]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Perform relocations in CPU domain [if in CPU domain]
[mv-sheeva.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42                                                   bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46                                              int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48                                                      uint64_t offset,
49                                                      uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52                                           bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54                                            unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57                                 struct drm_i915_gem_pwrite *args,
58                                 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63                           gfp_t gfpmask);
64
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
67
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
70
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73                                   size_t size)
74 {
75         dev_priv->mm.object_count++;
76         dev_priv->mm.object_memory += size;
77 }
78
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80                                      size_t size)
81 {
82         dev_priv->mm.object_count--;
83         dev_priv->mm.object_memory -= size;
84 }
85
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87                                   size_t size)
88 {
89         dev_priv->mm.gtt_count++;
90         dev_priv->mm.gtt_memory += size;
91 }
92
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94                                      size_t size)
95 {
96         dev_priv->mm.gtt_count--;
97         dev_priv->mm.gtt_memory -= size;
98 }
99
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101                                   size_t size)
102 {
103         dev_priv->mm.pin_count++;
104         dev_priv->mm.pin_memory += size;
105 }
106
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         dev_priv->mm.pin_count--;
111         dev_priv->mm.pin_memory -= size;
112 }
113
114 int
115 i915_gem_check_is_wedged(struct drm_device *dev)
116 {
117         struct drm_i915_private *dev_priv = dev->dev_private;
118         struct completion *x = &dev_priv->error_completion;
119         unsigned long flags;
120         int ret;
121
122         if (!atomic_read(&dev_priv->mm.wedged))
123                 return 0;
124
125         ret = wait_for_completion_interruptible(x);
126         if (ret)
127                 return ret;
128
129         /* Success, we reset the GPU! */
130         if (!atomic_read(&dev_priv->mm.wedged))
131                 return 0;
132
133         /* GPU is hung, bump the completion count to account for
134          * the token we just consumed so that we never hit zero and
135          * end up waiting upon a subsequent completion event that
136          * will never happen.
137          */
138         spin_lock_irqsave(&x->wait.lock, flags);
139         x->done++;
140         spin_unlock_irqrestore(&x->wait.lock, flags);
141         return -EIO;
142 }
143
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
145 {
146         struct drm_i915_private *dev_priv = dev->dev_private;
147         int ret;
148
149         ret = i915_gem_check_is_wedged(dev);
150         if (ret)
151                 return ret;
152
153         ret = mutex_lock_interruptible(&dev->struct_mutex);
154         if (ret)
155                 return ret;
156
157         if (atomic_read(&dev_priv->mm.wedged)) {
158                 mutex_unlock(&dev->struct_mutex);
159                 return -EAGAIN;
160         }
161
162         WARN_ON(i915_verify_lists(dev));
163         return 0;
164 }
165
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168 {
169         return obj_priv->gtt_space &&
170                 !obj_priv->active &&
171                 obj_priv->pin_count == 0;
172 }
173
174 int i915_gem_do_init(struct drm_device *dev,
175                      unsigned long start,
176                      unsigned long end)
177 {
178         drm_i915_private_t *dev_priv = dev->dev_private;
179
180         if (start >= end ||
181             (start & (PAGE_SIZE - 1)) != 0 ||
182             (end & (PAGE_SIZE - 1)) != 0) {
183                 return -EINVAL;
184         }
185
186         drm_mm_init(&dev_priv->mm.gtt_space, start,
187                     end - start);
188
189         dev_priv->mm.gtt_total = end - start;
190
191         return 0;
192 }
193
194 int
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196                     struct drm_file *file_priv)
197 {
198         struct drm_i915_gem_init *args = data;
199         int ret;
200
201         mutex_lock(&dev->struct_mutex);
202         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203         mutex_unlock(&dev->struct_mutex);
204
205         return ret;
206 }
207
208 int
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210                             struct drm_file *file_priv)
211 {
212         struct drm_i915_private *dev_priv = dev->dev_private;
213         struct drm_i915_gem_get_aperture *args = data;
214
215         if (!(dev->driver->driver_features & DRIVER_GEM))
216                 return -ENODEV;
217
218         mutex_lock(&dev->struct_mutex);
219         args->aper_size = dev_priv->mm.gtt_total;
220         args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221         mutex_unlock(&dev->struct_mutex);
222
223         return 0;
224 }
225
226
227 /**
228  * Creates a new mm object and returns a handle to it.
229  */
230 int
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232                       struct drm_file *file_priv)
233 {
234         struct drm_i915_gem_create *args = data;
235         struct drm_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         args->size = roundup(args->size, PAGE_SIZE);
240
241         /* Allocate the new object */
242         obj = i915_gem_alloc_object(dev, args->size);
243         if (obj == NULL)
244                 return -ENOMEM;
245
246         ret = drm_gem_handle_create(file_priv, obj, &handle);
247         /* drop reference from allocate - handle holds it now */
248         drm_gem_object_unreference_unlocked(obj);
249         if (ret) {
250                 return ret;
251         }
252
253         args->handle = handle;
254         return 0;
255 }
256
257 static inline int
258 fast_shmem_read(struct page **pages,
259                 loff_t page_base, int page_offset,
260                 char __user *data,
261                 int length)
262 {
263         char __iomem *vaddr;
264         int unwritten;
265
266         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
267         if (vaddr == NULL)
268                 return -ENOMEM;
269         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
270         kunmap_atomic(vaddr, KM_USER0);
271
272         if (unwritten)
273                 return -EFAULT;
274
275         return 0;
276 }
277
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279 {
280         drm_i915_private_t *dev_priv = obj->dev->dev_private;
281         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282
283         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284                 obj_priv->tiling_mode != I915_TILING_NONE;
285 }
286
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289                 int dst_offset,
290                 struct page *src_page,
291                 int src_offset,
292                 int length)
293 {
294         char *dst_vaddr, *src_vaddr;
295
296         dst_vaddr = kmap(dst_page);
297         src_vaddr = kmap(src_page);
298
299         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
301         kunmap(src_page);
302         kunmap(dst_page);
303 }
304
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307                       int gpu_offset,
308                       struct page *cpu_page,
309                       int cpu_offset,
310                       int length,
311                       int is_read)
312 {
313         char *gpu_vaddr, *cpu_vaddr;
314
315         /* Use the unswizzled path if this page isn't affected. */
316         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317                 if (is_read)
318                         return slow_shmem_copy(cpu_page, cpu_offset,
319                                                gpu_page, gpu_offset, length);
320                 else
321                         return slow_shmem_copy(gpu_page, gpu_offset,
322                                                cpu_page, cpu_offset, length);
323         }
324
325         gpu_vaddr = kmap(gpu_page);
326         cpu_vaddr = kmap(cpu_page);
327
328         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329          * XORing with the other bits (A9 for Y, A9 and A10 for X)
330          */
331         while (length > 0) {
332                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333                 int this_length = min(cacheline_end - gpu_offset, length);
334                 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336                 if (is_read) {
337                         memcpy(cpu_vaddr + cpu_offset,
338                                gpu_vaddr + swizzled_gpu_offset,
339                                this_length);
340                 } else {
341                         memcpy(gpu_vaddr + swizzled_gpu_offset,
342                                cpu_vaddr + cpu_offset,
343                                this_length);
344                 }
345                 cpu_offset += this_length;
346                 gpu_offset += this_length;
347                 length -= this_length;
348         }
349
350         kunmap(cpu_page);
351         kunmap(gpu_page);
352 }
353
354 /**
355  * This is the fast shmem pread path, which attempts to copy_from_user directly
356  * from the backing pages of the object to the user's address space.  On a
357  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358  */
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361                           struct drm_i915_gem_pread *args,
362                           struct drm_file *file_priv)
363 {
364         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365         ssize_t remain;
366         loff_t offset, page_base;
367         char __user *user_data;
368         int page_offset, page_length;
369         int ret;
370
371         user_data = (char __user *) (uintptr_t) args->data_ptr;
372         remain = args->size;
373
374         ret = i915_mutex_lock_interruptible(dev);
375         if (ret)
376                 return ret;
377
378         ret = i915_gem_object_get_pages(obj, 0);
379         if (ret != 0)
380                 goto fail_unlock;
381
382         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
383                                                         args->size);
384         if (ret != 0)
385                 goto fail_put_pages;
386
387         obj_priv = to_intel_bo(obj);
388         offset = args->offset;
389
390         while (remain > 0) {
391                 /* Operation in this page
392                  *
393                  * page_base = page offset within aperture
394                  * page_offset = offset within page
395                  * page_length = bytes to copy for this page
396                  */
397                 page_base = (offset & ~(PAGE_SIZE-1));
398                 page_offset = offset & (PAGE_SIZE-1);
399                 page_length = remain;
400                 if ((page_offset + remain) > PAGE_SIZE)
401                         page_length = PAGE_SIZE - page_offset;
402
403                 ret = fast_shmem_read(obj_priv->pages,
404                                       page_base, page_offset,
405                                       user_data, page_length);
406                 if (ret)
407                         goto fail_put_pages;
408
409                 remain -= page_length;
410                 user_data += page_length;
411                 offset += page_length;
412         }
413
414 fail_put_pages:
415         i915_gem_object_put_pages(obj);
416 fail_unlock:
417         mutex_unlock(&dev->struct_mutex);
418
419         return ret;
420 }
421
422 static int
423 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
424 {
425         int ret;
426
427         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
428
429         /* If we've insufficient memory to map in the pages, attempt
430          * to make some space by throwing out some old buffers.
431          */
432         if (ret == -ENOMEM) {
433                 struct drm_device *dev = obj->dev;
434
435                 ret = i915_gem_evict_something(dev, obj->size,
436                                                i915_gem_get_gtt_alignment(obj));
437                 if (ret)
438                         return ret;
439
440                 ret = i915_gem_object_get_pages(obj, 0);
441         }
442
443         return ret;
444 }
445
446 /**
447  * This is the fallback shmem pread path, which allocates temporary storage
448  * in kernel space to copy_to_user into outside of the struct_mutex, so we
449  * can copy out of the object's backing pages while holding the struct mutex
450  * and not take page faults.
451  */
452 static int
453 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
454                           struct drm_i915_gem_pread *args,
455                           struct drm_file *file_priv)
456 {
457         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
458         struct mm_struct *mm = current->mm;
459         struct page **user_pages;
460         ssize_t remain;
461         loff_t offset, pinned_pages, i;
462         loff_t first_data_page, last_data_page, num_pages;
463         int shmem_page_index, shmem_page_offset;
464         int data_page_index,  data_page_offset;
465         int page_length;
466         int ret;
467         uint64_t data_ptr = args->data_ptr;
468         int do_bit17_swizzling;
469
470         remain = args->size;
471
472         /* Pin the user pages containing the data.  We can't fault while
473          * holding the struct mutex, yet we want to hold it while
474          * dereferencing the user data.
475          */
476         first_data_page = data_ptr / PAGE_SIZE;
477         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
478         num_pages = last_data_page - first_data_page + 1;
479
480         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
481         if (user_pages == NULL)
482                 return -ENOMEM;
483
484         down_read(&mm->mmap_sem);
485         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
486                                       num_pages, 1, 0, user_pages, NULL);
487         up_read(&mm->mmap_sem);
488         if (pinned_pages < num_pages) {
489                 ret = -EFAULT;
490                 goto fail_put_user_pages;
491         }
492
493         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
494
495         ret = i915_mutex_lock_interruptible(dev);
496         if (ret)
497                 goto fail_put_user_pages;
498
499         ret = i915_gem_object_get_pages_or_evict(obj);
500         if (ret)
501                 goto fail_unlock;
502
503         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
504                                                         args->size);
505         if (ret != 0)
506                 goto fail_put_pages;
507
508         obj_priv = to_intel_bo(obj);
509         offset = args->offset;
510
511         while (remain > 0) {
512                 /* Operation in this page
513                  *
514                  * shmem_page_index = page number within shmem file
515                  * shmem_page_offset = offset within page in shmem file
516                  * data_page_index = page number in get_user_pages return
517                  * data_page_offset = offset with data_page_index page.
518                  * page_length = bytes to copy for this page
519                  */
520                 shmem_page_index = offset / PAGE_SIZE;
521                 shmem_page_offset = offset & ~PAGE_MASK;
522                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
523                 data_page_offset = data_ptr & ~PAGE_MASK;
524
525                 page_length = remain;
526                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
527                         page_length = PAGE_SIZE - shmem_page_offset;
528                 if ((data_page_offset + page_length) > PAGE_SIZE)
529                         page_length = PAGE_SIZE - data_page_offset;
530
531                 if (do_bit17_swizzling) {
532                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
533                                               shmem_page_offset,
534                                               user_pages[data_page_index],
535                                               data_page_offset,
536                                               page_length,
537                                               1);
538                 } else {
539                         slow_shmem_copy(user_pages[data_page_index],
540                                         data_page_offset,
541                                         obj_priv->pages[shmem_page_index],
542                                         shmem_page_offset,
543                                         page_length);
544                 }
545
546                 remain -= page_length;
547                 data_ptr += page_length;
548                 offset += page_length;
549         }
550
551 fail_put_pages:
552         i915_gem_object_put_pages(obj);
553 fail_unlock:
554         mutex_unlock(&dev->struct_mutex);
555 fail_put_user_pages:
556         for (i = 0; i < pinned_pages; i++) {
557                 SetPageDirty(user_pages[i]);
558                 page_cache_release(user_pages[i]);
559         }
560         drm_free_large(user_pages);
561
562         return ret;
563 }
564
565 /**
566  * Reads data from the object referenced by handle.
567  *
568  * On error, the contents of *data are undefined.
569  */
570 int
571 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
572                      struct drm_file *file_priv)
573 {
574         struct drm_i915_gem_pread *args = data;
575         struct drm_gem_object *obj;
576         struct drm_i915_gem_object *obj_priv;
577         int ret = 0;
578
579         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
580         if (obj == NULL)
581                 return -ENOENT;
582         obj_priv = to_intel_bo(obj);
583
584         /* Bounds check source.  */
585         if (args->offset > obj->size || args->size > obj->size - args->offset) {
586                 ret = -EINVAL;
587                 goto out;
588         }
589
590         if (args->size == 0)
591                 goto out;
592
593         if (!access_ok(VERIFY_WRITE,
594                        (char __user *)(uintptr_t)args->data_ptr,
595                        args->size)) {
596                 ret = -EFAULT;
597                 goto out;
598         }
599
600         if (i915_gem_object_needs_bit17_swizzle(obj)) {
601                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
602         } else {
603                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
604                 if (ret != 0)
605                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
606                                                         file_priv);
607         }
608
609 out:
610         drm_gem_object_unreference_unlocked(obj);
611         return ret;
612 }
613
614 /* This is the fast write path which cannot handle
615  * page faults in the source data
616  */
617
618 static inline int
619 fast_user_write(struct io_mapping *mapping,
620                 loff_t page_base, int page_offset,
621                 char __user *user_data,
622                 int length)
623 {
624         char *vaddr_atomic;
625         unsigned long unwritten;
626
627         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
628         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
629                                                       user_data, length);
630         io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
631         if (unwritten)
632                 return -EFAULT;
633         return 0;
634 }
635
636 /* Here's the write path which can sleep for
637  * page faults
638  */
639
640 static inline void
641 slow_kernel_write(struct io_mapping *mapping,
642                   loff_t gtt_base, int gtt_offset,
643                   struct page *user_page, int user_offset,
644                   int length)
645 {
646         char __iomem *dst_vaddr;
647         char *src_vaddr;
648
649         dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
650         src_vaddr = kmap(user_page);
651
652         memcpy_toio(dst_vaddr + gtt_offset,
653                     src_vaddr + user_offset,
654                     length);
655
656         kunmap(user_page);
657         io_mapping_unmap(dst_vaddr);
658 }
659
660 static inline int
661 fast_shmem_write(struct page **pages,
662                  loff_t page_base, int page_offset,
663                  char __user *data,
664                  int length)
665 {
666         char __iomem *vaddr;
667         unsigned long unwritten;
668
669         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
670         if (vaddr == NULL)
671                 return -ENOMEM;
672         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
673         kunmap_atomic(vaddr, KM_USER0);
674
675         if (unwritten)
676                 return -EFAULT;
677         return 0;
678 }
679
680 /**
681  * This is the fast pwrite path, where we copy the data directly from the
682  * user into the GTT, uncached.
683  */
684 static int
685 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
686                          struct drm_i915_gem_pwrite *args,
687                          struct drm_file *file_priv)
688 {
689         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
690         drm_i915_private_t *dev_priv = dev->dev_private;
691         ssize_t remain;
692         loff_t offset, page_base;
693         char __user *user_data;
694         int page_offset, page_length;
695         int ret;
696
697         user_data = (char __user *) (uintptr_t) args->data_ptr;
698         remain = args->size;
699
700         ret = i915_mutex_lock_interruptible(dev);
701         if (ret)
702                 return ret;
703
704         ret = i915_gem_object_pin(obj, 0);
705         if (ret) {
706                 mutex_unlock(&dev->struct_mutex);
707                 return ret;
708         }
709         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
710         if (ret)
711                 goto fail;
712
713         obj_priv = to_intel_bo(obj);
714         offset = obj_priv->gtt_offset + args->offset;
715
716         while (remain > 0) {
717                 /* Operation in this page
718                  *
719                  * page_base = page offset within aperture
720                  * page_offset = offset within page
721                  * page_length = bytes to copy for this page
722                  */
723                 page_base = (offset & ~(PAGE_SIZE-1));
724                 page_offset = offset & (PAGE_SIZE-1);
725                 page_length = remain;
726                 if ((page_offset + remain) > PAGE_SIZE)
727                         page_length = PAGE_SIZE - page_offset;
728
729                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
730                                        page_offset, user_data, page_length);
731
732                 /* If we get a fault while copying data, then (presumably) our
733                  * source page isn't available.  Return the error and we'll
734                  * retry in the slow path.
735                  */
736                 if (ret)
737                         goto fail;
738
739                 remain -= page_length;
740                 user_data += page_length;
741                 offset += page_length;
742         }
743
744 fail:
745         i915_gem_object_unpin(obj);
746         mutex_unlock(&dev->struct_mutex);
747
748         return ret;
749 }
750
751 /**
752  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
753  * the memory and maps it using kmap_atomic for copying.
754  *
755  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
756  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
757  */
758 static int
759 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
760                          struct drm_i915_gem_pwrite *args,
761                          struct drm_file *file_priv)
762 {
763         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
764         drm_i915_private_t *dev_priv = dev->dev_private;
765         ssize_t remain;
766         loff_t gtt_page_base, offset;
767         loff_t first_data_page, last_data_page, num_pages;
768         loff_t pinned_pages, i;
769         struct page **user_pages;
770         struct mm_struct *mm = current->mm;
771         int gtt_page_offset, data_page_offset, data_page_index, page_length;
772         int ret;
773         uint64_t data_ptr = args->data_ptr;
774
775         remain = args->size;
776
777         /* Pin the user pages containing the data.  We can't fault while
778          * holding the struct mutex, and all of the pwrite implementations
779          * want to hold it while dereferencing the user data.
