]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
37cd901c9d7509d1f94ce350a206fcab26b2b3bb
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50                                  struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52                                          struct drm_i915_fence_reg *fence,
53                                          bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56                                   enum i915_cache_level level)
57 {
58         return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64                 return true;
65
66         return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71         if (obj->tiling_mode)
72                 i915_gem_release_mmap(obj);
73
74         /* As we do not have an associated fence register, we will force
75          * a tiling change if we ever need to acquire one.
76          */
77         obj->fence_dirty = false;
78         obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83                                   size_t size)
84 {
85         spin_lock(&dev_priv->mm.object_stat_lock);
86         dev_priv->mm.object_count++;
87         dev_priv->mm.object_memory += size;
88         spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92                                      size_t size)
93 {
94         spin_lock(&dev_priv->mm.object_stat_lock);
95         dev_priv->mm.object_count--;
96         dev_priv->mm.object_memory -= size;
97         spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103         int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106                    i915_terminally_wedged(error))
107         if (EXIT_COND)
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                EXIT_COND,
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         }
124 #undef EXIT_COND
125
126         return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_i915_gem_get_aperture *args = data;
152         struct drm_i915_gem_object *obj;
153         size_t pinned;
154
155         pinned = 0;
156         mutex_lock(&dev->struct_mutex);
157         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158                 if (i915_gem_obj_is_pinned(obj))
159                         pinned += i915_gem_obj_ggtt_size(obj);
160         mutex_unlock(&dev->struct_mutex);
161
162         args->aper_size = dev_priv->gtt.base.total;
163         args->aper_available_size = args->aper_size - pinned;
164
165         return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172         char *vaddr = obj->phys_handle->vaddr;
173         struct sg_table *st;
174         struct scatterlist *sg;
175         int i;
176
177         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178                 return -EINVAL;
179
180         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181                 struct page *page;
182                 char *src;
183
184                 page = shmem_read_mapping_page(mapping, i);
185                 if (IS_ERR(page))
186                         return PTR_ERR(page);
187
188                 src = kmap_atomic(page);
189                 memcpy(vaddr, src, PAGE_SIZE);
190                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191                 kunmap_atomic(src);
192
193                 page_cache_release(page);
194                 vaddr += PAGE_SIZE;
195         }
196
197         i915_gem_chipset_flush(obj->base.dev);
198
199         st = kmalloc(sizeof(*st), GFP_KERNEL);
200         if (st == NULL)
201                 return -ENOMEM;
202
203         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204                 kfree(st);
205                 return -ENOMEM;
206         }
207
208         sg = st->sgl;
209         sg->offset = 0;
210         sg->length = obj->base.size;
211
212         sg_dma_address(sg) = obj->phys_handle->busaddr;
213         sg_dma_len(sg) = obj->base.size;
214
215         obj->pages = st;
216         obj->has_dma_mapping = true;
217         return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223         int ret;
224
225         BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227         ret = i915_gem_object_set_to_cpu_domain(obj, true);
228         if (ret) {
229                 /* In the event of a disaster, abandon all caches and
230                  * hope for the best.
231                  */
232                 WARN_ON(ret != -EIO);
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         page_cache_release(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268
269         obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275         drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279         .get_pages = i915_gem_object_get_pages_phys,
280         .put_pages = i915_gem_object_put_pages_phys,
281         .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287         struct i915_vma *vma, *next;
288         int ret;
289
290         drm_gem_object_reference(&obj->base);
291         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292                 if (i915_vma_unbind(vma))
293                         break;
294
295         ret = i915_gem_object_put_pages(obj);
296         drm_gem_object_unreference(&obj->base);
297
298         return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303                             int align)
304 {
305         drm_dma_handle_t *phys;
306         int ret;
307
308         if (obj->phys_handle) {
309                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310                         return -EBUSY;
311
312                 return 0;
313         }
314
315         if (obj->madv != I915_MADV_WILLNEED)
316                 return -EFAULT;
317
318         if (obj->base.filp == NULL)
319                 return -EINVAL;
320
321         ret = drop_pages(obj);
322         if (ret)
323                 return ret;
324
325         /* create a new object */
326         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327         if (!phys)
328                 return -ENOMEM;
329
330         obj->phys_handle = phys;
331         obj->ops = &i915_gem_phys_ops;
332
333         return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338                      struct drm_i915_gem_pwrite *args,
339                      struct drm_file *file_priv)
340 {
341         struct drm_device *dev = obj->base.dev;
342         void *vaddr = obj->phys_handle->vaddr + args->offset;
343         char __user *user_data = to_user_ptr(args->data_ptr);
344         int ret = 0;
345
346         /* We manually control the domain here and pretend that it
347          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348          */
349         ret = i915_gem_object_wait_rendering(obj, false);
350         if (ret)
351                 return ret;
352
353         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355                 unsigned long unwritten;
356
357                 /* The physical object once assigned is fixed for the lifetime
358                  * of the obj, so we can safely drop the lock and continue
359                  * to access vaddr.
360                  */
361                 mutex_unlock(&dev->struct_mutex);
362                 unwritten = copy_from_user(vaddr, user_data, args->size);
363                 mutex_lock(&dev->struct_mutex);
364                 if (unwritten) {
365                         ret = -EFAULT;
366                         goto out;
367                 }
368         }
369
370         drm_clflush_virt_range(vaddr, args->size);
371         i915_gem_chipset_flush(dev);
372
373 out:
374         intel_fb_obj_flush(obj, false);
375         return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380         struct drm_i915_private *dev_priv = dev->dev_private;
381         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387         kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392                 struct drm_device *dev,
393                 uint64_t size,
394                 uint32_t *handle_p)
395 {
396         struct drm_i915_gem_object *obj;
397         int ret;
398         u32 handle;
399
400         size = roundup(size, PAGE_SIZE);
401         if (size == 0)
402                 return -EINVAL;
403
404         /* Allocate the new object */
405         obj = i915_gem_alloc_object(dev, size);
406         if (obj == NULL)
407                 return -ENOMEM;
408
409         ret = drm_gem_handle_create(file, &obj->base, &handle);
410         /* drop reference from allocate - handle holds it now */
411         drm_gem_object_unreference_unlocked(&obj->base);
412         if (ret)
413                 return ret;
414
415         *handle_p = handle;
416         return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421                      struct drm_device *dev,
422                      struct drm_mode_create_dumb *args)
423 {
424         /* have to work out size/pitch and return them */
425         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426         args->size = args->pitch * args->height;
427         return i915_gem_create(file, dev,
428                                args->size, &args->handle);
429 }
430
431 /**
432  * Creates a new mm object and returns a handle to it.
433  */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436                       struct drm_file *file)
437 {
438         struct drm_i915_gem_create *args = data;
439
440         return i915_gem_create(file, dev,
441                                args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446                         const char *gpu_vaddr, int gpu_offset,
447                         int length)
448 {
449         int ret, cpu_offset = 0;
450
451         while (length > 0) {
452                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453                 int this_length = min(cacheline_end - gpu_offset, length);
454                 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457                                      gpu_vaddr + swizzled_gpu_offset,
458                                      this_length);
459                 if (ret)
460                         return ret + length;
461
462                 cpu_offset += this_length;
463                 gpu_offset += this_length;
464                 length -= this_length;
465         }
466
467         return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472                           const char __user *cpu_vaddr,
473                           int length)
474 {
475         int ret, cpu_offset = 0;
476
477         while (length > 0) {
478                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479                 int this_length = min(cacheline_end - gpu_offset, length);
480                 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483                                        cpu_vaddr + cpu_offset,
484                                        this_length);
485                 if (ret)
486                         return ret + length;
487
488                 cpu_offset += this_length;
489                 gpu_offset += this_length;
490                 length -= this_length;
491         }
492
493         return 0;
494 }
495
496 /*
497  * Pins the specified object's pages and synchronizes the object with
498  * GPU accesses. Sets needs_clflush to non-zero if the caller should
499  * flush the object from the CPU cache.
500  */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502                                     int *needs_clflush)
503 {
504         int ret;
505
506         *needs_clflush = 0;
507
508         if (!obj->base.filp)
509                 return -EINVAL;
510
511         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512                 /* If we're not in the cpu read domain, set ourself into the gtt
513                  * read domain and manually flush cachelines (if required). This
514                  * optimizes for the case when the gpu will dirty the data
515                  * anyway again before the next pread happens. */
516                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517                                                         obj->cache_level);
518                 ret = i915_gem_object_wait_rendering(obj, true);
519                 if (ret)
520                         return ret;
521         }
522
523         ret = i915_gem_object_get_pages(obj);
524         if (ret)
525                 return ret;
526
527         i915_gem_object_pin_pages(obj);
528
529         return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533  * Flushes invalid cachelines before reading the target if
534  * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537                  char __user *user_data,
538                  bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540         char *vaddr;
541         int ret;
542
543         if (unlikely(page_do_bit17_swizzling))
544                 return -EINVAL;
545
546         vaddr = kmap_atomic(page);
547         if (needs_clflush)
548                 drm_clflush_virt_range(vaddr + shmem_page_offset,
549                                        page_length);
550         ret = __copy_to_user_inatomic(user_data,
551                                       vaddr + shmem_page_offset,
552                                       page_length);
553         kunmap_atomic(vaddr);
554
555         return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560                              bool swizzled)
561 {
562         if (unlikely(swizzled)) {
563                 unsigned long start = (unsigned long) addr;
564                 unsigned long end = (unsigned long) addr + length;
565
566                 /* For swizzling simply ensure that we always flush both
567                  * channels. Lame, but simple and it works. Swizzled
568                  * pwrite/pread is far from a hotpath - current userspace
569                  * doesn't use it at all. */
570                 start = round_down(start, 128);
571                 end = round_up(end, 128);
572
573                 drm_clflush_virt_range((void *)start, end - start);
574         } else {
575                 drm_clflush_virt_range(addr, length);
576         }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581  * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584                  char __user *user_data,
585                  bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587         char *vaddr;
588         int ret;
589
590         vaddr = kmap(page);
591         if (needs_clflush)
592                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593                                              page_length,
594                                              page_do_bit17_swizzling);
595
596         if (page_do_bit17_swizzling)
597                 ret = __copy_to_user_swizzled(user_data,
598                                               vaddr, shmem_page_offset,
599                                               page_length);
600         else
601                 ret = __copy_to_user(user_data,
602                                      vaddr + shmem_page_offset,
603                                      page_length);
604         kunmap(page);
605
606         return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611                      struct drm_i915_gem_object *obj,
612                      struct drm_i915_gem_pread *args,
613                      struct drm_file *file)
614 {
615         char __user *user_data;
616         ssize_t remain;
617         loff_t offset;
618         int shmem_page_offset, page_length, ret = 0;
619         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620         int prefaulted = 0;
621         int needs_clflush = 0;
622         struct sg_page_iter sg_iter;
623
624         user_data = to_user_ptr(args->data_ptr);
625         remain = args->size;
626
627         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630         if (ret)
631                 return ret;
632
633         offset = args->offset;
634
635         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636                          offset >> PAGE_SHIFT) {
637                 struct page *page = sg_page_iter_page(&sg_iter);
638
639                 if (remain <= 0)
640                         break;
641
642                 /* Operation in this page
643                  *
644                  * shmem_page_offset = offset within page in shmem file
645                  * page_length = bytes to copy for this page
646                  */
647                 shmem_page_offset = offset_in_page(offset);
648                 page_length = remain;
649                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650                         page_length = PAGE_SIZE - shmem_page_offset;
651
652                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653                         (page_to_phys(page) & (1 << 17)) != 0;
654
655                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656                                        user_data, page_do_bit17_swizzling,
657                                        needs_clflush);
658                 if (ret == 0)
659                         goto next_page;
660
661                 mutex_unlock(&dev->struct_mutex);
662
663                 if (likely(!i915.prefault_disable) && !prefaulted) {
664                         ret = fault_in_multipages_writeable(user_data, remain);
665                         /* Userspace is tricking us, but we've already clobbered
666                          * its pages with the prefault and promised to write the
667                          * data up to the first fault. Hence ignore any errors
668                          * and just continue. */
669                         (void)ret;
670                         prefaulted = 1;
671                 }
672
673                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674                                        user_data, page_do_bit17_swizzling,
675                                        needs_clflush);
676
677                 mutex_lock(&dev->struct_mutex);
678
679                 if (ret)
680                         goto out;
681
682 next_page:
683                 remain -= page_length;
684                 user_data += page_length;
685                 offset += page_length;
686         }
687
688 out:
689         i915_gem_object_unpin_pages(obj);
690
691         return ret;
692 }
693
694 /**
695  * Reads data from the object referenced by handle.
696  *
697  * On error, the contents of *data are undefined.
698  */
699 int
700 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701                      struct drm_file *file)
702 {
703         struct drm_i915_gem_pread *args = data;
704         struct drm_i915_gem_object *obj;
705         int ret = 0;
706
707         if (args->size == 0)
708                 return 0;
709
710         if (!access_ok(VERIFY_WRITE,
711                        to_user_ptr(args->data_ptr),
712                        args->size))
713                 return -EFAULT;
714
715         ret = i915_mutex_lock_interruptible(dev);
716         if (ret)
717                 return ret;
718
719         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720         if (&obj->base == NULL) {
721                 ret = -ENOENT;
722                 goto unlock;
723         }
724
725         /* Bounds check source.  */
726         if (args->offset > obj->base.size ||
727             args->size > obj->base.size - args->offset) {
728                 ret = -EINVAL;
729                 goto out;
730         }
731
732         /* prime objects have no backing filp to GEM pread/pwrite
733          * pages from.
734          */
735         if (!obj->base.filp) {
736                 ret = -EINVAL;
737                 goto out;
738         }
739
740         trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742         ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744 out:
745         drm_gem_object_unreference(&obj->base);
746 unlock:
747         mutex_unlock(&dev->struct_mutex);
748         return ret;
749 }
750
751 /* This is the fast write path which cannot handle
752  * page faults in the source data
753  */
754
755 static inline int
756 fast_user_write(struct io_mapping *mapping,
757                 loff_t page_base, int page_offset,
758                 char __user *user_data,
759                 int length)
760 {
761         void __iomem *vaddr_atomic;
762         void *vaddr;
763         unsigned long unwritten;
764
765         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766         /* We can use the cpu mem copy function because this is X86. */
767         vaddr = (void __force*)vaddr_atomic + page_offset;
768         unwritten = __copy_from_user_inatomic_nocache(vaddr,
769                                                       user_data, length);
770         io_mapping_unmap_atomic(vaddr_atomic);
771         return unwritten;
772 }
773
774 /**
775  * This is the fast pwrite path, where we copy the data directly from the
776  * user into the GTT, uncached.
777  */
778 static int
779 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780                          struct drm_i915_gem_object *obj,
781                          struct drm_i915_gem_pwrite *args,
782                          struct drm_file *file)
783 {
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         ssize_t remain;
786         loff_t offset, page_base;
787         char __user *user_data;
788         int page_offset, page_length, ret;
789
790         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791         if (ret)
792                 goto out;
793
794         ret = i915_gem_object_set_to_gtt_domain(obj, true);
795         if (ret)
796                 goto out_unpin;
797
798         ret = i915_gem_object_put_fence(obj);
799         if (ret)
800                 goto out_unpin;
801
802         user_data = to_user_ptr(args->data_ptr);
803         remain = args->size;
804
805         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808
809         while (remain > 0) {
810                 /* Operation in this page
811                  *
812                  * page_base = page offset within aperture
813                  * page_offset = offset within page
814                  * page_length = bytes to copy for this page
815                  */
816                 page_base = offset & PAGE_MASK;
817                 page_offset = offset_in_page(offset);
818                 page_length = remain;
819                 if ((page_offset + remain) > PAGE_SIZE)
820                         page_length = PAGE_SIZE - page_offset;
821
822                 /* If we get a fault while copying data, then (presumably) our
823                  * source page isn't available.  Return the error and we'll
824                  * retry in the slow path.
825                  */
826                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827                                     page_offset, user_data, page_length)) {
828                         ret = -EFAULT;
829                         goto out_flush;
830                 }
831
832                 remain -= page_length;
833                 user_data += page_length;
834                 offset += page_length;
835         }
836
837 out_flush:
838         intel_fb_obj_flush(obj, false);
839 out_unpin:
840         i915_gem_object_ggtt_unpin(obj);
841 out:
842         return ret;
843 }
844
845 /* Per-page copy function for the shmem pwrite fastpath.
846  * Flushes invalid cachelines before writing to the target if
847  * needs_clflush_before is set and flushes out any written cachelines after
848  * writing if needs_clflush is set. */
849 static int
850 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851                   char __user *user_data,
852                   bool page_do_bit17_swizzling,
853                   bool needs_clflush_before,
854                   bool needs_clflush_after)
855 {
856         char *vaddr;
857         int ret;
858
859         if (unlikely(page_do_bit17_swizzling))
860                 return -EINVAL;
861
862         vaddr = kmap_atomic(page);
863         if (needs_clflush_before)
864                 drm_clflush_virt_range(vaddr + shmem_page_offset,
865                                        page_length);
866         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867                                         user_data, page_length);
868         if (needs_clflush_after)
869                 drm_clflush_virt_range(vaddr + shmem_page_offset,
870                                        page_length);
871         kunmap_atomic(vaddr);
872
873         return ret ? -EFAULT : 0;
874 }
875
876 /* Only difference to the fast-path function is that this can handle bit17
877  * and uses non-atomic copy and kmap functions. */
878 static int
879 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880                   char __user *user_data,
881                   bool page_do_bit17_swizzling,
882                   bool needs_clflush_before,
883                   bool needs_clflush_after)
884 {
885         char *vaddr;
886         int ret;
887
888         vaddr = kmap(page);
889         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891                                              page_length,
892                                              page_do_bit17_swizzling);
893         if (page_do_bit17_swizzling)
894                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895                                                 user_data,
896                                                 page_length);
897         else
898                 ret = __copy_from_user(vaddr + shmem_page_offset,
899                                        user_data,
900                                        page_length);
901         if (needs_clflush_after)
902                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903                                              page_length,
904                                              page_do_bit17_swizzling);
905         kunmap(page);
906
907         return ret ? -EFAULT : 0;
908 }
909
910 static int
911 i915_gem_shmem_pwrite(struct drm_device *dev,
912                       struct drm_i915_gem_object *obj,
913                       struct drm_i915_gem_pwrite *args,
914                       struct drm_file *file)
915 {
916         ssize_t remain;
917         loff_t offset;
918         char __user *user_data;
919         int shmem_page_offset, page_length, ret = 0;
920         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921         int hit_slowpath = 0;
922         int needs_clflush_after = 0;
923         int needs_clflush_before = 0;
924         struct sg_page_iter sg_iter;
925
926         user_data = to_user_ptr(args->data_ptr);
927         remain = args->size;
928
929         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932                 /* If we're not in the cpu write domain, set ourself into the gtt
933                  * write domain and manually flush cachelines (if required). This
934                  * optimizes for the case when the gpu will use the data
935                  * right away and we therefore have to clflush anyway. */
936                 needs_clflush_after = cpu_write_needs_clflush(obj);
937                 ret = i915_gem_object_wait_rendering(obj, false);
938                 if (ret)
939                         return ret;
940         }
941         /* Same trick applies to invalidate partially written cachelines read
942          * before writing. */
943         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944                 needs_clflush_before =
945                         !cpu_cache_is_coherent(dev, obj->cache_level);
946
947         ret = i915_gem_object_get_pages(obj);
948         if (ret)
949                 return ret;
950
951         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952
953         i915_gem_object_pin_pages(obj);
954
955         offset = args->offset;
956         obj->dirty = 1;
957
958         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959                          offset >> PAGE_SHIFT) {
960                 struct page *page = sg_page_iter_page(&sg_iter);
961                 int partial_cacheline_write;
962
963                 if (remain <= 0)
964                         break;
965
966                 /* Operation in this page
967                  *
968                  * shmem_page_offset = offset within page in shmem file
969                  * page_length = bytes to copy for this page
970                  */
971                 shmem_page_offset = offset_in_page(offset);
972
973                 page_length = remain;
974                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975                         page_length = PAGE_SIZE - shmem_page_offset;
976
977                 /* If we don't overwrite a cacheline completely we need to be
978                  * careful to have up-to-date data by first clflushing. Don't
979                  * overcomplicate things and flush the entire patch. */
980                 partial_cacheline_write = needs_clflush_before &&
981                         ((shmem_page_offset | page_length)
982                                 & (boot_cpu_data.x86_clflush_size - 1));
983
984                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985                         (page_to_phys(page) & (1 << 17)) != 0;
986
987                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988                                         user_data, page_do_bit17_swizzling,
989                                         partial_cacheline_write,
990                                         needs_clflush_after);
991                 if (ret == 0)
992                         goto next_page;
993
994                 hit_slowpath = 1;
995                 mutex_unlock(&dev->struct_mutex);
996                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997                                         user_data, page_do_bit17_swizzling,
998                                         partial_cacheline_write,
999                                         needs_clflush_after);
1000
1001                 mutex_lock(&dev->struct_mutex);
1002
1003                 if (ret)
1004                         goto out;
1005
1006 next_page:
1007                 remain -= page_length;
1008                 user_data += page_length;
1009                 offset += page_length;
1010         }
1011
1012 out:
1013         i915_gem_object_unpin_pages(obj);
1014
1015         if (hit_slowpath) {
1016                 /*
1017                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1018                  * cachelines in-line while writing and the object moved
1019                  * out of the cpu write domain while we've dropped the lock.
