sg_free_table(obj->pages);
1664         kfree(obj->pages);
1665 }
1666
1667 int
1668 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1669 {
1670         const struct drm_i915_gem_object_ops *ops = obj->ops;
1671
1672         if (obj->pages == NULL)
1673                 return 0;
1674
1675         if (obj->pages_pin_count)
1676                 return -EBUSY;
1677
1678         BUG_ON(i915_gem_obj_bound_any(obj));
1679
1680         /* ->put_pages might need to allocate memory for the bit17 swizzle
1681          * array, hence protect them from being reaped by removing them from gtt
1682          * lists early. */
1683         list_del(&obj->global_list);
1684
1685         ops->put_pages(obj);
1686         obj->pages = NULL;
1687
1688         if (i915_gem_object_is_purgeable(obj))
1689                 i915_gem_object_truncate(obj);
1690
1691         return 0;
1692 }
1693
1694 static long
1695 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1696                   bool purgeable_only)
1697 {
1698         struct drm_i915_gem_object *obj, *next;
1699         long count = 0;
1700
1701         list_for_each_entry_safe(obj, next,
1702                                  &dev_priv->mm.unbound_list,
1703                                  global_list) {
1704                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1705                     i915_gem_object_put_pages(obj) == 0) {
1706                         count += obj->base.size >> PAGE_SHIFT;
1707                         if (count >= target)
1708                                 return count;
1709                 }
1710         }
1711
1712         list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1713                                  global_list) {
1714                 struct i915_vma *vma, *v;
1715
1716                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1717                         continue;
1718
1719                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1720                         if (i915_vma_unbind(vma))
1721                                 break;
1722
1723                 if (!i915_gem_object_put_pages(obj)) {
1724                         count += obj->base.size >> PAGE_SHIFT;
1725                         if (count >= target)
1726                                 return count;
1727                 }
1728         }
1729
1730         return count;
1731 }
1732
1733 static long
1734 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1735 {
1736         return __i915_gem_shrink(dev_priv, target, true);
1737 }
1738
1739 static void
1740 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1741 {
1742         struct drm_i915_gem_object *obj, *next;
1743
1744         i915_gem_evict_everything(dev_priv->dev);
1745
1746         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1747                                  global_list)
1748                 i915_gem_object_put_pages(obj);
1749 }
1750
1751 static int
1752 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1753 {
1754         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1755         int page_count, i;
1756         struct address_space *mapping;
1757         struct sg_table *st;
1758         struct scatterlist *sg;
1759         struct sg_page_iter sg_iter;
1760         struct page *page;
1761         unsigned long last_pfn = 0;     /* suppress gcc warning */
1762         gfp_t gfp;
1763
1764         /* Assert that the object is not currently in any GPU domain. As it
1765          * wasn't in the GTT, there shouldn't be any way it could have been in
1766          * a GPU cache
1767          */
1768         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1769         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1770
1771         st = kmalloc(sizeof(*st), GFP_KERNEL);
1772         if (st == NULL)
1773                 return -ENOMEM;
1774
1775         page_count = obj->base.size / PAGE_SIZE;
1776         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1777                 sg_free_table(st);
1778                 kfree(st);
1779                 return -ENOMEM;
1780         }
1781
1782         /* Get the list of pages out of our struct file.  They'll be pinned
1783          * at this point until we release them.
1784          *
1785          * Fail silently without starting the shrinker
1786          */
1787         mapping = file_inode(obj->base.filp)->i_mapping;
1788         gfp = mapping_gfp_mask(mapping);
1789         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1790         gfp &= ~(__GFP_IO | __GFP_WAIT);
1791         sg = st->sgl;
1792         st->nents = 0;
1793         for (i = 0; i < page_count; i++) {
1794                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795                 if (IS_ERR(page)) {
1796                         i915_gem_purge(dev_priv, page_count);
1797                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798                 }
1799                 if (IS_ERR(page)) {
1800                         /* We've tried hard to allocate the memory by reaping
1801                          * our own buffer, now let the real VM do its job and
1802                          * go down in flames if truly OOM.
1803                          */
1804                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1805                         gfp |= __GFP_IO | __GFP_WAIT;
1806
1807                         i915_gem_shrink_all(dev_priv);
1808                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809                         if (IS_ERR(page))
1810                                 goto err_pages;
1811
1812                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1813                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1814                 }
1815 #ifdef CONFIG_SWIOTLB
1816                 if (swiotlb_nr_tbl()) {
1817                         st->nents++;
1818                         sg_set_page(sg, page, PAGE_SIZE, 0);
1819                         sg = sg_next(sg);
1820                         continue;
1821                 }
1822 #endif
1823                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1824                         if (i)
1825                                 sg = sg_next(sg);
1826                         st->nents++;
1827                         sg_set_page(sg, page, PAGE_SIZE, 0);
1828                 } else {
1829                         sg->length += PAGE_SIZE;
1830                 }
1831                 last_pfn = page_to_pfn(page);
1832         }
1833 #ifdef CONFIG_SWIOTLB
1834         if (!swiotlb_nr_tbl())
1835 #endif
1836                 sg_mark_end(sg);
1837         obj->pages = st;
1838
1839         if (i915_gem_object_needs_bit17_swizzle(obj))
1840                 i915_gem_object_do_bit_17_swizzle(obj);
1841
1842         return 0;
1843
1844 err_pages:
1845         sg_mark_end(sg);
1846         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1847                 page_cache_release(sg_page_iter_page(&sg_iter));
1848         sg_free_table(st);
1849         kfree(st);
1850         return PTR_ERR(page);
1851 }
1852
1853 /* Ensure that the associated pages are gathered from the backing storage
1854  * and pinned into our object. i915_gem_object_get_pages() may be called
1855  * multiple times before they are released by a single call to
1856  * i915_gem_object_put_pages() - once the pages are no longer referenced
1857  * either as a result of memory pressure (reaping pages under the shrinker)
1858  * or as the object is itself released.
1859  */
1860 int
1861 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1862 {
1863         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1864         const struct drm_i915_gem_object_ops *ops = obj->ops;
1865         int ret;
1866
1867         if (obj->pages)
1868                 return 0;
1869
1870         if (obj->madv != I915_MADV_WILLNEED) {
1871                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1872                 return -EINVAL;
1873         }
1874
1875         BUG_ON(obj->pages_pin_count);
1876
1877         ret = ops->get_pages(obj);
1878         if (ret)
1879                 return ret;
1880
1881         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1882         return 0;
1883 }
1884
1885 void
1886 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1887                                struct intel_ring_buffer *ring)
1888 {
1889         struct drm_device *dev = obj->base.dev;
1890         struct drm_i915_private *dev_priv = dev->dev_private;
1891         u32 seqno = intel_ring_get_seqno(ring);
1892
1893         BUG_ON(ring == NULL);
1894         if (obj->ring != ring && obj->last_write_seqno) {
1895                 /* Keep the seqno relative to the current ring */
1896                 obj->last_write_seqno = seqno;
1897         }
1898         obj->ring = ring;
1899
1900         /* Add a reference if we're newly entering the active list. */
1901         if (!obj->active) {
1902                 drm_gem_object_reference(&obj->base);
1903                 obj->active = 1;
1904         }
1905
1906         list_move_tail(&obj->ring_list, &ring->active_list);
1907
1908         obj->last_read_seqno = seqno;
1909
1910         if (obj->fenced_gpu_access) {
1911                 obj->last_fenced_seqno = seqno;
1912
1913                 /* Bump MRU to take account of the delayed flush */
1914                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1915                         struct drm_i915_fence_reg *reg;
1916
1917                         reg = &dev_priv->fence_regs[obj->fence_reg];
1918                         list_move_tail(&reg->lru_list,
1919                                        &dev_priv->mm.fence_list);
1920                 }
1921         }
1922 }
1923
1924 static void
1925 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1926 {
1927         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1928         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1929         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1930
1931         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1932         BUG_ON(!obj->active);
1933
1934         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1935
1936         list_del_init(&obj->ring_list);
1937         obj->ring = NULL;
1938
1939         obj->last_read_seqno = 0;
1940         obj->last_write_seqno = 0;
1941         obj->base.write_domain = 0;
1942
1943         obj->last_fenced_seqno = 0;
1944         obj->fenced_gpu_access = false;
1945
1946         obj->active = 0;
1947         drm_gem_object_unreference(&obj->base);
1948
1949         WARN_ON(i915_verify_lists(dev));
1950 }
1951
1952 static int
1953 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1954 {
1955         struct drm_i915_private *dev_priv = dev->dev_private;
1956         struct intel_ring_buffer *ring;
1957         int ret, i, j;
1958
1959         /* Carefully retire all requests without writing to the rings */
1960         for_each_ring(ring, dev_priv, i) {
1961                 ret = intel_ring_idle(ring);
1962                 if (ret)
1963                         return ret;
1964         }
1965         i915_gem_retire_requests(dev);
1966
1967         /* Finally reset hw state */
1968         for_each_ring(ring, dev_priv, i) {
1969                 intel_ring_init_seqno(ring, seqno);
1970
1971                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1972                         ring->sync_seqno[j] = 0;
1973         }
1974
1975         return 0;
1976 }
1977
1978 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1979 {
1980         struct drm_i915_private *dev_priv = dev->dev_private;
1981         int ret;
1982
1983         if (seqno == 0)
1984                 return -EINVAL;
1985
1986         /* HWS page needs to be set less than what we
1987          * will inject to ring
1988          */
1989         ret = i915_gem_init_seqno(dev, seqno - 1);
1990         if (ret)
1991                 return ret;
1992
1993         /* Carefully set the last_seqno value so that wrap
1994          * detection still works
1995          */
1996         dev_priv->next_seqno = seqno;
1997         dev_priv->last_seqno = seqno - 1;
1998         if (dev_priv->last_seqno == 0)
1999                 dev_priv->last_seqno--;
2000
2001         return 0;
2002 }
2003
2004 int
2005 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2006 {
2007         struct drm_i915_private *dev_priv = dev->dev_private;
2008
2009         /* reserve 0 for non-seqno */
2010         if (dev_priv->next_seqno == 0) {
2011                 int ret = i915_gem_init_seqno(dev, 0);
2012                 if (ret)
2013                         return ret;
2014
2015                 dev_priv->next_seqno = 1;
2016         }
2017
2018         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2019         return 0;
2020 }
2021
2022 int __i915_add_request(struct intel_ring_buffer *ring,
2023                        struct drm_file *file,
2024                        struct drm_i915_gem_object *obj,
2025                        u32 *out_seqno)
2026 {
2027         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028         struct drm_i915_gem_request *request;
2029         u32 request_ring_position, request_start;
2030         int was_empty;
2031         int ret;
2032
2033         request_start = intel_ring_get_tail(ring);
2034         /*
2035          * Emit any outstanding flushes - execbuf can fail to emit the flush
2036          * after having emitted the batchbuffer command. Hence we need to fix
2037          * things up similar to emitting the lazy request. The difference here
2038          * is that the flush _must_ happen before the next request, no matter
2039          * what.
2040          */
2041         ret = intel_ring_flush_all_caches(ring);
2042         if (ret)
2043                 return ret;
2044
2045         request = kmalloc(sizeof(*request), GFP_KERNEL);
2046         if (request == NULL)
2047                 return -ENOMEM;
2048
2049
2050         /* Record the position of the start of the request so that
2051          * should we detect the updated seqno part-way through the
2052          * GPU processing the request, we never over-estimate the
2053          * position of the head.
