]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge remote-tracking branches 'regulator/topic/fixed', 'regulator/topic/id-const...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46
47 static void i915_gem_write_fence(struct drm_device *dev, int reg,
48                                  struct drm_i915_gem_object *obj);
49 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
50                                          struct drm_i915_fence_reg *fence,
51                                          bool enable);
52
53 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
54                                              struct shrink_control *sc);
55 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
56                                             struct shrink_control *sc);
57 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
58 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
61
62 static bool cpu_cache_is_coherent(struct drm_device *dev,
63                                   enum i915_cache_level level)
64 {
65         return HAS_LLC(dev) || level != I915_CACHE_NONE;
66 }
67
68 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
69 {
70         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
71                 return true;
72
73         return obj->pin_display;
74 }
75
76 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
77 {
78         if (obj->tiling_mode)
79                 i915_gem_release_mmap(obj);
80
81         /* As we do not have an associated fence register, we will force
82          * a tiling change if we ever need to acquire one.
83          */
84         obj->fence_dirty = false;
85         obj->fence_reg = I915_FENCE_REG_NONE;
86 }
87
88 /* some bookkeeping */
89 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
90                                   size_t size)
91 {
92         spin_lock(&dev_priv->mm.object_stat_lock);
93         dev_priv->mm.object_count++;
94         dev_priv->mm.object_memory += size;
95         spin_unlock(&dev_priv->mm.object_stat_lock);
96 }
97
98 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
99                                      size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count--;
103         dev_priv->mm.object_memory -= size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static int
108 i915_gem_wait_for_error(struct i915_gpu_error *error)
109 {
110         int ret;
111
112 #define EXIT_COND (!i915_reset_in_progress(error) || \
113                    i915_terminally_wedged(error))
114         if (EXIT_COND)
115                 return 0;
116
117         /*
118          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
119          * userspace. If it takes that long something really bad is going on and
120          * we should simply try to bail out and fail as gracefully as possible.
121          */
122         ret = wait_event_interruptible_timeout(error->reset_queue,
123                                                EXIT_COND,
124                                                10*HZ);
125         if (ret == 0) {
126                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
127                 return -EIO;
128         } else if (ret < 0) {
129                 return ret;
130         }
131 #undef EXIT_COND
132
133         return 0;
134 }
135
136 int i915_mutex_lock_interruptible(struct drm_device *dev)
137 {
138         struct drm_i915_private *dev_priv = dev->dev_private;
139         int ret;
140
141         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
142         if (ret)
143                 return ret;
144
145         ret = mutex_lock_interruptible(&dev->struct_mutex);
146         if (ret)
147                 return ret;
148
149         WARN_ON(i915_verify_lists(dev));
150         return 0;
151 }
152
153 static inline bool
154 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
155 {
156         return i915_gem_obj_bound_any(obj) && !obj->active;
157 }
158
159 int
160 i915_gem_init_ioctl(struct drm_device *dev, void *data,
161                     struct drm_file *file)
162 {
163         struct drm_i915_private *dev_priv = dev->dev_private;
164         struct drm_i915_gem_init *args = data;
165
166         if (drm_core_check_feature(dev, DRIVER_MODESET))
167                 return -ENODEV;
168
169         if (args->gtt_start >= args->gtt_end ||
170             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
171                 return -EINVAL;
172
173         /* GEM with user mode setting was never supported on ilk and later. */
174         if (INTEL_INFO(dev)->gen >= 5)
175                 return -ENODEV;
176
177         mutex_lock(&dev->struct_mutex);
178         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
179                                   args->gtt_end);
180         dev_priv->gtt.mappable_end = args->gtt_end;
181         mutex_unlock(&dev->struct_mutex);
182
183         return 0;
184 }
185
186 int
187 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
188                             struct drm_file *file)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         struct drm_i915_gem_get_aperture *args = data;
192         struct drm_i915_gem_object *obj;
193         size_t pinned;
194
195         pinned = 0;
196         mutex_lock(&dev->struct_mutex);
197         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
198                 if (i915_gem_obj_is_pinned(obj))
199                         pinned += i915_gem_obj_ggtt_size(obj);
200         mutex_unlock(&dev->struct_mutex);
201
202         args->aper_size = dev_priv->gtt.base.total;
203         args->aper_available_size = args->aper_size - pinned;
204
205         return 0;
206 }
207
208 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
209 {
210         drm_dma_handle_t *phys = obj->phys_handle;
211
212         if (!phys)
213                 return;
214
215         if (obj->madv == I915_MADV_WILLNEED) {
216                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
217                 char *vaddr = phys->vaddr;
218                 int i;
219
220                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
221                         struct page *page = shmem_read_mapping_page(mapping, i);
222                         if (!IS_ERR(page)) {
223                                 char *dst = kmap_atomic(page);
224                                 memcpy(dst, vaddr, PAGE_SIZE);
225                                 drm_clflush_virt_range(dst, PAGE_SIZE);
226                                 kunmap_atomic(dst);
227
228                                 set_page_dirty(page);
229                                 mark_page_accessed(page);
230                                 page_cache_release(page);
231                         }
232                         vaddr += PAGE_SIZE;
233                 }
234                 i915_gem_chipset_flush(obj->base.dev);
235         }
236
237 #ifdef CONFIG_X86
238         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
239 #endif
240         drm_pci_free(obj->base.dev, phys);
241         obj->phys_handle = NULL;
242 }
243
244 int
245 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
246                             int align)
247 {
248         drm_dma_handle_t *phys;
249         struct address_space *mapping;
250         char *vaddr;
251         int i;
252
253         if (obj->phys_handle) {
254                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
255                         return -EBUSY;
256
257                 return 0;
258         }
259
260         if (obj->madv != I915_MADV_WILLNEED)
261                 return -EFAULT;
262
263         if (obj->base.filp == NULL)
264                 return -EINVAL;
265
266         /* create a new object */
267         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
268         if (!phys)
269                 return -ENOMEM;
270
271         vaddr = phys->vaddr;
272 #ifdef CONFIG_X86
273         set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
274 #endif
275         mapping = file_inode(obj->base.filp)->i_mapping;
276         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
277                 struct page *page;
278                 char *src;
279
280                 page = shmem_read_mapping_page(mapping, i);
281                 if (IS_ERR(page)) {
282 #ifdef CONFIG_X86
283                         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
284 #endif
285                         drm_pci_free(obj->base.dev, phys);
286                         return PTR_ERR(page);
287                 }
288
289                 src = kmap_atomic(page);
290                 memcpy(vaddr, src, PAGE_SIZE);
291                 kunmap_atomic(src);
292
293                 mark_page_accessed(page);
294                 page_cache_release(page);
295
296                 vaddr += PAGE_SIZE;
297         }
298
299         obj->phys_handle = phys;
300         return 0;
301 }
302
303 static int
304 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
305                      struct drm_i915_gem_pwrite *args,
306                      struct drm_file *file_priv)
307 {
308         struct drm_device *dev = obj->base.dev;
309         void *vaddr = obj->phys_handle->vaddr + args->offset;
310         char __user *user_data = to_user_ptr(args->data_ptr);
311
312         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
313                 unsigned long unwritten;
314
315                 /* The physical object once assigned is fixed for the lifetime
316                  * of the obj, so we can safely drop the lock and continue
317                  * to access vaddr.
318                  */
319                 mutex_unlock(&dev->struct_mutex);
320                 unwritten = copy_from_user(vaddr, user_data, args->size);
321                 mutex_lock(&dev->struct_mutex);
322                 if (unwritten)
323                         return -EFAULT;
324         }
325
326         i915_gem_chipset_flush(dev);
327         return 0;
328 }
329
330 void *i915_gem_object_alloc(struct drm_device *dev)
331 {
332         struct drm_i915_private *dev_priv = dev->dev_private;
333         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
334 }
335
336 void i915_gem_object_free(struct drm_i915_gem_object *obj)
337 {
338         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
339         kmem_cache_free(dev_priv->slab, obj);
340 }
341
342 static int
343 i915_gem_create(struct drm_file *file,
344                 struct drm_device *dev,
345                 uint64_t size,
346                 uint32_t *handle_p)
347 {
348         struct drm_i915_gem_object *obj;
349         int ret;
350         u32 handle;
351
352         size = roundup(size, PAGE_SIZE);
353         if (size == 0)
354                 return -EINVAL;
355
356         /* Allocate the new object */
357         obj = i915_gem_alloc_object(dev, size);
358         if (obj == NULL)
359                 return -ENOMEM;
360
361         ret = drm_gem_handle_create(file, &obj->base, &handle);
362         /* drop reference from allocate - handle holds it now */
363         drm_gem_object_unreference_unlocked(&obj->base);
364         if (ret)
365                 return ret;
366
367         *handle_p = handle;
368         return 0;
369 }
370
371 int
372 i915_gem_dumb_create(struct drm_file *file,
373                      struct drm_device *dev,
374                      struct drm_mode_create_dumb *args)
375 {
376         /* have to work out size/pitch and return them */
377         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
378         args->size = args->pitch * args->height;
379         return i915_gem_create(file, dev,
380                                args->size, &args->handle);
381 }
382
383 /**
384  * Creates a new mm object and returns a handle to it.
385  */
386 int
387 i915_gem_create_ioctl(struct drm_device *dev, void *data,
388                       struct drm_file *file)
389 {
390         struct drm_i915_gem_create *args = data;
391
392         return i915_gem_create(file, dev,
393                                args->size, &args->handle);
394 }
395
396 static inline int
397 __copy_to_user_swizzled(char __user *cpu_vaddr,
398                         const char *gpu_vaddr, int gpu_offset,
399                         int length)
400 {
401         int ret, cpu_offset = 0;
402
403         while (length > 0) {
404                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
405                 int this_length = min(cacheline_end - gpu_offset, length);
406                 int swizzled_gpu_offset = gpu_offset ^ 64;
407
408                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
409                                      gpu_vaddr + swizzled_gpu_offset,
410                                      this_length);
411                 if (ret)
412                         return ret + length;
413
414                 cpu_offset += this_length;
415                 gpu_offset += this_length;
416                 length -= this_length;
417         }
418
419         return 0;
420 }
421
422 static inline int
423 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
424                           const char __user *cpu_vaddr,
425                           int length)
426 {
427         int ret, cpu_offset = 0;
428
429         while (length > 0) {
430                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
431                 int this_length = min(cacheline_end - gpu_offset, length);
432                 int swizzled_gpu_offset = gpu_offset ^ 64;
433
434                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
435                                        cpu_vaddr + cpu_offset,
436                                        this_length);
437                 if (ret)
438                         return ret + length;
439
440                 cpu_offset += this_length;
441                 gpu_offset += this_length;
442                 length -= this_length;
443         }
444
445         return 0;
446 }
447
448 /*
449  * Pins the specified object's pages and synchronizes the object with
450  * GPU accesses. Sets needs_clflush to non-zero if the caller should
451  * flush the object from the CPU cache.
452  */
453 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
454                                     int *needs_clflush)
455 {
456         int ret;
457
458         *needs_clflush = 0;
459
460         if (!obj->base.filp)
461                 return -EINVAL;
462
463         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
464                 /* If we're not in the cpu read domain, set ourself into the gtt
465                  * read domain and manually flush cachelines (if required). This
466                  * optimizes for the case when the gpu will dirty the data
467                  * anyway again before the next pread happens. */
468                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
469                                                         obj->cache_level);
470                 ret = i915_gem_object_wait_rendering(obj, true);
471                 if (ret)
472                         return ret;
473         }
474
475         ret = i915_gem_object_get_pages(obj);
476         if (ret)
477                 return ret;
478
479         i915_gem_object_pin_pages(obj);
480
481         return ret;
482 }
483
484 /* Per-page copy function for the shmem pread fastpath.
485  * Flushes invalid cachelines before reading the target if
486  * needs_clflush is set. */
487 static int
488 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
489                  char __user *user_data,
490                  bool page_do_bit17_swizzling, bool needs_clflush)
491 {
492         char *vaddr;
493         int ret;
494
495         if (unlikely(page_do_bit17_swizzling))
496                 return -EINVAL;
497
498         vaddr = kmap_atomic(page);
499         if (needs_clflush)
500                 drm_clflush_virt_range(vaddr + shmem_page_offset,
501                                        page_length);
502         ret = __copy_to_user_inatomic(user_data,
503                                       vaddr + shmem_page_offset,
504                                       page_length);
505         kunmap_atomic(vaddr);
506
507         return ret ? -EFAULT : 0;
508 }
509
510 static void
511 shmem_clflush_swizzled_range(char *addr, unsigned long length,
512                              bool swizzled)
513 {
514         if (unlikely(swizzled)) {
515                 unsigned long start = (unsigned long) addr;
516                 unsigned long end = (unsigned long) addr + length;
517
518                 /* For swizzling simply ensure that we always flush both
519                  * channels. Lame, but simple and it works. Swizzled
520                  * pwrite/pread is far from a hotpath - current userspace
521                  * doesn't use it at all. */
522                 start = round_down(start, 128);
523                 end = round_up(end, 128);
524
525                 drm_clflush_virt_range((void *)start, end - start);
526         } else {
527                 drm_clflush_virt_range(addr, length);
528         }
529
530 }
531
532 /* Only difference to the fast-path function is that this can handle bit17
533  * and uses non-atomic copy and kmap functions. */
534 static int
535 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
536                  char __user *user_data,
537                  bool page_do_bit17_swizzling, bool needs_clflush)
538 {
539         char *vaddr;
540         int ret;
541
542         vaddr = kmap(page);
543         if (needs_clflush)
544                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
545                                              page_length,
546                                              page_do_bit17_swizzling);
547
548         if (page_do_bit17_swizzling)
549                 ret = __copy_to_user_swizzled(user_data,
550                                               vaddr, shmem_page_offset,
551                                               page_length);
552         else
553                 ret = __copy_to_user(user_data,
554                                      vaddr + shmem_page_offset,
555                                      page_length);
556         kunmap(page);
557
558         return ret ? - EFAULT : 0;
559 }
560
561 static int
562 i915_gem_shmem_pread(struct drm_device *dev,
563                      struct drm_i915_gem_object *obj,
564                      struct drm_i915_gem_pread *args,
565                      struct drm_file *file)
566 {
567         char __user *user_data;
568         ssize_t remain;
569         loff_t offset;
570         int shmem_page_offset, page_length, ret = 0;
571         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
572         int prefaulted = 0;
573         int needs_clflush = 0;
574         struct sg_page_iter sg_iter;
575
576         user_data = to_user_ptr(args->data_ptr);
577         remain = args->size;
578
579         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
580
581         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
582         if (ret)
583                 return ret;
584
585         offset = args->offset;
586
587         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
588                          offset >> PAGE_SHIFT) {
589                 struct page *page = sg_page_iter_page(&sg_iter);
590
591                 if (remain <= 0)
592                         break;
593
594                 /* Operation in this page
595                  *
596                  * shmem_page_offset = offset within page in shmem file
597                  * page_length = bytes to copy for this page
598                  */
599                 shmem_page_offset = offset_in_page(offset);
600                 page_length = remain;
601                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
602                         page_length = PAGE_SIZE - shmem_page_offset;
603
604                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
605                         (page_to_phys(page) & (1 << 17)) != 0;
606
607                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
608                                        user_data, page_do_bit17_swizzling,
609                                        needs_clflush);
610                 if (ret == 0)
611                         goto next_page;
612
613                 mutex_unlock(&dev->struct_mutex);
614
615                 if (likely(!i915.prefault_disable) && !prefaulted) {
616                         ret = fault_in_multipages_writeable(user_data, remain);
617                         /* Userspace is tricking us, but we've already clobbered
618                          * its pages with the prefault and promised to write the
619                          * data up to the first fault. Hence ignore any errors
620                          * and just continue. */
621                         (void)ret;
622                         prefaulted = 1;
623                 }
624
625                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
626                                        user_data, page_do_bit17_swizzling,
627                                        needs_clflush);
628
629                 mutex_lock(&dev->struct_mutex);
630
631                 if (ret)
632                         goto out;
633
634 next_page:
635                 remain -= page_length;
636                 user_data += page_length;
637                 offset += page_length;
638         }
639
640 out:
641         i915_gem_object_unpin_pages(obj);
642
643         return ret;
644 }
645
646 /**
647  * Reads data from the object referenced by handle.
648  *
649  * On error, the contents of *data are undefined.
650  */
651 int
652 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
653                      struct drm_file *file)
654 {
655         struct drm_i915_gem_pread *args = data;
656         struct drm_i915_gem_object *obj;
657         int ret = 0;
658
659         if (args->size == 0)
660                 return 0;
661
662         if (!access_ok(VERIFY_WRITE,
663                        to_user_ptr(args->data_ptr),
664                        args->size))
665                 return -EFAULT;
666
667         ret = i915_mutex_lock_interruptible(dev);
668         if (ret)
669                 return ret;
670
671         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
672         if (&obj->base == NULL) {
673                 ret = -ENOENT;
674                 goto unlock;
675         }
676
677         /* Bounds check source.  */
678         if (args->offset > obj->base.size ||
679             args->size > obj->base.size - args->offset) {
680                 ret = -EINVAL;
681                 goto out;
682         }
683
684         /* prime objects have no backing filp to GEM pread/pwrite
685          * pages from.