780          */
781         first_data_page = data_ptr / PAGE_SIZE;
782         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
783         num_pages = last_data_page - first_data_page + 1;
784
785         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
786         if (user_pages == NULL)
787                 return -ENOMEM;
788
789         down_read(&mm->mmap_sem);
790         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
791                                       num_pages, 0, 0, user_pages, NULL);
792         up_read(&mm->mmap_sem);
793         if (pinned_pages < num_pages) {
794                 ret = -EFAULT;
795                 goto out_unpin_pages;
796         }
797
798         ret = i915_mutex_lock_interruptible(dev);
799         if (ret)
800                 goto out_unpin_pages;
801
802         ret = i915_gem_object_pin(obj, 0);
803         if (ret)
804                 goto out_unlock;
805
806         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
807         if (ret)
808                 goto out_unpin_object;
809
810         obj_priv = to_intel_bo(obj);
811         offset = obj_priv->gtt_offset + args->offset;
812
813         while (remain > 0) {
814                 /* Operation in this page
815                  *
816                  * gtt_page_base = page offset within aperture
817                  * gtt_page_offset = offset within page in aperture
818                  * data_page_index = page number in get_user_pages return
819                  * data_page_offset = offset with data_page_index page.
820                  * page_length = bytes to copy for this page
821                  */
822                 gtt_page_base = offset & PAGE_MASK;
823                 gtt_page_offset = offset & ~PAGE_MASK;
824                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
825                 data_page_offset = data_ptr & ~PAGE_MASK;
826
827                 page_length = remain;
828                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
829                         page_length = PAGE_SIZE - gtt_page_offset;
830                 if ((data_page_offset + page_length) > PAGE_SIZE)
831                         page_length = PAGE_SIZE - data_page_offset;
832
833                 slow_kernel_write(dev_priv->mm.gtt_mapping,
834                                   gtt_page_base, gtt_page_offset,
835                                   user_pages[data_page_index],
836                                   data_page_offset,
837                                   page_length);
838
839                 remain -= page_length;
840                 offset += page_length;
841                 data_ptr += page_length;
842         }
843
844 out_unpin_object:
845         i915_gem_object_unpin(obj);
846 out_unlock:
847         mutex_unlock(&dev->struct_mutex);
848 out_unpin_pages:
849         for (i = 0; i < pinned_pages; i++)
850                 page_cache_release(user_pages[i]);
851         drm_free_large(user_pages);
852
853         return ret;
854 }
855
856 /**
857  * This is the fast shmem pwrite path, which attempts to directly
858  * copy_from_user into the kmapped pages backing the object.
859  */
860 static int
861 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
862                            struct drm_i915_gem_pwrite *args,
863                            struct drm_file *file_priv)
864 {
865         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
866         ssize_t remain;
867         loff_t offset, page_base;
868         char __user *user_data;
869         int page_offset, page_length;
870         int ret;
871
872         user_data = (char __user *) (uintptr_t) args->data_ptr;
873         remain = args->size;
874
875         ret = i915_mutex_lock_interruptible(dev);
876         if (ret)
877                 return ret;
878
879         ret = i915_gem_object_get_pages(obj, 0);
880         if (ret != 0)
881                 goto fail_unlock;
882
883         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
884         if (ret != 0)
885                 goto fail_put_pages;
886
887         obj_priv = to_intel_bo(obj);
888         offset = args->offset;
889         obj_priv->dirty = 1;
890
891         while (remain > 0) {
892                 /* Operation in this page
893                  *
894                  * page_base = page offset within aperture
895                  * page_offset = offset within page
896                  * page_length = bytes to copy for this page
897                  */
898                 page_base = (offset & ~(PAGE_SIZE-1));
899                 page_offset = offset & (PAGE_SIZE-1);
900                 page_length = remain;
901                 if ((page_offset + remain) > PAGE_SIZE)
902                         page_length = PAGE_SIZE - page_offset;
903
904                 ret = fast_shmem_write(obj_priv->pages,
905                                        page_base, page_offset,
906                                        user_data, page_length);
907                 if (ret)
908                         goto fail_put_pages;
909
910                 remain -= page_length;
911                 user_data += page_length;
912                 offset += page_length;
913         }
914
915 fail_put_pages:
916         i915_gem_object_put_pages(obj);
917 fail_unlock:
918         mutex_unlock(&dev->struct_mutex);
919
920         return ret;
921 }
922
923 /**
924  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
925  * the memory and maps it using kmap_atomic for copying.
926  *
927  * This avoids taking mmap_sem for faulting on the user's address while the
928  * struct_mutex is held.
929  */
930 static int
931 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
932                            struct drm_i915_gem_pwrite *args,
933                            struct drm_file *file_priv)
934 {
935         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
936         struct mm_struct *mm = current->mm;
937         struct page **user_pages;
938         ssize_t remain;
939         loff_t offset, pinned_pages, i;
940         loff_t first_data_page, last_data_page, num_pages;
941         int shmem_page_index, shmem_page_offset;
942         int data_page_index,  data_page_offset;
943         int page_length;
944         int ret;
945         uint64_t data_ptr = args->data_ptr;
946         int do_bit17_swizzling;
947
948         remain = args->size;
949
950         /* Pin the user pages containing the data.  We can't fault while
951          * holding the struct mutex, and all of the pwrite implementations
952          * want to hold it while dereferencing the user data.
953          */
954         first_data_page = data_ptr / PAGE_SIZE;
955         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
956         num_pages = last_data_page - first_data_page + 1;
957
958         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
959         if (user_pages == NULL)
960                 return -ENOMEM;
961
962         down_read(&mm->mmap_sem);
963         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
964                                       num_pages, 0, 0, user_pages, NULL);
965         up_read(&mm->mmap_sem);
966         if (pinned_pages < num_pages) {
967                 ret = -EFAULT;
968                 goto fail_put_user_pages;
969         }
970
971         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
972
973         ret = i915_mutex_lock_interruptible(dev);
974         if (ret)
975                 goto fail_put_user_pages;
976
977         ret = i915_gem_object_get_pages_or_evict(obj);
978         if (ret)
979                 goto fail_unlock;
980
981         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
982         if (ret != 0)
983                 goto fail_put_pages;
984
985         obj_priv = to_intel_bo(obj);
986         offset = args->offset;
987         obj_priv->dirty = 1;
988
989         while (remain > 0) {
990                 /* Operation in this page
991                  *
992                  * shmem_page_index = page number within shmem file
993                  * shmem_page_offset = offset within page in shmem file
994                  * data_page_index = page number in get_user_pages return
995                  * data_page_offset = offset with data_page_index page.
996                  * page_length = bytes to copy for this page
997                  */
998                 shmem_page_index = offset / PAGE_SIZE;
999                 shmem_page_offset = offset & ~PAGE_MASK;
1000                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
1001                 data_page_offset = data_ptr & ~PAGE_MASK;
1002
1003                 page_length = remain;
1004                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1005                         page_length = PAGE_SIZE - shmem_page_offset;
1006                 if ((data_page_offset + page_length) > PAGE_SIZE)
1007                         page_length = PAGE_SIZE - data_page_offset;
1008
1009                 if (do_bit17_swizzling) {
1010                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
1011                                               shmem_page_offset,
1012                                               user_pages[data_page_index],
1013                                               data_page_offset,
1014                                               page_length,
1015                                               0);
1016                 } else {
1017                         slow_shmem_copy(obj_priv->pages[shmem_page_index],
1018                                         shmem_page_offset,
1019                                         user_pages[data_page_index],
1020                                         data_page_offset,
1021                                         page_length);
1022                 }
1023
1024                 remain -= page_length;
1025                 data_ptr += page_length;
1026                 offset += page_length;
1027         }
1028
1029 fail_put_pages:
1030         i915_gem_object_put_pages(obj);
1031 fail_unlock:
1032         mutex_unlock(&dev->struct_mutex);
1033 fail_put_user_pages:
1034         for (i = 0; i < pinned_pages; i++)
1035                 page_cache_release(user_pages[i]);
1036         drm_free_large(user_pages);
1037
1038         return ret;
1039 }
1040
1041 /**
1042  * Writes data to the object referenced by handle.
1043  *
1044  * On error, the contents of the buffer that were to be modified are undefined.
1045  */
1046 int
1047 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1048                       struct drm_file *file_priv)
1049 {
1050         struct drm_i915_gem_pwrite *args = data;
1051         struct drm_gem_object *obj;
1052         struct drm_i915_gem_object *obj_priv;
1053         int ret = 0;
1054
1055         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1056         if (obj == NULL)
1057                 return -ENOENT;
1058         obj_priv = to_intel_bo(obj);
1059
1060         /* Bounds check destination. */
1061         if (args->offset > obj->size || args->size > obj->size - args->offset) {
1062                 ret = -EINVAL;
1063                 goto out;
1064         }
1065
1066         if (args->size == 0)
1067                 goto out;
1068
1069         if (!access_ok(VERIFY_READ,
1070                        (char __user *)(uintptr_t)args->data_ptr,
1071                        args->size)) {
1072                 ret = -EFAULT;
1073                 goto out;
1074         }
1075
1076         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077          * it would end up going through the fenced access, and we'll get
1078          * different detiling behavior between reading and writing.
1079          * pread/pwrite currently are reading and writing from the CPU
1080          * perspective, requiring manual detiling by the client.
1081          */
1082         if (obj_priv->phys_obj)
1083                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
1084         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1085                  obj_priv->gtt_space &&
1086                  obj->write_domain != I915_GEM_DOMAIN_CPU) {
1087                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
1088                 if (ret == -EFAULT) {
1089                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
1090                                                        file_priv);
1091                 }
1092         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1093                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1094         } else {
1095                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1096                 if (ret == -EFAULT) {
1097                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1098                                                          file_priv);
1099                 }
1100         }
1101
1102 #if WATCH_PWRITE
1103         if (ret)
1104                 DRM_INFO("pwrite failed %d\n", ret);
1105 #endif
1106
1107 out:
1108         drm_gem_object_unreference_unlocked(obj);
1109         return ret;
1110 }
1111
1112 /**
1113  * Called when user space prepares to use an object with the CPU, either
1114  * through the mmap ioctl's mapping or a GTT mapping.
1115  */
1116 int
1117 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1118                           struct drm_file *file_priv)
1119 {
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         struct drm_i915_gem_set_domain *args = data;
1122         struct drm_gem_object *obj;
1123         struct drm_i915_gem_object *obj_priv;
1124         uint32_t read_domains = args->read_domains;
1125         uint32_t write_domain = args->write_domain;
1126         int ret;
1127
1128         if (!(dev->driver->driver_features & DRIVER_GEM))
1129                 return -ENODEV;
1130
1131         /* Only handle setting domains to types used by the CPU. */
1132         if (write_domain & I915_GEM_GPU_DOMAINS)
1133                 return -EINVAL;
1134
1135         if (read_domains & I915_GEM_GPU_DOMAINS)
1136                 return -EINVAL;
1137
1138         /* Having something in the write domain implies it's in the read
1139          * domain, and only that read domain.  Enforce that in the request.
1140          */
1141         if (write_domain != 0 && read_domains != write_domain)
1142                 return -EINVAL;
1143
1144         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1145         if (obj == NULL)
1146                 return -ENOENT;
1147         obj_priv = to_intel_bo(obj);
1148
1149         ret = i915_mutex_lock_interruptible(dev);
1150         if (ret) {
1151                 drm_gem_object_unreference_unlocked(obj);
1152                 return ret;
1153         }
1154
1155         intel_mark_busy(dev, obj);
1156
1157         if (read_domains & I915_GEM_DOMAIN_GTT) {
1158                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1159
1160                 /* Update the LRU on the fence for the CPU access that's
1161                  * about to occur.
1162                  */
1163                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1164                         struct drm_i915_fence_reg *reg =
1165                                 &dev_priv->fence_regs[obj_priv->fence_reg];
1166                         list_move_tail(&reg->lru_list,
1167                                        &dev_priv->mm.fence_list);
1168                 }
1169
1170                 /* Silently promote "you're not bound, there was nothing to do"
1171                  * to success, since the client was just asking us to
1172                  * make sure everything was done.
1173                  */
1174                 if (ret == -EINVAL)
1175                         ret = 0;
1176         } else {
1177                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1178         }
1179
1180         /* Maintain LRU order of "inactive" objects */
1181         if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1182                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1183
1184         drm_gem_object_unreference(obj);
1185         mutex_unlock(&dev->struct_mutex);
1186         return ret;
1187 }
1188
1189 /**
1190  * Called when user space has done writes to this buffer
1191  */
1192 int
1193 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1194                       struct drm_file *file_priv)
1195 {
1196         struct drm_i915_gem_sw_finish *args = data;
1197         struct drm_gem_object *obj;
1198         int ret = 0;
1199
1200         if (!(dev->driver->driver_features & DRIVER_GEM))
1201                 return -ENODEV;
1202
1203         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204         if (obj == NULL)
1205                 return -ENOENT;
1206
1207         ret = i915_mutex_lock_interruptible(dev);
1208         if (ret) {
1209                 drm_gem_object_unreference_unlocked(obj);
1210                 return ret;
1211         }
1212
1213         /* Pinned buffers may be scanout, so flush the cache */
1214         if (to_intel_bo(obj)->pin_count)
1215                 i915_gem_object_flush_cpu_write_domain(obj);
1216
1217         drm_gem_object_unreference(obj);
1218         mutex_unlock(&dev->struct_mutex);
1219         return ret;
1220 }
1221
1222 /**
1223  * Maps the contents of an object, returning the address it is mapped
1224  * into.
1225  *
1226  * While the mapping holds a reference on the contents of the object, it doesn't
1227  * imply a ref on the object itself.
1228  */
1229 int
1230 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1231                    struct drm_file *file_priv)
1232 {
1233         struct drm_i915_gem_mmap *args = data;
1234         struct drm_gem_object *obj;
1235         loff_t offset;
1236         unsigned long addr;
1237
1238         if (!(dev->driver->driver_features & DRIVER_GEM))
1239                 return -ENODEV;
1240
1241         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1242         if (obj == NULL)
1243                 return -ENOENT;
1244
1245         offset = args->offset;
1246
1247         down_write(&current->mm->mmap_sem);
1248         addr = do_mmap(obj->filp, 0, args->size,
1249                        PROT_READ | PROT_WRITE, MAP_SHARED,
1250                        args->offset);
1251         up_write(&current->mm->mmap_sem);
1252         drm_gem_object_unreference_unlocked(obj);
1253         if (IS_ERR((void *)addr))
1254                 return addr;
1255
1256         args->addr_ptr = (uint64_t) addr;
1257
1258         return 0;
1259 }
1260
1261 /**
1262  * i915_gem_fault - fault a page into the GTT
1263  * vma: VMA in question
1264  * vmf: fault info
1265  *
1266  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1267  * from userspace.  The fault handler takes care of binding the object to
1268  * the GTT (if needed), allocating and programming a fence register (again,
1269  * only if needed based on whether the old reg is still valid or the object
1270  * is tiled) and inserting a new PTE into the faulting process.
1271  *
1272  * Note that the faulting process may involve evicting existing objects
1273  * from the GTT and/or fence registers to make room.  So performance may
1274  * suffer if the GTT working set is large or there are few fence registers
1275  * left.
1276  */
1277 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1278 {
1279         struct drm_gem_object *obj = vma->vm_private_data;
1280         struct drm_device *dev = obj->dev;
1281         drm_i915_private_t *dev_priv = dev->dev_private;
1282         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1283         pgoff_t page_offset;
1284         unsigned long pfn;
1285         int ret = 0;
1286         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1287
1288         /* We don't use vmf->pgoff since that has the fake offset */
1289         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1290                 PAGE_SHIFT;
1291
1292         /* Now bind it into the GTT if needed */
1293         mutex_lock(&dev->struct_mutex);
1294         if (!obj_priv->gtt_space) {
1295                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1296                 if (ret)
1297                         goto unlock;
1298
1299                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1300                 if (ret)
1301                         goto unlock;
1302         }
1303
1304         /* Need a new fence register? */
1305         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1306                 ret = i915_gem_object_get_fence_reg(obj, true);
1307                 if (ret)
1308                         goto unlock;
1309         }
1310
1311         if (i915_gem_object_is_inactive(obj_priv))
1312                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1313
1314         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1315                 page_offset;
1316
1317         /* Finally, remap it using the new GTT offset */
1318         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1319 unlock:
1320         mutex_unlock(&dev->struct_mutex);
1321
1322         switch (ret) {
1323         case 0:
1324         case -ERESTARTSYS:
1325                 return VM_FAULT_NOPAGE;
1326         case -ENOMEM:
1327         case -EAGAIN:
1328                 return VM_FAULT_OOM;
1329         default:
1330                 return VM_FAULT_SIGBUS;
1331         }
1332 }
1333
1334 /**
1335  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1336  * @obj: obj in question
1337  *
1338  * GEM memory mapping works by handing back to userspace a fake mmap offset
1339  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1340  * up the object based on the offset and sets up the various memory mapping
1341  * structures.
1342  *
1343  * This routine allocates and attaches a fake offset for @obj.
1344  */
1345 static int
1346 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1347 {
1348         struct drm_device *dev = obj->dev;
1349         struct drm_gem_mm *mm = dev->mm_private;
1350         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1351         struct drm_map_list *list;
1352         struct drm_local_map *map;
1353         int ret = 0;
1354
1355         /* Set the object up for mmap'ing */
1356         list = &obj->map_list;
1357         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1358         if (!list->map)
1359                 return -ENOMEM;
1360
1361         map = list->map;
1362         map->type = _DRM_GEM;
1363         map->size = obj->size;
1364         map->handle = obj;
1365
1366         /* Get a DRM GEM mmap offset allocated... */
1367         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1368                                                     obj->size / PAGE_SIZE, 0, 0);
1369         if (!list->file_offset_node) {
1370                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1371                 ret = -ENOSPC;
1372                 goto out_free_list;
1373         }
1374
1375         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1376                                                   obj->size / PAGE_SIZE, 0);
1377         if (!list->file_offset_node) {
1378                 ret = -ENOMEM;
1379                 goto out_free_list;
1380         }
1381
1382         list->hash.key = list->file_offset_node->start;
1383         ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1384         if (ret) {
1385                 DRM_ERROR("failed to add to map hash\n");
1386                 goto out_free_mm;
1387         }
1388
1389         /* By now we should be all set, any drm_mmap request on the offset
1390          * below will get to our mmap & fault handler */
1391         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1392
1393         return 0;
1394
1395 out_free_mm:
1396         drm_mm_put_block(list->file_offset_node);
1397 out_free_list:
1398         kfree(list->map);
1399
1400         return ret;
1401 }
1402
1403 /**
1404  * i915_gem_release_mmap - remove physical page mappings
1405  * @obj: obj in question
1406  *
1407  * Preserve the reservation of the mmapping with the DRM core code, but
1408  * relinquish ownership of the pages back to the system.
1409  *
1410  * It is vital that we remove the page mapping if we have mapped a tiled
1411  * object through the GTT and then lose the fence register due to
1412  * resource pressure. Similarly if the object has been moved out of the
1413  * aperture, than pages mapped into userspace must be revoked. Removing the
1414  * mapping will then trigger a page fault on the next user access, allowing
1415  * fixup by i915_gem_fault().
