]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'omapdrm-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tomba/linux...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (obj->pin_count)
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915_prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915_prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987         if (file_priv == NULL)
988                 return true;
989
990         return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012                         unsigned reset_counter,
1013                         bool interruptible,
1014                         struct timespec *timeout,
1015                         struct drm_i915_file_private *file_priv)
1016 {
1017         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018         const bool irq_test_in_progress =
1019                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020         struct timespec before, now;
1021         DEFINE_WAIT(wait);
1022         unsigned long timeout_expire;
1023         int ret;
1024
1025         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
1027         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028                 return 0;
1029
1030         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1031
1032         if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033                 gen6_rps_boost(dev_priv);
1034                 if (file_priv)
1035                         mod_delayed_work(dev_priv->wq,
1036                                          &file_priv->mm.idle_work,
1037                                          msecs_to_jiffies(100));
1038         }
1039
1040         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041                 return -ENODEV;
1042
1043         /* Record current time in case interrupted by signal, or wedged */
1044         trace_i915_gem_request_wait_begin(ring, seqno);
1045         getrawmonotonic(&before);
1046         for (;;) {
1047                 struct timer_list timer;
1048
1049                 prepare_to_wait(&ring->irq_queue, &wait,
1050                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052                 /* We need to check whether any gpu reset happened in between
1053                  * the caller grabbing the seqno and now ... */
1054                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056                          * is truely gone. */
1057                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058                         if (ret == 0)
1059                                 ret = -EAGAIN;
1060                         break;
1061                 }
1062
1063                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064                         ret = 0;
1065                         break;
1066                 }
1067
1068                 if (interruptible && signal_pending(current)) {
1069                         ret = -ERESTARTSYS;
1070                         break;
1071                 }
1072
1073                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074                         ret = -ETIME;
1075                         break;
1076                 }
1077
1078                 timer.function = NULL;
1079                 if (timeout || missed_irq(dev_priv, ring)) {
1080                         unsigned long expire;
1081
1082                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084                         mod_timer(&timer, expire);
1085                 }
1086
1087                 io_schedule();
1088
1089                 if (timer.function) {
1090                         del_singleshot_timer_sync(&timer);
1091                         destroy_timer_on_stack(&timer);
1092                 }
1093         }
1094         getrawmonotonic(&now);
1095         trace_i915_gem_request_wait_end(ring, seqno);
1096
1097         if (!irq_test_in_progress)
1098                 ring->irq_put(ring);
1099
1100         finish_wait(&ring->irq_queue, &wait);
1101
1102         if (timeout) {
1103                 struct timespec sleep_time = timespec_sub(now, before);
1104                 *timeout = timespec_sub(*timeout, sleep_time);
1105                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106                         set_normalized_timespec(timeout, 0, 0);
1107         }
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * Waits for a sequence number to be signaled, and cleans up the
1114  * request and object lists appropriately for that event.
1115  */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119         struct drm_device *dev = ring->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         bool interruptible = dev_priv->mm.interruptible;
1122         int ret;
1123
1124         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125         BUG_ON(seqno == 0);
1126
1127         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128         if (ret)
1129                 return ret;
1130
1131         ret = i915_gem_check_olr(ring, seqno);
1132         if (ret)
1133                 return ret;
1134
1135         return __wait_seqno(ring, seqno,
1136                             atomic_read(&dev_priv->gpu_error.reset_counter),
1137                             interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142                                      struct intel_ring_buffer *ring)
1143 {
1144         i915_gem_retire_requests_ring(ring);
1145
1146         /* Manually manage the write flush as we may have not yet
1147          * retired the buffer.
1148          *
1149          * Note that the last_write_seqno is always the earlier of
1150          * the two (read/write) seqno, so if we haved successfully waited,
1151          * we know we have passed the last write.
1152          */
1153         obj->last_write_seqno = 0;
1154         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * Ensures that all rendering to the object has completed and the object is
1161  * safe to unbind from the GTT or access from the CPU.
1162  */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165                                bool readonly)
1166 {
1167         struct intel_ring_buffer *ring = obj->ring;
1168         u32 seqno;
1169         int ret;
1170
1171         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172         if (seqno == 0)
1173                 return 0;
1174
1175         ret = i915_wait_seqno(ring, seqno);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183  * as the object state may change during this call.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187                                             struct drm_file *file,
1188                                             bool readonly)
1189 {
1190         struct drm_device *dev = obj->base.dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         struct intel_ring_buffer *ring = obj->ring;
1193         unsigned reset_counter;
1194         u32 seqno;
1195         int ret;
1196
1197         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198         BUG_ON(!dev_priv->mm.interruptible);
1199
1200         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201         if (seqno == 0)
1202                 return 0;
1203
1204         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205         if (ret)
1206                 return ret;
1207
1208         ret = i915_gem_check_olr(ring, seqno);
1209         if (ret)
1210                 return ret;
1211
1212         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213         mutex_unlock(&dev->struct_mutex);
1214         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215         mutex_lock(&dev->struct_mutex);
1216         if (ret)
1217                 return ret;
1218
1219         return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223  * Called when user space prepares to use an object with the CPU, either
1224  * through the mmap ioctl's mapping or a GTT mapping.
1225  */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228                           struct drm_file *file)
1229 {
1230         struct drm_i915_gem_set_domain *args = data;
1231         struct drm_i915_gem_object *obj;
1232         uint32_t read_domains = args->read_domains;
1233         uint32_t write_domain = args->write_domain;
1234         int ret;
1235
1236         /* Only handle setting domains to types used by the CPU. */
1237         if (write_domain & I915_GEM_GPU_DOMAINS)
1238                 return -EINVAL;
1239
1240         if (read_domains & I915_GEM_GPU_DOMAINS)
1241                 return -EINVAL;
1242
1243         /* Having something in the write domain implies it's in the read
1244          * domain, and only that read domain.  Enforce that in the request.
1245          */
1246         if (write_domain != 0 && read_domains != write_domain)
1247                 return -EINVAL;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Try to flush the object off the GPU without holding the lock.
1260          * We will repeat the flush holding the lock in the normal manner
1261          * to catch cases where we are gazumped.
1262          */
1263         ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264         if (ret)
1265                 goto unref;
1266
1267         if (read_domains & I915_GEM_DOMAIN_GTT) {
1268                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270                 /* Silently promote "you're not bound, there was nothing to do"
1271                  * to success, since the client was just asking us to
1272                  * make sure everything was done.
1273                  */
1274                 if (ret == -EINVAL)
1275                         ret = 0;
1276         } else {
1277                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278         }
1279
1280 unref:
1281         drm_gem_object_unreference(&obj->base);
1282 unlock:
1283         mutex_unlock(&dev->struct_mutex);
1284         return ret;
1285 }
1286
1287 /**
1288  * Called when user space has done writes to this buffer
1289  */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292                          struct drm_file *file)
1293 {
1294         struct drm_i915_gem_sw_finish *args = data;
1295         struct drm_i915_gem_object *obj;
1296         int ret = 0;
1297
1298         ret = i915_mutex_lock_interruptible(dev);
1299         if (ret)
1300                 return ret;
1301
1302         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303         if (&obj->base == NULL) {
1304                 ret = -ENOENT;
1305                 goto unlock;
1306         }
1307
1308         /* Pinned buffers may be scanout, so flush the cache */
1309         if (obj->pin_display)
1310                 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312         drm_gem_object_unreference(&obj->base);
1313 unlock:
1314         mutex_unlock(&dev->struct_mutex);
1315         return ret;
1316 }
1317
1318 /**
1319  * Maps the contents of an object, returning the address it is mapped
1320  * into.
1321  *
1322  * While the mapping holds a reference on the contents of the object, it doesn't
1323  * imply a ref on the object itself.
1324  */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327                     struct drm_file *file)
1328 {
1329         struct drm_i915_gem_mmap *args = data;
1330         struct drm_gem_object *obj;
1331         unsigned long addr;
1332
1333         obj = drm_gem_object_lookup(dev, file, args->handle);
1334         if (obj == NULL)
1335                 return -ENOENT;
1336
1337         /* prime objects have no backing filp to GEM mmap
1338          * pages from.
1339          */
1340         if (!obj->filp) {
1341                 drm_gem_object_unreference_unlocked(obj);
1342                 return -EINVAL;
1343         }
1344
1345         addr = vm_mmap(obj->filp, 0, args->size,
1346                        PROT_READ | PROT_WRITE, MAP_SHARED,
1347                        args->offset);
1348         drm_gem_object_unreference_unlocked(obj);
1349         if (IS_ERR((void *)addr))
1350                 return addr;
1351
1352         args->addr_ptr = (uint64_t) addr;
1353
1354         return 0;
1355 }
1356
1357 /**
1358  * i915_gem_fault - fault a page into the GTT
1359  * vma: VMA in question
1360  * vmf: fault info
1361  *
1362  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363  * from userspace.  The fault handler takes care of binding the object to
1364  * the GTT (if needed), allocating and programming a fence register (again,
1365  * only if needed based on whether the old reg is still valid or the object
1366  * is tiled) and inserting a new PTE into the faulting process.
1367  *
1368  * Note that the faulting process may involve evicting existing objects
1369  * from the GTT and/or fence registers to make room.  So performance may
1370  * suffer if the GTT working set is large or there are few fence registers
1371  * left.
1372  */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376         struct drm_device *dev = obj->base.dev;
1377         drm_i915_private_t *dev_priv = dev->dev_private;
1378         pgoff_t page_offset;
1379         unsigned long pfn;
1380         int ret = 0;
1381         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383         intel_runtime_pm_get(dev_priv);
1384
1385         /* We don't use vmf->pgoff since that has the fake offset */
1386         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387                 PAGE_SHIFT;
1388
1389         ret = i915_mutex_lock_interruptible(dev);
1390         if (ret)
1391                 goto out;
1392
1393         trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
1395         /* Access to snoopable pages through the GTT is incoherent. */
1396         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397                 ret = -EINVAL;
1398                 goto unlock;
1399         }
1400
1401         /* Now bind it into the GTT if needed */
1402         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1403         if (ret)
1404                 goto unlock;
1405
1406         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407         if (ret)
1408                 goto unpin;
1409
1410         ret = i915_gem_object_get_fence(obj);
1411         if (ret)
1412                 goto unpin;
1413
1414         obj->fault_mappable = true;
1415
1416         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417         pfn >>= PAGE_SHIFT;
1418         pfn += page_offset;
1419
1420         /* Finally, remap it using the new GTT offset */
1421         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422 unpin:
1423         i915_gem_object_unpin(obj);
1424 unlock:
1425         mutex_unlock(&dev->struct_mutex);
1426 out:
1427         switch (ret) {
1428         case -EIO:
1429                 /* If this -EIO is due to a gpu hang, give the reset code a
1430                  * chance to clean up the mess. Otherwise return the proper
1431                  * SIGBUS. */
1432                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433                         ret = VM_FAULT_SIGBUS;
1434                         break;
1435                 }
1436         case -EAGAIN:
1437                 /*
1438                  * EAGAIN means the gpu is hung and we'll wait for the error
1439                  * handler to reset everything when re-faulting in
1440                  * i915_mutex_lock_interruptible.
1441                  */
1442         case 0:
1443         case -ERESTARTSYS:
1444         case -EINTR:
1445         case -EBUSY:
1446                 /*
1447                  * EBUSY is ok: this just means that another thread
1448                  * already did the job.
1449                  */
1450                 ret = VM_FAULT_NOPAGE;
1451                 break;
1452         case -ENOMEM:
1453                 ret = VM_FAULT_OOM;
1454                 break;
1455         case -ENOSPC:
1456                 ret = VM_FAULT_SIGBUS;
1457                 break;
1458         default:
1459                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1460                 ret = VM_FAULT_SIGBUS;
1461                 break;
1462         }
1463
1464         intel_runtime_pm_put(dev_priv);
1465         return ret;
1466 }
1467
1468 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1469 {
1470         struct i915_vma *vma;
1471
1472         /*
1473          * Only the global gtt is relevant for gtt memory mappings, so restrict
1474          * list traversal to objects bound into the global address space. Note
1475          * that the active list should be empty, but better safe than sorry.
1476          */
1477         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1478         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1479                 i915_gem_release_mmap(vma->obj);
1480         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1481                 i915_gem_release_mmap(vma->obj);
1482 }
1483
1484 /**
1485  * i915_gem_release_mmap - remove physical page mappings
1486  * @obj: obj in question
1487  *
1488  * Preserve the reservation of the mmapping with the DRM core code, but
1489  * relinquish ownership of the pages back to the system.
1490  *
1491  * It is vital that we remove the page mapping if we have mapped a tiled
1492  * object through the GTT and then lose the fence register due to
1493  * resource pressure. Similarly if the object has been moved out of the
1494  * aperture, than pages mapped into userspace must be revoked. Removing the
1495  * mapping will then trigger a page fault on the next user access, allowing
1496  * fixup by i915_gem_fault().
1497  */
1498 void
1499 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1500 {
1501         if (!obj->fault_mappable)
1502                 return;
1503
1504         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1505         obj->fault_mappable = false;
1506 }
1507
1508 uint32_t
1509 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1510 {
1511         uint32_t gtt_size;
1512
1513         if (INTEL_INFO(dev)->gen >= 4 ||
1514             tiling_mode == I915_TILING_NONE)
1515                 return size;
1516
1517         /* Previous chips need a power-of-two fence region when tiling */
1518         if (INTEL_INFO(dev)->gen == 3)
1519                 gtt_size = 1024*1024;
1520         else
1521                 gtt_size = 512*1024;
1522
1523         while (gtt_size < size)
1524                 gtt_size <<= 1;
1525
1526         return gtt_size;
1527 }
1528
1529 /**
1530  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1531  * @obj: object to check
1532  *
1533  * Return the required GTT alignment for an object, taking into account
1534  * potential fence register mapping.
1535  */
1536 uint32_t
1537 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1538                            int tiling_mode, bool fenced)
1539 {
1540         /*
1541          * Minimum alignment is 4k (GTT page size), but might be greater
1542          * if a fence register is needed for the object.
1543          */
1544         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1545             tiling_mode == I915_TILING_NONE)
1546                 return 4096;
1547
1548         /*
1549          * Previous chips need to be aligned to the size of the smallest
1550          * fence register that can contain the object.
1551          */
1552         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1553 }
1554
1555 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1556 {
1557         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1558         int ret;
1559
1560         if (drm_vma_node_has_offset(&obj->base.vma_node))
1561                 return 0;
1562
1563         dev_priv->mm.shrinker_no_lock_stealing = true;
1564
1565         ret = drm_gem_create_mmap_offset(&obj->base);
1566         if (ret != -ENOSPC)
1567                 goto out;
1568
1569         /* Badly fragmented mmap space? The only way we can recover
1570          * space is by destroying unwanted objects. We can't randomly release
1571          * mmap_offsets as userspace expects them to be persistent for the
1572          * lifetime of the objects. The closest we can is to release the
1573          * offsets on purgeable objects by truncating it and marking it purged,
1574          * which prevents userspace from ever using that object again.