2054          */
2055         request_ring_position = intel_ring_get_tail(ring);
2056
2057         ret = ring->add_request(ring);
2058         if (ret) {
2059                 kfree(request);
2060                 return ret;
2061         }
2062
2063         request->seqno = intel_ring_get_seqno(ring);
2064         request->ring = ring;
2065         request->head = request_start;
2066         request->tail = request_ring_position;
2067         request->ctx = ring->last_context;
2068         request->batch_obj = obj;
2069
2070         /* Whilst this request exists, batch_obj will be on the
2071          * active_list, and so will hold the active reference. Only when this
2072          * request is retired will the the batch_obj be moved onto the
2073          * inactive_list and lose its active reference. Hence we do not need
2074          * to explicitly hold another reference here.
2075          */
2076
2077         if (request->ctx)
2078                 i915_gem_context_reference(request->ctx);
2079
2080         request->emitted_jiffies = jiffies;
2081         was_empty = list_empty(&ring->request_list);
2082         list_add_tail(&request->list, &ring->request_list);
2083         request->file_priv = NULL;
2084
2085         if (file) {
2086                 struct drm_i915_file_private *file_priv = file->driver_priv;
2087
2088                 spin_lock(&file_priv->mm.lock);
2089                 request->file_priv = file_priv;
2090                 list_add_tail(&request->client_list,
2091                               &file_priv->mm.request_list);
2092                 spin_unlock(&file_priv->mm.lock);
2093         }
2094
2095         trace_i915_gem_request_add(ring, request->seqno);
2096         ring->outstanding_lazy_request = 0;
2097
2098         if (!dev_priv->ums.mm_suspended) {
2099                 i915_queue_hangcheck(ring->dev);
2100
2101                 if (was_empty) {
2102                         queue_delayed_work(dev_priv->wq,
2103                                            &dev_priv->mm.retire_work,
2104                                            round_jiffies_up_relative(HZ));
2105                         intel_mark_busy(dev_priv->dev);
2106                 }
2107         }
2108
2109         if (out_seqno)
2110                 *out_seqno = request->seqno;
2111         return 0;
2112 }
2113
2114 static inline void
2115 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2116 {
2117         struct drm_i915_file_private *file_priv = request->file_priv;
2118
2119         if (!file_priv)
2120                 return;
2121
2122         spin_lock(&file_priv->mm.lock);
2123         if (request->file_priv) {
2124                 list_del(&request->client_list);
2125                 request->file_priv = NULL;
2126         }
2127         spin_unlock(&file_priv->mm.lock);
2128 }
2129
2130 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2131                                     struct i915_address_space *vm)
2132 {
2133         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2134             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2135                 return true;
2136
2137         return false;
2138 }
2139
2140 static bool i915_head_inside_request(const u32 acthd_unmasked,
2141                                      const u32 request_start,
2142                                      const u32 request_end)
2143 {
2144         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2145
2146         if (request_start < request_end) {
2147                 if (acthd >= request_start && acthd < request_end)
2148                         return true;
2149         } else if (request_start > request_end) {
2150                 if (acthd >= request_start || acthd < request_end)
2151                         return true;
2152         }
2153
2154         return false;
2155 }
2156
2157 static struct i915_address_space *
2158 request_to_vm(struct drm_i915_gem_request *request)
2159 {
2160         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2161         struct i915_address_space *vm;
2162
2163         vm = &dev_priv->gtt.base;
2164
2165         return vm;
2166 }
2167
2168 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2169                                 const u32 acthd, bool *inside)
2170 {
2171         /* There is a possibility that unmasked head address
2172          * pointing inside the ring, matches the batch_obj address range.
2173          * However this is extremely unlikely.
2174          */
2175         if (request->batch_obj) {
2176                 if (i915_head_inside_object(acthd, request->batch_obj,
2177                                             request_to_vm(request))) {
2178                         *inside = true;
2179                         return true;
2180                 }
2181         }
2182
2183         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2184                 *inside = false;
2185                 return true;
2186         }
2187
2188         return false;
2189 }
2190
2191 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2192                                   struct drm_i915_gem_request *request,
2193                                   u32 acthd)
2194 {
2195         struct i915_ctx_hang_stats *hs = NULL;
2196         bool inside, guilty;
2197         unsigned long offset = 0;
2198
2199         /* Innocent until proven guilty */
2200         guilty = false;
2201
2202         if (request->batch_obj)
2203                 offset = i915_gem_obj_offset(request->batch_obj,
2204                                              request_to_vm(request));
2205
2206         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2207             i915_request_guilty(request, acthd, &inside)) {
2208                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2209                           ring->name,
2210                           inside ? "inside" : "flushing",
2211                           offset,
2212                           request->ctx ? request->ctx->id : 0,
2213                           acthd);
2214
2215                 guilty = true;
2216         }
2217
2218         /* If contexts are disabled or this is the default context, use
2219          * file_priv->reset_state
2220          */
2221         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2222                 hs = &request->ctx->hang_stats;
2223         else if (request->file_priv)
2224                 hs = &request->file_priv->hang_stats;
2225
2226         if (hs) {
2227                 if (guilty)
2228                         hs->batch_active++;
2229                 else
2230                         hs->batch_pending++;
2231         }
2232 }
2233
2234 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2235 {
2236         list_del(&request->list);
2237         i915_gem_request_remove_from_client(request);
2238
2239         if (request->ctx)
2240                 i915_gem_context_unreference(request->ctx);
2241
2242         kfree(request);
2243 }
2244
2245 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2246                                       struct intel_ring_buffer *ring)
2247 {
2248         u32 completed_seqno;
2249         u32 acthd;
2250
2251         acthd = intel_ring_get_active_head(ring);
2252         completed_seqno = ring->get_seqno(ring, false);
2253
2254         while (!list_empty(&ring->request_list)) {
2255                 struct drm_i915_gem_request *request;
2256
2257                 request = list_first_entry(&ring->request_list,
2258                                            struct drm_i915_gem_request,
2259                                            list);
2260
2261                 if (request->seqno > completed_seqno)
2262                         i915_set_reset_status(ring, request, acthd);
2263
2264                 i915_gem_free_request(request);
2265         }
2266
2267         while (!list_empty(&ring->active_list)) {
2268                 struct drm_i915_gem_object *obj;
2269
2270                 obj = list_first_entry(&ring->active_list,
2271                                        struct drm_i915_gem_object,
2272                                        ring_list);
2273
2274                 i915_gem_object_move_to_inactive(obj);
2275         }
2276 }
2277
2278 void i915_gem_restore_fences(struct drm_device *dev)
2279 {
2280         struct drm_i915_private *dev_priv = dev->dev_private;
2281         int i;
2282
2283         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2284                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2285
2286                 /*
2287                  * Commit delayed tiling changes if we have an object still
2288                  * attached to the fence, otherwise just clear the fence.
2289                  */
2290                 if (reg->obj) {
2291                         i915_gem_object_update_fence(reg->obj, reg,
2292                                                      reg->obj->tiling_mode);
2293                 } else {
2294                         i915_gem_write_fence(dev, i, NULL);
2295                 }
2296         }
2297 }
2298
2299 void i915_gem_reset(struct drm_device *dev)
2300 {
2301         struct drm_i915_private *dev_priv = dev->dev_private;
2302         struct intel_ring_buffer *ring;
2303         int i;
2304
2305         for_each_ring(ring, dev_priv, i)
2306                 i915_gem_reset_ring_lists(dev_priv, ring);
2307
2308         i915_gem_restore_fences(dev);
2309 }
2310
2311 /**
2312  * This function clears the request list as sequence numbers are passed.
2313  */
2314 void
2315 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2316 {
2317         uint32_t seqno;
2318
2319         if (list_empty(&ring->request_list))
2320                 return;
2321
2322         WARN_ON(i915_verify_lists(ring->dev));
2323
2324         seqno = ring->get_seqno(ring, true);
2325
2326         while (!list_empty(&ring->request_list)) {
2327                 struct drm_i915_gem_request *request;
2328
2329                 request = list_first_entry(&ring->request_list,
2330                                            struct drm_i915_gem_request,
2331                                            list);
2332
2333                 if (!i915_seqno_passed(seqno, request->seqno))
2334                         break;
2335
2336                 trace_i915_gem_request_retire(ring, request->seqno);
2337                 /* We know the GPU must have read the request to have
2338                  * sent us the seqno + interrupt, so use the position
2339                  * of tail of the request to update the last known position
2340                  * of the GPU head.
2341                  */
2342                 ring->last_retired_head = request->tail;
2343
2344                 i915_gem_free_request(request);
2345         }
2346
2347         /* Move any buffers on the active list that are no longer referenced
2348          * by the ringbuffer to the flushing/inactive lists as appropriate.
2349          */
2350         while (!list_empty(&ring->active_list)) {
2351                 struct drm_i915_gem_object *obj;
2352
2353                 obj = list_first_entry(&ring->active_list,
2354                                       struct drm_i915_gem_object,
2355                                       ring_list);
2356
2357                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2358                         break;
2359
2360                 i915_gem_object_move_to_inactive(obj);
2361         }
2362
2363         if (unlikely(ring->trace_irq_seqno &&
2364                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2365                 ring->irq_put(ring);
2366                 ring->trace_irq_seqno = 0;
2367         }
2368
2369         WARN_ON(i915_verify_lists(ring->dev));
2370 }
2371
2372 void
2373 i915_gem_retire_requests(struct drm_device *dev)
2374 {
2375         drm_i915_private_t *dev_priv = dev->dev_private;
2376         struct intel_ring_buffer *ring;
2377         int i;
2378
2379         for_each_ring(ring, dev_priv, i)
2380                 i915_gem_retire_requests_ring(ring);
2381 }
2382
2383 static void
2384 i915_gem_retire_work_handler(struct work_struct *work)
2385 {
2386         drm_i915_private_t *dev_priv;
2387         struct drm_device *dev;
2388         struct intel_ring_buffer *ring;
2389         bool idle;
2390         int i;
2391
2392         dev_priv = container_of(work, drm_i915_private_t,
2393                                 mm.retire_work.work);
2394         dev = dev_priv->dev;
2395
2396         /* Come back later if the device is busy... */
2397         if (!mutex_trylock(&dev->struct_mutex)) {
2398                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2399                                    round_jiffies_up_relative(HZ));
2400                 return;
2401         }
2402
2403         i915_gem_retire_requests(dev);
2404
2405         /* Send a periodic flush down the ring so we don't hold onto GEM
2406          * objects indefinitely.
2407          */
2408         idle = true;
2409         for_each_ring(ring, dev_priv, i) {
2410                 if (ring->gpu_caches_dirty)
2411                         i915_add_request(ring, NULL);
2412
2413                 idle &= list_empty(&ring->request_list);
2414         }
2415
2416         if (!dev_priv->ums.mm_suspended && !idle)
2417                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2418                                    round_jiffies_up_relative(HZ));
2419         if (idle)
2420                 intel_mark_idle(dev);
2421
2422         mutex_unlock(&dev->struct_mutex);
2423 }
2424
2425 /**
2426  * Ensures that an object will eventually get non-busy by flushing any required
2427  * write domains, emitting any outstanding lazy request and retiring and
2428  * completed requests.
2429  */
2430 static int
2431 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2432 {
2433         int ret;
2434
2435         if (obj->active) {
2436                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2437                 if (ret)
2438                         return ret;
2439
2440                 i915_gem_retire_requests_ring(obj->ring);
2441         }
2442
2443         return 0;
2444 }
2445
2446 /**
2447  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2448  * @DRM_IOCTL_ARGS: standard ioctl arguments
2449  *
2450  * Returns 0 if successful, else an error is returned with the remaining time in
2451  * the timeout parameter.