1416  */
1417 void
1418 i915_gem_release_mmap(struct drm_gem_object *obj)
1419 {
1420         struct drm_device *dev = obj->dev;
1421         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1422
1423         if (dev->dev_mapping)
1424                 unmap_mapping_range(dev->dev_mapping,
1425                                     obj_priv->mmap_offset, obj->size, 1);
1426 }
1427
1428 static void
1429 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1430 {
1431         struct drm_device *dev = obj->dev;
1432         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1433         struct drm_gem_mm *mm = dev->mm_private;
1434         struct drm_map_list *list;
1435
1436         list = &obj->map_list;
1437         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1438
1439         if (list->file_offset_node) {
1440                 drm_mm_put_block(list->file_offset_node);
1441                 list->file_offset_node = NULL;
1442         }
1443
1444         if (list->map) {
1445                 kfree(list->map);
1446                 list->map = NULL;
1447         }
1448
1449         obj_priv->mmap_offset = 0;
1450 }
1451
1452 /**
1453  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1454  * @obj: object to check
1455  *
1456  * Return the required GTT alignment for an object, taking into account
1457  * potential fence register mapping if needed.
1458  */
1459 static uint32_t
1460 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1461 {
1462         struct drm_device *dev = obj->dev;
1463         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1464         int start, i;
1465
1466         /*
1467          * Minimum alignment is 4k (GTT page size), but might be greater
1468          * if a fence register is needed for the object.
1469          */
1470         if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1471                 return 4096;
1472
1473         /*
1474          * Previous chips need to be aligned to the size of the smallest
1475          * fence register that can contain the object.
1476          */
1477         if (INTEL_INFO(dev)->gen == 3)
1478                 start = 1024*1024;
1479         else
1480                 start = 512*1024;
1481
1482         for (i = start; i < obj->size; i <<= 1)
1483                 ;
1484
1485         return i;
1486 }
1487
1488 /**
1489  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1490  * @dev: DRM device
1491  * @data: GTT mapping ioctl data
1492  * @file_priv: GEM object info
1493  *
1494  * Simply returns the fake offset to userspace so it can mmap it.
1495  * The mmap call will end up in drm_gem_mmap(), which will set things
1496  * up so we can get faults in the handler above.
1497  *
1498  * The fault handler will take care of binding the object into the GTT
1499  * (since it may have been evicted to make room for something), allocating
1500  * a fence register, and mapping the appropriate aperture address into
1501  * userspace.
1502  */
1503 int
1504 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1505                         struct drm_file *file_priv)
1506 {
1507         struct drm_i915_gem_mmap_gtt *args = data;
1508         struct drm_gem_object *obj;
1509         struct drm_i915_gem_object *obj_priv;
1510         int ret;
1511
1512         if (!(dev->driver->driver_features & DRIVER_GEM))
1513                 return -ENODEV;
1514
1515         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1516         if (obj == NULL)
1517                 return -ENOENT;
1518
1519         ret = i915_mutex_lock_interruptible(dev);
1520         if (ret) {
1521                 drm_gem_object_unreference_unlocked(obj);
1522                 return ret;
1523         }
1524
1525         obj_priv = to_intel_bo(obj);
1526
1527         if (obj_priv->madv != I915_MADV_WILLNEED) {
1528                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1529                 drm_gem_object_unreference(obj);
1530                 mutex_unlock(&dev->struct_mutex);
1531                 return -EINVAL;
1532         }
1533
1534
1535         if (!obj_priv->mmap_offset) {
1536                 ret = i915_gem_create_mmap_offset(obj);
1537                 if (ret) {
1538                         drm_gem_object_unreference(obj);
1539                         mutex_unlock(&dev->struct_mutex);
1540                         return ret;
1541                 }
1542         }
1543
1544         args->offset = obj_priv->mmap_offset;
1545
1546         /*
1547          * Pull it into the GTT so that we have a page list (makes the
1548          * initial fault faster and any subsequent flushing possible).
1549          */
1550         if (!obj_priv->agp_mem) {
1551                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1552                 if (ret) {
1553                         drm_gem_object_unreference(obj);
1554                         mutex_unlock(&dev->struct_mutex);
1555                         return ret;
1556                 }
1557         }
1558
1559         drm_gem_object_unreference(obj);
1560         mutex_unlock(&dev->struct_mutex);
1561
1562         return 0;
1563 }
1564
1565 static void
1566 i915_gem_object_put_pages(struct drm_gem_object *obj)
1567 {
1568         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1569         int page_count = obj->size / PAGE_SIZE;
1570         int i;
1571
1572         BUG_ON(obj_priv->pages_refcount == 0);
1573         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1574
1575         if (--obj_priv->pages_refcount != 0)
1576                 return;
1577
1578         if (obj_priv->tiling_mode != I915_TILING_NONE)
1579                 i915_gem_object_save_bit_17_swizzle(obj);
1580
1581         if (obj_priv->madv == I915_MADV_DONTNEED)
1582                 obj_priv->dirty = 0;
1583
1584         for (i = 0; i < page_count; i++) {
1585                 if (obj_priv->dirty)
1586                         set_page_dirty(obj_priv->pages[i]);
1587
1588                 if (obj_priv->madv == I915_MADV_WILLNEED)
1589                         mark_page_accessed(obj_priv->pages[i]);
1590
1591                 page_cache_release(obj_priv->pages[i]);
1592         }
1593         obj_priv->dirty = 0;
1594
1595         drm_free_large(obj_priv->pages);
1596         obj_priv->pages = NULL;
1597 }
1598
1599 static uint32_t
1600 i915_gem_next_request_seqno(struct drm_device *dev,
1601                             struct intel_ring_buffer *ring)
1602 {
1603         drm_i915_private_t *dev_priv = dev->dev_private;
1604
1605         ring->outstanding_lazy_request = true;
1606         return dev_priv->next_seqno;
1607 }
1608
1609 static void
1610 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1611                                struct intel_ring_buffer *ring)
1612 {
1613         struct drm_device *dev = obj->dev;
1614         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1615         uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1616
1617         BUG_ON(ring == NULL);
1618         obj_priv->ring = ring;
1619
1620         /* Add a reference if we're newly entering the active list. */
1621         if (!obj_priv->active) {
1622                 drm_gem_object_reference(obj);
1623                 obj_priv->active = 1;
1624         }
1625
1626         /* Move from whatever list we were on to the tail of execution. */
1627         list_move_tail(&obj_priv->list, &ring->active_list);
1628         obj_priv->last_rendering_seqno = seqno;
1629 }
1630
1631 static void
1632 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1633 {
1634         struct drm_device *dev = obj->dev;
1635         drm_i915_private_t *dev_priv = dev->dev_private;
1636         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1637
1638         BUG_ON(!obj_priv->active);
1639         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1640         obj_priv->last_rendering_seqno = 0;
1641 }
1642
1643 /* Immediately discard the backing storage */
1644 static void
1645 i915_gem_object_truncate(struct drm_gem_object *obj)
1646 {
1647         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1648         struct inode *inode;
1649
1650         /* Our goal here is to return as much of the memory as
1651          * is possible back to the system as we are called from OOM.
1652          * To do this we must instruct the shmfs to drop all of its
1653          * backing pages, *now*. Here we mirror the actions taken
1654          * when by shmem_delete_inode() to release the backing store.
1655          */
1656         inode = obj->filp->f_path.dentry->d_inode;
1657         truncate_inode_pages(inode->i_mapping, 0);
1658         if (inode->i_op->truncate_range)
1659                 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1660
1661         obj_priv->madv = __I915_MADV_PURGED;
1662 }
1663
1664 static inline int
1665 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1666 {
1667         return obj_priv->madv == I915_MADV_DONTNEED;
1668 }
1669
1670 static void
1671 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1672 {
1673         struct drm_device *dev = obj->dev;
1674         drm_i915_private_t *dev_priv = dev->dev_private;
1675         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1676
1677         if (obj_priv->pin_count != 0)
1678                 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1679         else
1680                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1681
1682         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1683
1684         obj_priv->last_rendering_seqno = 0;
1685         obj_priv->ring = NULL;
1686         if (obj_priv->active) {
1687                 obj_priv->active = 0;
1688                 drm_gem_object_unreference(obj);
1689         }
1690         WARN_ON(i915_verify_lists(dev));
1691 }
1692
1693 static void
1694 i915_gem_process_flushing_list(struct drm_device *dev,
1695                                uint32_t flush_domains,
1696                                struct intel_ring_buffer *ring)
1697 {
1698         drm_i915_private_t *dev_priv = dev->dev_private;
1699         struct drm_i915_gem_object *obj_priv, *next;
1700
1701         list_for_each_entry_safe(obj_priv, next,
1702                                  &dev_priv->mm.gpu_write_list,
1703                                  gpu_write_list) {
1704                 struct drm_gem_object *obj = &obj_priv->base;
1705
1706                 if (obj->write_domain & flush_domains &&
1707                     obj_priv->ring == ring) {
1708                         uint32_t old_write_domain = obj->write_domain;
1709
1710                         obj->write_domain = 0;
1711                         list_del_init(&obj_priv->gpu_write_list);
1712                         i915_gem_object_move_to_active(obj, ring);
1713
1714                         /* update the fence lru list */
1715                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1716                                 struct drm_i915_fence_reg *reg =
1717                                         &dev_priv->fence_regs[obj_priv->fence_reg];
1718                                 list_move_tail(&reg->lru_list,
1719                                                 &dev_priv->mm.fence_list);
1720                         }
1721
1722                         trace_i915_gem_object_change_domain(obj,
1723                                                             obj->read_domains,
1724                                                             old_write_domain);
1725                 }
1726         }
1727 }
1728
1729 uint32_t
1730 i915_add_request(struct drm_device *dev,
1731                  struct drm_file *file,
1732                  struct drm_i915_gem_request *request,
1733                  struct intel_ring_buffer *ring)
1734 {
1735         drm_i915_private_t *dev_priv = dev->dev_private;
1736         struct drm_i915_file_private *file_priv = NULL;
1737         uint32_t seqno;
1738         int was_empty;
1739
1740         if (file != NULL)
1741                 file_priv = file->driver_priv;
1742
1743         if (request == NULL) {
1744                 request = kzalloc(sizeof(*request), GFP_KERNEL);
1745                 if (request == NULL)
1746                         return 0;
1747         }
1748
1749         seqno = ring->add_request(dev, ring, 0);
1750         ring->outstanding_lazy_request = false;
1751
1752         request->seqno = seqno;
1753         request->ring = ring;
1754         request->emitted_jiffies = jiffies;
1755         was_empty = list_empty(&ring->request_list);
1756         list_add_tail(&request->list, &ring->request_list);
1757
1758         if (file_priv) {
1759                 spin_lock(&file_priv->mm.lock);
1760                 request->file_priv = file_priv;
1761                 list_add_tail(&request->client_list,
1762                               &file_priv->mm.request_list);
1763                 spin_unlock(&file_priv->mm.lock);
1764         }
1765
1766         if (!dev_priv->mm.suspended) {
1767                 mod_timer(&dev_priv->hangcheck_timer,
1768                           jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1769                 if (was_empty)
1770                         queue_delayed_work(dev_priv->wq,
1771                                            &dev_priv->mm.retire_work, HZ);
1772         }
1773         return seqno;
1774 }
1775
1776 /**
1777  * Command execution barrier
1778  *
1779  * Ensures that all commands in the ring are finished
1780  * before signalling the CPU
1781  */
1782 static void
1783 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1784 {
1785         uint32_t flush_domains = 0;
1786
1787         /* The sampler always gets flushed on i965 (sigh) */
1788         if (INTEL_INFO(dev)->gen >= 4)
1789                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1790
1791         ring->flush(dev, ring,
1792                         I915_GEM_DOMAIN_COMMAND, flush_domains);
1793 }
1794
1795 static inline void
1796 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1797 {
1798         struct drm_i915_file_private *file_priv = request->file_priv;
1799
1800         if (!file_priv)
1801                 return;
1802
1803         spin_lock(&file_priv->mm.lock);
1804         list_del(&request->client_list);
1805         request->file_priv = NULL;
1806         spin_unlock(&file_priv->mm.lock);
1807 }
1808
1809 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1810                                       struct intel_ring_buffer *ring)
1811 {
1812         while (!list_empty(&ring->request_list)) {
1813                 struct drm_i915_gem_request *request;
1814
1815                 request = list_first_entry(&ring->request_list,
1816                                            struct drm_i915_gem_request,
1817                                            list);
1818
1819                 list_del(&request->list);
1820                 i915_gem_request_remove_from_client(request);
1821                 kfree(request);
1822         }
1823
1824         while (!list_empty(&ring->active_list)) {
1825                 struct drm_i915_gem_object *obj_priv;
1826
1827                 obj_priv = list_first_entry(&ring->active_list,
1828                                             struct drm_i915_gem_object,
1829                                             list);
1830
1831                 obj_priv->base.write_domain = 0;
1832                 list_del_init(&obj_priv->gpu_write_list);
1833                 i915_gem_object_move_to_inactive(&obj_priv->base);
1834         }
1835 }
1836
1837 void i915_gem_reset(struct drm_device *dev)
1838 {
1839         struct drm_i915_private *dev_priv = dev->dev_private;
1840         struct drm_i915_gem_object *obj_priv;
1841         int i;
1842
1843         i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1844         if (HAS_BSD(dev))
1845                 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1846
1847         /* Remove anything from the flushing lists. The GPU cache is likely
1848          * to be lost on reset along with the data, so simply move the
1849          * lost bo to the inactive list.
1850          */
1851         while (!list_empty(&dev_priv->mm.flushing_list)) {
1852                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1853                                             struct drm_i915_gem_object,
1854                                             list);
1855
1856                 obj_priv->base.write_domain = 0;
1857                 list_del_init(&obj_priv->gpu_write_list);
1858                 i915_gem_object_move_to_inactive(&obj_priv->base);
1859         }
1860
1861         /* Move everything out of the GPU domains to ensure we do any
1862          * necessary invalidation upon reuse.
1863          */
1864         list_for_each_entry(obj_priv,
1865                             &dev_priv->mm.inactive_list,
1866                             list)
1867         {
1868                 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1869         }
1870
1871         /* The fence registers are invalidated so clear them out */
1872         for (i = 0; i < 16; i++) {
1873                 struct drm_i915_fence_reg *reg;
1874
1875                 reg = &dev_priv->fence_regs[i];
1876                 if (!reg->obj)
1877                         continue;
1878
1879                 i915_gem_clear_fence_reg(reg->obj);
1880         }
1881 }
1882
1883 /**
1884  * This function clears the request list as sequence numbers are passed.
1885  */
1886 static void
1887 i915_gem_retire_requests_ring(struct drm_device *dev,
1888                               struct intel_ring_buffer *ring)
1889 {
1890         drm_i915_private_t *dev_priv = dev->dev_private;
1891         uint32_t seqno;
1892
1893         if (!ring->status_page.page_addr ||
1894             list_empty(&ring->request_list))
1895                 return;
1896
1897         WARN_ON(i915_verify_lists(dev));
1898
1899         seqno = ring->get_seqno(dev, ring);
1900         while (!list_empty(&ring->request_list)) {
1901                 struct drm_i915_gem_request *request;
1902
1903                 request = list_first_entry(&ring->request_list,
1904                                            struct drm_i915_gem_request,
1905                                            list);
1906
1907                 if (!i915_seqno_passed(seqno, request->seqno))
1908                         break;
1909
1910                 trace_i915_gem_request_retire(dev, request->seqno);
1911
1912                 list_del(&request->list);
1913                 i915_gem_request_remove_from_client(request);
1914                 kfree(request);
1915         }
1916
1917         /* Move any buffers on the active list that are no longer referenced
1918          * by the ringbuffer to the flushing/inactive lists as appropriate.
1919          */
1920         while (!list_empty(&ring->active_list)) {
1921                 struct drm_gem_object *obj;
1922                 struct drm_i915_gem_object *obj_priv;
1923
1924                 obj_priv = list_first_entry(&ring->active_list,
1925                                             struct drm_i915_gem_object,
1926                                             list);
1927
1928                 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1929                         break;
1930
1931                 obj = &obj_priv->base;
1932                 if (obj->write_domain != 0)
1933                         i915_gem_object_move_to_flushing(obj);
1934                 else
1935                         i915_gem_object_move_to_inactive(obj);
1936         }
1937
1938         if (unlikely (dev_priv->trace_irq_seqno &&
1939                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1940                 ring->user_irq_put(dev, ring);
1941                 dev_priv->trace_irq_seqno = 0;
1942         }
1943
1944         WARN_ON(i915_verify_lists(dev));
1945 }
1946
1947 void
1948 i915_gem_retire_requests(struct drm_device *dev)
1949 {
1950         drm_i915_private_t *dev_priv = dev->dev_private;
1951
1952         if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1953             struct drm_i915_gem_object *obj_priv, *tmp;
1954
1955             /* We must be careful that during unbind() we do not
1956              * accidentally infinitely recurse into retire requests.
1957              * Currently:
1958              *   retire -> free -> unbind -> wait -> retire_ring
1959              */
1960             list_for_each_entry_safe(obj_priv, tmp,
1961                                      &dev_priv->mm.deferred_free_list,
1962                                      list)
1963                     i915_gem_free_object_tail(&obj_priv->base);
1964         }
1965
1966         i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1967         if (HAS_BSD(dev))
1968                 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1969 }
1970
1971 static void
1972 i915_gem_retire_work_handler(struct work_struct *work)
1973 {
1974         drm_i915_private_t *dev_priv;
1975         struct drm_device *dev;
1976
1977         dev_priv = container_of(work, drm_i915_private_t,
1978                                 mm.retire_work.work);
1979         dev = dev_priv->dev;
1980
1981         /* Come back later if the device is busy... */
1982         if (!mutex_trylock(&dev->struct_mutex)) {
1983                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1984                 return;
1985         }
1986
1987         i915_gem_retire_requests(dev);
1988
1989         if (!dev_priv->mm.suspended &&
1990                 (!list_empty(&dev_priv->render_ring.request_list) ||
1991                         (HAS_BSD(dev) &&
1992                          !list_empty(&dev_priv->bsd_ring.request_list))))
1993                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1994         mutex_unlock(&dev->struct_mutex);
1995 }
1996
1997 int
1998 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1999                      bool interruptible, struct intel_ring_buffer *ring)
2000 {
2001         drm_i915_private_t *dev_priv = dev->dev_private;
2002         u32 ier;
2003         int ret = 0;
2004
2005         BUG_ON(seqno == 0);
2006
2007         if (atomic_read(&dev_priv->mm.wedged))
2008                 return -EAGAIN;
2009
2010         if (ring->outstanding_lazy_request) {
2011                 seqno = i915_add_request(dev, NULL, NULL, ring);
2012                 if (seqno == 0)
2013                         return -ENOMEM;
2014         }
2015         BUG_ON(seqno == dev_priv->next_seqno);
2016
2017         if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
2018                 if (HAS_PCH_SPLIT(dev))
2019                         ier = I915_READ(DEIER) | I915_READ(GTIER);
2020                 else
2021                         ier = I915_READ(IER);
2022                 if (!ier) {
2023                         DRM_ERROR("something (likely vbetool) disabled "
2024                                   "interrupts, re-enabling\n");
2025                         i915_driver_irq_preinstall(dev);
2026                         i915_driver_irq_postinstall(dev);
2027                 }
2028
2029                 trace_i915_gem_request_wait_begin(dev, seqno);
2030
2031                 ring->waiting_gem_seqno = seqno;
2032                 ring->user_irq_get(dev, ring);
2033                 if (interruptible)
2034                         ret = wait_event_interruptible(ring->irq_queue,
2035                                 i915_seqno_passed(
2036                                         ring->get_seqno(dev, ring), seqno)
2037                                 || atomic_read(&dev_priv->mm.wedged));
2038                 else
2039                         wait_event(ring->irq_queue,
2040                                 i915_seqno_passed(
2041                                         ring->get_seqno(dev, ring), seqno)
2042                                 || atomic_read(&dev_priv->mm.wedged));
2043
2044                 ring->user_irq_put(dev, ring);
2045                 ring->waiting_gem_seqno = 0;
2046
2047                 trace_i915_gem_request_wait_end(dev, seqno);
2048         }
2049         if (atomic_read(&dev_priv->mm.wedged))
2050                 ret = -EAGAIN;
2051
2052         if (ret && ret != -ERESTARTSYS)
2053                 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2054                           __func__, ret, seqno, ring->get_seqno(dev, ring),
2055                           dev_priv->next_seqno);
2056
2057         /* Directly dispatch request retiring.  While we have the work queue
2058          * to handle this, the waiter on a request often wants an associated
2059          * buffer to have made it to the inactive list, and we would need
2060          * a separate wait queue to handle that.
