]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Simplify intel_mark_busy/idle
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58                 return true;
59
60         return obj->pin_display;
61 }
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65                                   size_t size)
66 {
67         spin_lock(&dev_priv->mm.object_stat_lock);
68         dev_priv->mm.object_count++;
69         dev_priv->mm.object_memory += size;
70         spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74                                      size_t size)
75 {
76         spin_lock(&dev_priv->mm.object_stat_lock);
77         dev_priv->mm.object_count--;
78         dev_priv->mm.object_memory -= size;
79         spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85         int ret;
86
87         if (!i915_reset_in_progress(error))
88                 return 0;
89
90         /*
91          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92          * userspace. If it takes that long something really bad is going on and
93          * we should simply try to bail out and fail as gracefully as possible.
94          */
95         ret = wait_event_interruptible_timeout(error->reset_queue,
96                                                !i915_reset_in_progress(error),
97                                                10*HZ);
98         if (ret == 0) {
99                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100                 return -EIO;
101         } else if (ret < 0) {
102                 return ret;
103         } else {
104                 return 0;
105         }
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110         struct drm_i915_private *dev_priv = dev->dev_private;
111         int ret;
112
113         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114         if (ret)
115                 return ret;
116
117         ret = mutex_lock_interruptible(&dev->struct_mutex);
118         if (ret)
119                 return ret;
120
121         WARN_ON(i915_verify_lists(dev));
122         return 0;
123 }
124
125 int
126 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127                             struct drm_file *file)
128 {
129         struct drm_i915_private *dev_priv = to_i915(dev);
130         struct i915_ggtt *ggtt = &dev_priv->ggtt;
131         struct drm_i915_gem_get_aperture *args = data;
132         struct i915_vma *vma;
133         size_t pinned;
134
135         pinned = 0;
136         mutex_lock(&dev->struct_mutex);
137         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138                 if (vma->pin_count)
139                         pinned += vma->node.size;
140         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141                 if (vma->pin_count)
142                         pinned += vma->node.size;
143         mutex_unlock(&dev->struct_mutex);
144
145         args->aper_size = ggtt->base.total;
146         args->aper_available_size = args->aper_size - pinned;
147
148         return 0;
149 }
150
151 static int
152 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153 {
154         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155         char *vaddr = obj->phys_handle->vaddr;
156         struct sg_table *st;
157         struct scatterlist *sg;
158         int i;
159
160         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161                 return -EINVAL;
162
163         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164                 struct page *page;
165                 char *src;
166
167                 page = shmem_read_mapping_page(mapping, i);
168                 if (IS_ERR(page))
169                         return PTR_ERR(page);
170
171                 src = kmap_atomic(page);
172                 memcpy(vaddr, src, PAGE_SIZE);
173                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174                 kunmap_atomic(src);
175
176                 put_page(page);
177                 vaddr += PAGE_SIZE;
178         }
179
180         i915_gem_chipset_flush(obj->base.dev);
181
182         st = kmalloc(sizeof(*st), GFP_KERNEL);
183         if (st == NULL)
184                 return -ENOMEM;
185
186         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187                 kfree(st);
188                 return -ENOMEM;
189         }
190
191         sg = st->sgl;
192         sg->offset = 0;
193         sg->length = obj->base.size;
194
195         sg_dma_address(sg) = obj->phys_handle->busaddr;
196         sg_dma_len(sg) = obj->base.size;
197
198         obj->pages = st;
199         return 0;
200 }
201
202 static void
203 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204 {
205         int ret;
206
207         BUG_ON(obj->madv == __I915_MADV_PURGED);
208
209         ret = i915_gem_object_set_to_cpu_domain(obj, true);
210         if (WARN_ON(ret)) {
211                 /* In the event of a disaster, abandon all caches and
212                  * hope for the best.
213                  */
214                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215         }
216
217         if (obj->madv == I915_MADV_DONTNEED)
218                 obj->dirty = 0;
219
220         if (obj->dirty) {
221                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222                 char *vaddr = obj->phys_handle->vaddr;
223                 int i;
224
225                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226                         struct page *page;
227                         char *dst;
228
229                         page = shmem_read_mapping_page(mapping, i);
230                         if (IS_ERR(page))
231                                 continue;
232
233                         dst = kmap_atomic(page);
234                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
235                         memcpy(dst, vaddr, PAGE_SIZE);
236                         kunmap_atomic(dst);
237
238                         set_page_dirty(page);
239                         if (obj->madv == I915_MADV_WILLNEED)
240                                 mark_page_accessed(page);
241                         put_page(page);
242                         vaddr += PAGE_SIZE;
243                 }
244                 obj->dirty = 0;
245         }
246
247         sg_free_table(obj->pages);
248         kfree(obj->pages);
249 }
250
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254         drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258         .get_pages = i915_gem_object_get_pages_phys,
259         .put_pages = i915_gem_object_put_pages_phys,
260         .release = i915_gem_object_release_phys,
261 };
262
263 static int
264 drop_pages(struct drm_i915_gem_object *obj)
265 {
266         struct i915_vma *vma, *next;
267         int ret;
268
269         drm_gem_object_reference(&obj->base);
270         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271                 if (i915_vma_unbind(vma))
272                         break;
273
274         ret = i915_gem_object_put_pages(obj);
275         drm_gem_object_unreference(&obj->base);
276
277         return ret;
278 }
279
280 int
281 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282                             int align)
283 {
284         drm_dma_handle_t *phys;
285         int ret;
286
287         if (obj->phys_handle) {
288                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289                         return -EBUSY;
290
291                 return 0;
292         }
293
294         if (obj->madv != I915_MADV_WILLNEED)
295                 return -EFAULT;
296
297         if (obj->base.filp == NULL)
298                 return -EINVAL;
299
300         ret = drop_pages(obj);
301         if (ret)
302                 return ret;
303
304         /* create a new object */
305         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306         if (!phys)
307                 return -ENOMEM;
308
309         obj->phys_handle = phys;
310         obj->ops = &i915_gem_phys_ops;
311
312         return i915_gem_object_get_pages(obj);
313 }
314
315 static int
316 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317                      struct drm_i915_gem_pwrite *args,
318                      struct drm_file *file_priv)
319 {
320         struct drm_device *dev = obj->base.dev;
321         void *vaddr = obj->phys_handle->vaddr + args->offset;
322         char __user *user_data = to_user_ptr(args->data_ptr);
323         int ret = 0;
324
325         /* We manually control the domain here and pretend that it
326          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327          */
328         ret = i915_gem_object_wait_rendering(obj, false);
329         if (ret)
330                 return ret;
331
332         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334                 unsigned long unwritten;
335
336                 /* The physical object once assigned is fixed for the lifetime
337                  * of the obj, so we can safely drop the lock and continue
338                  * to access vaddr.
339                  */
340                 mutex_unlock(&dev->struct_mutex);
341                 unwritten = copy_from_user(vaddr, user_data, args->size);
342                 mutex_lock(&dev->struct_mutex);
343                 if (unwritten) {
344                         ret = -EFAULT;
345                         goto out;
346                 }
347         }
348
349         drm_clflush_virt_range(vaddr, args->size);
350         i915_gem_chipset_flush(dev);
351
352 out:
353         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354         return ret;
355 }
356
357 void *i915_gem_object_alloc(struct drm_device *dev)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 }
362
363 void i915_gem_object_free(struct drm_i915_gem_object *obj)
364 {
365         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366         kmem_cache_free(dev_priv->objects, obj);
367 }
368
369 static int
370 i915_gem_create(struct drm_file *file,
371                 struct drm_device *dev,
372                 uint64_t size,
373                 uint32_t *handle_p)
374 {
375         struct drm_i915_gem_object *obj;
376         int ret;
377         u32 handle;
378
379         size = roundup(size, PAGE_SIZE);
380         if (size == 0)
381                 return -EINVAL;
382
383         /* Allocate the new object */
384         obj = i915_gem_object_create(dev, size);
385         if (IS_ERR(obj))
386                 return PTR_ERR(obj);
387
388         ret = drm_gem_handle_create(file, &obj->base, &handle);
389         /* drop reference from allocate - handle holds it now */
390         drm_gem_object_unreference_unlocked(&obj->base);
391         if (ret)
392                 return ret;
393
394         *handle_p = handle;
395         return 0;
396 }
397
398 int
399 i915_gem_dumb_create(struct drm_file *file,
400                      struct drm_device *dev,
401                      struct drm_mode_create_dumb *args)
402 {
403         /* have to work out size/pitch and return them */
404         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405         args->size = args->pitch * args->height;
406         return i915_gem_create(file, dev,
407                                args->size, &args->handle);
408 }
409
410 /**
411  * Creates a new mm object and returns a handle to it.
412  */
413 int
414 i915_gem_create_ioctl(struct drm_device *dev, void *data,
415                       struct drm_file *file)
416 {
417         struct drm_i915_gem_create *args = data;
418
419         return i915_gem_create(file, dev,
420                                args->size, &args->handle);
421 }
422
423 static inline int
424 __copy_to_user_swizzled(char __user *cpu_vaddr,
425                         const char *gpu_vaddr, int gpu_offset,
426                         int length)
427 {
428         int ret, cpu_offset = 0;
429
430         while (length > 0) {
431                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432                 int this_length = min(cacheline_end - gpu_offset, length);
433                 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436                                      gpu_vaddr + swizzled_gpu_offset,
437                                      this_length);
438                 if (ret)
439                         return ret + length;
440
441                 cpu_offset += this_length;
442                 gpu_offset += this_length;
443                 length -= this_length;
444         }
445
446         return 0;
447 }
448
449 static inline int
450 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451                           const char __user *cpu_vaddr,
452                           int length)
453 {
454         int ret, cpu_offset = 0;
455
456         while (length > 0) {
457                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458                 int this_length = min(cacheline_end - gpu_offset, length);
459                 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462                                        cpu_vaddr + cpu_offset,
463                                        this_length);
464                 if (ret)
465                         return ret + length;
466
467                 cpu_offset += this_length;
468                 gpu_offset += this_length;
469                 length -= this_length;
470         }
471
472         return 0;
473 }
474
475 /*
476  * Pins the specified object's pages and synchronizes the object with
477  * GPU accesses. Sets needs_clflush to non-zero if the caller should
478  * flush the object from the CPU cache.
479  */
480 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481                                     int *needs_clflush)
482 {
483         int ret;
484
485         *needs_clflush = 0;
486
487         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488                 return -EINVAL;
489
490         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491                 /* If we're not in the cpu read domain, set ourself into the gtt
492                  * read domain and manually flush cachelines (if required). This
493                  * optimizes for the case when the gpu will dirty the data
494                  * anyway again before the next pread happens. */
495                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496                                                         obj->cache_level);
497                 ret = i915_gem_object_wait_rendering(obj, true);
498                 if (ret)
499                         return ret;
500         }
501
502         ret = i915_gem_object_get_pages(obj);
503         if (ret)
504                 return ret;
505
506         i915_gem_object_pin_pages(obj);
507
508         return ret;
509 }
510
511 /* Per-page copy function for the shmem pread fastpath.
512  * Flushes invalid cachelines before reading the target if
513  * needs_clflush is set. */
514 static int
515 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516                  char __user *user_data,
517                  bool page_do_bit17_swizzling, bool needs_clflush)
518 {
519         char *vaddr;
520         int ret;
521
522         if (unlikely(page_do_bit17_swizzling))
523                 return -EINVAL;
524
525         vaddr = kmap_atomic(page);
526         if (needs_clflush)
527                 drm_clflush_virt_range(vaddr + shmem_page_offset,
528                                        page_length);
529         ret = __copy_to_user_inatomic(user_data,
530                                       vaddr + shmem_page_offset,
531                                       page_length);
532         kunmap_atomic(vaddr);
533
534         return ret ? -EFAULT : 0;
535 }
536
537 static void
538 shmem_clflush_swizzled_range(char *addr, unsigned long length,
539                              bool swizzled)
540 {
541         if (unlikely(swizzled)) {
542                 unsigned long start = (unsigned long) addr;
543                 unsigned long end = (unsigned long) addr + length;
544
545                 /* For swizzling simply ensure that we always flush both
546                  * channels. Lame, but simple and it works. Swizzled
547                  * pwrite/pread is far from a hotpath - current userspace
548                  * doesn't use it at all. */
549                 start = round_down(start, 128);
550                 end = round_up(end, 128);
551
552                 drm_clflush_virt_range((void *)start, end - start);
553         } else {
554                 drm_clflush_virt_range(addr, length);
555         }
556
557 }
558
559 /* Only difference to the fast-path function is that this can handle bit17
560  * and uses non-atomic copy and kmap functions. */
561 static int
562 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563                  char __user *user_data,
564                  bool page_do_bit17_swizzling, bool needs_clflush)
565 {
566         char *vaddr;
567         int ret;
568
569         vaddr = kmap(page);
570         if (needs_clflush)
571                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572                                              page_length,
573                                              page_do_bit17_swizzling);
574
575         if (page_do_bit17_swizzling)
576                 ret = __copy_to_user_swizzled(user_data,
577                                               vaddr, shmem_page_offset,
578                                               page_length);
579         else
580                 ret = __copy_to_user(user_data,
581                                      vaddr + shmem_page_offset,
582                                      page_length);
583         kunmap(page);
584
585         return ret ? - EFAULT : 0;
586 }
587
588 static int
589 i915_gem_shmem_pread(struct drm_device *dev,
590                      struct drm_i915_gem_object *obj,
591                      struct drm_i915_gem_pread *args,
592                      struct drm_file *file)
593 {
594         char __user *user_data;
595         ssize_t remain;
596         loff_t offset;
597         int shmem_page_offset, page_length, ret = 0;
598         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599         int prefaulted = 0;
600         int needs_clflush = 0;
601         struct sg_page_iter sg_iter;
602
603         user_data = to_user_ptr(args->data_ptr);
604         remain = args->size;
605
606         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607
608         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609         if (ret)
610                 return ret;
611
612         offset = args->offset;
613
614         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615                          offset >> PAGE_SHIFT) {
616                 struct page *page = sg_page_iter_page(&sg_iter);
617
618                 if (remain <= 0)
619                         break;
620
621                 /* Operation in this page
622                  *
623                  * shmem_page_offset = offset within page in shmem file
624                  * page_length = bytes to copy for this page
625                  */
626                 shmem_page_offset = offset_in_page(offset);
627                 page_length = remain;
628                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629                         page_length = PAGE_SIZE - shmem_page_offset;
630
631                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632                         (page_to_phys(page) & (1 << 17)) != 0;
633
634                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635                                        user_data, page_do_bit17_swizzling,
636                                        needs_clflush);
637                 if (ret == 0)
638                         goto next_page;
639
640                 mutex_unlock(&dev->struct_mutex);
641
642                 if (likely(!i915.prefault_disable) && !prefaulted) {
643                         ret = fault_in_multipages_writeable(user_data, remain);
644                         /* Userspace is tricking us, but we've already clobbered
645                          * its pages with the prefault and promised to write the
646                          * data up to the first fault. Hence ignore any errors
647                          * and just continue. */
648                         (void)ret;
649                         prefaulted = 1;
650                 }
651
652                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653                                        user_data, page_do_bit17_swizzling,
654                                        needs_clflush);
655
656                 mutex_lock(&dev->struct_mutex);
657
658                 if (ret)
659                         goto out;
660
661 next_page:
662                 remain -= page_length;
663                 user_data += page_length;
664                 offset += page_length;
665         }
666
667 out:
668         i915_gem_object_unpin_pages(obj);
669
670         return ret;
671 }
672
673 /**
674  * Reads data from the object referenced by handle.
675  *
676  * On error, the contents of *data are undefined.
677  */
678 int
679 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680                      struct drm_file *file)
681 {
682         struct drm_i915_gem_pread *args = data;
683         struct drm_i915_gem_object *obj;
684         int ret = 0;
685
686         if (args->size == 0)
687                 return 0;
688
689         if (!access_ok(VERIFY_WRITE,
690                        to_user_ptr(args->data_ptr),
691                        args->size))
692                 return -EFAULT;
693
694         ret = i915_mutex_lock_interruptible(dev);
695         if (ret)
696                 return ret;
697
698         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699         if (&obj->base == NULL) {
700                 ret = -ENOENT;
701                 goto unlock;
702         }
703
704         /* Bounds check source.  */
705         if (args->offset > obj->base.size ||
706             args->size > obj->base.size - args->offset) {
707                 ret = -EINVAL;
708                 goto out;
709         }
710
711         /* prime objects have no backing filp to GEM pread/pwrite
712          * pages from.
713          */
714         if (!obj->base.filp) {
715                 ret = -EINVAL;
716                 goto out;
717         }
718
719         trace_i915_gem_object_pread(obj, args->offset, args->size);
720
721         ret = i915_gem_shmem_pread(dev, obj, args, file);
722
723 out:
724         drm_gem_object_unreference(&obj->base);
725 unlock:
726         mutex_unlock(&dev->struct_mutex);
727         return ret;
728 }
729
730 /* This is the fast write path which cannot handle
731  * page faults in the source data
732  */
733
734 static inline int
735 fast_user_write(struct io_mapping *mapping,
736                 loff_t page_base, int page_offset,
737                 char __user *user_data,
738                 int length)
739 {
740         void __iomem *vaddr_atomic;
741         void *vaddr;
742         unsigned long unwritten;
743
744         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745         /* We can use the cpu mem copy function because this is X86. */
746         vaddr = (void __force*)vaddr_atomic + page_offset;
747         unwritten = __copy_from_user_inatomic_nocache(vaddr,
748                                                       user_data, length);
749         io_mapping_unmap_atomic(vaddr_atomic);
750         return unwritten;
751 }
752
753 /**
754  * This is the fast pwrite path, where we copy the data directly from the
755  * user into the GTT, uncached.
756  */
757 static int
758 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759                          struct drm_i915_gem_object *obj,
760                          struct drm_i915_gem_pwrite *args,
761                          struct drm_file *file)
762 {
763         struct drm_i915_private *dev_priv = to_i915(dev);
764         struct i915_ggtt *ggtt = &dev_priv->ggtt;
765         ssize_t remain;
766         loff_t offset, page_base;
767         char __user *user_data;
768         int page_offset, page_length, ret;
769
770         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
771         if (ret)
772                 goto out;
773
774         ret = i915_gem_object_set_to_gtt_domain(obj, true);
775         if (ret)
776                 goto out_unpin;
777
778         ret = i915_gem_object_put_fence(obj);
779         if (ret)
780                 goto out_unpin;
781
782         user_data = to_user_ptr(args->data_ptr);
783         remain = args->size;
784
785         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786
787         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788
789         while (remain > 0) {
790                 /* Operation in this page
791                  *
792                  * page_base = page offset within aperture
793                  * page_offset = offset within page
794                  * page_length = bytes to copy for this page
795                  */
796                 page_base = offset & PAGE_MASK;
797                 page_offset = offset_in_page(offset);
798                 page_length = remain;
799                 if ((page_offset + remain) > PAGE_SIZE)
800                         page_length = PAGE_SIZE - page_offset;
801
802                 /* If we get a fault while copying data, then (presumably) our
803                  * source page isn't available.  Return the error and we'll
804                  * retry in the slow path.