2452  *  -ETIME: object is still busy after timeout
2453  *  -ERESTARTSYS: signal interrupted the wait
2454  *  -ENONENT: object doesn't exist
2455  * Also possible, but rare:
2456  *  -EAGAIN: GPU wedged
2457  *  -ENOMEM: damn
2458  *  -ENODEV: Internal IRQ fail
2459  *  -E?: The add request failed
2460  *
2461  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2462  * non-zero timeout parameter the wait ioctl will wait for the given number of
2463  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2464  * without holding struct_mutex the object may become re-busied before this
2465  * function completes. A similar but shorter * race condition exists in the busy
2466  * ioctl
2467  */
2468 int
2469 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2470 {
2471         drm_i915_private_t *dev_priv = dev->dev_private;
2472         struct drm_i915_gem_wait *args = data;
2473         struct drm_i915_gem_object *obj;
2474         struct intel_ring_buffer *ring = NULL;
2475         struct timespec timeout_stack, *timeout = NULL;
2476         unsigned reset_counter;
2477         u32 seqno = 0;
2478         int ret = 0;
2479
2480         if (args->timeout_ns >= 0) {
2481                 timeout_stack = ns_to_timespec(args->timeout_ns);
2482                 timeout = &timeout_stack;
2483         }
2484
2485         ret = i915_mutex_lock_interruptible(dev);
2486         if (ret)
2487                 return ret;
2488
2489         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2490         if (&obj->base == NULL) {
2491                 mutex_unlock(&dev->struct_mutex);
2492                 return -ENOENT;
2493         }
2494
2495         /* Need to make sure the object gets inactive eventually. */
2496         ret = i915_gem_object_flush_active(obj);
2497         if (ret)
2498                 goto out;
2499
2500         if (obj->active) {
2501                 seqno = obj->last_read_seqno;
2502                 ring = obj->ring;
2503         }
2504
2505         if (seqno == 0)
2506                  goto out;
2507
2508         /* Do this after OLR check to make sure we make forward progress polling
2509          * on this IOCTL with a 0 timeout (like busy ioctl)
2510          */
2511         if (!args->timeout_ns) {
2512                 ret = -ETIME;
2513                 goto out;
2514         }
2515
2516         drm_gem_object_unreference(&obj->base);
2517         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2518         mutex_unlock(&dev->struct_mutex);
2519
2520         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2521         if (timeout)
2522                 args->timeout_ns = timespec_to_ns(timeout);
2523         return ret;
2524
2525 out:
2526         drm_gem_object_unreference(&obj->base);
2527         mutex_unlock(&dev->struct_mutex);
2528         return ret;
2529 }
2530
2531 /**
2532  * i915_gem_object_sync - sync an object to a ring.
2533  *
2534  * @obj: object which may be in use on another ring.
2535  * @to: ring we wish to use the object on. May be NULL.
2536  *
2537  * This code is meant to abstract object synchronization with the GPU.
2538  * Calling with NULL implies synchronizing the object with the CPU
2539  * rather than a particular GPU ring.
2540  *
2541  * Returns 0 if successful, else propagates up the lower layer error.
2542  */
2543 int
2544 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2545                      struct intel_ring_buffer *to)
2546 {
2547         struct intel_ring_buffer *from = obj->ring;
2548         u32 seqno;
2549         int ret, idx;
2550
2551         if (from == NULL || to == from)
2552                 return 0;
2553
2554         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2555                 return i915_gem_object_wait_rendering(obj, false);
2556
2557         idx = intel_ring_sync_index(from, to);
2558
2559         seqno = obj->last_read_seqno;
2560         if (seqno <= from->sync_seqno[idx])
2561                 return 0;
2562
2563         ret = i915_gem_check_olr(obj->ring, seqno);
2564         if (ret)
2565                 return ret;
2566
2567         ret = to->sync_to(to, from, seqno);
2568         if (!ret)
2569                 /* We use last_read_seqno because sync_to()
2570                  * might have just caused seqno wrap under
2571                  * the radar.
2572                  */
2573                 from->sync_seqno[idx] = obj->last_read_seqno;
2574
2575         return ret;
2576 }
2577
2578 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2579 {
2580         u32 old_write_domain, old_read_domains;
2581
2582         /* Force a pagefault for domain tracking on next user access */
2583         i915_gem_release_mmap(obj);
2584
2585         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2586                 return;
2587
2588         /* Wait for any direct GTT access to complete */
2589         mb();
2590
2591         old_read_domains = obj->base.read_domains;
2592         old_write_domain = obj->base.write_domain;
2593
2594         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2595         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2596
2597         trace_i915_gem_object_change_domain(obj,
2598                                             old_read_domains,
2599                                             old_write_domain);
2600 }
2601
2602 int i915_vma_unbind(struct i915_vma *vma)
2603 {
2604         struct drm_i915_gem_object *obj = vma->obj;
2605         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2606         int ret;
2607
2608         if (list_empty(&vma->vma_link))
2609                 return 0;
2610
2611         if (!drm_mm_node_allocated(&vma->node))
2612                 goto destroy;
2613
2614         if (obj->pin_count)
2615                 return -EBUSY;
2616
2617         BUG_ON(obj->pages == NULL);
2618
2619         ret = i915_gem_object_finish_gpu(obj);
2620         if (ret)
2621                 return ret;
2622         /* Continue on if we fail due to EIO, the GPU is hung so we
2623          * should be safe and we need to cleanup or else we might
2624          * cause memory corruption through use-after-free.
2625          */
2626
2627         i915_gem_object_finish_gtt(obj);
2628
2629         /* release the fence reg _after_ flushing */
2630         ret = i915_gem_object_put_fence(obj);
2631         if (ret)
2632                 return ret;
2633
2634         trace_i915_vma_unbind(vma);
2635
2636         if (obj->has_global_gtt_mapping)
2637                 i915_gem_gtt_unbind_object(obj);
2638         if (obj->has_aliasing_ppgtt_mapping) {
2639                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2640                 obj->has_aliasing_ppgtt_mapping = 0;
2641         }
2642         i915_gem_gtt_finish_object(obj);
2643         i915_gem_object_unpin_pages(obj);
2644
2645         list_del(&vma->mm_list);
2646         /* Avoid an unnecessary call to unbind on rebind. */
2647         if (i915_is_ggtt(vma->vm))
2648                 obj->map_and_fenceable = true;
2649
2650         drm_mm_remove_node(&vma->node);
2651
2652 destroy:
2653         i915_gem_vma_destroy(vma);
2654
2655         /* Since the unbound list is global, only move to that list if
2656          * no more VMAs exist.
2657          * NB: Until we have real VMAs there will only ever be one */
2658         WARN_ON(!list_empty(&obj->vma_list));
2659         if (list_empty(&obj->vma_list))
2660                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2661
2662         return 0;
2663 }
2664
2665 /**
2666  * Unbinds an object from the global GTT aperture.
2667  */
2668 int
2669 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2670 {
2671         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2672         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2673
2674         if (!i915_gem_obj_ggtt_bound(obj))
2675                 return 0;
2676
2677         if (obj->pin_count)
2678                 return -EBUSY;
2679
2680         BUG_ON(obj->pages == NULL);
2681
2682         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2683 }
2684
2685 int i915_gpu_idle(struct drm_device *dev)
2686 {
2687         drm_i915_private_t *dev_priv = dev->dev_private;
2688         struct intel_ring_buffer *ring;
2689         int ret, i;
2690
2691         /* Flush everything onto the inactive list. */
2692         for_each_ring(ring, dev_priv, i) {
2693                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2694                 if (ret)
2695                         return ret;
2696
2697                 ret = intel_ring_idle(ring);
2698                 if (ret)
2699                         return ret;
2700         }
2701
2702         return 0;
2703 }
2704
2705 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2706                                  struct drm_i915_gem_object *obj)
2707 {
2708         drm_i915_private_t *dev_priv = dev->dev_private;
2709         int fence_reg;
2710         int fence_pitch_shift;
2711
2712         if (INTEL_INFO(dev)->gen >= 6) {
2713                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2714                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2715         } else {
2716                 fence_reg = FENCE_REG_965_0;
2717                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2718         }
2719
2720         fence_reg += reg * 8;
2721
2722         /* To w/a incoherency with non-atomic 64-bit register updates,
2723          * we split the 64-bit update into two 32-bit writes. In order
2724          * for a partial fence not to be evaluated between writes, we
2725          * precede the update with write to turn off the fence register,
2726          * and only enable the fence as the last step.
2727          *
2728          * For extra levels of paranoia, we make sure each step lands
2729          * before applying the next step.
2730          */
2731         I915_WRITE(fence_reg, 0);
2732         POSTING_READ(fence_reg);
2733
2734         if (obj) {
2735                 u32 size = i915_gem_obj_ggtt_size(obj);
2736                 uint64_t val;
2737
2738                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2739                                  0xfffff000) << 32;
2740                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2741                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2742                 if (obj->tiling_mode == I915_TILING_Y)
2743                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2744                 val |= I965_FENCE_REG_VALID;
2745
2746                 I915_WRITE(fence_reg + 4, val >> 32);
2747                 POSTING_READ(fence_reg + 4);
2748
2749                 I915_WRITE(fence_reg + 0, val);
2750                 POSTING_READ(fence_reg);
2751         } else {
2752                 I915_WRITE(fence_reg + 4, 0);
2753                 POSTING_READ(fence_reg + 4);
2754         }
2755 }
2756
2757 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2758                                  struct drm_i915_gem_object *obj)
2759 {
2760         drm_i915_private_t *dev_priv = dev->dev_private;
2761         u32 val;
2762
2763         if (obj) {
2764                 u32 size = i915_gem_obj_ggtt_size(obj);
2765                 int pitch_val;
2766                 int tile_width;
2767
2768                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2769                      (size & -size) != size ||
2770                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2771                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2772                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2773
2774                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2775                         tile_width = 128;
2776                 else
2777                         tile_width = 512;
2778
2779                 /* Note: pitch better be a power of two tile widths */
2780                 pitch_val = obj->stride / tile_width;
2781                 pitch_val = ffs(pitch_val) - 1;
2782
2783                 val = i915_gem_obj_ggtt_offset(obj);
2784                 if (obj->tiling_mode == I915_TILING_Y)
2785                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2786                 val |= I915_FENCE_SIZE_BITS(size);
2787                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2788                 val |= I830_FENCE_REG_VALID;
2789         } else
2790                 val = 0;
2791
2792         if (reg < 8)
2793                 reg = FENCE_REG_830_0 + reg * 4;
2794         else
2795                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2796
2797         I915_WRITE(reg, val);
2798         POSTING_READ(reg);
2799 }
2800
2801 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2802                                 struct drm_i915_gem_object *obj)
2803 {
2804         drm_i915_private_t *dev_priv = dev->dev_private;
2805         uint32_t val;
2806
2807         if (obj) {
2808                 u32 size = i915_gem_obj_ggtt_size(obj);
2809                 uint32_t pitch_val;
2810
2811                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2812                      (size & -size) != size ||
2813                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2814                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2815                      i915_gem_obj_ggtt_offset(obj), size);
2816
2817                 pitch_val = obj->stride / 128;
2818                 pitch_val = ffs(pitch_val) - 1;
2819
2820                 val = i915_gem_obj_ggtt_offset(obj);
2821                 if (obj->tiling_mode == I915_TILING_Y)
2822                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2823                 val |= I830_FENCE_SIZE_BITS(size);
2824                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2825                 val |= I830_FENCE_REG_VALID;
2826         } else
2827                 val = 0;
2828
2829         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2830         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2831 }
2832
2833 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2834 {
2835         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2836 }
2837
2838 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2839                                  struct drm_i915_gem_object *obj)
2840 {
2841         struct drm_i915_private *dev_priv = dev->dev_private;
2842
2843         /* Ensure that all CPU reads are completed before installing a fence
2844          * and all writes before removing the fence.