2061          */
2062         if (ret == 0)
2063                 i915_gem_retire_requests_ring(dev, ring);
2064
2065         return ret;
2066 }
2067
2068 /**
2069  * Waits for a sequence number to be signaled, and cleans up the
2070  * request and object lists appropriately for that event.
2071  */
2072 static int
2073 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2074                   struct intel_ring_buffer *ring)
2075 {
2076         return i915_do_wait_request(dev, seqno, 1, ring);
2077 }
2078
2079 static void
2080 i915_gem_flush_ring(struct drm_device *dev,
2081                     struct drm_file *file_priv,
2082                     struct intel_ring_buffer *ring,
2083                     uint32_t invalidate_domains,
2084                     uint32_t flush_domains)
2085 {
2086         ring->flush(dev, ring, invalidate_domains, flush_domains);
2087         i915_gem_process_flushing_list(dev, flush_domains, ring);
2088 }
2089
2090 static void
2091 i915_gem_flush(struct drm_device *dev,
2092                struct drm_file *file_priv,
2093                uint32_t invalidate_domains,
2094                uint32_t flush_domains,
2095                uint32_t flush_rings)
2096 {
2097         drm_i915_private_t *dev_priv = dev->dev_private;
2098
2099         if (flush_domains & I915_GEM_DOMAIN_CPU)
2100                 drm_agp_chipset_flush(dev);
2101
2102         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2103                 if (flush_rings & RING_RENDER)
2104                         i915_gem_flush_ring(dev, file_priv,
2105                                             &dev_priv->render_ring,
2106                                             invalidate_domains, flush_domains);
2107                 if (flush_rings & RING_BSD)
2108                         i915_gem_flush_ring(dev, file_priv,
2109                                             &dev_priv->bsd_ring,
2110                                             invalidate_domains, flush_domains);
2111         }
2112 }
2113
2114 /**
2115  * Ensures that all rendering to the object has completed and the object is
2116  * safe to unbind from the GTT or access from the CPU.
2117  */
2118 static int
2119 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2120                                bool interruptible)
2121 {
2122         struct drm_device *dev = obj->dev;
2123         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2124         int ret;
2125
2126         /* This function only exists to support waiting for existing rendering,
2127          * not for emitting required flushes.
2128          */
2129         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2130
2131         /* If there is rendering queued on the buffer being evicted, wait for
2132          * it.
2133          */
2134         if (obj_priv->active) {
2135                 ret = i915_do_wait_request(dev,
2136                                            obj_priv->last_rendering_seqno,
2137                                            interruptible,
2138                                            obj_priv->ring);
2139                 if (ret)
2140                         return ret;
2141         }
2142
2143         return 0;
2144 }
2145
2146 /**
2147  * Unbinds an object from the GTT aperture.
2148  */
2149 int
2150 i915_gem_object_unbind(struct drm_gem_object *obj)
2151 {
2152         struct drm_device *dev = obj->dev;
2153         struct drm_i915_private *dev_priv = dev->dev_private;
2154         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2155         int ret = 0;
2156
2157         if (obj_priv->gtt_space == NULL)
2158                 return 0;
2159
2160         if (obj_priv->pin_count != 0) {
2161                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2162                 return -EINVAL;
2163         }
2164
2165         /* blow away mappings if mapped through GTT */
2166         i915_gem_release_mmap(obj);
2167
2168         /* Move the object to the CPU domain to ensure that
2169          * any possible CPU writes while it's not in the GTT
2170          * are flushed when we go to remap it. This will
2171          * also ensure that all pending GPU writes are finished
2172          * before we unbind.
2173          */
2174         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2175         if (ret == -ERESTARTSYS)
2176                 return ret;
2177         /* Continue on if we fail due to EIO, the GPU is hung so we
2178          * should be safe and we need to cleanup or else we might
2179          * cause memory corruption through use-after-free.
2180          */
2181         if (ret) {
2182                 i915_gem_clflush_object(obj);
2183                 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2184         }
2185
2186         /* release the fence reg _after_ flushing */
2187         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2188                 i915_gem_clear_fence_reg(obj);
2189
2190         drm_unbind_agp(obj_priv->agp_mem);
2191         drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2192
2193         i915_gem_object_put_pages(obj);
2194         BUG_ON(obj_priv->pages_refcount);
2195
2196         i915_gem_info_remove_gtt(dev_priv, obj->size);
2197         list_del_init(&obj_priv->list);
2198
2199         drm_mm_put_block(obj_priv->gtt_space);
2200         obj_priv->gtt_space = NULL;
2201
2202         if (i915_gem_object_is_purgeable(obj_priv))
2203                 i915_gem_object_truncate(obj);
2204
2205         trace_i915_gem_object_unbind(obj);
2206
2207         return ret;
2208 }
2209
2210 static int i915_ring_idle(struct drm_device *dev,
2211                           struct intel_ring_buffer *ring)
2212 {
2213         i915_gem_flush_ring(dev, NULL, ring,
2214                             I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2215         return i915_wait_request(dev,
2216                                  i915_gem_next_request_seqno(dev, ring),
2217                                  ring);
2218 }
2219
2220 int
2221 i915_gpu_idle(struct drm_device *dev)
2222 {
2223         drm_i915_private_t *dev_priv = dev->dev_private;
2224         bool lists_empty;
2225         int ret;
2226
2227         lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2228                        list_empty(&dev_priv->render_ring.active_list) &&
2229                        (!HAS_BSD(dev) ||
2230                         list_empty(&dev_priv->bsd_ring.active_list)));
2231         if (lists_empty)
2232                 return 0;
2233
2234         /* Flush everything onto the inactive list. */
2235         ret = i915_ring_idle(dev, &dev_priv->render_ring);
2236         if (ret)
2237                 return ret;
2238
2239         if (HAS_BSD(dev)) {
2240                 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2241                 if (ret)
2242                         return ret;
2243         }
2244
2245         return 0;
2246 }
2247
2248 static int
2249 i915_gem_object_get_pages(struct drm_gem_object *obj,
2250                           gfp_t gfpmask)
2251 {
2252         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2253         int page_count, i;
2254         struct address_space *mapping;
2255         struct inode *inode;
2256         struct page *page;
2257
2258         BUG_ON(obj_priv->pages_refcount
2259                         == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2260
2261         if (obj_priv->pages_refcount++ != 0)
2262                 return 0;
2263
2264         /* Get the list of pages out of our struct file.  They'll be pinned
2265          * at this point until we release them.
2266          */
2267         page_count = obj->size / PAGE_SIZE;
2268         BUG_ON(obj_priv->pages != NULL);
2269         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2270         if (obj_priv->pages == NULL) {
2271                 obj_priv->pages_refcount--;
2272                 return -ENOMEM;
2273         }
2274
2275         inode = obj->filp->f_path.dentry->d_inode;
2276         mapping = inode->i_mapping;
2277         for (i = 0; i < page_count; i++) {
2278                 page = read_cache_page_gfp(mapping, i,
2279                                            GFP_HIGHUSER |
2280                                            __GFP_COLD |
2281                                            __GFP_RECLAIMABLE |
2282                                            gfpmask);
2283                 if (IS_ERR(page))
2284                         goto err_pages;
2285
2286                 obj_priv->pages[i] = page;
2287         }
2288
2289         if (obj_priv->tiling_mode != I915_TILING_NONE)
2290                 i915_gem_object_do_bit_17_swizzle(obj);
2291
2292         return 0;
2293
2294 err_pages:
2295         while (i--)
2296                 page_cache_release(obj_priv->pages[i]);
2297
2298         drm_free_large(obj_priv->pages);
2299         obj_priv->pages = NULL;
2300         obj_priv->pages_refcount--;
2301         return PTR_ERR(page);
2302 }
2303
2304 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2305 {
2306         struct drm_gem_object *obj = reg->obj;
2307         struct drm_device *dev = obj->dev;
2308         drm_i915_private_t *dev_priv = dev->dev_private;
2309         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2310         int regnum = obj_priv->fence_reg;
2311         uint64_t val;
2312
2313         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2314                     0xfffff000) << 32;
2315         val |= obj_priv->gtt_offset & 0xfffff000;
2316         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2317                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2318
2319         if (obj_priv->tiling_mode == I915_TILING_Y)
2320                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2321         val |= I965_FENCE_REG_VALID;
2322
2323         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2324 }
2325
2326 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2327 {
2328         struct drm_gem_object *obj = reg->obj;
2329         struct drm_device *dev = obj->dev;
2330         drm_i915_private_t *dev_priv = dev->dev_private;
2331         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2332         int regnum = obj_priv->fence_reg;
2333         uint64_t val;
2334
2335         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2336                     0xfffff000) << 32;
2337         val |= obj_priv->gtt_offset & 0xfffff000;
2338         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2339         if (obj_priv->tiling_mode == I915_TILING_Y)
2340                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2341         val |= I965_FENCE_REG_VALID;
2342
2343         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2344 }
2345
2346 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2347 {
2348         struct drm_gem_object *obj = reg->obj;
2349         struct drm_device *dev = obj->dev;
2350         drm_i915_private_t *dev_priv = dev->dev_private;
2351         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2352         int regnum = obj_priv->fence_reg;
2353         int tile_width;
2354         uint32_t fence_reg, val;
2355         uint32_t pitch_val;
2356
2357         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2358             (obj_priv->gtt_offset & (obj->size - 1))) {
2359                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2360                      __func__, obj_priv->gtt_offset, obj->size);
2361                 return;
2362         }
2363
2364         if (obj_priv->tiling_mode == I915_TILING_Y &&
2365             HAS_128_BYTE_Y_TILING(dev))
2366                 tile_width = 128;
2367         else
2368                 tile_width = 512;
2369
2370         /* Note: pitch better be a power of two tile widths */
2371         pitch_val = obj_priv->stride / tile_width;
2372         pitch_val = ffs(pitch_val) - 1;
2373
2374         if (obj_priv->tiling_mode == I915_TILING_Y &&
2375             HAS_128_BYTE_Y_TILING(dev))
2376                 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2377         else
2378                 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2379
2380         val = obj_priv->gtt_offset;
2381         if (obj_priv->tiling_mode == I915_TILING_Y)
2382                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2383         val |= I915_FENCE_SIZE_BITS(obj->size);
2384         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2385         val |= I830_FENCE_REG_VALID;
2386
2387         if (regnum < 8)
2388                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2389         else
2390                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2391         I915_WRITE(fence_reg, val);
2392 }
2393
2394 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2395 {
2396         struct drm_gem_object *obj = reg->obj;
2397         struct drm_device *dev = obj->dev;
2398         drm_i915_private_t *dev_priv = dev->dev_private;
2399         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2400         int regnum = obj_priv->fence_reg;
2401         uint32_t val;
2402         uint32_t pitch_val;
2403         uint32_t fence_size_bits;
2404
2405         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2406             (obj_priv->gtt_offset & (obj->size - 1))) {
2407                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2408                      __func__, obj_priv->gtt_offset);
2409                 return;
2410         }
2411
2412         pitch_val = obj_priv->stride / 128;
2413         pitch_val = ffs(pitch_val) - 1;
2414         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2415
2416         val = obj_priv->gtt_offset;
2417         if (obj_priv->tiling_mode == I915_TILING_Y)
2418                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2419         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2420         WARN_ON(fence_size_bits & ~0x00000f00);
2421         val |= fence_size_bits;
2422         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2423         val |= I830_FENCE_REG_VALID;
2424
2425         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2426 }
2427
2428 static int i915_find_fence_reg(struct drm_device *dev,
2429                                bool interruptible)
2430 {
2431         struct drm_i915_fence_reg *reg = NULL;
2432         struct drm_i915_gem_object *obj_priv = NULL;
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         struct drm_gem_object *obj = NULL;
2435         int i, avail, ret;
2436
2437         /* First try to find a free reg */
2438         avail = 0;
2439         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2440                 reg = &dev_priv->fence_regs[i];
2441                 if (!reg->obj)
2442                         return i;
2443
2444                 obj_priv = to_intel_bo(reg->obj);
2445                 if (!obj_priv->pin_count)
2446                     avail++;
2447         }
2448
2449         if (avail == 0)
2450                 return -ENOSPC;
2451
2452         /* None available, try to steal one or wait for a user to finish */
2453         i = I915_FENCE_REG_NONE;
2454         list_for_each_entry(reg, &dev_priv->mm.fence_list,
2455                             lru_list) {
2456                 obj = reg->obj;
2457                 obj_priv = to_intel_bo(obj);
2458
2459                 if (obj_priv->pin_count)
2460                         continue;
2461
2462                 /* found one! */
2463                 i = obj_priv->fence_reg;
2464                 break;
2465         }
2466
2467         BUG_ON(i == I915_FENCE_REG_NONE);
2468
2469         /* We only have a reference on obj from the active list. put_fence_reg
2470          * might drop that one, causing a use-after-free in it. So hold a
2471          * private reference to obj like the other callers of put_fence_reg
2472          * (set_tiling ioctl) do. */
2473         drm_gem_object_reference(obj);
2474         ret = i915_gem_object_put_fence_reg(obj, interruptible);
2475         drm_gem_object_unreference(obj);
2476         if (ret != 0)
2477                 return ret;
2478
2479         return i;
2480 }
2481
2482 /**
2483  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2484  * @obj: object to map through a fence reg
2485  *
2486  * When mapping objects through the GTT, userspace wants to be able to write
2487  * to them without having to worry about swizzling if the object is tiled.
2488  *
2489  * This function walks the fence regs looking for a free one for @obj,
2490  * stealing one if it can't find any.
2491  *
2492  * It then sets up the reg based on the object's properties: address, pitch
2493  * and tiling format.
2494  */
2495 int
2496 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2497                               bool interruptible)
2498 {
2499         struct drm_device *dev = obj->dev;
2500         struct drm_i915_private *dev_priv = dev->dev_private;
2501         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2502         struct drm_i915_fence_reg *reg = NULL;
2503         int ret;
2504
2505         /* Just update our place in the LRU if our fence is getting used. */
2506         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2507                 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2508                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2509                 return 0;
2510         }
2511
2512         switch (obj_priv->tiling_mode) {
2513         case I915_TILING_NONE:
2514                 WARN(1, "allocating a fence for non-tiled object?\n");
2515                 break;
2516         case I915_TILING_X:
2517                 if (!obj_priv->stride)
2518                         return -EINVAL;
2519                 WARN((obj_priv->stride & (512 - 1)),
2520                      "object 0x%08x is X tiled but has non-512B pitch\n",
2521                      obj_priv->gtt_offset);
2522                 break;
2523         case I915_TILING_Y:
2524                 if (!obj_priv->stride)
2525                         return -EINVAL;
2526                 WARN((obj_priv->stride & (128 - 1)),
2527                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2528                      obj_priv->gtt_offset);
2529                 break;
2530         }
2531
2532         ret = i915_find_fence_reg(dev, interruptible);
2533         if (ret < 0)
2534                 return ret;
2535
2536         obj_priv->fence_reg = ret;
2537         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2538         list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2539
2540         reg->obj = obj;
2541
2542         switch (INTEL_INFO(dev)->gen) {
2543         case 6:
2544                 sandybridge_write_fence_reg(reg);
2545                 break;
2546         case 5:
2547         case 4:
2548                 i965_write_fence_reg(reg);
2549                 break;
2550         case 3:
2551                 i915_write_fence_reg(reg);
2552                 break;
2553         case 2:
2554                 i830_write_fence_reg(reg);
2555                 break;
2556         }
2557
2558         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2559                         obj_priv->tiling_mode);
2560
2561         return 0;
2562 }
2563
2564 /**
2565  * i915_gem_clear_fence_reg - clear out fence register info
2566  * @obj: object to clear
2567  *
2568  * Zeroes out the fence register itself and clears out the associated
2569  * data structures in dev_priv and obj_priv.
2570  */
2571 static void
2572 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2573 {
2574         struct drm_device *dev = obj->dev;
2575         drm_i915_private_t *dev_priv = dev->dev_private;
2576         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2577         struct drm_i915_fence_reg *reg =
2578                 &dev_priv->fence_regs[obj_priv->fence_reg];
2579         uint32_t fence_reg;
2580
2581         switch (INTEL_INFO(dev)->gen) {
2582         case 6:
2583                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2584                              (obj_priv->fence_reg * 8), 0);
2585                 break;
2586         case 5:
2587         case 4:
2588                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2589                 break;
2590         case 3:
2591                 if (obj_priv->fence_reg >= 8)
2592                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2593                 else
2594         case 2:
2595                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2596
2597                 I915_WRITE(fence_reg, 0);
2598                 break;
2599         }
2600
2601         reg->obj = NULL;
2602         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2603         list_del_init(&reg->lru_list);
2604 }
2605
2606 /**
2607  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2608  * to the buffer to finish, and then resets the fence register.
2609  * @obj: tiled object holding a fence register.
2610  * @bool: whether the wait upon the fence is interruptible
2611  *
2612  * Zeroes out the fence register itself and clears out the associated
2613  * data structures in dev_priv and obj_priv.
2614  */
2615 int
2616 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2617                               bool interruptible)
2618 {
2619         struct drm_device *dev = obj->dev;
2620         struct drm_i915_private *dev_priv = dev->dev_private;
2621         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2622         struct drm_i915_fence_reg *reg;
2623
2624         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2625                 return 0;
2626
2627         /* If we've changed tiling, GTT-mappings of the object
2628          * need to re-fault to ensure that the correct fence register
2629          * setup is in place.
2630          */
2631         i915_gem_release_mmap(obj);
2632
2633         /* On the i915, GPU access to tiled buffers is via a fence,
2634          * therefore we must wait for any outstanding access to complete
2635          * before clearing the fence.