805                  */
806                 if (fast_user_write(ggtt->mappable, page_base,
807                                     page_offset, user_data, page_length)) {
808                         ret = -EFAULT;
809                         goto out_flush;
810                 }
811
812                 remain -= page_length;
813                 user_data += page_length;
814                 offset += page_length;
815         }
816
817 out_flush:
818         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
819 out_unpin:
820         i915_gem_object_ggtt_unpin(obj);
821 out:
822         return ret;
823 }
824
825 /* Per-page copy function for the shmem pwrite fastpath.
826  * Flushes invalid cachelines before writing to the target if
827  * needs_clflush_before is set and flushes out any written cachelines after
828  * writing if needs_clflush is set. */
829 static int
830 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831                   char __user *user_data,
832                   bool page_do_bit17_swizzling,
833                   bool needs_clflush_before,
834                   bool needs_clflush_after)
835 {
836         char *vaddr;
837         int ret;
838
839         if (unlikely(page_do_bit17_swizzling))
840                 return -EINVAL;
841
842         vaddr = kmap_atomic(page);
843         if (needs_clflush_before)
844                 drm_clflush_virt_range(vaddr + shmem_page_offset,
845                                        page_length);
846         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847                                         user_data, page_length);
848         if (needs_clflush_after)
849                 drm_clflush_virt_range(vaddr + shmem_page_offset,
850                                        page_length);
851         kunmap_atomic(vaddr);
852
853         return ret ? -EFAULT : 0;
854 }
855
856 /* Only difference to the fast-path function is that this can handle bit17
857  * and uses non-atomic copy and kmap functions. */
858 static int
859 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860                   char __user *user_data,
861                   bool page_do_bit17_swizzling,
862                   bool needs_clflush_before,
863                   bool needs_clflush_after)
864 {
865         char *vaddr;
866         int ret;
867
868         vaddr = kmap(page);
869         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871                                              page_length,
872                                              page_do_bit17_swizzling);
873         if (page_do_bit17_swizzling)
874                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875                                                 user_data,
876                                                 page_length);
877         else
878                 ret = __copy_from_user(vaddr + shmem_page_offset,
879                                        user_data,
880                                        page_length);
881         if (needs_clflush_after)
882                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883                                              page_length,
884                                              page_do_bit17_swizzling);
885         kunmap(page);
886
887         return ret ? -EFAULT : 0;
888 }
889
890 static int
891 i915_gem_shmem_pwrite(struct drm_device *dev,
892                       struct drm_i915_gem_object *obj,
893                       struct drm_i915_gem_pwrite *args,
894                       struct drm_file *file)
895 {
896         ssize_t remain;
897         loff_t offset;
898         char __user *user_data;
899         int shmem_page_offset, page_length, ret = 0;
900         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901         int hit_slowpath = 0;
902         int needs_clflush_after = 0;
903         int needs_clflush_before = 0;
904         struct sg_page_iter sg_iter;
905
906         user_data = to_user_ptr(args->data_ptr);
907         remain = args->size;
908
909         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910
911         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912                 /* If we're not in the cpu write domain, set ourself into the gtt
913                  * write domain and manually flush cachelines (if required). This
914                  * optimizes for the case when the gpu will use the data
915                  * right away and we therefore have to clflush anyway. */
916                 needs_clflush_after = cpu_write_needs_clflush(obj);
917                 ret = i915_gem_object_wait_rendering(obj, false);
918                 if (ret)
919                         return ret;
920         }
921         /* Same trick applies to invalidate partially written cachelines read
922          * before writing. */
923         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924                 needs_clflush_before =
925                         !cpu_cache_is_coherent(dev, obj->cache_level);
926
927         ret = i915_gem_object_get_pages(obj);
928         if (ret)
929                 return ret;
930
931         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932
933         i915_gem_object_pin_pages(obj);
934
935         offset = args->offset;
936         obj->dirty = 1;
937
938         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939                          offset >> PAGE_SHIFT) {
940                 struct page *page = sg_page_iter_page(&sg_iter);
941                 int partial_cacheline_write;
942
943                 if (remain <= 0)
944                         break;
945
946                 /* Operation in this page
947                  *
948                  * shmem_page_offset = offset within page in shmem file
949                  * page_length = bytes to copy for this page
950                  */
951                 shmem_page_offset = offset_in_page(offset);
952
953                 page_length = remain;
954                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955                         page_length = PAGE_SIZE - shmem_page_offset;
956
957                 /* If we don't overwrite a cacheline completely we need to be
958                  * careful to have up-to-date data by first clflushing. Don't
959                  * overcomplicate things and flush the entire patch. */
960                 partial_cacheline_write = needs_clflush_before &&
961                         ((shmem_page_offset | page_length)
962                                 & (boot_cpu_data.x86_clflush_size - 1));
963
964                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965                         (page_to_phys(page) & (1 << 17)) != 0;
966
967                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968                                         user_data, page_do_bit17_swizzling,
969                                         partial_cacheline_write,
970                                         needs_clflush_after);
971                 if (ret == 0)
972                         goto next_page;
973
974                 hit_slowpath = 1;
975                 mutex_unlock(&dev->struct_mutex);
976                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977                                         user_data, page_do_bit17_swizzling,
978                                         partial_cacheline_write,
979                                         needs_clflush_after);
980
981                 mutex_lock(&dev->struct_mutex);
982
983                 if (ret)
984                         goto out;
985
986 next_page:
987                 remain -= page_length;
988                 user_data += page_length;
989                 offset += page_length;
990         }
991
992 out:
993         i915_gem_object_unpin_pages(obj);
994
995         if (hit_slowpath) {
996                 /*
997                  * Fixup: Flush cpu caches in case we didn't flush the dirty
998                  * cachelines in-line while writing and the object moved
999                  * out of the cpu write domain while we've dropped the lock.
1000                  */
1001                 if (!needs_clflush_after &&
1002                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003                         if (i915_gem_clflush_object(obj, obj->pin_display))
1004                                 needs_clflush_after = true;
1005                 }
1006         }
1007
1008         if (needs_clflush_after)
1009                 i915_gem_chipset_flush(dev);
1010         else
1011                 obj->cache_dirty = true;
1012
1013         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014         return ret;
1015 }
1016
1017 /**
1018  * Writes data to the object referenced by handle.
1019  *
1020  * On error, the contents of the buffer that were to be modified are undefined.
1021  */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024                       struct drm_file *file)
1025 {
1026         struct drm_i915_private *dev_priv = dev->dev_private;
1027         struct drm_i915_gem_pwrite *args = data;
1028         struct drm_i915_gem_object *obj;
1029         int ret;
1030
1031         if (args->size == 0)
1032                 return 0;
1033
1034         if (!access_ok(VERIFY_READ,
1035                        to_user_ptr(args->data_ptr),
1036                        args->size))
1037                 return -EFAULT;
1038
1039         if (likely(!i915.prefault_disable)) {
1040                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041                                                    args->size);
1042                 if (ret)
1043                         return -EFAULT;
1044         }
1045
1046         intel_runtime_pm_get(dev_priv);
1047
1048         ret = i915_mutex_lock_interruptible(dev);
1049         if (ret)
1050                 goto put_rpm;
1051
1052         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053         if (&obj->base == NULL) {
1054                 ret = -ENOENT;
1055                 goto unlock;
1056         }
1057
1058         /* Bounds check destination. */
1059         if (args->offset > obj->base.size ||
1060             args->size > obj->base.size - args->offset) {
1061                 ret = -EINVAL;
1062                 goto out;
1063         }
1064
1065         /* prime objects have no backing filp to GEM pread/pwrite
1066          * pages from.
1067          */
1068         if (!obj->base.filp) {
1069                 ret = -EINVAL;
1070                 goto out;
1071         }
1072
1073         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075         ret = -EFAULT;
1076         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077          * it would end up going through the fenced access, and we'll get
1078          * different detiling behavior between reading and writing.
1079          * pread/pwrite currently are reading and writing from the CPU
1080          * perspective, requiring manual detiling by the client.
1081          */
1082         if (obj->tiling_mode == I915_TILING_NONE &&
1083             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084             cpu_write_needs_clflush(obj)) {
1085                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086                 /* Note that the gtt paths might fail with non-page-backed user
1087                  * pointers (e.g. gtt mappings when moving data between
1088                  * textures). Fallback to the shmem path in that case. */
1089         }
1090
1091         if (ret == -EFAULT || ret == -ENOSPC) {
1092                 if (obj->phys_handle)
1093                         ret = i915_gem_phys_pwrite(obj, args, file);
1094                 else
1095                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096         }
1097
1098 out:
1099         drm_gem_object_unreference(&obj->base);
1100 unlock:
1101         mutex_unlock(&dev->struct_mutex);
1102 put_rpm:
1103         intel_runtime_pm_put(dev_priv);
1104
1105         return ret;
1106 }
1107
1108 static int
1109 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110 {
1111         if (__i915_terminally_wedged(reset_counter))
1112                 return -EIO;
1113
1114         if (__i915_reset_in_progress(reset_counter)) {
1115                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116                  * -EIO unconditionally for these. */
1117                 if (!interruptible)
1118                         return -EIO;
1119
1120                 return -EAGAIN;
1121         }
1122
1123         return 0;
1124 }
1125
1126 static void fake_irq(unsigned long data)
1127 {
1128         wake_up_process((struct task_struct *)data);
1129 }
1130
1131 static bool missed_irq(struct drm_i915_private *dev_priv,
1132                        struct intel_engine_cs *engine)
1133 {
1134         return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 }
1136
1137 static unsigned long local_clock_us(unsigned *cpu)
1138 {
1139         unsigned long t;
1140
1141         /* Cheaply and approximately convert from nanoseconds to microseconds.
1142          * The result and subsequent calculations are also defined in the same
1143          * approximate microseconds units. The principal source of timing
1144          * error here is from the simple truncation.
1145          *
1146          * Note that local_clock() is only defined wrt to the current CPU;
1147          * the comparisons are no longer valid if we switch CPUs. Instead of
1148          * blocking preemption for the entire busywait, we can detect the CPU
1149          * switch and use that as indicator of system load and a reason to
1150          * stop busywaiting, see busywait_stop().
1151          */
1152         *cpu = get_cpu();
1153         t = local_clock() >> 10;
1154         put_cpu();
1155
1156         return t;
1157 }
1158
1159 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160 {
1161         unsigned this_cpu;
1162
1163         if (time_after(local_clock_us(&this_cpu), timeout))
1164                 return true;
1165
1166         return this_cpu != cpu;
1167 }
1168
1169 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170 {
1171         unsigned long timeout;
1172         unsigned cpu;
1173
1174         /* When waiting for high frequency requests, e.g. during synchronous
1175          * rendering split between the CPU and GPU, the finite amount of time
1176          * required to set up the irq and wait upon it limits the response
1177          * rate. By busywaiting on the request completion for a short while we
1178          * can service the high frequency waits as quick as possible. However,
1179          * if it is a slow request, we want to sleep as quickly as possible.
1180          * The tradeoff between waiting and sleeping is roughly the time it
1181          * takes to sleep on a request, on the order of a microsecond.
1182          */
1183
1184         if (req->engine->irq_refcount)
1185                 return -EBUSY;
1186
1187         /* Only spin if we know the GPU is processing this request */
1188         if (!i915_gem_request_started(req, true))
1189                 return -EAGAIN;
1190
1191         timeout = local_clock_us(&cpu) + 5;
1192         while (!need_resched()) {
1193                 if (i915_gem_request_completed(req, true))
1194                         return 0;
1195
1196                 if (signal_pending_state(state, current))
1197                         break;
1198
1199                 if (busywait_stop(timeout, cpu))
1200                         break;
1201
1202                 cpu_relax_lowlatency();
1203         }
1204
1205         if (i915_gem_request_completed(req, false))
1206                 return 0;
1207
1208         return -EAGAIN;
1209 }
1210
1211 /**
1212  * __i915_wait_request - wait until execution of request has finished
1213  * @req: duh!
1214  * @interruptible: do an interruptible wait (normally yes)
1215  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216  *
1217  * Note: It is of utmost importance that the passed in seqno and reset_counter
1218  * values have been read by the caller in an smp safe manner. Where read-side
1219  * locks are involved, it is sufficient to read the reset_counter before
1220  * unlocking the lock that protects the seqno. For lockless tricks, the
1221  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222  * inserted.
1223  *
1224  * Returns 0 if the request was found within the alloted time. Else returns the
1225  * errno with remaining time filled in timeout argument.
1226  */
1227 int __i915_wait_request(struct drm_i915_gem_request *req,
1228                         bool interruptible,
1229                         s64 *timeout,
1230                         struct intel_rps_client *rps)
1231 {
1232         struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233         struct drm_device *dev = engine->dev;
1234         struct drm_i915_private *dev_priv = dev->dev_private;
1235         const bool irq_test_in_progress =
1236                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238         DEFINE_WAIT(wait);
1239         unsigned long timeout_expire;
1240         s64 before = 0; /* Only to silence a compiler warning. */
1241         int ret;
1242
1243         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244
1245         if (list_empty(&req->list))
1246                 return 0;
1247
1248         if (i915_gem_request_completed(req, true))
1249                 return 0;
1250
1251         timeout_expire = 0;
1252         if (timeout) {
1253                 if (WARN_ON(*timeout < 0))
1254                         return -EINVAL;
1255
1256                 if (*timeout == 0)
1257                         return -ETIME;
1258
1259                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260
1261                 /*
1262                  * Record current time in case interrupted by signal, or wedged.
1263                  */
1264                 before = ktime_get_raw_ns();
1265         }
1266
1267         if (INTEL_INFO(dev_priv)->gen >= 6)
1268                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269
1270         trace_i915_gem_request_wait_begin(req);
1271
1272         /* Optimistic spin for the next jiffie before touching IRQs */
1273         ret = __i915_spin_request(req, state);
1274         if (ret == 0)
1275                 goto out;
1276
1277         if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278                 ret = -ENODEV;
1279                 goto out;
1280         }
1281
1282         for (;;) {
1283                 struct timer_list timer;
1284
1285                 prepare_to_wait(&engine->irq_queue, &wait, state);
1286
1287                 /* We need to check whether any gpu reset happened in between
1288                  * the request being submitted and now. If a reset has occurred,
1289                  * the request is effectively complete (we either are in the
1290                  * process of or have discarded the rendering and completely
1291                  * reset the GPU. The results of the request are lost and we
1292                  * are free to continue on with the original operation.
1293                  */
1294                 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295                         ret = 0;
1296                         break;
1297                 }
1298
1299                 if (i915_gem_request_completed(req, false)) {
1300                         ret = 0;
1301                         break;
1302                 }
1303
1304                 if (signal_pending_state(state, current)) {
1305                         ret = -ERESTARTSYS;
1306                         break;
1307                 }
1308
1309                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310                         ret = -ETIME;
1311                         break;
1312                 }
1313
1314                 timer.function = NULL;
1315                 if (timeout || missed_irq(dev_priv, engine)) {
1316                         unsigned long expire;
1317
1318                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319                         expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320                         mod_timer(&timer, expire);
1321                 }
1322
1323                 io_schedule();
1324
1325                 if (timer.function) {
1326                         del_singleshot_timer_sync(&timer);
1327                         destroy_timer_on_stack(&timer);
1328                 }
1329         }
1330         if (!irq_test_in_progress)
1331                 engine->irq_put(engine);
1332
1333         finish_wait(&engine->irq_queue, &wait);
1334
1335 out:
1336         trace_i915_gem_request_wait_end(req);
1337
1338         if (timeout) {
1339                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340
1341                 *timeout = tres < 0 ? 0 : tres;
1342
1343                 /*
1344                  * Apparently ktime isn't accurate enough and occasionally has a
1345                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346                  * things up to make the test happy. We allow up to 1 jiffy.
1347                  *
1348                  * This is a regrssion from the timespec->ktime conversion.
1349                  */
1350                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351                         *timeout = 0;
1352         }
1353
1354         return ret;
1355 }
1356
1357 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358                                    struct drm_file *file)
1359 {
1360         struct drm_i915_file_private *file_priv;
1361
1362         WARN_ON(!req || !file || req->file_priv);
1363
1364         if (!req || !file)
1365                 return -EINVAL;
1366
1367         if (req->file_priv)
1368                 return -EINVAL;
1369
1370         file_priv = file->driver_priv;
1371
1372         spin_lock(&file_priv->mm.lock);
1373         req->file_priv = file_priv;
1374         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375         spin_unlock(&file_priv->mm.lock);
1376
1377         req->pid = get_pid(task_pid(current));
1378
1379         return 0;
1380 }
1381
1382 static inline void
1383 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384 {
1385         struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387         if (!file_priv)
1388                 return;
1389
1390         spin_lock(&file_priv->mm.lock);
1391         list_del(&request->client_list);
1392         request->file_priv = NULL;
1393         spin_unlock(&file_priv->mm.lock);
1394
1395         put_pid(request->pid);
1396         request->pid = NULL;
1397 }
1398
1399 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400 {
1401         trace_i915_gem_request_retire(request);
1402
1403         /* We know the GPU must have read the request to have
1404          * sent us the seqno + interrupt, so use the position
1405          * of tail of the request to update the last known position
1406          * of the GPU head.
1407          *
1408          * Note this requires that we are always called in request
1409          * completion order.
1410          */
1411         request->ringbuf->last_retired_head = request->postfix;
1412
1413         list_del_init(&request->list);
1414         i915_gem_request_remove_from_client(request);
1415
1416         if (request->previous_context) {
1417                 if (i915.enable_execlists)
1418                         intel_lr_context_unpin(request->previous_context,
1419                                                request->engine);
1420         }
1421
1422         i915_gem_context_unreference(request->ctx);
1423         i915_gem_request_unreference(request);
1424 }
1425
1426 static void
1427 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1428 {
1429         struct intel_engine_cs *engine = req->engine;
1430         struct drm_i915_gem_request *tmp;
1431
1432         lockdep_assert_held(&engine->dev->struct_mutex);
1433
1434         if (list_empty(&req->list))
1435                 return;
1436
1437         do {
1438                 tmp = list_first_entry(&engine->request_list,
1439                                        typeof(*tmp), list);
1440
1441                 i915_gem_request_retire(tmp);
1442         } while (tmp != req);
1443
1444         WARN_ON(i915_verify_lists(engine->dev));
1445 }
1446
1447 /**
1448  * Waits for a request to be signaled, and cleans up the
1449  * request and object lists appropriately for that event.
1450  */
1451 int
1452 i915_wait_request(struct drm_i915_gem_request *req)
1453 {
1454         struct drm_i915_private *dev_priv = req->i915;
1455         bool interruptible;
1456         int ret;
1457
1458         interruptible = dev_priv->mm.interruptible;
1459
1460         BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1461
1462         ret = __i915_wait_request(req, interruptible, NULL, NULL);
1463         if (ret)
1464                 return ret;
1465
1466         __i915_gem_request_retire__upto(req);
1467         return 0;
1468 }
1469
1470 /**
1471  * Ensures that all rendering to the object has completed and the object is
1472  * safe to unbind from the GTT or access from the CPU.