686          */
687         if (!obj->base.filp) {
688                 ret = -EINVAL;
689                 goto out;
690         }
691
692         trace_i915_gem_object_pread(obj, args->offset, args->size);
693
694         ret = i915_gem_shmem_pread(dev, obj, args, file);
695
696 out:
697         drm_gem_object_unreference(&obj->base);
698 unlock:
699         mutex_unlock(&dev->struct_mutex);
700         return ret;
701 }
702
703 /* This is the fast write path which cannot handle
704  * page faults in the source data
705  */
706
707 static inline int
708 fast_user_write(struct io_mapping *mapping,
709                 loff_t page_base, int page_offset,
710                 char __user *user_data,
711                 int length)
712 {
713         void __iomem *vaddr_atomic;
714         void *vaddr;
715         unsigned long unwritten;
716
717         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
718         /* We can use the cpu mem copy function because this is X86. */
719         vaddr = (void __force*)vaddr_atomic + page_offset;
720         unwritten = __copy_from_user_inatomic_nocache(vaddr,
721                                                       user_data, length);
722         io_mapping_unmap_atomic(vaddr_atomic);
723         return unwritten;
724 }
725
726 /**
727  * This is the fast pwrite path, where we copy the data directly from the
728  * user into the GTT, uncached.
729  */
730 static int
731 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
732                          struct drm_i915_gem_object *obj,
733                          struct drm_i915_gem_pwrite *args,
734                          struct drm_file *file)
735 {
736         struct drm_i915_private *dev_priv = dev->dev_private;
737         ssize_t remain;
738         loff_t offset, page_base;
739         char __user *user_data;
740         int page_offset, page_length, ret;
741
742         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
743         if (ret)
744                 goto out;
745
746         ret = i915_gem_object_set_to_gtt_domain(obj, true);
747         if (ret)
748                 goto out_unpin;
749
750         ret = i915_gem_object_put_fence(obj);
751         if (ret)
752                 goto out_unpin;
753
754         user_data = to_user_ptr(args->data_ptr);
755         remain = args->size;
756
757         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
758
759         while (remain > 0) {
760                 /* Operation in this page
761                  *
762                  * page_base = page offset within aperture
763                  * page_offset = offset within page
764                  * page_length = bytes to copy for this page
765                  */
766                 page_base = offset & PAGE_MASK;
767                 page_offset = offset_in_page(offset);
768                 page_length = remain;
769                 if ((page_offset + remain) > PAGE_SIZE)
770                         page_length = PAGE_SIZE - page_offset;
771
772                 /* If we get a fault while copying data, then (presumably) our
773                  * source page isn't available.  Return the error and we'll
774                  * retry in the slow path.
775                  */
776                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
777                                     page_offset, user_data, page_length)) {
778                         ret = -EFAULT;
779                         goto out_unpin;
780                 }
781
782                 remain -= page_length;
783                 user_data += page_length;
784                 offset += page_length;
785         }
786
787 out_unpin:
788         i915_gem_object_ggtt_unpin(obj);
789 out:
790         return ret;
791 }
792
793 /* Per-page copy function for the shmem pwrite fastpath.
794  * Flushes invalid cachelines before writing to the target if
795  * needs_clflush_before is set and flushes out any written cachelines after
796  * writing if needs_clflush is set. */
797 static int
798 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
799                   char __user *user_data,
800                   bool page_do_bit17_swizzling,
801                   bool needs_clflush_before,
802                   bool needs_clflush_after)
803 {
804         char *vaddr;
805         int ret;
806
807         if (unlikely(page_do_bit17_swizzling))
808                 return -EINVAL;
809
810         vaddr = kmap_atomic(page);
811         if (needs_clflush_before)
812                 drm_clflush_virt_range(vaddr + shmem_page_offset,
813                                        page_length);
814         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
815                                         user_data, page_length);
816         if (needs_clflush_after)
817                 drm_clflush_virt_range(vaddr + shmem_page_offset,
818                                        page_length);
819         kunmap_atomic(vaddr);
820
821         return ret ? -EFAULT : 0;
822 }
823
824 /* Only difference to the fast-path function is that this can handle bit17
825  * and uses non-atomic copy and kmap functions. */
826 static int
827 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
828                   char __user *user_data,
829                   bool page_do_bit17_swizzling,
830                   bool needs_clflush_before,
831                   bool needs_clflush_after)
832 {
833         char *vaddr;
834         int ret;
835
836         vaddr = kmap(page);
837         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
838                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
839                                              page_length,
840                                              page_do_bit17_swizzling);
841         if (page_do_bit17_swizzling)
842                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
843                                                 user_data,
844                                                 page_length);
845         else
846                 ret = __copy_from_user(vaddr + shmem_page_offset,
847                                        user_data,
848                                        page_length);
849         if (needs_clflush_after)
850                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
851                                              page_length,
852                                              page_do_bit17_swizzling);
853         kunmap(page);
854
855         return ret ? -EFAULT : 0;
856 }
857
858 static int
859 i915_gem_shmem_pwrite(struct drm_device *dev,
860                       struct drm_i915_gem_object *obj,
861                       struct drm_i915_gem_pwrite *args,
862                       struct drm_file *file)
863 {
864         ssize_t remain;
865         loff_t offset;
866         char __user *user_data;
867         int shmem_page_offset, page_length, ret = 0;
868         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
869         int hit_slowpath = 0;
870         int needs_clflush_after = 0;
871         int needs_clflush_before = 0;
872         struct sg_page_iter sg_iter;
873
874         user_data = to_user_ptr(args->data_ptr);
875         remain = args->size;
876
877         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
878
879         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
880                 /* If we're not in the cpu write domain, set ourself into the gtt
881                  * write domain and manually flush cachelines (if required). This
882                  * optimizes for the case when the gpu will use the data
883                  * right away and we therefore have to clflush anyway. */
884                 needs_clflush_after = cpu_write_needs_clflush(obj);
885                 ret = i915_gem_object_wait_rendering(obj, false);
886                 if (ret)
887                         return ret;
888         }
889         /* Same trick applies to invalidate partially written cachelines read
890          * before writing. */
891         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
892                 needs_clflush_before =
893                         !cpu_cache_is_coherent(dev, obj->cache_level);
894
895         ret = i915_gem_object_get_pages(obj);
896         if (ret)
897                 return ret;
898
899         i915_gem_object_pin_pages(obj);
900
901         offset = args->offset;
902         obj->dirty = 1;
903
904         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
905                          offset >> PAGE_SHIFT) {
906                 struct page *page = sg_page_iter_page(&sg_iter);
907                 int partial_cacheline_write;
908
909                 if (remain <= 0)
910                         break;
911
912                 /* Operation in this page
913                  *
914                  * shmem_page_offset = offset within page in shmem file
915                  * page_length = bytes to copy for this page
916                  */
917                 shmem_page_offset = offset_in_page(offset);
918
919                 page_length = remain;
920                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
921                         page_length = PAGE_SIZE - shmem_page_offset;
922
923                 /* If we don't overwrite a cacheline completely we need to be
924                  * careful to have up-to-date data by first clflushing. Don't
925                  * overcomplicate things and flush the entire patch. */
926                 partial_cacheline_write = needs_clflush_before &&
927                         ((shmem_page_offset | page_length)
928                                 & (boot_cpu_data.x86_clflush_size - 1));
929
930                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
931                         (page_to_phys(page) & (1 << 17)) != 0;
932
933                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
934                                         user_data, page_do_bit17_swizzling,
935                                         partial_cacheline_write,
936                                         needs_clflush_after);
937                 if (ret == 0)
938                         goto next_page;
939
940                 hit_slowpath = 1;
941                 mutex_unlock(&dev->struct_mutex);
942                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
943                                         user_data, page_do_bit17_swizzling,
944                                         partial_cacheline_write,
945                                         needs_clflush_after);
946
947                 mutex_lock(&dev->struct_mutex);
948
949                 if (ret)
950                         goto out;
951
952 next_page:
953                 remain -= page_length;
954                 user_data += page_length;
955                 offset += page_length;
956         }
957
958 out:
959         i915_gem_object_unpin_pages(obj);
960
961         if (hit_slowpath) {
962                 /*
963                  * Fixup: Flush cpu caches in case we didn't flush the dirty
964                  * cachelines in-line while writing and the object moved
965                  * out of the cpu write domain while we've dropped the lock.
966                  */
967                 if (!needs_clflush_after &&
968                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
969                         if (i915_gem_clflush_object(obj, obj->pin_display))
970                                 i915_gem_chipset_flush(dev);
971                 }
972         }
973
974         if (needs_clflush_after)
975                 i915_gem_chipset_flush(dev);
976
977         return ret;
978 }
979
980 /**
981  * Writes data to the object referenced by handle.
982  *
983  * On error, the contents of the buffer that were to be modified are undefined.
984  */
985 int
986 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
987                       struct drm_file *file)
988 {
989         struct drm_i915_gem_pwrite *args = data;
990         struct drm_i915_gem_object *obj;
991         int ret;
992
993         if (args->size == 0)
994                 return 0;
995
996         if (!access_ok(VERIFY_READ,
997                        to_user_ptr(args->data_ptr),
998                        args->size))
999                 return -EFAULT;
1000
1001         if (likely(!i915.prefault_disable)) {
1002                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1003                                                    args->size);
1004                 if (ret)
1005                         return -EFAULT;
1006         }
1007
1008         ret = i915_mutex_lock_interruptible(dev);
1009         if (ret)
1010                 return ret;
1011
1012         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1013         if (&obj->base == NULL) {
1014                 ret = -ENOENT;
1015                 goto unlock;
1016         }
1017
1018         /* Bounds check destination. */
1019         if (args->offset > obj->base.size ||
1020             args->size > obj->base.size - args->offset) {
1021                 ret = -EINVAL;
1022                 goto out;
1023         }
1024
1025         /* prime objects have no backing filp to GEM pread/pwrite
1026          * pages from.
1027          */
1028         if (!obj->base.filp) {
1029                 ret = -EINVAL;
1030                 goto out;
1031         }
1032
1033         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1034
1035         ret = -EFAULT;
1036         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1037          * it would end up going through the fenced access, and we'll get
1038          * different detiling behavior between reading and writing.
1039          * pread/pwrite currently are reading and writing from the CPU
1040          * perspective, requiring manual detiling by the client.
1041          */
1042         if (obj->phys_handle) {
1043                 ret = i915_gem_phys_pwrite(obj, args, file);
1044                 goto out;
1045         }
1046
1047         if (obj->tiling_mode == I915_TILING_NONE &&
1048             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1049             cpu_write_needs_clflush(obj)) {
1050                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1051                 /* Note that the gtt paths might fail with non-page-backed user
1052                  * pointers (e.g. gtt mappings when moving data between
1053                  * textures). Fallback to the shmem path in that case. */
1054         }
1055
1056         if (ret == -EFAULT || ret == -ENOSPC)
1057                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1058
1059 out:
1060         drm_gem_object_unreference(&obj->base);
1061 unlock:
1062         mutex_unlock(&dev->struct_mutex);
1063         return ret;
1064 }
1065
1066 int
1067 i915_gem_check_wedge(struct i915_gpu_error *error,
1068                      bool interruptible)
1069 {
1070         if (i915_reset_in_progress(error)) {
1071                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1072                  * -EIO unconditionally for these. */
1073                 if (!interruptible)
1074                         return -EIO;
1075
1076                 /* Recovery complete, but the reset failed ... */
1077                 if (i915_terminally_wedged(error))
1078                         return -EIO;
1079
1080                 return -EAGAIN;
1081         }
1082
1083         return 0;
1084 }
1085
1086 /*
1087  * Compare seqno against outstanding lazy request. Emit a request if they are
1088  * equal.
1089  */
1090 static int
1091 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1092 {
1093         int ret;
1094
1095         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1096
1097         ret = 0;
1098         if (seqno == ring->outstanding_lazy_seqno)
1099                 ret = i915_add_request(ring, NULL);
1100
1101         return ret;
1102 }
1103
1104 static void fake_irq(unsigned long data)
1105 {
1106         wake_up_process((struct task_struct *)data);
1107 }
1108
1109 static bool missed_irq(struct drm_i915_private *dev_priv,
1110                        struct intel_ring_buffer *ring)
1111 {
1112         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1113 }
1114
1115 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1116 {
1117         if (file_priv == NULL)
1118                 return true;
1119
1120         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1121 }
1122
1123 /**
1124  * __wait_seqno - wait until execution of seqno has finished
1125  * @ring: the ring expected to report seqno
1126  * @seqno: duh!
1127  * @reset_counter: reset sequence associated with the given seqno
1128  * @interruptible: do an interruptible wait (normally yes)
1129  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1130  *
1131  * Note: It is of utmost importance that the passed in seqno and reset_counter
1132  * values have been read by the caller in an smp safe manner. Where read-side
1133  * locks are involved, it is sufficient to read the reset_counter before
1134  * unlocking the lock that protects the seqno. For lockless tricks, the
1135  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1136  * inserted.
1137  *
1138  * Returns 0 if the seqno was found within the alloted time. Else returns the
1139  * errno with remaining time filled in timeout argument.
1140  */
1141 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1142                         unsigned reset_counter,
1143                         bool interruptible,
1144                         struct timespec *timeout,
1145                         struct drm_i915_file_private *file_priv)
1146 {
1147         struct drm_device *dev = ring->dev;
1148         struct drm_i915_private *dev_priv = dev->dev_private;
1149         const bool irq_test_in_progress =
1150                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1151         struct timespec before, now;
1152         DEFINE_WAIT(wait);
1153         unsigned long timeout_expire;
1154         int ret;
1155
1156         WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1157
1158         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1159                 return 0;
1160
1161         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1162
1163         if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1164                 gen6_rps_boost(dev_priv);
1165                 if (file_priv)
1166                         mod_delayed_work(dev_priv->wq,
1167                                          &file_priv->mm.idle_work,
1168                                          msecs_to_jiffies(100));
1169         }
1170
1171         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1172                 return -ENODEV;
1173
1174         /* Record current time in case interrupted by signal, or wedged */
1175         trace_i915_gem_request_wait_begin(ring, seqno);
1176         getrawmonotonic(&before);
1177         for (;;) {
1178                 struct timer_list timer;
1179
1180                 prepare_to_wait(&ring->irq_queue, &wait,
1181                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1182
1183                 /* We need to check whether any gpu reset happened in between
1184                  * the caller grabbing the seqno and now ... */
1185                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1186                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1187                          * is truely gone. */
1188                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1189                         if (ret == 0)
1190                                 ret = -EAGAIN;
1191                         break;
1192                 }
1193
1194                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1195                         ret = 0;
1196                         break;
1197                 }
1198
1199                 if (interruptible && signal_pending(current)) {
1200                         ret = -ERESTARTSYS;
1201                         break;
1202                 }
1203
1204                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1205                         ret = -ETIME;
1206                         break;
1207                 }
1208
1209                 timer.function = NULL;
1210                 if (timeout || missed_irq(dev_priv, ring)) {
1211                         unsigned long expire;
1212
1213                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1214                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1215                         mod_timer(&timer, expire);
1216                 }
1217
1218                 io_schedule();
1219
1220                 if (timer.function) {
1221                         del_singleshot_timer_sync(&timer);
1222                         destroy_timer_on_stack(&timer);
1223                 }
1224         }
1225         getrawmonotonic(&now);
1226         trace_i915_gem_request_wait_end(ring, seqno);
1227
1228         if (!irq_test_in_progress)
1229                 ring->irq_put(ring);
1230
1231         finish_wait(&ring->irq_queue, &wait);
1232
1233         if (timeout) {
1234                 struct timespec sleep_time = timespec_sub(now, before);
1235                 *timeout = timespec_sub(*timeout, sleep_time);
1236                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1237                         set_normalized_timespec(timeout, 0, 0);
1238         }
1239
1240         return ret;
1241 }
1242
1243 /**
1244  * Waits for a sequence number to be signaled, and cleans up the
1245  * request and object lists appropriately for that event.
1246  */
1247 int
1248 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1249 {
1250         struct drm_device *dev = ring->dev;
1251         struct drm_i915_private *dev_priv = dev->dev_private;
1252         bool interruptible = dev_priv->mm.interruptible;
1253         int ret;
1254
1255         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1256         BUG_ON(seqno == 0);
1257
1258         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259         if (ret)
1260                 return ret;
1261
1262         ret = i915_gem_check_olr(ring, seqno);
1263         if (ret)
1264                 return ret;
1265
1266         return __wait_seqno(ring, seqno,
1267                             atomic_read(&dev_priv->gpu_error.reset_counter),
1268                             interruptible, NULL, NULL);
1269 }
1270
1271 static int
1272 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1273                                      struct intel_ring_buffer *ring)
1274 {
1275         i915_gem_retire_requests_ring(ring);
1276
1277         /* Manually manage the write flush as we may have not yet
1278          * retired the buffer.
1279          *
1280          * Note that the last_write_seqno is always the earlier of
1281          * the two (read/write) seqno, so if we haved successfully waited,
1282          * we know we have passed the last write.
1283          */
1284         obj->last_write_seqno = 0;
1285         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1286
1287         return 0;
1288 }
1289
1290 /**
1291  * Ensures that all rendering to the object has completed and the object is
1292  * safe to unbind from the GTT or access from the CPU.
1293  */
1294 static __must_check int
1295 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1296                                bool readonly)
1297 {
1298         struct intel_ring_buffer *ring = obj->ring;
1299         u32 seqno;
1300         int ret;
1301
1302         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1303         if (seqno == 0)
1304                 return 0;
1305
1306         ret = i915_wait_seqno(ring, seqno);
1307         if (ret)
1308                 return ret;
1309
1310         return i915_gem_object_wait_rendering__tail(obj, ring);
1311 }
1312
1313 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1314  * as the object state may change during this call.