1575          */
1576         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1577         ret = drm_gem_create_mmap_offset(&obj->base);
1578         if (ret != -ENOSPC)
1579                 goto out;
1580
1581         i915_gem_shrink_all(dev_priv);
1582         ret = drm_gem_create_mmap_offset(&obj->base);
1583 out:
1584         dev_priv->mm.shrinker_no_lock_stealing = false;
1585
1586         return ret;
1587 }
1588
1589 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1590 {
1591         drm_gem_free_mmap_offset(&obj->base);
1592 }
1593
1594 int
1595 i915_gem_mmap_gtt(struct drm_file *file,
1596                   struct drm_device *dev,
1597                   uint32_t handle,
1598                   uint64_t *offset)
1599 {
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         struct drm_i915_gem_object *obj;
1602         int ret;
1603
1604         ret = i915_mutex_lock_interruptible(dev);
1605         if (ret)
1606                 return ret;
1607
1608         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1609         if (&obj->base == NULL) {
1610                 ret = -ENOENT;
1611                 goto unlock;
1612         }
1613
1614         if (obj->base.size > dev_priv->gtt.mappable_end) {
1615                 ret = -E2BIG;
1616                 goto out;
1617         }
1618
1619         if (obj->madv != I915_MADV_WILLNEED) {
1620                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1621                 ret = -EINVAL;
1622                 goto out;
1623         }
1624
1625         ret = i915_gem_object_create_mmap_offset(obj);
1626         if (ret)
1627                 goto out;
1628
1629         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1630
1631 out:
1632         drm_gem_object_unreference(&obj->base);
1633 unlock:
1634         mutex_unlock(&dev->struct_mutex);
1635         return ret;
1636 }
1637
1638 /**
1639  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1640  * @dev: DRM device
1641  * @data: GTT mapping ioctl data
1642  * @file: GEM object info
1643  *
1644  * Simply returns the fake offset to userspace so it can mmap it.
1645  * The mmap call will end up in drm_gem_mmap(), which will set things
1646  * up so we can get faults in the handler above.
1647  *
1648  * The fault handler will take care of binding the object into the GTT
1649  * (since it may have been evicted to make room for something), allocating
1650  * a fence register, and mapping the appropriate aperture address into
1651  * userspace.
1652  */
1653 int
1654 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1655                         struct drm_file *file)
1656 {
1657         struct drm_i915_gem_mmap_gtt *args = data;
1658
1659         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1660 }
1661
1662 /* Immediately discard the backing storage */
1663 static void
1664 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1665 {
1666         struct inode *inode;
1667
1668         i915_gem_object_free_mmap_offset(obj);
1669
1670         if (obj->base.filp == NULL)
1671                 return;
1672
1673         /* Our goal here is to return as much of the memory as
1674          * is possible back to the system as we are called from OOM.
1675          * To do this we must instruct the shmfs to drop all of its
1676          * backing pages, *now*.
1677          */
1678         inode = file_inode(obj->base.filp);
1679         shmem_truncate_range(inode, 0, (loff_t)-1);
1680
1681         obj->madv = __I915_MADV_PURGED;
1682 }
1683
1684 static inline int
1685 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1686 {
1687         return obj->madv == I915_MADV_DONTNEED;
1688 }
1689
1690 static void
1691 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1692 {
1693         struct sg_page_iter sg_iter;
1694         int ret;
1695
1696         BUG_ON(obj->madv == __I915_MADV_PURGED);
1697
1698         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1699         if (ret) {
1700                 /* In the event of a disaster, abandon all caches and
1701                  * hope for the best.
1702                  */
1703                 WARN_ON(ret != -EIO);
1704                 i915_gem_clflush_object(obj, true);
1705                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1706         }
1707
1708         if (i915_gem_object_needs_bit17_swizzle(obj))
1709                 i915_gem_object_save_bit_17_swizzle(obj);
1710
1711         if (obj->madv == I915_MADV_DONTNEED)
1712                 obj->dirty = 0;
1713
1714         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1715                 struct page *page = sg_page_iter_page(&sg_iter);
1716
1717                 if (obj->dirty)
1718                         set_page_dirty(page);
1719
1720                 if (obj->madv == I915_MADV_WILLNEED)
1721                         mark_page_accessed(page);
1722
1723                 page_cache_release(page);
1724         }
1725         obj->dirty = 0;
1726
1727         sg_free_table(obj->pages);
1728         kfree(obj->pages);
1729 }
1730
1731 int
1732 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1733 {
1734         const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
1736         if (obj->pages == NULL)
1737                 return 0;
1738
1739         if (obj->pages_pin_count)
1740                 return -EBUSY;
1741
1742         BUG_ON(i915_gem_obj_bound_any(obj));
1743
1744         /* ->put_pages might need to allocate memory for the bit17 swizzle
1745          * array, hence protect them from being reaped by removing them from gtt
1746          * lists early. */
1747         list_del(&obj->global_list);
1748
1749         ops->put_pages(obj);
1750         obj->pages = NULL;
1751
1752         if (i915_gem_object_is_purgeable(obj))
1753                 i915_gem_object_truncate(obj);
1754
1755         return 0;
1756 }
1757
1758 static unsigned long
1759 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1760                   bool purgeable_only)
1761 {
1762         struct list_head still_bound_list;
1763         struct drm_i915_gem_object *obj, *next;
1764         unsigned long count = 0;
1765
1766         list_for_each_entry_safe(obj, next,
1767                                  &dev_priv->mm.unbound_list,
1768                                  global_list) {
1769                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1770                     i915_gem_object_put_pages(obj) == 0) {
1771                         count += obj->base.size >> PAGE_SHIFT;
1772                         if (count >= target)
1773                                 return count;
1774                 }
1775         }
1776
1777         /*
1778          * As we may completely rewrite the bound list whilst unbinding
1779          * (due to retiring requests) we have to strictly process only
1780          * one element of the list at the time, and recheck the list
1781          * on every iteration.
1782          */
1783         INIT_LIST_HEAD(&still_bound_list);
1784         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1785                 struct i915_vma *vma, *v;
1786
1787                 obj = list_first_entry(&dev_priv->mm.bound_list,
1788                                        typeof(*obj), global_list);
1789                 list_move_tail(&obj->global_list, &still_bound_list);
1790
1791                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1792                         continue;
1793
1794                 /*
1795                  * Hold a reference whilst we unbind this object, as we may
1796                  * end up waiting for and retiring requests. This might
1797                  * release the final reference (held by the active list)
1798                  * and result in the object being freed from under us.
1799                  * in this object being freed.
1800                  *
1801                  * Note 1: Shrinking the bound list is special since only active
1802                  * (and hence bound objects) can contain such limbo objects, so
1803                  * we don't need special tricks for shrinking the unbound list.
1804                  * The only other place where we have to be careful with active
1805                  * objects suddenly disappearing due to retiring requests is the
1806                  * eviction code.
1807                  *
1808                  * Note 2: Even though the bound list doesn't hold a reference
1809                  * to the object we can safely grab one here: The final object
1810                  * unreferencing and the bound_list are both protected by the
1811                  * dev->struct_mutex and so we won't ever be able to observe an
1812                  * object on the bound_list with a reference count equals 0.
1813                  */
1814                 drm_gem_object_reference(&obj->base);
1815
1816                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1817                         if (i915_vma_unbind(vma))
1818                                 break;
1819
1820                 if (i915_gem_object_put_pages(obj) == 0)
1821                         count += obj->base.size >> PAGE_SHIFT;
1822
1823                 drm_gem_object_unreference(&obj->base);
1824         }
1825         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1826
1827         return count;
1828 }
1829
1830 static unsigned long
1831 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1832 {
1833         return __i915_gem_shrink(dev_priv, target, true);
1834 }
1835
1836 static unsigned long
1837 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1838 {
1839         struct drm_i915_gem_object *obj, *next;
1840         long freed = 0;
1841
1842         i915_gem_evict_everything(dev_priv->dev);
1843
1844         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1845                                  global_list) {
1846                 if (i915_gem_object_put_pages(obj) == 0)
1847                         freed += obj->base.size >> PAGE_SHIFT;
1848         }
1849         return freed;
1850 }
1851
1852 static int
1853 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1854 {
1855         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1856         int page_count, i;
1857         struct address_space *mapping;
1858         struct sg_table *st;
1859         struct scatterlist *sg;
1860         struct sg_page_iter sg_iter;
1861         struct page *page;
1862         unsigned long last_pfn = 0;     /* suppress gcc warning */
1863         gfp_t gfp;
1864
1865         /* Assert that the object is not currently in any GPU domain. As it
1866          * wasn't in the GTT, there shouldn't be any way it could have been in
1867          * a GPU cache
1868          */
1869         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1870         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1871
1872         st = kmalloc(sizeof(*st), GFP_KERNEL);
1873         if (st == NULL)
1874                 return -ENOMEM;
1875
1876         page_count = obj->base.size / PAGE_SIZE;
1877         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1878                 kfree(st);
1879                 return -ENOMEM;
1880         }
1881
1882         /* Get the list of pages out of our struct file.  They'll be pinned
1883          * at this point until we release them.
1884          *
1885          * Fail silently without starting the shrinker
1886          */
1887         mapping = file_inode(obj->base.filp)->i_mapping;
1888         gfp = mapping_gfp_mask(mapping);
1889         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1890         gfp &= ~(__GFP_IO | __GFP_WAIT);
1891         sg = st->sgl;
1892         st->nents = 0;
1893         for (i = 0; i < page_count; i++) {
1894                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1895                 if (IS_ERR(page)) {
1896                         i915_gem_purge(dev_priv, page_count);
1897                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1898                 }
1899                 if (IS_ERR(page)) {
1900                         /* We've tried hard to allocate the memory by reaping
1901                          * our own buffer, now let the real VM do its job and
1902                          * go down in flames if truly OOM.
1903                          */
1904                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1905                         gfp |= __GFP_IO | __GFP_WAIT;
1906
1907                         i915_gem_shrink_all(dev_priv);
1908                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1909                         if (IS_ERR(page))
1910                                 goto err_pages;
1911
1912                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1913                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1914                 }
1915 #ifdef CONFIG_SWIOTLB
1916                 if (swiotlb_nr_tbl()) {
1917                         st->nents++;
1918                         sg_set_page(sg, page, PAGE_SIZE, 0);
1919                         sg = sg_next(sg);
1920                         continue;
1921                 }
1922 #endif
1923                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1924                         if (i)
1925                                 sg = sg_next(sg);
1926                         st->nents++;
1927                         sg_set_page(sg, page, PAGE_SIZE, 0);
1928                 } else {
1929                         sg->length += PAGE_SIZE;
1930                 }
1931                 last_pfn = page_to_pfn(page);
1932
1933                 /* Check that the i965g/gm workaround works. */
1934                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1935         }
1936 #ifdef CONFIG_SWIOTLB
1937         if (!swiotlb_nr_tbl())
1938 #endif
1939                 sg_mark_end(sg);
1940         obj->pages = st;
1941
1942         if (i915_gem_object_needs_bit17_swizzle(obj))
1943                 i915_gem_object_do_bit_17_swizzle(obj);
1944
1945         return 0;
1946
1947 err_pages:
1948         sg_mark_end(sg);
1949         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1950                 page_cache_release(sg_page_iter_page(&sg_iter));
1951         sg_free_table(st);
1952         kfree(st);
1953         return PTR_ERR(page);
1954 }
1955
1956 /* Ensure that the associated pages are gathered from the backing storage
1957  * and pinned into our object. i915_gem_object_get_pages() may be called
1958  * multiple times before they are released by a single call to
1959  * i915_gem_object_put_pages() - once the pages are no longer referenced
1960  * either as a result of memory pressure (reaping pages under the shrinker)
1961  * or as the object is itself released.