1020                  */
1021                 if (!needs_clflush_after &&
1022                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023                         if (i915_gem_clflush_object(obj, obj->pin_display))
1024                                 i915_gem_chipset_flush(dev);
1025                 }
1026         }
1027
1028         if (needs_clflush_after)
1029                 i915_gem_chipset_flush(dev);
1030
1031         intel_fb_obj_flush(obj, false);
1032         return ret;
1033 }
1034
1035 /**
1036  * Writes data to the object referenced by handle.
1037  *
1038  * On error, the contents of the buffer that were to be modified are undefined.
1039  */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042                       struct drm_file *file)
1043 {
1044         struct drm_i915_private *dev_priv = dev->dev_private;
1045         struct drm_i915_gem_pwrite *args = data;
1046         struct drm_i915_gem_object *obj;
1047         int ret;
1048
1049         if (args->size == 0)
1050                 return 0;
1051
1052         if (!access_ok(VERIFY_READ,
1053                        to_user_ptr(args->data_ptr),
1054                        args->size))
1055                 return -EFAULT;
1056
1057         if (likely(!i915.prefault_disable)) {
1058                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059                                                    args->size);
1060                 if (ret)
1061                         return -EFAULT;
1062         }
1063
1064         intel_runtime_pm_get(dev_priv);
1065
1066         ret = i915_mutex_lock_interruptible(dev);
1067         if (ret)
1068                 goto put_rpm;
1069
1070         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071         if (&obj->base == NULL) {
1072                 ret = -ENOENT;
1073                 goto unlock;
1074         }
1075
1076         /* Bounds check destination. */
1077         if (args->offset > obj->base.size ||
1078             args->size > obj->base.size - args->offset) {
1079                 ret = -EINVAL;
1080                 goto out;
1081         }
1082
1083         /* prime objects have no backing filp to GEM pread/pwrite
1084          * pages from.
1085          */
1086         if (!obj->base.filp) {
1087                 ret = -EINVAL;
1088                 goto out;
1089         }
1090
1091         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093         ret = -EFAULT;
1094         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095          * it would end up going through the fenced access, and we'll get
1096          * different detiling behavior between reading and writing.
1097          * pread/pwrite currently are reading and writing from the CPU
1098          * perspective, requiring manual detiling by the client.
1099          */
1100         if (obj->tiling_mode == I915_TILING_NONE &&
1101             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102             cpu_write_needs_clflush(obj)) {
1103                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104                 /* Note that the gtt paths might fail with non-page-backed user
1105                  * pointers (e.g. gtt mappings when moving data between
1106                  * textures). Fallback to the shmem path in that case. */
1107         }
1108
1109         if (ret == -EFAULT || ret == -ENOSPC) {
1110                 if (obj->phys_handle)
1111                         ret = i915_gem_phys_pwrite(obj, args, file);
1112                 else
1113                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114         }
1115
1116 out:
1117         drm_gem_object_unreference(&obj->base);
1118 unlock:
1119         mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121         intel_runtime_pm_put(dev_priv);
1122
1123         return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128                      bool interruptible)
1129 {
1130         if (i915_reset_in_progress(error)) {
1131                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132                  * -EIO unconditionally for these. */
1133                 if (!interruptible)
1134                         return -EIO;
1135
1136                 /* Recovery complete, but the reset failed ... */
1137                 if (i915_terminally_wedged(error))
1138                         return -EIO;
1139
1140                 /*
1141                  * Check if GPU Reset is in progress - we need intel_ring_begin
1142                  * to work properly to reinit the hw state while the gpu is
1143                  * still marked as reset-in-progress. Handle this with a flag.
1144                  */
1145                 if (!error->reload_in_reset)
1146                         return -EAGAIN;
1147         }
1148
1149         return 0;
1150 }
1151
1152 static void fake_irq(unsigned long data)
1153 {
1154         wake_up_process((struct task_struct *)data);
1155 }
1156
1157 static bool missed_irq(struct drm_i915_private *dev_priv,
1158                        struct intel_engine_cs *ring)
1159 {
1160         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1161 }
1162
1163 static int __i915_spin_request(struct drm_i915_gem_request *req)
1164 {
1165         unsigned long timeout;
1166
1167         if (i915_gem_request_get_ring(req)->irq_refcount)
1168                 return -EBUSY;
1169
1170         timeout = jiffies + 1;
1171         while (!need_resched()) {
1172                 if (i915_gem_request_completed(req, true))
1173                         return 0;
1174
1175                 if (time_after_eq(jiffies, timeout))
1176                         break;
1177
1178                 cpu_relax_lowlatency();
1179         }
1180         if (i915_gem_request_completed(req, false))
1181                 return 0;
1182
1183         return -EAGAIN;
1184 }
1185
1186 /**
1187  * __i915_wait_request - wait until execution of request has finished
1188  * @req: duh!
1189  * @reset_counter: reset sequence associated with the given request
1190  * @interruptible: do an interruptible wait (normally yes)
1191  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1192  *
1193  * Note: It is of utmost importance that the passed in seqno and reset_counter
1194  * values have been read by the caller in an smp safe manner. Where read-side
1195  * locks are involved, it is sufficient to read the reset_counter before
1196  * unlocking the lock that protects the seqno. For lockless tricks, the
1197  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1198  * inserted.
1199  *
1200  * Returns 0 if the request was found within the alloted time. Else returns the
1201  * errno with remaining time filled in timeout argument.
1202  */
1203 int __i915_wait_request(struct drm_i915_gem_request *req,
1204                         unsigned reset_counter,
1205                         bool interruptible,
1206                         s64 *timeout,
1207                         struct intel_rps_client *rps)
1208 {
1209         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1210         struct drm_device *dev = ring->dev;
1211         struct drm_i915_private *dev_priv = dev->dev_private;
1212         const bool irq_test_in_progress =
1213                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1214         DEFINE_WAIT(wait);
1215         unsigned long timeout_expire;
1216         s64 before, now;
1217         int ret;
1218
1219         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1220
1221         if (list_empty(&req->list))
1222                 return 0;
1223
1224         if (i915_gem_request_completed(req, true))
1225                 return 0;
1226
1227         timeout_expire = timeout ?
1228                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1229
1230         if (INTEL_INFO(dev_priv)->gen >= 6)
1231                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1232
1233         /* Record current time in case interrupted by signal, or wedged */
1234         trace_i915_gem_request_wait_begin(req);
1235         before = ktime_get_raw_ns();
1236
1237         /* Optimistic spin for the next jiffie before touching IRQs */
1238         ret = __i915_spin_request(req);
1239         if (ret == 0)
1240                 goto out;
1241
1242         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1243                 ret = -ENODEV;
1244                 goto out;
1245         }
1246
1247         for (;;) {
1248                 struct timer_list timer;
1249
1250                 prepare_to_wait(&ring->irq_queue, &wait,
1251                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252
1253                 /* We need to check whether any gpu reset happened in between
1254                  * the caller grabbing the seqno and now ... */
1255                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257                          * is truely gone. */
1258                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259                         if (ret == 0)
1260                                 ret = -EAGAIN;
1261                         break;
1262                 }
1263
1264                 if (i915_gem_request_completed(req, false)) {
1265                         ret = 0;
1266                         break;
1267                 }
1268
1269                 if (interruptible && signal_pending(current)) {
1270                         ret = -ERESTARTSYS;
1271                         break;
1272                 }
1273
1274                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275                         ret = -ETIME;
1276                         break;
1277                 }
1278
1279                 timer.function = NULL;
1280                 if (timeout || missed_irq(dev_priv, ring)) {
1281                         unsigned long expire;
1282
1283                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285                         mod_timer(&timer, expire);
1286                 }
1287
1288                 io_schedule();
1289
1290                 if (timer.function) {
1291                         del_singleshot_timer_sync(&timer);
1292                         destroy_timer_on_stack(&timer);
1293                 }
1294         }
1295         if (!irq_test_in_progress)
1296                 ring->irq_put(ring);
1297
1298         finish_wait(&ring->irq_queue, &wait);
1299
1300 out:
1301         now = ktime_get_raw_ns();
1302         trace_i915_gem_request_wait_end(req);
1303
1304         if (timeout) {
1305                 s64 tres = *timeout - (now - before);
1306
1307                 *timeout = tres < 0 ? 0 : tres;
1308
1309                 /*
1310                  * Apparently ktime isn't accurate enough and occasionally has a
1311                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1312                  * things up to make the test happy. We allow up to 1 jiffy.
1313                  *
1314                  * This is a regrssion from the timespec->ktime conversion.
1315                  */
1316                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1317                         *timeout = 0;
1318         }
1319
1320         return ret;
1321 }
1322
1323 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1324                                    struct drm_file *file)
1325 {
1326         struct drm_i915_private *dev_private;
1327         struct drm_i915_file_private *file_priv;
1328
1329         WARN_ON(!req || !file || req->file_priv);
1330
1331         if (!req || !file)
1332                 return -EINVAL;
1333
1334         if (req->file_priv)
1335                 return -EINVAL;
1336
1337         dev_private = req->ring->dev->dev_private;
1338         file_priv = file->driver_priv;
1339
1340         spin_lock(&file_priv->mm.lock);
1341         req->file_priv = file_priv;
1342         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1343         spin_unlock(&file_priv->mm.lock);
1344
1345         req->pid = get_pid(task_pid(current));
1346
1347         return 0;
1348 }
1349
1350 static inline void
1351 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1352 {
1353         struct drm_i915_file_private *file_priv = request->file_priv;
1354
1355         if (!file_priv)
1356                 return;
1357
1358         spin_lock(&file_priv->mm.lock);
1359         list_del(&request->client_list);
1360         request->file_priv = NULL;
1361         spin_unlock(&file_priv->mm.lock);
1362
1363         put_pid(request->pid);
1364         request->pid = NULL;
1365 }
1366
1367 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1368 {
1369         trace_i915_gem_request_retire(request);
1370
1371         /* We know the GPU must have read the request to have
1372          * sent us the seqno + interrupt, so use the position
1373          * of tail of the request to update the last known position
1374          * of the GPU head.
1375          *
1376          * Note this requires that we are always called in request
1377          * completion order.
1378          */
1379         request->ringbuf->last_retired_head = request->postfix;
1380
1381         list_del_init(&request->list);
1382         i915_gem_request_remove_from_client(request);
1383
1384         i915_gem_request_unreference(request);
1385 }
1386
1387 static void
1388 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1389 {
1390         struct intel_engine_cs *engine = req->ring;
1391         struct drm_i915_gem_request *tmp;
1392
1393         lockdep_assert_held(&engine->dev->struct_mutex);
1394
1395         if (list_empty(&req->list))
1396                 return;
1397
1398         do {
1399                 tmp = list_first_entry(&engine->request_list,
1400                                        typeof(*tmp), list);
1401
1402                 i915_gem_request_retire(tmp);
1403         } while (tmp != req);
1404
1405         WARN_ON(i915_verify_lists(engine->dev));
1406 }
1407
1408 /**
1409  * Waits for a request to be signaled, and cleans up the
1410  * request and object lists appropriately for that event.
1411  */
1412 int
1413 i915_wait_request(struct drm_i915_gem_request *req)
1414 {
1415         struct drm_device *dev;
1416         struct drm_i915_private *dev_priv;
1417         bool interruptible;
1418         int ret;
1419
1420         BUG_ON(req == NULL);
1421
1422         dev = req->ring->dev;
1423         dev_priv = dev->dev_private;
1424         interruptible = dev_priv->mm.interruptible;
1425
1426         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1427
1428         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1429         if (ret)
1430                 return ret;
1431
1432         ret = __i915_wait_request(req,
1433                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1434                                   interruptible, NULL, NULL);
1435         if (ret)
1436                 return ret;
1437
1438         __i915_gem_request_retire__upto(req);
1439         return 0;
1440 }
1441
1442 /**
1443  * Ensures that all rendering to the object has completed and the object is
1444  * safe to unbind from the GTT or access from the CPU.
1445  */
1446 int
1447 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1448                                bool readonly)
1449 {
1450         int ret, i;
1451
1452         if (!obj->active)
1453                 return 0;
1454
1455         if (readonly) {
1456                 if (obj->last_write_req != NULL) {
1457                         ret = i915_wait_request(obj->last_write_req);
1458                         if (ret)
1459                                 return ret;
1460
1461                         i = obj->last_write_req->ring->id;
1462                         if (obj->last_read_req[i] == obj->last_write_req)
1463                                 i915_gem_object_retire__read(obj, i);
1464                         else
1465                                 i915_gem_object_retire__write(obj);
1466                 }
1467         } else {
1468                 for (i = 0; i < I915_NUM_RINGS; i++) {
1469                         if (obj->last_read_req[i] == NULL)
1470                                 continue;
1471
1472                         ret = i915_wait_request(obj->last_read_req[i]);
1473                         if (ret)
1474                                 return ret;
1475
1476                         i915_gem_object_retire__read(obj, i);
1477                 }
1478                 RQ_BUG_ON(obj->active);
1479         }
1480
1481         return 0;
1482 }
1483
1484 static void
1485 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1486                                struct drm_i915_gem_request *req)
1487 {
1488         int ring = req->ring->id;
1489
1490         if (obj->last_read_req[ring] == req)
1491                 i915_gem_object_retire__read(obj, ring);
1492         else if (obj->last_write_req == req)
1493                 i915_gem_object_retire__write(obj);
1494
1495         __i915_gem_request_retire__upto(req);
1496 }
1497
1498 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1499  * as the object state may change during this call.
1500  */
1501 static __must_check int
1502 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1503                                             struct intel_rps_client *rps,
1504                                             bool readonly)
1505 {
1506         struct drm_device *dev = obj->base.dev;
1507         struct drm_i915_private *dev_priv = dev->dev_private;
1508         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1509         unsigned reset_counter;
1510         int ret, i, n = 0;
1511
1512         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1513         BUG_ON(!dev_priv->mm.interruptible);
1514
1515         if (!obj->active)
1516                 return 0;
1517
1518         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1519         if (ret)
1520                 return ret;
1521
1522         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1523
1524         if (readonly) {
1525                 struct drm_i915_gem_request *req;
1526
1527                 req = obj->last_write_req;
1528                 if (req == NULL)
1529                         return 0;
1530
1531                 requests[n++] = i915_gem_request_reference(req);
1532         } else {
1533                 for (i = 0; i < I915_NUM_RINGS; i++) {
1534                         struct drm_i915_gem_request *req;
1535
1536                         req = obj->last_read_req[i];
1537                         if (req == NULL)
1538                                 continue;
1539
1540                         requests[n++] = i915_gem_request_reference(req);
1541                 }
1542         }
1543
1544         mutex_unlock(&dev->struct_mutex);
1545         for (i = 0; ret == 0 && i < n; i++)
1546                 ret = __i915_wait_request(requests[i], reset_counter, true,
1547                                           NULL, rps);
1548         mutex_lock(&dev->struct_mutex);
1549
1550         for (i = 0; i < n; i++) {
1551                 if (ret == 0)
1552                         i915_gem_object_retire_request(obj, requests[i]);
1553                 i915_gem_request_unreference(requests[i]);
1554         }
1555
1556         return ret;
1557 }
1558
1559 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1560 {
1561         struct drm_i915_file_private *fpriv = file->driver_priv;
1562         return &fpriv->rps;
1563 }
1564
1565 /**
1566  * Called when user space prepares to use an object with the CPU, either
1567  * through the mmap ioctl's mapping or a GTT mapping.
1568  */
1569 int
1570 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1571                           struct drm_file *file)
1572 {
1573         struct drm_i915_gem_set_domain *args = data;
1574         struct drm_i915_gem_object *obj;
1575         uint32_t read_domains = args->read_domains;
1576         uint32_t write_domain = args->write_domain;
1577         int ret;
1578
1579         /* Only handle setting domains to types used by the CPU. */
1580         if (write_domain & I915_GEM_GPU_DOMAINS)
1581                 return -EINVAL;
1582
1583         if (read_domains & I915_GEM_GPU_DOMAINS)
1584                 return -EINVAL;
1585
1586         /* Having something in the write domain implies it's in the read
1587          * domain, and only that read domain.  Enforce that in the request.
1588          */
1589         if (write_domain != 0 && read_domains != write_domain)
1590                 return -EINVAL;
1591
1592         ret = i915_mutex_lock_interruptible(dev);
1593         if (ret)
1594                 return ret;
1595
1596         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1597         if (&obj->base == NULL) {
1598                 ret = -ENOENT;
1599                 goto unlock;
1600         }
1601
1602         /* Try to flush the object off the GPU without holding the lock.
1603          * We will repeat the flush holding the lock in the normal manner
1604          * to catch cases where we are gazumped.