1315  */
1316 static __must_check int
1317 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1318                                             struct drm_i915_file_private *file_priv,
1319                                             bool readonly)
1320 {
1321         struct drm_device *dev = obj->base.dev;
1322         struct drm_i915_private *dev_priv = dev->dev_private;
1323         struct intel_ring_buffer *ring = obj->ring;
1324         unsigned reset_counter;
1325         u32 seqno;
1326         int ret;
1327
1328         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1329         BUG_ON(!dev_priv->mm.interruptible);
1330
1331         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1332         if (seqno == 0)
1333                 return 0;
1334
1335         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1336         if (ret)
1337                 return ret;
1338
1339         ret = i915_gem_check_olr(ring, seqno);
1340         if (ret)
1341                 return ret;
1342
1343         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1344         mutex_unlock(&dev->struct_mutex);
1345         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1346         mutex_lock(&dev->struct_mutex);
1347         if (ret)
1348                 return ret;
1349
1350         return i915_gem_object_wait_rendering__tail(obj, ring);
1351 }
1352
1353 /**
1354  * Called when user space prepares to use an object with the CPU, either
1355  * through the mmap ioctl's mapping or a GTT mapping.
1356  */
1357 int
1358 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1359                           struct drm_file *file)
1360 {
1361         struct drm_i915_gem_set_domain *args = data;
1362         struct drm_i915_gem_object *obj;
1363         uint32_t read_domains = args->read_domains;
1364         uint32_t write_domain = args->write_domain;
1365         int ret;
1366
1367         /* Only handle setting domains to types used by the CPU. */
1368         if (write_domain & I915_GEM_GPU_DOMAINS)
1369                 return -EINVAL;
1370
1371         if (read_domains & I915_GEM_GPU_DOMAINS)
1372                 return -EINVAL;
1373
1374         /* Having something in the write domain implies it's in the read
1375          * domain, and only that read domain.  Enforce that in the request.
1376          */
1377         if (write_domain != 0 && read_domains != write_domain)
1378                 return -EINVAL;
1379
1380         ret = i915_mutex_lock_interruptible(dev);
1381         if (ret)
1382                 return ret;
1383
1384         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1385         if (&obj->base == NULL) {
1386                 ret = -ENOENT;
1387                 goto unlock;
1388         }
1389
1390         /* Try to flush the object off the GPU without holding the lock.
1391          * We will repeat the flush holding the lock in the normal manner
1392          * to catch cases where we are gazumped.
1393          */
1394         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1395                                                           file->driver_priv,
1396                                                           !write_domain);
1397         if (ret)
1398                 goto unref;
1399
1400         if (read_domains & I915_GEM_DOMAIN_GTT) {
1401                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1402
1403                 /* Silently promote "you're not bound, there was nothing to do"
1404                  * to success, since the client was just asking us to
1405                  * make sure everything was done.
1406                  */
1407                 if (ret == -EINVAL)
1408                         ret = 0;
1409         } else {
1410                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1411         }
1412
1413 unref:
1414         drm_gem_object_unreference(&obj->base);
1415 unlock:
1416         mutex_unlock(&dev->struct_mutex);
1417         return ret;
1418 }
1419
1420 /**
1421  * Called when user space has done writes to this buffer
1422  */
1423 int
1424 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1425                          struct drm_file *file)
1426 {
1427         struct drm_i915_gem_sw_finish *args = data;
1428         struct drm_i915_gem_object *obj;
1429         int ret = 0;
1430
1431         ret = i915_mutex_lock_interruptible(dev);
1432         if (ret)
1433                 return ret;
1434
1435         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1436         if (&obj->base == NULL) {
1437                 ret = -ENOENT;
1438                 goto unlock;
1439         }
1440
1441         /* Pinned buffers may be scanout, so flush the cache */
1442         if (obj->pin_display)
1443                 i915_gem_object_flush_cpu_write_domain(obj, true);
1444
1445         drm_gem_object_unreference(&obj->base);
1446 unlock:
1447         mutex_unlock(&dev->struct_mutex);
1448         return ret;
1449 }
1450
1451 /**
1452  * Maps the contents of an object, returning the address it is mapped
1453  * into.
1454  *
1455  * While the mapping holds a reference on the contents of the object, it doesn't
1456  * imply a ref on the object itself.
1457  */
1458 int
1459 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1460                     struct drm_file *file)
1461 {
1462         struct drm_i915_gem_mmap *args = data;
1463         struct drm_gem_object *obj;
1464         unsigned long addr;
1465
1466         obj = drm_gem_object_lookup(dev, file, args->handle);
1467         if (obj == NULL)
1468                 return -ENOENT;
1469
1470         /* prime objects have no backing filp to GEM mmap
1471          * pages from.
1472          */
1473         if (!obj->filp) {
1474                 drm_gem_object_unreference_unlocked(obj);
1475                 return -EINVAL;
1476         }
1477
1478         addr = vm_mmap(obj->filp, 0, args->size,
1479                        PROT_READ | PROT_WRITE, MAP_SHARED,
1480                        args->offset);
1481         drm_gem_object_unreference_unlocked(obj);
1482         if (IS_ERR((void *)addr))
1483                 return addr;
1484
1485         args->addr_ptr = (uint64_t) addr;
1486
1487         return 0;
1488 }
1489
1490 /**
1491  * i915_gem_fault - fault a page into the GTT
1492  * vma: VMA in question
1493  * vmf: fault info
1494  *
1495  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1496  * from userspace.  The fault handler takes care of binding the object to
1497  * the GTT (if needed), allocating and programming a fence register (again,
1498  * only if needed based on whether the old reg is still valid or the object
1499  * is tiled) and inserting a new PTE into the faulting process.
1500  *
1501  * Note that the faulting process may involve evicting existing objects
1502  * from the GTT and/or fence registers to make room.  So performance may
1503  * suffer if the GTT working set is large or there are few fence registers
1504  * left.
1505  */
1506 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1507 {
1508         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1509         struct drm_device *dev = obj->base.dev;
1510         struct drm_i915_private *dev_priv = dev->dev_private;
1511         pgoff_t page_offset;
1512         unsigned long pfn;
1513         int ret = 0;
1514         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1515
1516         intel_runtime_pm_get(dev_priv);
1517
1518         /* We don't use vmf->pgoff since that has the fake offset */
1519         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1520                 PAGE_SHIFT;
1521
1522         ret = i915_mutex_lock_interruptible(dev);
1523         if (ret)
1524                 goto out;
1525
1526         trace_i915_gem_object_fault(obj, page_offset, true, write);
1527
1528         /* Try to flush the object off the GPU first without holding the lock.
1529          * Upon reacquiring the lock, we will perform our sanity checks and then
1530          * repeat the flush holding the lock in the normal manner to catch cases
1531          * where we are gazumped.
1532          */
1533         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1534         if (ret)
1535                 goto unlock;
1536
1537         /* Access to snoopable pages through the GTT is incoherent. */
1538         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1539                 ret = -EINVAL;
1540                 goto unlock;
1541         }
1542
1543         /* Now bind it into the GTT if needed */
1544         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1545         if (ret)
1546                 goto unlock;
1547
1548         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1549         if (ret)
1550                 goto unpin;
1551
1552         ret = i915_gem_object_get_fence(obj);
1553         if (ret)
1554                 goto unpin;
1555
1556         obj->fault_mappable = true;
1557
1558         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1559         pfn >>= PAGE_SHIFT;
1560         pfn += page_offset;
1561
1562         /* Finally, remap it using the new GTT offset */
1563         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1564 unpin:
1565         i915_gem_object_ggtt_unpin(obj);
1566 unlock:
1567         mutex_unlock(&dev->struct_mutex);
1568 out:
1569         switch (ret) {
1570         case -EIO:
1571                 /* If this -EIO is due to a gpu hang, give the reset code a
1572                  * chance to clean up the mess. Otherwise return the proper
1573                  * SIGBUS. */
1574                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1575                         ret = VM_FAULT_SIGBUS;
1576                         break;
1577                 }
1578         case -EAGAIN:
1579                 /*
1580                  * EAGAIN means the gpu is hung and we'll wait for the error
1581                  * handler to reset everything when re-faulting in
1582                  * i915_mutex_lock_interruptible.
1583                  */
1584         case 0:
1585         case -ERESTARTSYS:
1586         case -EINTR:
1587         case -EBUSY:
1588                 /*
1589                  * EBUSY is ok: this just means that another thread
1590                  * already did the job.
1591                  */
1592                 ret = VM_FAULT_NOPAGE;
1593                 break;
1594         case -ENOMEM:
1595                 ret = VM_FAULT_OOM;
1596                 break;
1597         case -ENOSPC:
1598         case -EFAULT:
1599                 ret = VM_FAULT_SIGBUS;
1600                 break;
1601         default:
1602                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1603                 ret = VM_FAULT_SIGBUS;
1604                 break;
1605         }
1606
1607         intel_runtime_pm_put(dev_priv);
1608         return ret;
1609 }
1610
1611 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1612 {
1613         struct i915_vma *vma;
1614
1615         /*
1616          * Only the global gtt is relevant for gtt memory mappings, so restrict
1617          * list traversal to objects bound into the global address space. Note
1618          * that the active list should be empty, but better safe than sorry.
1619          */
1620         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1621         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1622                 i915_gem_release_mmap(vma->obj);
1623         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1624                 i915_gem_release_mmap(vma->obj);
1625 }
1626
1627 /**
1628  * i915_gem_release_mmap - remove physical page mappings
1629  * @obj: obj in question
1630  *
1631  * Preserve the reservation of the mmapping with the DRM core code, but
1632  * relinquish ownership of the pages back to the system.
1633  *
1634  * It is vital that we remove the page mapping if we have mapped a tiled
1635  * object through the GTT and then lose the fence register due to
1636  * resource pressure. Similarly if the object has been moved out of the
1637  * aperture, than pages mapped into userspace must be revoked. Removing the
1638  * mapping will then trigger a page fault on the next user access, allowing
1639  * fixup by i915_gem_fault().
1640  */
1641 void
1642 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1643 {
1644         if (!obj->fault_mappable)
1645                 return;
1646
1647         drm_vma_node_unmap(&obj->base.vma_node,
1648                            obj->base.dev->anon_inode->i_mapping);
1649         obj->fault_mappable = false;
1650 }
1651
1652 uint32_t
1653 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1654 {
1655         uint32_t gtt_size;
1656
1657         if (INTEL_INFO(dev)->gen >= 4 ||
1658             tiling_mode == I915_TILING_NONE)
1659                 return size;
1660
1661         /* Previous chips need a power-of-two fence region when tiling */
1662         if (INTEL_INFO(dev)->gen == 3)
1663                 gtt_size = 1024*1024;
1664         else
1665                 gtt_size = 512*1024;
1666
1667         while (gtt_size < size)
1668                 gtt_size <<= 1;
1669
1670         return gtt_size;
1671 }
1672
1673 /**
1674  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1675  * @obj: object to check
1676  *
1677  * Return the required GTT alignment for an object, taking into account
1678  * potential fence register mapping.
1679  */
1680 uint32_t
1681 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1682                            int tiling_mode, bool fenced)
1683 {
1684         /*
1685          * Minimum alignment is 4k (GTT page size), but might be greater
1686          * if a fence register is needed for the object.
1687          */
1688         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1689             tiling_mode == I915_TILING_NONE)
1690                 return 4096;
1691
1692         /*
1693          * Previous chips need to be aligned to the size of the smallest
1694          * fence register that can contain the object.
1695          */
1696         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1697 }
1698
1699 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1700 {
1701         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1702         int ret;
1703
1704         if (drm_vma_node_has_offset(&obj->base.vma_node))
1705                 return 0;
1706
1707         dev_priv->mm.shrinker_no_lock_stealing = true;
1708
1709         ret = drm_gem_create_mmap_offset(&obj->base);
1710         if (ret != -ENOSPC)
1711                 goto out;
1712
1713         /* Badly fragmented mmap space? The only way we can recover
1714          * space is by destroying unwanted objects. We can't randomly release
1715          * mmap_offsets as userspace expects them to be persistent for the
1716          * lifetime of the objects. The closest we can is to release the
1717          * offsets on purgeable objects by truncating it and marking it purged,
1718          * which prevents userspace from ever using that object again.
1719          */
1720         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1721         ret = drm_gem_create_mmap_offset(&obj->base);
1722         if (ret != -ENOSPC)
1723                 goto out;
1724
1725         i915_gem_shrink_all(dev_priv);
1726         ret = drm_gem_create_mmap_offset(&obj->base);
1727 out:
1728         dev_priv->mm.shrinker_no_lock_stealing = false;
1729
1730         return ret;
1731 }
1732
1733 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1734 {
1735         drm_gem_free_mmap_offset(&obj->base);
1736 }
1737
1738 int
1739 i915_gem_mmap_gtt(struct drm_file *file,
1740                   struct drm_device *dev,
1741                   uint32_t handle,
1742                   uint64_t *offset)
1743 {
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         struct drm_i915_gem_object *obj;
1746         int ret;
1747
1748         ret = i915_mutex_lock_interruptible(dev);
1749         if (ret)
1750                 return ret;
1751
1752         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1753         if (&obj->base == NULL) {
1754                 ret = -ENOENT;
1755                 goto unlock;
1756         }
1757
1758         if (obj->base.size > dev_priv->gtt.mappable_end) {
1759                 ret = -E2BIG;
1760                 goto out;
1761         }
1762
1763         if (obj->madv != I915_MADV_WILLNEED) {
1764                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1765                 ret = -EFAULT;
1766                 goto out;
1767         }
1768
1769         ret = i915_gem_object_create_mmap_offset(obj);
1770         if (ret)
1771                 goto out;
1772
1773         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1774
1775 out:
1776         drm_gem_object_unreference(&obj->base);
1777 unlock:
1778         mutex_unlock(&dev->struct_mutex);
1779         return ret;
1780 }
1781
1782 /**
1783  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1784  * @dev: DRM device
1785  * @data: GTT mapping ioctl data
1786  * @file: GEM object info
1787  *
1788  * Simply returns the fake offset to userspace so it can mmap it.
1789  * The mmap call will end up in drm_gem_mmap(), which will set things
1790  * up so we can get faults in the handler above.
1791  *
1792  * The fault handler will take care of binding the object into the GTT
1793  * (since it may have been evicted to make room for something), allocating
1794  * a fence register, and mapping the appropriate aperture address into
1795  * userspace.
1796  */
1797 int
1798 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1799                         struct drm_file *file)
1800 {
1801         struct drm_i915_gem_mmap_gtt *args = data;
1802
1803         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1804 }
1805
1806 /* Immediately discard the backing storage */
1807 static void
1808 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1809 {
1810         struct inode *inode;
1811
1812         i915_gem_object_free_mmap_offset(obj);
1813
1814         if (obj->base.filp == NULL)
1815                 return;
1816
1817         /* Our goal here is to return as much of the memory as
1818          * is possible back to the system as we are called from OOM.
1819          * To do this we must instruct the shmfs to drop all of its
1820          * backing pages, *now*.
1821          */
1822         inode = file_inode(obj->base.filp);
1823         shmem_truncate_range(inode, 0, (loff_t)-1);
1824
1825         obj->madv = __I915_MADV_PURGED;
1826 }
1827
1828 static inline int
1829 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1830 {
1831         return obj->madv == I915_MADV_DONTNEED;
1832 }
1833
1834 static void
1835 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1836 {
1837         struct sg_page_iter sg_iter;
1838         int ret;
1839
1840         BUG_ON(obj->madv == __I915_MADV_PURGED);
1841
1842         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1843         if (ret) {
1844                 /* In the event of a disaster, abandon all caches and
1845                  * hope for the best.
1846                  */
1847                 WARN_ON(ret != -EIO);
1848                 i915_gem_clflush_object(obj, true);
1849                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1850         }
1851
1852         if (i915_gem_object_needs_bit17_swizzle(obj))
1853                 i915_gem_object_save_bit_17_swizzle(obj);
1854
1855         if (obj->madv == I915_MADV_DONTNEED)
1856                 obj->dirty = 0;
1857
1858         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1859                 struct page *page = sg_page_iter_page(&sg_iter);
1860
1861                 if (obj->dirty)
1862                         set_page_dirty(page);
1863
1864                 if (obj->madv == I915_MADV_WILLNEED)
1865                         mark_page_accessed(page);
1866
1867                 page_cache_release(page);
1868         }
1869         obj->dirty = 0;
1870
1871         sg_free_table(obj->pages);
1872         kfree(obj->pages);
1873 }
1874
1875 int
1876 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1877 {
1878         const struct drm_i915_gem_object_ops *ops = obj->ops;
1879
1880         if (obj->pages == NULL)
1881                 return 0;
1882
1883         if (obj->pages_pin_count)
1884                 return -EBUSY;
1885
1886         BUG_ON(i915_gem_obj_bound_any(obj));
1887
1888         /* ->put_pages might need to allocate memory for the bit17 swizzle
1889          * array, hence protect them from being reaped by removing them from gtt
1890          * lists early. */
1891         list_del(&obj->global_list);
1892
1893         ops->put_pages(obj);
1894         obj->pages = NULL;
1895
1896         if (i915_gem_object_is_purgeable(obj))
1897                 i915_gem_object_truncate(obj);
1898
1899         return 0;
1900 }
1901
1902 static unsigned long
1903 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1904                   bool purgeable_only)
1905 {
1906         struct list_head still_bound_list;
1907         struct drm_i915_gem_object *obj, *next;
1908         unsigned long count = 0;
1909
1910         list_for_each_entry_safe(obj, next,
1911                                  &dev_priv->mm.unbound_list,
1912                                  global_list) {
1913                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1914                     i915_gem_object_put_pages(obj) == 0) {
1915                         count += obj->base.size >> PAGE_SHIFT;
1916                         if (count >= target)
1917                                 return count;
1918                 }
1919         }
1920
1921         /*
1922          * As we may completely rewrite the bound list whilst unbinding
1923          * (due to retiring requests) we have to strictly process only
1924          * one element of the list at the time, and recheck the list
1925          * on every iteration.