2845          */
2846         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2847                 mb();
2848
2849         WARN(obj && (!obj->stride || !obj->tiling_mode),
2850              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2851              obj->stride, obj->tiling_mode);
2852
2853         switch (INTEL_INFO(dev)->gen) {
2854         case 7:
2855         case 6:
2856         case 5:
2857         case 4: i965_write_fence_reg(dev, reg, obj); break;
2858         case 3: i915_write_fence_reg(dev, reg, obj); break;
2859         case 2: i830_write_fence_reg(dev, reg, obj); break;
2860         default: BUG();
2861         }
2862
2863         /* And similarly be paranoid that no direct access to this region
2864          * is reordered to before the fence is installed.
2865          */
2866         if (i915_gem_object_needs_mb(obj))
2867                 mb();
2868 }
2869
2870 static inline int fence_number(struct drm_i915_private *dev_priv,
2871                                struct drm_i915_fence_reg *fence)
2872 {
2873         return fence - dev_priv->fence_regs;
2874 }
2875
2876 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2877                                          struct drm_i915_fence_reg *fence,
2878                                          bool enable)
2879 {
2880         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2881         int reg = fence_number(dev_priv, fence);
2882
2883         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2884
2885         if (enable) {
2886                 obj->fence_reg = reg;
2887                 fence->obj = obj;
2888                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2889         } else {
2890                 obj->fence_reg = I915_FENCE_REG_NONE;
2891                 fence->obj = NULL;
2892                 list_del_init(&fence->lru_list);
2893         }
2894         obj->fence_dirty = false;
2895 }
2896
2897 static int
2898 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2899 {
2900         if (obj->last_fenced_seqno) {
2901                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2902                 if (ret)
2903                         return ret;
2904
2905                 obj->last_fenced_seqno = 0;
2906         }
2907
2908         obj->fenced_gpu_access = false;
2909         return 0;
2910 }
2911
2912 int
2913 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2914 {
2915         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2916         struct drm_i915_fence_reg *fence;
2917         int ret;
2918
2919         ret = i915_gem_object_wait_fence(obj);
2920         if (ret)
2921                 return ret;
2922
2923         if (obj->fence_reg == I915_FENCE_REG_NONE)
2924                 return 0;
2925
2926         fence = &dev_priv->fence_regs[obj->fence_reg];
2927
2928         i915_gem_object_fence_lost(obj);
2929         i915_gem_object_update_fence(obj, fence, false);
2930
2931         return 0;
2932 }
2933
2934 static struct drm_i915_fence_reg *
2935 i915_find_fence_reg(struct drm_device *dev)
2936 {
2937         struct drm_i915_private *dev_priv = dev->dev_private;
2938         struct drm_i915_fence_reg *reg, *avail;
2939         int i;
2940
2941         /* First try to find a free reg */
2942         avail = NULL;
2943         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2944                 reg = &dev_priv->fence_regs[i];
2945                 if (!reg->obj)
2946                         return reg;
2947
2948                 if (!reg->pin_count)
2949                         avail = reg;
2950         }
2951
2952         if (avail == NULL)
2953                 return NULL;
2954
2955         /* None available, try to steal one or wait for a user to finish */
2956         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2957                 if (reg->pin_count)
2958                         continue;
2959
2960                 return reg;
2961         }
2962
2963         return NULL;
2964 }
2965
2966 /**
2967  * i915_gem_object_get_fence - set up fencing for an object
2968  * @obj: object to map through a fence reg
2969  *
2970  * When mapping objects through the GTT, userspace wants to be able to write
2971  * to them without having to worry about swizzling if the object is tiled.
2972  * This function walks the fence regs looking for a free one for @obj,
2973  * stealing one if it can't find any.
2974  *
2975  * It then sets up the reg based on the object's properties: address, pitch
2976  * and tiling format.
2977  *
2978  * For an untiled surface, this removes any existing fence.
2979  */
2980 int
2981 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2982 {
2983         struct drm_device *dev = obj->base.dev;
2984         struct drm_i915_private *dev_priv = dev->dev_private;
2985         bool enable = obj->tiling_mode != I915_TILING_NONE;
2986         struct drm_i915_fence_reg *reg;
2987         int ret;
2988
2989         /* Have we updated the tiling parameters upon the object and so
2990          * will need to serialise the write to the associated fence register?
2991          */
2992         if (obj->fence_dirty) {
2993                 ret = i915_gem_object_wait_fence(obj);
2994                 if (ret)
2995                         return ret;
2996         }
2997
2998         /* Just update our place in the LRU if our fence is getting reused. */
2999         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3000                 reg = &dev_priv->fence_regs[obj->fence_reg];
3001                 if (!obj->fence_dirty) {
3002                         list_move_tail(&reg->lru_list,
3003                                        &dev_priv->mm.fence_list);
3004                         return 0;
3005                 }
3006         } else if (enable) {
3007                 reg = i915_find_fence_reg(dev);
3008                 if (reg == NULL)
3009                         return -EDEADLK;
3010
3011                 if (reg->obj) {
3012                         struct drm_i915_gem_object *old = reg->obj;
3013
3014                         ret = i915_gem_object_wait_fence(old);
3015                         if (ret)
3016                                 return ret;
3017
3018                         i915_gem_object_fence_lost(old);
3019                 }
3020         } else
3021                 return 0;
3022
3023         i915_gem_object_update_fence(obj, reg, enable);
3024
3025         return 0;
3026 }
3027
3028 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3029                                      struct drm_mm_node *gtt_space,
3030                                      unsigned long cache_level)
3031 {
3032         struct drm_mm_node *other;
3033
3034         /* On non-LLC machines we have to be careful when putting differing
3035          * types of snoopable memory together to avoid the prefetcher
3036          * crossing memory domains and dying.
3037          */
3038         if (HAS_LLC(dev))
3039                 return true;
3040
3041         if (!drm_mm_node_allocated(gtt_space))
3042                 return true;
3043
3044         if (list_empty(&gtt_space->node_list))
3045                 return true;
3046
3047         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3048         if (other->allocated && !other->hole_follows && other->color != cache_level)
3049                 return false;
3050
3051         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3052         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3053                 return false;
3054
3055         return true;
3056 }
3057
3058 static void i915_gem_verify_gtt(struct drm_device *dev)
3059 {
3060 #if WATCH_GTT
3061         struct drm_i915_private *dev_priv = dev->dev_private;
3062         struct drm_i915_gem_object *obj;
3063         int err = 0;
3064
3065         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3066                 if (obj->gtt_space == NULL) {
3067                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3068                         err++;
3069                         continue;
3070                 }
3071
3072                 if (obj->cache_level != obj->gtt_space->color) {
3073                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3074                                i915_gem_obj_ggtt_offset(obj),
3075                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3076                                obj->cache_level,
3077                                obj->gtt_space->color);
3078                         err++;
3079                         continue;
3080                 }
3081
3082                 if (!i915_gem_valid_gtt_space(dev,
3083                                               obj->gtt_space,
3084                                               obj->cache_level)) {
3085                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3086                                i915_gem_obj_ggtt_offset(obj),
3087                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3088                                obj->cache_level);
3089                         err++;
3090                         continue;
3091                 }
3092         }
3093
3094         WARN_ON(err);
3095 #endif
3096 }
3097
3098 /**
3099  * Finds free space in the GTT aperture and binds the object there.
3100  */
3101 static int
3102 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3103                            struct i915_address_space *vm,
3104                            unsigned alignment,
3105                            bool map_and_fenceable,
3106                            bool nonblocking)
3107 {
3108         struct drm_device *dev = obj->base.dev;
3109         drm_i915_private_t *dev_priv = dev->dev_private;
3110         u32 size, fence_size, fence_alignment, unfenced_alignment;
3111         size_t gtt_max =
3112                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3113         struct i915_vma *vma;
3114         int ret;
3115
3116         fence_size = i915_gem_get_gtt_size(dev,
3117                                            obj->base.size,
3118                                            obj->tiling_mode);
3119         fence_alignment = i915_gem_get_gtt_alignment(dev,
3120                                                      obj->base.size,
3121                                                      obj->tiling_mode, true);
3122         unfenced_alignment =
3123                 i915_gem_get_gtt_alignment(dev,
3124                                                     obj->base.size,
3125                                                     obj->tiling_mode, false);
3126
3127         if (alignment == 0)
3128                 alignment = map_and_fenceable ? fence_alignment :
3129                                                 unfenced_alignment;
3130         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3131                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3132                 return -EINVAL;
3133         }
3134
3135         size = map_and_fenceable ? fence_size : obj->base.size;
3136
3137         /* If the object is bigger than the entire aperture, reject it early
3138          * before evicting everything in a vain attempt to find space.
3139          */
3140         if (obj->base.size > gtt_max) {
3141                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3142                           obj->base.size,
3143                           map_and_fenceable ? "mappable" : "total",
3144                           gtt_max);
3145                 return -E2BIG;
3146         }
3147
3148         ret = i915_gem_object_get_pages(obj);
3149         if (ret)
3150                 return ret;
3151
3152         i915_gem_object_pin_pages(obj);
3153
3154         BUG_ON(!i915_is_ggtt(vm));
3155
3156         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3157         if (IS_ERR(vma)) {
3158                 ret = PTR_ERR(vma);
3159                 goto err_unpin;
3160         }
3161
3162         /* For now we only ever use 1 vma per object */
3163         WARN_ON(!list_is_singular(&obj->vma_list));
3164
3165 search_free:
3166         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3167                                                   size, alignment,
3168                                                   obj->cache_level, 0, gtt_max,
3169                                                   DRM_MM_SEARCH_DEFAULT);
3170         if (ret) {
3171                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3172                                                obj->cache_level,
3173                                                map_and_fenceable,
3174                                                nonblocking);
3175                 if (ret == 0)
3176                         goto search_free;
3177
3178                 goto err_free_vma;
3179         }
3180         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3181                                               obj->cache_level))) {
3182                 ret = -EINVAL;
3183                 goto err_remove_node;
3184         }
3185
3186         ret = i915_gem_gtt_prepare_object(obj);
3187         if (ret)
3188                 goto err_remove_node;
3189
3190         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3191         list_add_tail(&vma->mm_list, &vm->inactive_list);
3192
3193         if (i915_is_ggtt(vm)) {
3194                 bool mappable, fenceable;
3195
3196                 fenceable = (vma->node.size == fence_size &&
3197                              (vma->node.start & (fence_alignment - 1)) == 0);
3198
3199                 mappable = (vma->node.start + obj->base.size <=
3200                             dev_priv->gtt.mappable_end);
3201
3202                 obj->map_and_fenceable = mappable && fenceable;
3203         }
3204
3205         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3206
3207         trace_i915_vma_bind(vma, map_and_fenceable);
3208         i915_gem_verify_gtt(dev);
3209         return 0;
3210
3211 err_remove_node:
3212         drm_mm_remove_node(&vma->node);
3213 err_free_vma:
3214         i915_gem_vma_destroy(vma);
3215 err_unpin:
3216         i915_gem_object_unpin_pages(obj);
3217         return ret;
3218 }
3219
3220 bool
3221 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3222                         bool force)
3223 {
3224         /* If we don't have a page list set up, then we're not pinned
3225          * to GPU, and we can ignore the cache flush because it'll happen
3226          * again at bind time.
3227          */
3228         if (obj->pages == NULL)
3229                 return false;
3230
3231         /*
3232          * Stolen memory is always coherent with the GPU as it is explicitly
3233          * marked as wc by the system, or the system is cache-coherent.
3234          */
3235         if (obj->stolen)
3236                 return false;
3237
3238         /* If the GPU is snooping the contents of the CPU cache,
3239          * we do not need to manually clear the CPU cache lines.  However,
3240          * the caches are only snooped when the render cache is
3241          * flushed/invalidated.  As we always have to emit invalidations
3242          * and flushes when moving into and out of the RENDER domain, correct
3243          * snooping behaviour occurs naturally as the result of our domain
3244          * tracking.