1605          */
1606         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1607                                                           to_rps_client(file),
1608                                                           !write_domain);
1609         if (ret)
1610                 goto unref;
1611
1612         if (read_domains & I915_GEM_DOMAIN_GTT)
1613                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1614         else
1615                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1616
1617         if (write_domain != 0)
1618                 intel_fb_obj_invalidate(obj,
1619                                         write_domain == I915_GEM_DOMAIN_GTT ?
1620                                         ORIGIN_GTT : ORIGIN_CPU);
1621
1622 unref:
1623         drm_gem_object_unreference(&obj->base);
1624 unlock:
1625         mutex_unlock(&dev->struct_mutex);
1626         return ret;
1627 }
1628
1629 /**
1630  * Called when user space has done writes to this buffer
1631  */
1632 int
1633 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1634                          struct drm_file *file)
1635 {
1636         struct drm_i915_gem_sw_finish *args = data;
1637         struct drm_i915_gem_object *obj;
1638         int ret = 0;
1639
1640         ret = i915_mutex_lock_interruptible(dev);
1641         if (ret)
1642                 return ret;
1643
1644         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1645         if (&obj->base == NULL) {
1646                 ret = -ENOENT;
1647                 goto unlock;
1648         }
1649
1650         /* Pinned buffers may be scanout, so flush the cache */
1651         if (obj->pin_display)
1652                 i915_gem_object_flush_cpu_write_domain(obj);
1653
1654         drm_gem_object_unreference(&obj->base);
1655 unlock:
1656         mutex_unlock(&dev->struct_mutex);
1657         return ret;
1658 }
1659
1660 /**
1661  * Maps the contents of an object, returning the address it is mapped
1662  * into.
1663  *
1664  * While the mapping holds a reference on the contents of the object, it doesn't
1665  * imply a ref on the object itself.
1666  *
1667  * IMPORTANT:
1668  *
1669  * DRM driver writers who look a this function as an example for how to do GEM
1670  * mmap support, please don't implement mmap support like here. The modern way
1671  * to implement DRM mmap support is with an mmap offset ioctl (like
1672  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1673  * That way debug tooling like valgrind will understand what's going on, hiding
1674  * the mmap call in a driver private ioctl will break that. The i915 driver only
1675  * does cpu mmaps this way because we didn't know better.
1676  */
1677 int
1678 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1679                     struct drm_file *file)
1680 {
1681         struct drm_i915_gem_mmap *args = data;
1682         struct drm_gem_object *obj;
1683         unsigned long addr;
1684
1685         if (args->flags & ~(I915_MMAP_WC))
1686                 return -EINVAL;
1687
1688         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1689                 return -ENODEV;
1690
1691         obj = drm_gem_object_lookup(dev, file, args->handle);
1692         if (obj == NULL)
1693                 return -ENOENT;
1694
1695         /* prime objects have no backing filp to GEM mmap
1696          * pages from.
1697          */
1698         if (!obj->filp) {
1699                 drm_gem_object_unreference_unlocked(obj);
1700                 return -EINVAL;
1701         }
1702
1703         addr = vm_mmap(obj->filp, 0, args->size,
1704                        PROT_READ | PROT_WRITE, MAP_SHARED,
1705                        args->offset);
1706         if (args->flags & I915_MMAP_WC) {
1707                 struct mm_struct *mm = current->mm;
1708                 struct vm_area_struct *vma;
1709
1710                 down_write(&mm->mmap_sem);
1711                 vma = find_vma(mm, addr);
1712                 if (vma)
1713                         vma->vm_page_prot =
1714                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1715                 else
1716                         addr = -ENOMEM;
1717                 up_write(&mm->mmap_sem);
1718         }
1719         drm_gem_object_unreference_unlocked(obj);
1720         if (IS_ERR((void *)addr))
1721                 return addr;
1722
1723         args->addr_ptr = (uint64_t) addr;
1724
1725         return 0;
1726 }
1727
1728 /**
1729  * i915_gem_fault - fault a page into the GTT
1730  * vma: VMA in question
1731  * vmf: fault info
1732  *
1733  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1734  * from userspace.  The fault handler takes care of binding the object to
1735  * the GTT (if needed), allocating and programming a fence register (again,
1736  * only if needed based on whether the old reg is still valid or the object
1737  * is tiled) and inserting a new PTE into the faulting process.
1738  *
1739  * Note that the faulting process may involve evicting existing objects
1740  * from the GTT and/or fence registers to make room.  So performance may
1741  * suffer if the GTT working set is large or there are few fence registers
1742  * left.
1743  */
1744 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1745 {
1746         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1747         struct drm_device *dev = obj->base.dev;
1748         struct drm_i915_private *dev_priv = dev->dev_private;
1749         struct i915_ggtt_view view = i915_ggtt_view_normal;
1750         pgoff_t page_offset;
1751         unsigned long pfn;
1752         int ret = 0;
1753         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1754
1755         intel_runtime_pm_get(dev_priv);
1756
1757         /* We don't use vmf->pgoff since that has the fake offset */
1758         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1759                 PAGE_SHIFT;
1760
1761         ret = i915_mutex_lock_interruptible(dev);
1762         if (ret)
1763                 goto out;
1764
1765         trace_i915_gem_object_fault(obj, page_offset, true, write);
1766
1767         /* Try to flush the object off the GPU first without holding the lock.
1768          * Upon reacquiring the lock, we will perform our sanity checks and then
1769          * repeat the flush holding the lock in the normal manner to catch cases
1770          * where we are gazumped.
1771          */
1772         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1773         if (ret)
1774                 goto unlock;
1775
1776         /* Access to snoopable pages through the GTT is incoherent. */
1777         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1778                 ret = -EFAULT;
1779                 goto unlock;
1780         }
1781
1782         /* Use a partial view if the object is bigger than the aperture. */
1783         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1784             obj->tiling_mode == I915_TILING_NONE) {
1785                 static const unsigned int chunk_size = 256; // 1 MiB
1786
1787                 memset(&view, 0, sizeof(view));
1788                 view.type = I915_GGTT_VIEW_PARTIAL;
1789                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1790                 view.params.partial.size =
1791                         min_t(unsigned int,
1792                               chunk_size,
1793                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1794                               view.params.partial.offset);
1795         }
1796
1797         /* Now pin it into the GTT if needed */
1798         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1799         if (ret)
1800                 goto unlock;
1801
1802         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1803         if (ret)
1804                 goto unpin;
1805
1806         ret = i915_gem_object_get_fence(obj);
1807         if (ret)
1808                 goto unpin;
1809
1810         /* Finally, remap it using the new GTT offset */
1811         pfn = dev_priv->gtt.mappable_base +
1812                 i915_gem_obj_ggtt_offset_view(obj, &view);
1813         pfn >>= PAGE_SHIFT;
1814
1815         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1816                 /* Overriding existing pages in partial view does not cause
1817                  * us any trouble as TLBs are still valid because the fault
1818                  * is due to userspace losing part of the mapping or never
1819                  * having accessed it before (at this partials' range).
1820                  */
1821                 unsigned long base = vma->vm_start +
1822                                      (view.params.partial.offset << PAGE_SHIFT);
1823                 unsigned int i;
1824
1825                 for (i = 0; i < view.params.partial.size; i++) {
1826                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1827                         if (ret)
1828                                 break;
1829                 }
1830
1831                 obj->fault_mappable = true;
1832         } else {
1833                 if (!obj->fault_mappable) {
1834                         unsigned long size = min_t(unsigned long,
1835                                                    vma->vm_end - vma->vm_start,
1836                                                    obj->base.size);
1837                         int i;
1838
1839                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1840                                 ret = vm_insert_pfn(vma,
1841                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1842                                                     pfn + i);
1843                                 if (ret)
1844                                         break;
1845                         }
1846
1847                         obj->fault_mappable = true;
1848                 } else
1849                         ret = vm_insert_pfn(vma,
1850                                             (unsigned long)vmf->virtual_address,
1851                                             pfn + page_offset);
1852         }
1853 unpin:
1854         i915_gem_object_ggtt_unpin_view(obj, &view);
1855 unlock:
1856         mutex_unlock(&dev->struct_mutex);
1857 out:
1858         switch (ret) {
1859         case -EIO:
1860                 /*
1861                  * We eat errors when the gpu is terminally wedged to avoid
1862                  * userspace unduly crashing (gl has no provisions for mmaps to
1863                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1864                  * and so needs to be reported.
1865                  */
1866                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1867                         ret = VM_FAULT_SIGBUS;
1868                         break;
1869                 }
1870         case -EAGAIN:
1871                 /*
1872                  * EAGAIN means the gpu is hung and we'll wait for the error
1873                  * handler to reset everything when re-faulting in
1874                  * i915_mutex_lock_interruptible.
1875                  */
1876         case 0:
1877         case -ERESTARTSYS:
1878         case -EINTR:
1879         case -EBUSY:
1880                 /*
1881                  * EBUSY is ok: this just means that another thread
1882                  * already did the job.
1883                  */
1884                 ret = VM_FAULT_NOPAGE;
1885                 break;
1886         case -ENOMEM:
1887                 ret = VM_FAULT_OOM;
1888                 break;
1889         case -ENOSPC:
1890         case -EFAULT:
1891                 ret = VM_FAULT_SIGBUS;
1892                 break;
1893         default:
1894                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1895                 ret = VM_FAULT_SIGBUS;
1896                 break;
1897         }
1898
1899         intel_runtime_pm_put(dev_priv);
1900         return ret;
1901 }
1902
1903 /**
1904  * i915_gem_release_mmap - remove physical page mappings
1905  * @obj: obj in question
1906  *
1907  * Preserve the reservation of the mmapping with the DRM core code, but
1908  * relinquish ownership of the pages back to the system.
1909  *
1910  * It is vital that we remove the page mapping if we have mapped a tiled
1911  * object through the GTT and then lose the fence register due to
1912  * resource pressure. Similarly if the object has been moved out of the
1913  * aperture, than pages mapped into userspace must be revoked. Removing the
1914  * mapping will then trigger a page fault on the next user access, allowing
1915  * fixup by i915_gem_fault().
1916  */
1917 void
1918 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1919 {
1920         if (!obj->fault_mappable)
1921                 return;
1922
1923         drm_vma_node_unmap(&obj->base.vma_node,
1924                            obj->base.dev->anon_inode->i_mapping);
1925         obj->fault_mappable = false;
1926 }
1927
1928 void
1929 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1930 {
1931         struct drm_i915_gem_object *obj;
1932
1933         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1934                 i915_gem_release_mmap(obj);
1935 }
1936
1937 uint32_t
1938 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1939 {
1940         uint32_t gtt_size;
1941
1942         if (INTEL_INFO(dev)->gen >= 4 ||
1943             tiling_mode == I915_TILING_NONE)
1944                 return size;
1945
1946         /* Previous chips need a power-of-two fence region when tiling */
1947         if (INTEL_INFO(dev)->gen == 3)
1948                 gtt_size = 1024*1024;
1949         else
1950                 gtt_size = 512*1024;
1951
1952         while (gtt_size < size)
1953                 gtt_size <<= 1;
1954
1955         return gtt_size;
1956 }
1957
1958 /**
1959  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1960  * @obj: object to check
1961  *
1962  * Return the required GTT alignment for an object, taking into account
1963  * potential fence register mapping.
1964  */
1965 uint32_t
1966 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1967                            int tiling_mode, bool fenced)
1968 {
1969         /*
1970          * Minimum alignment is 4k (GTT page size), but might be greater
1971          * if a fence register is needed for the object.
1972          */
1973         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1974             tiling_mode == I915_TILING_NONE)
1975                 return 4096;
1976
1977         /*
1978          * Previous chips need to be aligned to the size of the smallest
1979          * fence register that can contain the object.
1980          */
1981         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1982 }
1983
1984 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1985 {
1986         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1987         int ret;
1988
1989         if (drm_vma_node_has_offset(&obj->base.vma_node))
1990                 return 0;
1991
1992         dev_priv->mm.shrinker_no_lock_stealing = true;
1993
1994         ret = drm_gem_create_mmap_offset(&obj->base);
1995         if (ret != -ENOSPC)
1996                 goto out;
1997
1998         /* Badly fragmented mmap space? The only way we can recover
1999          * space is by destroying unwanted objects. We can't randomly release
2000          * mmap_offsets as userspace expects them to be persistent for the
2001          * lifetime of the objects. The closest we can is to release the
2002          * offsets on purgeable objects by truncating it and marking it purged,
2003          * which prevents userspace from ever using that object again.
2004          */
2005         i915_gem_shrink(dev_priv,
2006                         obj->base.size >> PAGE_SHIFT,
2007                         I915_SHRINK_BOUND |
2008                         I915_SHRINK_UNBOUND |
2009                         I915_SHRINK_PURGEABLE);
2010         ret = drm_gem_create_mmap_offset(&obj->base);
2011         if (ret != -ENOSPC)
2012                 goto out;
2013
2014         i915_gem_shrink_all(dev_priv);
2015         ret = drm_gem_create_mmap_offset(&obj->base);
2016 out:
2017         dev_priv->mm.shrinker_no_lock_stealing = false;
2018
2019         return ret;
2020 }
2021
2022 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2023 {
2024         drm_gem_free_mmap_offset(&obj->base);
2025 }
2026
2027 int
2028 i915_gem_mmap_gtt(struct drm_file *file,
2029                   struct drm_device *dev,
2030                   uint32_t handle,
2031                   uint64_t *offset)
2032 {
2033         struct drm_i915_gem_object *obj;
2034         int ret;
2035
2036         ret = i915_mutex_lock_interruptible(dev);
2037         if (ret)
2038                 return ret;
2039
2040         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2041         if (&obj->base == NULL) {
2042                 ret = -ENOENT;
2043                 goto unlock;
2044         }
2045
2046         if (obj->madv != I915_MADV_WILLNEED) {
2047                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2048                 ret = -EFAULT;
2049                 goto out;
2050         }
2051
2052         ret = i915_gem_object_create_mmap_offset(obj);
2053         if (ret)
2054                 goto out;
2055
2056         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2057
2058 out:
2059         drm_gem_object_unreference(&obj->base);
2060 unlock:
2061         mutex_unlock(&dev->struct_mutex);
2062         return ret;
2063 }
2064
2065 /**
2066  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2067  * @dev: DRM device
2068  * @data: GTT mapping ioctl data
2069  * @file: GEM object info
2070  *
2071  * Simply returns the fake offset to userspace so it can mmap it.
2072  * The mmap call will end up in drm_gem_mmap(), which will set things
2073  * up so we can get faults in the handler above.
2074  *
2075  * The fault handler will take care of binding the object into the GTT
2076  * (since it may have been evicted to make room for something), allocating
2077  * a fence register, and mapping the appropriate aperture address into
2078  * userspace.
2079  */
2080 int
2081 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2082                         struct drm_file *file)
2083 {
2084         struct drm_i915_gem_mmap_gtt *args = data;
2085
2086         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2087 }
2088
2089 /* Immediately discard the backing storage */
2090 static void
2091 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2092 {
2093         i915_gem_object_free_mmap_offset(obj);
2094
2095         if (obj->base.filp == NULL)
2096                 return;
2097
2098         /* Our goal here is to return as much of the memory as
2099          * is possible back to the system as we are called from OOM.
2100          * To do this we must instruct the shmfs to drop all of its
2101          * backing pages, *now*.
2102          */
2103         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2104         obj->madv = __I915_MADV_PURGED;
2105 }
2106
2107 /* Try to discard unwanted pages */
2108 static void
2109 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2110 {
2111         struct address_space *mapping;
2112
2113         switch (obj->madv) {
2114         case I915_MADV_DONTNEED:
2115                 i915_gem_object_truncate(obj);
2116         case __I915_MADV_PURGED:
2117                 return;
2118         }
2119
2120         if (obj->base.filp == NULL)
2121                 return;
2122
2123         mapping = file_inode(obj->base.filp)->i_mapping,
2124         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2125 }
2126
2127 static void
2128 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2129 {
2130         struct sg_page_iter sg_iter;
2131         int ret;
2132
2133         BUG_ON(obj->madv == __I915_MADV_PURGED);
2134
2135         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2136         if (ret) {
2137                 /* In the event of a disaster, abandon all caches and
2138                  * hope for the best.
2139                  */
2140                 WARN_ON(ret != -EIO);
2141                 i915_gem_clflush_object(obj, true);
2142                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2143         }
2144
2145         if (i915_gem_object_needs_bit17_swizzle(obj))
2146                 i915_gem_object_save_bit_17_swizzle(obj);
2147
2148         if (obj->madv == I915_MADV_DONTNEED)
2149                 obj->dirty = 0;
2150
2151         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2152                 struct page *page = sg_page_iter_page(&sg_iter);
2153
2154                 if (obj->dirty)
2155                         set_page_dirty(page);
2156
2157                 if (obj->madv == I915_MADV_WILLNEED)
2158                         mark_page_accessed(page);
2159
2160                 page_cache_release(page);
2161         }
2162         obj->dirty = 0;
2163
2164         sg_free_table(obj->pages);
2165         kfree(obj->pages);
2166 }
2167
2168 int
2169 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2170 {
2171         const struct drm_i915_gem_object_ops *ops = obj->ops;
2172
2173         if (obj->pages == NULL)
2174                 return 0;
2175
2176         if (obj->pages_pin_count)
2177                 return -EBUSY;
2178
2179         BUG_ON(i915_gem_obj_bound_any(obj));
2180
2181         /* ->put_pages might need to allocate memory for the bit17 swizzle
2182          * array, hence protect them from being reaped by removing them from gtt
2183          * lists early. */
2184         list_del(&obj->global_list);
2185
2186         ops->put_pages(obj);
2187         obj->pages = NULL;
2188
2189         i915_gem_object_invalidate(obj);
2190
2191         return 0;
2192 }
2193
2194 static int
2195 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2196 {
2197         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2198         int page_count, i;
2199         struct address_space *mapping;
2200         struct sg_table *st;
2201         struct scatterlist *sg;
2202         struct sg_page_iter sg_iter;
2203         struct page *page;
2204         unsigned long last_pfn = 0;     /* suppress gcc warning */
2205         gfp_t gfp;
2206
2207         /* Assert that the object is not currently in any GPU domain. As it
2208          * wasn't in the GTT, there shouldn't be any way it could have been in
2209          * a GPU cache
2210          */
2211         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2212         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2213
2214         st = kmalloc(sizeof(*st), GFP_KERNEL);
2215         if (st == NULL)
2216                 return -ENOMEM;
2217
2218         page_count = obj->base.size / PAGE_SIZE;
2219         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2220                 kfree(st);
2221                 return -ENOMEM;
2222         }
2223
2224         /* Get the list of pages out of our struct file.  They'll be pinned
2225          * at this point until we release them.