1926          */
1927         INIT_LIST_HEAD(&still_bound_list);
1928         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1929                 struct i915_vma *vma, *v;
1930
1931                 obj = list_first_entry(&dev_priv->mm.bound_list,
1932                                        typeof(*obj), global_list);
1933                 list_move_tail(&obj->global_list, &still_bound_list);
1934
1935                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1936                         continue;
1937
1938                 /*
1939                  * Hold a reference whilst we unbind this object, as we may
1940                  * end up waiting for and retiring requests. This might
1941                  * release the final reference (held by the active list)
1942                  * and result in the object being freed from under us.
1943                  * in this object being freed.
1944                  *
1945                  * Note 1: Shrinking the bound list is special since only active
1946                  * (and hence bound objects) can contain such limbo objects, so
1947                  * we don't need special tricks for shrinking the unbound list.
1948                  * The only other place where we have to be careful with active
1949                  * objects suddenly disappearing due to retiring requests is the
1950                  * eviction code.
1951                  *
1952                  * Note 2: Even though the bound list doesn't hold a reference
1953                  * to the object we can safely grab one here: The final object
1954                  * unreferencing and the bound_list are both protected by the
1955                  * dev->struct_mutex and so we won't ever be able to observe an
1956                  * object on the bound_list with a reference count equals 0.
1957                  */
1958                 drm_gem_object_reference(&obj->base);
1959
1960                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1961                         if (i915_vma_unbind(vma))
1962                                 break;
1963
1964                 if (i915_gem_object_put_pages(obj) == 0)
1965                         count += obj->base.size >> PAGE_SHIFT;
1966
1967                 drm_gem_object_unreference(&obj->base);
1968         }
1969         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1970
1971         return count;
1972 }
1973
1974 static unsigned long
1975 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1976 {
1977         return __i915_gem_shrink(dev_priv, target, true);
1978 }
1979
1980 static unsigned long
1981 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1982 {
1983         struct drm_i915_gem_object *obj, *next;
1984         long freed = 0;
1985
1986         i915_gem_evict_everything(dev_priv->dev);
1987
1988         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1989                                  global_list) {
1990                 if (i915_gem_object_put_pages(obj) == 0)
1991                         freed += obj->base.size >> PAGE_SHIFT;
1992         }
1993         return freed;
1994 }
1995
1996 static int
1997 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1998 {
1999         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2000         int page_count, i;
2001         struct address_space *mapping;
2002         struct sg_table *st;
2003         struct scatterlist *sg;
2004         struct sg_page_iter sg_iter;
2005         struct page *page;
2006         unsigned long last_pfn = 0;     /* suppress gcc warning */
2007         gfp_t gfp;
2008
2009         /* Assert that the object is not currently in any GPU domain. As it
2010          * wasn't in the GTT, there shouldn't be any way it could have been in
2011          * a GPU cache
2012          */
2013         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2014         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2015
2016         st = kmalloc(sizeof(*st), GFP_KERNEL);
2017         if (st == NULL)
2018                 return -ENOMEM;
2019
2020         page_count = obj->base.size / PAGE_SIZE;
2021         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2022                 kfree(st);
2023                 return -ENOMEM;
2024         }
2025
2026         /* Get the list of pages out of our struct file.  They'll be pinned
2027          * at this point until we release them.
2028          *
2029          * Fail silently without starting the shrinker
2030          */
2031         mapping = file_inode(obj->base.filp)->i_mapping;
2032         gfp = mapping_gfp_mask(mapping);
2033         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2034         gfp &= ~(__GFP_IO | __GFP_WAIT);
2035         sg = st->sgl;
2036         st->nents = 0;
2037         for (i = 0; i < page_count; i++) {
2038                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2039                 if (IS_ERR(page)) {
2040                         i915_gem_purge(dev_priv, page_count);
2041                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2042                 }
2043                 if (IS_ERR(page)) {
2044                         /* We've tried hard to allocate the memory by reaping
2045                          * our own buffer, now let the real VM do its job and
2046                          * go down in flames if truly OOM.
2047                          */
2048                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2049                         gfp |= __GFP_IO | __GFP_WAIT;
2050
2051                         i915_gem_shrink_all(dev_priv);
2052                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2053                         if (IS_ERR(page))
2054                                 goto err_pages;
2055
2056                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2057                         gfp &= ~(__GFP_IO | __GFP_WAIT);
2058                 }
2059 #ifdef CONFIG_SWIOTLB
2060                 if (swiotlb_nr_tbl()) {
2061                         st->nents++;
2062                         sg_set_page(sg, page, PAGE_SIZE, 0);
2063                         sg = sg_next(sg);
2064                         continue;
2065                 }
2066 #endif
2067                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2068                         if (i)
2069                                 sg = sg_next(sg);
2070                         st->nents++;
2071                         sg_set_page(sg, page, PAGE_SIZE, 0);
2072                 } else {
2073                         sg->length += PAGE_SIZE;
2074                 }
2075                 last_pfn = page_to_pfn(page);
2076
2077                 /* Check that the i965g/gm workaround works. */
2078                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2079         }
2080 #ifdef CONFIG_SWIOTLB
2081         if (!swiotlb_nr_tbl())
2082 #endif
2083                 sg_mark_end(sg);
2084         obj->pages = st;
2085
2086         if (i915_gem_object_needs_bit17_swizzle(obj))
2087                 i915_gem_object_do_bit_17_swizzle(obj);
2088
2089         return 0;
2090
2091 err_pages:
2092         sg_mark_end(sg);
2093         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2094                 page_cache_release(sg_page_iter_page(&sg_iter));
2095         sg_free_table(st);
2096         kfree(st);
2097         return PTR_ERR(page);
2098 }
2099
2100 /* Ensure that the associated pages are gathered from the backing storage
2101  * and pinned into our object. i915_gem_object_get_pages() may be called
2102  * multiple times before they are released by a single call to
2103  * i915_gem_object_put_pages() - once the pages are no longer referenced
2104  * either as a result of memory pressure (reaping pages under the shrinker)
2105  * or as the object is itself released.
2106  */
2107 int
2108 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2109 {
2110         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2111         const struct drm_i915_gem_object_ops *ops = obj->ops;
2112         int ret;
2113
2114         if (obj->pages)
2115                 return 0;
2116
2117         if (obj->madv != I915_MADV_WILLNEED) {
2118                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2119                 return -EFAULT;
2120         }
2121
2122         BUG_ON(obj->pages_pin_count);
2123
2124         ret = ops->get_pages(obj);
2125         if (ret)
2126                 return ret;
2127
2128         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2129         return 0;
2130 }
2131
2132 static void
2133 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2134                                struct intel_ring_buffer *ring)
2135 {
2136         struct drm_device *dev = obj->base.dev;
2137         struct drm_i915_private *dev_priv = dev->dev_private;
2138         u32 seqno = intel_ring_get_seqno(ring);
2139
2140         BUG_ON(ring == NULL);
2141         if (obj->ring != ring && obj->last_write_seqno) {
2142                 /* Keep the seqno relative to the current ring */
2143                 obj->last_write_seqno = seqno;
2144         }
2145         obj->ring = ring;
2146
2147         /* Add a reference if we're newly entering the active list. */
2148         if (!obj->active) {
2149                 drm_gem_object_reference(&obj->base);
2150                 obj->active = 1;
2151         }
2152
2153         list_move_tail(&obj->ring_list, &ring->active_list);
2154
2155         obj->last_read_seqno = seqno;
2156
2157         if (obj->fenced_gpu_access) {
2158                 obj->last_fenced_seqno = seqno;
2159
2160                 /* Bump MRU to take account of the delayed flush */
2161                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2162                         struct drm_i915_fence_reg *reg;
2163
2164                         reg = &dev_priv->fence_regs[obj->fence_reg];
2165                         list_move_tail(&reg->lru_list,
2166                                        &dev_priv->mm.fence_list);
2167                 }
2168         }
2169 }
2170
2171 void i915_vma_move_to_active(struct i915_vma *vma,
2172                              struct intel_ring_buffer *ring)
2173 {
2174         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2175         return i915_gem_object_move_to_active(vma->obj, ring);
2176 }
2177
2178 static void
2179 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2180 {
2181         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182         struct i915_address_space *vm;
2183         struct i915_vma *vma;
2184
2185         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2186         BUG_ON(!obj->active);
2187
2188         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2189                 vma = i915_gem_obj_to_vma(obj, vm);
2190                 if (vma && !list_empty(&vma->mm_list))
2191                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2192         }
2193
2194         list_del_init(&obj->ring_list);
2195         obj->ring = NULL;
2196
2197         obj->last_read_seqno = 0;
2198         obj->last_write_seqno = 0;
2199         obj->base.write_domain = 0;
2200
2201         obj->last_fenced_seqno = 0;
2202         obj->fenced_gpu_access = false;
2203
2204         obj->active = 0;
2205         drm_gem_object_unreference(&obj->base);
2206
2207         WARN_ON(i915_verify_lists(dev));
2208 }
2209
2210 static int
2211 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2212 {
2213         struct drm_i915_private *dev_priv = dev->dev_private;
2214         struct intel_ring_buffer *ring;
2215         int ret, i, j;
2216
2217         /* Carefully retire all requests without writing to the rings */
2218         for_each_ring(ring, dev_priv, i) {
2219                 ret = intel_ring_idle(ring);
2220                 if (ret)
2221                         return ret;
2222         }
2223         i915_gem_retire_requests(dev);
2224
2225         /* Finally reset hw state */
2226         for_each_ring(ring, dev_priv, i) {
2227                 intel_ring_init_seqno(ring, seqno);
2228
2229                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2230                         ring->sync_seqno[j] = 0;
2231         }
2232
2233         return 0;
2234 }
2235
2236 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2237 {
2238         struct drm_i915_private *dev_priv = dev->dev_private;
2239         int ret;
2240
2241         if (seqno == 0)
2242                 return -EINVAL;
2243
2244         /* HWS page needs to be set less than what we
2245          * will inject to ring
2246          */
2247         ret = i915_gem_init_seqno(dev, seqno - 1);
2248         if (ret)
2249                 return ret;
2250
2251         /* Carefully set the last_seqno value so that wrap
2252          * detection still works
2253          */
2254         dev_priv->next_seqno = seqno;
2255         dev_priv->last_seqno = seqno - 1;
2256         if (dev_priv->last_seqno == 0)
2257                 dev_priv->last_seqno--;
2258
2259         return 0;
2260 }
2261
2262 int
2263 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2264 {
2265         struct drm_i915_private *dev_priv = dev->dev_private;
2266
2267         /* reserve 0 for non-seqno */
2268         if (dev_priv->next_seqno == 0) {
2269                 int ret = i915_gem_init_seqno(dev, 0);
2270                 if (ret)
2271                         return ret;
2272
2273                 dev_priv->next_seqno = 1;
2274         }
2275
2276         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2277         return 0;
2278 }
2279
2280 int __i915_add_request(struct intel_ring_buffer *ring,
2281                        struct drm_file *file,
2282                        struct drm_i915_gem_object *obj,
2283                        u32 *out_seqno)
2284 {
2285         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2286         struct drm_i915_gem_request *request;
2287         u32 request_ring_position, request_start;
2288         int ret;
2289
2290         request_start = intel_ring_get_tail(ring);
2291         /*
2292          * Emit any outstanding flushes - execbuf can fail to emit the flush
2293          * after having emitted the batchbuffer command. Hence we need to fix
2294          * things up similar to emitting the lazy request. The difference here
2295          * is that the flush _must_ happen before the next request, no matter
2296          * what.
2297          */
2298         ret = intel_ring_flush_all_caches(ring);
2299         if (ret)
2300                 return ret;
2301
2302         request = ring->preallocated_lazy_request;
2303         if (WARN_ON(request == NULL))
2304                 return -ENOMEM;
2305
2306         /* Record the position of the start of the request so that
2307          * should we detect the updated seqno part-way through the
2308          * GPU processing the request, we never over-estimate the
2309          * position of the head.
2310          */
2311         request_ring_position = intel_ring_get_tail(ring);
2312
2313         ret = ring->add_request(ring);
2314         if (ret)
2315                 return ret;
2316
2317         request->seqno = intel_ring_get_seqno(ring);
2318         request->ring = ring;
2319         request->head = request_start;
2320         request->tail = request_ring_position;
2321
2322         /* Whilst this request exists, batch_obj will be on the
2323          * active_list, and so will hold the active reference. Only when this
2324          * request is retired will the the batch_obj be moved onto the
2325          * inactive_list and lose its active reference. Hence we do not need
2326          * to explicitly hold another reference here.
2327          */
2328         request->batch_obj = obj;
2329
2330         /* Hold a reference to the current context so that we can inspect
2331          * it later in case a hangcheck error event fires.
2332          */
2333         request->ctx = ring->last_context;
2334         if (request->ctx)
2335                 i915_gem_context_reference(request->ctx);
2336
2337         request->emitted_jiffies = jiffies;
2338         list_add_tail(&request->list, &ring->request_list);
2339         request->file_priv = NULL;
2340
2341         if (file) {
2342                 struct drm_i915_file_private *file_priv = file->driver_priv;
2343
2344                 spin_lock(&file_priv->mm.lock);
2345                 request->file_priv = file_priv;
2346                 list_add_tail(&request->client_list,
2347                               &file_priv->mm.request_list);
2348                 spin_unlock(&file_priv->mm.lock);
2349         }
2350
2351         trace_i915_gem_request_add(ring, request->seqno);
2352         ring->outstanding_lazy_seqno = 0;
2353         ring->preallocated_lazy_request = NULL;
2354
2355         if (!dev_priv->ums.mm_suspended) {
2356                 i915_queue_hangcheck(ring->dev);
2357
2358                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2359                 queue_delayed_work(dev_priv->wq,
2360                                    &dev_priv->mm.retire_work,
2361                                    round_jiffies_up_relative(HZ));
2362                 intel_mark_busy(dev_priv->dev);
2363         }
2364
2365         if (out_seqno)
2366                 *out_seqno = request->seqno;
2367         return 0;
2368 }
2369
2370 static inline void
2371 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2372 {
2373         struct drm_i915_file_private *file_priv = request->file_priv;
2374
2375         if (!file_priv)
2376                 return;
2377
2378         spin_lock(&file_priv->mm.lock);
2379         list_del(&request->client_list);
2380         request->file_priv = NULL;
2381         spin_unlock(&file_priv->mm.lock);
2382 }
2383
2384 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2385                                    const struct i915_hw_context *ctx)
2386 {
2387         unsigned long elapsed;
2388
2389         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2390
2391         if (ctx->hang_stats.banned)
2392                 return true;
2393
2394         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2395                 if (!i915_gem_context_is_default(ctx)) {
2396                         DRM_DEBUG("context hanging too fast, banning!\n");
2397                         return true;
2398                 } else if (dev_priv->gpu_error.stop_rings == 0) {
2399                         DRM_ERROR("gpu hanging too fast, banning!\n");
2400                         return true;
2401                 }
2402         }
2403
2404         return false;
2405 }
2406
2407 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2408                                   struct i915_hw_context *ctx,
2409                                   const bool guilty)
2410 {
2411         struct i915_ctx_hang_stats *hs;
2412
2413         if (WARN_ON(!ctx))
2414                 return;
2415
2416         hs = &ctx->hang_stats;
2417
2418         if (guilty) {
2419                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2420                 hs->batch_active++;
2421                 hs->guilty_ts = get_seconds();
2422         } else {
2423                 hs->batch_pending++;
2424         }
2425 }
2426
2427 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2428 {
2429         list_del(&request->list);
2430         i915_gem_request_remove_from_client(request);
2431
2432         if (request->ctx)
2433                 i915_gem_context_unreference(request->ctx);
2434
2435         kfree(request);
2436 }
2437
2438 struct drm_i915_gem_request *
2439 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2440 {
2441         struct drm_i915_gem_request *request;
2442         u32 completed_seqno;
2443
2444         completed_seqno = ring->get_seqno(ring, false);
2445
2446         list_for_each_entry(request, &ring->request_list, list) {
2447                 if (i915_seqno_passed(completed_seqno, request->seqno))
2448                         continue;
2449
2450                 return request;
2451         }
2452
2453         return NULL;
2454 }
2455
2456 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2457                                        struct intel_ring_buffer *ring)
2458 {
2459         struct drm_i915_gem_request *request;
2460         bool ring_hung;
2461
2462         request = i915_gem_find_active_request(ring);
2463
2464         if (request == NULL)
2465                 return;
2466
2467         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2468
2469         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2470
2471         list_for_each_entry_continue(request, &ring->request_list, list)
2472                 i915_set_reset_status(dev_priv, request->ctx, false);
2473 }
2474
2475 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2476                                         struct intel_ring_buffer *ring)
2477 {
2478         while (!list_empty(&ring->active_list)) {
2479                 struct drm_i915_gem_object *obj;
2480
2481                 obj = list_first_entry(&ring->active_list,
2482                                        struct drm_i915_gem_object,
2483                                        ring_list);
2484
2485                 i915_gem_object_move_to_inactive(obj);
2486         }
2487
2488         /*
2489          * We must free the requests after all the corresponding objects have
2490          * been moved off active lists. Which is the same order as the normal
2491          * retire_requests function does. This is important if object hold
2492          * implicit references on things like e.g. ppgtt address spaces through
2493          * the request.
2494          */
2495         while (!list_empty(&ring->request_list)) {
2496                 struct drm_i915_gem_request *request;
2497
2498                 request = list_first_entry(&ring->request_list,
2499                                            struct drm_i915_gem_request,
2500                                            list);
2501
2502                 i915_gem_free_request(request);
2503         }
2504 }
2505
2506 void i915_gem_restore_fences(struct drm_device *dev)
2507 {
2508         struct drm_i915_private *dev_priv = dev->dev_private;
2509         int i;
2510
2511         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2512                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2513
2514                 /*
2515                  * Commit delayed tiling changes if we have an object still
2516                  * attached to the fence, otherwise just clear the fence.