1473  */
1474 int
1475 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1476                                bool readonly)
1477 {
1478         int ret, i;
1479
1480         if (!obj->active)
1481                 return 0;
1482
1483         if (readonly) {
1484                 if (obj->last_write_req != NULL) {
1485                         ret = i915_wait_request(obj->last_write_req);
1486                         if (ret)
1487                                 return ret;
1488
1489                         i = obj->last_write_req->engine->id;
1490                         if (obj->last_read_req[i] == obj->last_write_req)
1491                                 i915_gem_object_retire__read(obj, i);
1492                         else
1493                                 i915_gem_object_retire__write(obj);
1494                 }
1495         } else {
1496                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1497                         if (obj->last_read_req[i] == NULL)
1498                                 continue;
1499
1500                         ret = i915_wait_request(obj->last_read_req[i]);
1501                         if (ret)
1502                                 return ret;
1503
1504                         i915_gem_object_retire__read(obj, i);
1505                 }
1506                 GEM_BUG_ON(obj->active);
1507         }
1508
1509         return 0;
1510 }
1511
1512 static void
1513 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1514                                struct drm_i915_gem_request *req)
1515 {
1516         int ring = req->engine->id;
1517
1518         if (obj->last_read_req[ring] == req)
1519                 i915_gem_object_retire__read(obj, ring);
1520         else if (obj->last_write_req == req)
1521                 i915_gem_object_retire__write(obj);
1522
1523         __i915_gem_request_retire__upto(req);
1524 }
1525
1526 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1527  * as the object state may change during this call.
1528  */
1529 static __must_check int
1530 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1531                                             struct intel_rps_client *rps,
1532                                             bool readonly)
1533 {
1534         struct drm_device *dev = obj->base.dev;
1535         struct drm_i915_private *dev_priv = dev->dev_private;
1536         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1537         int ret, i, n = 0;
1538
1539         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1540         BUG_ON(!dev_priv->mm.interruptible);
1541
1542         if (!obj->active)
1543                 return 0;
1544
1545         if (readonly) {
1546                 struct drm_i915_gem_request *req;
1547
1548                 req = obj->last_write_req;
1549                 if (req == NULL)
1550                         return 0;
1551
1552                 requests[n++] = i915_gem_request_reference(req);
1553         } else {
1554                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1555                         struct drm_i915_gem_request *req;
1556
1557                         req = obj->last_read_req[i];
1558                         if (req == NULL)
1559                                 continue;
1560
1561                         requests[n++] = i915_gem_request_reference(req);
1562                 }
1563         }
1564
1565         mutex_unlock(&dev->struct_mutex);
1566         ret = 0;
1567         for (i = 0; ret == 0 && i < n; i++)
1568                 ret = __i915_wait_request(requests[i], true, NULL, rps);
1569         mutex_lock(&dev->struct_mutex);
1570
1571         for (i = 0; i < n; i++) {
1572                 if (ret == 0)
1573                         i915_gem_object_retire_request(obj, requests[i]);
1574                 i915_gem_request_unreference(requests[i]);
1575         }
1576
1577         return ret;
1578 }
1579
1580 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1581 {
1582         struct drm_i915_file_private *fpriv = file->driver_priv;
1583         return &fpriv->rps;
1584 }
1585
1586 /**
1587  * Called when user space prepares to use an object with the CPU, either
1588  * through the mmap ioctl's mapping or a GTT mapping.
1589  */
1590 int
1591 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1592                           struct drm_file *file)
1593 {
1594         struct drm_i915_gem_set_domain *args = data;
1595         struct drm_i915_gem_object *obj;
1596         uint32_t read_domains = args->read_domains;
1597         uint32_t write_domain = args->write_domain;
1598         int ret;
1599
1600         /* Only handle setting domains to types used by the CPU. */
1601         if (write_domain & I915_GEM_GPU_DOMAINS)
1602                 return -EINVAL;
1603
1604         if (read_domains & I915_GEM_GPU_DOMAINS)
1605                 return -EINVAL;
1606
1607         /* Having something in the write domain implies it's in the read
1608          * domain, and only that read domain.  Enforce that in the request.
1609          */
1610         if (write_domain != 0 && read_domains != write_domain)
1611                 return -EINVAL;
1612
1613         ret = i915_mutex_lock_interruptible(dev);
1614         if (ret)
1615                 return ret;
1616
1617         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1618         if (&obj->base == NULL) {
1619                 ret = -ENOENT;
1620                 goto unlock;
1621         }
1622
1623         /* Try to flush the object off the GPU without holding the lock.
1624          * We will repeat the flush holding the lock in the normal manner
1625          * to catch cases where we are gazumped.
1626          */
1627         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1628                                                           to_rps_client(file),
1629                                                           !write_domain);
1630         if (ret)
1631                 goto unref;
1632
1633         if (read_domains & I915_GEM_DOMAIN_GTT)
1634                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1635         else
1636                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1637
1638         if (write_domain != 0)
1639                 intel_fb_obj_invalidate(obj,
1640                                         write_domain == I915_GEM_DOMAIN_GTT ?
1641                                         ORIGIN_GTT : ORIGIN_CPU);
1642
1643 unref:
1644         drm_gem_object_unreference(&obj->base);
1645 unlock:
1646         mutex_unlock(&dev->struct_mutex);
1647         return ret;
1648 }
1649
1650 /**
1651  * Called when user space has done writes to this buffer
1652  */
1653 int
1654 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1655                          struct drm_file *file)
1656 {
1657         struct drm_i915_gem_sw_finish *args = data;
1658         struct drm_i915_gem_object *obj;
1659         int ret = 0;
1660
1661         ret = i915_mutex_lock_interruptible(dev);
1662         if (ret)
1663                 return ret;
1664
1665         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1666         if (&obj->base == NULL) {
1667                 ret = -ENOENT;
1668                 goto unlock;
1669         }
1670
1671         /* Pinned buffers may be scanout, so flush the cache */
1672         if (obj->pin_display)
1673                 i915_gem_object_flush_cpu_write_domain(obj);
1674
1675         drm_gem_object_unreference(&obj->base);
1676 unlock:
1677         mutex_unlock(&dev->struct_mutex);
1678         return ret;
1679 }
1680
1681 /**
1682  * Maps the contents of an object, returning the address it is mapped
1683  * into.
1684  *
1685  * While the mapping holds a reference on the contents of the object, it doesn't
1686  * imply a ref on the object itself.
1687  *
1688  * IMPORTANT:
1689  *
1690  * DRM driver writers who look a this function as an example for how to do GEM
1691  * mmap support, please don't implement mmap support like here. The modern way
1692  * to implement DRM mmap support is with an mmap offset ioctl (like
1693  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1694  * That way debug tooling like valgrind will understand what's going on, hiding
1695  * the mmap call in a driver private ioctl will break that. The i915 driver only
1696  * does cpu mmaps this way because we didn't know better.
1697  */
1698 int
1699 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1700                     struct drm_file *file)
1701 {
1702         struct drm_i915_gem_mmap *args = data;
1703         struct drm_gem_object *obj;
1704         unsigned long addr;
1705
1706         if (args->flags & ~(I915_MMAP_WC))
1707                 return -EINVAL;
1708
1709         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1710                 return -ENODEV;
1711
1712         obj = drm_gem_object_lookup(dev, file, args->handle);
1713         if (obj == NULL)
1714                 return -ENOENT;
1715
1716         /* prime objects have no backing filp to GEM mmap
1717          * pages from.
1718          */
1719         if (!obj->filp) {
1720                 drm_gem_object_unreference_unlocked(obj);
1721                 return -EINVAL;
1722         }
1723
1724         addr = vm_mmap(obj->filp, 0, args->size,
1725                        PROT_READ | PROT_WRITE, MAP_SHARED,
1726                        args->offset);
1727         if (args->flags & I915_MMAP_WC) {
1728                 struct mm_struct *mm = current->mm;
1729                 struct vm_area_struct *vma;
1730
1731                 down_write(&mm->mmap_sem);
1732                 vma = find_vma(mm, addr);
1733                 if (vma)
1734                         vma->vm_page_prot =
1735                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1736                 else
1737                         addr = -ENOMEM;
1738                 up_write(&mm->mmap_sem);
1739         }
1740         drm_gem_object_unreference_unlocked(obj);
1741         if (IS_ERR((void *)addr))
1742                 return addr;
1743
1744         args->addr_ptr = (uint64_t) addr;
1745
1746         return 0;
1747 }
1748
1749 /**
1750  * i915_gem_fault - fault a page into the GTT
1751  * @vma: VMA in question
1752  * @vmf: fault info
1753  *
1754  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1755  * from userspace.  The fault handler takes care of binding the object to
1756  * the GTT (if needed), allocating and programming a fence register (again,
1757  * only if needed based on whether the old reg is still valid or the object
1758  * is tiled) and inserting a new PTE into the faulting process.
1759  *
1760  * Note that the faulting process may involve evicting existing objects
1761  * from the GTT and/or fence registers to make room.  So performance may
1762  * suffer if the GTT working set is large or there are few fence registers
1763  * left.
1764  */
1765 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1766 {
1767         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1768         struct drm_device *dev = obj->base.dev;
1769         struct drm_i915_private *dev_priv = to_i915(dev);
1770         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1771         struct i915_ggtt_view view = i915_ggtt_view_normal;
1772         pgoff_t page_offset;
1773         unsigned long pfn;
1774         int ret = 0;
1775         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1776
1777         intel_runtime_pm_get(dev_priv);
1778
1779         /* We don't use vmf->pgoff since that has the fake offset */
1780         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1781                 PAGE_SHIFT;
1782
1783         ret = i915_mutex_lock_interruptible(dev);
1784         if (ret)
1785                 goto out;
1786
1787         trace_i915_gem_object_fault(obj, page_offset, true, write);
1788
1789         /* Try to flush the object off the GPU first without holding the lock.
1790          * Upon reacquiring the lock, we will perform our sanity checks and then
1791          * repeat the flush holding the lock in the normal manner to catch cases
1792          * where we are gazumped.
1793          */
1794         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1795         if (ret)
1796                 goto unlock;
1797
1798         /* Access to snoopable pages through the GTT is incoherent. */
1799         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1800                 ret = -EFAULT;
1801                 goto unlock;
1802         }
1803
1804         /* Use a partial view if the object is bigger than the aperture. */
1805         if (obj->base.size >= ggtt->mappable_end &&
1806             obj->tiling_mode == I915_TILING_NONE) {
1807                 static const unsigned int chunk_size = 256; // 1 MiB
1808
1809                 memset(&view, 0, sizeof(view));
1810                 view.type = I915_GGTT_VIEW_PARTIAL;
1811                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1812                 view.params.partial.size =
1813                         min_t(unsigned int,
1814                               chunk_size,
1815                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1816                               view.params.partial.offset);
1817         }
1818
1819         /* Now pin it into the GTT if needed */
1820         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1821         if (ret)
1822                 goto unlock;
1823
1824         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1825         if (ret)
1826                 goto unpin;
1827
1828         ret = i915_gem_object_get_fence(obj);
1829         if (ret)
1830                 goto unpin;
1831
1832         /* Finally, remap it using the new GTT offset */
1833         pfn = ggtt->mappable_base +
1834                 i915_gem_obj_ggtt_offset_view(obj, &view);
1835         pfn >>= PAGE_SHIFT;
1836
1837         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1838                 /* Overriding existing pages in partial view does not cause
1839                  * us any trouble as TLBs are still valid because the fault
1840                  * is due to userspace losing part of the mapping or never
1841                  * having accessed it before (at this partials' range).
1842                  */
1843                 unsigned long base = vma->vm_start +
1844                                      (view.params.partial.offset << PAGE_SHIFT);
1845                 unsigned int i;
1846
1847                 for (i = 0; i < view.params.partial.size; i++) {
1848                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1849                         if (ret)
1850                                 break;
1851                 }
1852
1853                 obj->fault_mappable = true;
1854         } else {
1855                 if (!obj->fault_mappable) {
1856                         unsigned long size = min_t(unsigned long,
1857                                                    vma->vm_end - vma->vm_start,
1858                                                    obj->base.size);
1859                         int i;
1860
1861                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1862                                 ret = vm_insert_pfn(vma,
1863                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1864                                                     pfn + i);
1865                                 if (ret)
1866                                         break;
1867                         }
1868
1869                         obj->fault_mappable = true;
1870                 } else
1871                         ret = vm_insert_pfn(vma,
1872                                             (unsigned long)vmf->virtual_address,
1873                                             pfn + page_offset);
1874         }
1875 unpin:
1876         i915_gem_object_ggtt_unpin_view(obj, &view);
1877 unlock:
1878         mutex_unlock(&dev->struct_mutex);
1879 out:
1880         switch (ret) {
1881         case -EIO:
1882                 /*
1883                  * We eat errors when the gpu is terminally wedged to avoid
1884                  * userspace unduly crashing (gl has no provisions for mmaps to
1885                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1886                  * and so needs to be reported.
1887                  */
1888                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1889                         ret = VM_FAULT_SIGBUS;
1890                         break;
1891                 }
1892         case -EAGAIN:
1893                 /*
1894                  * EAGAIN means the gpu is hung and we'll wait for the error
1895                  * handler to reset everything when re-faulting in
1896                  * i915_mutex_lock_interruptible.
1897                  */
1898         case 0:
1899         case -ERESTARTSYS:
1900         case -EINTR:
1901         case -EBUSY:
1902                 /*
1903                  * EBUSY is ok: this just means that another thread
1904                  * already did the job.
1905                  */
1906                 ret = VM_FAULT_NOPAGE;
1907                 break;
1908         case -ENOMEM:
1909                 ret = VM_FAULT_OOM;
1910                 break;
1911         case -ENOSPC:
1912         case -EFAULT:
1913                 ret = VM_FAULT_SIGBUS;
1914                 break;
1915         default:
1916                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1917                 ret = VM_FAULT_SIGBUS;
1918                 break;
1919         }
1920
1921         intel_runtime_pm_put(dev_priv);
1922         return ret;
1923 }
1924
1925 /**
1926  * i915_gem_release_mmap - remove physical page mappings
1927  * @obj: obj in question
1928  *
1929  * Preserve the reservation of the mmapping with the DRM core code, but
1930  * relinquish ownership of the pages back to the system.
1931  *
1932  * It is vital that we remove the page mapping if we have mapped a tiled
1933  * object through the GTT and then lose the fence register due to
1934  * resource pressure. Similarly if the object has been moved out of the
1935  * aperture, than pages mapped into userspace must be revoked. Removing the
1936  * mapping will then trigger a page fault on the next user access, allowing
1937  * fixup by i915_gem_fault().
1938  */
1939 void
1940 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1941 {
1942         /* Serialisation between user GTT access and our code depends upon
1943          * revoking the CPU's PTE whilst the mutex is held. The next user
1944          * pagefault then has to wait until we release the mutex.
1945          */
1946         lockdep_assert_held(&obj->base.dev->struct_mutex);
1947
1948         if (!obj->fault_mappable)
1949                 return;
1950
1951         drm_vma_node_unmap(&obj->base.vma_node,
1952                            obj->base.dev->anon_inode->i_mapping);
1953
1954         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1955          * memory transactions from userspace before we return. The TLB
1956          * flushing implied above by changing the PTE above *should* be
1957          * sufficient, an extra barrier here just provides us with a bit
1958          * of paranoid documentation about our requirement to serialise
1959          * memory writes before touching registers / GSM.
1960          */
1961         wmb();
1962
1963         obj->fault_mappable = false;
1964 }
1965
1966 void
1967 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1968 {
1969         struct drm_i915_gem_object *obj;
1970
1971         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1972                 i915_gem_release_mmap(obj);
1973 }
1974
1975 uint32_t
1976 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1977 {
1978         uint32_t gtt_size;
1979
1980         if (INTEL_INFO(dev)->gen >= 4 ||
1981             tiling_mode == I915_TILING_NONE)
1982                 return size;
1983
1984         /* Previous chips need a power-of-two fence region when tiling */
1985         if (INTEL_INFO(dev)->gen == 3)
1986                 gtt_size = 1024*1024;
1987         else
1988                 gtt_size = 512*1024;
1989
1990         while (gtt_size < size)
1991                 gtt_size <<= 1;
1992
1993         return gtt_size;
1994 }
1995
1996 /**
1997  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1998  * @obj: object to check
1999  *
2000  * Return the required GTT alignment for an object, taking into account
2001  * potential fence register mapping.
2002  */
2003 uint32_t
2004 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2005                            int tiling_mode, bool fenced)
2006 {
2007         /*
2008          * Minimum alignment is 4k (GTT page size), but might be greater
2009          * if a fence register is needed for the object.
2010          */
2011         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2012             tiling_mode == I915_TILING_NONE)
2013                 return 4096;
2014
2015         /*
2016          * Previous chips need to be aligned to the size of the smallest
2017          * fence register that can contain the object.
2018          */
2019         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2020 }
2021
2022 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2023 {
2024         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025         int ret;
2026
2027         if (drm_vma_node_has_offset(&obj->base.vma_node))
2028                 return 0;
2029
2030         dev_priv->mm.shrinker_no_lock_stealing = true;
2031
2032         ret = drm_gem_create_mmap_offset(&obj->base);
2033         if (ret != -ENOSPC)
2034                 goto out;
2035
2036         /* Badly fragmented mmap space? The only way we can recover
2037          * space is by destroying unwanted objects. We can't randomly release
2038          * mmap_offsets as userspace expects them to be persistent for the
2039          * lifetime of the objects. The closest we can is to release the
2040          * offsets on purgeable objects by truncating it and marking it purged,
2041          * which prevents userspace from ever using that object again.
2042          */
2043         i915_gem_shrink(dev_priv,
2044                         obj->base.size >> PAGE_SHIFT,
2045                         I915_SHRINK_BOUND |
2046                         I915_SHRINK_UNBOUND |
2047                         I915_SHRINK_PURGEABLE);
2048         ret = drm_gem_create_mmap_offset(&obj->base);
2049         if (ret != -ENOSPC)
2050                 goto out;
2051
2052         i915_gem_shrink_all(dev_priv);
2053         ret = drm_gem_create_mmap_offset(&obj->base);
2054 out:
2055         dev_priv->mm.shrinker_no_lock_stealing = false;
2056
2057         return ret;
2058 }
2059
2060 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2061 {
2062         drm_gem_free_mmap_offset(&obj->base);
2063 }
2064
2065 int
2066 i915_gem_mmap_gtt(struct drm_file *file,
2067                   struct drm_device *dev,
2068                   uint32_t handle,
2069                   uint64_t *offset)
2070 {
2071         struct drm_i915_gem_object *obj;
2072         int ret;
2073
2074         ret = i915_mutex_lock_interruptible(dev);
2075         if (ret)
2076                 return ret;
2077
2078         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2079         if (&obj->base == NULL) {
2080                 ret = -ENOENT;
2081                 goto unlock;
2082         }
2083
2084         if (obj->madv != I915_MADV_WILLNEED) {
2085                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2086                 ret = -EFAULT;
2087                 goto out;
2088         }
2089
2090         ret = i915_gem_object_create_mmap_offset(obj);
2091         if (ret)
2092                 goto out;
2093
2094         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2095
2096 out:
2097         drm_gem_object_unreference(&obj->base);
2098 unlock:
2099         mutex_unlock(&dev->struct_mutex);
2100         return ret;
2101 }
2102
2103 /**
2104  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2105  * @dev: DRM device
2106  * @data: GTT mapping ioctl data
2107  * @file: GEM object info
2108  *
2109  * Simply returns the fake offset to userspace so it can mmap it.