2226          *
2227          * Fail silently without starting the shrinker
2228          */
2229         mapping = file_inode(obj->base.filp)->i_mapping;
2230         gfp = mapping_gfp_mask(mapping);
2231         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2232         gfp &= ~(__GFP_IO | __GFP_WAIT);
2233         sg = st->sgl;
2234         st->nents = 0;
2235         for (i = 0; i < page_count; i++) {
2236                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2237                 if (IS_ERR(page)) {
2238                         i915_gem_shrink(dev_priv,
2239                                         page_count,
2240                                         I915_SHRINK_BOUND |
2241                                         I915_SHRINK_UNBOUND |
2242                                         I915_SHRINK_PURGEABLE);
2243                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2244                 }
2245                 if (IS_ERR(page)) {
2246                         /* We've tried hard to allocate the memory by reaping
2247                          * our own buffer, now let the real VM do its job and
2248                          * go down in flames if truly OOM.
2249                          */
2250                         i915_gem_shrink_all(dev_priv);
2251                         page = shmem_read_mapping_page(mapping, i);
2252                         if (IS_ERR(page))
2253                                 goto err_pages;
2254                 }
2255 #ifdef CONFIG_SWIOTLB
2256                 if (swiotlb_nr_tbl()) {
2257                         st->nents++;
2258                         sg_set_page(sg, page, PAGE_SIZE, 0);
2259                         sg = sg_next(sg);
2260                         continue;
2261                 }
2262 #endif
2263                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2264                         if (i)
2265                                 sg = sg_next(sg);
2266                         st->nents++;
2267                         sg_set_page(sg, page, PAGE_SIZE, 0);
2268                 } else {
2269                         sg->length += PAGE_SIZE;
2270                 }
2271                 last_pfn = page_to_pfn(page);
2272
2273                 /* Check that the i965g/gm workaround works. */
2274                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2275         }
2276 #ifdef CONFIG_SWIOTLB
2277         if (!swiotlb_nr_tbl())
2278 #endif
2279                 sg_mark_end(sg);
2280         obj->pages = st;
2281
2282         if (i915_gem_object_needs_bit17_swizzle(obj))
2283                 i915_gem_object_do_bit_17_swizzle(obj);
2284
2285         if (obj->tiling_mode != I915_TILING_NONE &&
2286             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2287                 i915_gem_object_pin_pages(obj);
2288
2289         return 0;
2290
2291 err_pages:
2292         sg_mark_end(sg);
2293         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2294                 page_cache_release(sg_page_iter_page(&sg_iter));
2295         sg_free_table(st);
2296         kfree(st);
2297
2298         /* shmemfs first checks if there is enough memory to allocate the page
2299          * and reports ENOSPC should there be insufficient, along with the usual
2300          * ENOMEM for a genuine allocation failure.
2301          *
2302          * We use ENOSPC in our driver to mean that we have run out of aperture
2303          * space and so want to translate the error from shmemfs back to our
2304          * usual understanding of ENOMEM.
2305          */
2306         if (PTR_ERR(page) == -ENOSPC)
2307                 return -ENOMEM;
2308         else
2309                 return PTR_ERR(page);
2310 }
2311
2312 /* Ensure that the associated pages are gathered from the backing storage
2313  * and pinned into our object. i915_gem_object_get_pages() may be called
2314  * multiple times before they are released by a single call to
2315  * i915_gem_object_put_pages() - once the pages are no longer referenced
2316  * either as a result of memory pressure (reaping pages under the shrinker)
2317  * or as the object is itself released.
2318  */
2319 int
2320 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2321 {
2322         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2323         const struct drm_i915_gem_object_ops *ops = obj->ops;
2324         int ret;
2325
2326         if (obj->pages)
2327                 return 0;
2328
2329         if (obj->madv != I915_MADV_WILLNEED) {
2330                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2331                 return -EFAULT;
2332         }
2333
2334         BUG_ON(obj->pages_pin_count);
2335
2336         ret = ops->get_pages(obj);
2337         if (ret)
2338                 return ret;
2339
2340         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2341
2342         obj->get_page.sg = obj->pages->sgl;
2343         obj->get_page.last = 0;
2344
2345         return 0;
2346 }
2347
2348 void i915_vma_move_to_active(struct i915_vma *vma,
2349                              struct drm_i915_gem_request *req)
2350 {
2351         struct drm_i915_gem_object *obj = vma->obj;
2352         struct intel_engine_cs *ring;
2353
2354         ring = i915_gem_request_get_ring(req);
2355
2356         /* Add a reference if we're newly entering the active list. */
2357         if (obj->active == 0)
2358                 drm_gem_object_reference(&obj->base);
2359         obj->active |= intel_ring_flag(ring);
2360
2361         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2362         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2363
2364         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2365 }
2366
2367 static void
2368 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2369 {
2370         RQ_BUG_ON(obj->last_write_req == NULL);
2371         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2372
2373         i915_gem_request_assign(&obj->last_write_req, NULL);
2374         intel_fb_obj_flush(obj, true);
2375 }
2376
2377 static void
2378 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2379 {
2380         struct i915_vma *vma;
2381
2382         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2383         RQ_BUG_ON(!(obj->active & (1 << ring)));
2384
2385         list_del_init(&obj->ring_list[ring]);
2386         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2387
2388         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2389                 i915_gem_object_retire__write(obj);
2390
2391         obj->active &= ~(1 << ring);
2392         if (obj->active)
2393                 return;
2394
2395         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2396                 if (!list_empty(&vma->mm_list))
2397                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2398         }
2399
2400         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2401         drm_gem_object_unreference(&obj->base);
2402 }
2403
2404 static int
2405 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2406 {
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         struct intel_engine_cs *ring;
2409         int ret, i, j;
2410
2411         /* Carefully retire all requests without writing to the rings */
2412         for_each_ring(ring, dev_priv, i) {
2413                 ret = intel_ring_idle(ring);
2414                 if (ret)
2415                         return ret;
2416         }
2417         i915_gem_retire_requests(dev);
2418
2419         /* Finally reset hw state */
2420         for_each_ring(ring, dev_priv, i) {
2421                 intel_ring_init_seqno(ring, seqno);
2422
2423                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2424                         ring->semaphore.sync_seqno[j] = 0;
2425         }
2426
2427         return 0;
2428 }
2429
2430 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         int ret;
2434
2435         if (seqno == 0)
2436                 return -EINVAL;
2437
2438         /* HWS page needs to be set less than what we
2439          * will inject to ring
2440          */
2441         ret = i915_gem_init_seqno(dev, seqno - 1);
2442         if (ret)
2443                 return ret;
2444
2445         /* Carefully set the last_seqno value so that wrap
2446          * detection still works
2447          */
2448         dev_priv->next_seqno = seqno;
2449         dev_priv->last_seqno = seqno - 1;
2450         if (dev_priv->last_seqno == 0)
2451                 dev_priv->last_seqno--;
2452
2453         return 0;
2454 }
2455
2456 int
2457 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2458 {
2459         struct drm_i915_private *dev_priv = dev->dev_private;
2460
2461         /* reserve 0 for non-seqno */
2462         if (dev_priv->next_seqno == 0) {
2463                 int ret = i915_gem_init_seqno(dev, 0);
2464                 if (ret)
2465                         return ret;
2466
2467                 dev_priv->next_seqno = 1;
2468         }
2469
2470         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2471         return 0;
2472 }
2473
2474 /*
2475  * NB: This function is not allowed to fail. Doing so would mean the the
2476  * request is not being tracked for completion but the work itself is
2477  * going to happen on the hardware. This would be a Bad Thing(tm).
2478  */
2479 void __i915_add_request(struct drm_i915_gem_request *request,
2480                         struct drm_i915_gem_object *obj,
2481                         bool flush_caches)
2482 {
2483         struct intel_engine_cs *ring;
2484         struct drm_i915_private *dev_priv;
2485         struct intel_ringbuffer *ringbuf;
2486         u32 request_start;
2487         int ret;
2488
2489         if (WARN_ON(request == NULL))
2490                 return;
2491
2492         ring = request->ring;
2493         dev_priv = ring->dev->dev_private;
2494         ringbuf = request->ringbuf;
2495
2496         /*
2497          * To ensure that this call will not fail, space for its emissions
2498          * should already have been reserved in the ring buffer. Let the ring
2499          * know that it is time to use that space up.
2500          */
2501         intel_ring_reserved_space_use(ringbuf);
2502
2503         request_start = intel_ring_get_tail(ringbuf);
2504         /*
2505          * Emit any outstanding flushes - execbuf can fail to emit the flush
2506          * after having emitted the batchbuffer command. Hence we need to fix
2507          * things up similar to emitting the lazy request. The difference here
2508          * is that the flush _must_ happen before the next request, no matter
2509          * what.
2510          */
2511         if (flush_caches) {
2512                 if (i915.enable_execlists)
2513                         ret = logical_ring_flush_all_caches(request);
2514                 else
2515                         ret = intel_ring_flush_all_caches(request);
2516                 /* Not allowed to fail! */
2517                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2518         }
2519
2520         /* Record the position of the start of the request so that
2521          * should we detect the updated seqno part-way through the
2522          * GPU processing the request, we never over-estimate the
2523          * position of the head.
2524          */
2525         request->postfix = intel_ring_get_tail(ringbuf);
2526
2527         if (i915.enable_execlists)
2528                 ret = ring->emit_request(request);
2529         else {
2530                 ret = ring->add_request(request);
2531
2532                 request->tail = intel_ring_get_tail(ringbuf);
2533         }
2534         /* Not allowed to fail! */
2535         WARN(ret, "emit|add_request failed: %d!\n", ret);
2536
2537         request->head = request_start;
2538
2539         /* Whilst this request exists, batch_obj will be on the
2540          * active_list, and so will hold the active reference. Only when this
2541          * request is retired will the the batch_obj be moved onto the
2542          * inactive_list and lose its active reference. Hence we do not need
2543          * to explicitly hold another reference here.
2544          */
2545         request->batch_obj = obj;
2546
2547         request->emitted_jiffies = jiffies;
2548         list_add_tail(&request->list, &ring->request_list);
2549
2550         trace_i915_gem_request_add(request);
2551
2552         i915_queue_hangcheck(ring->dev);
2553
2554         queue_delayed_work(dev_priv->wq,
2555                            &dev_priv->mm.retire_work,
2556                            round_jiffies_up_relative(HZ));
2557         intel_mark_busy(dev_priv->dev);
2558
2559         /* Sanity check that the reserved size was large enough. */
2560         intel_ring_reserved_space_end(ringbuf);
2561 }
2562
2563 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2564                                    const struct intel_context *ctx)
2565 {
2566         unsigned long elapsed;
2567
2568         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2569
2570         if (ctx->hang_stats.banned)
2571                 return true;
2572
2573         if (ctx->hang_stats.ban_period_seconds &&
2574             elapsed <= ctx->hang_stats.ban_period_seconds) {
2575                 if (!i915_gem_context_is_default(ctx)) {
2576                         DRM_DEBUG("context hanging too fast, banning!\n");
2577                         return true;
2578                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2579                         if (i915_stop_ring_allow_warn(dev_priv))
2580                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2581                         return true;
2582                 }
2583         }
2584
2585         return false;
2586 }
2587
2588 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2589                                   struct intel_context *ctx,
2590                                   const bool guilty)
2591 {
2592         struct i915_ctx_hang_stats *hs;
2593
2594         if (WARN_ON(!ctx))
2595                 return;
2596
2597         hs = &ctx->hang_stats;
2598
2599         if (guilty) {
2600                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2601                 hs->batch_active++;
2602                 hs->guilty_ts = get_seconds();
2603         } else {
2604                 hs->batch_pending++;
2605         }
2606 }
2607
2608 void i915_gem_request_free(struct kref *req_ref)
2609 {
2610         struct drm_i915_gem_request *req = container_of(req_ref,
2611                                                  typeof(*req), ref);
2612         struct intel_context *ctx = req->ctx;
2613
2614         if (req->file_priv)
2615                 i915_gem_request_remove_from_client(req);
2616
2617         if (ctx) {
2618                 if (i915.enable_execlists) {
2619                         struct intel_engine_cs *ring = req->ring;
2620
2621                         if (ctx != ring->default_context)
2622                                 intel_lr_context_unpin(ring, ctx);
2623                 }
2624
2625                 i915_gem_context_unreference(ctx);
2626         }
2627
2628         kmem_cache_free(req->i915->requests, req);
2629 }
2630
2631 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2632                            struct intel_context *ctx,
2633                            struct drm_i915_gem_request **req_out)
2634 {
2635         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2636         struct drm_i915_gem_request *req;
2637         int ret;
2638
2639         if (!req_out)
2640                 return -EINVAL;
2641
2642         *req_out = NULL;
2643
2644         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2645         if (req == NULL)
2646                 return -ENOMEM;
2647
2648         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2649         if (ret)
2650                 goto err;
2651
2652         kref_init(&req->ref);
2653         req->i915 = dev_priv;
2654         req->ring = ring;
2655         req->ctx  = ctx;
2656         i915_gem_context_reference(req->ctx);
2657
2658         if (i915.enable_execlists)
2659                 ret = intel_logical_ring_alloc_request_extras(req);
2660         else
2661                 ret = intel_ring_alloc_request_extras(req);
2662         if (ret) {
2663                 i915_gem_context_unreference(req->ctx);
2664                 goto err;
2665         }
2666
2667         /*
2668          * Reserve space in the ring buffer for all the commands required to
2669          * eventually emit this request. This is to guarantee that the
2670          * i915_add_request() call can't fail. Note that the reserve may need
2671          * to be redone if the request is not actually submitted straight
2672          * away, e.g. because a GPU scheduler has deferred it.
2673          */
2674         if (i915.enable_execlists)
2675                 ret = intel_logical_ring_reserve_space(req);
2676         else
2677                 ret = intel_ring_reserve_space(req);
2678         if (ret) {
2679                 /*
2680                  * At this point, the request is fully allocated even if not
2681                  * fully prepared. Thus it can be cleaned up using the proper
2682                  * free code.
2683                  */
2684                 i915_gem_request_cancel(req);
2685                 return ret;
2686         }
2687
2688         *req_out = req;
2689         return 0;
2690
2691 err:
2692         kmem_cache_free(dev_priv->requests, req);
2693         return ret;
2694 }
2695
2696 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2697 {
2698         intel_ring_reserved_space_cancel(req->ringbuf);
2699
2700         i915_gem_request_unreference(req);
2701 }
2702
2703 struct drm_i915_gem_request *
2704 i915_gem_find_active_request(struct intel_engine_cs *ring)
2705 {
2706         struct drm_i915_gem_request *request;
2707
2708         list_for_each_entry(request, &ring->request_list, list) {
2709                 if (i915_gem_request_completed(request, false))
2710                         continue;
2711
2712                 return request;
2713         }
2714
2715         return NULL;
2716 }
2717
2718 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2719                                        struct intel_engine_cs *ring)
2720 {
2721         struct drm_i915_gem_request *request;
2722         bool ring_hung;
2723
2724         request = i915_gem_find_active_request(ring);
2725
2726         if (request == NULL)
2727                 return;
2728
2729         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2730
2731         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2732
2733         list_for_each_entry_continue(request, &ring->request_list, list)
2734                 i915_set_reset_status(dev_priv, request->ctx, false);
2735 }
2736
2737 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2738                                         struct intel_engine_cs *ring)
2739 {
2740         while (!list_empty(&ring->active_list)) {
2741                 struct drm_i915_gem_object *obj;
2742
2743                 obj = list_first_entry(&ring->active_list,
2744                                        struct drm_i915_gem_object,
2745                                        ring_list[ring->id]);
2746
2747                 i915_gem_object_retire__read(obj, ring->id);
2748         }
2749
2750         /*
2751          * Clear the execlists queue up before freeing the requests, as those
2752          * are the ones that keep the context and ringbuffer backing objects
2753          * pinned in place.
2754          */
2755         while (!list_empty(&ring->execlist_queue)) {
2756                 struct drm_i915_gem_request *submit_req;
2757
2758                 submit_req = list_first_entry(&ring->execlist_queue,
2759                                 struct drm_i915_gem_request,
2760                                 execlist_link);
2761                 list_del(&submit_req->execlist_link);
2762
2763                 if (submit_req->ctx != ring->default_context)
2764                         intel_lr_context_unpin(ring, submit_req->ctx);
2765
2766                 i915_gem_request_unreference(submit_req);
2767         }
2768
2769         /*
2770          * We must free the requests after all the corresponding objects have
2771          * been moved off active lists. Which is the same order as the normal
2772          * retire_requests function does. This is important if object hold
2773          * implicit references on things like e.g. ppgtt address spaces through
2774          * the request.
2775          */
2776         while (!list_empty(&ring->request_list)) {
2777                 struct drm_i915_gem_request *request;
2778
2779                 request = list_first_entry(&ring->request_list,
2780                                            struct drm_i915_gem_request,
2781                                            list);
2782
2783                 i915_gem_request_retire(request);
2784         }
2785 }
2786
2787 void i915_gem_restore_fences(struct drm_device *dev)
2788 {
2789         struct drm_i915_private *dev_priv = dev->dev_private;
2790         int i;
2791
2792         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2793                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2794
2795                 /*
2796                  * Commit delayed tiling changes if we have an object still
2797                  * attached to the fence, otherwise just clear the fence.
2798                  */
2799                 if (reg->obj) {
2800                         i915_gem_object_update_fence(reg->obj, reg,
2801                                                      reg->obj->tiling_mode);
2802                 } else {
2803                         i915_gem_write_fence(dev, i, NULL);
2804                 }
2805         }
2806 }
2807
2808 void i915_gem_reset(struct drm_device *dev)
2809 {
2810         struct drm_i915_private *dev_priv = dev->dev_private;
2811         struct intel_engine_cs *ring;
2812         int i;
2813
2814         /*
2815          * Before we free the objects from the requests, we need to inspect
2816          * them for finding the guilty party. As the requests only borrow
2817          * their reference to the objects, the inspection must be done first.
2818          */
2819         for_each_ring(ring, dev_priv, i)
2820                 i915_gem_reset_ring_status(dev_priv, ring);
2821
2822         for_each_ring(ring, dev_priv, i)
2823                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2824
2825         i915_gem_context_reset(dev);
2826
2827         i915_gem_restore_fences(dev);
2828
2829         WARN_ON(i915_verify_lists(dev));
2830 }
2831
2832 /**
2833  * This function clears the request list as sequence numbers are passed.
2834  */
2835 void
2836 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2837 {
2838         WARN_ON(i915_verify_lists(ring->dev));
2839
2840         /* Retire requests first as we use it above for the early return.
2841          * If we retire requests last, we may use a later seqno and so clear
2842          * the requests lists without clearing the active list, leading to
2843          * confusion.
2844          */
2845         while (!list_empty(&ring->request_list)) {
2846                 struct drm_i915_gem_request *request;
2847
2848                 request = list_first_entry(&ring->request_list,
2849                                            struct drm_i915_gem_request,
2850                                            list);
2851
2852                 if (!i915_gem_request_completed(request, true))
2853                         break;
2854
2855                 i915_gem_request_retire(request);
2856         }
2857
2858         /* Move any buffers on the active list that are no longer referenced
2859          * by the ringbuffer to the flushing/inactive lists as appropriate,
2860          * before we free the context associated with the requests.