2517                  */
2518                 if (reg->obj) {
2519                         i915_gem_object_update_fence(reg->obj, reg,
2520                                                      reg->obj->tiling_mode);
2521                 } else {
2522                         i915_gem_write_fence(dev, i, NULL);
2523                 }
2524         }
2525 }
2526
2527 void i915_gem_reset(struct drm_device *dev)
2528 {
2529         struct drm_i915_private *dev_priv = dev->dev_private;
2530         struct intel_ring_buffer *ring;
2531         int i;
2532
2533         /*
2534          * Before we free the objects from the requests, we need to inspect
2535          * them for finding the guilty party. As the requests only borrow
2536          * their reference to the objects, the inspection must be done first.
2537          */
2538         for_each_ring(ring, dev_priv, i)
2539                 i915_gem_reset_ring_status(dev_priv, ring);
2540
2541         for_each_ring(ring, dev_priv, i)
2542                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2543
2544         i915_gem_cleanup_ringbuffer(dev);
2545
2546         i915_gem_context_reset(dev);
2547
2548         i915_gem_restore_fences(dev);
2549 }
2550
2551 /**
2552  * This function clears the request list as sequence numbers are passed.
2553  */
2554 static void
2555 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2556 {
2557         uint32_t seqno;
2558
2559         if (list_empty(&ring->request_list))
2560                 return;
2561
2562         WARN_ON(i915_verify_lists(ring->dev));
2563
2564         seqno = ring->get_seqno(ring, true);
2565
2566         /* Move any buffers on the active list that are no longer referenced
2567          * by the ringbuffer to the flushing/inactive lists as appropriate,
2568          * before we free the context associated with the requests.
2569          */
2570         while (!list_empty(&ring->active_list)) {
2571                 struct drm_i915_gem_object *obj;
2572
2573                 obj = list_first_entry(&ring->active_list,
2574                                       struct drm_i915_gem_object,
2575                                       ring_list);
2576
2577                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2578                         break;
2579
2580                 i915_gem_object_move_to_inactive(obj);
2581         }
2582
2583
2584         while (!list_empty(&ring->request_list)) {
2585                 struct drm_i915_gem_request *request;
2586
2587                 request = list_first_entry(&ring->request_list,
2588                                            struct drm_i915_gem_request,
2589                                            list);
2590
2591                 if (!i915_seqno_passed(seqno, request->seqno))
2592                         break;
2593
2594                 trace_i915_gem_request_retire(ring, request->seqno);
2595                 /* We know the GPU must have read the request to have
2596                  * sent us the seqno + interrupt, so use the position
2597                  * of tail of the request to update the last known position
2598                  * of the GPU head.
2599                  */
2600                 ring->last_retired_head = request->tail;
2601
2602                 i915_gem_free_request(request);
2603         }
2604
2605         if (unlikely(ring->trace_irq_seqno &&
2606                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2607                 ring->irq_put(ring);
2608                 ring->trace_irq_seqno = 0;
2609         }
2610
2611         WARN_ON(i915_verify_lists(ring->dev));
2612 }
2613
2614 bool
2615 i915_gem_retire_requests(struct drm_device *dev)
2616 {
2617         struct drm_i915_private *dev_priv = dev->dev_private;
2618         struct intel_ring_buffer *ring;
2619         bool idle = true;
2620         int i;
2621
2622         for_each_ring(ring, dev_priv, i) {
2623                 i915_gem_retire_requests_ring(ring);
2624                 idle &= list_empty(&ring->request_list);
2625         }
2626
2627         if (idle)
2628                 mod_delayed_work(dev_priv->wq,
2629                                    &dev_priv->mm.idle_work,
2630                                    msecs_to_jiffies(100));
2631
2632         return idle;
2633 }
2634
2635 static void
2636 i915_gem_retire_work_handler(struct work_struct *work)
2637 {
2638         struct drm_i915_private *dev_priv =
2639                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2640         struct drm_device *dev = dev_priv->dev;
2641         bool idle;
2642
2643         /* Come back later if the device is busy... */
2644         idle = false;
2645         if (mutex_trylock(&dev->struct_mutex)) {
2646                 idle = i915_gem_retire_requests(dev);
2647                 mutex_unlock(&dev->struct_mutex);
2648         }
2649         if (!idle)
2650                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2651                                    round_jiffies_up_relative(HZ));
2652 }
2653
2654 static void
2655 i915_gem_idle_work_handler(struct work_struct *work)
2656 {
2657         struct drm_i915_private *dev_priv =
2658                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2659
2660         intel_mark_idle(dev_priv->dev);
2661 }
2662
2663 /**
2664  * Ensures that an object will eventually get non-busy by flushing any required
2665  * write domains, emitting any outstanding lazy request and retiring and
2666  * completed requests.
2667  */
2668 static int
2669 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2670 {
2671         int ret;
2672
2673         if (obj->active) {
2674                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2675                 if (ret)
2676                         return ret;
2677
2678                 i915_gem_retire_requests_ring(obj->ring);
2679         }
2680
2681         return 0;
2682 }
2683
2684 /**
2685  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2686  * @DRM_IOCTL_ARGS: standard ioctl arguments
2687  *
2688  * Returns 0 if successful, else an error is returned with the remaining time in
2689  * the timeout parameter.
2690  *  -ETIME: object is still busy after timeout
2691  *  -ERESTARTSYS: signal interrupted the wait
2692  *  -ENONENT: object doesn't exist
2693  * Also possible, but rare:
2694  *  -EAGAIN: GPU wedged
2695  *  -ENOMEM: damn
2696  *  -ENODEV: Internal IRQ fail
2697  *  -E?: The add request failed
2698  *
2699  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2700  * non-zero timeout parameter the wait ioctl will wait for the given number of
2701  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2702  * without holding struct_mutex the object may become re-busied before this
2703  * function completes. A similar but shorter * race condition exists in the busy
2704  * ioctl
2705  */
2706 int
2707 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2708 {
2709         struct drm_i915_private *dev_priv = dev->dev_private;
2710         struct drm_i915_gem_wait *args = data;
2711         struct drm_i915_gem_object *obj;
2712         struct intel_ring_buffer *ring = NULL;
2713         struct timespec timeout_stack, *timeout = NULL;
2714         unsigned reset_counter;
2715         u32 seqno = 0;
2716         int ret = 0;
2717
2718         if (args->timeout_ns >= 0) {
2719                 timeout_stack = ns_to_timespec(args->timeout_ns);
2720                 timeout = &timeout_stack;
2721         }
2722
2723         ret = i915_mutex_lock_interruptible(dev);
2724         if (ret)
2725                 return ret;
2726
2727         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2728         if (&obj->base == NULL) {
2729                 mutex_unlock(&dev->struct_mutex);
2730                 return -ENOENT;
2731         }
2732
2733         /* Need to make sure the object gets inactive eventually. */
2734         ret = i915_gem_object_flush_active(obj);
2735         if (ret)
2736                 goto out;
2737
2738         if (obj->active) {
2739                 seqno = obj->last_read_seqno;
2740                 ring = obj->ring;
2741         }
2742
2743         if (seqno == 0)
2744                  goto out;
2745
2746         /* Do this after OLR check to make sure we make forward progress polling
2747          * on this IOCTL with a 0 timeout (like busy ioctl)
2748          */
2749         if (!args->timeout_ns) {
2750                 ret = -ETIME;
2751                 goto out;
2752         }
2753
2754         drm_gem_object_unreference(&obj->base);
2755         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2756         mutex_unlock(&dev->struct_mutex);
2757
2758         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2759         if (timeout)
2760                 args->timeout_ns = timespec_to_ns(timeout);
2761         return ret;
2762
2763 out:
2764         drm_gem_object_unreference(&obj->base);
2765         mutex_unlock(&dev->struct_mutex);
2766         return ret;
2767 }
2768
2769 /**
2770  * i915_gem_object_sync - sync an object to a ring.
2771  *
2772  * @obj: object which may be in use on another ring.
2773  * @to: ring we wish to use the object on. May be NULL.
2774  *
2775  * This code is meant to abstract object synchronization with the GPU.
2776  * Calling with NULL implies synchronizing the object with the CPU
2777  * rather than a particular GPU ring.
2778  *
2779  * Returns 0 if successful, else propagates up the lower layer error.
2780  */
2781 int
2782 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2783                      struct intel_ring_buffer *to)
2784 {
2785         struct intel_ring_buffer *from = obj->ring;
2786         u32 seqno;
2787         int ret, idx;
2788
2789         if (from == NULL || to == from)
2790                 return 0;
2791
2792         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2793                 return i915_gem_object_wait_rendering(obj, false);
2794
2795         idx = intel_ring_sync_index(from, to);
2796
2797         seqno = obj->last_read_seqno;
2798         if (seqno <= from->sync_seqno[idx])
2799                 return 0;
2800
2801         ret = i915_gem_check_olr(obj->ring, seqno);
2802         if (ret)
2803                 return ret;
2804
2805         trace_i915_gem_ring_sync_to(from, to, seqno);
2806         ret = to->sync_to(to, from, seqno);
2807         if (!ret)
2808                 /* We use last_read_seqno because sync_to()
2809                  * might have just caused seqno wrap under
2810                  * the radar.
2811                  */
2812                 from->sync_seqno[idx] = obj->last_read_seqno;
2813
2814         return ret;
2815 }
2816
2817 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2818 {
2819         u32 old_write_domain, old_read_domains;
2820
2821         /* Force a pagefault for domain tracking on next user access */
2822         i915_gem_release_mmap(obj);
2823
2824         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2825                 return;
2826
2827         /* Wait for any direct GTT access to complete */
2828         mb();
2829
2830         old_read_domains = obj->base.read_domains;
2831         old_write_domain = obj->base.write_domain;
2832
2833         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2834         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2835
2836         trace_i915_gem_object_change_domain(obj,
2837                                             old_read_domains,
2838                                             old_write_domain);
2839 }
2840
2841 int i915_vma_unbind(struct i915_vma *vma)
2842 {
2843         struct drm_i915_gem_object *obj = vma->obj;
2844         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2845         int ret;
2846
2847         if (list_empty(&vma->vma_link))
2848                 return 0;
2849
2850         if (!drm_mm_node_allocated(&vma->node)) {
2851                 i915_gem_vma_destroy(vma);
2852                 return 0;
2853         }
2854
2855         if (vma->pin_count)
2856                 return -EBUSY;
2857
2858         BUG_ON(obj->pages == NULL);
2859
2860         ret = i915_gem_object_finish_gpu(obj);
2861         if (ret)
2862                 return ret;
2863         /* Continue on if we fail due to EIO, the GPU is hung so we
2864          * should be safe and we need to cleanup or else we might
2865          * cause memory corruption through use-after-free.
2866          */
2867
2868         i915_gem_object_finish_gtt(obj);
2869
2870         /* release the fence reg _after_ flushing */
2871         ret = i915_gem_object_put_fence(obj);
2872         if (ret)
2873                 return ret;
2874
2875         trace_i915_vma_unbind(vma);
2876
2877         vma->unbind_vma(vma);
2878
2879         i915_gem_gtt_finish_object(obj);
2880
2881         list_del_init(&vma->mm_list);
2882         /* Avoid an unnecessary call to unbind on rebind. */
2883         if (i915_is_ggtt(vma->vm))
2884                 obj->map_and_fenceable = true;
2885
2886         drm_mm_remove_node(&vma->node);
2887         i915_gem_vma_destroy(vma);
2888
2889         /* Since the unbound list is global, only move to that list if
2890          * no more VMAs exist. */
2891         if (list_empty(&obj->vma_list))
2892                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2893
2894         /* And finally now the object is completely decoupled from this vma,
2895          * we can drop its hold on the backing storage and allow it to be
2896          * reaped by the shrinker.
2897          */
2898         i915_gem_object_unpin_pages(obj);
2899
2900         return 0;
2901 }
2902
2903 int i915_gpu_idle(struct drm_device *dev)
2904 {
2905         struct drm_i915_private *dev_priv = dev->dev_private;
2906         struct intel_ring_buffer *ring;
2907         int ret, i;
2908
2909         /* Flush everything onto the inactive list. */
2910         for_each_ring(ring, dev_priv, i) {
2911                 ret = i915_switch_context(ring, ring->default_context);
2912                 if (ret)
2913                         return ret;
2914
2915                 ret = intel_ring_idle(ring);
2916                 if (ret)
2917                         return ret;
2918         }
2919
2920         return 0;
2921 }
2922
2923 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2924                                  struct drm_i915_gem_object *obj)
2925 {
2926         struct drm_i915_private *dev_priv = dev->dev_private;
2927         int fence_reg;
2928         int fence_pitch_shift;
2929
2930         if (INTEL_INFO(dev)->gen >= 6) {
2931                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2932                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2933         } else {
2934                 fence_reg = FENCE_REG_965_0;
2935                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2936         }
2937
2938         fence_reg += reg * 8;
2939
2940         /* To w/a incoherency with non-atomic 64-bit register updates,
2941          * we split the 64-bit update into two 32-bit writes. In order
2942          * for a partial fence not to be evaluated between writes, we
2943          * precede the update with write to turn off the fence register,
2944          * and only enable the fence as the last step.
2945          *
2946          * For extra levels of paranoia, we make sure each step lands
2947          * before applying the next step.
2948          */
2949         I915_WRITE(fence_reg, 0);
2950         POSTING_READ(fence_reg);
2951
2952         if (obj) {
2953                 u32 size = i915_gem_obj_ggtt_size(obj);
2954                 uint64_t val;
2955
2956                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2957                                  0xfffff000) << 32;
2958                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2959                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2960                 if (obj->tiling_mode == I915_TILING_Y)
2961                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2962                 val |= I965_FENCE_REG_VALID;
2963
2964                 I915_WRITE(fence_reg + 4, val >> 32);
2965                 POSTING_READ(fence_reg + 4);
2966
2967                 I915_WRITE(fence_reg + 0, val);
2968                 POSTING_READ(fence_reg);
2969         } else {
2970                 I915_WRITE(fence_reg + 4, 0);
2971                 POSTING_READ(fence_reg + 4);
2972         }
2973 }
2974
2975 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2976                                  struct drm_i915_gem_object *obj)
2977 {
2978         struct drm_i915_private *dev_priv = dev->dev_private;
2979         u32 val;
2980
2981         if (obj) {
2982                 u32 size = i915_gem_obj_ggtt_size(obj);
2983                 int pitch_val;
2984                 int tile_width;
2985
2986                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2987                      (size & -size) != size ||
2988                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2989                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2990                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2991
2992                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2993                         tile_width = 128;
2994                 else
2995                         tile_width = 512;
2996
2997                 /* Note: pitch better be a power of two tile widths */
2998                 pitch_val = obj->stride / tile_width;
2999                 pitch_val = ffs(pitch_val) - 1;
3000
3001                 val = i915_gem_obj_ggtt_offset(obj);
3002                 if (obj->tiling_mode == I915_TILING_Y)
3003                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3004                 val |= I915_FENCE_SIZE_BITS(size);
3005                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3006                 val |= I830_FENCE_REG_VALID;
3007         } else
3008                 val = 0;
3009
3010         if (reg < 8)
3011                 reg = FENCE_REG_830_0 + reg * 4;
3012         else
3013                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3014
3015         I915_WRITE(reg, val);
3016         POSTING_READ(reg);
3017 }
3018
3019 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3020                                 struct drm_i915_gem_object *obj)
3021 {
3022         struct drm_i915_private *dev_priv = dev->dev_private;
3023         uint32_t val;
3024
3025         if (obj) {
3026                 u32 size = i915_gem_obj_ggtt_size(obj);
3027                 uint32_t pitch_val;
3028
3029                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3030                      (size & -size) != size ||
3031                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3032                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3033                      i915_gem_obj_ggtt_offset(obj), size);
3034
3035                 pitch_val = obj->stride / 128;
3036                 pitch_val = ffs(pitch_val) - 1;
3037
3038                 val = i915_gem_obj_ggtt_offset(obj);
3039                 if (obj->tiling_mode == I915_TILING_Y)
3040                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3041                 val |= I830_FENCE_SIZE_BITS(size);
3042                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3043                 val |= I830_FENCE_REG_VALID;
3044         } else
3045                 val = 0;
3046
3047         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3048         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3049 }
3050
3051 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3052 {
3053         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3054 }
3055
3056 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3057                                  struct drm_i915_gem_object *obj)
3058 {
3059         struct drm_i915_private *dev_priv = dev->dev_private;
3060
3061         /* Ensure that all CPU reads are completed before installing a fence
3062          * and all writes before removing the fence.
3063          */
3064         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3065                 mb();
3066
3067         WARN(obj && (!obj->stride || !obj->tiling_mode),
3068              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3069              obj->stride, obj->tiling_mode);
3070
3071         switch (INTEL_INFO(dev)->gen) {
3072         case 8:
3073         case 7:
3074         case 6:
3075         case 5:
3076         case 4: i965_write_fence_reg(dev, reg, obj); break;
3077         case 3: i915_write_fence_reg(dev, reg, obj); break;
3078         case 2: i830_write_fence_reg(dev, reg, obj); break;
3079         default: BUG();
3080         }
3081
3082         /* And similarly be paranoid that no direct access to this region
3083          * is reordered to before the fence is installed.