2636          */
2637         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2638         if (reg->gpu) {
2639                 int ret;
2640
2641                 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2642                 if (ret)
2643                         return ret;
2644
2645                 ret = i915_gem_object_wait_rendering(obj, interruptible);
2646                 if (ret)
2647                         return ret;
2648
2649                 reg->gpu = false;
2650         }
2651
2652         i915_gem_object_flush_gtt_write_domain(obj);
2653         i915_gem_clear_fence_reg(obj);
2654
2655         return 0;
2656 }
2657
2658 /**
2659  * Finds free space in the GTT aperture and binds the object there.
2660  */
2661 static int
2662 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2663 {
2664         struct drm_device *dev = obj->dev;
2665         drm_i915_private_t *dev_priv = dev->dev_private;
2666         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2667         struct drm_mm_node *free_space;
2668         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2669         int ret;
2670
2671         if (obj_priv->madv != I915_MADV_WILLNEED) {
2672                 DRM_ERROR("Attempting to bind a purgeable object\n");
2673                 return -EINVAL;
2674         }
2675
2676         if (alignment == 0)
2677                 alignment = i915_gem_get_gtt_alignment(obj);
2678         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2679                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2680                 return -EINVAL;
2681         }
2682
2683         /* If the object is bigger than the entire aperture, reject it early
2684          * before evicting everything in a vain attempt to find space.
2685          */
2686         if (obj->size > dev_priv->mm.gtt_total) {
2687                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2688                 return -E2BIG;
2689         }
2690
2691  search_free:
2692         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2693                                         obj->size, alignment, 0);
2694         if (free_space != NULL) {
2695                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2696                                                        alignment);
2697                 if (obj_priv->gtt_space != NULL)
2698                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2699         }
2700         if (obj_priv->gtt_space == NULL) {
2701                 /* If the gtt is empty and we're still having trouble
2702                  * fitting our object in, we're out of memory.
2703                  */
2704                 ret = i915_gem_evict_something(dev, obj->size, alignment);
2705                 if (ret)
2706                         return ret;
2707
2708                 goto search_free;
2709         }
2710
2711         ret = i915_gem_object_get_pages(obj, gfpmask);
2712         if (ret) {
2713                 drm_mm_put_block(obj_priv->gtt_space);
2714                 obj_priv->gtt_space = NULL;
2715
2716                 if (ret == -ENOMEM) {
2717                         /* first try to clear up some space from the GTT */
2718                         ret = i915_gem_evict_something(dev, obj->size,
2719                                                        alignment);
2720                         if (ret) {
2721                                 /* now try to shrink everyone else */
2722                                 if (gfpmask) {
2723                                         gfpmask = 0;
2724                                         goto search_free;
2725                                 }
2726
2727                                 return ret;
2728                         }
2729
2730                         goto search_free;
2731                 }
2732
2733                 return ret;
2734         }
2735
2736         /* Create an AGP memory structure pointing at our pages, and bind it
2737          * into the GTT.
2738          */
2739         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2740                                                obj_priv->pages,
2741                                                obj->size >> PAGE_SHIFT,
2742                                                obj_priv->gtt_offset,
2743                                                obj_priv->agp_type);
2744         if (obj_priv->agp_mem == NULL) {
2745                 i915_gem_object_put_pages(obj);
2746                 drm_mm_put_block(obj_priv->gtt_space);
2747                 obj_priv->gtt_space = NULL;
2748
2749                 ret = i915_gem_evict_something(dev, obj->size, alignment);
2750                 if (ret)
2751                         return ret;
2752
2753                 goto search_free;
2754         }
2755
2756         /* keep track of bounds object by adding it to the inactive list */
2757         list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2758         i915_gem_info_add_gtt(dev_priv, obj->size);
2759
2760         /* Assert that the object is not currently in any GPU domain. As it
2761          * wasn't in the GTT, there shouldn't be any way it could have been in
2762          * a GPU cache
2763          */
2764         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2765         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2766
2767         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2768
2769         return 0;
2770 }
2771
2772 void
2773 i915_gem_clflush_object(struct drm_gem_object *obj)
2774 {
2775         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2776
2777         /* If we don't have a page list set up, then we're not pinned
2778          * to GPU, and we can ignore the cache flush because it'll happen
2779          * again at bind time.
2780          */
2781         if (obj_priv->pages == NULL)
2782                 return;
2783
2784         trace_i915_gem_object_clflush(obj);
2785
2786         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2787 }
2788
2789 /** Flushes any GPU write domain for the object if it's dirty. */
2790 static int
2791 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2792                                        bool pipelined)
2793 {
2794         struct drm_device *dev = obj->dev;
2795         uint32_t old_write_domain;
2796
2797         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2798                 return 0;
2799
2800         /* Queue the GPU write cache flushing we need. */
2801         old_write_domain = obj->write_domain;
2802         i915_gem_flush_ring(dev, NULL,
2803                             to_intel_bo(obj)->ring,
2804                             0, obj->write_domain);
2805         BUG_ON(obj->write_domain);
2806
2807         trace_i915_gem_object_change_domain(obj,
2808                                             obj->read_domains,
2809                                             old_write_domain);
2810
2811         if (pipelined)
2812                 return 0;
2813
2814         return i915_gem_object_wait_rendering(obj, true);
2815 }
2816
2817 /** Flushes the GTT write domain for the object if it's dirty. */
2818 static void
2819 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2820 {
2821         uint32_t old_write_domain;
2822
2823         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2824                 return;
2825
2826         /* No actual flushing is required for the GTT write domain.   Writes
2827          * to it immediately go to main memory as far as we know, so there's
2828          * no chipset flush.  It also doesn't land in render cache.
2829          */
2830         old_write_domain = obj->write_domain;
2831         obj->write_domain = 0;
2832
2833         trace_i915_gem_object_change_domain(obj,
2834                                             obj->read_domains,
2835                                             old_write_domain);
2836 }
2837
2838 /** Flushes the CPU write domain for the object if it's dirty. */
2839 static void
2840 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2841 {
2842         struct drm_device *dev = obj->dev;
2843         uint32_t old_write_domain;
2844
2845         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2846                 return;
2847
2848         i915_gem_clflush_object(obj);
2849         drm_agp_chipset_flush(dev);
2850         old_write_domain = obj->write_domain;
2851         obj->write_domain = 0;
2852
2853         trace_i915_gem_object_change_domain(obj,
2854                                             obj->read_domains,
2855                                             old_write_domain);
2856 }
2857
2858 /**
2859  * Moves a single object to the GTT read, and possibly write domain.
2860  *
2861  * This function returns when the move is complete, including waiting on
2862  * flushes to occur.
2863  */
2864 int
2865 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2866 {
2867         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2868         uint32_t old_write_domain, old_read_domains;
2869         int ret;
2870
2871         /* Not valid to be called on unbound objects. */
2872         if (obj_priv->gtt_space == NULL)
2873                 return -EINVAL;
2874
2875         ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2876         if (ret != 0)
2877                 return ret;
2878
2879         i915_gem_object_flush_cpu_write_domain(obj);
2880
2881         if (write) {
2882                 ret = i915_gem_object_wait_rendering(obj, true);
2883                 if (ret)
2884                         return ret;
2885         }
2886
2887         old_write_domain = obj->write_domain;
2888         old_read_domains = obj->read_domains;
2889
2890         /* It should now be out of any other write domains, and we can update
2891          * the domain values for our changes.
2892          */
2893         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2894         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2895         if (write) {
2896                 obj->read_domains = I915_GEM_DOMAIN_GTT;
2897                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2898                 obj_priv->dirty = 1;
2899         }
2900
2901         trace_i915_gem_object_change_domain(obj,
2902                                             old_read_domains,
2903                                             old_write_domain);
2904
2905         return 0;
2906 }
2907
2908 /*
2909  * Prepare buffer for display plane. Use uninterruptible for possible flush
2910  * wait, as in modesetting process we're not supposed to be interrupted.
2911  */
2912 int
2913 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2914                                      bool pipelined)
2915 {
2916         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2917         uint32_t old_read_domains;
2918         int ret;
2919
2920         /* Not valid to be called on unbound objects. */
2921         if (obj_priv->gtt_space == NULL)
2922                 return -EINVAL;
2923
2924         ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2925         if (ret)
2926                 return ret;
2927
2928         /* Currently, we are always called from an non-interruptible context. */
2929         if (!pipelined) {
2930                 ret = i915_gem_object_wait_rendering(obj, false);
2931                 if (ret)
2932                         return ret;
2933         }
2934
2935         i915_gem_object_flush_cpu_write_domain(obj);
2936
2937         old_read_domains = obj->read_domains;
2938         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2939
2940         trace_i915_gem_object_change_domain(obj,
2941                                             old_read_domains,
2942                                             obj->write_domain);
2943
2944         return 0;
2945 }
2946
2947 /**
2948  * Moves a single object to the CPU read, and possibly write domain.
2949  *
2950  * This function returns when the move is complete, including waiting on
2951  * flushes to occur.
2952  */
2953 static int
2954 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2955 {
2956         uint32_t old_write_domain, old_read_domains;
2957         int ret;
2958
2959         ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2960         if (ret != 0)
2961                 return ret;
2962
2963         i915_gem_object_flush_gtt_write_domain(obj);
2964
2965         /* If we have a partially-valid cache of the object in the CPU,
2966          * finish invalidating it and free the per-page flags.
2967          */
2968         i915_gem_object_set_to_full_cpu_read_domain(obj);
2969
2970         if (write) {
2971                 ret = i915_gem_object_wait_rendering(obj, true);
2972                 if (ret)
2973                         return ret;
2974         }
2975
2976         old_write_domain = obj->write_domain;
2977         old_read_domains = obj->read_domains;
2978
2979         /* Flush the CPU cache if it's still invalid. */
2980         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2981                 i915_gem_clflush_object(obj);
2982
2983                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2984         }
2985
2986         /* It should now be out of any other write domains, and we can update
2987          * the domain values for our changes.
2988          */
2989         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2990
2991         /* If we're writing through the CPU, then the GPU read domains will
2992          * need to be invalidated at next use.
2993          */
2994         if (write) {
2995                 obj->read_domains = I915_GEM_DOMAIN_CPU;
2996                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2997         }
2998
2999         trace_i915_gem_object_change_domain(obj,
3000                                             old_read_domains,
3001                                             old_write_domain);
3002
3003         return 0;
3004 }
3005
3006 /*
3007  * Set the next domain for the specified object. This
3008  * may not actually perform the necessary flushing/invaliding though,
3009  * as that may want to be batched with other set_domain operations
3010  *
3011  * This is (we hope) the only really tricky part of gem. The goal
3012  * is fairly simple -- track which caches hold bits of the object
3013  * and make sure they remain coherent. A few concrete examples may
3014  * help to explain how it works. For shorthand, we use the notation
3015  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3016  * a pair of read and write domain masks.
3017  *
3018  * Case 1: the batch buffer
3019  *
3020  *      1. Allocated
3021  *      2. Written by CPU
3022  *      3. Mapped to GTT
3023  *      4. Read by GPU
3024  *      5. Unmapped from GTT
3025  *      6. Freed
3026  *
3027  *      Let's take these a step at a time
3028  *
3029  *      1. Allocated
3030  *              Pages allocated from the kernel may still have
3031  *              cache contents, so we set them to (CPU, CPU) always.
3032  *      2. Written by CPU (using pwrite)
3033  *              The pwrite function calls set_domain (CPU, CPU) and
3034  *              this function does nothing (as nothing changes)
3035  *      3. Mapped by GTT
3036  *              This function asserts that the object is not
3037  *              currently in any GPU-based read or write domains
3038  *      4. Read by GPU
3039  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
3040  *              As write_domain is zero, this function adds in the
3041  *              current read domains (CPU+COMMAND, 0).
3042  *              flush_domains is set to CPU.
3043  *              invalidate_domains is set to COMMAND
3044  *              clflush is run to get data out of the CPU caches
3045  *              then i915_dev_set_domain calls i915_gem_flush to
3046  *              emit an MI_FLUSH and drm_agp_chipset_flush
3047  *      5. Unmapped from GTT
3048  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
3049  *              flush_domains and invalidate_domains end up both zero
3050  *              so no flushing/invalidating happens
3051  *      6. Freed
3052  *              yay, done
3053  *
3054  * Case 2: The shared render buffer
3055  *
3056  *      1. Allocated
3057  *      2. Mapped to GTT
3058  *      3. Read/written by GPU
3059  *      4. set_domain to (CPU,CPU)
3060  *      5. Read/written by CPU
3061  *      6. Read/written by GPU
3062  *
3063  *      1. Allocated
3064  *              Same as last example, (CPU, CPU)
3065  *      2. Mapped to GTT
3066  *              Nothing changes (assertions find that it is not in the GPU)
3067  *      3. Read/written by GPU
3068  *              execbuffer calls set_domain (RENDER, RENDER)
3069  *              flush_domains gets CPU
3070  *              invalidate_domains gets GPU
3071  *              clflush (obj)
3072  *              MI_FLUSH and drm_agp_chipset_flush
3073  *      4. set_domain (CPU, CPU)
3074  *              flush_domains gets GPU
3075  *              invalidate_domains gets CPU
3076  *              wait_rendering (obj) to make sure all drawing is complete.
3077  *              This will include an MI_FLUSH to get the data from GPU
3078  *              to memory
3079  *              clflush (obj) to invalidate the CPU cache
3080  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3081  *      5. Read/written by CPU
3082  *              cache lines are loaded and dirtied
3083  *      6. Read written by GPU
3084  *              Same as last GPU access
3085  *
3086  * Case 3: The constant buffer
3087  *
3088  *      1. Allocated
3089  *      2. Written by CPU
3090  *      3. Read by GPU
3091  *      4. Updated (written) by CPU again
3092  *      5. Read by GPU
3093  *
3094  *      1. Allocated
3095  *              (CPU, CPU)
3096  *      2. Written by CPU
3097  *              (CPU, CPU)
3098  *      3. Read by GPU
3099  *              (CPU+RENDER, 0)
3100  *              flush_domains = CPU
3101  *              invalidate_domains = RENDER
3102  *              clflush (obj)
3103  *              MI_FLUSH
3104  *              drm_agp_chipset_flush
3105  *      4. Updated (written) by CPU again
3106  *              (CPU, CPU)
3107  *              flush_domains = 0 (no previous write domain)
3108  *              invalidate_domains = 0 (no new read domains)
3109  *      5. Read by GPU
3110  *              (CPU+RENDER, 0)
3111  *              flush_domains = CPU
3112  *              invalidate_domains = RENDER
3113  *              clflush (obj)
3114  *              MI_FLUSH
3115  *              drm_agp_chipset_flush
3116  */
3117 static void
3118 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3119 {
3120         struct drm_device               *dev = obj->dev;
3121         struct drm_i915_private         *dev_priv = dev->dev_private;
3122         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
3123         uint32_t                        invalidate_domains = 0;
3124         uint32_t                        flush_domains = 0;
3125         uint32_t                        old_read_domains;
3126
3127         intel_mark_busy(dev, obj);
3128
3129         /*
3130          * If the object isn't moving to a new write domain,
3131          * let the object stay in multiple read domains
3132          */
3133         if (obj->pending_write_domain == 0)
3134                 obj->pending_read_domains |= obj->read_domains;
3135         else
3136                 obj_priv->dirty = 1;
3137
3138         /*
3139          * Flush the current write domain if
3140          * the new read domains don't match. Invalidate
3141          * any read domains which differ from the old
3142          * write domain
3143          */
3144         if (obj->write_domain &&
3145             obj->write_domain != obj->pending_read_domains) {
3146                 flush_domains |= obj->write_domain;
3147                 invalidate_domains |=
3148                         obj->pending_read_domains & ~obj->write_domain;
3149         }
3150         /*
3151          * Invalidate any read caches which may have
3152          * stale data. That is, any new read domains.
3153          */
3154         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3155         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3156                 i915_gem_clflush_object(obj);
3157
3158         old_read_domains = obj->read_domains;
3159
3160         /* The actual obj->write_domain will be updated with
3161          * pending_write_domain after we emit the accumulated flush for all
3162          * of our domain changes in execbuffers (which clears objects'
3163          * write_domains).  So if we have a current write domain that we
3164          * aren't changing, set pending_write_domain to that.
3165          */
3166         if (flush_domains == 0 && obj->pending_write_domain == 0)
3167                 obj->pending_write_domain = obj->write_domain;
3168         obj->read_domains = obj->pending_read_domains;
3169
3170         dev->invalidate_domains |= invalidate_domains;
3171         dev->flush_domains |= flush_domains;
3172         if (obj_priv->ring)
3173                 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3174
3175         trace_i915_gem_object_change_domain(obj,
3176                                             old_read_domains,
3177                                             obj->write_domain);
3178 }
3179
3180 /**
3181  * Moves the object from a partially CPU read to a full one.
3182  *
3183  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3184  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3185  */
3186 static void
3187 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3188 {
3189         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3190
3191         if (!obj_priv->page_cpu_valid)
3192                 return;
3193
3194         /* If we're partially in the CPU read domain, finish moving it in.
3195          */
3196         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3197                 int i;
3198
3199                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3200                         if (obj_priv->page_cpu_valid[i])
3201                                 continue;
3202                         drm_clflush_pages(obj_priv->pages + i, 1);
3203                 }
3204         }
3205
3206         /* Free the page_cpu_valid mappings which are now stale, whether
3207          * or not we've got I915_GEM_DOMAIN_CPU.
3208          */
3209         kfree(obj_priv->page_cpu_valid);
3210         obj_priv->page_cpu_valid = NULL;
3211 }
3212
3213 /**
3214  * Set the CPU read domain on a range of the object.
3215  *
3216  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3217  * not entirely valid.  The page_cpu_valid member of the object flags which
3218  * pages have been flushed, and will be respected by
3219  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3220  * of the whole object.
3221  *
3222  * This function returns when the move is complete, including waiting on
3223  * flushes to occur.
3224  */
3225 static int
3226 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3227                                           uint64_t offset, uint64_t size)
3228 {
3229         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3230         uint32_t old_read_domains;
3231         int i, ret;
3232
3233         if (offset == 0 && size == obj->size)
3234                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3235
3236         ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3237         if (ret != 0)
3238                 return ret;
3239         i915_gem_object_flush_gtt_write_domain(obj);
3240
3241         /* If we're already fully in the CPU read domain, we're done. */
3242         if (obj_priv->page_cpu_valid == NULL &&
3243             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3244                 return 0;
3245
3246         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3247          * newly adding I915_GEM_DOMAIN_CPU
3248          */
3249         if (obj_priv->page_cpu_valid == NULL) {
3250                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3251                                                    GFP_KERNEL);
3252                 if (obj_priv->page_cpu_valid == NULL)
3253                         return -ENOMEM;
3254         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3255                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3256
3257         /* Flush the cache on any pages that are still invalid from the CPU's
3258          * perspective.
3259          */
3260         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3261              i++) {
3262                 if (obj_priv->page_cpu_valid[i])
3263                         continue;
3264
3265                 drm_clflush_pages(obj_priv->pages + i, 1);
3266
3267                 obj_priv->page_cpu_valid[i] = 1;
3268         }
3269
3270         /* It should now be out of any other write domains, and we can update
3271          * the domain values for our changes.