2110  * The mmap call will end up in drm_gem_mmap(), which will set things
2111  * up so we can get faults in the handler above.
2112  *
2113  * The fault handler will take care of binding the object into the GTT
2114  * (since it may have been evicted to make room for something), allocating
2115  * a fence register, and mapping the appropriate aperture address into
2116  * userspace.
2117  */
2118 int
2119 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2120                         struct drm_file *file)
2121 {
2122         struct drm_i915_gem_mmap_gtt *args = data;
2123
2124         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2125 }
2126
2127 /* Immediately discard the backing storage */
2128 static void
2129 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2130 {
2131         i915_gem_object_free_mmap_offset(obj);
2132
2133         if (obj->base.filp == NULL)
2134                 return;
2135
2136         /* Our goal here is to return as much of the memory as
2137          * is possible back to the system as we are called from OOM.
2138          * To do this we must instruct the shmfs to drop all of its
2139          * backing pages, *now*.
2140          */
2141         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2142         obj->madv = __I915_MADV_PURGED;
2143 }
2144
2145 /* Try to discard unwanted pages */
2146 static void
2147 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2148 {
2149         struct address_space *mapping;
2150
2151         switch (obj->madv) {
2152         case I915_MADV_DONTNEED:
2153                 i915_gem_object_truncate(obj);
2154         case __I915_MADV_PURGED:
2155                 return;
2156         }
2157
2158         if (obj->base.filp == NULL)
2159                 return;
2160
2161         mapping = file_inode(obj->base.filp)->i_mapping,
2162         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2163 }
2164
2165 static void
2166 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2167 {
2168         struct sg_page_iter sg_iter;
2169         int ret;
2170
2171         BUG_ON(obj->madv == __I915_MADV_PURGED);
2172
2173         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2174         if (WARN_ON(ret)) {
2175                 /* In the event of a disaster, abandon all caches and
2176                  * hope for the best.
2177                  */
2178                 i915_gem_clflush_object(obj, true);
2179                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2180         }
2181
2182         i915_gem_gtt_finish_object(obj);
2183
2184         if (i915_gem_object_needs_bit17_swizzle(obj))
2185                 i915_gem_object_save_bit_17_swizzle(obj);
2186
2187         if (obj->madv == I915_MADV_DONTNEED)
2188                 obj->dirty = 0;
2189
2190         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2191                 struct page *page = sg_page_iter_page(&sg_iter);
2192
2193                 if (obj->dirty)
2194                         set_page_dirty(page);
2195
2196                 if (obj->madv == I915_MADV_WILLNEED)
2197                         mark_page_accessed(page);
2198
2199                 put_page(page);
2200         }
2201         obj->dirty = 0;
2202
2203         sg_free_table(obj->pages);
2204         kfree(obj->pages);
2205 }
2206
2207 int
2208 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2209 {
2210         const struct drm_i915_gem_object_ops *ops = obj->ops;
2211
2212         if (obj->pages == NULL)
2213                 return 0;
2214
2215         if (obj->pages_pin_count)
2216                 return -EBUSY;
2217
2218         BUG_ON(i915_gem_obj_bound_any(obj));
2219
2220         /* ->put_pages might need to allocate memory for the bit17 swizzle
2221          * array, hence protect them from being reaped by removing them from gtt
2222          * lists early. */
2223         list_del(&obj->global_list);
2224
2225         if (obj->mapping) {
2226                 if (is_vmalloc_addr(obj->mapping))
2227                         vunmap(obj->mapping);
2228                 else
2229                         kunmap(kmap_to_page(obj->mapping));
2230                 obj->mapping = NULL;
2231         }
2232
2233         ops->put_pages(obj);
2234         obj->pages = NULL;
2235
2236         i915_gem_object_invalidate(obj);
2237
2238         return 0;
2239 }
2240
2241 static int
2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243 {
2244         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245         int page_count, i;
2246         struct address_space *mapping;
2247         struct sg_table *st;
2248         struct scatterlist *sg;
2249         struct sg_page_iter sg_iter;
2250         struct page *page;
2251         unsigned long last_pfn = 0;     /* suppress gcc warning */
2252         int ret;
2253         gfp_t gfp;
2254
2255         /* Assert that the object is not currently in any GPU domain. As it
2256          * wasn't in the GTT, there shouldn't be any way it could have been in
2257          * a GPU cache
2258          */
2259         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
2262         st = kmalloc(sizeof(*st), GFP_KERNEL);
2263         if (st == NULL)
2264                 return -ENOMEM;
2265
2266         page_count = obj->base.size / PAGE_SIZE;
2267         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2268                 kfree(st);
2269                 return -ENOMEM;
2270         }
2271
2272         /* Get the list of pages out of our struct file.  They'll be pinned
2273          * at this point until we release them.
2274          *
2275          * Fail silently without starting the shrinker
2276          */
2277         mapping = file_inode(obj->base.filp)->i_mapping;
2278         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280         sg = st->sgl;
2281         st->nents = 0;
2282         for (i = 0; i < page_count; i++) {
2283                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284                 if (IS_ERR(page)) {
2285                         i915_gem_shrink(dev_priv,
2286                                         page_count,
2287                                         I915_SHRINK_BOUND |
2288                                         I915_SHRINK_UNBOUND |
2289                                         I915_SHRINK_PURGEABLE);
2290                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291                 }
2292                 if (IS_ERR(page)) {
2293                         /* We've tried hard to allocate the memory by reaping
2294                          * our own buffer, now let the real VM do its job and
2295                          * go down in flames if truly OOM.
2296                          */
2297                         i915_gem_shrink_all(dev_priv);
2298                         page = shmem_read_mapping_page(mapping, i);
2299                         if (IS_ERR(page)) {
2300                                 ret = PTR_ERR(page);
2301                                 goto err_pages;
2302                         }
2303                 }
2304 #ifdef CONFIG_SWIOTLB
2305                 if (swiotlb_nr_tbl()) {
2306                         st->nents++;
2307                         sg_set_page(sg, page, PAGE_SIZE, 0);
2308                         sg = sg_next(sg);
2309                         continue;
2310                 }
2311 #endif
2312                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313                         if (i)
2314                                 sg = sg_next(sg);
2315                         st->nents++;
2316                         sg_set_page(sg, page, PAGE_SIZE, 0);
2317                 } else {
2318                         sg->length += PAGE_SIZE;
2319                 }
2320                 last_pfn = page_to_pfn(page);
2321
2322                 /* Check that the i965g/gm workaround works. */
2323                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324         }
2325 #ifdef CONFIG_SWIOTLB
2326         if (!swiotlb_nr_tbl())
2327 #endif
2328                 sg_mark_end(sg);
2329         obj->pages = st;
2330
2331         ret = i915_gem_gtt_prepare_object(obj);
2332         if (ret)
2333                 goto err_pages;
2334
2335         if (i915_gem_object_needs_bit17_swizzle(obj))
2336                 i915_gem_object_do_bit_17_swizzle(obj);
2337
2338         if (obj->tiling_mode != I915_TILING_NONE &&
2339             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340                 i915_gem_object_pin_pages(obj);
2341
2342         return 0;
2343
2344 err_pages:
2345         sg_mark_end(sg);
2346         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347                 put_page(sg_page_iter_page(&sg_iter));
2348         sg_free_table(st);
2349         kfree(st);
2350
2351         /* shmemfs first checks if there is enough memory to allocate the page
2352          * and reports ENOSPC should there be insufficient, along with the usual
2353          * ENOMEM for a genuine allocation failure.
2354          *
2355          * We use ENOSPC in our driver to mean that we have run out of aperture
2356          * space and so want to translate the error from shmemfs back to our
2357          * usual understanding of ENOMEM.
2358          */
2359         if (ret == -ENOSPC)
2360                 ret = -ENOMEM;
2361
2362         return ret;
2363 }
2364
2365 /* Ensure that the associated pages are gathered from the backing storage
2366  * and pinned into our object. i915_gem_object_get_pages() may be called
2367  * multiple times before they are released by a single call to
2368  * i915_gem_object_put_pages() - once the pages are no longer referenced
2369  * either as a result of memory pressure (reaping pages under the shrinker)
2370  * or as the object is itself released.
2371  */
2372 int
2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374 {
2375         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376         const struct drm_i915_gem_object_ops *ops = obj->ops;
2377         int ret;
2378
2379         if (obj->pages)
2380                 return 0;
2381
2382         if (obj->madv != I915_MADV_WILLNEED) {
2383                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384                 return -EFAULT;
2385         }
2386
2387         BUG_ON(obj->pages_pin_count);
2388
2389         ret = ops->get_pages(obj);
2390         if (ret)
2391                 return ret;
2392
2393         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394
2395         obj->get_page.sg = obj->pages->sgl;
2396         obj->get_page.last = 0;
2397
2398         return 0;
2399 }
2400
2401 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2402 {
2403         int ret;
2404
2405         lockdep_assert_held(&obj->base.dev->struct_mutex);
2406
2407         ret = i915_gem_object_get_pages(obj);
2408         if (ret)
2409                 return ERR_PTR(ret);
2410
2411         i915_gem_object_pin_pages(obj);
2412
2413         if (obj->mapping == NULL) {
2414                 struct page **pages;
2415
2416                 pages = NULL;
2417                 if (obj->base.size == PAGE_SIZE)
2418                         obj->mapping = kmap(sg_page(obj->pages->sgl));
2419                 else
2420                         pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2421                                                sizeof(*pages),
2422                                                GFP_TEMPORARY);
2423                 if (pages != NULL) {
2424                         struct sg_page_iter sg_iter;
2425                         int n;
2426
2427                         n = 0;
2428                         for_each_sg_page(obj->pages->sgl, &sg_iter,
2429                                          obj->pages->nents, 0)
2430                                 pages[n++] = sg_page_iter_page(&sg_iter);
2431
2432                         obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2433                         drm_free_large(pages);
2434                 }
2435                 if (obj->mapping == NULL) {
2436                         i915_gem_object_unpin_pages(obj);
2437                         return ERR_PTR(-ENOMEM);
2438                 }
2439         }
2440
2441         return obj->mapping;
2442 }
2443
2444 void i915_vma_move_to_active(struct i915_vma *vma,
2445                              struct drm_i915_gem_request *req)
2446 {
2447         struct drm_i915_gem_object *obj = vma->obj;
2448         struct intel_engine_cs *engine;
2449
2450         engine = i915_gem_request_get_engine(req);
2451
2452         /* Add a reference if we're newly entering the active list. */
2453         if (obj->active == 0)
2454                 drm_gem_object_reference(&obj->base);
2455         obj->active |= intel_engine_flag(engine);
2456
2457         list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2458         i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2459
2460         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2461 }
2462
2463 static void
2464 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2465 {
2466         GEM_BUG_ON(obj->last_write_req == NULL);
2467         GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2468
2469         i915_gem_request_assign(&obj->last_write_req, NULL);
2470         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2471 }
2472
2473 static void
2474 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2475 {
2476         struct i915_vma *vma;
2477
2478         GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2479         GEM_BUG_ON(!(obj->active & (1 << ring)));
2480
2481         list_del_init(&obj->engine_list[ring]);
2482         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2483
2484         if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2485                 i915_gem_object_retire__write(obj);
2486
2487         obj->active &= ~(1 << ring);
2488         if (obj->active)
2489                 return;
2490
2491         /* Bump our place on the bound list to keep it roughly in LRU order
2492          * so that we don't steal from recently used but inactive objects
2493          * (unless we are forced to ofc!)
2494          */
2495         list_move_tail(&obj->global_list,
2496                        &to_i915(obj->base.dev)->mm.bound_list);
2497
2498         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2499                 if (!list_empty(&vma->vm_link))
2500                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2501         }
2502
2503         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2504         drm_gem_object_unreference(&obj->base);
2505 }
2506
2507 static int
2508 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2509 {
2510         struct drm_i915_private *dev_priv = dev->dev_private;
2511         struct intel_engine_cs *engine;
2512         int ret;
2513
2514         /* Carefully retire all requests without writing to the rings */
2515         for_each_engine(engine, dev_priv) {
2516                 ret = intel_engine_idle(engine);
2517                 if (ret)
2518                         return ret;
2519         }
2520         i915_gem_retire_requests(dev);
2521
2522         /* Finally reset hw state */
2523         for_each_engine(engine, dev_priv)
2524                 intel_ring_init_seqno(engine, seqno);
2525
2526         return 0;
2527 }
2528
2529 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2530 {
2531         struct drm_i915_private *dev_priv = dev->dev_private;
2532         int ret;
2533
2534         if (seqno == 0)
2535                 return -EINVAL;
2536
2537         /* HWS page needs to be set less than what we
2538          * will inject to ring
2539          */
2540         ret = i915_gem_init_seqno(dev, seqno - 1);
2541         if (ret)
2542                 return ret;
2543
2544         /* Carefully set the last_seqno value so that wrap
2545          * detection still works
2546          */
2547         dev_priv->next_seqno = seqno;
2548         dev_priv->last_seqno = seqno - 1;
2549         if (dev_priv->last_seqno == 0)
2550                 dev_priv->last_seqno--;
2551
2552         return 0;
2553 }
2554
2555 int
2556 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2557 {
2558         struct drm_i915_private *dev_priv = dev->dev_private;
2559
2560         /* reserve 0 for non-seqno */
2561         if (dev_priv->next_seqno == 0) {
2562                 int ret = i915_gem_init_seqno(dev, 0);
2563                 if (ret)
2564                         return ret;
2565
2566                 dev_priv->next_seqno = 1;
2567         }
2568
2569         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2570         return 0;
2571 }
2572
2573 /*
2574  * NB: This function is not allowed to fail. Doing so would mean the the
2575  * request is not being tracked for completion but the work itself is
2576  * going to happen on the hardware. This would be a Bad Thing(tm).
2577  */
2578 void __i915_add_request(struct drm_i915_gem_request *request,
2579                         struct drm_i915_gem_object *obj,
2580                         bool flush_caches)
2581 {
2582         struct intel_engine_cs *engine;
2583         struct drm_i915_private *dev_priv;
2584         struct intel_ringbuffer *ringbuf;
2585         u32 request_start;
2586         u32 reserved_tail;
2587         int ret;
2588
2589         if (WARN_ON(request == NULL))
2590                 return;
2591
2592         engine = request->engine;
2593         dev_priv = request->i915;
2594         ringbuf = request->ringbuf;
2595
2596         /*
2597          * To ensure that this call will not fail, space for its emissions
2598          * should already have been reserved in the ring buffer. Let the ring
2599          * know that it is time to use that space up.
2600          */
2601         request_start = intel_ring_get_tail(ringbuf);
2602         reserved_tail = request->reserved_space;
2603         request->reserved_space = 0;
2604
2605         /*
2606          * Emit any outstanding flushes - execbuf can fail to emit the flush
2607          * after having emitted the batchbuffer command. Hence we need to fix
2608          * things up similar to emitting the lazy request. The difference here
2609          * is that the flush _must_ happen before the next request, no matter
2610          * what.
2611          */
2612         if (flush_caches) {
2613                 if (i915.enable_execlists)
2614                         ret = logical_ring_flush_all_caches(request);
2615                 else
2616                         ret = intel_ring_flush_all_caches(request);
2617                 /* Not allowed to fail! */
2618                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2619         }
2620
2621         trace_i915_gem_request_add(request);
2622
2623         request->head = request_start;
2624
2625         /* Whilst this request exists, batch_obj will be on the
2626          * active_list, and so will hold the active reference. Only when this
2627          * request is retired will the the batch_obj be moved onto the
2628          * inactive_list and lose its active reference. Hence we do not need
2629          * to explicitly hold another reference here.
2630          */
2631         request->batch_obj = obj;
2632
2633         /* Seal the request and mark it as pending execution. Note that
2634          * we may inspect this state, without holding any locks, during
2635          * hangcheck. Hence we apply the barrier to ensure that we do not
2636          * see a more recent value in the hws than we are tracking.
2637          */
2638         request->emitted_jiffies = jiffies;
2639         request->previous_seqno = engine->last_submitted_seqno;
2640         smp_store_mb(engine->last_submitted_seqno, request->seqno);
2641         list_add_tail(&request->list, &engine->request_list);
2642
2643         /* Record the position of the start of the request so that
2644          * should we detect the updated seqno part-way through the
2645          * GPU processing the request, we never over-estimate the
2646          * position of the head.
2647          */
2648         request->postfix = intel_ring_get_tail(ringbuf);
2649
2650         if (i915.enable_execlists)
2651                 ret = engine->emit_request(request);
2652         else {
2653                 ret = engine->add_request(request);
2654
2655                 request->tail = intel_ring_get_tail(ringbuf);
2656         }
2657         /* Not allowed to fail! */
2658         WARN(ret, "emit|add_request failed: %d!\n", ret);
2659
2660         i915_queue_hangcheck(engine->dev);
2661
2662         queue_delayed_work(dev_priv->wq,
2663                            &dev_priv->mm.retire_work,
2664                            round_jiffies_up_relative(HZ));
2665         intel_mark_busy(dev_priv);
2666
2667         /* Sanity check that the reserved size was large enough. */
2668         ret = intel_ring_get_tail(ringbuf) - request_start;
2669         if (ret < 0)
2670                 ret += ringbuf->size;
2671         WARN_ONCE(ret > reserved_tail,
2672                   "Not enough space reserved (%d bytes) "
2673                   "for adding the request (%d bytes)\n",
2674                   reserved_tail, ret);
2675 }
2676
2677 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2678                                    const struct intel_context *ctx)
2679 {
2680         unsigned long elapsed;
2681
2682         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2683
2684         if (ctx->hang_stats.banned)
2685                 return true;
2686
2687         if (ctx->hang_stats.ban_period_seconds &&
2688             elapsed <= ctx->hang_stats.ban_period_seconds) {
2689                 if (!i915_gem_context_is_default(ctx)) {
2690                         DRM_DEBUG("context hanging too fast, banning!\n");
2691                         return true;
2692                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2693                         if (i915_stop_ring_allow_warn(dev_priv))
2694                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2695                         return true;
2696                 }
2697         }
2698
2699         return false;
2700 }
2701
2702 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2703                                   struct intel_context *ctx,
2704                                   const bool guilty)
2705 {
2706         struct i915_ctx_hang_stats *hs;
2707
2708         if (WARN_ON(!ctx))
2709                 return;
2710
2711         hs = &ctx->hang_stats;
2712
2713         if (guilty) {
2714                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2715                 hs->batch_active++;
2716                 hs->guilty_ts = get_seconds();
2717         } else {
2718                 hs->batch_pending++;
2719         }
2720 }
2721
2722 void i915_gem_request_free(struct kref *req_ref)
2723 {
2724         struct drm_i915_gem_request *req = container_of(req_ref,
2725                                                  typeof(*req), ref);
2726         kmem_cache_free(req->i915->requests, req);
2727 }
2728
2729 static inline int
2730 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2731                          struct intel_context *ctx,
2732                          struct drm_i915_gem_request **req_out)
2733 {
2734         struct drm_i915_private *dev_priv = to_i915(engine->dev);
2735         unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2736         struct drm_i915_gem_request *req;
2737         int ret;
2738
2739         if (!req_out)
2740                 return -EINVAL;
2741
2742         *req_out = NULL;
2743
2744         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2745          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2746          * and restart.