2861          */
2862         while (!list_empty(&ring->active_list)) {
2863                 struct drm_i915_gem_object *obj;
2864
2865                 obj = list_first_entry(&ring->active_list,
2866                                       struct drm_i915_gem_object,
2867                                       ring_list[ring->id]);
2868
2869                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2870                         break;
2871
2872                 i915_gem_object_retire__read(obj, ring->id);
2873         }
2874
2875         if (unlikely(ring->trace_irq_req &&
2876                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2877                 ring->irq_put(ring);
2878                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2879         }
2880
2881         WARN_ON(i915_verify_lists(ring->dev));
2882 }
2883
2884 bool
2885 i915_gem_retire_requests(struct drm_device *dev)
2886 {
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         struct intel_engine_cs *ring;
2889         bool idle = true;
2890         int i;
2891
2892         for_each_ring(ring, dev_priv, i) {
2893                 i915_gem_retire_requests_ring(ring);
2894                 idle &= list_empty(&ring->request_list);
2895                 if (i915.enable_execlists) {
2896                         unsigned long flags;
2897
2898                         spin_lock_irqsave(&ring->execlist_lock, flags);
2899                         idle &= list_empty(&ring->execlist_queue);
2900                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2901
2902                         intel_execlists_retire_requests(ring);
2903                 }
2904         }
2905
2906         if (idle)
2907                 mod_delayed_work(dev_priv->wq,
2908                                    &dev_priv->mm.idle_work,
2909                                    msecs_to_jiffies(100));
2910
2911         return idle;
2912 }
2913
2914 static void
2915 i915_gem_retire_work_handler(struct work_struct *work)
2916 {
2917         struct drm_i915_private *dev_priv =
2918                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2919         struct drm_device *dev = dev_priv->dev;
2920         bool idle;
2921
2922         /* Come back later if the device is busy... */
2923         idle = false;
2924         if (mutex_trylock(&dev->struct_mutex)) {
2925                 idle = i915_gem_retire_requests(dev);
2926                 mutex_unlock(&dev->struct_mutex);
2927         }
2928         if (!idle)
2929                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2930                                    round_jiffies_up_relative(HZ));
2931 }
2932
2933 static void
2934 i915_gem_idle_work_handler(struct work_struct *work)
2935 {
2936         struct drm_i915_private *dev_priv =
2937                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2938         struct drm_device *dev = dev_priv->dev;
2939         struct intel_engine_cs *ring;
2940         int i;
2941
2942         for_each_ring(ring, dev_priv, i)
2943                 if (!list_empty(&ring->request_list))
2944                         return;
2945
2946         intel_mark_idle(dev);
2947
2948         if (mutex_trylock(&dev->struct_mutex)) {
2949                 struct intel_engine_cs *ring;
2950                 int i;
2951
2952                 for_each_ring(ring, dev_priv, i)
2953                         i915_gem_batch_pool_fini(&ring->batch_pool);
2954
2955                 mutex_unlock(&dev->struct_mutex);
2956         }
2957 }
2958
2959 /**
2960  * Ensures that an object will eventually get non-busy by flushing any required
2961  * write domains, emitting any outstanding lazy request and retiring and
2962  * completed requests.
2963  */
2964 static int
2965 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2966 {
2967         int i;
2968
2969         if (!obj->active)
2970                 return 0;
2971
2972         for (i = 0; i < I915_NUM_RINGS; i++) {
2973                 struct drm_i915_gem_request *req;
2974
2975                 req = obj->last_read_req[i];
2976                 if (req == NULL)
2977                         continue;
2978
2979                 if (list_empty(&req->list))
2980                         goto retire;
2981
2982                 if (i915_gem_request_completed(req, true)) {
2983                         __i915_gem_request_retire__upto(req);
2984 retire:
2985                         i915_gem_object_retire__read(obj, i);
2986                 }
2987         }
2988
2989         return 0;
2990 }
2991
2992 /**
2993  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2994  * @DRM_IOCTL_ARGS: standard ioctl arguments
2995  *
2996  * Returns 0 if successful, else an error is returned with the remaining time in
2997  * the timeout parameter.
2998  *  -ETIME: object is still busy after timeout
2999  *  -ERESTARTSYS: signal interrupted the wait
3000  *  -ENONENT: object doesn't exist
3001  * Also possible, but rare:
3002  *  -EAGAIN: GPU wedged
3003  *  -ENOMEM: damn
3004  *  -ENODEV: Internal IRQ fail
3005  *  -E?: The add request failed
3006  *
3007  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3008  * non-zero timeout parameter the wait ioctl will wait for the given number of
3009  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3010  * without holding struct_mutex the object may become re-busied before this
3011  * function completes. A similar but shorter * race condition exists in the busy
3012  * ioctl
3013  */
3014 int
3015 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3016 {
3017         struct drm_i915_private *dev_priv = dev->dev_private;
3018         struct drm_i915_gem_wait *args = data;
3019         struct drm_i915_gem_object *obj;
3020         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3021         unsigned reset_counter;
3022         int i, n = 0;
3023         int ret;
3024
3025         if (args->flags != 0)
3026                 return -EINVAL;
3027
3028         ret = i915_mutex_lock_interruptible(dev);
3029         if (ret)
3030                 return ret;
3031
3032         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3033         if (&obj->base == NULL) {
3034                 mutex_unlock(&dev->struct_mutex);
3035                 return -ENOENT;
3036         }
3037
3038         /* Need to make sure the object gets inactive eventually. */
3039         ret = i915_gem_object_flush_active(obj);
3040         if (ret)
3041                 goto out;
3042
3043         if (!obj->active)
3044                 goto out;
3045
3046         /* Do this after OLR check to make sure we make forward progress polling
3047          * on this IOCTL with a timeout == 0 (like busy ioctl)
3048          */
3049         if (args->timeout_ns == 0) {
3050                 ret = -ETIME;
3051                 goto out;
3052         }
3053
3054         drm_gem_object_unreference(&obj->base);
3055         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3056
3057         for (i = 0; i < I915_NUM_RINGS; i++) {
3058                 if (obj->last_read_req[i] == NULL)
3059                         continue;
3060
3061                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3062         }
3063
3064         mutex_unlock(&dev->struct_mutex);
3065
3066         for (i = 0; i < n; i++) {
3067                 if (ret == 0)
3068                         ret = __i915_wait_request(req[i], reset_counter, true,
3069                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3070                                                   file->driver_priv);
3071                 i915_gem_request_unreference__unlocked(req[i]);
3072         }
3073         return ret;
3074
3075 out:
3076         drm_gem_object_unreference(&obj->base);
3077         mutex_unlock(&dev->struct_mutex);
3078         return ret;
3079 }
3080
3081 static int
3082 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3083                        struct intel_engine_cs *to,
3084                        struct drm_i915_gem_request *from_req,
3085                        struct drm_i915_gem_request **to_req)
3086 {
3087         struct intel_engine_cs *from;
3088         int ret;
3089
3090         from = i915_gem_request_get_ring(from_req);
3091         if (to == from)
3092                 return 0;
3093
3094         if (i915_gem_request_completed(from_req, true))
3095                 return 0;
3096
3097         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3098                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3099                 ret = __i915_wait_request(from_req,
3100                                           atomic_read(&i915->gpu_error.reset_counter),
3101                                           i915->mm.interruptible,
3102                                           NULL,
3103                                           &i915->rps.semaphores);
3104                 if (ret)
3105                         return ret;
3106
3107                 i915_gem_object_retire_request(obj, from_req);
3108         } else {
3109                 int idx = intel_ring_sync_index(from, to);
3110                 u32 seqno = i915_gem_request_get_seqno(from_req);
3111
3112                 WARN_ON(!to_req);
3113
3114                 if (seqno <= from->semaphore.sync_seqno[idx])
3115                         return 0;
3116
3117                 if (*to_req == NULL) {
3118                         ret = i915_gem_request_alloc(to, to->default_context, to_req);
3119                         if (ret)
3120                                 return ret;
3121                 }
3122
3123                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3124                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3125                 if (ret)
3126                         return ret;
3127
3128                 /* We use last_read_req because sync_to()
3129                  * might have just caused seqno wrap under
3130                  * the radar.
3131                  */
3132                 from->semaphore.sync_seqno[idx] =
3133                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3134         }
3135
3136         return 0;
3137 }
3138
3139 /**
3140  * i915_gem_object_sync - sync an object to a ring.
3141  *
3142  * @obj: object which may be in use on another ring.
3143  * @to: ring we wish to use the object on. May be NULL.
3144  * @to_req: request we wish to use the object for. See below.
3145  *          This will be allocated and returned if a request is
3146  *          required but not passed in.
3147  *
3148  * This code is meant to abstract object synchronization with the GPU.
3149  * Calling with NULL implies synchronizing the object with the CPU
3150  * rather than a particular GPU ring. Conceptually we serialise writes
3151  * between engines inside the GPU. We only allow one engine to write
3152  * into a buffer at any time, but multiple readers. To ensure each has
3153  * a coherent view of memory, we must:
3154  *
3155  * - If there is an outstanding write request to the object, the new
3156  *   request must wait for it to complete (either CPU or in hw, requests
3157  *   on the same ring will be naturally ordered).
3158  *
3159  * - If we are a write request (pending_write_domain is set), the new
3160  *   request must wait for outstanding read requests to complete.
3161  *
3162  * For CPU synchronisation (NULL to) no request is required. For syncing with
3163  * rings to_req must be non-NULL. However, a request does not have to be
3164  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3165  * request will be allocated automatically and returned through *to_req. Note
3166  * that it is not guaranteed that commands will be emitted (because the system
3167  * might already be idle). Hence there is no need to create a request that
3168  * might never have any work submitted. Note further that if a request is
3169  * returned in *to_req, it is the responsibility of the caller to submit
3170  * that request (after potentially adding more work to it).
3171  *
3172  * Returns 0 if successful, else propagates up the lower layer error.
3173  */
3174 int
3175 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3176                      struct intel_engine_cs *to,
3177                      struct drm_i915_gem_request **to_req)
3178 {
3179         const bool readonly = obj->base.pending_write_domain == 0;
3180         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3181         int ret, i, n;
3182
3183         if (!obj->active)
3184                 return 0;
3185
3186         if (to == NULL)
3187                 return i915_gem_object_wait_rendering(obj, readonly);
3188
3189         n = 0;
3190         if (readonly) {
3191                 if (obj->last_write_req)
3192                         req[n++] = obj->last_write_req;
3193         } else {
3194                 for (i = 0; i < I915_NUM_RINGS; i++)
3195                         if (obj->last_read_req[i])
3196                                 req[n++] = obj->last_read_req[i];
3197         }
3198         for (i = 0; i < n; i++) {
3199                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3200                 if (ret)
3201                         return ret;
3202         }
3203
3204         return 0;
3205 }
3206
3207 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3208 {
3209         u32 old_write_domain, old_read_domains;
3210
3211         /* Force a pagefault for domain tracking on next user access */
3212         i915_gem_release_mmap(obj);
3213
3214         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3215                 return;
3216
3217         /* Wait for any direct GTT access to complete */
3218         mb();
3219
3220         old_read_domains = obj->base.read_domains;
3221         old_write_domain = obj->base.write_domain;
3222
3223         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3224         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3225
3226         trace_i915_gem_object_change_domain(obj,
3227                                             old_read_domains,
3228                                             old_write_domain);
3229 }
3230
3231 int i915_vma_unbind(struct i915_vma *vma)
3232 {
3233         struct drm_i915_gem_object *obj = vma->obj;
3234         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3235         int ret;
3236
3237         if (list_empty(&vma->vma_link))
3238                 return 0;
3239
3240         if (!drm_mm_node_allocated(&vma->node)) {
3241                 i915_gem_vma_destroy(vma);
3242                 return 0;
3243         }
3244
3245         if (vma->pin_count)
3246                 return -EBUSY;
3247
3248         BUG_ON(obj->pages == NULL);
3249
3250         ret = i915_gem_object_wait_rendering(obj, false);
3251         if (ret)
3252                 return ret;
3253         /* Continue on if we fail due to EIO, the GPU is hung so we
3254          * should be safe and we need to cleanup or else we might
3255          * cause memory corruption through use-after-free.
3256          */
3257
3258         if (i915_is_ggtt(vma->vm) &&
3259             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3260                 i915_gem_object_finish_gtt(obj);
3261
3262                 /* release the fence reg _after_ flushing */
3263                 ret = i915_gem_object_put_fence(obj);
3264                 if (ret)
3265                         return ret;
3266         }
3267
3268         trace_i915_vma_unbind(vma);
3269
3270         vma->vm->unbind_vma(vma);
3271         vma->bound = 0;
3272
3273         list_del_init(&vma->mm_list);
3274         if (i915_is_ggtt(vma->vm)) {
3275                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3276                         obj->map_and_fenceable = false;
3277                 } else if (vma->ggtt_view.pages) {
3278                         sg_free_table(vma->ggtt_view.pages);
3279                         kfree(vma->ggtt_view.pages);
3280                         vma->ggtt_view.pages = NULL;
3281                 }
3282         }
3283
3284         drm_mm_remove_node(&vma->node);
3285         i915_gem_vma_destroy(vma);
3286
3287         /* Since the unbound list is global, only move to that list if
3288          * no more VMAs exist. */
3289         if (list_empty(&obj->vma_list)) {
3290                 i915_gem_gtt_finish_object(obj);
3291                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3292         }
3293
3294         /* And finally now the object is completely decoupled from this vma,
3295          * we can drop its hold on the backing storage and allow it to be
3296          * reaped by the shrinker.
3297          */
3298         i915_gem_object_unpin_pages(obj);
3299
3300         return 0;
3301 }
3302
3303 int i915_gpu_idle(struct drm_device *dev)
3304 {
3305         struct drm_i915_private *dev_priv = dev->dev_private;
3306         struct intel_engine_cs *ring;
3307         int ret, i;
3308
3309         /* Flush everything onto the inactive list. */
3310         for_each_ring(ring, dev_priv, i) {
3311                 if (!i915.enable_execlists) {
3312                         struct drm_i915_gem_request *req;
3313
3314                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3315                         if (ret)
3316                                 return ret;
3317
3318                         ret = i915_switch_context(req);
3319                         if (ret) {
3320                                 i915_gem_request_cancel(req);
3321                                 return ret;
3322                         }
3323
3324                         i915_add_request_no_flush(req);
3325                 }
3326
3327                 ret = intel_ring_idle(ring);
3328                 if (ret)
3329                         return ret;
3330         }
3331
3332         WARN_ON(i915_verify_lists(dev));
3333         return 0;
3334 }
3335
3336 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3337                                  struct drm_i915_gem_object *obj)
3338 {
3339         struct drm_i915_private *dev_priv = dev->dev_private;
3340         int fence_reg;
3341         int fence_pitch_shift;
3342
3343         if (INTEL_INFO(dev)->gen >= 6) {
3344                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3345                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3346         } else {
3347                 fence_reg = FENCE_REG_965_0;
3348                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3349         }
3350
3351         fence_reg += reg * 8;
3352
3353         /* To w/a incoherency with non-atomic 64-bit register updates,
3354          * we split the 64-bit update into two 32-bit writes. In order
3355          * for a partial fence not to be evaluated between writes, we
3356          * precede the update with write to turn off the fence register,
3357          * and only enable the fence as the last step.
3358          *
3359          * For extra levels of paranoia, we make sure each step lands
3360          * before applying the next step.
3361          */
3362         I915_WRITE(fence_reg, 0);
3363         POSTING_READ(fence_reg);
3364
3365         if (obj) {
3366                 u32 size = i915_gem_obj_ggtt_size(obj);
3367                 uint64_t val;
3368
3369                 /* Adjust fence size to match tiled area */
3370                 if (obj->tiling_mode != I915_TILING_NONE) {
3371                         uint32_t row_size = obj->stride *
3372                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3373                         size = (size / row_size) * row_size;
3374                 }
3375
3376                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3377                                  0xfffff000) << 32;
3378                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3379                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3380                 if (obj->tiling_mode == I915_TILING_Y)
3381                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3382                 val |= I965_FENCE_REG_VALID;
3383
3384                 I915_WRITE(fence_reg + 4, val >> 32);
3385                 POSTING_READ(fence_reg + 4);
3386
3387                 I915_WRITE(fence_reg + 0, val);
3388                 POSTING_READ(fence_reg);
3389         } else {
3390                 I915_WRITE(fence_reg + 4, 0);
3391                 POSTING_READ(fence_reg + 4);
3392         }
3393 }
3394
3395 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3396                                  struct drm_i915_gem_object *obj)
3397 {
3398         struct drm_i915_private *dev_priv = dev->dev_private;
3399         u32 val;
3400
3401         if (obj) {
3402                 u32 size = i915_gem_obj_ggtt_size(obj);
3403                 int pitch_val;
3404                 int tile_width;
3405
3406                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3407                      (size & -size) != size ||
3408                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3409                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3410                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3411
3412                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3413                         tile_width = 128;
3414                 else
3415                         tile_width = 512;
3416
3417                 /* Note: pitch better be a power of two tile widths */
3418                 pitch_val = obj->stride / tile_width;
3419                 pitch_val = ffs(pitch_val) - 1;
3420
3421                 val = i915_gem_obj_ggtt_offset(obj);
3422                 if (obj->tiling_mode == I915_TILING_Y)
3423                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3424                 val |= I915_FENCE_SIZE_BITS(size);
3425                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3426                 val |= I830_FENCE_REG_VALID;
3427         } else
3428                 val = 0;
3429
3430         if (reg < 8)
3431                 reg = FENCE_REG_830_0 + reg * 4;
3432         else
3433                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3434
3435         I915_WRITE(reg, val);
3436         POSTING_READ(reg);
3437 }
3438
3439 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3440                                 struct drm_i915_gem_object *obj)
3441 {
3442         struct drm_i915_private *dev_priv = dev->dev_private;
3443         uint32_t val;
3444
3445         if (obj) {
3446                 u32 size = i915_gem_obj_ggtt_size(obj);
3447                 uint32_t pitch_val;
3448
3449                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3450                      (size & -size) != size ||
3451                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3452                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3453                      i915_gem_obj_ggtt_offset(obj), size);
3454
3455                 pitch_val = obj->stride / 128;
3456                 pitch_val = ffs(pitch_val) - 1;
3457
3458                 val = i915_gem_obj_ggtt_offset(obj);
3459                 if (obj->tiling_mode == I915_TILING_Y)
3460                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3461                 val |= I830_FENCE_SIZE_BITS(size);
3462                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3463                 val |= I830_FENCE_REG_VALID;
3464         } else
3465                 val = 0;
3466
3467         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3468         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3469 }
3470
3471 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3472 {
3473         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3474 }
3475
3476 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3477                                  struct drm_i915_gem_object *obj)
3478 {
3479         struct drm_i915_private *dev_priv = dev->dev_private;
3480
3481         /* Ensure that all CPU reads are completed before installing a fence
3482          * and all writes before removing the fence.