3084          */
3085         if (i915_gem_object_needs_mb(obj))
3086                 mb();
3087 }
3088
3089 static inline int fence_number(struct drm_i915_private *dev_priv,
3090                                struct drm_i915_fence_reg *fence)
3091 {
3092         return fence - dev_priv->fence_regs;
3093 }
3094
3095 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3096                                          struct drm_i915_fence_reg *fence,
3097                                          bool enable)
3098 {
3099         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3100         int reg = fence_number(dev_priv, fence);
3101
3102         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3103
3104         if (enable) {
3105                 obj->fence_reg = reg;
3106                 fence->obj = obj;
3107                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3108         } else {
3109                 obj->fence_reg = I915_FENCE_REG_NONE;
3110                 fence->obj = NULL;
3111                 list_del_init(&fence->lru_list);
3112         }
3113         obj->fence_dirty = false;
3114 }
3115
3116 static int
3117 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3118 {
3119         if (obj->last_fenced_seqno) {
3120                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3121                 if (ret)
3122                         return ret;
3123
3124                 obj->last_fenced_seqno = 0;
3125         }
3126
3127         obj->fenced_gpu_access = false;
3128         return 0;
3129 }
3130
3131 int
3132 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3133 {
3134         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3135         struct drm_i915_fence_reg *fence;
3136         int ret;
3137
3138         ret = i915_gem_object_wait_fence(obj);
3139         if (ret)
3140                 return ret;
3141
3142         if (obj->fence_reg == I915_FENCE_REG_NONE)
3143                 return 0;
3144
3145         fence = &dev_priv->fence_regs[obj->fence_reg];
3146
3147         i915_gem_object_fence_lost(obj);
3148         i915_gem_object_update_fence(obj, fence, false);
3149
3150         return 0;
3151 }
3152
3153 static struct drm_i915_fence_reg *
3154 i915_find_fence_reg(struct drm_device *dev)
3155 {
3156         struct drm_i915_private *dev_priv = dev->dev_private;
3157         struct drm_i915_fence_reg *reg, *avail;
3158         int i;
3159
3160         /* First try to find a free reg */
3161         avail = NULL;
3162         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3163                 reg = &dev_priv->fence_regs[i];
3164                 if (!reg->obj)
3165                         return reg;
3166
3167                 if (!reg->pin_count)
3168                         avail = reg;
3169         }
3170
3171         if (avail == NULL)
3172                 goto deadlock;
3173
3174         /* None available, try to steal one or wait for a user to finish */
3175         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3176                 if (reg->pin_count)
3177                         continue;
3178
3179                 return reg;
3180         }
3181
3182 deadlock:
3183         /* Wait for completion of pending flips which consume fences */
3184         if (intel_has_pending_fb_unpin(dev))
3185                 return ERR_PTR(-EAGAIN);
3186
3187         return ERR_PTR(-EDEADLK);
3188 }
3189
3190 /**
3191  * i915_gem_object_get_fence - set up fencing for an object
3192  * @obj: object to map through a fence reg
3193  *
3194  * When mapping objects through the GTT, userspace wants to be able to write
3195  * to them without having to worry about swizzling if the object is tiled.
3196  * This function walks the fence regs looking for a free one for @obj,
3197  * stealing one if it can't find any.
3198  *
3199  * It then sets up the reg based on the object's properties: address, pitch
3200  * and tiling format.
3201  *
3202  * For an untiled surface, this removes any existing fence.
3203  */
3204 int
3205 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3206 {
3207         struct drm_device *dev = obj->base.dev;
3208         struct drm_i915_private *dev_priv = dev->dev_private;
3209         bool enable = obj->tiling_mode != I915_TILING_NONE;
3210         struct drm_i915_fence_reg *reg;
3211         int ret;
3212
3213         /* Have we updated the tiling parameters upon the object and so
3214          * will need to serialise the write to the associated fence register?
3215          */
3216         if (obj->fence_dirty) {
3217                 ret = i915_gem_object_wait_fence(obj);
3218                 if (ret)
3219                         return ret;
3220         }
3221
3222         /* Just update our place in the LRU if our fence is getting reused. */
3223         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3224                 reg = &dev_priv->fence_regs[obj->fence_reg];
3225                 if (!obj->fence_dirty) {
3226                         list_move_tail(&reg->lru_list,
3227                                        &dev_priv->mm.fence_list);
3228                         return 0;
3229                 }
3230         } else if (enable) {
3231                 reg = i915_find_fence_reg(dev);
3232                 if (IS_ERR(reg))
3233                         return PTR_ERR(reg);
3234
3235                 if (reg->obj) {
3236                         struct drm_i915_gem_object *old = reg->obj;
3237
3238                         ret = i915_gem_object_wait_fence(old);
3239                         if (ret)
3240                                 return ret;
3241
3242                         i915_gem_object_fence_lost(old);
3243                 }
3244         } else
3245                 return 0;
3246
3247         i915_gem_object_update_fence(obj, reg, enable);
3248
3249         return 0;
3250 }
3251
3252 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3253                                      struct drm_mm_node *gtt_space,
3254                                      unsigned long cache_level)
3255 {
3256         struct drm_mm_node *other;
3257
3258         /* On non-LLC machines we have to be careful when putting differing
3259          * types of snoopable memory together to avoid the prefetcher
3260          * crossing memory domains and dying.
3261          */
3262         if (HAS_LLC(dev))
3263                 return true;
3264
3265         if (!drm_mm_node_allocated(gtt_space))
3266                 return true;
3267
3268         if (list_empty(&gtt_space->node_list))
3269                 return true;
3270
3271         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3272         if (other->allocated && !other->hole_follows && other->color != cache_level)
3273                 return false;
3274
3275         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3276         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3277                 return false;
3278
3279         return true;
3280 }
3281
3282 static void i915_gem_verify_gtt(struct drm_device *dev)
3283 {
3284 #if WATCH_GTT
3285         struct drm_i915_private *dev_priv = dev->dev_private;
3286         struct drm_i915_gem_object *obj;
3287         int err = 0;
3288
3289         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3290                 if (obj->gtt_space == NULL) {
3291                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3292                         err++;
3293                         continue;
3294                 }
3295
3296                 if (obj->cache_level != obj->gtt_space->color) {
3297                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3298                                i915_gem_obj_ggtt_offset(obj),
3299                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3300                                obj->cache_level,
3301                                obj->gtt_space->color);
3302                         err++;
3303                         continue;
3304                 }
3305
3306                 if (!i915_gem_valid_gtt_space(dev,
3307                                               obj->gtt_space,
3308                                               obj->cache_level)) {
3309                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3310                                i915_gem_obj_ggtt_offset(obj),
3311                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3312                                obj->cache_level);
3313                         err++;
3314                         continue;
3315                 }
3316         }
3317
3318         WARN_ON(err);
3319 #endif
3320 }
3321
3322 /**
3323  * Finds free space in the GTT aperture and binds the object there.
3324  */
3325 static struct i915_vma *
3326 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3327                            struct i915_address_space *vm,
3328                            unsigned alignment,
3329                            uint64_t flags)
3330 {
3331         struct drm_device *dev = obj->base.dev;
3332         struct drm_i915_private *dev_priv = dev->dev_private;
3333         u32 size, fence_size, fence_alignment, unfenced_alignment;
3334         unsigned long start =
3335                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3336         unsigned long end =
3337                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3338         struct i915_vma *vma;
3339         int ret;
3340
3341         fence_size = i915_gem_get_gtt_size(dev,
3342                                            obj->base.size,
3343                                            obj->tiling_mode);
3344         fence_alignment = i915_gem_get_gtt_alignment(dev,
3345                                                      obj->base.size,
3346                                                      obj->tiling_mode, true);
3347         unfenced_alignment =
3348                 i915_gem_get_gtt_alignment(dev,
3349                                            obj->base.size,
3350                                            obj->tiling_mode, false);
3351
3352         if (alignment == 0)
3353                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3354                                                 unfenced_alignment;
3355         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3356                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3357                 return ERR_PTR(-EINVAL);
3358         }
3359
3360         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3361
3362         /* If the object is bigger than the entire aperture, reject it early
3363          * before evicting everything in a vain attempt to find space.
3364          */
3365         if (obj->base.size > end) {
3366                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3367                           obj->base.size,
3368                           flags & PIN_MAPPABLE ? "mappable" : "total",
3369                           end);
3370                 return ERR_PTR(-E2BIG);
3371         }
3372
3373         ret = i915_gem_object_get_pages(obj);
3374         if (ret)
3375                 return ERR_PTR(ret);
3376
3377         i915_gem_object_pin_pages(obj);
3378
3379         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3380         if (IS_ERR(vma))
3381                 goto err_unpin;
3382
3383 search_free:
3384         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3385                                                   size, alignment,
3386                                                   obj->cache_level,
3387                                                   start, end,
3388                                                   DRM_MM_SEARCH_DEFAULT,
3389                                                   DRM_MM_CREATE_DEFAULT);
3390         if (ret) {
3391                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3392                                                obj->cache_level,
3393                                                start, end,
3394                                                flags);
3395                 if (ret == 0)
3396                         goto search_free;
3397
3398                 goto err_free_vma;
3399         }
3400         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3401                                               obj->cache_level))) {
3402                 ret = -EINVAL;
3403                 goto err_remove_node;
3404         }
3405
3406         ret = i915_gem_gtt_prepare_object(obj);
3407         if (ret)
3408                 goto err_remove_node;
3409
3410         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3411         list_add_tail(&vma->mm_list, &vm->inactive_list);
3412
3413         if (i915_is_ggtt(vm)) {
3414                 bool mappable, fenceable;
3415
3416                 fenceable = (vma->node.size == fence_size &&
3417                              (vma->node.start & (fence_alignment - 1)) == 0);
3418
3419                 mappable = (vma->node.start + obj->base.size <=
3420                             dev_priv->gtt.mappable_end);
3421
3422                 obj->map_and_fenceable = mappable && fenceable;
3423         }
3424
3425         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3426
3427         trace_i915_vma_bind(vma, flags);
3428         vma->bind_vma(vma, obj->cache_level,
3429                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3430
3431         i915_gem_verify_gtt(dev);
3432         return vma;
3433
3434 err_remove_node:
3435         drm_mm_remove_node(&vma->node);
3436 err_free_vma:
3437         i915_gem_vma_destroy(vma);
3438         vma = ERR_PTR(ret);
3439 err_unpin:
3440         i915_gem_object_unpin_pages(obj);
3441         return vma;
3442 }
3443
3444 bool
3445 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3446                         bool force)
3447 {
3448         /* If we don't have a page list set up, then we're not pinned
3449          * to GPU, and we can ignore the cache flush because it'll happen
3450          * again at bind time.
3451          */
3452         if (obj->pages == NULL)
3453                 return false;
3454
3455         /*
3456          * Stolen memory is always coherent with the GPU as it is explicitly
3457          * marked as wc by the system, or the system is cache-coherent.
3458          */
3459         if (obj->stolen)
3460                 return false;
3461
3462         /* If the GPU is snooping the contents of the CPU cache,
3463          * we do not need to manually clear the CPU cache lines.  However,
3464          * the caches are only snooped when the render cache is
3465          * flushed/invalidated.  As we always have to emit invalidations
3466          * and flushes when moving into and out of the RENDER domain, correct
3467          * snooping behaviour occurs naturally as the result of our domain
3468          * tracking.
3469          */
3470         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3471                 return false;
3472
3473         trace_i915_gem_object_clflush(obj);
3474         drm_clflush_sg(obj->pages);
3475
3476         return true;
3477 }
3478
3479 /** Flushes the GTT write domain for the object if it's dirty. */
3480 static void
3481 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3482 {
3483         uint32_t old_write_domain;
3484
3485         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3486                 return;
3487
3488         /* No actual flushing is required for the GTT write domain.  Writes
3489          * to it immediately go to main memory as far as we know, so there's
3490          * no chipset flush.  It also doesn't land in render cache.
3491          *
3492          * However, we do have to enforce the order so that all writes through
3493          * the GTT land before any writes to the device, such as updates to
3494          * the GATT itself.
3495          */
3496         wmb();
3497
3498         old_write_domain = obj->base.write_domain;
3499         obj->base.write_domain = 0;
3500
3501         trace_i915_gem_object_change_domain(obj,
3502                                             obj->base.read_domains,
3503                                             old_write_domain);
3504 }
3505
3506 /** Flushes the CPU write domain for the object if it's dirty. */
3507 static void
3508 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3509                                        bool force)
3510 {
3511         uint32_t old_write_domain;
3512
3513         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3514                 return;
3515
3516         if (i915_gem_clflush_object(obj, force))
3517                 i915_gem_chipset_flush(obj->base.dev);
3518
3519         old_write_domain = obj->base.write_domain;
3520         obj->base.write_domain = 0;
3521
3522         trace_i915_gem_object_change_domain(obj,
3523                                             obj->base.read_domains,
3524                                             old_write_domain);
3525 }
3526
3527 /**
3528  * Moves a single object to the GTT read, and possibly write domain.
3529  *
3530  * This function returns when the move is complete, including waiting on
3531  * flushes to occur.
3532  */
3533 int
3534 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3535 {
3536         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3537         uint32_t old_write_domain, old_read_domains;
3538         int ret;
3539
3540         /* Not valid to be called on unbound objects. */
3541         if (!i915_gem_obj_bound_any(obj))
3542                 return -EINVAL;
3543
3544         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3545                 return 0;
3546
3547         ret = i915_gem_object_wait_rendering(obj, !write);
3548         if (ret)
3549                 return ret;
3550
3551         i915_gem_object_flush_cpu_write_domain(obj, false);
3552
3553         /* Serialise direct access to this object with the barriers for
3554          * coherent writes from the GPU, by effectively invalidating the
3555          * GTT domain upon first access.
3556          */
3557         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3558                 mb();
3559
3560         old_write_domain = obj->base.write_domain;
3561         old_read_domains = obj->base.read_domains;
3562
3563         /* It should now be out of any other write domains, and we can update
3564          * the domain values for our changes.
3565          */
3566         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3567         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3568         if (write) {
3569                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3570                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3571                 obj->dirty = 1;
3572         }
3573
3574         trace_i915_gem_object_change_domain(obj,
3575                                             old_read_domains,
3576                                             old_write_domain);
3577
3578         /* And bump the LRU for this access */
3579         if (i915_gem_object_is_inactive(obj)) {
3580                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3581                 if (vma)
3582                         list_move_tail(&vma->mm_list,
3583                                        &dev_priv->gtt.base.inactive_list);
3584
3585         }
3586
3587         return 0;
3588 }
3589
3590 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3591                                     enum i915_cache_level cache_level)
3592 {
3593         struct drm_device *dev = obj->base.dev;
3594         struct i915_vma *vma, *next;
3595         int ret;
3596
3597         if (obj->cache_level == cache_level)
3598                 return 0;
3599
3600         if (i915_gem_obj_is_pinned(obj)) {
3601                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3602                 return -EBUSY;
3603         }
3604
3605         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3606                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3607                         ret = i915_vma_unbind(vma);
3608                         if (ret)
3609                                 return ret;
3610                 }
3611         }
3612
3613         if (i915_gem_obj_bound_any(obj)) {
3614                 ret = i915_gem_object_finish_gpu(obj);
3615                 if (ret)
3616                         return ret;
3617
3618                 i915_gem_object_finish_gtt(obj);
3619
3620                 /* Before SandyBridge, you could not use tiling or fence
3621                  * registers with snooped memory, so relinquish any fences
3622                  * currently pointing to our region in the aperture.
3623                  */
3624                 if (INTEL_INFO(dev)->gen < 6) {
3625                         ret = i915_gem_object_put_fence(obj);
3626                         if (ret)
3627                                 return ret;
3628                 }
3629
3630                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3631                         if (drm_mm_node_allocated(&vma->node))
3632                                 vma->bind_vma(vma, cache_level,
3633                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3634         }
3635
3636         list_for_each_entry(vma, &obj->vma_list, vma_link)
3637                 vma->node.color = cache_level;
3638         obj->cache_level = cache_level;
3639
3640         if (cpu_write_needs_clflush(obj)) {
3641                 u32 old_read_domains, old_write_domain;
3642
3643                 /* If we're coming from LLC cached, then we haven't
3644                  * actually been tracking whether the data is in the
3645                  * CPU cache or not, since we only allow one bit set
3646                  * in obj->write_domain and have been skipping the clflushes.
3647                  * Just set it to the CPU cache for now.
3648                  */
3649                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3650
3651                 old_read_domains = obj->base.read_domains;
3652                 old_write_domain = obj->base.write_domain;
3653
3654                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3655                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3656
3657                 trace_i915_gem_object_change_domain(obj,
3658                                                     old_read_domains,
3659                                                     old_write_domain);
3660         }
3661
3662         i915_gem_verify_gtt(dev);
3663         return 0;
3664 }
3665
3666 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3667                                struct drm_file *file)
3668 {
3669         struct drm_i915_gem_caching *args = data;
3670         struct drm_i915_gem_object *obj;
3671         int ret;
3672
3673         ret = i915_mutex_lock_interruptible(dev);
3674         if (ret)
3675                 return ret;
3676
3677         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3678         if (&obj->base == NULL) {
3679                 ret = -ENOENT;
3680                 goto unlock;
3681         }
3682
3683         switch (obj->cache_level) {
3684         case I915_CACHE_LLC:
3685         case I915_CACHE_L3_LLC:
3686                 args->caching = I915_CACHING_CACHED;
3687                 break;
3688
3689         case I915_CACHE_WT:
3690                 args->caching = I915_CACHING_DISPLAY;
3691                 break;
3692
3693         default:
3694                 args->caching = I915_CACHING_NONE;
3695                 break;
3696         }
3697
3698         drm_gem_object_unreference(&obj->base);
3699 unlock:
3700         mutex_unlock(&dev->struct_mutex);
3701         return ret;
3702 }
3703
3704 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3705                                struct drm_file *file)
3706 {
3707         struct drm_i915_gem_caching *args = data;
3708         struct drm_i915_gem_object *obj;
3709         enum i915_cache_level level;
3710         int ret;
3711
3712         switch (args->caching) {
3713         case I915_CACHING_NONE:
3714                 level = I915_CACHE_NONE;
3715                 break;
3716         case I915_CACHING_CACHED:
3717                 level = I915_CACHE_LLC;
3718                 break;
3719         case I915_CACHING_DISPLAY:
3720                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3721                 break;
3722         default:
3723                 return -EINVAL;
3724         }
3725
3726         ret = i915_mutex_lock_interruptible(dev);
3727         if (ret)
3728                 return ret;
3729
3730         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3731         if (&obj->base == NULL) {
3732                 ret = -ENOENT;
3733                 goto unlock;
3734         }
3735
3736         ret = i915_gem_object_set_cache_level(obj, level);
3737
3738         drm_gem_object_unreference(&obj->base);
3739 unlock:
3740         mutex_unlock(&dev->struct_mutex);
3741         return ret;
3742 }
3743
3744 static bool is_pin_display(struct drm_i915_gem_object *obj)
3745 {
3746         /* There are 3 sources that pin objects:
3747          *   1. The display engine (scanouts, sprites, cursors);
3748          *   2. Reservations for execbuffer;
3749          *   3. The user.