1962  */
1963 int
1964 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1965 {
1966         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1967         const struct drm_i915_gem_object_ops *ops = obj->ops;
1968         int ret;
1969
1970         if (obj->pages)
1971                 return 0;
1972
1973         if (obj->madv != I915_MADV_WILLNEED) {
1974                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1975                 return -EINVAL;
1976         }
1977
1978         BUG_ON(obj->pages_pin_count);
1979
1980         ret = ops->get_pages(obj);
1981         if (ret)
1982                 return ret;
1983
1984         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1985         return 0;
1986 }
1987
1988 static void
1989 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1990                                struct intel_ring_buffer *ring)
1991 {
1992         struct drm_device *dev = obj->base.dev;
1993         struct drm_i915_private *dev_priv = dev->dev_private;
1994         u32 seqno = intel_ring_get_seqno(ring);
1995
1996         BUG_ON(ring == NULL);
1997         if (obj->ring != ring && obj->last_write_seqno) {
1998                 /* Keep the seqno relative to the current ring */
1999                 obj->last_write_seqno = seqno;
2000         }
2001         obj->ring = ring;
2002
2003         /* Add a reference if we're newly entering the active list. */
2004         if (!obj->active) {
2005                 drm_gem_object_reference(&obj->base);
2006                 obj->active = 1;
2007         }
2008
2009         list_move_tail(&obj->ring_list, &ring->active_list);
2010
2011         obj->last_read_seqno = seqno;
2012
2013         if (obj->fenced_gpu_access) {
2014                 obj->last_fenced_seqno = seqno;
2015
2016                 /* Bump MRU to take account of the delayed flush */
2017                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2018                         struct drm_i915_fence_reg *reg;
2019
2020                         reg = &dev_priv->fence_regs[obj->fence_reg];
2021                         list_move_tail(&reg->lru_list,
2022                                        &dev_priv->mm.fence_list);
2023                 }
2024         }
2025 }
2026
2027 void i915_vma_move_to_active(struct i915_vma *vma,
2028                              struct intel_ring_buffer *ring)
2029 {
2030         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2031         return i915_gem_object_move_to_active(vma->obj, ring);
2032 }
2033
2034 static void
2035 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2036 {
2037         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2039         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2040
2041         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2042         BUG_ON(!obj->active);
2043
2044         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2045
2046         list_del_init(&obj->ring_list);
2047         obj->ring = NULL;
2048
2049         obj->last_read_seqno = 0;
2050         obj->last_write_seqno = 0;
2051         obj->base.write_domain = 0;
2052
2053         obj->last_fenced_seqno = 0;
2054         obj->fenced_gpu_access = false;
2055
2056         obj->active = 0;
2057         drm_gem_object_unreference(&obj->base);
2058
2059         WARN_ON(i915_verify_lists(dev));
2060 }
2061
2062 static int
2063 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2064 {
2065         struct drm_i915_private *dev_priv = dev->dev_private;
2066         struct intel_ring_buffer *ring;
2067         int ret, i, j;
2068
2069         /* Carefully retire all requests without writing to the rings */
2070         for_each_ring(ring, dev_priv, i) {
2071                 ret = intel_ring_idle(ring);
2072                 if (ret)
2073                         return ret;
2074         }
2075         i915_gem_retire_requests(dev);
2076
2077         /* Finally reset hw state */
2078         for_each_ring(ring, dev_priv, i) {
2079                 intel_ring_init_seqno(ring, seqno);
2080
2081                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2082                         ring->sync_seqno[j] = 0;
2083         }
2084
2085         return 0;
2086 }
2087
2088 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2089 {
2090         struct drm_i915_private *dev_priv = dev->dev_private;
2091         int ret;
2092
2093         if (seqno == 0)
2094                 return -EINVAL;
2095
2096         /* HWS page needs to be set less than what we
2097          * will inject to ring
2098          */
2099         ret = i915_gem_init_seqno(dev, seqno - 1);
2100         if (ret)
2101                 return ret;
2102
2103         /* Carefully set the last_seqno value so that wrap
2104          * detection still works
2105          */
2106         dev_priv->next_seqno = seqno;
2107         dev_priv->last_seqno = seqno - 1;
2108         if (dev_priv->last_seqno == 0)
2109                 dev_priv->last_seqno--;
2110
2111         return 0;
2112 }
2113
2114 int
2115 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2116 {
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119         /* reserve 0 for non-seqno */
2120         if (dev_priv->next_seqno == 0) {
2121                 int ret = i915_gem_init_seqno(dev, 0);
2122                 if (ret)
2123                         return ret;
2124
2125                 dev_priv->next_seqno = 1;
2126         }
2127
2128         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2129         return 0;
2130 }
2131
2132 int __i915_add_request(struct intel_ring_buffer *ring,
2133                        struct drm_file *file,
2134                        struct drm_i915_gem_object *obj,
2135                        u32 *out_seqno)
2136 {
2137         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2138         struct drm_i915_gem_request *request;
2139         u32 request_ring_position, request_start;
2140         int was_empty;
2141         int ret;
2142
2143         request_start = intel_ring_get_tail(ring);
2144         /*
2145          * Emit any outstanding flushes - execbuf can fail to emit the flush
2146          * after having emitted the batchbuffer command. Hence we need to fix
2147          * things up similar to emitting the lazy request. The difference here
2148          * is that the flush _must_ happen before the next request, no matter
2149          * what.
2150          */
2151         ret = intel_ring_flush_all_caches(ring);
2152         if (ret)
2153                 return ret;
2154
2155         request = ring->preallocated_lazy_request;
2156         if (WARN_ON(request == NULL))
2157                 return -ENOMEM;
2158
2159         /* Record the position of the start of the request so that
2160          * should we detect the updated seqno part-way through the
2161          * GPU processing the request, we never over-estimate the
2162          * position of the head.
2163          */
2164         request_ring_position = intel_ring_get_tail(ring);
2165
2166         ret = ring->add_request(ring);
2167         if (ret)
2168                 return ret;
2169
2170         request->seqno = intel_ring_get_seqno(ring);
2171         request->ring = ring;
2172         request->head = request_start;
2173         request->tail = request_ring_position;
2174
2175         /* Whilst this request exists, batch_obj will be on the
2176          * active_list, and so will hold the active reference. Only when this
2177          * request is retired will the the batch_obj be moved onto the
2178          * inactive_list and lose its active reference. Hence we do not need
2179          * to explicitly hold another reference here.
2180          */
2181         request->batch_obj = obj;
2182
2183         /* Hold a reference to the current context so that we can inspect
2184          * it later in case a hangcheck error event fires.
2185          */
2186         request->ctx = ring->last_context;
2187         if (request->ctx)
2188                 i915_gem_context_reference(request->ctx);
2189
2190         request->emitted_jiffies = jiffies;
2191         was_empty = list_empty(&ring->request_list);
2192         list_add_tail(&request->list, &ring->request_list);
2193         request->file_priv = NULL;
2194
2195         if (file) {
2196                 struct drm_i915_file_private *file_priv = file->driver_priv;
2197
2198                 spin_lock(&file_priv->mm.lock);
2199                 request->file_priv = file_priv;
2200                 list_add_tail(&request->client_list,
2201                               &file_priv->mm.request_list);
2202                 spin_unlock(&file_priv->mm.lock);
2203         }
2204
2205         trace_i915_gem_request_add(ring, request->seqno);
2206         ring->outstanding_lazy_seqno = 0;
2207         ring->preallocated_lazy_request = NULL;
2208
2209         if (!dev_priv->ums.mm_suspended) {
2210                 i915_queue_hangcheck(ring->dev);
2211
2212                 if (was_empty) {
2213                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2214                         queue_delayed_work(dev_priv->wq,
2215                                            &dev_priv->mm.retire_work,
2216                                            round_jiffies_up_relative(HZ));
2217                         intel_mark_busy(dev_priv->dev);
2218                 }
2219         }
2220
2221         if (out_seqno)
2222                 *out_seqno = request->seqno;
2223         return 0;
2224 }
2225
2226 static inline void
2227 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2228 {
2229         struct drm_i915_file_private *file_priv = request->file_priv;
2230
2231         if (!file_priv)
2232                 return;
2233
2234         spin_lock(&file_priv->mm.lock);
2235         list_del(&request->client_list);
2236         request->file_priv = NULL;
2237         spin_unlock(&file_priv->mm.lock);
2238 }
2239
2240 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2241                                     struct i915_address_space *vm)
2242 {
2243         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2244             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2245                 return true;
2246
2247         return false;
2248 }
2249
2250 static bool i915_head_inside_request(const u32 acthd_unmasked,
2251                                      const u32 request_start,
2252                                      const u32 request_end)
2253 {
2254         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2255
2256         if (request_start < request_end) {
2257                 if (acthd >= request_start && acthd < request_end)
2258                         return true;
2259         } else if (request_start > request_end) {
2260                 if (acthd >= request_start || acthd < request_end)
2261                         return true;
2262         }
2263
2264         return false;
2265 }
2266
2267 static struct i915_address_space *
2268 request_to_vm(struct drm_i915_gem_request *request)
2269 {
2270         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2271         struct i915_address_space *vm;
2272
2273         vm = &dev_priv->gtt.base;
2274
2275         return vm;
2276 }
2277
2278 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2279                                 const u32 acthd, bool *inside)
2280 {
2281         /* There is a possibility that unmasked head address
2282          * pointing inside the ring, matches the batch_obj address range.
2283          * However this is extremely unlikely.
2284          */
2285         if (request->batch_obj) {
2286                 if (i915_head_inside_object(acthd, request->batch_obj,
2287                                             request_to_vm(request))) {
2288                         *inside = true;
2289                         return true;
2290                 }
2291         }
2292
2293         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2294                 *inside = false;
2295                 return true;
2296         }
2297
2298         return false;
2299 }
2300
2301 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2302 {
2303         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2304
2305         if (hs->banned)
2306                 return true;
2307
2308         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2309                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2310                 return true;
2311         }
2312
2313         return false;
2314 }
2315
2316 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2317                                   struct drm_i915_gem_request *request,
2318                                   u32 acthd)
2319 {
2320         struct i915_ctx_hang_stats *hs = NULL;
2321         bool inside, guilty;
2322         unsigned long offset = 0;
2323
2324         /* Innocent until proven guilty */
2325         guilty = false;
2326
2327         if (request->batch_obj)
2328                 offset = i915_gem_obj_offset(request->batch_obj,
2329                                              request_to_vm(request));
2330
2331         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2332             i915_request_guilty(request, acthd, &inside)) {
2333                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2334                           ring->name,
2335                           inside ? "inside" : "flushing",
2336                           offset,
2337                           request->ctx ? request->ctx->id : 0,
2338                           acthd);
2339
2340                 guilty = true;
2341         }
2342
2343         /* If contexts are disabled or this is the default context, use
2344          * file_priv->reset_state
2345          */
2346         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2347                 hs = &request->ctx->hang_stats;
2348         else if (request->file_priv)
2349                 hs = &request->file_priv->hang_stats;
2350
2351         if (hs) {
2352                 if (guilty) {
2353                         hs->banned = i915_context_is_banned(hs);
2354                         hs->batch_active++;
2355                         hs->guilty_ts = get_seconds();
2356                 } else {
2357                         hs->batch_pending++;
2358                 }
2359         }
2360 }
2361
2362 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2363 {
2364         list_del(&request->list);
2365         i915_gem_request_remove_from_client(request);
2366
2367         if (request->ctx)
2368                 i915_gem_context_unreference(request->ctx);
2369
2370         kfree(request);
2371 }
2372
2373 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2374                                        struct intel_ring_buffer *ring)
2375 {
2376         u32 completed_seqno = ring->get_seqno(ring, false);
2377         u32 acthd = intel_ring_get_active_head(ring);
2378         struct drm_i915_gem_request *request;
2379
2380         list_for_each_entry(request, &ring->request_list, list) {
2381                 if (i915_seqno_passed(completed_seqno, request->seqno))
2382                         continue;
2383
2384                 i915_set_reset_status(ring, request, acthd);
2385         }
2386 }
2387
2388 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2389                                         struct intel_ring_buffer *ring)
2390 {
2391         while (!list_empty(&ring->request_list)) {
2392                 struct drm_i915_gem_request *request;
2393
2394                 request = list_first_entry(&ring->request_list,
2395                                            struct drm_i915_gem_request,
2396                                            list);
2397
2398                 i915_gem_free_request(request);
2399         }
2400
2401         while (!list_empty(&ring->active_list)) {
2402                 struct drm_i915_gem_object *obj;
2403
2404                 obj = list_first_entry(&ring->active_list,
2405                                        struct drm_i915_gem_object,
2406                                        ring_list);
2407
2408                 i915_gem_object_move_to_inactive(obj);
2409         }
2410 }
2411
2412 void i915_gem_restore_fences(struct drm_device *dev)
2413 {
2414         struct drm_i915_private *dev_priv = dev->dev_private;
2415         int i;
2416
2417         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2418                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2419
2420                 /*
2421                  * Commit delayed tiling changes if we have an object still
2422                  * attached to the fence, otherwise just clear the fence.
2423                  */
2424                 if (reg->obj) {
2425                         i915_gem_object_update_fence(reg->obj, reg,
2426                                                      reg->obj->tiling_mode);
2427                 } else {
2428                         i915_gem_write_fence(dev, i, NULL);
2429                 }
2430         }
2431 }
2432
2433 void i915_gem_reset(struct drm_device *dev)
2434 {
2435         struct drm_i915_private *dev_priv = dev->dev_private;
2436         struct intel_ring_buffer *ring;
2437         int i;
2438
2439         /*
2440          * Before we free the objects from the requests, we need to inspect
2441          * them for finding the guilty party. As the requests only borrow
2442          * their reference to the objects, the inspection must be done first.
2443          */
2444         for_each_ring(ring, dev_priv, i)
2445                 i915_gem_reset_ring_status(dev_priv, ring);
2446
2447         for_each_ring(ring, dev_priv, i)
2448                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2449
2450         i915_gem_cleanup_ringbuffer(dev);
2451
2452         i915_gem_restore_fences(dev);
2453 }
2454
2455 /**
2456  * This function clears the request list as sequence numbers are passed.
2457  */
2458 void
2459 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2460 {
2461         uint32_t seqno;
2462
2463         if (list_empty(&ring->request_list))
2464                 return;
2465
2466         WARN_ON(i915_verify_lists(ring->dev));
2467
2468         seqno = ring->get_seqno(ring, true);
2469
2470         while (!list_empty(&ring->request_list)) {
2471                 struct drm_i915_gem_request *request;
2472
2473                 request = list_first_entry(&ring->request_list,
2474                                            struct drm_i915_gem_request,
2475                                            list);
2476
2477                 if (!i915_seqno_passed(seqno, request->seqno))
2478                         break;
2479
2480                 trace_i915_gem_request_retire(ring, request->seqno);
2481                 /* We know the GPU must have read the request to have
2482                  * sent us the seqno + interrupt, so use the position
2483                  * of tail of the request to update the last known position
2484                  * of the GPU head.
2485                  */
2486                 ring->last_retired_head = request->tail;
2487
2488                 i915_gem_free_request(request);
2489         }
2490
2491         /* Move any buffers on the active list that are no longer referenced
2492          * by the ringbuffer to the flushing/inactive lists as appropriate.
2493          */
2494         while (!list_empty(&ring->active_list)) {
2495                 struct drm_i915_gem_object *obj;
2496
2497                 obj = list_first_entry(&ring->active_list,
2498                                       struct drm_i915_gem_object,
2499                                       ring_list);
2500
2501                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2502                         break;
2503
2504                 i915_gem_object_move_to_inactive(obj);
2505         }
2506
2507         if (unlikely(ring->trace_irq_seqno &&
2508                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2509                 ring->irq_put(ring);
2510                 ring->trace_irq_seqno = 0;
2511         }
2512
2513         WARN_ON(i915_verify_lists(ring->dev));
2514 }
2515
2516 bool
2517 i915_gem_retire_requests(struct drm_device *dev)
2518 {
2519         drm_i915_private_t *dev_priv = dev->dev_private;
2520         struct intel_ring_buffer *ring;
2521         bool idle = true;
2522         int i;
2523
2524         for_each_ring(ring, dev_priv, i) {
2525                 i915_gem_retire_requests_ring(ring);
2526                 idle &= list_empty(&ring->request_list);
2527         }
2528
2529         if (idle)
2530                 mod_delayed_work(dev_priv->wq,
2531                                    &dev_priv->mm.idle_work,
2532                                    msecs_to_jiffies(100));
2533
2534         return idle;
2535 }
2536
2537 static void
2538 i915_gem_retire_work_handler(struct work_struct *work)
2539 {
2540         struct drm_i915_private *dev_priv =
2541                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2542         struct drm_device *dev = dev_priv->dev;
2543         bool idle;
2544
2545         /* Come back later if the device is busy... */
2546         idle = false;
2547         if (mutex_trylock(&dev->struct_mutex)) {
2548                 idle = i915_gem_retire_requests(dev);
2549                 mutex_unlock(&dev->struct_mutex);
2550         }
2551         if (!idle)
2552                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2553                                    round_jiffies_up_relative(HZ));
2554 }
2555
2556 static void
2557 i915_gem_idle_work_handler(struct work_struct *work)
2558 {
2559         struct drm_i915_private *dev_priv =
2560                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2561
2562         intel_mark_idle(dev_priv->dev);
2563 }
2564
2565 /**
2566  * Ensures that an object will eventually get non-busy by flushing any required
2567  * write domains, emitting any outstanding lazy request and retiring and
2568  * completed requests.