3245          */
3246         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3247                 return false;
3248
3249         trace_i915_gem_object_clflush(obj);
3250         drm_clflush_sg(obj->pages);
3251
3252         return true;
3253 }
3254
3255 /** Flushes the GTT write domain for the object if it's dirty. */
3256 static void
3257 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3258 {
3259         uint32_t old_write_domain;
3260
3261         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3262                 return;
3263
3264         /* No actual flushing is required for the GTT write domain.  Writes
3265          * to it immediately go to main memory as far as we know, so there's
3266          * no chipset flush.  It also doesn't land in render cache.
3267          *
3268          * However, we do have to enforce the order so that all writes through
3269          * the GTT land before any writes to the device, such as updates to
3270          * the GATT itself.
3271          */
3272         wmb();
3273
3274         old_write_domain = obj->base.write_domain;
3275         obj->base.write_domain = 0;
3276
3277         trace_i915_gem_object_change_domain(obj,
3278                                             obj->base.read_domains,
3279                                             old_write_domain);
3280 }
3281
3282 /** Flushes the CPU write domain for the object if it's dirty. */
3283 static void
3284 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3285                                        bool force)
3286 {
3287         uint32_t old_write_domain;
3288
3289         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3290                 return;
3291
3292         if (i915_gem_clflush_object(obj, force))
3293                 i915_gem_chipset_flush(obj->base.dev);
3294
3295         old_write_domain = obj->base.write_domain;
3296         obj->base.write_domain = 0;
3297
3298         trace_i915_gem_object_change_domain(obj,
3299                                             obj->base.read_domains,
3300                                             old_write_domain);
3301 }
3302
3303 /**
3304  * Moves a single object to the GTT read, and possibly write domain.
3305  *
3306  * This function returns when the move is complete, including waiting on
3307  * flushes to occur.
3308  */
3309 int
3310 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3311 {
3312         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3313         uint32_t old_write_domain, old_read_domains;
3314         int ret;
3315
3316         /* Not valid to be called on unbound objects. */
3317         if (!i915_gem_obj_bound_any(obj))
3318                 return -EINVAL;
3319
3320         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3321                 return 0;
3322
3323         ret = i915_gem_object_wait_rendering(obj, !write);
3324         if (ret)
3325                 return ret;
3326
3327         i915_gem_object_flush_cpu_write_domain(obj, false);
3328
3329         /* Serialise direct access to this object with the barriers for
3330          * coherent writes from the GPU, by effectively invalidating the
3331          * GTT domain upon first access.
3332          */
3333         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3334                 mb();
3335
3336         old_write_domain = obj->base.write_domain;
3337         old_read_domains = obj->base.read_domains;
3338
3339         /* It should now be out of any other write domains, and we can update
3340          * the domain values for our changes.
3341          */
3342         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3343         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3344         if (write) {
3345                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3346                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3347                 obj->dirty = 1;
3348         }
3349
3350         trace_i915_gem_object_change_domain(obj,
3351                                             old_read_domains,
3352                                             old_write_domain);
3353
3354         /* And bump the LRU for this access */
3355         if (i915_gem_object_is_inactive(obj)) {
3356                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3357                                                            &dev_priv->gtt.base);
3358                 if (vma)
3359                         list_move_tail(&vma->mm_list,
3360                                        &dev_priv->gtt.base.inactive_list);
3361
3362         }
3363
3364         return 0;
3365 }
3366
3367 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3368                                     enum i915_cache_level cache_level)
3369 {
3370         struct drm_device *dev = obj->base.dev;
3371         drm_i915_private_t *dev_priv = dev->dev_private;
3372         struct i915_vma *vma;
3373         int ret;
3374
3375         if (obj->cache_level == cache_level)
3376                 return 0;
3377
3378         if (obj->pin_count) {
3379                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3380                 return -EBUSY;
3381         }
3382
3383         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3384                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3385                         ret = i915_vma_unbind(vma);
3386                         if (ret)
3387                                 return ret;
3388
3389                         break;
3390                 }
3391         }
3392
3393         if (i915_gem_obj_bound_any(obj)) {
3394                 ret = i915_gem_object_finish_gpu(obj);
3395                 if (ret)
3396                         return ret;
3397
3398                 i915_gem_object_finish_gtt(obj);
3399
3400                 /* Before SandyBridge, you could not use tiling or fence
3401                  * registers with snooped memory, so relinquish any fences
3402                  * currently pointing to our region in the aperture.
3403                  */
3404                 if (INTEL_INFO(dev)->gen < 6) {
3405                         ret = i915_gem_object_put_fence(obj);
3406                         if (ret)
3407                                 return ret;
3408                 }
3409
3410                 if (obj->has_global_gtt_mapping)
3411                         i915_gem_gtt_bind_object(obj, cache_level);
3412                 if (obj->has_aliasing_ppgtt_mapping)
3413                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3414                                                obj, cache_level);
3415         }
3416
3417         list_for_each_entry(vma, &obj->vma_list, vma_link)
3418                 vma->node.color = cache_level;
3419         obj->cache_level = cache_level;
3420
3421         if (cpu_write_needs_clflush(obj)) {
3422                 u32 old_read_domains, old_write_domain;
3423
3424                 /* If we're coming from LLC cached, then we haven't
3425                  * actually been tracking whether the data is in the
3426                  * CPU cache or not, since we only allow one bit set
3427                  * in obj->write_domain and have been skipping the clflushes.
3428                  * Just set it to the CPU cache for now.
3429                  */
3430                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3431
3432                 old_read_domains = obj->base.read_domains;
3433                 old_write_domain = obj->base.write_domain;
3434
3435                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3436                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3437
3438                 trace_i915_gem_object_change_domain(obj,
3439                                                     old_read_domains,
3440                                                     old_write_domain);
3441         }
3442
3443         i915_gem_verify_gtt(dev);
3444         return 0;
3445 }
3446
3447 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3448                                struct drm_file *file)
3449 {
3450         struct drm_i915_gem_caching *args = data;
3451         struct drm_i915_gem_object *obj;
3452         int ret;
3453
3454         ret = i915_mutex_lock_interruptible(dev);
3455         if (ret)
3456                 return ret;
3457
3458         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3459         if (&obj->base == NULL) {
3460                 ret = -ENOENT;
3461                 goto unlock;
3462         }
3463
3464         switch (obj->cache_level) {
3465         case I915_CACHE_LLC:
3466         case I915_CACHE_L3_LLC:
3467                 args->caching = I915_CACHING_CACHED;
3468                 break;
3469
3470         case I915_CACHE_WT:
3471                 args->caching = I915_CACHING_DISPLAY;
3472                 break;
3473
3474         default:
3475                 args->caching = I915_CACHING_NONE;
3476                 break;
3477         }
3478
3479         drm_gem_object_unreference(&obj->base);
3480 unlock:
3481         mutex_unlock(&dev->struct_mutex);
3482         return ret;
3483 }
3484
3485 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3486                                struct drm_file *file)
3487 {
3488         struct drm_i915_gem_caching *args = data;
3489         struct drm_i915_gem_object *obj;
3490         enum i915_cache_level level;
3491         int ret;
3492
3493         switch (args->caching) {
3494         case I915_CACHING_NONE:
3495                 level = I915_CACHE_NONE;
3496                 break;
3497         case I915_CACHING_CACHED:
3498                 level = I915_CACHE_LLC;
3499                 break;
3500         case I915_CACHING_DISPLAY:
3501                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3502                 break;
3503         default:
3504                 return -EINVAL;
3505         }
3506
3507         ret = i915_mutex_lock_interruptible(dev);
3508         if (ret)
3509                 return ret;
3510
3511         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3512         if (&obj->base == NULL) {
3513                 ret = -ENOENT;
3514                 goto unlock;
3515         }
3516
3517         ret = i915_gem_object_set_cache_level(obj, level);
3518
3519         drm_gem_object_unreference(&obj->base);
3520 unlock:
3521         mutex_unlock(&dev->struct_mutex);
3522         return ret;
3523 }
3524
3525 static bool is_pin_display(struct drm_i915_gem_object *obj)
3526 {
3527         /* There are 3 sources that pin objects:
3528          *   1. The display engine (scanouts, sprites, cursors);
3529          *   2. Reservations for execbuffer;
3530          *   3. The user.
3531          *
3532          * We can ignore reservations as we hold the struct_mutex and
3533          * are only called outside of the reservation path.  The user
3534          * can only increment pin_count once, and so if after
3535          * subtracting the potential reference by the user, any pin_count
3536          * remains, it must be due to another use by the display engine.
3537          */
3538         return obj->pin_count - !!obj->user_pin_count;
3539 }
3540
3541 /*
3542  * Prepare buffer for display plane (scanout, cursors, etc).
3543  * Can be called from an uninterruptible phase (modesetting) and allows
3544  * any flushes to be pipelined (for pageflips).
3545  */
3546 int
3547 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3548                                      u32 alignment,
3549                                      struct intel_ring_buffer *pipelined)
3550 {
3551         u32 old_read_domains, old_write_domain;
3552         int ret;
3553
3554         if (pipelined != obj->ring) {
3555                 ret = i915_gem_object_sync(obj, pipelined);
3556                 if (ret)
3557                         return ret;
3558         }
3559
3560         /* Mark the pin_display early so that we account for the
3561          * display coherency whilst setting up the cache domains.
3562          */
3563         obj->pin_display = true;
3564
3565         /* The display engine is not coherent with the LLC cache on gen6.  As
3566          * a result, we make sure that the pinning that is about to occur is
3567          * done with uncached PTEs. This is lowest common denominator for all
3568          * chipsets.
3569          *
3570          * However for gen6+, we could do better by using the GFDT bit instead
3571          * of uncaching, which would allow us to flush all the LLC-cached data
3572          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3573          */
3574         ret = i915_gem_object_set_cache_level(obj,
3575                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3576         if (ret)
3577                 goto err_unpin_display;
3578
3579         /* As the user may map the buffer once pinned in the display plane
3580          * (e.g. libkms for the bootup splash), we have to ensure that we
3581          * always use map_and_fenceable for all scanout buffers.
3582          */
3583         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3584         if (ret)
3585                 goto err_unpin_display;
3586
3587         i915_gem_object_flush_cpu_write_domain(obj, true);
3588
3589         old_write_domain = obj->base.write_domain;
3590         old_read_domains = obj->base.read_domains;
3591
3592         /* It should now be out of any other write domains, and we can update
3593          * the domain values for our changes.
3594          */
3595         obj->base.write_domain = 0;
3596         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3597
3598         trace_i915_gem_object_change_domain(obj,
3599                                             old_read_domains,
3600                                             old_write_domain);
3601
3602         return 0;
3603
3604 err_unpin_display:
3605         obj->pin_display = is_pin_display(obj);
3606         return ret;
3607 }
3608
3609 void
3610 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3611 {
3612         i915_gem_object_unpin(obj);
3613         obj->pin_display = is_pin_display(obj);
3614 }
3615
3616 int
3617 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3618 {
3619         int ret;
3620
3621         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3622                 return 0;
3623
3624         ret = i915_gem_object_wait_rendering(obj, false);
3625         if (ret)
3626                 return ret;
3627
3628         /* Ensure that we invalidate the GPU's caches and TLBs. */
3629         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3630         return 0;
3631 }
3632
3633 /**
3634  * Moves a single object to the CPU read, and possibly write domain.
3635  *
3636  * This function returns when the move is complete, including waiting on
3637  * flushes to occur.