3750          *
3751          * We can ignore reservations as we hold the struct_mutex and
3752          * are only called outside of the reservation path.  The user
3753          * can only increment pin_count once, and so if after
3754          * subtracting the potential reference by the user, any pin_count
3755          * remains, it must be due to another use by the display engine.
3756          */
3757         return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3758 }
3759
3760 /*
3761  * Prepare buffer for display plane (scanout, cursors, etc).
3762  * Can be called from an uninterruptible phase (modesetting) and allows
3763  * any flushes to be pipelined (for pageflips).
3764  */
3765 int
3766 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3767                                      u32 alignment,
3768                                      struct intel_ring_buffer *pipelined)
3769 {
3770         u32 old_read_domains, old_write_domain;
3771         int ret;
3772
3773         if (pipelined != obj->ring) {
3774                 ret = i915_gem_object_sync(obj, pipelined);
3775                 if (ret)
3776                         return ret;
3777         }
3778
3779         /* Mark the pin_display early so that we account for the
3780          * display coherency whilst setting up the cache domains.
3781          */
3782         obj->pin_display = true;
3783
3784         /* The display engine is not coherent with the LLC cache on gen6.  As
3785          * a result, we make sure that the pinning that is about to occur is
3786          * done with uncached PTEs. This is lowest common denominator for all
3787          * chipsets.
3788          *
3789          * However for gen6+, we could do better by using the GFDT bit instead
3790          * of uncaching, which would allow us to flush all the LLC-cached data
3791          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3792          */
3793         ret = i915_gem_object_set_cache_level(obj,
3794                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3795         if (ret)
3796                 goto err_unpin_display;
3797
3798         /* As the user may map the buffer once pinned in the display plane
3799          * (e.g. libkms for the bootup splash), we have to ensure that we
3800          * always use map_and_fenceable for all scanout buffers.
3801          */
3802         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3803         if (ret)
3804                 goto err_unpin_display;
3805
3806         i915_gem_object_flush_cpu_write_domain(obj, true);
3807
3808         old_write_domain = obj->base.write_domain;
3809         old_read_domains = obj->base.read_domains;
3810
3811         /* It should now be out of any other write domains, and we can update
3812          * the domain values for our changes.
3813          */
3814         obj->base.write_domain = 0;
3815         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3816
3817         trace_i915_gem_object_change_domain(obj,
3818                                             old_read_domains,
3819                                             old_write_domain);
3820
3821         return 0;
3822
3823 err_unpin_display:
3824         obj->pin_display = is_pin_display(obj);
3825         return ret;
3826 }
3827
3828 void
3829 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3830 {
3831         i915_gem_object_ggtt_unpin(obj);
3832         obj->pin_display = is_pin_display(obj);
3833 }
3834
3835 int
3836 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3837 {
3838         int ret;
3839
3840         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3841                 return 0;
3842
3843         ret = i915_gem_object_wait_rendering(obj, false);
3844         if (ret)
3845                 return ret;
3846
3847         /* Ensure that we invalidate the GPU's caches and TLBs. */
3848         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3849         return 0;
3850 }
3851
3852 /**
3853  * Moves a single object to the CPU read, and possibly write domain.
3854  *
3855  * This function returns when the move is complete, including waiting on
3856  * flushes to occur.
3857  */
3858 int
3859 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3860 {
3861         uint32_t old_write_domain, old_read_domains;
3862         int ret;
3863
3864         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3865                 return 0;
3866
3867         ret = i915_gem_object_wait_rendering(obj, !write);
3868         if (ret)
3869                 return ret;
3870
3871         i915_gem_object_flush_gtt_write_domain(obj);
3872
3873         old_write_domain = obj->base.write_domain;
3874         old_read_domains = obj->base.read_domains;
3875
3876         /* Flush the CPU cache if it's still invalid. */
3877         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3878                 i915_gem_clflush_object(obj, false);
3879
3880                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3881         }
3882
3883         /* It should now be out of any other write domains, and we can update
3884          * the domain values for our changes.
3885          */
3886         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3887
3888         /* If we're writing through the CPU, then the GPU read domains will
3889          * need to be invalidated at next use.
3890          */
3891         if (write) {
3892                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3893                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3894         }
3895
3896         trace_i915_gem_object_change_domain(obj,
3897                                             old_read_domains,
3898                                             old_write_domain);
3899
3900         return 0;
3901 }
3902
3903 /* Throttle our rendering by waiting until the ring has completed our requests
3904  * emitted over 20 msec ago.
3905  *
3906  * Note that if we were to use the current jiffies each time around the loop,
3907  * we wouldn't escape the function with any frames outstanding if the time to
3908  * render a frame was over 20ms.
3909  *
3910  * This should get us reasonable parallelism between CPU and GPU but also
3911  * relatively low latency when blocking on a particular request to finish.
3912  */
3913 static int
3914 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3915 {
3916         struct drm_i915_private *dev_priv = dev->dev_private;
3917         struct drm_i915_file_private *file_priv = file->driver_priv;
3918         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3919         struct drm_i915_gem_request *request;
3920         struct intel_ring_buffer *ring = NULL;
3921         unsigned reset_counter;
3922         u32 seqno = 0;
3923         int ret;
3924
3925         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3926         if (ret)
3927                 return ret;
3928
3929         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3930         if (ret)
3931                 return ret;
3932
3933         spin_lock(&file_priv->mm.lock);
3934         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3935                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3936                         break;
3937
3938                 ring = request->ring;
3939                 seqno = request->seqno;
3940         }
3941         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3942         spin_unlock(&file_priv->mm.lock);
3943
3944         if (seqno == 0)
3945                 return 0;
3946
3947         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3948         if (ret == 0)
3949                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3950
3951         return ret;
3952 }
3953
3954 static bool
3955 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3956 {
3957         struct drm_i915_gem_object *obj = vma->obj;
3958
3959         if (alignment &&
3960             vma->node.start & (alignment - 1))
3961                 return true;
3962
3963         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3964                 return true;
3965
3966         if (flags & PIN_OFFSET_BIAS &&
3967             vma->node.start < (flags & PIN_OFFSET_MASK))
3968                 return true;
3969
3970         return false;
3971 }
3972
3973 int
3974 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3975                     struct i915_address_space *vm,
3976                     uint32_t alignment,
3977                     uint64_t flags)
3978 {
3979         struct i915_vma *vma;
3980         int ret;
3981
3982         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3983                 return -EINVAL;
3984
3985         vma = i915_gem_obj_to_vma(obj, vm);
3986         if (vma) {
3987                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3988                         return -EBUSY;
3989
3990                 if (i915_vma_misplaced(vma, alignment, flags)) {
3991                         WARN(vma->pin_count,
3992                              "bo is already pinned with incorrect alignment:"
3993                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3994                              " obj->map_and_fenceable=%d\n",
3995                              i915_gem_obj_offset(obj, vm), alignment,
3996                              !!(flags & PIN_MAPPABLE),
3997                              obj->map_and_fenceable);
3998                         ret = i915_vma_unbind(vma);
3999                         if (ret)
4000                                 return ret;
4001
4002                         vma = NULL;
4003                 }
4004         }
4005
4006         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4007                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4008                 if (IS_ERR(vma))
4009                         return PTR_ERR(vma);
4010         }
4011
4012         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4013                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4014
4015         vma->pin_count++;
4016         if (flags & PIN_MAPPABLE)
4017                 obj->pin_mappable |= true;
4018
4019         return 0;
4020 }
4021
4022 void
4023 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4024 {
4025         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4026
4027         BUG_ON(!vma);
4028         BUG_ON(vma->pin_count == 0);
4029         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4030
4031         if (--vma->pin_count == 0)
4032                 obj->pin_mappable = false;
4033 }
4034
4035 int
4036 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4037                    struct drm_file *file)
4038 {
4039         struct drm_i915_gem_pin *args = data;
4040         struct drm_i915_gem_object *obj;
4041         int ret;
4042
4043         if (INTEL_INFO(dev)->gen >= 6)
4044                 return -ENODEV;
4045
4046         ret = i915_mutex_lock_interruptible(dev);
4047         if (ret)
4048                 return ret;
4049
4050         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4051         if (&obj->base == NULL) {
4052                 ret = -ENOENT;
4053                 goto unlock;
4054         }
4055
4056         if (obj->madv != I915_MADV_WILLNEED) {
4057                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4058                 ret = -EFAULT;
4059                 goto out;
4060         }
4061
4062         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4063                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4064                           args->handle);
4065                 ret = -EINVAL;
4066                 goto out;
4067         }
4068
4069         if (obj->user_pin_count == ULONG_MAX) {
4070                 ret = -EBUSY;
4071                 goto out;
4072         }
4073
4074         if (obj->user_pin_count == 0) {
4075                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4076                 if (ret)
4077                         goto out;
4078         }
4079
4080         obj->user_pin_count++;
4081         obj->pin_filp = file;
4082
4083         args->offset = i915_gem_obj_ggtt_offset(obj);
4084 out:
4085         drm_gem_object_unreference(&obj->base);
4086 unlock:
4087         mutex_unlock(&dev->struct_mutex);
4088         return ret;
4089 }
4090
4091 int
4092 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4093                      struct drm_file *file)
4094 {
4095         struct drm_i915_gem_pin *args = data;
4096         struct drm_i915_gem_object *obj;
4097         int ret;
4098
4099         ret = i915_mutex_lock_interruptible(dev);
4100         if (ret)
4101                 return ret;
4102
4103         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4104         if (&obj->base == NULL) {
4105                 ret = -ENOENT;
4106                 goto unlock;
4107         }
4108
4109         if (obj->pin_filp != file) {
4110                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4111                           args->handle);
4112                 ret = -EINVAL;
4113                 goto out;
4114         }
4115         obj->user_pin_count--;
4116         if (obj->user_pin_count == 0) {
4117                 obj->pin_filp = NULL;
4118                 i915_gem_object_ggtt_unpin(obj);
4119         }
4120
4121 out:
4122         drm_gem_object_unreference(&obj->base);
4123 unlock:
4124         mutex_unlock(&dev->struct_mutex);
4125         return ret;
4126 }
4127
4128 int
4129 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4130                     struct drm_file *file)
4131 {
4132         struct drm_i915_gem_busy *args = data;
4133         struct drm_i915_gem_object *obj;
4134         int ret;
4135
4136         ret = i915_mutex_lock_interruptible(dev);
4137         if (ret)
4138                 return ret;
4139
4140         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4141         if (&obj->base == NULL) {
4142                 ret = -ENOENT;
4143                 goto unlock;
4144         }
4145
4146         /* Count all active objects as busy, even if they are currently not used
4147          * by the gpu. Users of this interface expect objects to eventually
4148          * become non-busy without any further actions, therefore emit any
4149          * necessary flushes here.
4150          */
4151         ret = i915_gem_object_flush_active(obj);
4152
4153         args->busy = obj->active;
4154         if (obj->ring) {
4155                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4156                 args->busy |= intel_ring_flag(obj->ring) << 16;
4157         }
4158
4159         drm_gem_object_unreference(&obj->base);
4160 unlock:
4161         mutex_unlock(&dev->struct_mutex);
4162         return ret;
4163 }
4164
4165 int
4166 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4167                         struct drm_file *file_priv)
4168 {
4169         return i915_gem_ring_throttle(dev, file_priv);
4170 }
4171
4172 int
4173 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4174                        struct drm_file *file_priv)
4175 {
4176         struct drm_i915_gem_madvise *args = data;
4177         struct drm_i915_gem_object *obj;
4178         int ret;
4179
4180         switch (args->madv) {
4181         case I915_MADV_DONTNEED:
4182         case I915_MADV_WILLNEED:
4183             break;
4184         default:
4185             return -EINVAL;
4186         }
4187
4188         ret = i915_mutex_lock_interruptible(dev);
4189         if (ret)
4190                 return ret;
4191
4192         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4193         if (&obj->base == NULL) {
4194                 ret = -ENOENT;
4195                 goto unlock;
4196         }
4197
4198         if (i915_gem_obj_is_pinned(obj)) {
4199                 ret = -EINVAL;
4200                 goto out;
4201         }
4202
4203         if (obj->madv != __I915_MADV_PURGED)
4204                 obj->madv = args->madv;
4205
4206         /* if the object is no longer attached, discard its backing storage */
4207         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4208                 i915_gem_object_truncate(obj);
4209
4210         args->retained = obj->madv != __I915_MADV_PURGED;
4211
4212 out:
4213         drm_gem_object_unreference(&obj->base);
4214 unlock:
4215         mutex_unlock(&dev->struct_mutex);
4216         return ret;
4217 }
4218
4219 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4220                           const struct drm_i915_gem_object_ops *ops)
4221 {
4222         INIT_LIST_HEAD(&obj->global_list);
4223         INIT_LIST_HEAD(&obj->ring_list);
4224         INIT_LIST_HEAD(&obj->obj_exec_link);
4225         INIT_LIST_HEAD(&obj->vma_list);
4226
4227         obj->ops = ops;
4228
4229         obj->fence_reg = I915_FENCE_REG_NONE;
4230         obj->madv = I915_MADV_WILLNEED;
4231         /* Avoid an unnecessary call to unbind on the first bind. */
4232         obj->map_and_fenceable = true;
4233
4234         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4235 }
4236
4237 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4238         .get_pages = i915_gem_object_get_pages_gtt,
4239         .put_pages = i915_gem_object_put_pages_gtt,
4240 };
4241
4242 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4243                                                   size_t size)
4244 {
4245         struct drm_i915_gem_object *obj;
4246         struct address_space *mapping;
4247         gfp_t mask;
4248
4249         obj = i915_gem_object_alloc(dev);
4250         if (obj == NULL)
4251                 return NULL;
4252
4253         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4254                 i915_gem_object_free(obj);
4255                 return NULL;
4256         }
4257
4258         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4259         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4260                 /* 965gm cannot relocate objects above 4GiB. */
4261                 mask &= ~__GFP_HIGHMEM;
4262                 mask |= __GFP_DMA32;
4263         }
4264
4265         mapping = file_inode(obj->base.filp)->i_mapping;
4266         mapping_set_gfp_mask(mapping, mask);
4267
4268         i915_gem_object_init(obj, &i915_gem_object_ops);
4269
4270         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4271         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4272
4273         if (HAS_LLC(dev)) {
4274                 /* On some devices, we can have the GPU use the LLC (the CPU
4275                  * cache) for about a 10% performance improvement
4276                  * compared to uncached.  Graphics requests other than
4277                  * display scanout are coherent with the CPU in
4278                  * accessing this cache.  This means in this mode we
4279                  * don't need to clflush on the CPU side, and on the
4280                  * GPU side we only need to flush internal caches to
4281                  * get data visible to the CPU.
4282                  *
4283                  * However, we maintain the display planes as UC, and so
4284                  * need to rebind when first used as such.
4285                  */
4286                 obj->cache_level = I915_CACHE_LLC;
4287         } else
4288                 obj->cache_level = I915_CACHE_NONE;
4289
4290         trace_i915_gem_object_create(obj);
4291
4292         return obj;
4293 }
4294
4295 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4296 {
4297         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4298         struct drm_device *dev = obj->base.dev;
4299         struct drm_i915_private *dev_priv = dev->dev_private;
4300         struct i915_vma *vma, *next;
4301
4302         intel_runtime_pm_get(dev_priv);
4303
4304         trace_i915_gem_object_destroy(obj);
4305
4306         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4307                 int ret;
4308
4309                 vma->pin_count = 0;
4310                 ret = i915_vma_unbind(vma);
4311                 if (WARN_ON(ret == -ERESTARTSYS)) {
4312                         bool was_interruptible;
4313
4314                         was_interruptible = dev_priv->mm.interruptible;
4315                         dev_priv->mm.interruptible = false;
4316
4317                         WARN_ON(i915_vma_unbind(vma));
4318
4319                         dev_priv->mm.interruptible = was_interruptible;
4320                 }
4321         }
4322
4323         i915_gem_object_detach_phys(obj);
4324
4325         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4326          * before progressing. */
4327         if (obj->stolen)
4328                 i915_gem_object_unpin_pages(obj);
4329
4330         if (WARN_ON(obj->pages_pin_count))
4331                 obj->pages_pin_count = 0;
4332         i915_gem_object_put_pages(obj);
4333         i915_gem_object_free_mmap_offset(obj);
4334         i915_gem_object_release_stolen(obj);
4335
4336         BUG_ON(obj->pages);
4337
4338         if (obj->base.import_attach)
4339                 drm_prime_gem_destroy(&obj->base, NULL);
4340
4341         drm_gem_object_release(&obj->base);
4342         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4343
4344         kfree(obj->bit_17);
4345         i915_gem_object_free(obj);
4346
4347         intel_runtime_pm_put(dev_priv);
4348 }
4349
4350 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4351                                      struct i915_address_space *vm)
4352 {
4353         struct i915_vma *vma;
4354         list_for_each_entry(vma, &obj->vma_list, vma_link)
4355                 if (vma->vm == vm)
4356                         return vma;
4357
4358         return NULL;
4359 }
4360
4361 void i915_gem_vma_destroy(struct i915_vma *vma)
4362 {
4363         WARN_ON(vma->node.allocated);
4364
4365         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4366         if (!list_empty(&vma->exec_list))
4367                 return;
4368
4369         list_del(&vma->vma_link);
4370
4371         kfree(vma);
4372 }
4373
4374 int
4375 i915_gem_suspend(struct drm_device *dev)
4376 {
4377         struct drm_i915_private *dev_priv = dev->dev_private;
4378         int ret = 0;
4379
4380         mutex_lock(&dev->struct_mutex);
4381         if (dev_priv->ums.mm_suspended)
4382                 goto err;
4383
4384         ret = i915_gpu_idle(dev);
4385         if (ret)
4386                 goto err;
4387
4388         i915_gem_retire_requests(dev);
4389
4390         /* Under UMS, be paranoid and evict. */
4391         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4392                 i915_gem_evict_everything(dev);
4393
4394         i915_kernel_lost_context(dev);
4395         i915_gem_cleanup_ringbuffer(dev);
4396
4397         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4398          * We need to replace this with a semaphore, or something.