2747          */
2748         ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2749         if (ret)
2750                 return ret;
2751
2752         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2753         if (req == NULL)
2754                 return -ENOMEM;
2755
2756         ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2757         if (ret)
2758                 goto err;
2759
2760         kref_init(&req->ref);
2761         req->i915 = dev_priv;
2762         req->engine = engine;
2763         req->reset_counter = reset_counter;
2764         req->ctx  = ctx;
2765         i915_gem_context_reference(req->ctx);
2766
2767         /*
2768          * Reserve space in the ring buffer for all the commands required to
2769          * eventually emit this request. This is to guarantee that the
2770          * i915_add_request() call can't fail. Note that the reserve may need
2771          * to be redone if the request is not actually submitted straight
2772          * away, e.g. because a GPU scheduler has deferred it.
2773          */
2774         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2775
2776         if (i915.enable_execlists)
2777                 ret = intel_logical_ring_alloc_request_extras(req);
2778         else
2779                 ret = intel_ring_alloc_request_extras(req);
2780         if (ret)
2781                 goto err_ctx;
2782
2783         *req_out = req;
2784         return 0;
2785
2786 err_ctx:
2787         i915_gem_context_unreference(ctx);
2788 err:
2789         kmem_cache_free(dev_priv->requests, req);
2790         return ret;
2791 }
2792
2793 /**
2794  * i915_gem_request_alloc - allocate a request structure
2795  *
2796  * @engine: engine that we wish to issue the request on.
2797  * @ctx: context that the request will be associated with.
2798  *       This can be NULL if the request is not directly related to
2799  *       any specific user context, in which case this function will
2800  *       choose an appropriate context to use.
2801  *
2802  * Returns a pointer to the allocated request if successful,
2803  * or an error code if not.
2804  */
2805 struct drm_i915_gem_request *
2806 i915_gem_request_alloc(struct intel_engine_cs *engine,
2807                        struct intel_context *ctx)
2808 {
2809         struct drm_i915_gem_request *req;
2810         int err;
2811
2812         if (ctx == NULL)
2813                 ctx = to_i915(engine->dev)->kernel_context;
2814         err = __i915_gem_request_alloc(engine, ctx, &req);
2815         return err ? ERR_PTR(err) : req;
2816 }
2817
2818 struct drm_i915_gem_request *
2819 i915_gem_find_active_request(struct intel_engine_cs *engine)
2820 {
2821         struct drm_i915_gem_request *request;
2822
2823         list_for_each_entry(request, &engine->request_list, list) {
2824                 if (i915_gem_request_completed(request, false))
2825                         continue;
2826
2827                 return request;
2828         }
2829
2830         return NULL;
2831 }
2832
2833 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2834                                        struct intel_engine_cs *engine)
2835 {
2836         struct drm_i915_gem_request *request;
2837         bool ring_hung;
2838
2839         request = i915_gem_find_active_request(engine);
2840
2841         if (request == NULL)
2842                 return;
2843
2844         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2845
2846         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2847
2848         list_for_each_entry_continue(request, &engine->request_list, list)
2849                 i915_set_reset_status(dev_priv, request->ctx, false);
2850 }
2851
2852 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2853                                         struct intel_engine_cs *engine)
2854 {
2855         struct intel_ringbuffer *buffer;
2856
2857         while (!list_empty(&engine->active_list)) {
2858                 struct drm_i915_gem_object *obj;
2859
2860                 obj = list_first_entry(&engine->active_list,
2861                                        struct drm_i915_gem_object,
2862                                        engine_list[engine->id]);
2863
2864                 i915_gem_object_retire__read(obj, engine->id);
2865         }
2866
2867         /*
2868          * Clear the execlists queue up before freeing the requests, as those
2869          * are the ones that keep the context and ringbuffer backing objects
2870          * pinned in place.
2871          */
2872
2873         if (i915.enable_execlists) {
2874                 /* Ensure irq handler finishes or is cancelled. */
2875                 tasklet_kill(&engine->irq_tasklet);
2876
2877                 intel_execlists_cancel_requests(engine);
2878         }
2879
2880         /*
2881          * We must free the requests after all the corresponding objects have
2882          * been moved off active lists. Which is the same order as the normal
2883          * retire_requests function does. This is important if object hold
2884          * implicit references on things like e.g. ppgtt address spaces through
2885          * the request.
2886          */
2887         while (!list_empty(&engine->request_list)) {
2888                 struct drm_i915_gem_request *request;
2889
2890                 request = list_first_entry(&engine->request_list,
2891                                            struct drm_i915_gem_request,
2892                                            list);
2893
2894                 i915_gem_request_retire(request);
2895         }
2896
2897         /* Having flushed all requests from all queues, we know that all
2898          * ringbuffers must now be empty. However, since we do not reclaim
2899          * all space when retiring the request (to prevent HEADs colliding
2900          * with rapid ringbuffer wraparound) the amount of available space
2901          * upon reset is less than when we start. Do one more pass over
2902          * all the ringbuffers to reset last_retired_head.
2903          */
2904         list_for_each_entry(buffer, &engine->buffers, link) {
2905                 buffer->last_retired_head = buffer->tail;
2906                 intel_ring_update_space(buffer);
2907         }
2908
2909         intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2910 }
2911
2912 void i915_gem_reset(struct drm_device *dev)
2913 {
2914         struct drm_i915_private *dev_priv = dev->dev_private;
2915         struct intel_engine_cs *engine;
2916
2917         /*
2918          * Before we free the objects from the requests, we need to inspect
2919          * them for finding the guilty party. As the requests only borrow
2920          * their reference to the objects, the inspection must be done first.
2921          */
2922         for_each_engine(engine, dev_priv)
2923                 i915_gem_reset_engine_status(dev_priv, engine);
2924
2925         for_each_engine(engine, dev_priv)
2926                 i915_gem_reset_engine_cleanup(dev_priv, engine);
2927
2928         i915_gem_context_reset(dev);
2929
2930         i915_gem_restore_fences(dev);
2931
2932         WARN_ON(i915_verify_lists(dev));
2933 }
2934
2935 /**
2936  * This function clears the request list as sequence numbers are passed.
2937  */
2938 void
2939 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2940 {
2941         WARN_ON(i915_verify_lists(engine->dev));
2942
2943         /* Retire requests first as we use it above for the early return.
2944          * If we retire requests last, we may use a later seqno and so clear
2945          * the requests lists without clearing the active list, leading to
2946          * confusion.
2947          */
2948         while (!list_empty(&engine->request_list)) {
2949                 struct drm_i915_gem_request *request;
2950
2951                 request = list_first_entry(&engine->request_list,
2952                                            struct drm_i915_gem_request,
2953                                            list);
2954
2955                 if (!i915_gem_request_completed(request, true))
2956                         break;
2957
2958                 i915_gem_request_retire(request);
2959         }
2960
2961         /* Move any buffers on the active list that are no longer referenced
2962          * by the ringbuffer to the flushing/inactive lists as appropriate,
2963          * before we free the context associated with the requests.
2964          */
2965         while (!list_empty(&engine->active_list)) {
2966                 struct drm_i915_gem_object *obj;
2967
2968                 obj = list_first_entry(&engine->active_list,
2969                                        struct drm_i915_gem_object,
2970                                        engine_list[engine->id]);
2971
2972                 if (!list_empty(&obj->last_read_req[engine->id]->list))
2973                         break;
2974
2975                 i915_gem_object_retire__read(obj, engine->id);
2976         }
2977
2978         if (unlikely(engine->trace_irq_req &&
2979                      i915_gem_request_completed(engine->trace_irq_req, true))) {
2980                 engine->irq_put(engine);
2981                 i915_gem_request_assign(&engine->trace_irq_req, NULL);
2982         }
2983
2984         WARN_ON(i915_verify_lists(engine->dev));
2985 }
2986
2987 bool
2988 i915_gem_retire_requests(struct drm_device *dev)
2989 {
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991         struct intel_engine_cs *engine;
2992         bool idle = true;
2993
2994         for_each_engine(engine, dev_priv) {
2995                 i915_gem_retire_requests_ring(engine);
2996                 idle &= list_empty(&engine->request_list);
2997                 if (i915.enable_execlists) {
2998                         spin_lock_bh(&engine->execlist_lock);
2999                         idle &= list_empty(&engine->execlist_queue);
3000                         spin_unlock_bh(&engine->execlist_lock);
3001                 }
3002         }
3003
3004         if (idle)
3005                 mod_delayed_work(dev_priv->wq,
3006                                    &dev_priv->mm.idle_work,
3007                                    msecs_to_jiffies(100));
3008
3009         return idle;
3010 }
3011
3012 static void
3013 i915_gem_retire_work_handler(struct work_struct *work)
3014 {
3015         struct drm_i915_private *dev_priv =
3016                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3017         struct drm_device *dev = dev_priv->dev;
3018         bool idle;
3019
3020         /* Come back later if the device is busy... */
3021         idle = false;
3022         if (mutex_trylock(&dev->struct_mutex)) {
3023                 idle = i915_gem_retire_requests(dev);
3024                 mutex_unlock(&dev->struct_mutex);
3025         }
3026         if (!idle)
3027                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3028                                    round_jiffies_up_relative(HZ));
3029 }
3030
3031 static void
3032 i915_gem_idle_work_handler(struct work_struct *work)
3033 {
3034         struct drm_i915_private *dev_priv =
3035                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3036         struct drm_device *dev = dev_priv->dev;
3037         struct intel_engine_cs *engine;
3038
3039         for_each_engine(engine, dev_priv)
3040                 if (!list_empty(&engine->request_list))
3041                         return;
3042
3043         /* we probably should sync with hangcheck here, using cancel_work_sync.
3044          * Also locking seems to be fubar here, engine->request_list is protected
3045          * by dev->struct_mutex. */
3046
3047         intel_mark_idle(dev_priv);
3048
3049         if (mutex_trylock(&dev->struct_mutex)) {
3050                 for_each_engine(engine, dev_priv)
3051                         i915_gem_batch_pool_fini(&engine->batch_pool);
3052
3053                 mutex_unlock(&dev->struct_mutex);
3054         }
3055 }
3056
3057 /**
3058  * Ensures that an object will eventually get non-busy by flushing any required
3059  * write domains, emitting any outstanding lazy request and retiring and
3060  * completed requests.
3061  */
3062 static int
3063 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3064 {
3065         int i;
3066
3067         if (!obj->active)
3068                 return 0;
3069
3070         for (i = 0; i < I915_NUM_ENGINES; i++) {
3071                 struct drm_i915_gem_request *req;
3072
3073                 req = obj->last_read_req[i];
3074                 if (req == NULL)
3075                         continue;
3076
3077                 if (list_empty(&req->list))
3078                         goto retire;
3079
3080                 if (i915_gem_request_completed(req, true)) {
3081                         __i915_gem_request_retire__upto(req);
3082 retire:
3083                         i915_gem_object_retire__read(obj, i);
3084                 }
3085         }
3086
3087         return 0;
3088 }
3089
3090 /**
3091  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3092  * @DRM_IOCTL_ARGS: standard ioctl arguments
3093  *
3094  * Returns 0 if successful, else an error is returned with the remaining time in
3095  * the timeout parameter.
3096  *  -ETIME: object is still busy after timeout
3097  *  -ERESTARTSYS: signal interrupted the wait
3098  *  -ENONENT: object doesn't exist
3099  * Also possible, but rare:
3100  *  -EAGAIN: GPU wedged
3101  *  -ENOMEM: damn
3102  *  -ENODEV: Internal IRQ fail
3103  *  -E?: The add request failed
3104  *
3105  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3106  * non-zero timeout parameter the wait ioctl will wait for the given number of
3107  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3108  * without holding struct_mutex the object may become re-busied before this
3109  * function completes. A similar but shorter * race condition exists in the busy
3110  * ioctl
3111  */
3112 int
3113 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3114 {
3115         struct drm_i915_gem_wait *args = data;
3116         struct drm_i915_gem_object *obj;
3117         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3118         int i, n = 0;
3119         int ret;
3120
3121         if (args->flags != 0)
3122                 return -EINVAL;
3123
3124         ret = i915_mutex_lock_interruptible(dev);
3125         if (ret)
3126                 return ret;
3127
3128         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3129         if (&obj->base == NULL) {
3130                 mutex_unlock(&dev->struct_mutex);
3131                 return -ENOENT;
3132         }
3133
3134         /* Need to make sure the object gets inactive eventually. */
3135         ret = i915_gem_object_flush_active(obj);
3136         if (ret)
3137                 goto out;
3138
3139         if (!obj->active)
3140                 goto out;
3141
3142         /* Do this after OLR check to make sure we make forward progress polling
3143          * on this IOCTL with a timeout == 0 (like busy ioctl)
3144          */
3145         if (args->timeout_ns == 0) {
3146                 ret = -ETIME;
3147                 goto out;
3148         }
3149
3150         drm_gem_object_unreference(&obj->base);
3151
3152         for (i = 0; i < I915_NUM_ENGINES; i++) {
3153                 if (obj->last_read_req[i] == NULL)
3154                         continue;
3155
3156                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3157         }
3158
3159         mutex_unlock(&dev->struct_mutex);
3160
3161         for (i = 0; i < n; i++) {
3162                 if (ret == 0)
3163                         ret = __i915_wait_request(req[i], true,
3164                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3165                                                   to_rps_client(file));
3166                 i915_gem_request_unreference(req[i]);
3167         }
3168         return ret;
3169
3170 out:
3171         drm_gem_object_unreference(&obj->base);
3172         mutex_unlock(&dev->struct_mutex);
3173         return ret;
3174 }
3175
3176 static int
3177 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3178                        struct intel_engine_cs *to,
3179                        struct drm_i915_gem_request *from_req,
3180                        struct drm_i915_gem_request **to_req)
3181 {
3182         struct intel_engine_cs *from;
3183         int ret;
3184
3185         from = i915_gem_request_get_engine(from_req);
3186         if (to == from)
3187                 return 0;
3188
3189         if (i915_gem_request_completed(from_req, true))
3190                 return 0;
3191
3192         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3193                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3194                 ret = __i915_wait_request(from_req,
3195                                           i915->mm.interruptible,
3196                                           NULL,
3197                                           &i915->rps.semaphores);
3198                 if (ret)
3199                         return ret;
3200
3201                 i915_gem_object_retire_request(obj, from_req);
3202         } else {
3203                 int idx = intel_ring_sync_index(from, to);
3204                 u32 seqno = i915_gem_request_get_seqno(from_req);
3205
3206                 WARN_ON(!to_req);
3207
3208                 if (seqno <= from->semaphore.sync_seqno[idx])
3209                         return 0;
3210
3211                 if (*to_req == NULL) {
3212                         struct drm_i915_gem_request *req;
3213
3214                         req = i915_gem_request_alloc(to, NULL);
3215                         if (IS_ERR(req))
3216                                 return PTR_ERR(req);
3217
3218                         *to_req = req;
3219                 }
3220
3221                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3222                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3223                 if (ret)
3224                         return ret;
3225
3226                 /* We use last_read_req because sync_to()
3227                  * might have just caused seqno wrap under
3228                  * the radar.
3229                  */
3230                 from->semaphore.sync_seqno[idx] =
3231                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3232         }
3233
3234         return 0;
3235 }
3236
3237 /**
3238  * i915_gem_object_sync - sync an object to a ring.
3239  *
3240  * @obj: object which may be in use on another ring.
3241  * @to: ring we wish to use the object on. May be NULL.
3242  * @to_req: request we wish to use the object for. See below.
3243  *          This will be allocated and returned if a request is
3244  *          required but not passed in.
3245  *
3246  * This code is meant to abstract object synchronization with the GPU.
3247  * Calling with NULL implies synchronizing the object with the CPU
3248  * rather than a particular GPU ring. Conceptually we serialise writes
3249  * between engines inside the GPU. We only allow one engine to write
3250  * into a buffer at any time, but multiple readers. To ensure each has
3251  * a coherent view of memory, we must:
3252  *
3253  * - If there is an outstanding write request to the object, the new
3254  *   request must wait for it to complete (either CPU or in hw, requests
3255  *   on the same ring will be naturally ordered).
3256  *
3257  * - If we are a write request (pending_write_domain is set), the new
3258  *   request must wait for outstanding read requests to complete.
3259  *
3260  * For CPU synchronisation (NULL to) no request is required. For syncing with
3261  * rings to_req must be non-NULL. However, a request does not have to be
3262  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3263  * request will be allocated automatically and returned through *to_req. Note
3264  * that it is not guaranteed that commands will be emitted (because the system
3265  * might already be idle). Hence there is no need to create a request that
3266  * might never have any work submitted. Note further that if a request is
3267  * returned in *to_req, it is the responsibility of the caller to submit
3268  * that request (after potentially adding more work to it).
3269  *
3270  * Returns 0 if successful, else propagates up the lower layer error.
3271  */
3272 int
3273 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3274                      struct intel_engine_cs *to,
3275                      struct drm_i915_gem_request **to_req)
3276 {
3277         const bool readonly = obj->base.pending_write_domain == 0;
3278         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3279         int ret, i, n;
3280
3281         if (!obj->active)
3282                 return 0;
3283
3284         if (to == NULL)
3285                 return i915_gem_object_wait_rendering(obj, readonly);
3286
3287         n = 0;
3288         if (readonly) {
3289                 if (obj->last_write_req)
3290                         req[n++] = obj->last_write_req;
3291         } else {
3292                 for (i = 0; i < I915_NUM_ENGINES; i++)
3293                         if (obj->last_read_req[i])
3294                                 req[n++] = obj->last_read_req[i];
3295         }
3296         for (i = 0; i < n; i++) {
3297                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3298                 if (ret)
3299                         return ret;
3300         }
3301
3302         return 0;
3303 }
3304
3305 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3306 {
3307         u32 old_write_domain, old_read_domains;
3308
3309         /* Force a pagefault for domain tracking on next user access */
3310         i915_gem_release_mmap(obj);
3311
3312         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3313                 return;
3314
3315         old_read_domains = obj->base.read_domains;
3316         old_write_domain = obj->base.write_domain;
3317
3318         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3319         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3320
3321         trace_i915_gem_object_change_domain(obj,
3322                                             old_read_domains,
3323                                             old_write_domain);
3324 }
3325
3326 static void __i915_vma_iounmap(struct i915_vma *vma)
3327 {
3328         GEM_BUG_ON(vma->pin_count);
3329
3330         if (vma->iomap == NULL)
3331                 return;
3332
3333         io_mapping_unmap(vma->iomap);
3334         vma->iomap = NULL;
3335 }
3336
3337 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3338 {
3339         struct drm_i915_gem_object *obj = vma->obj;
3340         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3341         int ret;
3342
3343         if (list_empty(&vma->obj_link))
3344                 return 0;
3345
3346         if (!drm_mm_node_allocated(&vma->node)) {
3347                 i915_gem_vma_destroy(vma);
3348                 return 0;
3349         }
3350
3351         if (vma->pin_count)
3352                 return -EBUSY;
3353
3354         BUG_ON(obj->pages == NULL);
3355
3356         if (wait) {
3357                 ret = i915_gem_object_wait_rendering(obj, false);
3358                 if (ret)
3359                         return ret;
3360         }
3361
3362         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3363                 i915_gem_object_finish_gtt(obj);
3364
3365                 /* release the fence reg _after_ flushing */
3366                 ret = i915_gem_object_put_fence(obj);
3367                 if (ret)
3368                         return ret;
3369
3370                 __i915_vma_iounmap(vma);
3371         }
3372
3373         trace_i915_vma_unbind(vma);
3374
3375         vma->vm->unbind_vma(vma);
3376         vma->bound = 0;
3377
3378         list_del_init(&vma->vm_link);
3379         if (vma->is_ggtt) {
3380                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3381                         obj->map_and_fenceable = false;
3382                 } else if (vma->ggtt_view.pages) {
3383                         sg_free_table(vma->ggtt_view.pages);
3384                         kfree(vma->ggtt_view.pages);
3385                 }
3386                 vma->ggtt_view.pages = NULL;
3387         }
3388
3389         drm_mm_remove_node(&vma->node);
3390         i915_gem_vma_destroy(vma);
3391
3392         /* Since the unbound list is global, only move to that list if
3393          * no more VMAs exist. */
3394         if (list_empty(&obj->vma_list))
3395                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3396
3397         /* And finally now the object is completely decoupled from this vma,
3398          * we can drop its hold on the backing storage and allow it to be
3399          * reaped by the shrinker.