3272          */
3273         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3274
3275         old_read_domains = obj->read_domains;
3276         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3277
3278         trace_i915_gem_object_change_domain(obj,
3279                                             old_read_domains,
3280                                             obj->write_domain);
3281
3282         return 0;
3283 }
3284
3285 /**
3286  * Pin an object to the GTT and evaluate the relocations landing in it.
3287  */
3288 static int
3289 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3290                                  struct drm_file *file_priv,
3291                                  struct drm_i915_gem_exec_object2 *entry)
3292 {
3293         struct drm_device *dev = obj->dev;
3294         drm_i915_private_t *dev_priv = dev->dev_private;
3295         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3296         struct drm_i915_gem_relocation_entry __user *user_relocs;
3297         int i, ret;
3298         bool need_fence;
3299
3300         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3301                      obj_priv->tiling_mode != I915_TILING_NONE;
3302
3303         /* Check fence reg constraints and rebind if necessary */
3304         if (need_fence &&
3305             !i915_gem_object_fence_offset_ok(obj,
3306                                              obj_priv->tiling_mode)) {
3307                 ret = i915_gem_object_unbind(obj);
3308                 if (ret)
3309                         return ret;
3310         }
3311
3312         /* Choose the GTT offset for our buffer and put it there. */
3313         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3314         if (ret)
3315                 return ret;
3316
3317         /*
3318          * Pre-965 chips need a fence register set up in order to
3319          * properly handle blits to/from tiled surfaces.
3320          */
3321         if (need_fence) {
3322                 ret = i915_gem_object_get_fence_reg(obj, true);
3323                 if (ret != 0) {
3324                         i915_gem_object_unpin(obj);
3325                         return ret;
3326                 }
3327
3328                 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
3329         }
3330
3331         entry->offset = obj_priv->gtt_offset;
3332
3333         /* Apply the relocations, using the GTT aperture to avoid cache
3334          * flushing requirements.
3335          */
3336         user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3337         for (i = 0; i < entry->relocation_count; i++) {
3338                 struct drm_i915_gem_relocation_entry reloc;
3339                 struct drm_gem_object *target_obj;
3340                 struct drm_i915_gem_object *target_obj_priv;
3341
3342                 ret = __copy_from_user_inatomic(&reloc,
3343                                                 user_relocs+i,
3344                                                 sizeof(reloc));
3345                 if (ret) {
3346                         i915_gem_object_unpin(obj);
3347                         return -EFAULT;
3348                 }
3349
3350                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3351                                                    reloc.target_handle);
3352                 if (target_obj == NULL) {
3353                         i915_gem_object_unpin(obj);
3354                         return -ENOENT;
3355                 }
3356                 target_obj_priv = to_intel_bo(target_obj);
3357
3358 #if WATCH_RELOC
3359                 DRM_INFO("%s: obj %p offset %08x target %d "
3360                          "read %08x write %08x gtt %08x "
3361                          "presumed %08x delta %08x\n",
3362                          __func__,
3363                          obj,
3364                          (int) reloc.offset,
3365                          (int) reloc.target_handle,
3366                          (int) reloc.read_domains,
3367                          (int) reloc.write_domain,
3368                          (int) target_obj_priv->gtt_offset,
3369                          (int) reloc.presumed_offset,
3370                          reloc.delta);
3371 #endif
3372
3373                 /* The target buffer should have appeared before us in the
3374                  * exec_object list, so it should have a GTT space bound by now.
3375                  */
3376                 if (target_obj_priv->gtt_space == NULL) {
3377                         DRM_ERROR("No GTT space found for object %d\n",
3378                                   reloc.target_handle);
3379                         drm_gem_object_unreference(target_obj);
3380                         i915_gem_object_unpin(obj);
3381                         return -EINVAL;
3382                 }
3383
3384                 /* Validate that the target is in a valid r/w GPU domain */
3385                 if (reloc.write_domain & (reloc.write_domain - 1)) {
3386                         DRM_ERROR("reloc with multiple write domains: "
3387                                   "obj %p target %d offset %d "
3388                                   "read %08x write %08x",
3389                                   obj, reloc.target_handle,
3390                                   (int) reloc.offset,
3391                                   reloc.read_domains,
3392                                   reloc.write_domain);
3393                         drm_gem_object_unreference(target_obj);
3394                         i915_gem_object_unpin(obj);
3395                         return -EINVAL;
3396                 }
3397                 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3398                     reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3399                         DRM_ERROR("reloc with read/write CPU domains: "
3400                                   "obj %p target %d offset %d "
3401                                   "read %08x write %08x",
3402                                   obj, reloc.target_handle,
3403                                   (int) reloc.offset,
3404                                   reloc.read_domains,
3405                                   reloc.write_domain);
3406                         drm_gem_object_unreference(target_obj);
3407                         i915_gem_object_unpin(obj);
3408                         return -EINVAL;
3409                 }
3410                 if (reloc.write_domain && target_obj->pending_write_domain &&
3411                     reloc.write_domain != target_obj->pending_write_domain) {
3412                         DRM_ERROR("Write domain conflict: "
3413                                   "obj %p target %d offset %d "
3414                                   "new %08x old %08x\n",
3415                                   obj, reloc.target_handle,
3416                                   (int) reloc.offset,
3417                                   reloc.write_domain,
3418                                   target_obj->pending_write_domain);
3419                         drm_gem_object_unreference(target_obj);
3420                         i915_gem_object_unpin(obj);
3421                         return -EINVAL;
3422                 }
3423
3424                 target_obj->pending_read_domains |= reloc.read_domains;
3425                 target_obj->pending_write_domain |= reloc.write_domain;
3426
3427                 /* If the relocation already has the right value in it, no
3428                  * more work needs to be done.
3429                  */
3430                 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
3431                         drm_gem_object_unreference(target_obj);
3432                         continue;
3433                 }
3434
3435                 /* Check that the relocation address is valid... */
3436                 if (reloc.offset > obj->size - 4) {
3437                         DRM_ERROR("Relocation beyond object bounds: "
3438                                   "obj %p target %d offset %d size %d.\n",
3439                                   obj, reloc.target_handle,
3440                                   (int) reloc.offset, (int) obj->size);
3441                         drm_gem_object_unreference(target_obj);
3442                         i915_gem_object_unpin(obj);
3443                         return -EINVAL;
3444                 }
3445                 if (reloc.offset & 3) {
3446                         DRM_ERROR("Relocation not 4-byte aligned: "
3447                                   "obj %p target %d offset %d.\n",
3448                                   obj, reloc.target_handle,
3449                                   (int) reloc.offset);
3450                         drm_gem_object_unreference(target_obj);
3451                         i915_gem_object_unpin(obj);
3452                         return -EINVAL;
3453                 }
3454
3455                 /* and points to somewhere within the target object. */
3456                 if (reloc.delta >= target_obj->size) {
3457                         DRM_ERROR("Relocation beyond target object bounds: "
3458                                   "obj %p target %d delta %d size %d.\n",
3459                                   obj, reloc.target_handle,
3460                                   (int) reloc.delta, (int) target_obj->size);
3461                         drm_gem_object_unreference(target_obj);
3462                         i915_gem_object_unpin(obj);
3463                         return -EINVAL;
3464                 }
3465
3466                 reloc.delta += target_obj_priv->gtt_offset;
3467                 if (obj->write_domain == I915_GEM_DOMAIN_CPU) {
3468                         uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3469                         char *vaddr;
3470
3471                         vaddr = kmap_atomic(obj_priv->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
3472                         *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3473                         kunmap_atomic(vaddr, KM_USER0);
3474                 } else {
3475                         uint32_t __iomem *reloc_entry;
3476                         void __iomem *reloc_page;
3477                         int ret;
3478
3479                         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3480                         if (ret) {
3481                                 drm_gem_object_unreference(target_obj);
3482                                 i915_gem_object_unpin(obj);
3483                                 return ret;
3484                         }
3485
3486                         /* Map the page containing the relocation we're going to perform.  */
3487                         reloc.offset += obj_priv->gtt_offset;
3488                         reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3489                                                               reloc.offset & PAGE_MASK,
3490                                                               KM_USER0);
3491                         reloc_entry = (uint32_t __iomem *)
3492                                 (reloc_page + (reloc.offset & ~PAGE_MASK));
3493                         iowrite32(reloc.delta, reloc_entry);
3494                         io_mapping_unmap_atomic(reloc_page, KM_USER0);
3495                 }
3496
3497                 drm_gem_object_unreference(target_obj);
3498         }
3499
3500         return 0;
3501 }
3502
3503 /* Throttle our rendering by waiting until the ring has completed our requests
3504  * emitted over 20 msec ago.
3505  *
3506  * Note that if we were to use the current jiffies each time around the loop,
3507  * we wouldn't escape the function with any frames outstanding if the time to
3508  * render a frame was over 20ms.
3509  *
3510  * This should get us reasonable parallelism between CPU and GPU but also
3511  * relatively low latency when blocking on a particular request to finish.
3512  */
3513 static int
3514 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3515 {
3516         struct drm_i915_private *dev_priv = dev->dev_private;
3517         struct drm_i915_file_private *file_priv = file->driver_priv;
3518         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3519         struct drm_i915_gem_request *request;
3520         struct intel_ring_buffer *ring = NULL;
3521         u32 seqno = 0;
3522         int ret;
3523
3524         spin_lock(&file_priv->mm.lock);
3525         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3526                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3527                         break;
3528
3529                 ring = request->ring;
3530                 seqno = request->seqno;
3531         }
3532         spin_unlock(&file_priv->mm.lock);
3533
3534         if (seqno == 0)
3535                 return 0;
3536
3537         ret = 0;
3538         if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3539                 /* And wait for the seqno passing without holding any locks and
3540                  * causing extra latency for others. This is safe as the irq
3541                  * generation is designed to be run atomically and so is
3542                  * lockless.
3543                  */
3544                 ring->user_irq_get(dev, ring);
3545                 ret = wait_event_interruptible(ring->irq_queue,
3546                                                i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3547                                                || atomic_read(&dev_priv->mm.wedged));
3548                 ring->user_irq_put(dev, ring);
3549
3550                 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3551                         ret = -EIO;
3552         }
3553
3554         if (ret == 0)
3555                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3556
3557         return ret;
3558 }
3559
3560 static int
3561 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3562                           uint64_t exec_offset)
3563 {
3564         uint32_t exec_start, exec_len;
3565
3566         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3567         exec_len = (uint32_t) exec->batch_len;
3568
3569         if ((exec_start | exec_len) & 0x7)
3570                 return -EINVAL;
3571
3572         if (!exec_start)
3573                 return -EINVAL;
3574
3575         return 0;
3576 }
3577
3578 static int
3579 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3580                    int count)
3581 {
3582         int i;
3583
3584         for (i = 0; i < count; i++) {
3585                 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3586                 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3587
3588                 if (!access_ok(VERIFY_READ, ptr, length))
3589                         return -EFAULT;
3590
3591                 if (fault_in_pages_readable(ptr, length))
3592                         return -EFAULT;
3593         }
3594
3595         return 0;
3596 }
3597
3598 static int
3599 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3600                        struct drm_file *file_priv,
3601                        struct drm_i915_gem_execbuffer2 *args,
3602                        struct drm_i915_gem_exec_object2 *exec_list)
3603 {
3604         drm_i915_private_t *dev_priv = dev->dev_private;
3605         struct drm_gem_object **object_list = NULL;
3606         struct drm_gem_object *batch_obj;
3607         struct drm_i915_gem_object *obj_priv;
3608         struct drm_clip_rect *cliprects = NULL;
3609         struct drm_i915_gem_request *request = NULL;
3610         int ret, i, pinned = 0;
3611         uint64_t exec_offset;
3612         int pin_tries, flips;
3613
3614         struct intel_ring_buffer *ring = NULL;
3615
3616         ret = i915_gem_check_is_wedged(dev);
3617         if (ret)
3618                 return ret;
3619
3620         ret = validate_exec_list(exec_list, args->buffer_count);
3621         if (ret)
3622                 return ret;
3623
3624 #if WATCH_EXEC
3625         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3626                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3627 #endif
3628         if (args->flags & I915_EXEC_BSD) {
3629                 if (!HAS_BSD(dev)) {
3630                         DRM_ERROR("execbuf with wrong flag\n");
3631                         return -EINVAL;
3632                 }
3633                 ring = &dev_priv->bsd_ring;
3634         } else {
3635                 ring = &dev_priv->render_ring;
3636         }
3637
3638         if (args->buffer_count < 1) {
3639                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3640                 return -EINVAL;
3641         }
3642         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3643         if (object_list == NULL) {
3644                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3645                           args->buffer_count);
3646                 ret = -ENOMEM;
3647                 goto pre_mutex_err;
3648         }
3649
3650         if (args->num_cliprects != 0) {
3651                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3652                                     GFP_KERNEL);
3653                 if (cliprects == NULL) {
3654                         ret = -ENOMEM;
3655                         goto pre_mutex_err;
3656                 }
3657
3658                 ret = copy_from_user(cliprects,
3659                                      (struct drm_clip_rect __user *)
3660                                      (uintptr_t) args->cliprects_ptr,
3661                                      sizeof(*cliprects) * args->num_cliprects);
3662                 if (ret != 0) {
3663                         DRM_ERROR("copy %d cliprects failed: %d\n",
3664                                   args->num_cliprects, ret);
3665                         ret = -EFAULT;
3666                         goto pre_mutex_err;
3667                 }
3668         }
3669
3670         request = kzalloc(sizeof(*request), GFP_KERNEL);
3671         if (request == NULL) {
3672                 ret = -ENOMEM;
3673                 goto pre_mutex_err;
3674         }
3675
3676         ret = i915_mutex_lock_interruptible(dev);
3677         if (ret)
3678                 goto pre_mutex_err;
3679
3680         if (dev_priv->mm.suspended) {
3681                 mutex_unlock(&dev->struct_mutex);
3682                 ret = -EBUSY;
3683                 goto pre_mutex_err;
3684         }
3685
3686         /* Look up object handles */
3687         for (i = 0; i < args->buffer_count; i++) {
3688                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3689                                                        exec_list[i].handle);
3690                 if (object_list[i] == NULL) {
3691                         DRM_ERROR("Invalid object handle %d at index %d\n",
3692                                    exec_list[i].handle, i);
3693                         /* prevent error path from reading uninitialized data */
3694                         args->buffer_count = i + 1;
3695                         ret = -ENOENT;
3696                         goto err;
3697                 }
3698
3699                 obj_priv = to_intel_bo(object_list[i]);
3700                 if (obj_priv->in_execbuffer) {
3701                         DRM_ERROR("Object %p appears more than once in object list\n",
3702                                    object_list[i]);
3703                         /* prevent error path from reading uninitialized data */
3704                         args->buffer_count = i + 1;
3705                         ret = -EINVAL;
3706                         goto err;
3707                 }
3708                 obj_priv->in_execbuffer = true;
3709         }
3710
3711         /* Pin and relocate */
3712         for (pin_tries = 0; ; pin_tries++) {
3713                 ret = 0;
3714
3715                 for (i = 0; i < args->buffer_count; i++) {
3716                         object_list[i]->pending_read_domains = 0;
3717                         object_list[i]->pending_write_domain = 0;
3718                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3719                                                                file_priv,
3720                                                                &exec_list[i]);
3721                         if (ret)
3722                                 break;
3723                         pinned = i + 1;
3724                 }
3725                 /* success */
3726                 if (ret == 0)
3727                         break;
3728
3729                 /* error other than GTT full, or we've already tried again */
3730                 if (ret != -ENOSPC || pin_tries >= 1) {
3731                         if (ret != -ERESTARTSYS) {
3732                                 unsigned long long total_size = 0;
3733                                 int num_fences = 0;
3734                                 for (i = 0; i < args->buffer_count; i++) {
3735                                         obj_priv = to_intel_bo(object_list[i]);
3736
3737                                         total_size += object_list[i]->size;
3738                                         num_fences +=
3739                                                 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3740                                                 obj_priv->tiling_mode != I915_TILING_NONE;
3741                                 }
3742                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3743                                           pinned+1, args->buffer_count,
3744                                           total_size, num_fences,
3745                                           ret);
3746                                 DRM_ERROR("%u objects [%u pinned, %u GTT], "
3747                                           "%zu object bytes [%zu pinned], "
3748                                           "%zu /%zu gtt bytes\n",
3749                                           dev_priv->mm.object_count,
3750                                           dev_priv->mm.pin_count,
3751                                           dev_priv->mm.gtt_count,
3752                                           dev_priv->mm.object_memory,
3753                                           dev_priv->mm.pin_memory,
3754                                           dev_priv->mm.gtt_memory,
3755                                           dev_priv->mm.gtt_total);
3756                         }
3757                         goto err;
3758                 }
3759
3760                 /* unpin all of our buffers */
3761                 for (i = 0; i < pinned; i++)
3762                         i915_gem_object_unpin(object_list[i]);
3763                 pinned = 0;
3764
3765                 /* evict everyone we can from the aperture */
3766                 ret = i915_gem_evict_everything(dev);
3767                 if (ret && ret != -ENOSPC)
3768                         goto err;
3769         }
3770
3771         /* Set the pending read domains for the batch buffer to COMMAND */
3772         batch_obj = object_list[args->buffer_count-1];
3773         if (batch_obj->pending_write_domain) {
3774                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3775                 ret = -EINVAL;
3776                 goto err;
3777         }
3778         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3779
3780         /* Sanity check the batch buffer, prior to moving objects */
3781         exec_offset = exec_list[args->buffer_count - 1].offset;
3782         ret = i915_gem_check_execbuffer (args, exec_offset);
3783         if (ret != 0) {
3784                 DRM_ERROR("execbuf with invalid offset/length\n");
3785                 goto err;
3786         }
3787
3788         /* Zero the global flush/invalidate flags. These
3789          * will be modified as new domains are computed
3790          * for each object
3791          */
3792         dev->invalidate_domains = 0;
3793         dev->flush_domains = 0;
3794         dev_priv->mm.flush_rings = 0;
3795
3796         for (i = 0; i < args->buffer_count; i++) {
3797                 struct drm_gem_object *obj = object_list[i];
3798
3799                 /* Compute new gpu domains and update invalidate/flush */
3800                 i915_gem_object_set_to_gpu_domain(obj);
3801         }
3802
3803         if (dev->invalidate_domains | dev->flush_domains) {
3804 #if WATCH_EXEC
3805                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3806                           __func__,
3807                          dev->invalidate_domains,
3808                          dev->flush_domains);
3809 #endif
3810                 i915_gem_flush(dev, file_priv,
3811                                dev->invalidate_domains,
3812                                dev->flush_domains,
3813                                dev_priv->mm.flush_rings);
3814         }
3815
3816         for (i = 0; i < args->buffer_count; i++) {
3817                 struct drm_gem_object *obj = object_list[i];
3818                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3819                 uint32_t old_write_domain = obj->write_domain;
3820
3821                 obj->write_domain = obj->pending_write_domain;
3822                 if (obj->write_domain)
3823                         list_move_tail(&obj_priv->gpu_write_list,
3824                                        &dev_priv->mm.gpu_write_list);
3825
3826                 trace_i915_gem_object_change_domain(obj,
3827                                                     obj->read_domains,
3828                                                     old_write_domain);
3829         }
3830
3831 #if WATCH_COHERENCY
3832         for (i = 0; i < args->buffer_count; i++) {
3833                 i915_gem_object_check_coherency(object_list[i],
3834                                                 exec_list[i].handle);
3835         }
3836 #endif
3837
3838 #if WATCH_EXEC
3839         i915_gem_dump_object(batch_obj,
3840                               args->batch_len,
3841                               __func__,
3842                               ~0);
3843 #endif
3844
3845         /* Check for any pending flips. As we only maintain a flip queue depth
3846          * of 1, we can simply insert a WAIT for the next display flip prior
3847          * to executing the batch and avoid stalling the CPU.