4399          * And not confound ums.mm_suspended!
4400          */
4401         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4402                                                              DRIVER_MODESET);
4403         mutex_unlock(&dev->struct_mutex);
4404
4405         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4406         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4407         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4408
4409         return 0;
4410
4411 err:
4412         mutex_unlock(&dev->struct_mutex);
4413         return ret;
4414 }
4415
4416 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4417 {
4418         struct drm_device *dev = ring->dev;
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4421         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4422         int i, ret;
4423
4424         if (!HAS_L3_DPF(dev) || !remap_info)
4425                 return 0;
4426
4427         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4428         if (ret)
4429                 return ret;
4430
4431         /*
4432          * Note: We do not worry about the concurrent register cacheline hang
4433          * here because no other code should access these registers other than
4434          * at initialization time.
4435          */
4436         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4437                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4438                 intel_ring_emit(ring, reg_base + i);
4439                 intel_ring_emit(ring, remap_info[i/4]);
4440         }
4441
4442         intel_ring_advance(ring);
4443
4444         return ret;
4445 }
4446
4447 void i915_gem_init_swizzling(struct drm_device *dev)
4448 {
4449         struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451         if (INTEL_INFO(dev)->gen < 5 ||
4452             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4453                 return;
4454
4455         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4456                                  DISP_TILE_SURFACE_SWIZZLING);
4457
4458         if (IS_GEN5(dev))
4459                 return;
4460
4461         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4462         if (IS_GEN6(dev))
4463                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4464         else if (IS_GEN7(dev))
4465                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4466         else if (IS_GEN8(dev))
4467                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4468         else
4469                 BUG();
4470 }
4471
4472 static bool
4473 intel_enable_blt(struct drm_device *dev)
4474 {
4475         if (!HAS_BLT(dev))
4476                 return false;
4477
4478         /* The blitter was dysfunctional on early prototypes */
4479         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4480                 DRM_INFO("BLT not supported on this pre-production hardware;"
4481                          " graphics performance will be degraded.\n");
4482                 return false;
4483         }
4484
4485         return true;
4486 }
4487
4488 static int i915_gem_init_rings(struct drm_device *dev)
4489 {
4490         struct drm_i915_private *dev_priv = dev->dev_private;
4491         int ret;
4492
4493         ret = intel_init_render_ring_buffer(dev);
4494         if (ret)
4495                 return ret;
4496
4497         if (HAS_BSD(dev)) {
4498                 ret = intel_init_bsd_ring_buffer(dev);
4499                 if (ret)
4500                         goto cleanup_render_ring;
4501         }
4502
4503         if (intel_enable_blt(dev)) {
4504                 ret = intel_init_blt_ring_buffer(dev);
4505                 if (ret)
4506                         goto cleanup_bsd_ring;
4507         }
4508
4509         if (HAS_VEBOX(dev)) {
4510                 ret = intel_init_vebox_ring_buffer(dev);
4511                 if (ret)
4512                         goto cleanup_blt_ring;
4513         }
4514
4515
4516         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4517         if (ret)
4518                 goto cleanup_vebox_ring;
4519
4520         return 0;
4521
4522 cleanup_vebox_ring:
4523         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4524 cleanup_blt_ring:
4525         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4526 cleanup_bsd_ring:
4527         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4528 cleanup_render_ring:
4529         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4530
4531         return ret;
4532 }
4533
4534 int
4535 i915_gem_init_hw(struct drm_device *dev)
4536 {
4537         struct drm_i915_private *dev_priv = dev->dev_private;
4538         int ret, i;
4539
4540         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4541                 return -EIO;
4542
4543         if (dev_priv->ellc_size)
4544                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4545
4546         if (IS_HASWELL(dev))
4547                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4548                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4549
4550         if (HAS_PCH_NOP(dev)) {
4551                 if (IS_IVYBRIDGE(dev)) {
4552                         u32 temp = I915_READ(GEN7_MSG_CTL);
4553                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4554                         I915_WRITE(GEN7_MSG_CTL, temp);
4555                 } else if (INTEL_INFO(dev)->gen >= 7) {
4556                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4557                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4558                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4559                 }
4560         }
4561
4562         i915_gem_init_swizzling(dev);
4563
4564         ret = i915_gem_init_rings(dev);
4565         if (ret)
4566                 return ret;
4567
4568         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4569                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4570
4571         /*
4572          * XXX: Contexts should only be initialized once. Doing a switch to the
4573          * default context switch however is something we'd like to do after
4574          * reset or thaw (the latter may not actually be necessary for HW, but
4575          * goes with our code better). Context switching requires rings (for
4576          * the do_switch), but before enabling PPGTT. So don't move this.
4577          */
4578         ret = i915_gem_context_enable(dev_priv);
4579         if (ret) {
4580                 DRM_ERROR("Context enable failed %d\n", ret);
4581                 goto err_out;
4582         }
4583
4584         return 0;
4585
4586 err_out:
4587         i915_gem_cleanup_ringbuffer(dev);
4588         return ret;
4589 }
4590
4591 int i915_gem_init(struct drm_device *dev)
4592 {
4593         struct drm_i915_private *dev_priv = dev->dev_private;
4594         int ret;
4595
4596         mutex_lock(&dev->struct_mutex);
4597
4598         if (IS_VALLEYVIEW(dev)) {
4599                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4600                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4601                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4602                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4603         }
4604
4605         i915_gem_init_global_gtt(dev);
4606
4607         ret = i915_gem_context_init(dev);
4608         if (ret) {
4609                 mutex_unlock(&dev->struct_mutex);
4610                 return ret;
4611         }
4612
4613         ret = i915_gem_init_hw(dev);
4614         mutex_unlock(&dev->struct_mutex);
4615         if (ret) {
4616                 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4617                 i915_gem_context_fini(dev);
4618                 drm_mm_takedown(&dev_priv->gtt.base.mm);
4619                 return ret;
4620         }
4621
4622         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4623         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4624                 dev_priv->dri1.allow_batchbuffer = 1;
4625         return 0;
4626 }
4627
4628 void
4629 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4630 {
4631         struct drm_i915_private *dev_priv = dev->dev_private;
4632         struct intel_ring_buffer *ring;
4633         int i;
4634
4635         for_each_ring(ring, dev_priv, i)
4636                 intel_cleanup_ring_buffer(ring);
4637 }
4638
4639 int
4640 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4641                        struct drm_file *file_priv)
4642 {
4643         struct drm_i915_private *dev_priv = dev->dev_private;
4644         int ret;
4645
4646         if (drm_core_check_feature(dev, DRIVER_MODESET))
4647                 return 0;
4648
4649         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4650                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4651                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4652         }
4653
4654         mutex_lock(&dev->struct_mutex);
4655         dev_priv->ums.mm_suspended = 0;
4656
4657         ret = i915_gem_init_hw(dev);
4658         if (ret != 0) {
4659                 mutex_unlock(&dev->struct_mutex);
4660                 return ret;
4661         }
4662
4663         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4664         mutex_unlock(&dev->struct_mutex);
4665
4666         ret = drm_irq_install(dev);
4667         if (ret)
4668                 goto cleanup_ringbuffer;
4669
4670         return 0;
4671
4672 cleanup_ringbuffer:
4673         mutex_lock(&dev->struct_mutex);
4674         i915_gem_cleanup_ringbuffer(dev);
4675         dev_priv->ums.mm_suspended = 1;
4676         mutex_unlock(&dev->struct_mutex);
4677
4678         return ret;
4679 }
4680
4681 int
4682 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4683                        struct drm_file *file_priv)
4684 {
4685         if (drm_core_check_feature(dev, DRIVER_MODESET))
4686                 return 0;
4687
4688         drm_irq_uninstall(dev);
4689
4690         return i915_gem_suspend(dev);
4691 }
4692
4693 void
4694 i915_gem_lastclose(struct drm_device *dev)
4695 {
4696         int ret;
4697
4698         if (drm_core_check_feature(dev, DRIVER_MODESET))
4699                 return;
4700
4701         ret = i915_gem_suspend(dev);
4702         if (ret)
4703                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4704 }
4705
4706 static void
4707 init_ring_lists(struct intel_ring_buffer *ring)
4708 {
4709         INIT_LIST_HEAD(&ring->active_list);
4710         INIT_LIST_HEAD(&ring->request_list);
4711 }
4712
4713 void i915_init_vm(struct drm_i915_private *dev_priv,
4714                   struct i915_address_space *vm)
4715 {
4716         if (!i915_is_ggtt(vm))
4717                 drm_mm_init(&vm->mm, vm->start, vm->total);
4718         vm->dev = dev_priv->dev;
4719         INIT_LIST_HEAD(&vm->active_list);
4720         INIT_LIST_HEAD(&vm->inactive_list);
4721         INIT_LIST_HEAD(&vm->global_link);
4722         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4723 }
4724
4725 void
4726 i915_gem_load(struct drm_device *dev)
4727 {
4728         struct drm_i915_private *dev_priv = dev->dev_private;
4729         int i;
4730
4731         dev_priv->slab =
4732                 kmem_cache_create("i915_gem_object",
4733                                   sizeof(struct drm_i915_gem_object), 0,
4734                                   SLAB_HWCACHE_ALIGN,
4735                                   NULL);
4736
4737         INIT_LIST_HEAD(&dev_priv->vm_list);
4738         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4739
4740         INIT_LIST_HEAD(&dev_priv->context_list);
4741         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4742         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4743         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4744         for (i = 0; i < I915_NUM_RINGS; i++)
4745                 init_ring_lists(&dev_priv->ring[i]);
4746         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4747                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4748         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4749                           i915_gem_retire_work_handler);
4750         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4751                           i915_gem_idle_work_handler);
4752         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4753
4754         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4755         if (IS_GEN3(dev)) {
4756                 I915_WRITE(MI_ARB_STATE,
4757                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4758         }
4759
4760         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4761
4762         /* Old X drivers will take 0-2 for front, back, depth buffers */
4763         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4764                 dev_priv->fence_reg_start = 3;
4765
4766         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4767                 dev_priv->num_fence_regs = 32;
4768         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4769                 dev_priv->num_fence_regs = 16;
4770         else
4771                 dev_priv->num_fence_regs = 8;
4772
4773         /* Initialize fence registers to zero */
4774         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4775         i915_gem_restore_fences(dev);
4776
4777         i915_gem_detect_bit_6_swizzle(dev);
4778         init_waitqueue_head(&dev_priv->pending_flip_queue);
4779
4780         dev_priv->mm.interruptible = true;
4781
4782         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4783         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4784         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4785         register_shrinker(&dev_priv->mm.inactive_shrinker);
4786 }
4787
4788 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4789 {
4790         struct drm_i915_file_private *file_priv = file->driver_priv;
4791
4792         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4793
4794         /* Clean up our request list when the client is going away, so that
4795          * later retire_requests won't dereference our soon-to-be-gone
4796          * file_priv.
4797          */
4798         spin_lock(&file_priv->mm.lock);
4799         while (!list_empty(&file_priv->mm.request_list)) {
4800                 struct drm_i915_gem_request *request;
4801
4802                 request = list_first_entry(&file_priv->mm.request_list,
4803                                            struct drm_i915_gem_request,
4804                                            client_list);
4805                 list_del(&request->client_list);
4806                 request->file_priv = NULL;
4807         }
4808         spin_unlock(&file_priv->mm.lock);
4809 }
4810
4811 static void
4812 i915_gem_file_idle_work_handler(struct work_struct *work)
4813 {
4814         struct drm_i915_file_private *file_priv =
4815                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4816
4817         atomic_set(&file_priv->rps_wait_boost, false);
4818 }
4819
4820 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4821 {
4822         struct drm_i915_file_private *file_priv;
4823         int ret;
4824
4825         DRM_DEBUG_DRIVER("\n");
4826
4827         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4828         if (!file_priv)
4829                 return -ENOMEM;
4830
4831         file->driver_priv = file_priv;
4832         file_priv->dev_priv = dev->dev_private;
4833         file_priv->file = file;
4834
4835         spin_lock_init(&file_priv->mm.lock);
4836         INIT_LIST_HEAD(&file_priv->mm.request_list);
4837         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4838                           i915_gem_file_idle_work_handler);
4839
4840         ret = i915_gem_context_open(dev, file);
4841         if (ret)
4842                 kfree(file_priv);
4843
4844         return ret;
4845 }
4846
4847 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4848 {
4849         if (!mutex_is_locked(mutex))
4850                 return false;
4851
4852 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4853         return mutex->owner == task;
4854 #else
4855         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4856         return false;
4857 #endif
4858 }
4859
4860 static unsigned long
4861 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4862 {
4863         struct drm_i915_private *dev_priv =
4864                 container_of(shrinker,
4865                              struct drm_i915_private,
4866                              mm.inactive_shrinker);
4867         struct drm_device *dev = dev_priv->dev;
4868         struct drm_i915_gem_object *obj;
4869         bool unlock = true;
4870         unsigned long count;
4871
4872         if (!mutex_trylock(&dev->struct_mutex)) {
4873                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4874                         return 0;
4875
4876                 if (dev_priv->mm.shrinker_no_lock_stealing)
4877                         return 0;
4878
4879                 unlock = false;
4880         }
4881
4882         count = 0;
4883         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4884                 if (obj->pages_pin_count == 0)
4885                         count += obj->base.size >> PAGE_SHIFT;
4886
4887         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4888                 if (obj->active)
4889                         continue;
4890
4891                 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4892                         count += obj->base.size >> PAGE_SHIFT;
4893         }
4894
4895         if (unlock)
4896                 mutex_unlock(&dev->struct_mutex);
4897
4898         return count;
4899 }
4900
4901 /* All the new VM stuff */
4902 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4903                                   struct i915_address_space *vm)
4904 {
4905         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4906         struct i915_vma *vma;
4907
4908         if (!dev_priv->mm.aliasing_ppgtt ||
4909             vm == &dev_priv->mm.aliasing_ppgtt->base)
4910                 vm = &dev_priv->gtt.base;
4911
4912         BUG_ON(list_empty(&o->vma_list));
4913         list_for_each_entry(vma, &o->vma_list, vma_link) {
4914                 if (vma->vm == vm)
4915                         return vma->node.start;
4916
4917         }
4918         return -1;
4919 }
4920
4921 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4922                         struct i915_address_space *vm)
4923 {
4924         struct i915_vma *vma;
4925
4926         list_for_each_entry(vma, &o->vma_list, vma_link)
4927                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4928                         return true;
4929
4930         return false;
4931 }
4932
4933 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4934 {
4935         struct i915_vma *vma;
4936
4937         list_for_each_entry(vma, &o->vma_list, vma_link)
4938                 if (drm_mm_node_allocated(&vma->node))
4939                         return true;
4940
4941         return false;
4942 }
4943
4944 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4945                                 struct i915_address_space *vm)
4946 {
4947         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4948         struct i915_vma *vma;
4949
4950         if (!dev_priv->mm.aliasing_ppgtt ||
4951             vm == &dev_priv->mm.aliasing_ppgtt->base)
4952                 vm = &dev_priv->gtt.base;
4953
4954         BUG_ON(list_empty(&o->vma_list));
4955
4956         list_for_each_entry(vma, &o->vma_list, vma_link)
4957                 if (vma->vm == vm)
4958                         return vma->node.size;
4959
4960         return 0;
4961 }
4962
4963 static unsigned long
4964 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4965 {
4966         struct drm_i915_private *dev_priv =
4967                 container_of(shrinker,
4968                              struct drm_i915_private,
4969                              mm.inactive_shrinker);
4970         struct drm_device *dev = dev_priv->dev;
4971         unsigned long freed;
4972         bool unlock = true;
4973
4974         if (!mutex_trylock(&dev->struct_mutex)) {
4975                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4976                         return SHRINK_STOP;
4977
4978                 if (dev_priv->mm.shrinker_no_lock_stealing)
4979                         return SHRINK_STOP;
4980
4981                 unlock = false;
4982         }
4983
4984         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
4985         if (freed < sc->nr_to_scan)
4986                 freed += __i915_gem_shrink(dev_priv,
4987                                            sc->nr_to_scan - freed,
4988                                            false);
4989         if (freed < sc->nr_to_scan)
4990                 freed += i915_gem_shrink_all(dev_priv);
4991
4992         if (unlock)
4993                 mutex_unlock(&dev->struct_mutex);
4994
4995         return freed;
4996 }
4997
4998 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
4999 {
5000         struct i915_vma *vma;
5001
5002         if (WARN_ON(list_empty(&obj->vma_list)))
5003                 return NULL;
5004
5005         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5006         if (vma->vm != obj_to_ggtt(obj))
5007                 return NULL;
5008
5009         return vma;
5010 }