3400          */
3401         i915_gem_object_unpin_pages(obj);
3402
3403         return 0;
3404 }
3405
3406 int i915_vma_unbind(struct i915_vma *vma)
3407 {
3408         return __i915_vma_unbind(vma, true);
3409 }
3410
3411 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3412 {
3413         return __i915_vma_unbind(vma, false);
3414 }
3415
3416 int i915_gpu_idle(struct drm_device *dev)
3417 {
3418         struct drm_i915_private *dev_priv = dev->dev_private;
3419         struct intel_engine_cs *engine;
3420         int ret;
3421
3422         /* Flush everything onto the inactive list. */
3423         for_each_engine(engine, dev_priv) {
3424                 if (!i915.enable_execlists) {
3425                         struct drm_i915_gem_request *req;
3426
3427                         req = i915_gem_request_alloc(engine, NULL);
3428                         if (IS_ERR(req))
3429                                 return PTR_ERR(req);
3430
3431                         ret = i915_switch_context(req);
3432                         i915_add_request_no_flush(req);
3433                         if (ret)
3434                                 return ret;
3435                 }
3436
3437                 ret = intel_engine_idle(engine);
3438                 if (ret)
3439                         return ret;
3440         }
3441
3442         WARN_ON(i915_verify_lists(dev));
3443         return 0;
3444 }
3445
3446 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3447                                      unsigned long cache_level)
3448 {
3449         struct drm_mm_node *gtt_space = &vma->node;
3450         struct drm_mm_node *other;
3451
3452         /*
3453          * On some machines we have to be careful when putting differing types
3454          * of snoopable memory together to avoid the prefetcher crossing memory
3455          * domains and dying. During vm initialisation, we decide whether or not
3456          * these constraints apply and set the drm_mm.color_adjust
3457          * appropriately.
3458          */
3459         if (vma->vm->mm.color_adjust == NULL)
3460                 return true;
3461
3462         if (!drm_mm_node_allocated(gtt_space))
3463                 return true;
3464
3465         if (list_empty(&gtt_space->node_list))
3466                 return true;
3467
3468         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3469         if (other->allocated && !other->hole_follows && other->color != cache_level)
3470                 return false;
3471
3472         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3473         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3474                 return false;
3475
3476         return true;
3477 }
3478
3479 /**
3480  * Finds free space in the GTT aperture and binds the object or a view of it
3481  * there.
3482  */
3483 static struct i915_vma *
3484 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3485                            struct i915_address_space *vm,
3486                            const struct i915_ggtt_view *ggtt_view,
3487                            unsigned alignment,
3488                            uint64_t flags)
3489 {
3490         struct drm_device *dev = obj->base.dev;
3491         struct drm_i915_private *dev_priv = to_i915(dev);
3492         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3493         u32 fence_alignment, unfenced_alignment;
3494         u32 search_flag, alloc_flag;
3495         u64 start, end;
3496         u64 size, fence_size;
3497         struct i915_vma *vma;
3498         int ret;
3499
3500         if (i915_is_ggtt(vm)) {
3501                 u32 view_size;
3502
3503                 if (WARN_ON(!ggtt_view))
3504                         return ERR_PTR(-EINVAL);
3505
3506                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3507
3508                 fence_size = i915_gem_get_gtt_size(dev,
3509                                                    view_size,
3510                                                    obj->tiling_mode);
3511                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3512                                                              view_size,
3513                                                              obj->tiling_mode,
3514                                                              true);
3515                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3516                                                                 view_size,
3517                                                                 obj->tiling_mode,
3518                                                                 false);
3519                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3520         } else {
3521                 fence_size = i915_gem_get_gtt_size(dev,
3522                                                    obj->base.size,
3523                                                    obj->tiling_mode);
3524                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3525                                                              obj->base.size,
3526                                                              obj->tiling_mode,
3527                                                              true);
3528                 unfenced_alignment =
3529                         i915_gem_get_gtt_alignment(dev,
3530                                                    obj->base.size,
3531                                                    obj->tiling_mode,
3532                                                    false);
3533                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3534         }
3535
3536         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3537         end = vm->total;
3538         if (flags & PIN_MAPPABLE)
3539                 end = min_t(u64, end, ggtt->mappable_end);
3540         if (flags & PIN_ZONE_4G)
3541                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3542
3543         if (alignment == 0)
3544                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3545                                                 unfenced_alignment;
3546         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3547                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3548                           ggtt_view ? ggtt_view->type : 0,
3549                           alignment);
3550                 return ERR_PTR(-EINVAL);
3551         }
3552
3553         /* If binding the object/GGTT view requires more space than the entire
3554          * aperture has, reject it early before evicting everything in a vain
3555          * attempt to find space.
3556          */
3557         if (size > end) {
3558                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3559                           ggtt_view ? ggtt_view->type : 0,
3560                           size,
3561                           flags & PIN_MAPPABLE ? "mappable" : "total",
3562                           end);
3563                 return ERR_PTR(-E2BIG);
3564         }
3565
3566         ret = i915_gem_object_get_pages(obj);
3567         if (ret)
3568                 return ERR_PTR(ret);
3569
3570         i915_gem_object_pin_pages(obj);
3571
3572         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3573                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3574
3575         if (IS_ERR(vma))
3576                 goto err_unpin;
3577
3578         if (flags & PIN_OFFSET_FIXED) {
3579                 uint64_t offset = flags & PIN_OFFSET_MASK;
3580
3581                 if (offset & (alignment - 1) || offset + size > end) {
3582                         ret = -EINVAL;
3583                         goto err_free_vma;
3584                 }
3585                 vma->node.start = offset;
3586                 vma->node.size = size;
3587                 vma->node.color = obj->cache_level;
3588                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3589                 if (ret) {
3590                         ret = i915_gem_evict_for_vma(vma);
3591                         if (ret == 0)
3592                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3593                 }
3594                 if (ret)
3595                         goto err_free_vma;
3596         } else {
3597                 if (flags & PIN_HIGH) {
3598                         search_flag = DRM_MM_SEARCH_BELOW;
3599                         alloc_flag = DRM_MM_CREATE_TOP;
3600                 } else {
3601                         search_flag = DRM_MM_SEARCH_DEFAULT;
3602                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3603                 }
3604
3605 search_free:
3606                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3607                                                           size, alignment,
3608                                                           obj->cache_level,
3609                                                           start, end,
3610                                                           search_flag,
3611                                                           alloc_flag);
3612                 if (ret) {
3613                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3614                                                        obj->cache_level,
3615                                                        start, end,
3616                                                        flags);
3617                         if (ret == 0)
3618                                 goto search_free;
3619
3620                         goto err_free_vma;
3621                 }
3622         }
3623         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3624                 ret = -EINVAL;
3625                 goto err_remove_node;
3626         }
3627
3628         trace_i915_vma_bind(vma, flags);
3629         ret = i915_vma_bind(vma, obj->cache_level, flags);
3630         if (ret)
3631                 goto err_remove_node;
3632
3633         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3634         list_add_tail(&vma->vm_link, &vm->inactive_list);
3635
3636         return vma;
3637
3638 err_remove_node:
3639         drm_mm_remove_node(&vma->node);
3640 err_free_vma:
3641         i915_gem_vma_destroy(vma);
3642         vma = ERR_PTR(ret);
3643 err_unpin:
3644         i915_gem_object_unpin_pages(obj);
3645         return vma;
3646 }
3647
3648 bool
3649 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3650                         bool force)
3651 {
3652         /* If we don't have a page list set up, then we're not pinned
3653          * to GPU, and we can ignore the cache flush because it'll happen
3654          * again at bind time.
3655          */
3656         if (obj->pages == NULL)
3657                 return false;
3658
3659         /*
3660          * Stolen memory is always coherent with the GPU as it is explicitly
3661          * marked as wc by the system, or the system is cache-coherent.
3662          */
3663         if (obj->stolen || obj->phys_handle)
3664                 return false;
3665
3666         /* If the GPU is snooping the contents of the CPU cache,
3667          * we do not need to manually clear the CPU cache lines.  However,
3668          * the caches are only snooped when the render cache is
3669          * flushed/invalidated.  As we always have to emit invalidations
3670          * and flushes when moving into and out of the RENDER domain, correct
3671          * snooping behaviour occurs naturally as the result of our domain
3672          * tracking.
3673          */
3674         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3675                 obj->cache_dirty = true;
3676                 return false;
3677         }
3678
3679         trace_i915_gem_object_clflush(obj);
3680         drm_clflush_sg(obj->pages);
3681         obj->cache_dirty = false;
3682
3683         return true;
3684 }
3685
3686 /** Flushes the GTT write domain for the object if it's dirty. */
3687 static void
3688 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3689 {
3690         uint32_t old_write_domain;
3691
3692         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3693                 return;
3694
3695         /* No actual flushing is required for the GTT write domain.  Writes
3696          * to it immediately go to main memory as far as we know, so there's
3697          * no chipset flush.  It also doesn't land in render cache.
3698          *
3699          * However, we do have to enforce the order so that all writes through
3700          * the GTT land before any writes to the device, such as updates to
3701          * the GATT itself.
3702          */
3703         wmb();
3704
3705         old_write_domain = obj->base.write_domain;
3706         obj->base.write_domain = 0;
3707
3708         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3709
3710         trace_i915_gem_object_change_domain(obj,
3711                                             obj->base.read_domains,
3712                                             old_write_domain);
3713 }
3714
3715 /** Flushes the CPU write domain for the object if it's dirty. */
3716 static void
3717 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3718 {
3719         uint32_t old_write_domain;
3720
3721         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3722                 return;
3723
3724         if (i915_gem_clflush_object(obj, obj->pin_display))
3725                 i915_gem_chipset_flush(obj->base.dev);
3726
3727         old_write_domain = obj->base.write_domain;
3728         obj->base.write_domain = 0;
3729
3730         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3731
3732         trace_i915_gem_object_change_domain(obj,
3733                                             obj->base.read_domains,
3734                                             old_write_domain);
3735 }
3736
3737 /**
3738  * Moves a single object to the GTT read, and possibly write domain.
3739  *
3740  * This function returns when the move is complete, including waiting on
3741  * flushes to occur.
3742  */
3743 int
3744 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3745 {
3746         struct drm_device *dev = obj->base.dev;
3747         struct drm_i915_private *dev_priv = to_i915(dev);
3748         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3749         uint32_t old_write_domain, old_read_domains;
3750         struct i915_vma *vma;
3751         int ret;
3752
3753         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3754                 return 0;
3755
3756         ret = i915_gem_object_wait_rendering(obj, !write);
3757         if (ret)
3758                 return ret;
3759
3760         /* Flush and acquire obj->pages so that we are coherent through
3761          * direct access in memory with previous cached writes through
3762          * shmemfs and that our cache domain tracking remains valid.
3763          * For example, if the obj->filp was moved to swap without us
3764          * being notified and releasing the pages, we would mistakenly
3765          * continue to assume that the obj remained out of the CPU cached
3766          * domain.
3767          */
3768         ret = i915_gem_object_get_pages(obj);
3769         if (ret)
3770                 return ret;
3771
3772         i915_gem_object_flush_cpu_write_domain(obj);
3773
3774         /* Serialise direct access to this object with the barriers for
3775          * coherent writes from the GPU, by effectively invalidating the
3776          * GTT domain upon first access.
3777          */
3778         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3779                 mb();
3780
3781         old_write_domain = obj->base.write_domain;
3782         old_read_domains = obj->base.read_domains;
3783
3784         /* It should now be out of any other write domains, and we can update
3785          * the domain values for our changes.
3786          */
3787         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3788         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3789         if (write) {
3790                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3791                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3792                 obj->dirty = 1;
3793         }
3794
3795         trace_i915_gem_object_change_domain(obj,
3796                                             old_read_domains,
3797                                             old_write_domain);
3798
3799         /* And bump the LRU for this access */
3800         vma = i915_gem_obj_to_ggtt(obj);
3801         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3802                 list_move_tail(&vma->vm_link,
3803                                &ggtt->base.inactive_list);
3804
3805         return 0;
3806 }
3807
3808 /**
3809  * Changes the cache-level of an object across all VMA.
3810  *
3811  * After this function returns, the object will be in the new cache-level
3812  * across all GTT and the contents of the backing storage will be coherent,
3813  * with respect to the new cache-level. In order to keep the backing storage
3814  * coherent for all users, we only allow a single cache level to be set
3815  * globally on the object and prevent it from being changed whilst the
3816  * hardware is reading from the object. That is if the object is currently
3817  * on the scanout it will be set to uncached (or equivalent display
3818  * cache coherency) and all non-MOCS GPU access will also be uncached so
3819  * that all direct access to the scanout remains coherent.
3820  */
3821 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3822                                     enum i915_cache_level cache_level)
3823 {
3824         struct drm_device *dev = obj->base.dev;
3825         struct i915_vma *vma, *next;
3826         bool bound = false;
3827         int ret = 0;
3828
3829         if (obj->cache_level == cache_level)
3830                 goto out;
3831
3832         /* Inspect the list of currently bound VMA and unbind any that would
3833          * be invalid given the new cache-level. This is principally to
3834          * catch the issue of the CS prefetch crossing page boundaries and
3835          * reading an invalid PTE on older architectures.
3836          */
3837         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3838                 if (!drm_mm_node_allocated(&vma->node))
3839                         continue;
3840
3841                 if (vma->pin_count) {
3842                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3843                         return -EBUSY;
3844                 }
3845
3846                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3847                         ret = i915_vma_unbind(vma);
3848                         if (ret)
3849                                 return ret;
3850                 } else
3851                         bound = true;
3852         }
3853
3854         /* We can reuse the existing drm_mm nodes but need to change the
3855          * cache-level on the PTE. We could simply unbind them all and
3856          * rebind with the correct cache-level on next use. However since
3857          * we already have a valid slot, dma mapping, pages etc, we may as
3858          * rewrite the PTE in the belief that doing so tramples upon less
3859          * state and so involves less work.
3860          */
3861         if (bound) {
3862                 /* Before we change the PTE, the GPU must not be accessing it.
3863                  * If we wait upon the object, we know that all the bound
3864                  * VMA are no longer active.
3865                  */
3866                 ret = i915_gem_object_wait_rendering(obj, false);
3867                 if (ret)
3868                         return ret;
3869
3870                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3871                         /* Access to snoopable pages through the GTT is
3872                          * incoherent and on some machines causes a hard
3873                          * lockup. Relinquish the CPU mmaping to force
3874                          * userspace to refault in the pages and we can
3875                          * then double check if the GTT mapping is still
3876                          * valid for that pointer access.
3877                          */
3878                         i915_gem_release_mmap(obj);
3879
3880                         /* As we no longer need a fence for GTT access,
3881                          * we can relinquish it now (and so prevent having
3882                          * to steal a fence from someone else on the next
3883                          * fence request). Note GPU activity would have
3884                          * dropped the fence as all snoopable access is
3885                          * supposed to be linear.
3886                          */
3887                         ret = i915_gem_object_put_fence(obj);
3888                         if (ret)
3889                                 return ret;
3890                 } else {
3891                         /* We either have incoherent backing store and
3892                          * so no GTT access or the architecture is fully
3893                          * coherent. In such cases, existing GTT mmaps
3894                          * ignore the cache bit in the PTE and we can
3895                          * rewrite it without confusing the GPU or having
3896                          * to force userspace to fault back in its mmaps.
3897                          */
3898                 }
3899
3900                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3901                         if (!drm_mm_node_allocated(&vma->node))
3902                                 continue;
3903
3904                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3905                         if (ret)
3906                                 return ret;
3907                 }
3908         }
3909
3910         list_for_each_entry(vma, &obj->vma_list, obj_link)
3911                 vma->node.color = cache_level;
3912         obj->cache_level = cache_level;
3913
3914 out:
3915         /* Flush the dirty CPU caches to the backing storage so that the
3916          * object is now coherent at its new cache level (with respect
3917          * to the access domain).
3918          */
3919         if (obj->cache_dirty &&
3920             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3921             cpu_write_needs_clflush(obj)) {
3922                 if (i915_gem_clflush_object(obj, true))
3923                         i915_gem_chipset_flush(obj->base.dev);
3924         }
3925
3926         return 0;
3927 }
3928
3929 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3930                                struct drm_file *file)
3931 {
3932         struct drm_i915_gem_caching *args = data;
3933         struct drm_i915_gem_object *obj;
3934
3935         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3936         if (&obj->base == NULL)
3937                 return -ENOENT;
3938
3939         switch (obj->cache_level) {
3940         case I915_CACHE_LLC:
3941         case I915_CACHE_L3_LLC:
3942                 args->caching = I915_CACHING_CACHED;
3943                 break;
3944
3945         case I915_CACHE_WT:
3946                 args->caching = I915_CACHING_DISPLAY;
3947                 break;
3948
3949         default:
3950                 args->caching = I915_CACHING_NONE;
3951                 break;
3952         }
3953
3954         drm_gem_object_unreference_unlocked(&obj->base);
3955         return 0;
3956 }
3957
3958 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3959                                struct drm_file *file)
3960 {
3961         struct drm_i915_private *dev_priv = dev->dev_private;
3962         struct drm_i915_gem_caching *args = data;
3963         struct drm_i915_gem_object *obj;
3964         enum i915_cache_level level;
3965         int ret;
3966
3967         switch (args->caching) {
3968         case I915_CACHING_NONE:
3969                 level = I915_CACHE_NONE;
3970                 break;
3971         case I915_CACHING_CACHED:
3972                 /*
3973                  * Due to a HW issue on BXT A stepping, GPU stores via a
3974                  * snooped mapping may leave stale data in a corresponding CPU
3975                  * cacheline, whereas normally such cachelines would get
3976                  * invalidated.