3483          */
3484         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3485                 mb();
3486
3487         WARN(obj && (!obj->stride || !obj->tiling_mode),
3488              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3489              obj->stride, obj->tiling_mode);
3490
3491         if (IS_GEN2(dev))
3492                 i830_write_fence_reg(dev, reg, obj);
3493         else if (IS_GEN3(dev))
3494                 i915_write_fence_reg(dev, reg, obj);
3495         else if (INTEL_INFO(dev)->gen >= 4)
3496                 i965_write_fence_reg(dev, reg, obj);
3497
3498         /* And similarly be paranoid that no direct access to this region
3499          * is reordered to before the fence is installed.
3500          */
3501         if (i915_gem_object_needs_mb(obj))
3502                 mb();
3503 }
3504
3505 static inline int fence_number(struct drm_i915_private *dev_priv,
3506                                struct drm_i915_fence_reg *fence)
3507 {
3508         return fence - dev_priv->fence_regs;
3509 }
3510
3511 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3512                                          struct drm_i915_fence_reg *fence,
3513                                          bool enable)
3514 {
3515         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3516         int reg = fence_number(dev_priv, fence);
3517
3518         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3519
3520         if (enable) {
3521                 obj->fence_reg = reg;
3522                 fence->obj = obj;
3523                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3524         } else {
3525                 obj->fence_reg = I915_FENCE_REG_NONE;
3526                 fence->obj = NULL;
3527                 list_del_init(&fence->lru_list);
3528         }
3529         obj->fence_dirty = false;
3530 }
3531
3532 static int
3533 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3534 {
3535         if (obj->last_fenced_req) {
3536                 int ret = i915_wait_request(obj->last_fenced_req);
3537                 if (ret)
3538                         return ret;
3539
3540                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3541         }
3542
3543         return 0;
3544 }
3545
3546 int
3547 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3548 {
3549         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3550         struct drm_i915_fence_reg *fence;
3551         int ret;
3552
3553         ret = i915_gem_object_wait_fence(obj);
3554         if (ret)
3555                 return ret;
3556
3557         if (obj->fence_reg == I915_FENCE_REG_NONE)
3558                 return 0;
3559
3560         fence = &dev_priv->fence_regs[obj->fence_reg];
3561
3562         if (WARN_ON(fence->pin_count))
3563                 return -EBUSY;
3564
3565         i915_gem_object_fence_lost(obj);
3566         i915_gem_object_update_fence(obj, fence, false);
3567
3568         return 0;
3569 }
3570
3571 static struct drm_i915_fence_reg *
3572 i915_find_fence_reg(struct drm_device *dev)
3573 {
3574         struct drm_i915_private *dev_priv = dev->dev_private;
3575         struct drm_i915_fence_reg *reg, *avail;
3576         int i;
3577
3578         /* First try to find a free reg */
3579         avail = NULL;
3580         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3581                 reg = &dev_priv->fence_regs[i];
3582                 if (!reg->obj)
3583                         return reg;
3584
3585                 if (!reg->pin_count)
3586                         avail = reg;
3587         }
3588
3589         if (avail == NULL)
3590                 goto deadlock;
3591
3592         /* None available, try to steal one or wait for a user to finish */
3593         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3594                 if (reg->pin_count)
3595                         continue;
3596
3597                 return reg;
3598         }
3599
3600 deadlock:
3601         /* Wait for completion of pending flips which consume fences */
3602         if (intel_has_pending_fb_unpin(dev))
3603                 return ERR_PTR(-EAGAIN);
3604
3605         return ERR_PTR(-EDEADLK);
3606 }
3607
3608 /**
3609  * i915_gem_object_get_fence - set up fencing for an object
3610  * @obj: object to map through a fence reg
3611  *
3612  * When mapping objects through the GTT, userspace wants to be able to write
3613  * to them without having to worry about swizzling if the object is tiled.
3614  * This function walks the fence regs looking for a free one for @obj,
3615  * stealing one if it can't find any.
3616  *
3617  * It then sets up the reg based on the object's properties: address, pitch
3618  * and tiling format.
3619  *
3620  * For an untiled surface, this removes any existing fence.
3621  */
3622 int
3623 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3624 {
3625         struct drm_device *dev = obj->base.dev;
3626         struct drm_i915_private *dev_priv = dev->dev_private;
3627         bool enable = obj->tiling_mode != I915_TILING_NONE;
3628         struct drm_i915_fence_reg *reg;
3629         int ret;
3630
3631         /* Have we updated the tiling parameters upon the object and so
3632          * will need to serialise the write to the associated fence register?
3633          */
3634         if (obj->fence_dirty) {
3635                 ret = i915_gem_object_wait_fence(obj);
3636                 if (ret)
3637                         return ret;
3638         }
3639
3640         /* Just update our place in the LRU if our fence is getting reused. */
3641         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3642                 reg = &dev_priv->fence_regs[obj->fence_reg];
3643                 if (!obj->fence_dirty) {
3644                         list_move_tail(&reg->lru_list,
3645                                        &dev_priv->mm.fence_list);
3646                         return 0;
3647                 }
3648         } else if (enable) {
3649                 if (WARN_ON(!obj->map_and_fenceable))
3650                         return -EINVAL;
3651
3652                 reg = i915_find_fence_reg(dev);
3653                 if (IS_ERR(reg))
3654                         return PTR_ERR(reg);
3655
3656                 if (reg->obj) {
3657                         struct drm_i915_gem_object *old = reg->obj;
3658
3659                         ret = i915_gem_object_wait_fence(old);
3660                         if (ret)
3661                                 return ret;
3662
3663                         i915_gem_object_fence_lost(old);
3664                 }
3665         } else
3666                 return 0;
3667
3668         i915_gem_object_update_fence(obj, reg, enable);
3669
3670         return 0;
3671 }
3672
3673 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3674                                      unsigned long cache_level)
3675 {
3676         struct drm_mm_node *gtt_space = &vma->node;
3677         struct drm_mm_node *other;
3678
3679         /*
3680          * On some machines we have to be careful when putting differing types
3681          * of snoopable memory together to avoid the prefetcher crossing memory
3682          * domains and dying. During vm initialisation, we decide whether or not
3683          * these constraints apply and set the drm_mm.color_adjust
3684          * appropriately.
3685          */
3686         if (vma->vm->mm.color_adjust == NULL)
3687                 return true;
3688
3689         if (!drm_mm_node_allocated(gtt_space))
3690                 return true;
3691
3692         if (list_empty(&gtt_space->node_list))
3693                 return true;
3694
3695         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3696         if (other->allocated && !other->hole_follows && other->color != cache_level)
3697                 return false;
3698
3699         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3700         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3701                 return false;
3702
3703         return true;
3704 }
3705
3706 /**
3707  * Finds free space in the GTT aperture and binds the object or a view of it
3708  * there.
3709  */
3710 static struct i915_vma *
3711 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3712                            struct i915_address_space *vm,
3713                            const struct i915_ggtt_view *ggtt_view,
3714                            unsigned alignment,
3715                            uint64_t flags)
3716 {
3717         struct drm_device *dev = obj->base.dev;
3718         struct drm_i915_private *dev_priv = dev->dev_private;
3719         u32 size, fence_size, fence_alignment, unfenced_alignment;
3720         u64 start =
3721                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3722         u64 end =
3723                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3724         struct i915_vma *vma;
3725         int ret;
3726
3727         if (i915_is_ggtt(vm)) {
3728                 u32 view_size;
3729
3730                 if (WARN_ON(!ggtt_view))
3731                         return ERR_PTR(-EINVAL);
3732
3733                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3734
3735                 fence_size = i915_gem_get_gtt_size(dev,
3736                                                    view_size,
3737                                                    obj->tiling_mode);
3738                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3739                                                              view_size,
3740                                                              obj->tiling_mode,
3741                                                              true);
3742                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3743                                                                 view_size,
3744                                                                 obj->tiling_mode,
3745                                                                 false);
3746                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3747         } else {
3748                 fence_size = i915_gem_get_gtt_size(dev,
3749                                                    obj->base.size,
3750                                                    obj->tiling_mode);
3751                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3752                                                              obj->base.size,
3753                                                              obj->tiling_mode,
3754                                                              true);
3755                 unfenced_alignment =
3756                         i915_gem_get_gtt_alignment(dev,
3757                                                    obj->base.size,
3758                                                    obj->tiling_mode,
3759                                                    false);
3760                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3761         }
3762
3763         if (alignment == 0)
3764                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3765                                                 unfenced_alignment;
3766         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3767                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3768                           ggtt_view ? ggtt_view->type : 0,
3769                           alignment);
3770                 return ERR_PTR(-EINVAL);
3771         }
3772
3773         /* If binding the object/GGTT view requires more space than the entire
3774          * aperture has, reject it early before evicting everything in a vain
3775          * attempt to find space.
3776          */
3777         if (size > end) {
3778                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3779                           ggtt_view ? ggtt_view->type : 0,
3780                           size,
3781                           flags & PIN_MAPPABLE ? "mappable" : "total",
3782                           end);
3783                 return ERR_PTR(-E2BIG);
3784         }
3785
3786         ret = i915_gem_object_get_pages(obj);
3787         if (ret)
3788                 return ERR_PTR(ret);
3789
3790         i915_gem_object_pin_pages(obj);
3791
3792         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3793                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3794
3795         if (IS_ERR(vma))
3796                 goto err_unpin;
3797
3798 search_free:
3799         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3800                                                   size, alignment,
3801                                                   obj->cache_level,
3802                                                   start, end,
3803                                                   DRM_MM_SEARCH_DEFAULT,
3804                                                   DRM_MM_CREATE_DEFAULT);
3805         if (ret) {
3806                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3807                                                obj->cache_level,
3808                                                start, end,
3809                                                flags);
3810                 if (ret == 0)
3811                         goto search_free;
3812
3813                 goto err_free_vma;
3814         }
3815         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3816                 ret = -EINVAL;
3817                 goto err_remove_node;
3818         }
3819
3820         ret = i915_gem_gtt_prepare_object(obj);
3821         if (ret)
3822                 goto err_remove_node;
3823
3824         trace_i915_vma_bind(vma, flags);
3825         ret = i915_vma_bind(vma, obj->cache_level, flags);
3826         if (ret)
3827                 goto err_finish_gtt;
3828
3829         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3830         list_add_tail(&vma->mm_list, &vm->inactive_list);
3831
3832         return vma;
3833
3834 err_finish_gtt:
3835         i915_gem_gtt_finish_object(obj);
3836 err_remove_node:
3837         drm_mm_remove_node(&vma->node);
3838 err_free_vma:
3839         i915_gem_vma_destroy(vma);
3840         vma = ERR_PTR(ret);
3841 err_unpin:
3842         i915_gem_object_unpin_pages(obj);
3843         return vma;
3844 }
3845
3846 bool
3847 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3848                         bool force)
3849 {
3850         /* If we don't have a page list set up, then we're not pinned
3851          * to GPU, and we can ignore the cache flush because it'll happen
3852          * again at bind time.
3853          */
3854         if (obj->pages == NULL)
3855                 return false;
3856
3857         /*
3858          * Stolen memory is always coherent with the GPU as it is explicitly
3859          * marked as wc by the system, or the system is cache-coherent.
3860          */
3861         if (obj->stolen || obj->phys_handle)
3862                 return false;
3863
3864         /* If the GPU is snooping the contents of the CPU cache,
3865          * we do not need to manually clear the CPU cache lines.  However,
3866          * the caches are only snooped when the render cache is
3867          * flushed/invalidated.  As we always have to emit invalidations
3868          * and flushes when moving into and out of the RENDER domain, correct
3869          * snooping behaviour occurs naturally as the result of our domain
3870          * tracking.
3871          */
3872         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3873                 obj->cache_dirty = true;
3874                 return false;
3875         }
3876
3877         trace_i915_gem_object_clflush(obj);
3878         drm_clflush_sg(obj->pages);
3879         obj->cache_dirty = false;
3880
3881         return true;
3882 }
3883
3884 /** Flushes the GTT write domain for the object if it's dirty. */
3885 static void
3886 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3887 {
3888         uint32_t old_write_domain;
3889
3890         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3891                 return;
3892
3893         /* No actual flushing is required for the GTT write domain.  Writes
3894          * to it immediately go to main memory as far as we know, so there's
3895          * no chipset flush.  It also doesn't land in render cache.
3896          *
3897          * However, we do have to enforce the order so that all writes through
3898          * the GTT land before any writes to the device, such as updates to
3899          * the GATT itself.
3900          */
3901         wmb();
3902
3903         old_write_domain = obj->base.write_domain;
3904         obj->base.write_domain = 0;
3905
3906         intel_fb_obj_flush(obj, false);
3907
3908         trace_i915_gem_object_change_domain(obj,
3909                                             obj->base.read_domains,
3910                                             old_write_domain);
3911 }
3912
3913 /** Flushes the CPU write domain for the object if it's dirty. */
3914 static void
3915 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3916 {
3917         uint32_t old_write_domain;
3918
3919         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3920                 return;
3921
3922         if (i915_gem_clflush_object(obj, obj->pin_display))
3923                 i915_gem_chipset_flush(obj->base.dev);
3924
3925         old_write_domain = obj->base.write_domain;
3926         obj->base.write_domain = 0;
3927
3928         intel_fb_obj_flush(obj, false);
3929
3930         trace_i915_gem_object_change_domain(obj,
3931                                             obj->base.read_domains,
3932                                             old_write_domain);
3933 }
3934
3935 /**
3936  * Moves a single object to the GTT read, and possibly write domain.
3937  *
3938  * This function returns when the move is complete, including waiting on
3939  * flushes to occur.
3940  */
3941 int
3942 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3943 {
3944         uint32_t old_write_domain, old_read_domains;
3945         struct i915_vma *vma;
3946         int ret;
3947
3948         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3949                 return 0;
3950
3951         ret = i915_gem_object_wait_rendering(obj, !write);
3952         if (ret)
3953                 return ret;
3954
3955         /* Flush and acquire obj->pages so that we are coherent through
3956          * direct access in memory with previous cached writes through
3957          * shmemfs and that our cache domain tracking remains valid.
3958          * For example, if the obj->filp was moved to swap without us
3959          * being notified and releasing the pages, we would mistakenly
3960          * continue to assume that the obj remained out of the CPU cached
3961          * domain.
3962          */
3963         ret = i915_gem_object_get_pages(obj);
3964         if (ret)
3965                 return ret;
3966
3967         i915_gem_object_flush_cpu_write_domain(obj);
3968
3969         /* Serialise direct access to this object with the barriers for
3970          * coherent writes from the GPU, by effectively invalidating the
3971          * GTT domain upon first access.
3972          */
3973         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3974                 mb();
3975
3976         old_write_domain = obj->base.write_domain;
3977         old_read_domains = obj->base.read_domains;
3978
3979         /* It should now be out of any other write domains, and we can update
3980          * the domain values for our changes.
3981          */
3982         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3983         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3984         if (write) {
3985                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3986                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3987                 obj->dirty = 1;
3988         }
3989
3990         trace_i915_gem_object_change_domain(obj,
3991                                             old_read_domains,
3992                                             old_write_domain);
3993
3994         /* And bump the LRU for this access */
3995         vma = i915_gem_obj_to_ggtt(obj);
3996         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3997                 list_move_tail(&vma->mm_list,
3998                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3999
4000         return 0;
4001 }
4002
4003 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4004                                     enum i915_cache_level cache_level)
4005 {
4006         struct drm_device *dev = obj->base.dev;
4007         struct i915_vma *vma, *next;
4008         int ret;
4009
4010         if (obj->cache_level == cache_level)
4011                 return 0;
4012
4013         if (i915_gem_obj_is_pinned(obj)) {
4014                 DRM_DEBUG("can not change the cache level of pinned objects\n");
4015                 return -EBUSY;
4016         }
4017
4018         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4019                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4020                         ret = i915_vma_unbind(vma);
4021                         if (ret)
4022                                 return ret;
4023                 }
4024         }
4025
4026         if (i915_gem_obj_bound_any(obj)) {
4027                 ret = i915_gem_object_wait_rendering(obj, false);
4028                 if (ret)
4029                         return ret;
4030
4031                 i915_gem_object_finish_gtt(obj);
4032
4033                 /* Before SandyBridge, you could not use tiling or fence
4034                  * registers with snooped memory, so relinquish any fences
4035                  * currently pointing to our region in the aperture.
4036                  */
4037                 if (INTEL_INFO(dev)->gen < 6) {
4038                         ret = i915_gem_object_put_fence(obj);
4039                         if (ret)
4040                                 return ret;
4041                 }
4042
4043                 list_for_each_entry(vma, &obj->vma_list, vma_link)
4044                         if (drm_mm_node_allocated(&vma->node)) {
4045                                 ret = i915_vma_bind(vma, cache_level,
4046                                                     PIN_UPDATE);
4047                                 if (ret)
4048                                         return ret;
4049                         }
4050         }
4051
4052         list_for_each_entry(vma, &obj->vma_list, vma_link)
4053                 vma->node.color = cache_level;
4054         obj->cache_level = cache_level;
4055
4056         if (obj->cache_dirty &&
4057             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4058             cpu_write_needs_clflush(obj)) {
4059                 if (i915_gem_clflush_object(obj, true))
4060                         i915_gem_chipset_flush(obj->base.dev);
4061         }
4062
4063         return 0;
4064 }
4065
4066 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4067                                struct drm_file *file)
4068 {
4069         struct drm_i915_gem_caching *args = data;
4070         struct drm_i915_gem_object *obj;
4071
4072         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4073         if (&obj->base == NULL)
4074                 return -ENOENT;
4075
4076         switch (obj->cache_level) {
4077         case I915_CACHE_LLC:
4078         case I915_CACHE_L3_LLC:
4079                 args->caching = I915_CACHING_CACHED;
4080                 break;
4081
4082         case I915_CACHE_WT:
4083                 args->caching = I915_CACHING_DISPLAY;
4084                 break;
4085
4086         default:
4087                 args->caching = I915_CACHING_NONE;
4088                 break;
4089         }
4090
4091         drm_gem_object_unreference_unlocked(&obj->base);
4092         return 0;
4093 }
4094
4095 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4096                                struct drm_file *file)
4097 {
4098         struct drm_i915_gem_caching *args = data;
4099         struct drm_i915_gem_object *obj;
4100         enum i915_cache_level level;
4101         int ret;
4102
4103         switch (args->caching) {
4104         case I915_CACHING_NONE:
4105                 level = I915_CACHE_NONE;
4106                 break;
4107         case I915_CACHING_CACHED:
4108                 level = I915_CACHE_LLC;
4109                 break;
4110         case I915_CACHING_DISPLAY:
4111                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4112                 break;
4113         default:
4114                 return -EINVAL;
4115         }
4116
4117         ret = i915_mutex_lock_interruptible(dev);
4118         if (ret)
4119                 return ret;
4120
4121         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4122         if (&obj->base == NULL) {
4123                 ret = -ENOENT;
4124                 goto unlock;
4125         }
4126
4127         ret = i915_gem_object_set_cache_level(obj, level);
4128
4129         drm_gem_object_unreference(&obj->base);
4130 unlock:
4131         mutex_unlock(&dev->struct_mutex);
4132         return ret;
4133 }
4134
4135 /*
4136  * Prepare buffer for display plane (scanout, cursors, etc).