3848          */
3849         flips = 0;
3850         for (i = 0; i < args->buffer_count; i++) {
3851                 if (object_list[i]->write_domain)
3852                         flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3853         }
3854         if (flips) {
3855                 int plane, flip_mask;
3856
3857                 for (plane = 0; flips >> plane; plane++) {
3858                         if (((flips >> plane) & 1) == 0)
3859                                 continue;
3860
3861                         if (plane)
3862                                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3863                         else
3864                                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3865
3866                         intel_ring_begin(dev, ring, 2);
3867                         intel_ring_emit(dev, ring,
3868                                         MI_WAIT_FOR_EVENT | flip_mask);
3869                         intel_ring_emit(dev, ring, MI_NOOP);
3870                         intel_ring_advance(dev, ring);
3871                 }
3872         }
3873
3874         /* Exec the batchbuffer */
3875         ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3876                                             cliprects, exec_offset);
3877         if (ret) {
3878                 DRM_ERROR("dispatch failed %d\n", ret);
3879                 goto err;
3880         }
3881
3882         /*
3883          * Ensure that the commands in the batch buffer are
3884          * finished before the interrupt fires
3885          */
3886         i915_retire_commands(dev, ring);
3887
3888         for (i = 0; i < args->buffer_count; i++) {
3889                 struct drm_gem_object *obj = object_list[i];
3890                 obj_priv = to_intel_bo(obj);
3891
3892                 i915_gem_object_move_to_active(obj, ring);
3893         }
3894
3895         i915_add_request(dev, file_priv, request, ring);
3896         request = NULL;
3897
3898 err:
3899         for (i = 0; i < pinned; i++)
3900                 i915_gem_object_unpin(object_list[i]);
3901
3902         for (i = 0; i < args->buffer_count; i++) {
3903                 if (object_list[i]) {
3904                         obj_priv = to_intel_bo(object_list[i]);
3905                         obj_priv->in_execbuffer = false;
3906                 }
3907                 drm_gem_object_unreference(object_list[i]);
3908         }
3909
3910         mutex_unlock(&dev->struct_mutex);
3911
3912 pre_mutex_err:
3913         drm_free_large(object_list);
3914         kfree(cliprects);
3915         kfree(request);
3916
3917         return ret;
3918 }
3919
3920 /*
3921  * Legacy execbuffer just creates an exec2 list from the original exec object
3922  * list array and passes it to the real function.
3923  */
3924 int
3925 i915_gem_execbuffer(struct drm_device *dev, void *data,
3926                     struct drm_file *file_priv)
3927 {
3928         struct drm_i915_gem_execbuffer *args = data;
3929         struct drm_i915_gem_execbuffer2 exec2;
3930         struct drm_i915_gem_exec_object *exec_list = NULL;
3931         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3932         int ret, i;
3933
3934 #if WATCH_EXEC
3935         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3936                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3937 #endif
3938
3939         if (args->buffer_count < 1) {
3940                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3941                 return -EINVAL;
3942         }
3943
3944         /* Copy in the exec list from userland */
3945         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3946         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3947         if (exec_list == NULL || exec2_list == NULL) {
3948                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3949                           args->buffer_count);
3950                 drm_free_large(exec_list);
3951                 drm_free_large(exec2_list);
3952                 return -ENOMEM;
3953         }
3954         ret = copy_from_user(exec_list,
3955                              (struct drm_i915_relocation_entry __user *)
3956                              (uintptr_t) args->buffers_ptr,
3957                              sizeof(*exec_list) * args->buffer_count);
3958         if (ret != 0) {
3959                 DRM_ERROR("copy %d exec entries failed %d\n",
3960                           args->buffer_count, ret);
3961                 drm_free_large(exec_list);
3962                 drm_free_large(exec2_list);
3963                 return -EFAULT;
3964         }
3965
3966         for (i = 0; i < args->buffer_count; i++) {
3967                 exec2_list[i].handle = exec_list[i].handle;
3968                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3969                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3970                 exec2_list[i].alignment = exec_list[i].alignment;
3971                 exec2_list[i].offset = exec_list[i].offset;
3972                 if (INTEL_INFO(dev)->gen < 4)
3973                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3974                 else
3975                         exec2_list[i].flags = 0;
3976         }
3977
3978         exec2.buffers_ptr = args->buffers_ptr;
3979         exec2.buffer_count = args->buffer_count;
3980         exec2.batch_start_offset = args->batch_start_offset;
3981         exec2.batch_len = args->batch_len;
3982         exec2.DR1 = args->DR1;
3983         exec2.DR4 = args->DR4;
3984         exec2.num_cliprects = args->num_cliprects;
3985         exec2.cliprects_ptr = args->cliprects_ptr;
3986         exec2.flags = I915_EXEC_RENDER;
3987
3988         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3989         if (!ret) {
3990                 /* Copy the new buffer offsets back to the user's exec list. */
3991                 for (i = 0; i < args->buffer_count; i++)
3992                         exec_list[i].offset = exec2_list[i].offset;
3993                 /* ... and back out to userspace */
3994                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3995                                    (uintptr_t) args->buffers_ptr,
3996                                    exec_list,
3997                                    sizeof(*exec_list) * args->buffer_count);
3998                 if (ret) {
3999                         ret = -EFAULT;
4000                         DRM_ERROR("failed to copy %d exec entries "
4001                                   "back to user (%d)\n",
4002                                   args->buffer_count, ret);
4003                 }
4004         }
4005
4006         drm_free_large(exec_list);
4007         drm_free_large(exec2_list);
4008         return ret;
4009 }
4010
4011 int
4012 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4013                      struct drm_file *file_priv)
4014 {
4015         struct drm_i915_gem_execbuffer2 *args = data;
4016         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4017         int ret;
4018
4019 #if WATCH_EXEC
4020         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4021                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4022 #endif
4023
4024         if (args->buffer_count < 1) {
4025                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4026                 return -EINVAL;
4027         }
4028
4029         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4030         if (exec2_list == NULL) {
4031                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4032                           args->buffer_count);
4033                 return -ENOMEM;
4034         }
4035         ret = copy_from_user(exec2_list,
4036                              (struct drm_i915_relocation_entry __user *)
4037                              (uintptr_t) args->buffers_ptr,
4038                              sizeof(*exec2_list) * args->buffer_count);
4039         if (ret != 0) {
4040                 DRM_ERROR("copy %d exec entries failed %d\n",
4041                           args->buffer_count, ret);
4042                 drm_free_large(exec2_list);
4043                 return -EFAULT;
4044         }
4045
4046         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4047         if (!ret) {
4048                 /* Copy the new buffer offsets back to the user's exec list. */
4049                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4050                                    (uintptr_t) args->buffers_ptr,
4051                                    exec2_list,
4052                                    sizeof(*exec2_list) * args->buffer_count);
4053                 if (ret) {
4054                         ret = -EFAULT;
4055                         DRM_ERROR("failed to copy %d exec entries "
4056                                   "back to user (%d)\n",
4057                                   args->buffer_count, ret);
4058                 }
4059         }
4060
4061         drm_free_large(exec2_list);
4062         return ret;
4063 }
4064
4065 int
4066 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4067 {
4068         struct drm_device *dev = obj->dev;
4069         struct drm_i915_private *dev_priv = dev->dev_private;
4070         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4071         int ret;
4072
4073         BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4074         WARN_ON(i915_verify_lists(dev));
4075
4076         if (obj_priv->gtt_space != NULL) {
4077                 if (alignment == 0)
4078                         alignment = i915_gem_get_gtt_alignment(obj);
4079                 if (obj_priv->gtt_offset & (alignment - 1)) {
4080                         WARN(obj_priv->pin_count,
4081                              "bo is already pinned with incorrect alignment:"
4082                              " offset=%x, req.alignment=%x\n",
4083                              obj_priv->gtt_offset, alignment);
4084                         ret = i915_gem_object_unbind(obj);
4085                         if (ret)
4086                                 return ret;
4087                 }
4088         }
4089
4090         if (obj_priv->gtt_space == NULL) {
4091                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4092                 if (ret)
4093                         return ret;
4094         }
4095
4096         obj_priv->pin_count++;
4097
4098         /* If the object is not active and not pending a flush,
4099          * remove it from the inactive list
4100          */
4101         if (obj_priv->pin_count == 1) {
4102                 i915_gem_info_add_pin(dev_priv, obj->size);
4103                 if (!obj_priv->active)
4104                         list_move_tail(&obj_priv->list,
4105                                        &dev_priv->mm.pinned_list);
4106         }
4107
4108         WARN_ON(i915_verify_lists(dev));
4109         return 0;
4110 }
4111
4112 void
4113 i915_gem_object_unpin(struct drm_gem_object *obj)
4114 {
4115         struct drm_device *dev = obj->dev;
4116         drm_i915_private_t *dev_priv = dev->dev_private;
4117         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4118
4119         WARN_ON(i915_verify_lists(dev));
4120         obj_priv->pin_count--;
4121         BUG_ON(obj_priv->pin_count < 0);
4122         BUG_ON(obj_priv->gtt_space == NULL);
4123
4124         /* If the object is no longer pinned, and is
4125          * neither active nor being flushed, then stick it on
4126          * the inactive list
4127          */
4128         if (obj_priv->pin_count == 0) {
4129                 if (!obj_priv->active)
4130                         list_move_tail(&obj_priv->list,
4131                                        &dev_priv->mm.inactive_list);
4132                 i915_gem_info_remove_pin(dev_priv, obj->size);
4133         }
4134         WARN_ON(i915_verify_lists(dev));
4135 }
4136
4137 int
4138 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4139                    struct drm_file *file_priv)
4140 {
4141         struct drm_i915_gem_pin *args = data;
4142         struct drm_gem_object *obj;
4143         struct drm_i915_gem_object *obj_priv;
4144         int ret;
4145
4146         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4147         if (obj == NULL) {
4148                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4149                           args->handle);
4150                 return -ENOENT;
4151         }
4152         obj_priv = to_intel_bo(obj);
4153
4154         ret = i915_mutex_lock_interruptible(dev);
4155         if (ret) {
4156                 drm_gem_object_unreference_unlocked(obj);
4157                 return ret;
4158         }
4159
4160         if (obj_priv->madv != I915_MADV_WILLNEED) {
4161                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4162                 drm_gem_object_unreference(obj);
4163                 mutex_unlock(&dev->struct_mutex);
4164                 return -EINVAL;
4165         }
4166
4167         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4168                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4169                           args->handle);
4170                 drm_gem_object_unreference(obj);
4171                 mutex_unlock(&dev->struct_mutex);
4172                 return -EINVAL;
4173         }
4174
4175         obj_priv->user_pin_count++;
4176         obj_priv->pin_filp = file_priv;
4177         if (obj_priv->user_pin_count == 1) {
4178                 ret = i915_gem_object_pin(obj, args->alignment);
4179                 if (ret != 0) {
4180                         drm_gem_object_unreference(obj);
4181                         mutex_unlock(&dev->struct_mutex);
4182                         return ret;
4183                 }
4184         }
4185
4186         /* XXX - flush the CPU caches for pinned objects
4187          * as the X server doesn't manage domains yet
4188          */
4189         i915_gem_object_flush_cpu_write_domain(obj);
4190         args->offset = obj_priv->gtt_offset;
4191         drm_gem_object_unreference(obj);
4192         mutex_unlock(&dev->struct_mutex);
4193
4194         return 0;
4195 }
4196
4197 int
4198 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4199                      struct drm_file *file_priv)
4200 {
4201         struct drm_i915_gem_pin *args = data;
4202         struct drm_gem_object *obj;
4203         struct drm_i915_gem_object *obj_priv;
4204         int ret;
4205
4206         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4207         if (obj == NULL) {
4208                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4209                           args->handle);
4210                 return -ENOENT;
4211         }
4212
4213         obj_priv = to_intel_bo(obj);
4214
4215         ret = i915_mutex_lock_interruptible(dev);
4216         if (ret) {
4217                 drm_gem_object_unreference_unlocked(obj);
4218                 return ret;
4219         }
4220
4221         if (obj_priv->pin_filp != file_priv) {
4222                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4223                           args->handle);
4224                 drm_gem_object_unreference(obj);
4225                 mutex_unlock(&dev->struct_mutex);
4226                 return -EINVAL;
4227         }
4228         obj_priv->user_pin_count--;
4229         if (obj_priv->user_pin_count == 0) {
4230                 obj_priv->pin_filp = NULL;
4231                 i915_gem_object_unpin(obj);
4232         }
4233
4234         drm_gem_object_unreference(obj);
4235         mutex_unlock(&dev->struct_mutex);
4236         return 0;
4237 }
4238
4239 int
4240 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4241                     struct drm_file *file_priv)
4242 {
4243         struct drm_i915_gem_busy *args = data;
4244         struct drm_gem_object *obj;
4245         struct drm_i915_gem_object *obj_priv;
4246         int ret;
4247
4248         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4249         if (obj == NULL) {
4250                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4251                           args->handle);
4252                 return -ENOENT;
4253         }
4254
4255         ret = i915_mutex_lock_interruptible(dev);
4256         if (ret) {
4257                 drm_gem_object_unreference_unlocked(obj);
4258                 return ret;
4259         }
4260
4261         /* Count all active objects as busy, even if they are currently not used
4262          * by the gpu. Users of this interface expect objects to eventually
4263          * become non-busy without any further actions, therefore emit any
4264          * necessary flushes here.
4265          */
4266         obj_priv = to_intel_bo(obj);
4267         args->busy = obj_priv->active;
4268         if (args->busy) {
4269                 /* Unconditionally flush objects, even when the gpu still uses this
4270                  * object. Userspace calling this function indicates that it wants to
4271                  * use this buffer rather sooner than later, so issuing the required
4272                  * flush earlier is beneficial.
4273                  */
4274                 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4275                         i915_gem_flush_ring(dev, file_priv,
4276                                             obj_priv->ring,
4277                                             0, obj->write_domain);
4278
4279                 /* Update the active list for the hardware's current position.
4280                  * Otherwise this only updates on a delayed timer or when irqs
4281                  * are actually unmasked, and our working set ends up being
4282                  * larger than required.
4283                  */
4284                 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4285
4286                 args->busy = obj_priv->active;
4287         }
4288
4289         drm_gem_object_unreference(obj);
4290         mutex_unlock(&dev->struct_mutex);
4291         return 0;
4292 }
4293
4294 int
4295 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4296                         struct drm_file *file_priv)
4297 {
4298     return i915_gem_ring_throttle(dev, file_priv);
4299 }
4300
4301 int
4302 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4303                        struct drm_file *file_priv)
4304 {
4305         struct drm_i915_gem_madvise *args = data;
4306         struct drm_gem_object *obj;
4307         struct drm_i915_gem_object *obj_priv;
4308         int ret;
4309
4310         switch (args->madv) {
4311         case I915_MADV_DONTNEED:
4312         case I915_MADV_WILLNEED:
4313             break;
4314         default:
4315             return -EINVAL;
4316         }
4317
4318         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4319         if (obj == NULL) {
4320                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4321                           args->handle);
4322                 return -ENOENT;
4323         }
4324         obj_priv = to_intel_bo(obj);
4325
4326         ret = i915_mutex_lock_interruptible(dev);
4327         if (ret) {
4328                 drm_gem_object_unreference_unlocked(obj);
4329                 return ret;
4330         }
4331
4332         if (obj_priv->pin_count) {
4333                 drm_gem_object_unreference(obj);
4334                 mutex_unlock(&dev->struct_mutex);
4335
4336                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4337                 return -EINVAL;
4338         }
4339
4340         if (obj_priv->madv != __I915_MADV_PURGED)
4341                 obj_priv->madv = args->madv;
4342
4343         /* if the object is no longer bound, discard its backing storage */
4344         if (i915_gem_object_is_purgeable(obj_priv) &&
4345             obj_priv->gtt_space == NULL)
4346                 i915_gem_object_truncate(obj);
4347
4348         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4349
4350         drm_gem_object_unreference(obj);
4351         mutex_unlock(&dev->struct_mutex);
4352
4353         return 0;
4354 }
4355
4356 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4357                                               size_t size)
4358 {
4359         struct drm_i915_private *dev_priv = dev->dev_private;
4360         struct drm_i915_gem_object *obj;
4361
4362         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4363         if (obj == NULL)
4364                 return NULL;
4365
4366         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4367                 kfree(obj);
4368                 return NULL;
4369         }
4370
4371         i915_gem_info_add_obj(dev_priv, size);
4372
4373         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4374         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4375
4376         obj->agp_type = AGP_USER_MEMORY;
4377         obj->base.driver_private = NULL;
4378         obj->fence_reg = I915_FENCE_REG_NONE;
4379         INIT_LIST_HEAD(&obj->list);
4380         INIT_LIST_HEAD(&obj->gpu_write_list);
4381         obj->madv = I915_MADV_WILLNEED;
4382
4383         trace_i915_gem_object_create(&obj->base);
4384
4385         return &obj->base;
4386 }
4387
4388 int i915_gem_init_object(struct drm_gem_object *obj)
4389 {
4390         BUG();
4391
4392         return 0;
4393 }
4394
4395 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4396 {
4397         struct drm_device *dev = obj->dev;
4398         drm_i915_private_t *dev_priv = dev->dev_private;
4399         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4400         int ret;
4401
4402         ret = i915_gem_object_unbind(obj);
4403         if (ret == -ERESTARTSYS) {
4404                 list_move(&obj_priv->list,
4405                           &dev_priv->mm.deferred_free_list);
4406                 return;
4407         }
4408
4409         if (obj_priv->mmap_offset)
4410                 i915_gem_free_mmap_offset(obj);
4411
4412         drm_gem_object_release(obj);
4413         i915_gem_info_remove_obj(dev_priv, obj->size);
4414
4415         kfree(obj_priv->page_cpu_valid);
4416         kfree(obj_priv->bit_17);
4417         kfree(obj_priv);
4418 }
4419
4420 void i915_gem_free_object(struct drm_gem_object *obj)
4421 {
4422         struct drm_device *dev = obj->dev;
4423         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4424
4425         trace_i915_gem_object_destroy(obj);
4426
4427         while (obj_priv->pin_count > 0)
4428                 i915_gem_object_unpin(obj);
4429
4430         if (obj_priv->phys_obj)
4431                 i915_gem_detach_phys_object(dev, obj);
4432
4433         i915_gem_free_object_tail(obj);
4434 }
4435
4436 int
4437 i915_gem_idle(struct drm_device *dev)
4438 {
4439         drm_i915_private_t *dev_priv = dev->dev_private;
4440         int ret;
4441
4442         mutex_lock(&dev->struct_mutex);
4443
4444         if (dev_priv->mm.suspended ||
4445                         (dev_priv->render_ring.gem_object == NULL) ||
4446                         (HAS_BSD(dev) &&
4447                          dev_priv->bsd_ring.gem_object == NULL)) {
4448                 mutex_unlock(&dev->struct_mutex);
4449                 return 0;
4450         }
4451
4452         ret = i915_gpu_idle(dev);
4453         if (ret) {
4454                 mutex_unlock(&dev->struct_mutex);
4455                 return ret;
4456         }
4457
4458         /* Under UMS, be paranoid and evict. */
4459         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4460                 ret = i915_gem_evict_inactive(dev);
4461                 if (ret) {
4462                         mutex_unlock(&dev->struct_mutex);
4463                         return ret;
4464                 }
4465         }
4466
4467         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4468          * We need to replace this with a semaphore, or something.