3977                  */
3978                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3979                         return -ENODEV;
3980
3981                 level = I915_CACHE_LLC;
3982                 break;
3983         case I915_CACHING_DISPLAY:
3984                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3985                 break;
3986         default:
3987                 return -EINVAL;
3988         }
3989
3990         intel_runtime_pm_get(dev_priv);
3991
3992         ret = i915_mutex_lock_interruptible(dev);
3993         if (ret)
3994                 goto rpm_put;
3995
3996         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3997         if (&obj->base == NULL) {
3998                 ret = -ENOENT;
3999                 goto unlock;
4000         }
4001
4002         ret = i915_gem_object_set_cache_level(obj, level);
4003
4004         drm_gem_object_unreference(&obj->base);
4005 unlock:
4006         mutex_unlock(&dev->struct_mutex);
4007 rpm_put:
4008         intel_runtime_pm_put(dev_priv);
4009
4010         return ret;
4011 }
4012
4013 /*
4014  * Prepare buffer for display plane (scanout, cursors, etc).
4015  * Can be called from an uninterruptible phase (modesetting) and allows
4016  * any flushes to be pipelined (for pageflips).
4017  */
4018 int
4019 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4020                                      u32 alignment,
4021                                      const struct i915_ggtt_view *view)
4022 {
4023         u32 old_read_domains, old_write_domain;
4024         int ret;
4025
4026         /* Mark the pin_display early so that we account for the
4027          * display coherency whilst setting up the cache domains.
4028          */
4029         obj->pin_display++;
4030
4031         /* The display engine is not coherent with the LLC cache on gen6.  As
4032          * a result, we make sure that the pinning that is about to occur is
4033          * done with uncached PTEs. This is lowest common denominator for all
4034          * chipsets.
4035          *
4036          * However for gen6+, we could do better by using the GFDT bit instead
4037          * of uncaching, which would allow us to flush all the LLC-cached data
4038          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4039          */
4040         ret = i915_gem_object_set_cache_level(obj,
4041                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4042         if (ret)
4043                 goto err_unpin_display;
4044
4045         /* As the user may map the buffer once pinned in the display plane
4046          * (e.g. libkms for the bootup splash), we have to ensure that we
4047          * always use map_and_fenceable for all scanout buffers.
4048          */
4049         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4050                                        view->type == I915_GGTT_VIEW_NORMAL ?
4051                                        PIN_MAPPABLE : 0);
4052         if (ret)
4053                 goto err_unpin_display;
4054
4055         i915_gem_object_flush_cpu_write_domain(obj);
4056
4057         old_write_domain = obj->base.write_domain;
4058         old_read_domains = obj->base.read_domains;
4059
4060         /* It should now be out of any other write domains, and we can update
4061          * the domain values for our changes.
4062          */
4063         obj->base.write_domain = 0;
4064         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4065
4066         trace_i915_gem_object_change_domain(obj,
4067                                             old_read_domains,
4068                                             old_write_domain);
4069
4070         return 0;
4071
4072 err_unpin_display:
4073         obj->pin_display--;
4074         return ret;
4075 }
4076
4077 void
4078 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4079                                          const struct i915_ggtt_view *view)
4080 {
4081         if (WARN_ON(obj->pin_display == 0))
4082                 return;
4083
4084         i915_gem_object_ggtt_unpin_view(obj, view);
4085
4086         obj->pin_display--;
4087 }
4088
4089 /**
4090  * Moves a single object to the CPU read, and possibly write domain.
4091  *
4092  * This function returns when the move is complete, including waiting on
4093  * flushes to occur.
4094  */
4095 int
4096 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4097 {
4098         uint32_t old_write_domain, old_read_domains;
4099         int ret;
4100
4101         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4102                 return 0;
4103
4104         ret = i915_gem_object_wait_rendering(obj, !write);
4105         if (ret)
4106                 return ret;
4107
4108         i915_gem_object_flush_gtt_write_domain(obj);
4109
4110         old_write_domain = obj->base.write_domain;
4111         old_read_domains = obj->base.read_domains;
4112
4113         /* Flush the CPU cache if it's still invalid. */
4114         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4115                 i915_gem_clflush_object(obj, false);
4116
4117                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4118         }
4119
4120         /* It should now be out of any other write domains, and we can update
4121          * the domain values for our changes.
4122          */
4123         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4124
4125         /* If we're writing through the CPU, then the GPU read domains will
4126          * need to be invalidated at next use.
4127          */
4128         if (write) {
4129                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4130                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4131         }
4132
4133         trace_i915_gem_object_change_domain(obj,
4134                                             old_read_domains,
4135                                             old_write_domain);
4136
4137         return 0;
4138 }
4139
4140 /* Throttle our rendering by waiting until the ring has completed our requests
4141  * emitted over 20 msec ago.
4142  *
4143  * Note that if we were to use the current jiffies each time around the loop,
4144  * we wouldn't escape the function with any frames outstanding if the time to
4145  * render a frame was over 20ms.
4146  *
4147  * This should get us reasonable parallelism between CPU and GPU but also
4148  * relatively low latency when blocking on a particular request to finish.
4149  */
4150 static int
4151 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4152 {
4153         struct drm_i915_private *dev_priv = dev->dev_private;
4154         struct drm_i915_file_private *file_priv = file->driver_priv;
4155         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4156         struct drm_i915_gem_request *request, *target = NULL;
4157         int ret;
4158
4159         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4160         if (ret)
4161                 return ret;
4162
4163         /* ABI: return -EIO if already wedged */
4164         if (i915_terminally_wedged(&dev_priv->gpu_error))
4165                 return -EIO;
4166
4167         spin_lock(&file_priv->mm.lock);
4168         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4169                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4170                         break;
4171
4172                 /*
4173                  * Note that the request might not have been submitted yet.
4174                  * In which case emitted_jiffies will be zero.
4175                  */
4176                 if (!request->emitted_jiffies)
4177                         continue;
4178
4179                 target = request;
4180         }
4181         if (target)
4182                 i915_gem_request_reference(target);
4183         spin_unlock(&file_priv->mm.lock);
4184
4185         if (target == NULL)
4186                 return 0;
4187
4188         ret = __i915_wait_request(target, true, NULL, NULL);
4189         if (ret == 0)
4190                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4191
4192         i915_gem_request_unreference(target);
4193
4194         return ret;
4195 }
4196
4197 static bool
4198 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4199 {
4200         struct drm_i915_gem_object *obj = vma->obj;
4201
4202         if (alignment &&
4203             vma->node.start & (alignment - 1))
4204                 return true;
4205
4206         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4207                 return true;
4208
4209         if (flags & PIN_OFFSET_BIAS &&
4210             vma->node.start < (flags & PIN_OFFSET_MASK))
4211                 return true;
4212
4213         if (flags & PIN_OFFSET_FIXED &&
4214             vma->node.start != (flags & PIN_OFFSET_MASK))
4215                 return true;
4216
4217         return false;
4218 }
4219
4220 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4221 {
4222         struct drm_i915_gem_object *obj = vma->obj;
4223         bool mappable, fenceable;
4224         u32 fence_size, fence_alignment;
4225
4226         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4227                                            obj->base.size,
4228                                            obj->tiling_mode);
4229         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4230                                                      obj->base.size,
4231                                                      obj->tiling_mode,
4232                                                      true);
4233
4234         fenceable = (vma->node.size == fence_size &&
4235                      (vma->node.start & (fence_alignment - 1)) == 0);
4236
4237         mappable = (vma->node.start + fence_size <=
4238                     to_i915(obj->base.dev)->ggtt.mappable_end);
4239
4240         obj->map_and_fenceable = mappable && fenceable;
4241 }
4242
4243 static int
4244 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4245                        struct i915_address_space *vm,
4246                        const struct i915_ggtt_view *ggtt_view,
4247                        uint32_t alignment,
4248                        uint64_t flags)
4249 {
4250         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4251         struct i915_vma *vma;
4252         unsigned bound;
4253         int ret;
4254
4255         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4256                 return -ENODEV;
4257
4258         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4259                 return -EINVAL;
4260
4261         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4262                 return -EINVAL;
4263
4264         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4265                 return -EINVAL;
4266
4267         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4268                           i915_gem_obj_to_vma(obj, vm);
4269
4270         if (vma) {
4271                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4272                         return -EBUSY;
4273
4274                 if (i915_vma_misplaced(vma, alignment, flags)) {
4275                         WARN(vma->pin_count,
4276                              "bo is already pinned in %s with incorrect alignment:"
4277                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4278                              " obj->map_and_fenceable=%d\n",
4279                              ggtt_view ? "ggtt" : "ppgtt",
4280                              upper_32_bits(vma->node.start),
4281                              lower_32_bits(vma->node.start),
4282                              alignment,
4283                              !!(flags & PIN_MAPPABLE),
4284                              obj->map_and_fenceable);
4285                         ret = i915_vma_unbind(vma);
4286                         if (ret)
4287                                 return ret;
4288
4289                         vma = NULL;
4290                 }
4291         }
4292
4293         bound = vma ? vma->bound : 0;
4294         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4295                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4296                                                  flags);
4297                 if (IS_ERR(vma))
4298                         return PTR_ERR(vma);
4299         } else {
4300                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4301                 if (ret)
4302                         return ret;
4303         }
4304
4305         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4306             (bound ^ vma->bound) & GLOBAL_BIND) {
4307                 __i915_vma_set_map_and_fenceable(vma);
4308                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4309         }
4310
4311         vma->pin_count++;
4312         return 0;
4313 }
4314
4315 int
4316 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4317                     struct i915_address_space *vm,
4318                     uint32_t alignment,
4319                     uint64_t flags)
4320 {
4321         return i915_gem_object_do_pin(obj, vm,
4322                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4323                                       alignment, flags);
4324 }
4325
4326 int
4327 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4328                          const struct i915_ggtt_view *view,
4329                          uint32_t alignment,
4330                          uint64_t flags)
4331 {
4332         struct drm_device *dev = obj->base.dev;
4333         struct drm_i915_private *dev_priv = to_i915(dev);
4334         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4335
4336         BUG_ON(!view);
4337
4338         return i915_gem_object_do_pin(obj, &ggtt->base, view,
4339                                       alignment, flags | PIN_GLOBAL);
4340 }
4341
4342 void
4343 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4344                                 const struct i915_ggtt_view *view)
4345 {
4346         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4347
4348         WARN_ON(vma->pin_count == 0);
4349         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4350
4351         --vma->pin_count;
4352 }
4353
4354 int
4355 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4356                     struct drm_file *file)
4357 {
4358         struct drm_i915_gem_busy *args = data;
4359         struct drm_i915_gem_object *obj;
4360         int ret;
4361
4362         ret = i915_mutex_lock_interruptible(dev);
4363         if (ret)
4364                 return ret;
4365
4366         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4367         if (&obj->base == NULL) {
4368                 ret = -ENOENT;
4369                 goto unlock;
4370         }
4371
4372         /* Count all active objects as busy, even if they are currently not used
4373          * by the gpu. Users of this interface expect objects to eventually
4374          * become non-busy without any further actions, therefore emit any
4375          * necessary flushes here.
4376          */
4377         ret = i915_gem_object_flush_active(obj);
4378         if (ret)
4379                 goto unref;
4380
4381         args->busy = 0;
4382         if (obj->active) {
4383                 int i;
4384
4385                 for (i = 0; i < I915_NUM_ENGINES; i++) {
4386                         struct drm_i915_gem_request *req;
4387
4388                         req = obj->last_read_req[i];
4389                         if (req)
4390                                 args->busy |= 1 << (16 + req->engine->exec_id);
4391                 }
4392                 if (obj->last_write_req)
4393                         args->busy |= obj->last_write_req->engine->exec_id;
4394         }
4395
4396 unref:
4397         drm_gem_object_unreference(&obj->base);
4398 unlock:
4399         mutex_unlock(&dev->struct_mutex);
4400         return ret;
4401 }
4402
4403 int
4404 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4405                         struct drm_file *file_priv)
4406 {
4407         return i915_gem_ring_throttle(dev, file_priv);
4408 }
4409
4410 int
4411 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4412                        struct drm_file *file_priv)
4413 {
4414         struct drm_i915_private *dev_priv = dev->dev_private;
4415         struct drm_i915_gem_madvise *args = data;
4416         struct drm_i915_gem_object *obj;
4417         int ret;
4418
4419         switch (args->madv) {
4420         case I915_MADV_DONTNEED:
4421         case I915_MADV_WILLNEED:
4422             break;
4423         default:
4424             return -EINVAL;
4425         }
4426
4427         ret = i915_mutex_lock_interruptible(dev);
4428         if (ret)
4429                 return ret;
4430
4431         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4432         if (&obj->base == NULL) {
4433                 ret = -ENOENT;
4434                 goto unlock;
4435         }
4436
4437         if (i915_gem_obj_is_pinned(obj)) {
4438                 ret = -EINVAL;
4439                 goto out;
4440         }
4441
4442         if (obj->pages &&
4443             obj->tiling_mode != I915_TILING_NONE &&
4444             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4445                 if (obj->madv == I915_MADV_WILLNEED)
4446                         i915_gem_object_unpin_pages(obj);
4447                 if (args->madv == I915_MADV_WILLNEED)
4448                         i915_gem_object_pin_pages(obj);
4449         }
4450
4451         if (obj->madv != __I915_MADV_PURGED)
4452                 obj->madv = args->madv;
4453
4454         /* if the object is no longer attached, discard its backing storage */
4455         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4456                 i915_gem_object_truncate(obj);
4457
4458         args->retained = obj->madv != __I915_MADV_PURGED;
4459
4460 out:
4461         drm_gem_object_unreference(&obj->base);
4462 unlock:
4463         mutex_unlock(&dev->struct_mutex);
4464         return ret;
4465 }
4466
4467 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4468                           const struct drm_i915_gem_object_ops *ops)
4469 {
4470         int i;
4471
4472         INIT_LIST_HEAD(&obj->global_list);
4473         for (i = 0; i < I915_NUM_ENGINES; i++)
4474                 INIT_LIST_HEAD(&obj->engine_list[i]);
4475         INIT_LIST_HEAD(&obj->obj_exec_link);
4476         INIT_LIST_HEAD(&obj->vma_list);
4477         INIT_LIST_HEAD(&obj->batch_pool_link);
4478
4479         obj->ops = ops;
4480
4481         obj->fence_reg = I915_FENCE_REG_NONE;
4482         obj->madv = I915_MADV_WILLNEED;
4483
4484         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4485 }
4486
4487 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4488         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4489         .get_pages = i915_gem_object_get_pages_gtt,
4490         .put_pages = i915_gem_object_put_pages_gtt,
4491 };
4492
4493 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4494                                                   size_t size)
4495 {
4496         struct drm_i915_gem_object *obj;
4497         struct address_space *mapping;
4498         gfp_t mask;
4499         int ret;
4500
4501         obj = i915_gem_object_alloc(dev);
4502         if (obj == NULL)
4503                 return ERR_PTR(-ENOMEM);
4504
4505         ret = drm_gem_object_init(dev, &obj->base, size);
4506         if (ret)
4507                 goto fail;
4508
4509         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4510         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4511                 /* 965gm cannot relocate objects above 4GiB. */
4512                 mask &= ~__GFP_HIGHMEM;
4513                 mask |= __GFP_DMA32;
4514         }
4515
4516         mapping = file_inode(obj->base.filp)->i_mapping;
4517         mapping_set_gfp_mask(mapping, mask);
4518
4519         i915_gem_object_init(obj, &i915_gem_object_ops);
4520
4521         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4522         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4523
4524         if (HAS_LLC(dev)) {
4525                 /* On some devices, we can have the GPU use the LLC (the CPU
4526                  * cache) for about a 10% performance improvement
4527                  * compared to uncached.  Graphics requests other than
4528                  * display scanout are coherent with the CPU in
4529                  * accessing this cache.  This means in this mode we
4530                  * don't need to clflush on the CPU side, and on the
4531                  * GPU side we only need to flush internal caches to
4532                  * get data visible to the CPU.
4533                  *
4534                  * However, we maintain the display planes as UC, and so
4535                  * need to rebind when first used as such.
4536                  */
4537                 obj->cache_level = I915_CACHE_LLC;
4538         } else
4539                 obj->cache_level = I915_CACHE_NONE;
4540
4541         trace_i915_gem_object_create(obj);
4542
4543         return obj;
4544
4545 fail:
4546         i915_gem_object_free(obj);
4547
4548         return ERR_PTR(ret);
4549 }
4550
4551 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4552 {
4553         /* If we are the last user of the backing storage (be it shmemfs
4554          * pages or stolen etc), we know that the pages are going to be
4555          * immediately released. In this case, we can then skip copying
4556          * back the contents from the GPU.
4557          */
4558
4559         if (obj->madv != I915_MADV_WILLNEED)
4560                 return false;
4561
4562         if (obj->base.filp == NULL)
4563                 return true;
4564
4565         /* At first glance, this looks racy, but then again so would be
4566          * userspace racing mmap against close. However, the first external
4567          * reference to the filp can only be obtained through the
4568          * i915_gem_mmap_ioctl() which safeguards us against the user
4569          * acquiring such a reference whilst we are in the middle of
4570          * freeing the object.
4571          */
4572         return atomic_long_read(&obj->base.filp->f_count) == 1;
4573 }
4574
4575 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4576 {
4577         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4578         struct drm_device *dev = obj->base.dev;
4579         struct drm_i915_private *dev_priv = dev->dev_private;
4580         struct i915_vma *vma, *next;
4581
4582         intel_runtime_pm_get(dev_priv);
4583
4584         trace_i915_gem_object_destroy(obj);
4585
4586         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4587                 int ret;
4588
4589                 vma->pin_count = 0;
4590                 ret = i915_vma_unbind(vma);
4591                 if (WARN_ON(ret == -ERESTARTSYS)) {
4592                         bool was_interruptible;
4593
4594                         was_interruptible = dev_priv->mm.interruptible;
4595                         dev_priv->mm.interruptible = false;
4596
4597                         WARN_ON(i915_vma_unbind(vma));
4598
4599                         dev_priv->mm.interruptible = was_interruptible;
4600                 }
4601         }
4602
4603         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4604          * before progressing. */
4605         if (obj->stolen)
4606                 i915_gem_object_unpin_pages(obj);
4607
4608         WARN_ON(obj->frontbuffer_bits);
4609
4610         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4611             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4612             obj->tiling_mode != I915_TILING_NONE)
4613                 i915_gem_object_unpin_pages(obj);
4614
4615         if (WARN_ON(obj->pages_pin_count))
4616                 obj->pages_pin_count = 0;
4617         if (discard_backing_storage(obj))
4618                 obj->madv = I915_MADV_DONTNEED;
4619         i915_gem_object_put_pages(obj);
4620         i915_gem_object_free_mmap_offset(obj);
4621
4622         BUG_ON(obj->pages);
4623
4624         if (obj->base.import_attach)
4625                 drm_prime_gem_destroy(&obj->base, NULL);
4626
4627         if (obj->ops->release)
4628                 obj->ops->release(obj);
4629
4630         drm_gem_object_release(&obj->base);
4631         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4632
4633         kfree(obj->bit_17);
4634         i915_gem_object_free(obj);
4635
4636         intel_runtime_pm_put(dev_priv);
4637 }
4638
4639 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4640                                      struct i915_address_space *vm)
4641 {
4642         struct i915_vma *vma;
4643         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4644                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4645                     vma->vm == vm)
4646                         return vma;
4647         }
4648         return NULL;
4649 }
4650
4651 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4652                                            const struct i915_ggtt_view *view)
4653 {
4654         struct i915_vma *vma;
4655
4656         GEM_BUG_ON(!view);
4657
4658         list_for_each_entry(vma, &obj->vma_list, obj_link)
4659                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4660                         return vma;
4661         return NULL;
4662 }
4663
4664 void i915_gem_vma_destroy(struct i915_vma *vma)
4665 {
4666         WARN_ON(vma->node.allocated);
4667
4668         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4669         if (!list_empty(&vma->exec_list))
4670                 return;
4671
4672         if (!vma->is_ggtt)
4673                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4674
4675         list_del(&vma->obj_link);
4676
4677         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4678 }
4679
4680 static void
4681 i915_gem_stop_engines(struct drm_device *dev)
4682 {
4683         struct drm_i915_private *dev_priv = dev->dev_private;
4684         struct intel_engine_cs *engine;
4685
4686         for_each_engine(engine, dev_priv)
4687                 dev_priv->gt.stop_engine(engine);
4688 }
4689
4690 int
4691 i915_gem_suspend(struct drm_device *dev)
4692 {
4693         struct drm_i915_private *dev_priv = dev->dev_private;
4694         int ret = 0;
4695
4696         mutex_lock(&dev->struct_mutex);
4697         ret = i915_gpu_idle(dev);
4698         if (ret)
4699                 goto err;
4700
4701         i915_gem_retire_requests(dev);
4702
4703         i915_gem_stop_engines(dev);
4704         i915_gem_context_lost(dev_priv);
4705         mutex_unlock(&dev->struct_mutex);
4706
4707         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4708         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4709         flush_delayed_work(&dev_priv->mm.idle_work);
4710
4711         /* Assert that we sucessfully flushed all the work and
4712          * reset the GPU back to its idle, low power state.