3638  */
3639 int
3640 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3641 {
3642         uint32_t old_write_domain, old_read_domains;
3643         int ret;
3644
3645         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3646                 return 0;
3647
3648         ret = i915_gem_object_wait_rendering(obj, !write);
3649         if (ret)
3650                 return ret;
3651
3652         i915_gem_object_flush_gtt_write_domain(obj);
3653
3654         old_write_domain = obj->base.write_domain;
3655         old_read_domains = obj->base.read_domains;
3656
3657         /* Flush the CPU cache if it's still invalid. */
3658         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3659                 i915_gem_clflush_object(obj, false);
3660
3661                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3662         }
3663
3664         /* It should now be out of any other write domains, and we can update
3665          * the domain values for our changes.
3666          */
3667         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3668
3669         /* If we're writing through the CPU, then the GPU read domains will
3670          * need to be invalidated at next use.
3671          */
3672         if (write) {
3673                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3674                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3675         }
3676
3677         trace_i915_gem_object_change_domain(obj,
3678                                             old_read_domains,
3679                                             old_write_domain);
3680
3681         return 0;
3682 }
3683
3684 /* Throttle our rendering by waiting until the ring has completed our requests
3685  * emitted over 20 msec ago.
3686  *
3687  * Note that if we were to use the current jiffies each time around the loop,
3688  * we wouldn't escape the function with any frames outstanding if the time to
3689  * render a frame was over 20ms.
3690  *
3691  * This should get us reasonable parallelism between CPU and GPU but also
3692  * relatively low latency when blocking on a particular request to finish.
3693  */
3694 static int
3695 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3696 {
3697         struct drm_i915_private *dev_priv = dev->dev_private;
3698         struct drm_i915_file_private *file_priv = file->driver_priv;
3699         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3700         struct drm_i915_gem_request *request;
3701         struct intel_ring_buffer *ring = NULL;
3702         unsigned reset_counter;
3703         u32 seqno = 0;
3704         int ret;
3705
3706         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3707         if (ret)
3708                 return ret;
3709
3710         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3711         if (ret)
3712                 return ret;
3713
3714         spin_lock(&file_priv->mm.lock);
3715         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3716                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3717                         break;
3718
3719                 ring = request->ring;
3720                 seqno = request->seqno;
3721         }
3722         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3723         spin_unlock(&file_priv->mm.lock);
3724
3725         if (seqno == 0)
3726                 return 0;
3727
3728         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3729         if (ret == 0)
3730                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3731
3732         return ret;
3733 }
3734
3735 int
3736 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3737                     struct i915_address_space *vm,
3738                     uint32_t alignment,
3739                     bool map_and_fenceable,
3740                     bool nonblocking)
3741 {
3742         struct i915_vma *vma;
3743         int ret;
3744
3745         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3746                 return -EBUSY;
3747
3748         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3749
3750         vma = i915_gem_obj_to_vma(obj, vm);
3751
3752         if (vma) {
3753                 if ((alignment &&
3754                      vma->node.start & (alignment - 1)) ||
3755                     (map_and_fenceable && !obj->map_and_fenceable)) {
3756                         WARN(obj->pin_count,
3757                              "bo is already pinned with incorrect alignment:"
3758                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3759                              " obj->map_and_fenceable=%d\n",
3760                              i915_gem_obj_offset(obj, vm), alignment,
3761                              map_and_fenceable,
3762                              obj->map_and_fenceable);
3763                         ret = i915_vma_unbind(vma);
3764                         if (ret)
3765                                 return ret;
3766                 }
3767         }
3768
3769         if (!i915_gem_obj_bound(obj, vm)) {
3770                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3771
3772                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3773                                                  map_and_fenceable,
3774                                                  nonblocking);
3775                 if (ret)
3776                         return ret;
3777
3778                 if (!dev_priv->mm.aliasing_ppgtt)
3779                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3780         }
3781
3782         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3783                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3784
3785         obj->pin_count++;
3786         obj->pin_mappable |= map_and_fenceable;
3787
3788         return 0;
3789 }
3790
3791 void
3792 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3793 {
3794         BUG_ON(obj->pin_count == 0);
3795         BUG_ON(!i915_gem_obj_bound_any(obj));
3796
3797         if (--obj->pin_count == 0)
3798                 obj->pin_mappable = false;
3799 }
3800
3801 int
3802 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3803                    struct drm_file *file)
3804 {
3805         struct drm_i915_gem_pin *args = data;
3806         struct drm_i915_gem_object *obj;
3807         int ret;
3808
3809         ret = i915_mutex_lock_interruptible(dev);
3810         if (ret)
3811                 return ret;
3812
3813         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3814         if (&obj->base == NULL) {
3815                 ret = -ENOENT;
3816                 goto unlock;
3817         }
3818
3819         if (obj->madv != I915_MADV_WILLNEED) {
3820                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3821                 ret = -EINVAL;
3822                 goto out;
3823         }
3824
3825         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3826                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3827                           args->handle);
3828                 ret = -EINVAL;
3829                 goto out;
3830         }
3831
3832         if (obj->user_pin_count == 0) {
3833                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3834                 if (ret)
3835                         goto out;
3836         }
3837
3838         obj->user_pin_count++;
3839         obj->pin_filp = file;
3840
3841         args->offset = i915_gem_obj_ggtt_offset(obj);
3842 out:
3843         drm_gem_object_unreference(&obj->base);
3844 unlock:
3845         mutex_unlock(&dev->struct_mutex);
3846         return ret;
3847 }
3848
3849 int
3850 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3851                      struct drm_file *file)
3852 {
3853         struct drm_i915_gem_pin *args = data;
3854         struct drm_i915_gem_object *obj;
3855         int ret;
3856
3857         ret = i915_mutex_lock_interruptible(dev);
3858         if (ret)
3859                 return ret;
3860
3861         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3862         if (&obj->base == NULL) {
3863                 ret = -ENOENT;
3864                 goto unlock;
3865         }
3866
3867         if (obj->pin_filp != file) {
3868                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3869                           args->handle);
3870                 ret = -EINVAL;
3871                 goto out;
3872         }
3873         obj->user_pin_count--;
3874         if (obj->user_pin_count == 0) {
3875                 obj->pin_filp = NULL;
3876                 i915_gem_object_unpin(obj);
3877         }
3878
3879 out:
3880         drm_gem_object_unreference(&obj->base);
3881 unlock:
3882         mutex_unlock(&dev->struct_mutex);
3883         return ret;
3884 }
3885
3886 int
3887 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3888                     struct drm_file *file)
3889 {
3890         struct drm_i915_gem_busy *args = data;
3891         struct drm_i915_gem_object *obj;
3892         int ret;
3893
3894         ret = i915_mutex_lock_interruptible(dev);
3895         if (ret)
3896                 return ret;
3897
3898         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3899         if (&obj->base == NULL) {
3900                 ret = -ENOENT;
3901                 goto unlock;
3902         }
3903
3904         /* Count all active objects as busy, even if they are currently not used
3905          * by the gpu. Users of this interface expect objects to eventually
3906          * become non-busy without any further actions, therefore emit any
3907          * necessary flushes here.
3908          */
3909         ret = i915_gem_object_flush_active(obj);
3910
3911         args->busy = obj->active;
3912         if (obj->ring) {
3913                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3914                 args->busy |= intel_ring_flag(obj->ring) << 16;
3915         }
3916
3917         drm_gem_object_unreference(&obj->base);
3918 unlock:
3919         mutex_unlock(&dev->struct_mutex);
3920         return ret;
3921 }
3922
3923 int
3924 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3925                         struct drm_file *file_priv)
3926 {
3927         return i915_gem_ring_throttle(dev, file_priv);
3928 }
3929
3930 int
3931 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3932                        struct drm_file *file_priv)
3933 {
3934         struct drm_i915_gem_madvise *args = data;
3935         struct drm_i915_gem_object *obj;
3936         int ret;
3937
3938         switch (args->madv) {
3939         case I915_MADV_DONTNEED:
3940         case I915_MADV_WILLNEED:
3941             break;
3942         default:
3943             return -EINVAL;
3944         }
3945
3946         ret = i915_mutex_lock_interruptible(dev);
3947         if (ret)
3948                 return ret;
3949
3950         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3951         if (&obj->base == NULL) {
3952                 ret = -ENOENT;
3953                 goto unlock;
3954         }
3955
3956         if (obj->pin_count) {
3957                 ret = -EINVAL;
3958                 goto out;
3959         }
3960
3961         if (obj->madv != __I915_MADV_PURGED)
3962                 obj->madv = args->madv;
3963
3964         /* if the object is no longer attached, discard its backing storage */
3965         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3966                 i915_gem_object_truncate(obj);
3967
3968         args->retained = obj->madv != __I915_MADV_PURGED;
3969
3970 out:
3971         drm_gem_object_unreference(&obj->base);
3972 unlock:
3973         mutex_unlock(&dev->struct_mutex);
3974         return ret;
3975 }
3976
3977 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3978                           const struct drm_i915_gem_object_ops *ops)
3979 {
3980         INIT_LIST_HEAD(&obj->global_list);
3981         INIT_LIST_HEAD(&obj->ring_list);
3982         INIT_LIST_HEAD(&obj->exec_list);
3983         INIT_LIST_HEAD(&obj->obj_exec_link);
3984         INIT_LIST_HEAD(&obj->vma_list);
3985
3986         obj->ops = ops;
3987
3988         obj->fence_reg = I915_FENCE_REG_NONE;
3989         obj->madv = I915_MADV_WILLNEED;
3990         /* Avoid an unnecessary call to unbind on the first bind. */
3991         obj->map_and_fenceable = true;
3992
3993         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3994 }
3995
3996 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3997         .get_pages = i915_gem_object_get_pages_gtt,
3998         .put_pages = i915_gem_object_put_pages_gtt,
3999 };
4000
4001 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4002                                                   size_t size)
4003 {
4004         struct drm_i915_gem_object *obj;
4005         struct address_space *mapping;
4006         gfp_t mask;
4007
4008         obj = i915_gem_object_alloc(dev);
4009         if (obj == NULL)
4010                 return NULL;
4011
4012         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4013                 i915_gem_object_free(obj);
4014                 return NULL;
4015         }
4016
4017         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4018         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4019                 /* 965gm cannot relocate objects above 4GiB. */
4020                 mask &= ~__GFP_HIGHMEM;
4021                 mask |= __GFP_DMA32;
4022         }
4023
4024         mapping = file_inode(obj->base.filp)->i_mapping;
4025         mapping_set_gfp_mask(mapping, mask);
4026
4027         i915_gem_object_init(obj, &i915_gem_object_ops);
4028
4029         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4030         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4031
4032         if (HAS_LLC(dev)) {
4033                 /* On some devices, we can have the GPU use the LLC (the CPU
4034                  * cache) for about a 10% performance improvement
4035                  * compared to uncached.  Graphics requests other than
4036                  * display scanout are coherent with the CPU in
4037                  * accessing this cache.  This means in this mode we
4038                  * don't need to clflush on the CPU side, and on the
4039                  * GPU side we only need to flush internal caches to
4040                  * get data visible to the CPU.
4041                  *
4042                  * However, we maintain the display planes as UC, and so
4043                  * need to rebind when first used as such.