4469          * And not confound mm.suspended!
4470          */
4471         dev_priv->mm.suspended = 1;
4472         del_timer_sync(&dev_priv->hangcheck_timer);
4473
4474         i915_kernel_lost_context(dev);
4475         i915_gem_cleanup_ringbuffer(dev);
4476
4477         mutex_unlock(&dev->struct_mutex);
4478
4479         /* Cancel the retire work handler, which should be idle now. */
4480         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4481
4482         return 0;
4483 }
4484
4485 /*
4486  * 965+ support PIPE_CONTROL commands, which provide finer grained control
4487  * over cache flushing.
4488  */
4489 static int
4490 i915_gem_init_pipe_control(struct drm_device *dev)
4491 {
4492         drm_i915_private_t *dev_priv = dev->dev_private;
4493         struct drm_gem_object *obj;
4494         struct drm_i915_gem_object *obj_priv;
4495         int ret;
4496
4497         obj = i915_gem_alloc_object(dev, 4096);
4498         if (obj == NULL) {
4499                 DRM_ERROR("Failed to allocate seqno page\n");
4500                 ret = -ENOMEM;
4501                 goto err;
4502         }
4503         obj_priv = to_intel_bo(obj);
4504         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4505
4506         ret = i915_gem_object_pin(obj, 4096);
4507         if (ret)
4508                 goto err_unref;
4509
4510         dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4511         dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
4512         if (dev_priv->seqno_page == NULL)
4513                 goto err_unpin;
4514
4515         dev_priv->seqno_obj = obj;
4516         memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4517
4518         return 0;
4519
4520 err_unpin:
4521         i915_gem_object_unpin(obj);
4522 err_unref:
4523         drm_gem_object_unreference(obj);
4524 err:
4525         return ret;
4526 }
4527
4528
4529 static void
4530 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4531 {
4532         drm_i915_private_t *dev_priv = dev->dev_private;
4533         struct drm_gem_object *obj;
4534         struct drm_i915_gem_object *obj_priv;
4535
4536         obj = dev_priv->seqno_obj;
4537         obj_priv = to_intel_bo(obj);
4538         kunmap(obj_priv->pages[0]);
4539         i915_gem_object_unpin(obj);
4540         drm_gem_object_unreference(obj);
4541         dev_priv->seqno_obj = NULL;
4542
4543         dev_priv->seqno_page = NULL;
4544 }
4545
4546 int
4547 i915_gem_init_ringbuffer(struct drm_device *dev)
4548 {
4549         drm_i915_private_t *dev_priv = dev->dev_private;
4550         int ret;
4551
4552         if (HAS_PIPE_CONTROL(dev)) {
4553                 ret = i915_gem_init_pipe_control(dev);
4554                 if (ret)
4555                         return ret;
4556         }
4557
4558         ret = intel_init_render_ring_buffer(dev);
4559         if (ret)
4560                 goto cleanup_pipe_control;
4561
4562         if (HAS_BSD(dev)) {
4563                 ret = intel_init_bsd_ring_buffer(dev);
4564                 if (ret)
4565                         goto cleanup_render_ring;
4566         }
4567
4568         dev_priv->next_seqno = 1;
4569
4570         return 0;
4571
4572 cleanup_render_ring:
4573         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4574 cleanup_pipe_control:
4575         if (HAS_PIPE_CONTROL(dev))
4576                 i915_gem_cleanup_pipe_control(dev);
4577         return ret;
4578 }
4579
4580 void
4581 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4582 {
4583         drm_i915_private_t *dev_priv = dev->dev_private;
4584
4585         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4586         if (HAS_BSD(dev))
4587                 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4588         if (HAS_PIPE_CONTROL(dev))
4589                 i915_gem_cleanup_pipe_control(dev);
4590 }
4591
4592 int
4593 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4594                        struct drm_file *file_priv)
4595 {
4596         drm_i915_private_t *dev_priv = dev->dev_private;
4597         int ret;
4598
4599         if (drm_core_check_feature(dev, DRIVER_MODESET))
4600                 return 0;
4601
4602         if (atomic_read(&dev_priv->mm.wedged)) {
4603                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4604                 atomic_set(&dev_priv->mm.wedged, 0);
4605         }
4606
4607         mutex_lock(&dev->struct_mutex);
4608         dev_priv->mm.suspended = 0;
4609
4610         ret = i915_gem_init_ringbuffer(dev);
4611         if (ret != 0) {
4612                 mutex_unlock(&dev->struct_mutex);
4613                 return ret;
4614         }
4615
4616         BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4617         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4618         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4619         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4620         BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4621         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4622         mutex_unlock(&dev->struct_mutex);
4623
4624         ret = drm_irq_install(dev);
4625         if (ret)
4626                 goto cleanup_ringbuffer;
4627
4628         return 0;
4629
4630 cleanup_ringbuffer:
4631         mutex_lock(&dev->struct_mutex);
4632         i915_gem_cleanup_ringbuffer(dev);
4633         dev_priv->mm.suspended = 1;
4634         mutex_unlock(&dev->struct_mutex);
4635
4636         return ret;
4637 }
4638
4639 int
4640 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4641                        struct drm_file *file_priv)
4642 {
4643         if (drm_core_check_feature(dev, DRIVER_MODESET))
4644                 return 0;
4645
4646         drm_irq_uninstall(dev);
4647         return i915_gem_idle(dev);
4648 }
4649
4650 void
4651 i915_gem_lastclose(struct drm_device *dev)
4652 {
4653         int ret;
4654
4655         if (drm_core_check_feature(dev, DRIVER_MODESET))
4656                 return;
4657
4658         ret = i915_gem_idle(dev);
4659         if (ret)
4660                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4661 }
4662
4663 void
4664 i915_gem_load(struct drm_device *dev)
4665 {
4666         int i;
4667         drm_i915_private_t *dev_priv = dev->dev_private;
4668
4669         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4670         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4671         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4672         INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4673         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4674         INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4675         INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4676         INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4677         if (HAS_BSD(dev)) {
4678                 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4679                 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4680         }
4681         for (i = 0; i < 16; i++)
4682                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4683         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4684                           i915_gem_retire_work_handler);
4685         init_completion(&dev_priv->error_completion);
4686         spin_lock(&shrink_list_lock);
4687         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4688         spin_unlock(&shrink_list_lock);
4689
4690         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4691         if (IS_GEN3(dev)) {
4692                 u32 tmp = I915_READ(MI_ARB_STATE);
4693                 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4694                         /* arb state is a masked write, so set bit + bit in mask */
4695                         tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4696                         I915_WRITE(MI_ARB_STATE, tmp);
4697                 }
4698         }
4699
4700         /* Old X drivers will take 0-2 for front, back, depth buffers */
4701         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4702                 dev_priv->fence_reg_start = 3;
4703
4704         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4705                 dev_priv->num_fence_regs = 16;
4706         else
4707                 dev_priv->num_fence_regs = 8;
4708
4709         /* Initialize fence registers to zero */
4710         switch (INTEL_INFO(dev)->gen) {
4711         case 6:
4712                 for (i = 0; i < 16; i++)
4713                         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4714                 break;
4715         case 5:
4716         case 4:
4717                 for (i = 0; i < 16; i++)
4718                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4719                 break;
4720         case 3:
4721                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4722                         for (i = 0; i < 8; i++)
4723                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4724         case 2:
4725                 for (i = 0; i < 8; i++)
4726                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4727                 break;
4728         }
4729         i915_gem_detect_bit_6_swizzle(dev);
4730         init_waitqueue_head(&dev_priv->pending_flip_queue);
4731 }
4732
4733 /*
4734  * Create a physically contiguous memory object for this object
4735  * e.g. for cursor + overlay regs
4736  */
4737 static int i915_gem_init_phys_object(struct drm_device *dev,
4738                                      int id, int size, int align)
4739 {
4740         drm_i915_private_t *dev_priv = dev->dev_private;
4741         struct drm_i915_gem_phys_object *phys_obj;
4742         int ret;
4743
4744         if (dev_priv->mm.phys_objs[id - 1] || !size)
4745                 return 0;
4746
4747         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4748         if (!phys_obj)
4749                 return -ENOMEM;
4750
4751         phys_obj->id = id;
4752
4753         phys_obj->handle = drm_pci_alloc(dev, size, align);
4754         if (!phys_obj->handle) {
4755                 ret = -ENOMEM;
4756                 goto kfree_obj;
4757         }
4758 #ifdef CONFIG_X86
4759         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4760 #endif
4761
4762         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4763
4764         return 0;
4765 kfree_obj:
4766         kfree(phys_obj);
4767         return ret;
4768 }
4769
4770 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4771 {
4772         drm_i915_private_t *dev_priv = dev->dev_private;
4773         struct drm_i915_gem_phys_object *phys_obj;
4774
4775         if (!dev_priv->mm.phys_objs[id - 1])
4776                 return;
4777
4778         phys_obj = dev_priv->mm.phys_objs[id - 1];
4779         if (phys_obj->cur_obj) {
4780                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4781         }
4782
4783 #ifdef CONFIG_X86
4784         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4785 #endif
4786         drm_pci_free(dev, phys_obj->handle);
4787         kfree(phys_obj);
4788         dev_priv->mm.phys_objs[id - 1] = NULL;
4789 }
4790
4791 void i915_gem_free_all_phys_object(struct drm_device *dev)
4792 {
4793         int i;
4794
4795         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4796                 i915_gem_free_phys_object(dev, i);
4797 }
4798
4799 void i915_gem_detach_phys_object(struct drm_device *dev,
4800                                  struct drm_gem_object *obj)
4801 {
4802         struct drm_i915_gem_object *obj_priv;
4803         int i;
4804         int ret;
4805         int page_count;
4806
4807         obj_priv = to_intel_bo(obj);
4808         if (!obj_priv->phys_obj)
4809                 return;
4810
4811         ret = i915_gem_object_get_pages(obj, 0);
4812         if (ret)
4813                 goto out;
4814
4815         page_count = obj->size / PAGE_SIZE;
4816
4817         for (i = 0; i < page_count; i++) {
4818                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4819                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4820
4821                 memcpy(dst, src, PAGE_SIZE);
4822                 kunmap_atomic(dst, KM_USER0);
4823         }
4824         drm_clflush_pages(obj_priv->pages, page_count);
4825         drm_agp_chipset_flush(dev);
4826
4827         i915_gem_object_put_pages(obj);
4828 out:
4829         obj_priv->phys_obj->cur_obj = NULL;
4830         obj_priv->phys_obj = NULL;
4831 }
4832
4833 int
4834 i915_gem_attach_phys_object(struct drm_device *dev,
4835                             struct drm_gem_object *obj,
4836                             int id,
4837                             int align)
4838 {
4839         drm_i915_private_t *dev_priv = dev->dev_private;
4840         struct drm_i915_gem_object *obj_priv;
4841         int ret = 0;
4842         int page_count;
4843         int i;
4844
4845         if (id > I915_MAX_PHYS_OBJECT)
4846                 return -EINVAL;
4847
4848         obj_priv = to_intel_bo(obj);
4849
4850         if (obj_priv->phys_obj) {
4851                 if (obj_priv->phys_obj->id == id)
4852                         return 0;
4853                 i915_gem_detach_phys_object(dev, obj);
4854         }
4855
4856         /* create a new object */
4857         if (!dev_priv->mm.phys_objs[id - 1]) {
4858                 ret = i915_gem_init_phys_object(dev, id,
4859                                                 obj->size, align);
4860                 if (ret) {
4861                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4862                         goto out;
4863                 }
4864         }
4865
4866         /* bind to the object */
4867         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4868         obj_priv->phys_obj->cur_obj = obj;
4869
4870         ret = i915_gem_object_get_pages(obj, 0);
4871         if (ret) {
4872                 DRM_ERROR("failed to get page list\n");
4873                 goto out;
4874         }
4875
4876         page_count = obj->size / PAGE_SIZE;
4877
4878         for (i = 0; i < page_count; i++) {
4879                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4880                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4881
4882                 memcpy(dst, src, PAGE_SIZE);
4883                 kunmap_atomic(src, KM_USER0);
4884         }
4885
4886         i915_gem_object_put_pages(obj);
4887
4888         return 0;
4889 out:
4890         return ret;
4891 }
4892
4893 static int
4894 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4895                      struct drm_i915_gem_pwrite *args,
4896                      struct drm_file *file_priv)
4897 {
4898         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4899         void *obj_addr;
4900         int ret;
4901         char __user *user_data;
4902
4903         user_data = (char __user *) (uintptr_t) args->data_ptr;
4904         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4905
4906         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4907         ret = copy_from_user(obj_addr, user_data, args->size);
4908         if (ret)
4909                 return -EFAULT;
4910
4911         drm_agp_chipset_flush(dev);
4912         return 0;
4913 }
4914
4915 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4916 {
4917         struct drm_i915_file_private *file_priv = file->driver_priv;
4918
4919         /* Clean up our request list when the client is going away, so that
4920          * later retire_requests won't dereference our soon-to-be-gone
4921          * file_priv.
4922          */
4923         spin_lock(&file_priv->mm.lock);
4924         while (!list_empty(&file_priv->mm.request_list)) {
4925                 struct drm_i915_gem_request *request;
4926
4927                 request = list_first_entry(&file_priv->mm.request_list,
4928                                            struct drm_i915_gem_request,
4929                                            client_list);
4930                 list_del(&request->client_list);
4931                 request->file_priv = NULL;
4932         }
4933         spin_unlock(&file_priv->mm.lock);
4934 }
4935
4936 static int
4937 i915_gpu_is_active(struct drm_device *dev)
4938 {
4939         drm_i915_private_t *dev_priv = dev->dev_private;
4940         int lists_empty;
4941
4942         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4943                       list_empty(&dev_priv->render_ring.active_list);
4944         if (HAS_BSD(dev))
4945                 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4946
4947         return !lists_empty;
4948 }
4949
4950 static int
4951 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4952 {
4953         drm_i915_private_t *dev_priv, *next_dev;
4954         struct drm_i915_gem_object *obj_priv, *next_obj;
4955         int cnt = 0;
4956         int would_deadlock = 1;
4957
4958         /* "fast-path" to count number of available objects */
4959         if (nr_to_scan == 0) {
4960                 spin_lock(&shrink_list_lock);
4961                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4962                         struct drm_device *dev = dev_priv->dev;
4963
4964                         if (mutex_trylock(&dev->struct_mutex)) {
4965                                 list_for_each_entry(obj_priv,
4966                                                     &dev_priv->mm.inactive_list,
4967                                                     list)
4968                                         cnt++;
4969                                 mutex_unlock(&dev->struct_mutex);
4970                         }
4971                 }
4972                 spin_unlock(&shrink_list_lock);
4973
4974                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4975         }
4976
4977         spin_lock(&shrink_list_lock);
4978
4979 rescan:
4980         /* first scan for clean buffers */
4981         list_for_each_entry_safe(dev_priv, next_dev,
4982                                  &shrink_list, mm.shrink_list) {
4983                 struct drm_device *dev = dev_priv->dev;
4984
4985                 if (! mutex_trylock(&dev->struct_mutex))
4986                         continue;
4987
4988                 spin_unlock(&shrink_list_lock);
4989                 i915_gem_retire_requests(dev);
4990
4991                 list_for_each_entry_safe(obj_priv, next_obj,
4992                                          &dev_priv->mm.inactive_list,
4993                                          list) {
4994                         if (i915_gem_object_is_purgeable(obj_priv)) {
4995                                 i915_gem_object_unbind(&obj_priv->base);
4996                                 if (--nr_to_scan <= 0)
4997                                         break;
4998                         }
4999                 }
5000
5001                 spin_lock(&shrink_list_lock);
5002                 mutex_unlock(&dev->struct_mutex);
5003
5004                 would_deadlock = 0;
5005
5006                 if (nr_to_scan <= 0)
5007                         break;
5008         }
5009
5010         /* second pass, evict/count anything still on the inactive list */
5011         list_for_each_entry_safe(dev_priv, next_dev,
5012                                  &shrink_list, mm.shrink_list) {
5013                 struct drm_device *dev = dev_priv->dev;
5014
5015                 if (! mutex_trylock(&dev->struct_mutex))
5016                         continue;
5017
5018                 spin_unlock(&shrink_list_lock);
5019
5020                 list_for_each_entry_safe(obj_priv, next_obj,
5021                                          &dev_priv->mm.inactive_list,
5022                                          list) {
5023                         if (nr_to_scan > 0) {
5024                                 i915_gem_object_unbind(&obj_priv->base);
5025                                 nr_to_scan--;
5026                         } else
5027                                 cnt++;
5028                 }
5029
5030                 spin_lock(&shrink_list_lock);
5031                 mutex_unlock(&dev->struct_mutex);
5032
5033                 would_deadlock = 0;
5034         }
5035
5036         if (nr_to_scan) {
5037                 int active = 0;
5038
5039                 /*
5040                  * We are desperate for pages, so as a last resort, wait
5041                  * for the GPU to finish and discard whatever we can.
5042                  * This has a dramatic impact to reduce the number of
5043                  * OOM-killer events whilst running the GPU aggressively.
5044                  */
5045                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5046                         struct drm_device *dev = dev_priv->dev;
5047
5048                         if (!mutex_trylock(&dev->struct_mutex))
5049                                 continue;
5050
5051                         spin_unlock(&shrink_list_lock);
5052
5053                         if (i915_gpu_is_active(dev)) {
5054                                 i915_gpu_idle(dev);
5055                                 active++;
5056                         }
5057
5058                         spin_lock(&shrink_list_lock);
5059                         mutex_unlock(&dev->struct_mutex);
5060                 }
5061
5062                 if (active)
5063                         goto rescan;
5064         }
5065
5066         spin_unlock(&shrink_list_lock);
5067
5068         if (would_deadlock)
5069                 return -1;
5070         else if (cnt > 0)
5071                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5072         else
5073                 return 0;
5074 }
5075
5076 static struct shrinker shrinker = {
5077         .shrink = i915_gem_shrink,
5078         .seeks = DEFAULT_SEEKS,
5079 };
5080
5081 __init void
5082 i915_gem_shrinker_init(void)
5083 {
5084     register_shrinker(&shrinker);
5085 }
5086
5087 __exit void
5088 i915_gem_shrinker_exit(void)
5089 {
5090     unregister_shrinker(&shrinker);
5091 }