4137  * Can be called from an uninterruptible phase (modesetting) and allows
4138  * any flushes to be pipelined (for pageflips).
4139  */
4140 int
4141 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4142                                      u32 alignment,
4143                                      struct intel_engine_cs *pipelined,
4144                                      struct drm_i915_gem_request **pipelined_request,
4145                                      const struct i915_ggtt_view *view)
4146 {
4147         u32 old_read_domains, old_write_domain;
4148         int ret;
4149
4150         ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4151         if (ret)
4152                 return ret;
4153
4154         /* Mark the pin_display early so that we account for the
4155          * display coherency whilst setting up the cache domains.
4156          */
4157         obj->pin_display++;
4158
4159         /* The display engine is not coherent with the LLC cache on gen6.  As
4160          * a result, we make sure that the pinning that is about to occur is
4161          * done with uncached PTEs. This is lowest common denominator for all
4162          * chipsets.
4163          *
4164          * However for gen6+, we could do better by using the GFDT bit instead
4165          * of uncaching, which would allow us to flush all the LLC-cached data
4166          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4167          */
4168         ret = i915_gem_object_set_cache_level(obj,
4169                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4170         if (ret)
4171                 goto err_unpin_display;
4172
4173         /* As the user may map the buffer once pinned in the display plane
4174          * (e.g. libkms for the bootup splash), we have to ensure that we
4175          * always use map_and_fenceable for all scanout buffers.
4176          */
4177         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4178                                        view->type == I915_GGTT_VIEW_NORMAL ?
4179                                        PIN_MAPPABLE : 0);
4180         if (ret)
4181                 goto err_unpin_display;
4182
4183         i915_gem_object_flush_cpu_write_domain(obj);
4184
4185         old_write_domain = obj->base.write_domain;
4186         old_read_domains = obj->base.read_domains;
4187
4188         /* It should now be out of any other write domains, and we can update
4189          * the domain values for our changes.
4190          */
4191         obj->base.write_domain = 0;
4192         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4193
4194         trace_i915_gem_object_change_domain(obj,
4195                                             old_read_domains,
4196                                             old_write_domain);
4197
4198         return 0;
4199
4200 err_unpin_display:
4201         obj->pin_display--;
4202         return ret;
4203 }
4204
4205 void
4206 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4207                                          const struct i915_ggtt_view *view)
4208 {
4209         if (WARN_ON(obj->pin_display == 0))
4210                 return;
4211
4212         i915_gem_object_ggtt_unpin_view(obj, view);
4213
4214         obj->pin_display--;
4215 }
4216
4217 /**
4218  * Moves a single object to the CPU read, and possibly write domain.
4219  *
4220  * This function returns when the move is complete, including waiting on
4221  * flushes to occur.
4222  */
4223 int
4224 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4225 {
4226         uint32_t old_write_domain, old_read_domains;
4227         int ret;
4228
4229         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4230                 return 0;
4231
4232         ret = i915_gem_object_wait_rendering(obj, !write);
4233         if (ret)
4234                 return ret;
4235
4236         i915_gem_object_flush_gtt_write_domain(obj);
4237
4238         old_write_domain = obj->base.write_domain;
4239         old_read_domains = obj->base.read_domains;
4240
4241         /* Flush the CPU cache if it's still invalid. */
4242         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4243                 i915_gem_clflush_object(obj, false);
4244
4245                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4246         }
4247
4248         /* It should now be out of any other write domains, and we can update
4249          * the domain values for our changes.
4250          */
4251         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4252
4253         /* If we're writing through the CPU, then the GPU read domains will
4254          * need to be invalidated at next use.
4255          */
4256         if (write) {
4257                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4258                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4259         }
4260
4261         trace_i915_gem_object_change_domain(obj,
4262                                             old_read_domains,
4263                                             old_write_domain);
4264
4265         return 0;
4266 }
4267
4268 /* Throttle our rendering by waiting until the ring has completed our requests
4269  * emitted over 20 msec ago.
4270  *
4271  * Note that if we were to use the current jiffies each time around the loop,
4272  * we wouldn't escape the function with any frames outstanding if the time to
4273  * render a frame was over 20ms.
4274  *
4275  * This should get us reasonable parallelism between CPU and GPU but also
4276  * relatively low latency when blocking on a particular request to finish.
4277  */
4278 static int
4279 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4280 {
4281         struct drm_i915_private *dev_priv = dev->dev_private;
4282         struct drm_i915_file_private *file_priv = file->driver_priv;
4283         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4284         struct drm_i915_gem_request *request, *target = NULL;
4285         unsigned reset_counter;
4286         int ret;
4287
4288         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4289         if (ret)
4290                 return ret;
4291
4292         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4293         if (ret)
4294                 return ret;
4295
4296         spin_lock(&file_priv->mm.lock);
4297         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4298                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4299                         break;
4300
4301                 /*
4302                  * Note that the request might not have been submitted yet.
4303                  * In which case emitted_jiffies will be zero.
4304                  */
4305                 if (!request->emitted_jiffies)
4306                         continue;
4307
4308                 target = request;
4309         }
4310         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4311         if (target)
4312                 i915_gem_request_reference(target);
4313         spin_unlock(&file_priv->mm.lock);
4314
4315         if (target == NULL)
4316                 return 0;
4317
4318         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4319         if (ret == 0)
4320                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4321
4322         i915_gem_request_unreference__unlocked(target);
4323
4324         return ret;
4325 }
4326
4327 static bool
4328 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4329 {
4330         struct drm_i915_gem_object *obj = vma->obj;
4331
4332         if (alignment &&
4333             vma->node.start & (alignment - 1))
4334                 return true;
4335
4336         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4337                 return true;
4338
4339         if (flags & PIN_OFFSET_BIAS &&
4340             vma->node.start < (flags & PIN_OFFSET_MASK))
4341                 return true;
4342
4343         return false;
4344 }
4345
4346 static int
4347 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4348                        struct i915_address_space *vm,
4349                        const struct i915_ggtt_view *ggtt_view,
4350                        uint32_t alignment,
4351                        uint64_t flags)
4352 {
4353         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4354         struct i915_vma *vma;
4355         unsigned bound;
4356         int ret;
4357
4358         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4359                 return -ENODEV;
4360
4361         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4362                 return -EINVAL;
4363
4364         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4365                 return -EINVAL;
4366
4367         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4368                 return -EINVAL;
4369
4370         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4371                           i915_gem_obj_to_vma(obj, vm);
4372
4373         if (IS_ERR(vma))
4374                 return PTR_ERR(vma);
4375
4376         if (vma) {
4377                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4378                         return -EBUSY;
4379
4380                 if (i915_vma_misplaced(vma, alignment, flags)) {
4381                         unsigned long offset;
4382                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4383                                              i915_gem_obj_offset(obj, vm);
4384                         WARN(vma->pin_count,
4385                              "bo is already pinned in %s with incorrect alignment:"
4386                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4387                              " obj->map_and_fenceable=%d\n",
4388                              ggtt_view ? "ggtt" : "ppgtt",
4389                              offset,
4390                              alignment,
4391                              !!(flags & PIN_MAPPABLE),
4392                              obj->map_and_fenceable);
4393                         ret = i915_vma_unbind(vma);
4394                         if (ret)
4395                                 return ret;
4396
4397                         vma = NULL;
4398                 }
4399         }
4400
4401         bound = vma ? vma->bound : 0;
4402         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4403                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4404                                                  flags);
4405                 if (IS_ERR(vma))
4406                         return PTR_ERR(vma);
4407         } else {
4408                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4409                 if (ret)
4410                         return ret;
4411         }
4412
4413         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4414             (bound ^ vma->bound) & GLOBAL_BIND) {
4415                 bool mappable, fenceable;
4416                 u32 fence_size, fence_alignment;
4417
4418                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4419                                                    obj->base.size,
4420                                                    obj->tiling_mode);
4421                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4422                                                              obj->base.size,
4423                                                              obj->tiling_mode,
4424                                                              true);
4425
4426                 fenceable = (vma->node.size == fence_size &&
4427                              (vma->node.start & (fence_alignment - 1)) == 0);
4428
4429                 mappable = (vma->node.start + fence_size <=
4430                             dev_priv->gtt.mappable_end);
4431
4432                 obj->map_and_fenceable = mappable && fenceable;
4433
4434                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4435         }
4436
4437         vma->pin_count++;
4438         return 0;
4439 }
4440
4441 int
4442 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4443                     struct i915_address_space *vm,
4444                     uint32_t alignment,
4445                     uint64_t flags)
4446 {
4447         return i915_gem_object_do_pin(obj, vm,
4448                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4449                                       alignment, flags);
4450 }
4451
4452 int
4453 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4454                          const struct i915_ggtt_view *view,
4455                          uint32_t alignment,
4456                          uint64_t flags)
4457 {
4458         if (WARN_ONCE(!view, "no view specified"))
4459                 return -EINVAL;
4460
4461         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4462                                       alignment, flags | PIN_GLOBAL);
4463 }
4464
4465 void
4466 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4467                                 const struct i915_ggtt_view *view)
4468 {
4469         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4470
4471         BUG_ON(!vma);
4472         WARN_ON(vma->pin_count == 0);
4473         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4474
4475         --vma->pin_count;
4476 }
4477
4478 bool
4479 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4480 {
4481         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4482                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4483                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4484
4485                 WARN_ON(!ggtt_vma ||
4486                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4487                         ggtt_vma->pin_count);
4488                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4489                 return true;
4490         } else
4491                 return false;
4492 }
4493
4494 void
4495 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4496 {
4497         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4498                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4499                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4500                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4501         }
4502 }
4503
4504 int
4505 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4506                     struct drm_file *file)
4507 {
4508         struct drm_i915_gem_busy *args = data;
4509         struct drm_i915_gem_object *obj;
4510         int ret;
4511
4512         ret = i915_mutex_lock_interruptible(dev);
4513         if (ret)
4514                 return ret;
4515
4516         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4517         if (&obj->base == NULL) {
4518                 ret = -ENOENT;
4519                 goto unlock;
4520         }
4521
4522         /* Count all active objects as busy, even if they are currently not used
4523          * by the gpu. Users of this interface expect objects to eventually
4524          * become non-busy without any further actions, therefore emit any
4525          * necessary flushes here.
4526          */
4527         ret = i915_gem_object_flush_active(obj);
4528         if (ret)
4529                 goto unref;
4530
4531         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4532         args->busy = obj->active << 16;
4533         if (obj->last_write_req)
4534                 args->busy |= obj->last_write_req->ring->id;
4535
4536 unref:
4537         drm_gem_object_unreference(&obj->base);
4538 unlock:
4539         mutex_unlock(&dev->struct_mutex);
4540         return ret;
4541 }
4542
4543 int
4544 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4545                         struct drm_file *file_priv)
4546 {
4547         return i915_gem_ring_throttle(dev, file_priv);
4548 }
4549
4550 int
4551 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4552                        struct drm_file *file_priv)
4553 {
4554         struct drm_i915_private *dev_priv = dev->dev_private;
4555         struct drm_i915_gem_madvise *args = data;
4556         struct drm_i915_gem_object *obj;
4557         int ret;
4558
4559         switch (args->madv) {
4560         case I915_MADV_DONTNEED:
4561         case I915_MADV_WILLNEED:
4562             break;
4563         default:
4564             return -EINVAL;
4565         }
4566
4567         ret = i915_mutex_lock_interruptible(dev);
4568         if (ret)
4569                 return ret;
4570
4571         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4572         if (&obj->base == NULL) {
4573                 ret = -ENOENT;
4574                 goto unlock;
4575         }
4576
4577         if (i915_gem_obj_is_pinned(obj)) {
4578                 ret = -EINVAL;
4579                 goto out;
4580         }
4581
4582         if (obj->pages &&
4583             obj->tiling_mode != I915_TILING_NONE &&
4584             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4585                 if (obj->madv == I915_MADV_WILLNEED)
4586                         i915_gem_object_unpin_pages(obj);
4587                 if (args->madv == I915_MADV_WILLNEED)
4588                         i915_gem_object_pin_pages(obj);
4589         }
4590
4591         if (obj->madv != __I915_MADV_PURGED)
4592                 obj->madv = args->madv;
4593
4594         /* if the object is no longer attached, discard its backing storage */
4595         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4596                 i915_gem_object_truncate(obj);
4597
4598         args->retained = obj->madv != __I915_MADV_PURGED;
4599
4600 out:
4601         drm_gem_object_unreference(&obj->base);
4602 unlock:
4603         mutex_unlock(&dev->struct_mutex);
4604         return ret;
4605 }
4606
4607 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4608                           const struct drm_i915_gem_object_ops *ops)
4609 {
4610         int i;
4611
4612         INIT_LIST_HEAD(&obj->global_list);
4613         for (i = 0; i < I915_NUM_RINGS; i++)
4614                 INIT_LIST_HEAD(&obj->ring_list[i]);
4615         INIT_LIST_HEAD(&obj->obj_exec_link);
4616         INIT_LIST_HEAD(&obj->vma_list);
4617         INIT_LIST_HEAD(&obj->batch_pool_link);
4618
4619         obj->ops = ops;
4620
4621         obj->fence_reg = I915_FENCE_REG_NONE;
4622         obj->madv = I915_MADV_WILLNEED;
4623
4624         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4625 }
4626
4627 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4628         .get_pages = i915_gem_object_get_pages_gtt,
4629         .put_pages = i915_gem_object_put_pages_gtt,
4630 };
4631
4632 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4633                                                   size_t size)
4634 {
4635         struct drm_i915_gem_object *obj;
4636         struct address_space *mapping;
4637         gfp_t mask;
4638
4639         obj = i915_gem_object_alloc(dev);
4640         if (obj == NULL)
4641                 return NULL;
4642
4643         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4644                 i915_gem_object_free(obj);
4645                 return NULL;
4646         }
4647
4648         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4649         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4650                 /* 965gm cannot relocate objects above 4GiB. */
4651                 mask &= ~__GFP_HIGHMEM;
4652                 mask |= __GFP_DMA32;
4653         }
4654
4655         mapping = file_inode(obj->base.filp)->i_mapping;
4656         mapping_set_gfp_mask(mapping, mask);
4657
4658         i915_gem_object_init(obj, &i915_gem_object_ops);
4659
4660         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4661         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4662
4663         if (HAS_LLC(dev)) {
4664                 /* On some devices, we can have the GPU use the LLC (the CPU
4665                  * cache) for about a 10% performance improvement
4666                  * compared to uncached.  Graphics requests other than
4667                  * display scanout are coherent with the CPU in
4668                  * accessing this cache.  This means in this mode we
4669                  * don't need to clflush on the CPU side, and on the
4670                  * GPU side we only need to flush internal caches to
4671                  * get data visible to the CPU.
4672                  *
4673                  * However, we maintain the display planes as UC, and so
4674                  * need to rebind when first used as such.
4675                  */
4676                 obj->cache_level = I915_CACHE_LLC;
4677         } else
4678                 obj->cache_level = I915_CACHE_NONE;
4679
4680         trace_i915_gem_object_create(obj);
4681
4682         return obj;
4683 }
4684
4685 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4686 {
4687         /* If we are the last user of the backing storage (be it shmemfs
4688          * pages or stolen etc), we know that the pages are going to be
4689          * immediately released. In this case, we can then skip copying
4690          * back the contents from the GPU.
4691          */
4692
4693         if (obj->madv != I915_MADV_WILLNEED)
4694                 return false;
4695
4696         if (obj->base.filp == NULL)
4697                 return true;
4698
4699         /* At first glance, this looks racy, but then again so would be
4700          * userspace racing mmap against close. However, the first external
4701          * reference to the filp can only be obtained through the
4702          * i915_gem_mmap_ioctl() which safeguards us against the user
4703          * acquiring such a reference whilst we are in the middle of
4704          * freeing the object.
4705          */
4706         return atomic_long_read(&obj->base.filp->f_count) == 1;
4707 }
4708
4709 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4710 {
4711         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4712         struct drm_device *dev = obj->base.dev;
4713         struct drm_i915_private *dev_priv = dev->dev_private;
4714         struct i915_vma *vma, *next;
4715
4716         intel_runtime_pm_get(dev_priv);
4717
4718         trace_i915_gem_object_destroy(obj);
4719
4720         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4721                 int ret;
4722
4723                 vma->pin_count = 0;
4724                 ret = i915_vma_unbind(vma);
4725                 if (WARN_ON(ret == -ERESTARTSYS)) {
4726                         bool was_interruptible;
4727
4728                         was_interruptible = dev_priv->mm.interruptible;
4729                         dev_priv->mm.interruptible = false;
4730
4731                         WARN_ON(i915_vma_unbind(vma));
4732
4733                         dev_priv->mm.interruptible = was_interruptible;
4734                 }
4735         }
4736
4737         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4738          * before progressing. */
4739         if (obj->stolen)
4740                 i915_gem_object_unpin_pages(obj);
4741
4742         WARN_ON(obj->frontbuffer_bits);
4743
4744         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4745             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4746             obj->tiling_mode != I915_TILING_NONE)
4747                 i915_gem_object_unpin_pages(obj);
4748
4749         if (WARN_ON(obj->pages_pin_count))
4750                 obj->pages_pin_count = 0;
4751         if (discard_backing_storage(obj))
4752                 obj->madv = I915_MADV_DONTNEED;
4753         i915_gem_object_put_pages(obj);
4754         i915_gem_object_free_mmap_offset(obj);
4755
4756         BUG_ON(obj->pages);
4757
4758         if (obj->base.import_attach)
4759                 drm_prime_gem_destroy(&obj->base, NULL);
4760
4761         if (obj->ops->release)
4762                 obj->ops->release(obj);
4763
4764         drm_gem_object_release(&obj->base);
4765         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4766
4767         kfree(obj->bit_17);
4768         i915_gem_object_free(obj);
4769
4770         intel_runtime_pm_put(dev_priv);
4771 }
4772
4773 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4774                                      struct i915_address_space *vm)
4775 {
4776         struct i915_vma *vma;
4777         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4778                 if (i915_is_ggtt(vma->vm) &&
4779                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4780                         continue;
4781                 if (vma->vm == vm)
4782                         return vma;
4783         }
4784         return NULL;
4785 }
4786
4787 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4788                                            const struct i915_ggtt_view *view)
4789 {
4790         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4791         struct i915_vma *vma;
4792
4793         if (WARN_ONCE(!view, "no view specified"))
4794                 return ERR_PTR(-EINVAL);
4795
4796         list_for_each_entry(vma, &obj->vma_list, vma_link)
4797                 if (vma->vm == ggtt &&
4798                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4799                         return vma;
4800         return NULL;
4801 }
4802
4803 void i915_gem_vma_destroy(struct i915_vma *vma)
4804 {
4805         struct i915_address_space *vm = NULL;
4806         WARN_ON(vma->node.allocated);
4807
4808         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4809         if (!list_empty(&vma->exec_list))
4810                 return;
4811
4812         vm = vma->vm;
4813
4814         if (!i915_is_ggtt(vm))
4815                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4816
4817         list_del(&vma->vma_link);
4818
4819         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4820 }
4821
4822 static void
4823 i915_gem_stop_ringbuffers(struct drm_device *dev)
4824 {
4825         struct drm_i915_private *dev_priv = dev->dev_private;
4826         struct intel_engine_cs *ring;
4827         int i;
4828
4829         for_each_ring(ring, dev_priv, i)
4830                 dev_priv->gt.stop_ring(ring);
4831 }
4832
4833 int
4834 i915_gem_suspend(struct drm_device *dev)
4835 {
4836         struct drm_i915_private *dev_priv = dev->dev_private;
4837         int ret = 0;
4838
4839         mutex_lock(&dev->struct_mutex);
4840         ret = i915_gpu_idle(dev);
4841         if (ret)
4842                 goto err;
4843
4844         i915_gem_retire_requests(dev);
4845
4846         i915_gem_stop_ringbuffers(dev);
4847         mutex_unlock(&dev->struct_mutex);
4848
4849         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4850         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4851         flush_delayed_work(&dev_priv->mm.idle_work);
4852
4853         /* Assert that we sucessfully flushed all the work and
4854          * reset the GPU back to its idle, low power state.