2569  */
2570 static int
2571 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2572 {
2573         int ret;
2574
2575         if (obj->active) {
2576                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2577                 if (ret)
2578                         return ret;
2579
2580                 i915_gem_retire_requests_ring(obj->ring);
2581         }
2582
2583         return 0;
2584 }
2585
2586 /**
2587  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2588  * @DRM_IOCTL_ARGS: standard ioctl arguments
2589  *
2590  * Returns 0 if successful, else an error is returned with the remaining time in
2591  * the timeout parameter.
2592  *  -ETIME: object is still busy after timeout
2593  *  -ERESTARTSYS: signal interrupted the wait
2594  *  -ENONENT: object doesn't exist
2595  * Also possible, but rare:
2596  *  -EAGAIN: GPU wedged
2597  *  -ENOMEM: damn
2598  *  -ENODEV: Internal IRQ fail
2599  *  -E?: The add request failed
2600  *
2601  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2602  * non-zero timeout parameter the wait ioctl will wait for the given number of
2603  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2604  * without holding struct_mutex the object may become re-busied before this
2605  * function completes. A similar but shorter * race condition exists in the busy
2606  * ioctl
2607  */
2608 int
2609 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2610 {
2611         drm_i915_private_t *dev_priv = dev->dev_private;
2612         struct drm_i915_gem_wait *args = data;
2613         struct drm_i915_gem_object *obj;
2614         struct intel_ring_buffer *ring = NULL;
2615         struct timespec timeout_stack, *timeout = NULL;
2616         unsigned reset_counter;
2617         u32 seqno = 0;
2618         int ret = 0;
2619
2620         if (args->timeout_ns >= 0) {
2621                 timeout_stack = ns_to_timespec(args->timeout_ns);
2622                 timeout = &timeout_stack;
2623         }
2624
2625         ret = i915_mutex_lock_interruptible(dev);
2626         if (ret)
2627                 return ret;
2628
2629         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2630         if (&obj->base == NULL) {
2631                 mutex_unlock(&dev->struct_mutex);
2632                 return -ENOENT;
2633         }
2634
2635         /* Need to make sure the object gets inactive eventually. */
2636         ret = i915_gem_object_flush_active(obj);
2637         if (ret)
2638                 goto out;
2639
2640         if (obj->active) {
2641                 seqno = obj->last_read_seqno;
2642                 ring = obj->ring;
2643         }
2644
2645         if (seqno == 0)
2646                  goto out;
2647
2648         /* Do this after OLR check to make sure we make forward progress polling
2649          * on this IOCTL with a 0 timeout (like busy ioctl)
2650          */
2651         if (!args->timeout_ns) {
2652                 ret = -ETIME;
2653                 goto out;
2654         }
2655
2656         drm_gem_object_unreference(&obj->base);
2657         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2658         mutex_unlock(&dev->struct_mutex);
2659
2660         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2661         if (timeout)
2662                 args->timeout_ns = timespec_to_ns(timeout);
2663         return ret;
2664
2665 out:
2666         drm_gem_object_unreference(&obj->base);
2667         mutex_unlock(&dev->struct_mutex);
2668         return ret;
2669 }
2670
2671 /**
2672  * i915_gem_object_sync - sync an object to a ring.
2673  *
2674  * @obj: object which may be in use on another ring.
2675  * @to: ring we wish to use the object on. May be NULL.
2676  *
2677  * This code is meant to abstract object synchronization with the GPU.
2678  * Calling with NULL implies synchronizing the object with the CPU
2679  * rather than a particular GPU ring.
2680  *
2681  * Returns 0 if successful, else propagates up the lower layer error.
2682  */
2683 int
2684 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2685                      struct intel_ring_buffer *to)
2686 {
2687         struct intel_ring_buffer *from = obj->ring;
2688         u32 seqno;
2689         int ret, idx;
2690
2691         if (from == NULL || to == from)
2692                 return 0;
2693
2694         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2695                 return i915_gem_object_wait_rendering(obj, false);
2696
2697         idx = intel_ring_sync_index(from, to);
2698
2699         seqno = obj->last_read_seqno;
2700         if (seqno <= from->sync_seqno[idx])
2701                 return 0;
2702
2703         ret = i915_gem_check_olr(obj->ring, seqno);
2704         if (ret)
2705                 return ret;
2706
2707         trace_i915_gem_ring_sync_to(from, to, seqno);
2708         ret = to->sync_to(to, from, seqno);
2709         if (!ret)
2710                 /* We use last_read_seqno because sync_to()
2711                  * might have just caused seqno wrap under
2712                  * the radar.
2713                  */
2714                 from->sync_seqno[idx] = obj->last_read_seqno;
2715
2716         return ret;
2717 }
2718
2719 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2720 {
2721         u32 old_write_domain, old_read_domains;
2722
2723         /* Force a pagefault for domain tracking on next user access */
2724         i915_gem_release_mmap(obj);
2725
2726         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2727                 return;
2728
2729         /* Wait for any direct GTT access to complete */
2730         mb();
2731
2732         old_read_domains = obj->base.read_domains;
2733         old_write_domain = obj->base.write_domain;
2734
2735         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2736         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2737
2738         trace_i915_gem_object_change_domain(obj,
2739                                             old_read_domains,
2740                                             old_write_domain);
2741 }
2742
2743 int i915_vma_unbind(struct i915_vma *vma)
2744 {
2745         struct drm_i915_gem_object *obj = vma->obj;
2746         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2747         int ret;
2748
2749         /* For now we only ever use 1 vma per object */
2750         WARN_ON(!list_is_singular(&obj->vma_list));
2751
2752         if (list_empty(&vma->vma_link))
2753                 return 0;
2754
2755         if (!drm_mm_node_allocated(&vma->node)) {
2756                 i915_gem_vma_destroy(vma);
2757
2758                 return 0;
2759         }
2760
2761         if (obj->pin_count)
2762                 return -EBUSY;
2763
2764         BUG_ON(obj->pages == NULL);
2765
2766         ret = i915_gem_object_finish_gpu(obj);
2767         if (ret)
2768                 return ret;
2769         /* Continue on if we fail due to EIO, the GPU is hung so we
2770          * should be safe and we need to cleanup or else we might
2771          * cause memory corruption through use-after-free.
2772          */
2773
2774         i915_gem_object_finish_gtt(obj);
2775
2776         /* release the fence reg _after_ flushing */
2777         ret = i915_gem_object_put_fence(obj);
2778         if (ret)
2779                 return ret;
2780
2781         trace_i915_vma_unbind(vma);
2782
2783         if (obj->has_global_gtt_mapping)
2784                 i915_gem_gtt_unbind_object(obj);
2785         if (obj->has_aliasing_ppgtt_mapping) {
2786                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2787                 obj->has_aliasing_ppgtt_mapping = 0;
2788         }
2789         i915_gem_gtt_finish_object(obj);
2790
2791         list_del(&vma->mm_list);
2792         /* Avoid an unnecessary call to unbind on rebind. */
2793         if (i915_is_ggtt(vma->vm))
2794                 obj->map_and_fenceable = true;
2795
2796         drm_mm_remove_node(&vma->node);
2797         i915_gem_vma_destroy(vma);
2798
2799         /* Since the unbound list is global, only move to that list if
2800          * no more VMAs exist. */
2801         if (list_empty(&obj->vma_list))
2802                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2803
2804         /* And finally now the object is completely decoupled from this vma,
2805          * we can drop its hold on the backing storage and allow it to be
2806          * reaped by the shrinker.
2807          */
2808         i915_gem_object_unpin_pages(obj);
2809
2810         return 0;
2811 }
2812
2813 /**
2814  * Unbinds an object from the global GTT aperture.
2815  */
2816 int
2817 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2818 {
2819         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2820         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2821
2822         if (!i915_gem_obj_ggtt_bound(obj))
2823                 return 0;
2824
2825         if (obj->pin_count)
2826                 return -EBUSY;
2827
2828         BUG_ON(obj->pages == NULL);
2829
2830         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2831 }
2832
2833 int i915_gpu_idle(struct drm_device *dev)
2834 {
2835         drm_i915_private_t *dev_priv = dev->dev_private;
2836         struct intel_ring_buffer *ring;
2837         int ret, i;
2838
2839         /* Flush everything onto the inactive list. */
2840         for_each_ring(ring, dev_priv, i) {
2841                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2842                 if (ret)
2843                         return ret;
2844
2845                 ret = intel_ring_idle(ring);
2846                 if (ret)
2847                         return ret;
2848         }
2849
2850         return 0;
2851 }
2852
2853 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2854                                  struct drm_i915_gem_object *obj)
2855 {
2856         drm_i915_private_t *dev_priv = dev->dev_private;
2857         int fence_reg;
2858         int fence_pitch_shift;
2859
2860         if (INTEL_INFO(dev)->gen >= 6) {
2861                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2862                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2863         } else {
2864                 fence_reg = FENCE_REG_965_0;
2865                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2866         }
2867
2868         fence_reg += reg * 8;
2869
2870         /* To w/a incoherency with non-atomic 64-bit register updates,
2871          * we split the 64-bit update into two 32-bit writes. In order
2872          * for a partial fence not to be evaluated between writes, we
2873          * precede the update with write to turn off the fence register,
2874          * and only enable the fence as the last step.
2875          *
2876          * For extra levels of paranoia, we make sure each step lands
2877          * before applying the next step.
2878          */
2879         I915_WRITE(fence_reg, 0);
2880         POSTING_READ(fence_reg);
2881
2882         if (obj) {
2883                 u32 size = i915_gem_obj_ggtt_size(obj);
2884                 uint64_t val;
2885
2886                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2887                                  0xfffff000) << 32;
2888                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2889                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2890                 if (obj->tiling_mode == I915_TILING_Y)
2891                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2892                 val |= I965_FENCE_REG_VALID;
2893
2894                 I915_WRITE(fence_reg + 4, val >> 32);
2895                 POSTING_READ(fence_reg + 4);
2896
2897                 I915_WRITE(fence_reg + 0, val);
2898                 POSTING_READ(fence_reg);
2899         } else {
2900                 I915_WRITE(fence_reg + 4, 0);
2901                 POSTING_READ(fence_reg + 4);
2902         }
2903 }
2904
2905 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2906                                  struct drm_i915_gem_object *obj)
2907 {
2908         drm_i915_private_t *dev_priv = dev->dev_private;
2909         u32 val;
2910
2911         if (obj) {
2912                 u32 size = i915_gem_obj_ggtt_size(obj);
2913                 int pitch_val;
2914                 int tile_width;
2915
2916                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2917                      (size & -size) != size ||
2918                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2919                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2920                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2921
2922                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2923                         tile_width = 128;
2924                 else
2925                         tile_width = 512;
2926
2927                 /* Note: pitch better be a power of two tile widths */
2928                 pitch_val = obj->stride / tile_width;
2929                 pitch_val = ffs(pitch_val) - 1;
2930
2931                 val = i915_gem_obj_ggtt_offset(obj);
2932                 if (obj->tiling_mode == I915_TILING_Y)
2933                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2934                 val |= I915_FENCE_SIZE_BITS(size);
2935                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2936                 val |= I830_FENCE_REG_VALID;
2937         } else
2938                 val = 0;
2939
2940         if (reg < 8)
2941                 reg = FENCE_REG_830_0 + reg * 4;
2942         else
2943                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2944
2945         I915_WRITE(reg, val);
2946         POSTING_READ(reg);
2947 }
2948
2949 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2950                                 struct drm_i915_gem_object *obj)
2951 {
2952         drm_i915_private_t *dev_priv = dev->dev_private;
2953         uint32_t val;
2954
2955         if (obj) {
2956                 u32 size = i915_gem_obj_ggtt_size(obj);
2957                 uint32_t pitch_val;
2958
2959                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2960                      (size & -size) != size ||
2961                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2962                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2963                      i915_gem_obj_ggtt_offset(obj), size);
2964
2965                 pitch_val = obj->stride / 128;
2966                 pitch_val = ffs(pitch_val) - 1;
2967
2968                 val = i915_gem_obj_ggtt_offset(obj);
2969                 if (obj->tiling_mode == I915_TILING_Y)
2970                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2971                 val |= I830_FENCE_SIZE_BITS(size);
2972                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2973                 val |= I830_FENCE_REG_VALID;
2974         } else
2975                 val = 0;
2976
2977         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2978         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2979 }
2980
2981 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2982 {
2983         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2984 }
2985
2986 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2987                                  struct drm_i915_gem_object *obj)
2988 {
2989         struct drm_i915_private *dev_priv = dev->dev_private;
2990
2991         /* Ensure that all CPU reads are completed before installing a fence
2992          * and all writes before removing the fence.
2993          */
2994         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2995                 mb();
2996
2997         WARN(obj && (!obj->stride || !obj->tiling_mode),
2998              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2999              obj->stride, obj->tiling_mode);
3000
3001         switch (INTEL_INFO(dev)->gen) {
3002         case 8:
3003         case 7:
3004         case 6:
3005         case 5:
3006         case 4: i965_write_fence_reg(dev, reg, obj); break;
3007         case 3: i915_write_fence_reg(dev, reg, obj); break;
3008         case 2: i830_write_fence_reg(dev, reg, obj); break;
3009         default: BUG();
3010         }
3011
3012         /* And similarly be paranoid that no direct access to this region
3013          * is reordered to before the fence is installed.