4044                  */
4045                 obj->cache_level = I915_CACHE_LLC;
4046         } else
4047                 obj->cache_level = I915_CACHE_NONE;
4048
4049         trace_i915_gem_object_create(obj);
4050
4051         return obj;
4052 }
4053
4054 int i915_gem_init_object(struct drm_gem_object *obj)
4055 {
4056         BUG();
4057
4058         return 0;
4059 }
4060
4061 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4062 {
4063         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4064         struct drm_device *dev = obj->base.dev;
4065         drm_i915_private_t *dev_priv = dev->dev_private;
4066         struct i915_vma *vma, *next;
4067
4068         trace_i915_gem_object_destroy(obj);
4069
4070         if (obj->phys_obj)
4071                 i915_gem_detach_phys_object(dev, obj);
4072
4073         obj->pin_count = 0;
4074         /* NB: 0 or 1 elements */
4075         WARN_ON(!list_empty(&obj->vma_list) &&
4076                 !list_is_singular(&obj->vma_list));
4077         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4078                 int ret = i915_vma_unbind(vma);
4079                 if (WARN_ON(ret == -ERESTARTSYS)) {
4080                         bool was_interruptible;
4081
4082                         was_interruptible = dev_priv->mm.interruptible;
4083                         dev_priv->mm.interruptible = false;
4084
4085                         WARN_ON(i915_vma_unbind(vma));
4086
4087                         dev_priv->mm.interruptible = was_interruptible;
4088                 }
4089         }
4090
4091         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4092          * before progressing. */
4093         if (obj->stolen)
4094                 i915_gem_object_unpin_pages(obj);
4095
4096         if (WARN_ON(obj->pages_pin_count))
4097                 obj->pages_pin_count = 0;
4098         i915_gem_object_put_pages(obj);
4099         i915_gem_object_free_mmap_offset(obj);
4100         i915_gem_object_release_stolen(obj);
4101
4102         BUG_ON(obj->pages);
4103
4104         if (obj->base.import_attach)
4105                 drm_prime_gem_destroy(&obj->base, NULL);
4106
4107         drm_gem_object_release(&obj->base);
4108         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4109
4110         kfree(obj->bit_17);
4111         i915_gem_object_free(obj);
4112 }
4113
4114 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4115                                      struct i915_address_space *vm)
4116 {
4117         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4118         if (vma == NULL)
4119                 return ERR_PTR(-ENOMEM);
4120
4121         INIT_LIST_HEAD(&vma->vma_link);
4122         INIT_LIST_HEAD(&vma->mm_list);
4123         INIT_LIST_HEAD(&vma->exec_list);
4124         vma->vm = vm;
4125         vma->obj = obj;
4126
4127         /* Keep GGTT vmas first to make debug easier */
4128         if (i915_is_ggtt(vm))
4129                 list_add(&vma->vma_link, &obj->vma_list);
4130         else
4131                 list_add_tail(&vma->vma_link, &obj->vma_list);
4132
4133         return vma;
4134 }
4135
4136 void i915_gem_vma_destroy(struct i915_vma *vma)
4137 {
4138         WARN_ON(vma->node.allocated);
4139         list_del(&vma->vma_link);
4140         kfree(vma);
4141 }
4142
4143 int
4144 i915_gem_idle(struct drm_device *dev)
4145 {
4146         drm_i915_private_t *dev_priv = dev->dev_private;
4147         int ret;
4148
4149         if (dev_priv->ums.mm_suspended) {
4150                 mutex_unlock(&dev->struct_mutex);
4151                 return 0;
4152         }
4153
4154         ret = i915_gpu_idle(dev);
4155         if (ret) {
4156                 mutex_unlock(&dev->struct_mutex);
4157                 return ret;
4158         }
4159         i915_gem_retire_requests(dev);
4160
4161         /* Under UMS, be paranoid and evict. */
4162         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4163                 i915_gem_evict_everything(dev);
4164
4165         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4166
4167         i915_kernel_lost_context(dev);
4168         i915_gem_cleanup_ringbuffer(dev);
4169
4170         /* Cancel the retire work handler, which should be idle now. */
4171         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4172
4173         return 0;
4174 }
4175
4176 void i915_gem_l3_remap(struct drm_device *dev)
4177 {
4178         drm_i915_private_t *dev_priv = dev->dev_private;
4179         u32 misccpctl;
4180         int i;
4181
4182         if (!HAS_L3_GPU_CACHE(dev))
4183                 return;
4184
4185         if (!dev_priv->l3_parity.remap_info)
4186                 return;
4187
4188         misccpctl = I915_READ(GEN7_MISCCPCTL);
4189         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4190         POSTING_READ(GEN7_MISCCPCTL);
4191
4192         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4193                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4194                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4195                         DRM_DEBUG("0x%x was already programmed to %x\n",
4196                                   GEN7_L3LOG_BASE + i, remap);
4197                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4198                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4199                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4200         }
4201
4202         /* Make sure all the writes land before disabling dop clock gating */
4203         POSTING_READ(GEN7_L3LOG_BASE);
4204
4205         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4206 }
4207
4208 void i915_gem_init_swizzling(struct drm_device *dev)
4209 {
4210         drm_i915_private_t *dev_priv = dev->dev_private;
4211
4212         if (INTEL_INFO(dev)->gen < 5 ||
4213             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4214                 return;
4215
4216         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4217                                  DISP_TILE_SURFACE_SWIZZLING);
4218
4219         if (IS_GEN5(dev))
4220                 return;
4221
4222         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4223         if (IS_GEN6(dev))
4224                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4225         else if (IS_GEN7(dev))
4226                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4227         else
4228                 BUG();
4229 }
4230
4231 static bool
4232 intel_enable_blt(struct drm_device *dev)
4233 {
4234         if (!HAS_BLT(dev))
4235                 return false;
4236
4237         /* The blitter was dysfunctional on early prototypes */
4238         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4239                 DRM_INFO("BLT not supported on this pre-production hardware;"
4240                          " graphics performance will be degraded.\n");
4241                 return false;
4242         }
4243
4244         return true;
4245 }
4246
4247 static int i915_gem_init_rings(struct drm_device *dev)
4248 {
4249         struct drm_i915_private *dev_priv = dev->dev_private;
4250         int ret;
4251
4252         ret = intel_init_render_ring_buffer(dev);
4253         if (ret)
4254                 return ret;
4255
4256         if (HAS_BSD(dev)) {
4257                 ret = intel_init_bsd_ring_buffer(dev);
4258                 if (ret)
4259                         goto cleanup_render_ring;
4260         }
4261
4262         if (intel_enable_blt(dev)) {
4263                 ret = intel_init_blt_ring_buffer(dev);
4264                 if (ret)
4265                         goto cleanup_bsd_ring;
4266         }
4267
4268         if (HAS_VEBOX(dev)) {
4269                 ret = intel_init_vebox_ring_buffer(dev);
4270                 if (ret)
4271                         goto cleanup_blt_ring;
4272         }
4273
4274
4275         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4276         if (ret)
4277                 goto cleanup_vebox_ring;
4278
4279         return 0;
4280
4281 cleanup_vebox_ring:
4282         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4283 cleanup_blt_ring:
4284         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4285 cleanup_bsd_ring:
4286         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4287 cleanup_render_ring:
4288         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4289
4290         return ret;
4291 }
4292
4293 int
4294 i915_gem_init_hw(struct drm_device *dev)
4295 {
4296         drm_i915_private_t *dev_priv = dev->dev_private;
4297         int ret;
4298
4299         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4300                 return -EIO;
4301
4302         if (dev_priv->ellc_size)
4303                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4304
4305         if (HAS_PCH_NOP(dev)) {
4306                 u32 temp = I915_READ(GEN7_MSG_CTL);
4307                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4308                 I915_WRITE(GEN7_MSG_CTL, temp);
4309         }
4310
4311         i915_gem_l3_remap(dev);
4312
4313         i915_gem_init_swizzling(dev);
4314
4315         ret = i915_gem_init_rings(dev);
4316         if (ret)
4317                 return ret;
4318
4319         /*
4320          * XXX: There was some w/a described somewhere suggesting loading
4321          * contexts before PPGTT.
4322          */
4323         i915_gem_context_init(dev);
4324         if (dev_priv->mm.aliasing_ppgtt) {
4325                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4326                 if (ret) {
4327                         i915_gem_cleanup_aliasing_ppgtt(dev);
4328                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4329                 }
4330         }
4331
4332         return 0;
4333 }
4334
4335 int i915_gem_init(struct drm_device *dev)
4336 {
4337         struct drm_i915_private *dev_priv = dev->dev_private;
4338         int ret;
4339
4340         mutex_lock(&dev->struct_mutex);
4341
4342         if (IS_VALLEYVIEW(dev)) {
4343                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4344                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4345                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4346                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4347         }
4348
4349         i915_gem_init_global_gtt(dev);
4350
4351         ret = i915_gem_init_hw(dev);
4352         mutex_unlock(&dev->struct_mutex);
4353         if (ret) {
4354                 i915_gem_cleanup_aliasing_ppgtt(dev);
4355                 return ret;
4356         }
4357
4358         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4359         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4360                 dev_priv->dri1.allow_batchbuffer = 1;
4361         return 0;
4362 }
4363
4364 void
4365 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4366 {
4367         drm_i915_private_t *dev_priv = dev->dev_private;
4368         struct intel_ring_buffer *ring;
4369         int i;
4370
4371         for_each_ring(ring, dev_priv, i)
4372                 intel_cleanup_ring_buffer(ring);
4373 }
4374
4375 int
4376 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4377                        struct drm_file *file_priv)
4378 {
4379         struct drm_i915_private *dev_priv = dev->dev_private;
4380         int ret;
4381
4382         if (drm_core_check_feature(dev, DRIVER_MODESET))
4383                 return 0;
4384
4385         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4386                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4387                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4388         }
4389
4390         mutex_lock(&dev->struct_mutex);
4391         dev_priv->ums.mm_suspended = 0;
4392
4393         ret = i915_gem_init_hw(dev);
4394         if (ret != 0) {
4395                 mutex_unlock(&dev->struct_mutex);
4396                 return ret;
4397         }
4398
4399         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4400         mutex_unlock(&dev->struct_mutex);
4401
4402         ret = drm_irq_install(dev);
4403         if (ret)
4404                 goto cleanup_ringbuffer;
4405
4406         return 0;
4407
4408 cleanup_ringbuffer:
4409         mutex_lock(&dev->struct_mutex);
4410         i915_gem_cleanup_ringbuffer(dev);
4411         dev_priv->ums.mm_suspended = 1;
4412         mutex_unlock(&dev->struct_mutex);
4413
4414         return ret;
4415 }
4416
4417 int
4418 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4419                        struct drm_file *file_priv)
4420 {
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422         int ret;
4423
4424         if (drm_core_check_feature(dev, DRIVER_MODESET))
4425                 return 0;
4426
4427         drm_irq_uninstall(dev);
4428
4429         mutex_lock(&dev->struct_mutex);
4430         ret =  i915_gem_idle(dev);
4431
4432         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4433          * We need to replace this with a semaphore, or something.
4434          * And not confound ums.mm_suspended!