4713          */
4714         WARN_ON(dev_priv->mm.busy);
4715
4716         return 0;
4717
4718 err:
4719         mutex_unlock(&dev->struct_mutex);
4720         return ret;
4721 }
4722
4723 void i915_gem_init_swizzling(struct drm_device *dev)
4724 {
4725         struct drm_i915_private *dev_priv = dev->dev_private;
4726
4727         if (INTEL_INFO(dev)->gen < 5 ||
4728             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4729                 return;
4730
4731         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4732                                  DISP_TILE_SURFACE_SWIZZLING);
4733
4734         if (IS_GEN5(dev))
4735                 return;
4736
4737         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4738         if (IS_GEN6(dev))
4739                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4740         else if (IS_GEN7(dev))
4741                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4742         else if (IS_GEN8(dev))
4743                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4744         else
4745                 BUG();
4746 }
4747
4748 static void init_unused_ring(struct drm_device *dev, u32 base)
4749 {
4750         struct drm_i915_private *dev_priv = dev->dev_private;
4751
4752         I915_WRITE(RING_CTL(base), 0);
4753         I915_WRITE(RING_HEAD(base), 0);
4754         I915_WRITE(RING_TAIL(base), 0);
4755         I915_WRITE(RING_START(base), 0);
4756 }
4757
4758 static void init_unused_rings(struct drm_device *dev)
4759 {
4760         if (IS_I830(dev)) {
4761                 init_unused_ring(dev, PRB1_BASE);
4762                 init_unused_ring(dev, SRB0_BASE);
4763                 init_unused_ring(dev, SRB1_BASE);
4764                 init_unused_ring(dev, SRB2_BASE);
4765                 init_unused_ring(dev, SRB3_BASE);
4766         } else if (IS_GEN2(dev)) {
4767                 init_unused_ring(dev, SRB0_BASE);
4768                 init_unused_ring(dev, SRB1_BASE);
4769         } else if (IS_GEN3(dev)) {
4770                 init_unused_ring(dev, PRB1_BASE);
4771                 init_unused_ring(dev, PRB2_BASE);
4772         }
4773 }
4774
4775 int i915_gem_init_engines(struct drm_device *dev)
4776 {
4777         struct drm_i915_private *dev_priv = dev->dev_private;
4778         int ret;
4779
4780         ret = intel_init_render_ring_buffer(dev);
4781         if (ret)
4782                 return ret;
4783
4784         if (HAS_BSD(dev)) {
4785                 ret = intel_init_bsd_ring_buffer(dev);
4786                 if (ret)
4787                         goto cleanup_render_ring;
4788         }
4789
4790         if (HAS_BLT(dev)) {
4791                 ret = intel_init_blt_ring_buffer(dev);
4792                 if (ret)
4793                         goto cleanup_bsd_ring;
4794         }
4795
4796         if (HAS_VEBOX(dev)) {
4797                 ret = intel_init_vebox_ring_buffer(dev);
4798                 if (ret)
4799                         goto cleanup_blt_ring;
4800         }
4801
4802         if (HAS_BSD2(dev)) {
4803                 ret = intel_init_bsd2_ring_buffer(dev);
4804                 if (ret)
4805                         goto cleanup_vebox_ring;
4806         }
4807
4808         return 0;
4809
4810 cleanup_vebox_ring:
4811         intel_cleanup_engine(&dev_priv->engine[VECS]);
4812 cleanup_blt_ring:
4813         intel_cleanup_engine(&dev_priv->engine[BCS]);
4814 cleanup_bsd_ring:
4815         intel_cleanup_engine(&dev_priv->engine[VCS]);
4816 cleanup_render_ring:
4817         intel_cleanup_engine(&dev_priv->engine[RCS]);
4818
4819         return ret;
4820 }
4821
4822 int
4823 i915_gem_init_hw(struct drm_device *dev)
4824 {
4825         struct drm_i915_private *dev_priv = dev->dev_private;
4826         struct intel_engine_cs *engine;
4827         int ret;
4828
4829         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4830                 return -EIO;
4831
4832         /* Double layer security blanket, see i915_gem_init() */
4833         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4834
4835         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4836                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4837
4838         if (IS_HASWELL(dev))
4839                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4840                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4841
4842         if (HAS_PCH_NOP(dev)) {
4843                 if (IS_IVYBRIDGE(dev)) {
4844                         u32 temp = I915_READ(GEN7_MSG_CTL);
4845                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4846                         I915_WRITE(GEN7_MSG_CTL, temp);
4847                 } else if (INTEL_INFO(dev)->gen >= 7) {
4848                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4849                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4850                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4851                 }
4852         }
4853
4854         i915_gem_init_swizzling(dev);
4855
4856         /*
4857          * At least 830 can leave some of the unused rings
4858          * "active" (ie. head != tail) after resume which
4859          * will prevent c3 entry. Makes sure all unused rings
4860          * are totally idle.
4861          */
4862         init_unused_rings(dev);
4863
4864         BUG_ON(!dev_priv->kernel_context);
4865
4866         ret = i915_ppgtt_init_hw(dev);
4867         if (ret) {
4868                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4869                 goto out;
4870         }
4871
4872         /* Need to do basic initialisation of all rings first: */
4873         for_each_engine(engine, dev_priv) {
4874                 ret = engine->init_hw(engine);
4875                 if (ret)
4876                         goto out;
4877         }
4878
4879         intel_mocs_init_l3cc_table(dev);
4880
4881         /* We can't enable contexts until all firmware is loaded */
4882         if (HAS_GUC_UCODE(dev)) {
4883                 ret = intel_guc_ucode_load(dev);
4884                 if (ret) {
4885                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4886                         ret = -EIO;
4887                         goto out;
4888                 }
4889         }
4890
4891         /*
4892          * Increment the next seqno by 0x100 so we have a visible break
4893          * on re-initialisation
4894          */
4895         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4896
4897 out:
4898         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4899         return ret;
4900 }
4901
4902 int i915_gem_init(struct drm_device *dev)
4903 {
4904         struct drm_i915_private *dev_priv = dev->dev_private;
4905         int ret;
4906
4907         mutex_lock(&dev->struct_mutex);
4908
4909         if (!i915.enable_execlists) {
4910                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4911                 dev_priv->gt.init_engines = i915_gem_init_engines;
4912                 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4913                 dev_priv->gt.stop_engine = intel_stop_engine;
4914         } else {
4915                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4916                 dev_priv->gt.init_engines = intel_logical_rings_init;
4917                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4918                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4919         }
4920
4921         /* This is just a security blanket to placate dragons.
4922          * On some systems, we very sporadically observe that the first TLBs
4923          * used by the CS may be stale, despite us poking the TLB reset. If
4924          * we hold the forcewake during initialisation these problems
4925          * just magically go away.
4926          */
4927         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4928
4929         ret = i915_gem_init_userptr(dev);
4930         if (ret)
4931                 goto out_unlock;
4932
4933         i915_gem_init_ggtt(dev);
4934
4935         ret = i915_gem_context_init(dev);
4936         if (ret)
4937                 goto out_unlock;
4938
4939         ret = dev_priv->gt.init_engines(dev);
4940         if (ret)
4941                 goto out_unlock;
4942
4943         ret = i915_gem_init_hw(dev);
4944         if (ret == -EIO) {
4945                 /* Allow ring initialisation to fail by marking the GPU as
4946                  * wedged. But we only want to do this where the GPU is angry,
4947                  * for all other failure, such as an allocation failure, bail.
4948                  */
4949                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4950                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4951                 ret = 0;
4952         }
4953
4954 out_unlock:
4955         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4956         mutex_unlock(&dev->struct_mutex);
4957
4958         return ret;
4959 }
4960
4961 void
4962 i915_gem_cleanup_engines(struct drm_device *dev)
4963 {
4964         struct drm_i915_private *dev_priv = dev->dev_private;
4965         struct intel_engine_cs *engine;
4966
4967         for_each_engine(engine, dev_priv)
4968                 dev_priv->gt.cleanup_engine(engine);
4969 }
4970
4971 static void
4972 init_engine_lists(struct intel_engine_cs *engine)
4973 {
4974         INIT_LIST_HEAD(&engine->active_list);
4975         INIT_LIST_HEAD(&engine->request_list);
4976 }
4977
4978 void
4979 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4980 {
4981         struct drm_device *dev = dev_priv->dev;
4982
4983         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4984             !IS_CHERRYVIEW(dev_priv))
4985                 dev_priv->num_fence_regs = 32;
4986         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4987                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4988                 dev_priv->num_fence_regs = 16;
4989         else
4990                 dev_priv->num_fence_regs = 8;
4991
4992         if (intel_vgpu_active(dev))
4993                 dev_priv->num_fence_regs =
4994                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4995
4996         /* Initialize fence registers to zero */
4997         i915_gem_restore_fences(dev);
4998
4999         i915_gem_detect_bit_6_swizzle(dev);
5000 }
5001
5002 void
5003 i915_gem_load_init(struct drm_device *dev)
5004 {
5005         struct drm_i915_private *dev_priv = dev->dev_private;
5006         int i;
5007
5008         dev_priv->objects =
5009                 kmem_cache_create("i915_gem_object",
5010                                   sizeof(struct drm_i915_gem_object), 0,
5011                                   SLAB_HWCACHE_ALIGN,
5012                                   NULL);
5013         dev_priv->vmas =
5014                 kmem_cache_create("i915_gem_vma",
5015                                   sizeof(struct i915_vma), 0,
5016                                   SLAB_HWCACHE_ALIGN,
5017                                   NULL);
5018         dev_priv->requests =
5019                 kmem_cache_create("i915_gem_request",
5020                                   sizeof(struct drm_i915_gem_request), 0,
5021                                   SLAB_HWCACHE_ALIGN,
5022                                   NULL);
5023
5024         INIT_LIST_HEAD(&dev_priv->vm_list);
5025         INIT_LIST_HEAD(&dev_priv->context_list);
5026         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5027         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5028         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5029         for (i = 0; i < I915_NUM_ENGINES; i++)
5030                 init_engine_lists(&dev_priv->engine[i]);
5031         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5032                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5033         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5034                           i915_gem_retire_work_handler);
5035         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5036                           i915_gem_idle_work_handler);
5037         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5038
5039         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5040
5041         /*
5042          * Set initial sequence number for requests.
5043          * Using this number allows the wraparound to happen early,
5044          * catching any obvious problems.
5045          */
5046         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5047         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5048
5049         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5050
5051         init_waitqueue_head(&dev_priv->pending_flip_queue);
5052
5053         dev_priv->mm.interruptible = true;
5054
5055         mutex_init(&dev_priv->fb_tracking.lock);
5056 }
5057
5058 void i915_gem_load_cleanup(struct drm_device *dev)
5059 {
5060         struct drm_i915_private *dev_priv = to_i915(dev);
5061
5062         kmem_cache_destroy(dev_priv->requests);
5063         kmem_cache_destroy(dev_priv->vmas);
5064         kmem_cache_destroy(dev_priv->objects);
5065 }
5066
5067 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5068 {
5069         struct drm_i915_file_private *file_priv = file->driver_priv;
5070
5071         /* Clean up our request list when the client is going away, so that
5072          * later retire_requests won't dereference our soon-to-be-gone
5073          * file_priv.
5074          */
5075         spin_lock(&file_priv->mm.lock);
5076         while (!list_empty(&file_priv->mm.request_list)) {
5077                 struct drm_i915_gem_request *request;
5078
5079                 request = list_first_entry(&file_priv->mm.request_list,
5080                                            struct drm_i915_gem_request,
5081                                            client_list);
5082                 list_del(&request->client_list);
5083                 request->file_priv = NULL;
5084         }
5085         spin_unlock(&file_priv->mm.lock);
5086
5087         if (!list_empty(&file_priv->rps.link)) {
5088                 spin_lock(&to_i915(dev)->rps.client_lock);
5089                 list_del(&file_priv->rps.link);
5090                 spin_unlock(&to_i915(dev)->rps.client_lock);
5091         }
5092 }
5093
5094 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5095 {
5096         struct drm_i915_file_private *file_priv;
5097         int ret;
5098
5099         DRM_DEBUG_DRIVER("\n");
5100
5101         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5102         if (!file_priv)
5103                 return -ENOMEM;
5104
5105         file->driver_priv = file_priv;
5106         file_priv->dev_priv = dev->dev_private;
5107         file_priv->file = file;
5108         INIT_LIST_HEAD(&file_priv->rps.link);
5109
5110         spin_lock_init(&file_priv->mm.lock);
5111         INIT_LIST_HEAD(&file_priv->mm.request_list);
5112
5113         file_priv->bsd_ring = -1;
5114
5115         ret = i915_gem_context_open(dev, file);
5116         if (ret)
5117                 kfree(file_priv);
5118
5119         return ret;
5120 }
5121
5122 /**
5123  * i915_gem_track_fb - update frontbuffer tracking
5124  * @old: current GEM buffer for the frontbuffer slots
5125  * @new: new GEM buffer for the frontbuffer slots
5126  * @frontbuffer_bits: bitmask of frontbuffer slots
5127  *
5128  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5129  * from @old and setting them in @new. Both @old and @new can be NULL.
5130  */
5131 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5132                        struct drm_i915_gem_object *new,
5133                        unsigned frontbuffer_bits)
5134 {
5135         if (old) {
5136                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5137                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5138                 old->frontbuffer_bits &= ~frontbuffer_bits;
5139         }
5140
5141         if (new) {
5142                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5143                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5144                 new->frontbuffer_bits |= frontbuffer_bits;
5145         }
5146 }
5147
5148 /* All the new VM stuff */
5149 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5150                         struct i915_address_space *vm)
5151 {
5152         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5153         struct i915_vma *vma;
5154
5155         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5156
5157         list_for_each_entry(vma, &o->vma_list, obj_link) {
5158                 if (vma->is_ggtt &&
5159                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5160                         continue;
5161                 if (vma->vm == vm)
5162                         return vma->node.start;
5163         }
5164
5165         WARN(1, "%s vma for this object not found.\n",
5166              i915_is_ggtt(vm) ? "global" : "ppgtt");
5167         return -1;
5168 }
5169
5170 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5171                                   const struct i915_ggtt_view *view)
5172 {
5173         struct i915_vma *vma;
5174
5175         list_for_each_entry(vma, &o->vma_list, obj_link)
5176                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5177                         return vma->node.start;
5178
5179         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5180         return -1;
5181 }
5182
5183 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5184                         struct i915_address_space *vm)
5185 {
5186         struct i915_vma *vma;
5187
5188         list_for_each_entry(vma, &o->vma_list, obj_link) {
5189                 if (vma->is_ggtt &&
5190                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5191                         continue;
5192                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5193                         return true;
5194         }
5195
5196         return false;
5197 }
5198
5199 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5200                                   const struct i915_ggtt_view *view)
5201 {
5202         struct i915_vma *vma;
5203
5204         list_for_each_entry(vma, &o->vma_list, obj_link)
5205                 if (vma->is_ggtt &&
5206                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5207                     drm_mm_node_allocated(&vma->node))
5208                         return true;
5209
5210         return false;
5211 }
5212
5213 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5214 {
5215         struct i915_vma *vma;
5216
5217         list_for_each_entry(vma, &o->vma_list, obj_link)
5218                 if (drm_mm_node_allocated(&vma->node))
5219                         return true;
5220
5221         return false;
5222 }
5223
5224 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5225 {
5226         struct i915_vma *vma;
5227
5228         GEM_BUG_ON(list_empty(&o->vma_list));
5229
5230         list_for_each_entry(vma, &o->vma_list, obj_link) {
5231                 if (vma->is_ggtt &&
5232                     vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5233                         return vma->node.size;
5234         }
5235
5236         return 0;
5237 }
5238
5239 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5240 {
5241         struct i915_vma *vma;
5242         list_for_each_entry(vma, &obj->vma_list, obj_link)
5243                 if (vma->pin_count > 0)
5244                         return true;
5245
5246         return false;
5247 }
5248
5249 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5250 struct page *
5251 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5252 {
5253         struct page *page;
5254
5255         /* Only default objects have per-page dirty tracking */
5256         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5257                 return NULL;
5258
5259         page = i915_gem_object_get_page(obj, n);
5260         set_page_dirty(page);
5261         return page;
5262 }
5263
5264 /* Allocate a new GEM object and fill it with the supplied data */
5265 struct drm_i915_gem_object *
5266 i915_gem_object_create_from_data(struct drm_device *dev,
5267                                  const void *data, size_t size)
5268 {
5269         struct drm_i915_gem_object *obj;
5270         struct sg_table *sg;
5271         size_t bytes;
5272         int ret;
5273
5274         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5275         if (IS_ERR(obj))
5276                 return obj;
5277
5278         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5279         if (ret)
5280                 goto fail;
5281
5282         ret = i915_gem_object_get_pages(obj);
5283         if (ret)
5284                 goto fail;
5285
5286         i915_gem_object_pin_pages(obj);
5287         sg = obj->pages;
5288         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5289         obj->dirty = 1;         /* Backing store is now out of date */
5290         i915_gem_object_unpin_pages(obj);
5291
5292         if (WARN_ON(bytes != size)) {
5293                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5294                 ret = -EFAULT;
5295                 goto fail;
5296         }
5297
5298         return obj;
5299
5300 fail:
5301         drm_gem_object_unreference(&obj->base);
5302         return ERR_PTR(ret);
5303 }