4855          */
4856         WARN_ON(dev_priv->mm.busy);
4857
4858         return 0;
4859
4860 err:
4861         mutex_unlock(&dev->struct_mutex);
4862         return ret;
4863 }
4864
4865 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4866 {
4867         struct intel_engine_cs *ring = req->ring;
4868         struct drm_device *dev = ring->dev;
4869         struct drm_i915_private *dev_priv = dev->dev_private;
4870         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4871         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4872         int i, ret;
4873
4874         if (!HAS_L3_DPF(dev) || !remap_info)
4875                 return 0;
4876
4877         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4878         if (ret)
4879                 return ret;
4880
4881         /*
4882          * Note: We do not worry about the concurrent register cacheline hang
4883          * here because no other code should access these registers other than
4884          * at initialization time.
4885          */
4886         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4887                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4888                 intel_ring_emit(ring, reg_base + i);
4889                 intel_ring_emit(ring, remap_info[i/4]);
4890         }
4891
4892         intel_ring_advance(ring);
4893
4894         return ret;
4895 }
4896
4897 void i915_gem_init_swizzling(struct drm_device *dev)
4898 {
4899         struct drm_i915_private *dev_priv = dev->dev_private;
4900
4901         if (INTEL_INFO(dev)->gen < 5 ||
4902             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4903                 return;
4904
4905         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4906                                  DISP_TILE_SURFACE_SWIZZLING);
4907
4908         if (IS_GEN5(dev))
4909                 return;
4910
4911         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4912         if (IS_GEN6(dev))
4913                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4914         else if (IS_GEN7(dev))
4915                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4916         else if (IS_GEN8(dev))
4917                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4918         else
4919                 BUG();
4920 }
4921
4922 static bool
4923 intel_enable_blt(struct drm_device *dev)
4924 {
4925         if (!HAS_BLT(dev))
4926                 return false;
4927
4928         /* The blitter was dysfunctional on early prototypes */
4929         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4930                 DRM_INFO("BLT not supported on this pre-production hardware;"
4931                          " graphics performance will be degraded.\n");
4932                 return false;
4933         }
4934
4935         return true;
4936 }
4937
4938 static void init_unused_ring(struct drm_device *dev, u32 base)
4939 {
4940         struct drm_i915_private *dev_priv = dev->dev_private;
4941
4942         I915_WRITE(RING_CTL(base), 0);
4943         I915_WRITE(RING_HEAD(base), 0);
4944         I915_WRITE(RING_TAIL(base), 0);
4945         I915_WRITE(RING_START(base), 0);
4946 }
4947
4948 static void init_unused_rings(struct drm_device *dev)
4949 {
4950         if (IS_I830(dev)) {
4951                 init_unused_ring(dev, PRB1_BASE);
4952                 init_unused_ring(dev, SRB0_BASE);
4953                 init_unused_ring(dev, SRB1_BASE);
4954                 init_unused_ring(dev, SRB2_BASE);
4955                 init_unused_ring(dev, SRB3_BASE);
4956         } else if (IS_GEN2(dev)) {
4957                 init_unused_ring(dev, SRB0_BASE);
4958                 init_unused_ring(dev, SRB1_BASE);
4959         } else if (IS_GEN3(dev)) {
4960                 init_unused_ring(dev, PRB1_BASE);
4961                 init_unused_ring(dev, PRB2_BASE);
4962         }
4963 }
4964
4965 int i915_gem_init_rings(struct drm_device *dev)
4966 {
4967         struct drm_i915_private *dev_priv = dev->dev_private;
4968         int ret;
4969
4970         ret = intel_init_render_ring_buffer(dev);
4971         if (ret)
4972                 return ret;
4973
4974         if (HAS_BSD(dev)) {
4975                 ret = intel_init_bsd_ring_buffer(dev);
4976                 if (ret)
4977                         goto cleanup_render_ring;
4978         }
4979
4980         if (intel_enable_blt(dev)) {
4981                 ret = intel_init_blt_ring_buffer(dev);
4982                 if (ret)
4983                         goto cleanup_bsd_ring;
4984         }
4985
4986         if (HAS_VEBOX(dev)) {
4987                 ret = intel_init_vebox_ring_buffer(dev);
4988                 if (ret)
4989                         goto cleanup_blt_ring;
4990         }
4991
4992         if (HAS_BSD2(dev)) {
4993                 ret = intel_init_bsd2_ring_buffer(dev);
4994                 if (ret)
4995                         goto cleanup_vebox_ring;
4996         }
4997
4998         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4999         if (ret)
5000                 goto cleanup_bsd2_ring;
5001
5002         return 0;
5003
5004 cleanup_bsd2_ring:
5005         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
5006 cleanup_vebox_ring:
5007         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5008 cleanup_blt_ring:
5009         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5010 cleanup_bsd_ring:
5011         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5012 cleanup_render_ring:
5013         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5014
5015         return ret;
5016 }
5017
5018 int
5019 i915_gem_init_hw(struct drm_device *dev)
5020 {
5021         struct drm_i915_private *dev_priv = dev->dev_private;
5022         struct intel_engine_cs *ring;
5023         int ret, i, j;
5024
5025         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5026                 return -EIO;
5027
5028         /* Double layer security blanket, see i915_gem_init() */
5029         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5030
5031         if (dev_priv->ellc_size)
5032                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5033
5034         if (IS_HASWELL(dev))
5035                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5036                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5037
5038         if (HAS_PCH_NOP(dev)) {
5039                 if (IS_IVYBRIDGE(dev)) {
5040                         u32 temp = I915_READ(GEN7_MSG_CTL);
5041                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5042                         I915_WRITE(GEN7_MSG_CTL, temp);
5043                 } else if (INTEL_INFO(dev)->gen >= 7) {
5044                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5045                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5046                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5047                 }
5048         }
5049
5050         i915_gem_init_swizzling(dev);
5051
5052         /*
5053          * At least 830 can leave some of the unused rings
5054          * "active" (ie. head != tail) after resume which
5055          * will prevent c3 entry. Makes sure all unused rings
5056          * are totally idle.
5057          */
5058         init_unused_rings(dev);
5059
5060         BUG_ON(!dev_priv->ring[RCS].default_context);
5061
5062         ret = i915_ppgtt_init_hw(dev);
5063         if (ret) {
5064                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5065                 goto out;
5066         }
5067
5068         /* Need to do basic initialisation of all rings first: */
5069         for_each_ring(ring, dev_priv, i) {
5070                 ret = ring->init_hw(ring);
5071                 if (ret)
5072                         goto out;
5073         }
5074
5075         /* Now it is safe to go back round and do everything else: */
5076         for_each_ring(ring, dev_priv, i) {
5077                 struct drm_i915_gem_request *req;
5078
5079                 WARN_ON(!ring->default_context);
5080
5081                 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5082                 if (ret) {
5083                         i915_gem_cleanup_ringbuffer(dev);
5084                         goto out;
5085                 }
5086
5087                 if (ring->id == RCS) {
5088                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
5089                                 i915_gem_l3_remap(req, j);
5090                 }
5091
5092                 ret = i915_ppgtt_init_ring(req);
5093                 if (ret && ret != -EIO) {
5094                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5095                         i915_gem_request_cancel(req);
5096                         i915_gem_cleanup_ringbuffer(dev);
5097                         goto out;
5098                 }
5099
5100                 ret = i915_gem_context_enable(req);
5101                 if (ret && ret != -EIO) {
5102                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5103                         i915_gem_request_cancel(req);
5104                         i915_gem_cleanup_ringbuffer(dev);
5105                         goto out;
5106                 }
5107
5108                 i915_add_request_no_flush(req);
5109         }
5110
5111 out:
5112         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5113         return ret;
5114 }
5115
5116 int i915_gem_init(struct drm_device *dev)
5117 {
5118         struct drm_i915_private *dev_priv = dev->dev_private;
5119         int ret;
5120
5121         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5122                         i915.enable_execlists);
5123
5124         mutex_lock(&dev->struct_mutex);
5125
5126         if (IS_VALLEYVIEW(dev)) {
5127                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5128                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5129                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5130                               VLV_GTLC_ALLOWWAKEACK), 10))
5131                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5132         }
5133
5134         if (!i915.enable_execlists) {
5135                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5136                 dev_priv->gt.init_rings = i915_gem_init_rings;
5137                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5138                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5139         } else {
5140                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5141                 dev_priv->gt.init_rings = intel_logical_rings_init;
5142                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5143                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5144         }
5145
5146         /* This is just a security blanket to placate dragons.
5147          * On some systems, we very sporadically observe that the first TLBs
5148          * used by the CS may be stale, despite us poking the TLB reset. If
5149          * we hold the forcewake during initialisation these problems
5150          * just magically go away.
5151          */
5152         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5153
5154         ret = i915_gem_init_userptr(dev);
5155         if (ret)
5156                 goto out_unlock;
5157
5158         i915_gem_init_global_gtt(dev);
5159
5160         ret = i915_gem_context_init(dev);
5161         if (ret)
5162                 goto out_unlock;
5163
5164         ret = dev_priv->gt.init_rings(dev);
5165         if (ret)
5166                 goto out_unlock;
5167
5168         ret = i915_gem_init_hw(dev);
5169         if (ret == -EIO) {
5170                 /* Allow ring initialisation to fail by marking the GPU as
5171                  * wedged. But we only want to do this where the GPU is angry,
5172                  * for all other failure, such as an allocation failure, bail.
5173                  */
5174                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5175                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5176                 ret = 0;
5177         }
5178
5179 out_unlock:
5180         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5181         mutex_unlock(&dev->struct_mutex);
5182
5183         return ret;
5184 }
5185
5186 void
5187 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5188 {
5189         struct drm_i915_private *dev_priv = dev->dev_private;
5190         struct intel_engine_cs *ring;
5191         int i;
5192
5193         for_each_ring(ring, dev_priv, i)
5194                 dev_priv->gt.cleanup_ring(ring);
5195 }
5196
5197 static void
5198 init_ring_lists(struct intel_engine_cs *ring)
5199 {
5200         INIT_LIST_HEAD(&ring->active_list);
5201         INIT_LIST_HEAD(&ring->request_list);
5202 }
5203
5204 void i915_init_vm(struct drm_i915_private *dev_priv,
5205                   struct i915_address_space *vm)
5206 {
5207         if (!i915_is_ggtt(vm))
5208                 drm_mm_init(&vm->mm, vm->start, vm->total);
5209         vm->dev = dev_priv->dev;
5210         INIT_LIST_HEAD(&vm->active_list);
5211         INIT_LIST_HEAD(&vm->inactive_list);
5212         INIT_LIST_HEAD(&vm->global_link);
5213         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5214 }
5215
5216 void
5217 i915_gem_load(struct drm_device *dev)
5218 {
5219         struct drm_i915_private *dev_priv = dev->dev_private;
5220         int i;
5221
5222         dev_priv->objects =
5223                 kmem_cache_create("i915_gem_object",
5224                                   sizeof(struct drm_i915_gem_object), 0,
5225                                   SLAB_HWCACHE_ALIGN,
5226                                   NULL);
5227         dev_priv->vmas =
5228                 kmem_cache_create("i915_gem_vma",
5229                                   sizeof(struct i915_vma), 0,
5230                                   SLAB_HWCACHE_ALIGN,
5231                                   NULL);
5232         dev_priv->requests =
5233                 kmem_cache_create("i915_gem_request",
5234                                   sizeof(struct drm_i915_gem_request), 0,
5235                                   SLAB_HWCACHE_ALIGN,
5236                                   NULL);
5237
5238         INIT_LIST_HEAD(&dev_priv->vm_list);
5239         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5240
5241         INIT_LIST_HEAD(&dev_priv->context_list);
5242         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5243         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5244         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5245         for (i = 0; i < I915_NUM_RINGS; i++)
5246                 init_ring_lists(&dev_priv->ring[i]);
5247         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5248                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5249         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5250                           i915_gem_retire_work_handler);
5251         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5252                           i915_gem_idle_work_handler);
5253         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5254
5255         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5256
5257         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5258                 dev_priv->num_fence_regs = 32;
5259         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5260                 dev_priv->num_fence_regs = 16;
5261         else
5262                 dev_priv->num_fence_regs = 8;
5263
5264         if (intel_vgpu_active(dev))
5265                 dev_priv->num_fence_regs =
5266                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5267
5268         /* Initialize fence registers to zero */
5269         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5270         i915_gem_restore_fences(dev);
5271
5272         i915_gem_detect_bit_6_swizzle(dev);
5273         init_waitqueue_head(&dev_priv->pending_flip_queue);
5274
5275         dev_priv->mm.interruptible = true;
5276
5277         i915_gem_shrinker_init(dev_priv);
5278
5279         mutex_init(&dev_priv->fb_tracking.lock);
5280 }
5281
5282 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5283 {
5284         struct drm_i915_file_private *file_priv = file->driver_priv;
5285
5286         /* Clean up our request list when the client is going away, so that
5287          * later retire_requests won't dereference our soon-to-be-gone
5288          * file_priv.
5289          */
5290         spin_lock(&file_priv->mm.lock);
5291         while (!list_empty(&file_priv->mm.request_list)) {
5292                 struct drm_i915_gem_request *request;
5293
5294                 request = list_first_entry(&file_priv->mm.request_list,
5295                                            struct drm_i915_gem_request,
5296                                            client_list);
5297                 list_del(&request->client_list);
5298                 request->file_priv = NULL;
5299         }
5300         spin_unlock(&file_priv->mm.lock);
5301
5302         if (!list_empty(&file_priv->rps.link)) {
5303                 spin_lock(&to_i915(dev)->rps.client_lock);
5304                 list_del(&file_priv->rps.link);
5305                 spin_unlock(&to_i915(dev)->rps.client_lock);
5306         }
5307 }
5308
5309 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5310 {
5311         struct drm_i915_file_private *file_priv;
5312         int ret;
5313
5314         DRM_DEBUG_DRIVER("\n");
5315
5316         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5317         if (!file_priv)
5318                 return -ENOMEM;
5319
5320         file->driver_priv = file_priv;
5321         file_priv->dev_priv = dev->dev_private;
5322         file_priv->file = file;
5323         INIT_LIST_HEAD(&file_priv->rps.link);
5324
5325         spin_lock_init(&file_priv->mm.lock);
5326         INIT_LIST_HEAD(&file_priv->mm.request_list);
5327
5328         ret = i915_gem_context_open(dev, file);
5329         if (ret)
5330                 kfree(file_priv);
5331
5332         return ret;
5333 }
5334
5335 /**
5336  * i915_gem_track_fb - update frontbuffer tracking
5337  * old: current GEM buffer for the frontbuffer slots
5338  * new: new GEM buffer for the frontbuffer slots
5339  * frontbuffer_bits: bitmask of frontbuffer slots
5340  *
5341  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5342  * from @old and setting them in @new. Both @old and @new can be NULL.
5343  */
5344 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5345                        struct drm_i915_gem_object *new,
5346                        unsigned frontbuffer_bits)
5347 {
5348         if (old) {
5349                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5350                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5351                 old->frontbuffer_bits &= ~frontbuffer_bits;
5352         }
5353
5354         if (new) {
5355                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5356                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5357                 new->frontbuffer_bits |= frontbuffer_bits;
5358         }
5359 }
5360
5361 /* All the new VM stuff */
5362 unsigned long
5363 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5364                     struct i915_address_space *vm)
5365 {
5366         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5367         struct i915_vma *vma;
5368
5369         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5370
5371         list_for_each_entry(vma, &o->vma_list, vma_link) {
5372                 if (i915_is_ggtt(vma->vm) &&
5373                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5374                         continue;
5375                 if (vma->vm == vm)
5376                         return vma->node.start;
5377         }
5378
5379         WARN(1, "%s vma for this object not found.\n",
5380              i915_is_ggtt(vm) ? "global" : "ppgtt");
5381         return -1;
5382 }
5383
5384 unsigned long
5385 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5386                               const struct i915_ggtt_view *view)
5387 {
5388         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5389         struct i915_vma *vma;
5390
5391         list_for_each_entry(vma, &o->vma_list, vma_link)
5392                 if (vma->vm == ggtt &&
5393                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5394                         return vma->node.start;
5395
5396         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5397         return -1;
5398 }
5399
5400 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5401                         struct i915_address_space *vm)
5402 {
5403         struct i915_vma *vma;
5404
5405         list_for_each_entry(vma, &o->vma_list, vma_link) {
5406                 if (i915_is_ggtt(vma->vm) &&
5407                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5408                         continue;
5409                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5410                         return true;
5411         }
5412
5413         return false;
5414 }
5415
5416 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5417                                   const struct i915_ggtt_view *view)
5418 {
5419         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5420         struct i915_vma *vma;
5421
5422         list_for_each_entry(vma, &o->vma_list, vma_link)
5423                 if (vma->vm == ggtt &&
5424                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5425                     drm_mm_node_allocated(&vma->node))
5426                         return true;
5427
5428         return false;
5429 }
5430
5431 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5432 {
5433         struct i915_vma *vma;
5434
5435         list_for_each_entry(vma, &o->vma_list, vma_link)
5436                 if (drm_mm_node_allocated(&vma->node))
5437                         return true;
5438
5439         return false;
5440 }
5441
5442 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5443                                 struct i915_address_space *vm)
5444 {
5445         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5446         struct i915_vma *vma;
5447
5448         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5449
5450         BUG_ON(list_empty(&o->vma_list));
5451
5452         list_for_each_entry(vma, &o->vma_list, vma_link) {
5453                 if (i915_is_ggtt(vma->vm) &&
5454                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5455                         continue;
5456                 if (vma->vm == vm)
5457                         return vma->node.size;
5458         }
5459         return 0;
5460 }
5461
5462 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5463 {
5464         struct i915_vma *vma;
5465         list_for_each_entry(vma, &obj->vma_list, vma_link)
5466                 if (vma->pin_count > 0)
5467                         return true;
5468
5469         return false;
5470 }
5471