3014          */
3015         if (i915_gem_object_needs_mb(obj))
3016                 mb();
3017 }
3018
3019 static inline int fence_number(struct drm_i915_private *dev_priv,
3020                                struct drm_i915_fence_reg *fence)
3021 {
3022         return fence - dev_priv->fence_regs;
3023 }
3024
3025 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3026                                          struct drm_i915_fence_reg *fence,
3027                                          bool enable)
3028 {
3029         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3030         int reg = fence_number(dev_priv, fence);
3031
3032         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3033
3034         if (enable) {
3035                 obj->fence_reg = reg;
3036                 fence->obj = obj;
3037                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3038         } else {
3039                 obj->fence_reg = I915_FENCE_REG_NONE;
3040                 fence->obj = NULL;
3041                 list_del_init(&fence->lru_list);
3042         }
3043         obj->fence_dirty = false;
3044 }
3045
3046 static int
3047 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3048 {
3049         if (obj->last_fenced_seqno) {
3050                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3051                 if (ret)
3052                         return ret;
3053
3054                 obj->last_fenced_seqno = 0;
3055         }
3056
3057         obj->fenced_gpu_access = false;
3058         return 0;
3059 }
3060
3061 int
3062 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3063 {
3064         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3065         struct drm_i915_fence_reg *fence;
3066         int ret;
3067
3068         ret = i915_gem_object_wait_fence(obj);
3069         if (ret)
3070                 return ret;
3071
3072         if (obj->fence_reg == I915_FENCE_REG_NONE)
3073                 return 0;
3074
3075         fence = &dev_priv->fence_regs[obj->fence_reg];
3076
3077         i915_gem_object_fence_lost(obj);
3078         i915_gem_object_update_fence(obj, fence, false);
3079
3080         return 0;
3081 }
3082
3083 static struct drm_i915_fence_reg *
3084 i915_find_fence_reg(struct drm_device *dev)
3085 {
3086         struct drm_i915_private *dev_priv = dev->dev_private;
3087         struct drm_i915_fence_reg *reg, *avail;
3088         int i;
3089
3090         /* First try to find a free reg */
3091         avail = NULL;
3092         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3093                 reg = &dev_priv->fence_regs[i];
3094                 if (!reg->obj)
3095                         return reg;
3096
3097                 if (!reg->pin_count)
3098                         avail = reg;
3099         }
3100
3101         if (avail == NULL)
3102                 return NULL;
3103
3104         /* None available, try to steal one or wait for a user to finish */
3105         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3106                 if (reg->pin_count)
3107                         continue;
3108
3109                 return reg;
3110         }
3111
3112         return NULL;
3113 }
3114
3115 /**
3116  * i915_gem_object_get_fence - set up fencing for an object
3117  * @obj: object to map through a fence reg
3118  *
3119  * When mapping objects through the GTT, userspace wants to be able to write
3120  * to them without having to worry about swizzling if the object is tiled.
3121  * This function walks the fence regs looking for a free one for @obj,
3122  * stealing one if it can't find any.
3123  *
3124  * It then sets up the reg based on the object's properties: address, pitch
3125  * and tiling format.
3126  *
3127  * For an untiled surface, this removes any existing fence.
3128  */
3129 int
3130 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3131 {
3132         struct drm_device *dev = obj->base.dev;
3133         struct drm_i915_private *dev_priv = dev->dev_private;
3134         bool enable = obj->tiling_mode != I915_TILING_NONE;
3135         struct drm_i915_fence_reg *reg;
3136         int ret;
3137
3138         /* Have we updated the tiling parameters upon the object and so
3139          * will need to serialise the write to the associated fence register?
3140          */
3141         if (obj->fence_dirty) {
3142                 ret = i915_gem_object_wait_fence(obj);
3143                 if (ret)
3144                         return ret;
3145         }
3146
3147         /* Just update our place in the LRU if our fence is getting reused. */
3148         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3149                 reg = &dev_priv->fence_regs[obj->fence_reg];
3150                 if (!obj->fence_dirty) {
3151                         list_move_tail(&reg->lru_list,
3152                                        &dev_priv->mm.fence_list);
3153                         return 0;
3154                 }
3155         } else if (enable) {
3156                 reg = i915_find_fence_reg(dev);
3157                 if (reg == NULL)
3158                         return -EDEADLK;
3159
3160                 if (reg->obj) {
3161                         struct drm_i915_gem_object *old = reg->obj;
3162
3163                         ret = i915_gem_object_wait_fence(old);
3164                         if (ret)
3165                                 return ret;
3166
3167                         i915_gem_object_fence_lost(old);
3168                 }
3169         } else
3170                 return 0;
3171
3172         i915_gem_object_update_fence(obj, reg, enable);
3173
3174         return 0;
3175 }
3176
3177 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3178                                      struct drm_mm_node *gtt_space,
3179                                      unsigned long cache_level)
3180 {
3181         struct drm_mm_node *other;
3182
3183         /* On non-LLC machines we have to be careful when putting differing
3184          * types of snoopable memory together to avoid the prefetcher
3185          * crossing memory domains and dying.
3186          */
3187         if (HAS_LLC(dev))
3188                 return true;
3189
3190         if (!drm_mm_node_allocated(gtt_space))
3191                 return true;
3192
3193         if (list_empty(&gtt_space->node_list))
3194                 return true;
3195
3196         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3197         if (other->allocated && !other->hole_follows && other->color != cache_level)
3198                 return false;
3199
3200         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3201         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3202                 return false;
3203
3204         return true;
3205 }
3206
3207 static void i915_gem_verify_gtt(struct drm_device *dev)
3208 {
3209 #if WATCH_GTT
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211         struct drm_i915_gem_object *obj;
3212         int err = 0;
3213
3214         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3215                 if (obj->gtt_space == NULL) {
3216                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3217                         err++;
3218                         continue;
3219                 }
3220
3221                 if (obj->cache_level != obj->gtt_space->color) {
3222                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3223                                i915_gem_obj_ggtt_offset(obj),
3224                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3225                                obj->cache_level,
3226                                obj->gtt_space->color);
3227                         err++;
3228                         continue;
3229                 }
3230
3231                 if (!i915_gem_valid_gtt_space(dev,
3232                                               obj->gtt_space,
3233                                               obj->cache_level)) {
3234                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3235                                i915_gem_obj_ggtt_offset(obj),
3236                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3237                                obj->cache_level);
3238                         err++;
3239                         continue;
3240                 }
3241         }
3242
3243         WARN_ON(err);
3244 #endif
3245 }
3246
3247 /**
3248  * Finds free space in the GTT aperture and binds the object there.
3249  */
3250 static int
3251 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3252                            struct i915_address_space *vm,
3253                            unsigned alignment,
3254                            bool map_and_fenceable,
3255                            bool nonblocking)
3256 {
3257         struct drm_device *dev = obj->base.dev;
3258         drm_i915_private_t *dev_priv = dev->dev_private;
3259         u32 size, fence_size, fence_alignment, unfenced_alignment;
3260         size_t gtt_max =
3261                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3262         struct i915_vma *vma;
3263         int ret;
3264
3265         fence_size = i915_gem_get_gtt_size(dev,
3266                                            obj->base.size,
3267                                            obj->tiling_mode);
3268         fence_alignment = i915_gem_get_gtt_alignment(dev,
3269                                                      obj->base.size,
3270                                                      obj->tiling_mode, true);
3271         unfenced_alignment =
3272                 i915_gem_get_gtt_alignment(dev,
3273                                                     obj->base.size,
3274                                                     obj->tiling_mode, false);
3275
3276         if (alignment == 0)
3277                 alignment = map_and_fenceable ? fence_alignment :
3278                                                 unfenced_alignment;
3279         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3280                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3281                 return -EINVAL;
3282         }
3283
3284         size = map_and_fenceable ? fence_size : obj->base.size;
3285
3286         /* If the object is bigger than the entire aperture, reject it early
3287          * before evicting everything in a vain attempt to find space.
3288          */
3289         if (obj->base.size > gtt_max) {
3290                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3291                           obj->base.size,
3292                           map_and_fenceable ? "mappable" : "total",
3293                           gtt_max);
3294                 return -E2BIG;
3295         }
3296
3297         ret = i915_gem_object_get_pages(obj);
3298         if (ret)
3299                 return ret;
3300
3301         i915_gem_object_pin_pages(obj);
3302
3303         BUG_ON(!i915_is_ggtt(vm));
3304
3305         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3306         if (IS_ERR(vma)) {
3307                 ret = PTR_ERR(vma);
3308                 goto err_unpin;
3309         }
3310
3311         /* For now we only ever use 1 vma per object */
3312         WARN_ON(!list_is_singular(&obj->vma_list));
3313
3314 search_free:
3315         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3316                                                   size, alignment,
3317                                                   obj->cache_level, 0, gtt_max,
3318                                                   DRM_MM_SEARCH_DEFAULT);
3319         if (ret) {
3320                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3321                                                obj->cache_level,
3322                                                map_and_fenceable,
3323                                                nonblocking);
3324                 if (ret == 0)
3325                         goto search_free;
3326
3327                 goto err_free_vma;
3328         }
3329         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3330                                               obj->cache_level))) {
3331                 ret = -EINVAL;
3332                 goto err_remove_node;
3333         }
3334
3335         ret = i915_gem_gtt_prepare_object(obj);
3336         if (ret)
3337                 goto err_remove_node;
3338
3339         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3340         list_add_tail(&vma->mm_list, &vm->inactive_list);
3341
3342         if (i915_is_ggtt(vm)) {
3343                 bool mappable, fenceable;
3344
3345                 fenceable = (vma->node.size == fence_size &&
3346                              (vma->node.start & (fence_alignment - 1)) == 0);
3347
3348                 mappable = (vma->node.start + obj->base.size <=
3349                             dev_priv->gtt.mappable_end);
3350
3351                 obj->map_and_fenceable = mappable && fenceable;
3352         }
3353
3354         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3355
3356         trace_i915_vma_bind(vma, map_and_fenceable);
3357         i915_gem_verify_gtt(dev);
3358         return 0;
3359
3360 err_remove_node:
3361         drm_mm_remove_node(&vma->node);
3362 err_free_vma:
3363         i915_gem_vma_destroy(vma);
3364 err_unpin:
3365         i915_gem_object_unpin_pages(obj);
3366         return ret;
3367 }
3368
3369 bool
3370 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3371                         bool force)
3372 {
3373         /* If we don't have a page list set up, then we're not pinned
3374          * to GPU, and we can ignore the cache flush because it'll happen
3375          * again at bind time.
3376          */
3377         if (obj->pages == NULL)
3378                 return false;
3379
3380         /*
3381          * Stolen memory is always coherent with the GPU as it is explicitly
3382          * marked as wc by the system, or the system is cache-coherent.
3383          */
3384         if (obj->stolen)
3385                 return false;
3386
3387         /* If the GPU is snooping the contents of the CPU cache,
3388          * we do not need to manually clear the CPU cache lines.  However,
3389          * the caches are only snooped when the render cache is
3390          * flushed/invalidated.  As we always have to emit invalidations
3391          * and flushes when moving into and out of the RENDER domain, correct
3392          * snooping behaviour occurs naturally as the result of our domain
3393          * tracking.
3394          */
3395         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3396                 return false;
3397
3398         trace_i915_gem_object_clflush(obj);
3399         drm_clflush_sg(obj->pages);
3400
3401         return true;
3402 }
3403
3404 /** Flushes the GTT write domain for the object if it's dirty. */
3405 static void
3406 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3407 {
3408         uint32_t old_write_domain;
3409
3410         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3411                 return;
3412
3413         /* No actual flushing is required for the GTT write domain.  Writes
3414          * to it immediately go to main memory as far as we know, so there's
3415          * no chipset flush.  It also doesn't land in render cache.
3416          *
3417          * However, we do have to enforce the order so that all writes through
3418          * the GTT land before any writes to the device, such as updates to
3419          * the GATT itself.
3420          */
3421         wmb();
3422
3423         old_write_domain = obj->base.write_domain;
3424         obj->base.write_domain = 0;
3425
3426         trace_i915_gem_object_change_domain(obj,
3427                                             obj->base.read_domains,
3428                                             old_write_domain);
3429 }
3430
3431 /** Flushes the CPU write domain for the object if it's dirty. */
3432 static void
3433 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3434                                        bool force)
3435 {
3436         uint32_t old_write_domain;
3437
3438         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3439                 return;
3440
3441         if (i915_gem_clflush_object(obj, force))
3442                 i915_gem_chipset_flush(obj->base.dev);
3443
3444         old_write_domain = obj->base.write_domain;
3445         obj->base.write_domain = 0;
3446
3447         trace_i915_gem_object_change_domain(obj,
3448                                             obj->base.read_domains,
3449                                             old_write_domain);
3450 }
3451
3452 /**
3453  * Moves a single object to the GTT read, and possibly write domain.
3454  *
3455  * This function returns when the move is complete, including waiting on
3456  * flushes to occur.
3457  */
3458 int
3459 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3460 {
3461         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3462         uint32_t old_write_domain, old_read_domains;
3463         int ret;
3464
3465         /* Not valid to be called on unbound objects. */
3466         if (!i915_gem_obj_bound_any(obj))
3467                 return -EINVAL;
3468
3469         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3470                 return 0;
3471
3472         ret = i915_gem_object_wait_rendering(obj, !write);
3473         if (ret)
3474                 return ret;
3475
3476         i915_gem_object_flush_cpu_write_domain(obj, false);
3477
3478         /* Serialise direct access to this object with the barriers for
3479          * coherent writes from the GPU, by effectively invalidating the
3480          * GTT domain upon first access.
3481          */
3482         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3483                 mb();
3484
3485         old_write_domain = obj->base.write_domain;
3486         old_read_domains = obj->base.read_domains;
3487
3488         /* It should now be out of any other write domains, and we can update
3489          * the domain values for our changes.
3490          */
3491         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3492         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3493         if (write) {
3494                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3495                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3496                 obj->dirty = 1;
3497         }
3498
3499         trace_i915_gem_object_change_domain(obj,
3500                                             old_read_domains,
3501                                             old_write_domain);
3502
3503         /* And bump the LRU for this access */
3504         if (i915_gem_object_is_inactive(obj)) {
3505                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3506                 if (vma)
3507                         list_move_tail(&vma->mm_list,
3508                                        &dev_priv->gtt.base.inactive_list);
3509
3510         }
3511
3512         return 0;
3513 }
3514
3515 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3516                                     enum i915_cache_level cache_level)
3517 {
3518         struct drm_device *dev = obj->base.dev;
3519         drm_i915_private_t *dev_priv = dev->dev_private;
3520         struct i915_vma *vma;
3521         int ret;
3522
3523         if (obj->cache_level == cache_level)
3524                 return 0;
3525
3526         if (obj->pin_count) {
3527                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3528                 return -EBUSY;
3529         }
3530
3531         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3532                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3533                         ret = i915_vma_unbind(vma);
3534                         if (ret)
3535                                 return ret;
3536
3537                         break;
3538                 }
3539         }
3540
3541         if (i915_gem_obj_bound_any(obj)) {
3542                 ret = i915_gem_object_finish_gpu(obj);
3543                 if (ret)
3544                         return ret;
3545
3546                 i915_gem_object_finish_gtt(obj);
3547
3548                 /* Before SandyBridge, you could not use tiling or fence
3549                  * registers with snooped memory, so relinquish any fences
3550                  * currently pointing to our region in the aperture.