4435          */
4436         if (ret != 0)
4437                 dev_priv->ums.mm_suspended = 1;
4438         mutex_unlock(&dev->struct_mutex);
4439
4440         return ret;
4441 }
4442
4443 void
4444 i915_gem_lastclose(struct drm_device *dev)
4445 {
4446         int ret;
4447
4448         if (drm_core_check_feature(dev, DRIVER_MODESET))
4449                 return;
4450
4451         mutex_lock(&dev->struct_mutex);
4452         ret = i915_gem_idle(dev);
4453         if (ret)
4454                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4455         mutex_unlock(&dev->struct_mutex);
4456 }
4457
4458 static void
4459 init_ring_lists(struct intel_ring_buffer *ring)
4460 {
4461         INIT_LIST_HEAD(&ring->active_list);
4462         INIT_LIST_HEAD(&ring->request_list);
4463 }
4464
4465 static void i915_init_vm(struct drm_i915_private *dev_priv,
4466                          struct i915_address_space *vm)
4467 {
4468         vm->dev = dev_priv->dev;
4469         INIT_LIST_HEAD(&vm->active_list);
4470         INIT_LIST_HEAD(&vm->inactive_list);
4471         INIT_LIST_HEAD(&vm->global_link);
4472         list_add(&vm->global_link, &dev_priv->vm_list);
4473 }
4474
4475 void
4476 i915_gem_load(struct drm_device *dev)
4477 {
4478         drm_i915_private_t *dev_priv = dev->dev_private;
4479         int i;
4480
4481         dev_priv->slab =
4482                 kmem_cache_create("i915_gem_object",
4483                                   sizeof(struct drm_i915_gem_object), 0,
4484                                   SLAB_HWCACHE_ALIGN,
4485                                   NULL);
4486
4487         INIT_LIST_HEAD(&dev_priv->vm_list);
4488         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4489
4490         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4491         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4492         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4493         for (i = 0; i < I915_NUM_RINGS; i++)
4494                 init_ring_lists(&dev_priv->ring[i]);
4495         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4496                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4497         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4498                           i915_gem_retire_work_handler);
4499         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4500
4501         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4502         if (IS_GEN3(dev)) {
4503                 I915_WRITE(MI_ARB_STATE,
4504                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4505         }
4506
4507         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4508
4509         /* Old X drivers will take 0-2 for front, back, depth buffers */
4510         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4511                 dev_priv->fence_reg_start = 3;
4512
4513         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4514                 dev_priv->num_fence_regs = 32;
4515         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4516                 dev_priv->num_fence_regs = 16;
4517         else
4518                 dev_priv->num_fence_regs = 8;
4519
4520         /* Initialize fence registers to zero */
4521         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4522         i915_gem_restore_fences(dev);
4523
4524         i915_gem_detect_bit_6_swizzle(dev);
4525         init_waitqueue_head(&dev_priv->pending_flip_queue);
4526
4527         dev_priv->mm.interruptible = true;
4528
4529         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4530         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4531         register_shrinker(&dev_priv->mm.inactive_shrinker);
4532 }
4533
4534 /*
4535  * Create a physically contiguous memory object for this object
4536  * e.g. for cursor + overlay regs
4537  */
4538 static int i915_gem_init_phys_object(struct drm_device *dev,
4539                                      int id, int size, int align)
4540 {
4541         drm_i915_private_t *dev_priv = dev->dev_private;
4542         struct drm_i915_gem_phys_object *phys_obj;
4543         int ret;
4544
4545         if (dev_priv->mm.phys_objs[id - 1] || !size)
4546                 return 0;
4547
4548         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4549         if (!phys_obj)
4550                 return -ENOMEM;
4551
4552         phys_obj->id = id;
4553
4554         phys_obj->handle = drm_pci_alloc(dev, size, align);
4555         if (!phys_obj->handle) {
4556                 ret = -ENOMEM;
4557                 goto kfree_obj;
4558         }
4559 #ifdef CONFIG_X86
4560         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4561 #endif
4562
4563         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4564
4565         return 0;
4566 kfree_obj:
4567         kfree(phys_obj);
4568         return ret;
4569 }
4570
4571 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4572 {
4573         drm_i915_private_t *dev_priv = dev->dev_private;
4574         struct drm_i915_gem_phys_object *phys_obj;
4575
4576         if (!dev_priv->mm.phys_objs[id - 1])
4577                 return;
4578
4579         phys_obj = dev_priv->mm.phys_objs[id - 1];
4580         if (phys_obj->cur_obj) {
4581                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4582         }
4583
4584 #ifdef CONFIG_X86
4585         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4586 #endif
4587         drm_pci_free(dev, phys_obj->handle);
4588         kfree(phys_obj);
4589         dev_priv->mm.phys_objs[id - 1] = NULL;
4590 }
4591
4592 void i915_gem_free_all_phys_object(struct drm_device *dev)
4593 {
4594         int i;
4595
4596         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4597                 i915_gem_free_phys_object(dev, i);
4598 }
4599
4600 void i915_gem_detach_phys_object(struct drm_device *dev,
4601                                  struct drm_i915_gem_object *obj)
4602 {
4603         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4604         char *vaddr;
4605         int i;
4606         int page_count;
4607
4608         if (!obj->phys_obj)
4609                 return;
4610         vaddr = obj->phys_obj->handle->vaddr;
4611
4612         page_count = obj->base.size / PAGE_SIZE;
4613         for (i = 0; i < page_count; i++) {
4614                 struct page *page = shmem_read_mapping_page(mapping, i);
4615                 if (!IS_ERR(page)) {
4616                         char *dst = kmap_atomic(page);
4617                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4618                         kunmap_atomic(dst);
4619
4620                         drm_clflush_pages(&page, 1);
4621
4622                         set_page_dirty(page);
4623                         mark_page_accessed(page);
4624                         page_cache_release(page);
4625                 }
4626         }
4627         i915_gem_chipset_flush(dev);
4628
4629         obj->phys_obj->cur_obj = NULL;
4630         obj->phys_obj = NULL;
4631 }
4632
4633 int
4634 i915_gem_attach_phys_object(struct drm_device *dev,
4635                             struct drm_i915_gem_object *obj,
4636                             int id,
4637                             int align)
4638 {
4639         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4640         drm_i915_private_t *dev_priv = dev->dev_private;
4641         int ret = 0;
4642         int page_count;
4643         int i;
4644
4645         if (id > I915_MAX_PHYS_OBJECT)
4646                 return -EINVAL;
4647
4648         if (obj->phys_obj) {
4649                 if (obj->phys_obj->id == id)
4650                         return 0;
4651                 i915_gem_detach_phys_object(dev, obj);
4652         }
4653
4654         /* create a new object */
4655         if (!dev_priv->mm.phys_objs[id - 1]) {
4656                 ret = i915_gem_init_phys_object(dev, id,
4657                                                 obj->base.size, align);
4658                 if (ret) {
4659                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4660                                   id, obj->base.size);
4661                         return ret;
4662                 }
4663         }
4664
4665         /* bind to the object */
4666         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4667         obj->phys_obj->cur_obj = obj;
4668
4669         page_count = obj->base.size / PAGE_SIZE;
4670
4671         for (i = 0; i < page_count; i++) {
4672                 struct page *page;
4673                 char *dst, *src;
4674
4675                 page = shmem_read_mapping_page(mapping, i);
4676                 if (IS_ERR(page))
4677                         return PTR_ERR(page);
4678
4679                 src = kmap_atomic(page);
4680                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4681                 memcpy(dst, src, PAGE_SIZE);
4682                 kunmap_atomic(src);
4683
4684                 mark_page_accessed(page);
4685                 page_cache_release(page);
4686         }
4687
4688         return 0;
4689 }
4690
4691 static int
4692 i915_gem_phys_pwrite(struct drm_device *dev,
4693                      struct drm_i915_gem_object *obj,
4694                      struct drm_i915_gem_pwrite *args,
4695                      struct drm_file *file_priv)
4696 {
4697         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4698         char __user *user_data = to_user_ptr(args->data_ptr);
4699
4700         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4701                 unsigned long unwritten;
4702
4703                 /* The physical object once assigned is fixed for the lifetime
4704                  * of the obj, so we can safely drop the lock and continue
4705                  * to access vaddr.
4706                  */
4707                 mutex_unlock(&dev->struct_mutex);
4708                 unwritten = copy_from_user(vaddr, user_data, args->size);
4709                 mutex_lock(&dev->struct_mutex);
4710                 if (unwritten)
4711                         return -EFAULT;
4712         }
4713
4714         i915_gem_chipset_flush(dev);
4715         return 0;
4716 }
4717
4718 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4719 {
4720         struct drm_i915_file_private *file_priv = file->driver_priv;
4721
4722         /* Clean up our request list when the client is going away, so that
4723          * later retire_requests won't dereference our soon-to-be-gone
4724          * file_priv.
4725          */
4726         spin_lock(&file_priv->mm.lock);
4727         while (!list_empty(&file_priv->mm.request_list)) {
4728                 struct drm_i915_gem_request *request;
4729
4730                 request = list_first_entry(&file_priv->mm.request_list,
4731                                            struct drm_i915_gem_request,
4732                                            client_list);
4733                 list_del(&request->client_list);
4734                 request->file_priv = NULL;
4735         }
4736         spin_unlock(&file_priv->mm.lock);
4737 }
4738
4739 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4740 {
4741         if (!mutex_is_locked(mutex))
4742                 return false;
4743
4744 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4745         return mutex->owner == task;
4746 #else
4747         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4748         return false;
4749 #endif
4750 }
4751
4752 static int
4753 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4754 {
4755         struct drm_i915_private *dev_priv =
4756                 container_of(shrinker,
4757                              struct drm_i915_private,
4758                              mm.inactive_shrinker);
4759         struct drm_device *dev = dev_priv->dev;
4760         struct drm_i915_gem_object *obj;
4761         int nr_to_scan = sc->nr_to_scan;
4762         bool unlock = true;
4763         int cnt;
4764
4765         if (!mutex_trylock(&dev->struct_mutex)) {
4766                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4767                         return 0;
4768
4769                 if (dev_priv->mm.shrinker_no_lock_stealing)
4770                         return 0;
4771
4772                 unlock = false;
4773         }
4774
4775         if (nr_to_scan) {
4776                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4777                 if (nr_to_scan > 0)
4778                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4779                                                         false);
4780                 if (nr_to_scan > 0)
4781                         i915_gem_shrink_all(dev_priv);
4782         }
4783
4784         cnt = 0;
4785         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4786                 if (obj->pages_pin_count == 0)
4787                         cnt += obj->base.size >> PAGE_SHIFT;
4788
4789         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4790                 if (obj->active)
4791                         continue;
4792
4793                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4794                         cnt += obj->base.size >> PAGE_SHIFT;
4795         }
4796
4797         if (unlock)
4798                 mutex_unlock(&dev->struct_mutex);
4799         return cnt;
4800 }
4801
4802 /* All the new VM stuff */
4803 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4804                                   struct i915_address_space *vm)
4805 {
4806         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4807         struct i915_vma *vma;
4808
4809         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4810                 vm = &dev_priv->gtt.base;
4811
4812         BUG_ON(list_empty(&o->vma_list));
4813         list_for_each_entry(vma, &o->vma_list, vma_link) {
4814                 if (vma->vm == vm)
4815                         return vma->node.start;
4816
4817         }
4818         return -1;
4819 }
4820
4821 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4822                         struct i915_address_space *vm)
4823 {
4824         struct i915_vma *vma;
4825
4826         list_for_each_entry(vma, &o->vma_list, vma_link)
4827                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4828                         return true;
4829
4830         return false;
4831 }
4832
4833 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4834 {
4835         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4836         struct i915_address_space *vm;
4837
4838         list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4839                 if (i915_gem_obj_bound(o, vm))
4840                         return true;
4841
4842         return false;
4843 }
4844
4845 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4846                                 struct i915_address_space *vm)
4847 {
4848         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4849         struct i915_vma *vma;
4850
4851         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4852                 vm = &dev_priv->gtt.base;
4853
4854         BUG_ON(list_empty(&o->vma_list));
4855
4856         list_for_each_entry(vma, &o->vma_list, vma_link)
4857                 if (vma->vm == vm)
4858                         return vma->node.size;
4859
4860         return 0;
4861 }
4862
4863 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4864                                      struct i915_address_space *vm)
4865 {
4866         struct i915_vma *vma;
4867         list_for_each_entry(vma, &obj->vma_list, vma_link)
4868                 if (vma->vm == vm)
4869                         return vma;
4870
4871         return NULL;
4872 }
4873
4874 struct i915_vma *
4875 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4876                                   struct i915_address_space *vm)
4877 {
4878         struct i915_vma *vma;
4879
4880         vma = i915_gem_obj_to_vma(obj, vm);
4881         if (!vma)
4882                 vma = i915_gem_vma_create(obj, vm);
4883
4884         return vma;
4885 }