3551                  */
3552                 if (INTEL_INFO(dev)->gen < 6) {
3553                         ret = i915_gem_object_put_fence(obj);
3554                         if (ret)
3555                                 return ret;
3556                 }
3557
3558                 if (obj->has_global_gtt_mapping)
3559                         i915_gem_gtt_bind_object(obj, cache_level);
3560                 if (obj->has_aliasing_ppgtt_mapping)
3561                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3562                                                obj, cache_level);
3563         }
3564
3565         list_for_each_entry(vma, &obj->vma_list, vma_link)
3566                 vma->node.color = cache_level;
3567         obj->cache_level = cache_level;
3568
3569         if (cpu_write_needs_clflush(obj)) {
3570                 u32 old_read_domains, old_write_domain;
3571
3572                 /* If we're coming from LLC cached, then we haven't
3573                  * actually been tracking whether the data is in the
3574                  * CPU cache or not, since we only allow one bit set
3575                  * in obj->write_domain and have been skipping the clflushes.
3576                  * Just set it to the CPU cache for now.
3577                  */
3578                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3579
3580                 old_read_domains = obj->base.read_domains;
3581                 old_write_domain = obj->base.write_domain;
3582
3583                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3584                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3585
3586                 trace_i915_gem_object_change_domain(obj,
3587                                                     old_read_domains,
3588                                                     old_write_domain);
3589         }
3590
3591         i915_gem_verify_gtt(dev);
3592         return 0;
3593 }
3594
3595 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3596                                struct drm_file *file)
3597 {
3598         struct drm_i915_gem_caching *args = data;
3599         struct drm_i915_gem_object *obj;
3600         int ret;
3601
3602         ret = i915_mutex_lock_interruptible(dev);
3603         if (ret)
3604                 return ret;
3605
3606         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3607         if (&obj->base == NULL) {
3608                 ret = -ENOENT;
3609                 goto unlock;
3610         }
3611
3612         switch (obj->cache_level) {
3613         case I915_CACHE_LLC:
3614         case I915_CACHE_L3_LLC:
3615                 args->caching = I915_CACHING_CACHED;
3616                 break;
3617
3618         case I915_CACHE_WT:
3619                 args->caching = I915_CACHING_DISPLAY;
3620                 break;
3621
3622         default:
3623                 args->caching = I915_CACHING_NONE;
3624                 break;
3625         }
3626
3627         drm_gem_object_unreference(&obj->base);
3628 unlock:
3629         mutex_unlock(&dev->struct_mutex);
3630         return ret;
3631 }
3632
3633 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3634                                struct drm_file *file)
3635 {
3636         struct drm_i915_gem_caching *args = data;
3637         struct drm_i915_gem_object *obj;
3638         enum i915_cache_level level;
3639         int ret;
3640
3641         switch (args->caching) {
3642         case I915_CACHING_NONE:
3643                 level = I915_CACHE_NONE;
3644                 break;
3645         case I915_CACHING_CACHED:
3646                 level = I915_CACHE_LLC;
3647                 break;
3648         case I915_CACHING_DISPLAY:
3649                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3650                 break;
3651         default:
3652                 return -EINVAL;
3653         }
3654
3655         ret = i915_mutex_lock_interruptible(dev);
3656         if (ret)
3657                 return ret;
3658
3659         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3660         if (&obj->base == NULL) {
3661                 ret = -ENOENT;
3662                 goto unlock;
3663         }
3664
3665         ret = i915_gem_object_set_cache_level(obj, level);
3666
3667         drm_gem_object_unreference(&obj->base);
3668 unlock:
3669         mutex_unlock(&dev->struct_mutex);
3670         return ret;
3671 }
3672
3673 static bool is_pin_display(struct drm_i915_gem_object *obj)
3674 {
3675         /* There are 3 sources that pin objects:
3676          *   1. The display engine (scanouts, sprites, cursors);
3677          *   2. Reservations for execbuffer;
3678          *   3. The user.
3679          *
3680          * We can ignore reservations as we hold the struct_mutex and
3681          * are only called outside of the reservation path.  The user
3682          * can only increment pin_count once, and so if after
3683          * subtracting the potential reference by the user, any pin_count
3684          * remains, it must be due to another use by the display engine.
3685          */
3686         return obj->pin_count - !!obj->user_pin_count;
3687 }
3688
3689 /*
3690  * Prepare buffer for display plane (scanout, cursors, etc).
3691  * Can be called from an uninterruptible phase (modesetting) and allows
3692  * any flushes to be pipelined (for pageflips).
3693  */
3694 int
3695 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3696                                      u32 alignment,
3697                                      struct intel_ring_buffer *pipelined)
3698 {
3699         u32 old_read_domains, old_write_domain;
3700         int ret;
3701
3702         if (pipelined != obj->ring) {
3703                 ret = i915_gem_object_sync(obj, pipelined);
3704                 if (ret)
3705                         return ret;
3706         }
3707
3708         /* Mark the pin_display early so that we account for the
3709          * display coherency whilst setting up the cache domains.
3710          */
3711         obj->pin_display = true;
3712
3713         /* The display engine is not coherent with the LLC cache on gen6.  As
3714          * a result, we make sure that the pinning that is about to occur is
3715          * done with uncached PTEs. This is lowest common denominator for all
3716          * chipsets.
3717          *
3718          * However for gen6+, we could do better by using the GFDT bit instead
3719          * of uncaching, which would allow us to flush all the LLC-cached data
3720          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3721          */
3722         ret = i915_gem_object_set_cache_level(obj,
3723                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3724         if (ret)
3725                 goto err_unpin_display;
3726
3727         /* As the user may map the buffer once pinned in the display plane
3728          * (e.g. libkms for the bootup splash), we have to ensure that we
3729          * always use map_and_fenceable for all scanout buffers.
3730          */
3731         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3732         if (ret)
3733                 goto err_unpin_display;
3734
3735         i915_gem_object_flush_cpu_write_domain(obj, true);
3736
3737         old_write_domain = obj->base.write_domain;
3738         old_read_domains = obj->base.read_domains;
3739
3740         /* It should now be out of any other write domains, and we can update
3741          * the domain values for our changes.
3742          */
3743         obj->base.write_domain = 0;
3744         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3745
3746         trace_i915_gem_object_change_domain(obj,
3747                                             old_read_domains,
3748                                             old_write_domain);
3749
3750         return 0;
3751
3752 err_unpin_display:
3753         obj->pin_display = is_pin_display(obj);
3754         return ret;
3755 }
3756
3757 void
3758 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3759 {
3760         i915_gem_object_unpin(obj);
3761         obj->pin_display = is_pin_display(obj);
3762 }
3763
3764 int
3765 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3766 {
3767         int ret;
3768
3769         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3770                 return 0;
3771
3772         ret = i915_gem_object_wait_rendering(obj, false);
3773         if (ret)
3774                 return ret;
3775
3776         /* Ensure that we invalidate the GPU's caches and TLBs. */
3777         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3778         return 0;
3779 }
3780
3781 /**
3782  * Moves a single object to the CPU read, and possibly write domain.
3783  *
3784  * This function returns when the move is complete, including waiting on
3785  * flushes to occur.
3786  */
3787 int
3788 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3789 {
3790         uint32_t old_write_domain, old_read_domains;
3791         int ret;
3792
3793         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3794                 return 0;
3795
3796         ret = i915_gem_object_wait_rendering(obj, !write);
3797         if (ret)
3798                 return ret;
3799
3800         i915_gem_object_flush_gtt_write_domain(obj);
3801
3802         old_write_domain = obj->base.write_domain;
3803         old_read_domains = obj->base.read_domains;
3804
3805         /* Flush the CPU cache if it's still invalid. */
3806         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3807                 i915_gem_clflush_object(obj, false);
3808
3809                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3810         }
3811
3812         /* It should now be out of any other write domains, and we can update
3813          * the domain values for our changes.
3814          */
3815         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3816
3817         /* If we're writing through the CPU, then the GPU read domains will
3818          * need to be invalidated at next use.
3819          */
3820         if (write) {
3821                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3822                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3823         }
3824
3825         trace_i915_gem_object_change_domain(obj,
3826                                             old_read_domains,
3827                                             old_write_domain);
3828
3829         return 0;
3830 }
3831
3832 /* Throttle our rendering by waiting until the ring has completed our requests
3833  * emitted over 20 msec ago.
3834  *
3835  * Note that if we were to use the current jiffies each time around the loop,
3836  * we wouldn't escape the function with any frames outstanding if the time to
3837  * render a frame was over 20ms.
3838  *
3839  * This should get us reasonable parallelism between CPU and GPU but also
3840  * relatively low latency when blocking on a particular request to finish.
3841  */
3842 static int
3843 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3844 {
3845         struct drm_i915_private *dev_priv = dev->dev_private;
3846         struct drm_i915_file_private *file_priv = file->driver_priv;
3847         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3848         struct drm_i915_gem_request *request;
3849         struct intel_ring_buffer *ring = NULL;
3850         unsigned reset_counter;
3851         u32 seqno = 0;
3852         int ret;
3853
3854         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3855         if (ret)
3856                 return ret;
3857
3858         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3859         if (ret)
3860                 return ret;
3861
3862         spin_lock(&file_priv->mm.lock);
3863         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3864                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3865                         break;
3866
3867                 ring = request->ring;
3868                 seqno = request->seqno;
3869         }
3870         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3871         spin_unlock(&file_priv->mm.lock);
3872
3873         if (seqno == 0)
3874                 return 0;
3875
3876         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3877         if (ret == 0)
3878                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3879
3880         return ret;
3881 }
3882
3883 int
3884 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3885                     struct i915_address_space *vm,
3886                     uint32_t alignment,
3887                     bool map_and_fenceable,
3888                     bool nonblocking)
3889 {
3890         struct i915_vma *vma;
3891         int ret;
3892
3893         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3894                 return -EBUSY;
3895
3896         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3897
3898         vma = i915_gem_obj_to_vma(obj, vm);
3899
3900         if (vma) {
3901                 if ((alignment &&
3902                      vma->node.start & (alignment - 1)) ||
3903                     (map_and_fenceable && !obj->map_and_fenceable)) {
3904                         WARN(obj->pin_count,
3905                              "bo is already pinned with incorrect alignment:"
3906                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3907                              " obj->map_and_fenceable=%d\n",
3908                              i915_gem_obj_offset(obj, vm), alignment,
3909                              map_and_fenceable,
3910                              obj->map_and_fenceable);
3911                         ret = i915_vma_unbind(vma);
3912                         if (ret)
3913                                 return ret;
3914                 }
3915         }
3916
3917         if (!i915_gem_obj_bound(obj, vm)) {
3918                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3919
3920                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3921                                                  map_and_fenceable,
3922                                                  nonblocking);
3923                 if (ret)
3924                         return ret;
3925
3926                 if (!dev_priv->mm.aliasing_ppgtt)
3927                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3928         }
3929
3930         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3931                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3932
3933         obj->pin_count++;
3934         obj->pin_mappable |= map_and_fenceable;
3935
3936         return 0;
3937 }
3938
3939 void
3940 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3941 {
3942         BUG_ON(obj->pin_count == 0);
3943         BUG_ON(!i915_gem_obj_bound_any(obj));
3944
3945         if (--obj->pin_count == 0)
3946                 obj->pin_mappable = false;
3947 }
3948
3949 int
3950 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3951                    struct drm_file *file)
3952 {
3953         struct drm_i915_gem_pin *args = data;
3954         struct drm_i915_gem_object *obj;
3955         int ret;
3956
3957         ret = i915_mutex_lock_interruptible(dev);
3958         if (ret)
3959                 return ret;
3960
3961         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3962         if (&obj->base == NULL) {
3963                 ret = -ENOENT;
3964                 goto unlock;
3965         }
3966
3967         if (obj->madv != I915_MADV_WILLNEED) {
3968                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3969                 ret = -EINVAL;
3970                 goto out;
3971         }
3972
3973         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3974                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3975                           args->handle);
3976                 ret = -EINVAL;
3977                 goto out;
3978         }
3979
3980         if (obj->user_pin_count == ULONG_MAX) {
3981                 ret = -EBUSY;
3982                 goto out;
3983         }
3984
3985         if (obj->user_pin_count == 0) {
3986                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3987                 if (ret)
3988                         goto out;
3989         }
3990
3991         obj->user_pin_count++;
3992         obj->pin_filp = file;
3993
3994         args->offset = i915_gem_obj_ggtt_offset(obj);
3995 out:
3996         drm_gem_object_unreference(&obj->base);
3997 unlock:
3998         mutex_unlock(&dev->struct_mutex);
3999         return ret;
4000 }
4001
4002 int
4003 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4004                      struct drm_file *file)
4005 {
4006         struct drm_i915_gem_pin *args = data;
4007         struct drm_i915_gem_object *obj;
4008         int ret;
4009
4010         ret = i915_mutex_lock_interruptible(dev);
4011         if (ret)
4012                 return ret;
4013
4014         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4015         if (&obj->base == NULL) {
4016                 ret = -ENOENT;
4017                 goto unlock;
4018         }
4019
4020         if (obj->pin_filp != file) {
4021                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4022                           args->handle);
4023                 ret = -EINVAL;
4024                 goto out;
4025         }
4026         obj->user_pin_count--;
4027         if (obj->user_pin_count == 0) {
4028                 obj->pin_filp = NULL;
4029                 i915_gem_object_unpin(obj);
4030         }
4031
4032 out:
4033         drm_gem_object_unreference(&obj->base);
4034 unlock:
4035         mutex_unlock(&dev->struct_mutex);
4036         return ret;
4037 }
4038
4039 int
4040 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4041                     struct drm_file *file)
4042 {
4043         struct drm_i915_gem_busy *args = data;
4044         struct drm_i915_gem_object *obj;
4045         int ret;
4046
4047         ret = i915_mutex_lock_interruptible(dev);
4048         if (ret)
4049                 return ret;
4050
4051         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4052         if (&obj->base == NULL) {
4053                 ret = -ENOENT;
4054                 goto unlock;
4055         }
4056
4057         /* Count all active objects as busy, even if they are currently not used
4058          * by the gpu. Users of this interface expect objects to eventually
4059          * become non-busy without any further actions, therefore emit any
4060          * necessary flushes here.
4061          */
4062         ret = i915_gem_object_flush_active(obj);
4063
4064         args->busy = obj->active;
4065         if (obj->ring) {
4066                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4067                 args->busy |= intel_ring_flag(obj->ring) << 16;
4068         }
4069
4070         drm_gem_object_unreference(&obj->base);
4071 unlock:
4072         mutex_unlock(&dev->struct_mutex);
4073         return ret;
4074 }
4075
4076 int
4077 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4078                         struct drm_file *file_priv)
4079 {
4080         return i915_gem_ring_throttle(dev, file_priv);
4081 }
4082
4083 int
4084 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4085                        struct drm_file *file_priv)
4086 {
4087         struct drm_i915_gem_madvise *args = data;
4088         struct drm_i915_gem_object *obj;
4089         int ret;
4090
4091         switch (args->madv) {
4092         case I915_MADV_DONTNEED:
4093         case I915_MADV_WILLNEED:
4094             break;
4095         default:
4096             return -EINVAL;
4097         }
4098
4099         ret = i915_mutex_lock_interruptible(dev);
4100         if (ret)
4101                 return ret;
4102
4103         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4104         if (&obj->base == NULL) {
4105                 ret = -ENOENT;
4106                 goto unlock;
4107         }
4108
4109         if (obj->pin_count) {
4110                 ret = -EINVAL;
4111                 goto out;
4112         }
4113
4114         if (obj->madv != __I915_MADV_PURGED)
4115                 obj->madv = args->madv;
4116
4117         /* if the object is no longer attached, discard its backing storage */
4118         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4119                 i915_gem_object_truncate(obj);
4120
4121         args->retained = obj->madv != __I915_MADV_PURGED;
4122
4123 out:
4124         drm_gem_object_unreference(&obj->base);
4125 unlock:
4126         mutex_unlock(&dev->struct_mutex);
4127         return ret;
4128 }
4129
4130 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4131                           const struct drm_i915_gem_object_ops *ops)
4132 {
4133         INIT_LIST_HEAD(&obj->global_list);
4134         INIT_LIST_HEAD(&obj->ring_list);
4135         INIT_LIST_HEAD(&obj->obj_exec_link);
4136         INIT_LIST_HEAD(&obj->vma_list);
4137
4138         obj->ops = ops;
4139
4140         obj->fence_reg = I915_FENCE_REG_NONE;
4141         obj->madv = I915_MADV_WILLNEED;
4142         /* Avoid an unnecessary call to unbind on the first bind. */
4143         obj->map_and_fenceable = true;
4144
4145         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4146 }
4147
4148 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4149         .get_pages = i915_gem_object_get_pages_gtt,
4150         .put_pages = i915_gem_object_put_pages_gtt,
4151 };
4152
4153 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4154                                                   size_t size)
4155 {
4156         struct drm_i915_gem_object *obj;
4157         struct address_space *mapping;
4158         gfp_t mask;
4159
4160         obj = i915_gem_object_alloc(dev);
4161         if (obj == NULL)
4162                 return NULL;
4163
4164         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4165                 i915_gem_object_free(obj);
4166                 return NULL;
4167         }
4168
4169         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4170         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4171                 /* 965gm cannot relocate objects above 4GiB. */
4172                 mask &= ~__GFP_HIGHMEM;
4173                 mask |= __GFP_DMA32;
4174         }
4175
4176         mapping = file_inode(obj->base.filp)->i_mapping;
4177         mapping_set_gfp_mask(mapping, mask);
4178
4179         i915_gem_object_init(obj, &i915_gem_object_ops);
4180
4181         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4182         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4183
4184         if (HAS_LLC(dev)) {
4185                 /* On some devices, we can have the GPU use the LLC (the CPU
4186                  * cache) for about a 10% performance improvement
4187                  * compared to uncached.  Graphics requests other than
4188                  * display scanout are coherent with the CPU in
4189                  * accessing this cache.  This means in this mode we
4190                  * don't need to clflush on the CPU side, and on the
4191                  * GPU side we only need to flush internal caches to
4192                  * get data visible to the CPU.
4193                  *
4194                  * However, we maintain the display planes as UC, and so
4195                  * need to rebind when first used as such.
4196                  */
4197                 obj->cache_level = I915_CACHE_LLC;
4198         } else
4199                 obj->cache_level = I915_CACHE_NONE;
4200
4201         trace_i915_gem_object_create(obj);
4202
4203         return obj;
4204 }
4205
4206 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4207 {
4208         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4209         struct drm_device *dev = obj->base.dev;
4210         drm_i915_private_t *dev_priv = dev->dev_private;
4211         struct i915_vma *vma, *next;
4212
4213         intel_runtime_pm_get(dev_priv);
4214
4215         trace_i915_gem_object_destroy(obj);
4216
4217         if (obj->phys_obj)
4218                 i915_gem_detach_phys_object(dev, obj);
4219
4220         obj->pin_count = 0;
4221         /* NB: 0 or 1 elements */
4222         WARN_ON(!list_empty(&obj->vma_list) &&
4223                 !list_is_singular(&obj->vma_list));
4224         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4225                 int ret = i915_vma_unbind(vma);
4226                 if (WARN_ON(ret == -ERESTARTSYS)) {
4227                         bool was_interruptible;
4228
4229                         was_interruptible = dev_priv->mm.interruptible;
4230                         dev_priv->mm.interruptible = false;
4231
4232                         WARN_ON(i915_vma_unbind(vma));
4233
4234                         dev_priv->mm.interruptible = was_interruptible;
4235                 }
4236         }
4237
4238         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4239          * before progressing. */
4240         if (obj->stolen)
4241                 i915_gem_object_unpin_pages(obj);
4242
4243         if (WARN_ON(obj->pages_pin_count))
4244                 obj->pages_pin_count = 0;
4245         i915_gem_object_put_pages(obj);
4246         i915_gem_object_free_mmap_offset(obj);
4247         i915_gem_object_release_stolen(obj);
4248
4249         BUG_ON(obj->pages);
4250
4251         if (obj->base.import_attach)
4252                 drm_prime_gem_destroy(&obj->base, NULL);
4253
4254         drm_gem_object_release(&obj->base);
4255         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4256
4257         kfree(obj->bit_17);
4258         i915_gem_object_free(obj);
4259
4260         intel_runtime_pm_put(dev_priv);
4261 }
4262
4263 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4264                                      struct i915_address_space *vm)
4265 {
4266         struct i915_vma *vma;
4267         list_for_each_entry(vma, &obj->vma_list, vma_link)
4268                 if (vma->vm == vm)
4269                         return vma;
4270
4271         return NULL;
4272 }
4273
4274 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4275                                               struct i915_address_space *vm)
4276 {
4277         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4278         if (vma == NULL)
4279                 return ERR_PTR(-ENOMEM);
4280
4281         INIT_LIST_HEAD(&vma->vma_link);
4282         INIT_LIST_HEAD(&vma->mm_list);
4283         INIT_LIST_HEAD(&vma->exec_list);
4284         vma->vm = vm;
4285         vma->obj = obj;
4286
4287         /* Keep GGTT vmas first to make debug easier */
4288         if (i915_is_ggtt(vm))
4289                 list_add(&vma->vma_link, &obj->vma_list);
4290         else
4291                 list_add_tail(&vma->vma_link, &obj->vma_list);
4292
4293         return vma;
4294 }
4295
4296 struct i915_vma *
4297 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4298                                   struct i915_address_space *vm)
4299 {
4300         struct i915_vma *vma;
4301
4302         vma = i915_gem_obj_to_vma(obj, vm);
4303         if (!vma)
4304                 vma = __i915_gem_vma_create(obj, vm);
4305
4306         return vma;
4307 }
4308
4309 void i915_gem_vma_destroy(struct i915_vma *vma)
4310 {
4311         WARN_ON(vma->node.allocated);
4312
4313         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4314         if (!list_empty(&vma->exec_list))
4315                 return;
4316
4317         list_del(&vma->vma_link);
4318
4319         kfree(vma);
4320 }
4321
4322 int
4323 i915_gem_suspend(struct drm_device *dev)
4324 {
4325         drm_i915_private_t *dev_priv = dev->dev_private;
4326         int ret = 0;
4327
4328         mutex_lock(&dev->struct_mutex);
4329         if (dev_priv->ums.mm_suspended)
4330                 goto err;
4331
4332         ret = i915_gpu_idle(dev);
4333         if (ret)
4334                 goto err;
4335
4336         i915_gem_retire_requests(dev);
4337
4338         /* Under UMS, be paranoid and evict. */
4339         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4340                 i915_gem_evict_everything(dev);
4341
4342         i915_kernel_lost_context(dev);
4343         i915_gem_cleanup_ringbuffer(dev);
4344
4345         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4346          * We need to replace this with a semaphore, or something.
4347          * And not confound ums.mm_suspended!
4348          */
4349         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4350                                                              DRIVER_MODESET);
4351         mutex_unlock(&dev->struct_mutex);
4352
4353         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4354         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4355         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4356
4357         return 0;
4358
4359 err:
4360         mutex_unlock(&dev->struct_mutex);
4361         return ret;
4362 }
4363
4364 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4365 {
4366         struct drm_device *dev = ring->dev;
4367         drm_i915_private_t *dev_priv = dev->dev_private;
4368         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4369         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4370         int i, ret;
4371
4372         if (!HAS_L3_DPF(dev) || !remap_info)
4373                 return 0;
4374
4375         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4376         if (ret)
4377                 return ret;
4378
4379         /*
4380          * Note: We do not worry about the concurrent register cacheline hang
4381          * here because no other code should access these registers other than
4382          * at initialization time.
4383          */
4384         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4385                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4386                 intel_ring_emit(ring, reg_base + i);
4387                 intel_ring_emit(ring, remap_info[i/4]);
4388         }
4389
4390         intel_ring_advance(ring);
4391
4392         return ret;
4393 }
4394
4395 void i915_gem_init_swizzling(struct drm_device *dev)
4396 {
4397         drm_i915_private_t *dev_priv = dev->dev_private;
4398
4399         if (INTEL_INFO(dev)->gen < 5 ||
4400             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4401                 return;
4402
4403         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4404                                  DISP_TILE_SURFACE_SWIZZLING);
4405
4406         if (IS_GEN5(dev))
4407                 return;
4408
4409         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4410         if (IS_GEN6(dev))
4411                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4412         else if (IS_GEN7(dev))
4413                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4414         else if (IS_GEN8(dev))
4415                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4416         else
4417                 BUG();
4418 }
4419
4420 static bool
4421 intel_enable_blt(struct drm_device *dev)
4422 {
4423         if (!HAS_BLT(dev))
4424                 return false;
4425
4426         /* The blitter was dysfunctional on early prototypes */
4427         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4428                 DRM_INFO("BLT not supported on this pre-production hardware;"
4429                          " graphics performance will be degraded.\n");
4430                 return false;
4431         }
4432
4433         return true;
4434 }
4435
4436 static int i915_gem_init_rings(struct drm_device *dev)
4437 {
4438         struct drm_i915_private *dev_priv = dev->dev_private;
4439         int ret;
4440
4441         ret = intel_init_render_ring_buffer(dev);
4442         if (ret)
4443                 return ret;
4444
4445         if (HAS_BSD(dev)) {
4446                 ret = intel_init_bsd_ring_buffer(dev);
4447                 if (ret)
4448                         goto cleanup_render_ring;
4449         }
4450
4451         if (intel_enable_blt(dev)) {
4452                 ret = intel_init_blt_ring_buffer(dev);
4453                 if (ret)
4454                         goto cleanup_bsd_ring;
4455         }
4456
4457         if (HAS_VEBOX(dev)) {
4458                 ret = intel_init_vebox_ring_buffer(dev);
4459                 if (ret)
4460                         goto cleanup_blt_ring;
4461         }
4462
4463
4464         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4465         if (ret)
4466                 goto cleanup_vebox_ring;
4467
4468         return 0;
4469
4470 cleanup_vebox_ring:
4471         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4472 cleanup_blt_ring:
4473         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4474 cleanup_bsd_ring:
4475         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4476 cleanup_render_ring:
4477         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4478
4479         return ret;
4480 }
4481
4482 int
4483 i915_gem_init_hw(struct drm_device *dev)
4484 {
4485         drm_i915_private_t *dev_priv = dev->dev_private;
4486         int ret, i;
4487
4488         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4489                 return -EIO;
4490
4491         if (dev_priv->ellc_size)
4492                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4493
4494         if (IS_HASWELL(dev))
4495                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4496                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4497
4498         if (HAS_PCH_NOP(dev)) {
4499                 u32 temp = I915_READ(GEN7_MSG_CTL);
4500                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4501                 I915_WRITE(GEN7_MSG_CTL, temp);
4502         }
4503
4504         i915_gem_init_swizzling(dev);
4505
4506         ret = i915_gem_init_rings(dev);
4507         if (ret)
4508                 return ret;
4509
4510         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4511                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4512
4513         /*
4514          * XXX: There was some w/a described somewhere suggesting loading
4515          * contexts before PPGTT.
4516          */
4517         ret = i915_gem_context_init(dev);
4518         if (ret) {
4519                 i915_gem_cleanup_ringbuffer(dev);
4520                 DRM_ERROR("Context initialization failed %d\n", ret);
4521                 return ret;
4522         }
4523
4524         if (dev_priv->mm.aliasing_ppgtt) {
4525                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4526                 if (ret) {
4527                         i915_gem_cleanup_aliasing_ppgtt(dev);
4528                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4529                 }
4530         }
4531
4532         return 0;
4533 }
4534
4535 int i915_gem_init(struct drm_device *dev)
4536 {
4537         struct drm_i915_private *dev_priv = dev->dev_private;
4538         int ret;
4539
4540         mutex_lock(&dev->struct_mutex);
4541
4542         if (IS_VALLEYVIEW(dev)) {
4543                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4544                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4545                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4546                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4547         }
4548
4549         i915_gem_init_global_gtt(dev);
4550
4551         ret = i915_gem_init_hw(dev);
4552         mutex_unlock(&dev->struct_mutex);
4553         if (ret) {
4554                 i915_gem_cleanup_aliasing_ppgtt(dev);
4555                 return ret;
4556         }
4557
4558         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4559         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4560                 dev_priv->dri1.allow_batchbuffer = 1;
4561         return 0;
4562 }
4563
4564 void
4565 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4566 {
4567         drm_i915_private_t *dev_priv = dev->dev_private;
4568         struct intel_ring_buffer *ring;
4569         int i;
4570
4571         for_each_ring(ring, dev_priv, i)
4572                 intel_cleanup_ring_buffer(ring);
4573 }
4574
4575 int
4576 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4577                        struct drm_file *file_priv)
4578 {
4579         struct drm_i915_private *dev_priv = dev->dev_private;
4580         int ret;
4581
4582         if (drm_core_check_feature(dev, DRIVER_MODESET))
4583                 return 0;
4584
4585         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4586                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4587                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4588         }
4589
4590         mutex_lock(&dev->struct_mutex);
4591         dev_priv->ums.mm_suspended = 0;
4592
4593         ret = i915_gem_init_hw(dev);
4594         if (ret != 0) {
4595                 mutex_unlock(&dev->struct_mutex);
4596                 return ret;
4597         }
4598
4599         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4600         mutex_unlock(&dev->struct_mutex);
4601
4602         ret = drm_irq_install(dev);
4603         if (ret)
4604                 goto cleanup_ringbuffer;
4605
4606         return 0;
4607
4608 cleanup_ringbuffer:
4609         mutex_lock(&dev->struct_mutex);
4610         i915_gem_cleanup_ringbuffer(dev);
4611         dev_priv->ums.mm_suspended = 1;
4612         mutex_unlock(&dev->struct_mutex);
4613
4614         return ret;
4615 }
4616
4617 int
4618 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4619                        struct drm_file *file_priv)
4620 {
4621         if (drm_core_check_feature(dev, DRIVER_MODESET))
4622                 return 0;
4623
4624         drm_irq_uninstall(dev);
4625
4626         return i915_gem_suspend(dev);
4627 }
4628
4629 void
4630 i915_gem_lastclose(struct drm_device *dev)
4631 {
4632         int ret;
4633
4634         if (drm_core_check_feature(dev, DRIVER_MODESET))
4635                 return;
4636
4637         ret = i915_gem_suspend(dev);
4638         if (ret)
4639                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4640 }
4641
4642 static void
4643 init_ring_lists(struct intel_ring_buffer *ring)
4644 {
4645         INIT_LIST_HEAD(&ring->active_list);
4646         INIT_LIST_HEAD(&ring->request_list);
4647 }
4648
4649 static void i915_init_vm(struct drm_i915_private *dev_priv,
4650                          struct i915_address_space *vm)
4651 {
4652         vm->dev = dev_priv->dev;
4653         INIT_LIST_HEAD(&vm->active_list);
4654         INIT_LIST_HEAD(&vm->inactive_list);
4655         INIT_LIST_HEAD(&vm->global_link);
4656         list_add(&vm->global_link, &dev_priv->vm_list);
4657 }
4658
4659 void
4660 i915_gem_load(struct drm_device *dev)
4661 {
4662         drm_i915_private_t *dev_priv = dev->dev_private;
4663         int i;
4664
4665         dev_priv->slab =
4666                 kmem_cache_create("i915_gem_object",
4667                                   sizeof(struct drm_i915_gem_object), 0,
4668                                   SLAB_HWCACHE_ALIGN,
4669                                   NULL);
4670
4671         INIT_LIST_HEAD(&dev_priv->vm_list);
4672         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4673
4674         INIT_LIST_HEAD(&dev_priv->context_list);
4675         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4676         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4677         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4678         for (i = 0; i < I915_NUM_RINGS; i++)
4679                 init_ring_lists(&dev_priv->ring[i]);
4680         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4681                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4682         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4683                           i915_gem_retire_work_handler);
4684         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4685                           i915_gem_idle_work_handler);
4686         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4687
4688         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4689         if (IS_GEN3(dev)) {
4690                 I915_WRITE(MI_ARB_STATE,
4691                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4692         }
4693
4694         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4695
4696         /* Old X drivers will take 0-2 for front, back, depth buffers */
4697         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4698                 dev_priv->fence_reg_start = 3;
4699
4700         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4701                 dev_priv->num_fence_regs = 32;
4702         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4703                 dev_priv->num_fence_regs = 16;
4704         else
4705                 dev_priv->num_fence_regs = 8;
4706
4707         /* Initialize fence registers to zero */
4708         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4709         i915_gem_restore_fences(dev);
4710
4711         i915_gem_detect_bit_6_swizzle(dev);
4712         init_waitqueue_head(&dev_priv->pending_flip_queue);
4713
4714         dev_priv->mm.interruptible = true;
4715
4716         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4717         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4718         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4719         register_shrinker(&dev_priv->mm.inactive_shrinker);
4720 }
4721
4722 /*
4723  * Create a physically contiguous memory object for this object
4724  * e.g. for cursor + overlay regs
4725  */
4726 static int i915_gem_init_phys_object(struct drm_device *dev,
4727                                      int id, int size, int align)
4728 {
4729         drm_i915_private_t *dev_priv = dev->dev_private;
4730         struct drm_i915_gem_phys_object *phys_obj;
4731         int ret;
4732
4733         if (dev_priv->mm.phys_objs[id - 1] || !size)
4734                 return 0;
4735
4736         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4737         if (!phys_obj)
4738                 return -ENOMEM;
4739
4740         phys_obj->id = id;
4741
4742         phys_obj->handle = drm_pci_alloc(dev, size, align);
4743         if (!phys_obj->handle) {
4744                 ret = -ENOMEM;
4745                 goto kfree_obj;
4746         }
4747 #ifdef CONFIG_X86
4748         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4749 #endif
4750
4751         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4752
4753         return 0;
4754 kfree_obj:
4755         kfree(phys_obj);
4756         return ret;
4757 }
4758
4759 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4760 {
4761         drm_i915_private_t *dev_priv = dev->dev_private;
4762         struct drm_i915_gem_phys_object *phys_obj;
4763
4764         if (!dev_priv->mm.phys_objs[id - 1])
4765                 return;
4766
4767         phys_obj = dev_priv->mm.phys_objs[id - 1];
4768         if (phys_obj->cur_obj) {
4769                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4770         }
4771
4772 #ifdef CONFIG_X86
4773         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4774 #endif
4775         drm_pci_free(dev, phys_obj->handle);
4776         kfree(phys_obj);
4777         dev_priv->mm.phys_objs[id - 1] = NULL;
4778 }
4779
4780 void i915_gem_free_all_phys_object(struct drm_device *dev)
4781 {
4782         int i;
4783
4784         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4785                 i915_gem_free_phys_object(dev, i);
4786 }
4787
4788 void i915_gem_detach_phys_object(struct drm_device *dev,
4789                                  struct drm_i915_gem_object *obj)
4790 {
4791         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4792         char *vaddr;
4793         int i;
4794         int page_count;
4795
4796         if (!obj->phys_obj)
4797                 return;
4798         vaddr = obj->phys_obj->handle->vaddr;
4799
4800         page_count = obj->base.size / PAGE_SIZE;
4801         for (i = 0; i < page_count; i++) {
4802                 struct page *page = shmem_read_mapping_page(mapping, i);
4803                 if (!IS_ERR(page)) {
4804                         char *dst = kmap_atomic(page);
4805                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4806                         kunmap_atomic(dst);
4807
4808                         drm_clflush_pages(&page, 1);
4809
4810                         set_page_dirty(page);
4811                         mark_page_accessed(page);
4812                         page_cache_release(page);
4813                 }
4814         }
4815         i915_gem_chipset_flush(dev);
4816
4817         obj->phys_obj->cur_obj = NULL;
4818         obj->phys_obj = NULL;
4819 }
4820
4821 int
4822 i915_gem_attach_phys_object(struct drm_device *dev,
4823                             struct drm_i915_gem_object *obj,
4824                             int id,
4825                             int align)
4826 {
4827         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4828         drm_i915_private_t *dev_priv = dev->dev_private;
4829         int ret = 0;
4830         int page_count;
4831         int i;
4832
4833         if (id > I915_MAX_PHYS_OBJECT)
4834                 return -EINVAL;
4835
4836         if (obj->phys_obj) {
4837                 if (obj->phys_obj->id == id)
4838                         return 0;
4839                 i915_gem_detach_phys_object(dev, obj);
4840         }
4841
4842         /* create a new object */
4843         if (!dev_priv->mm.phys_objs[id - 1]) {
4844                 ret = i915_gem_init_phys_object(dev, id,
4845                                                 obj->base.size, align);
4846                 if (ret) {
4847                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4848                                   id, obj->base.size);
4849                         return ret;
4850                 }
4851         }
4852
4853         /* bind to the object */
4854         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4855         obj->phys_obj->cur_obj = obj;
4856
4857         page_count = obj->base.size / PAGE_SIZE;
4858
4859         for (i = 0; i < page_count; i++) {
4860                 struct page *page;
4861                 char *dst, *src;
4862
4863                 page = shmem_read_mapping_page(mapping, i);
4864                 if (IS_ERR(page))
4865                         return PTR_ERR(page);
4866
4867                 src = kmap_atomic(page);
4868                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4869                 memcpy(dst, src, PAGE_SIZE);
4870                 kunmap_atomic(src);
4871
4872                 mark_page_accessed(page);
4873                 page_cache_release(page);
4874         }
4875
4876         return 0;
4877 }
4878
4879 static int
4880 i915_gem_phys_pwrite(struct drm_device *dev,
4881                      struct drm_i915_gem_object *obj,
4882                      struct drm_i915_gem_pwrite *args,
4883                      struct drm_file *file_priv)
4884 {
4885         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4886         char __user *user_data = to_user_ptr(args->data_ptr);
4887
4888         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4889                 unsigned long unwritten;
4890
4891                 /* The physical object once assigned is fixed for the lifetime
4892                  * of the obj, so we can safely drop the lock and continue
4893                  * to access vaddr.
4894                  */
4895                 mutex_unlock(&dev->struct_mutex);
4896                 unwritten = copy_from_user(vaddr, user_data, args->size);
4897                 mutex_lock(&dev->struct_mutex);
4898                 if (unwritten)
4899                         return -EFAULT;
4900         }
4901
4902         i915_gem_chipset_flush(dev);
4903         return 0;
4904 }
4905
4906 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4907 {
4908         struct drm_i915_file_private *file_priv = file->driver_priv;
4909
4910         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4911
4912         /* Clean up our request list when the client is going away, so that
4913          * later retire_requests won't dereference our soon-to-be-gone
4914          * file_priv.
4915          */
4916         spin_lock(&file_priv->mm.lock);
4917         while (!list_empty(&file_priv->mm.request_list)) {
4918                 struct drm_i915_gem_request *request;
4919
4920                 request = list_first_entry(&file_priv->mm.request_list,
4921                                            struct drm_i915_gem_request,
4922                                            client_list);
4923                 list_del(&request->client_list);
4924                 request->file_priv = NULL;
4925         }
4926         spin_unlock(&file_priv->mm.lock);
4927 }
4928
4929 static void
4930 i915_gem_file_idle_work_handler(struct work_struct *work)
4931 {
4932         struct drm_i915_file_private *file_priv =
4933                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4934
4935         atomic_set(&file_priv->rps_wait_boost, false);
4936 }
4937
4938 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4939 {
4940         struct drm_i915_file_private *file_priv;
4941
4942         DRM_DEBUG_DRIVER("\n");
4943
4944         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4945         if (!file_priv)
4946                 return -ENOMEM;
4947
4948         file->driver_priv = file_priv;
4949         file_priv->dev_priv = dev->dev_private;
4950
4951         spin_lock_init(&file_priv->mm.lock);
4952         INIT_LIST_HEAD(&file_priv->mm.request_list);
4953         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4954                           i915_gem_file_idle_work_handler);
4955
4956         idr_init(&file_priv->context_idr);
4957
4958         return 0;
4959 }
4960
4961 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4962 {
4963         if (!mutex_is_locked(mutex))
4964                 return false;
4965
4966 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4967         return mutex->owner == task;
4968 #else
4969         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4970         return false;
4971 #endif
4972 }
4973
4974 static unsigned long
4975 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4976 {
4977         struct drm_i915_private *dev_priv =
4978                 container_of(shrinker,
4979                              struct drm_i915_private,
4980                              mm.inactive_shrinker);
4981         struct drm_device *dev = dev_priv->dev;
4982         struct drm_i915_gem_object *obj;
4983         bool unlock = true;
4984         unsigned long count;
4985
4986         if (!mutex_trylock(&dev->struct_mutex)) {
4987                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4988                         return 0;
4989
4990                 if (dev_priv->mm.shrinker_no_lock_stealing)
4991                         return 0;
4992
4993                 unlock = false;
4994         }
4995
4996         count = 0;
4997         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4998                 if (obj->pages_pin_count == 0)
4999                         count += obj->base.size >> PAGE_SHIFT;
5000
5001         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5002                 if (obj->active)
5003                         continue;
5004
5005                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
5006                         count += obj->base.size >> PAGE_SHIFT;
5007         }
5008
5009         if (unlock)
5010                 mutex_unlock(&dev->struct_mutex);
5011
5012         return count;
5013 }
5014
5015 /* All the new VM stuff */
5016 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5017                                   struct i915_address_space *vm)
5018 {
5019         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5020         struct i915_vma *vma;
5021
5022         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5023                 vm = &dev_priv->gtt.base;
5024
5025         BUG_ON(list_empty(&o->vma_list));
5026         list_for_each_entry(vma, &o->vma_list, vma_link) {
5027                 if (vma->vm == vm)
5028                         return vma->node.start;
5029
5030         }
5031         return -1;
5032 }
5033
5034 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5035                         struct i915_address_space *vm)
5036 {
5037         struct i915_vma *vma;
5038
5039         list_for_each_entry(vma, &o->vma_list, vma_link)
5040                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5041                         return true;
5042
5043         return false;
5044 }
5045
5046 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5047 {
5048         struct i915_vma *vma;
5049
5050         list_for_each_entry(vma, &o->vma_list, vma_link)
5051                 if (drm_mm_node_allocated(&vma->node))
5052                         return true;
5053
5054         return false;
5055 }
5056
5057 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5058                                 struct i915_address_space *vm)
5059 {
5060         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5061         struct i915_vma *vma;
5062
5063         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5064                 vm = &dev_priv->gtt.base;
5065
5066         BUG_ON(list_empty(&o->vma_list));
5067
5068         list_for_each_entry(vma, &o->vma_list, vma_link)
5069                 if (vma->vm == vm)
5070                         return vma->node.size;
5071
5072         return 0;
5073 }
5074
5075 static unsigned long
5076 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5077 {
5078         struct drm_i915_private *dev_priv =
5079                 container_of(shrinker,
5080                              struct drm_i915_private,
5081                              mm.inactive_shrinker);
5082         struct drm_device *dev = dev_priv->dev;
5083         unsigned long freed;
5084         bool unlock = true;
5085
5086         if (!mutex_trylock(&dev->struct_mutex)) {
5087                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5088                         return SHRINK_STOP;
5089
5090                 if (dev_priv->mm.shrinker_no_lock_stealing)
5091                         return SHRINK_STOP;
5092
5093                 unlock = false;
5094         }
5095
5096         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5097         if (freed < sc->nr_to_scan)
5098                 freed += __i915_gem_shrink(dev_priv,
5099                                            sc->nr_to_scan - freed,
5100                                            false);
5101         if (freed < sc->nr_to_scan)
5102                 freed += i915_gem_shrink_all(dev_priv);
5103
5104         if (unlock)
5105                 mutex_unlock(&dev->struct_mutex);
5106
5107         return freed;
5108 }
5109
5110 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5111 {
5112         struct i915_vma *vma;
5113
5114         if (WARN_ON(list_empty(&obj->vma_list)))
5115                 return NULL;
5116
5117         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5118         if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5119                 return NULL;
5120
5121         return vma;
5122 }