]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Create an init vm
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         spin_lock(&dev_priv->mm.object_stat_lock);
79         dev_priv->mm.object_count++;
80         dev_priv->mm.object_memory += size;
81         spin_unlock(&dev_priv->mm.object_stat_lock);
82 }
83
84 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
85                                      size_t size)
86 {
87         spin_lock(&dev_priv->mm.object_stat_lock);
88         dev_priv->mm.object_count--;
89         dev_priv->mm.object_memory -= size;
90         spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static int
94 i915_gem_wait_for_error(struct i915_gpu_error *error)
95 {
96         int ret;
97
98 #define EXIT_COND (!i915_reset_in_progress(error) || \
99                    i915_terminally_wedged(error))
100         if (EXIT_COND)
101                 return 0;
102
103         /*
104          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
105          * userspace. If it takes that long something really bad is going on and
106          * we should simply try to bail out and fail as gracefully as possible.
107          */
108         ret = wait_event_interruptible_timeout(error->reset_queue,
109                                                EXIT_COND,
110                                                10*HZ);
111         if (ret == 0) {
112                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
113                 return -EIO;
114         } else if (ret < 0) {
115                 return ret;
116         }
117 #undef EXIT_COND
118
119         return 0;
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124         struct drm_i915_private *dev_priv = dev->dev_private;
125         int ret;
126
127         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128         if (ret)
129                 return ret;
130
131         ret = mutex_lock_interruptible(&dev->struct_mutex);
132         if (ret)
133                 return ret;
134
135         WARN_ON(i915_verify_lists(dev));
136         return 0;
137 }
138
139 static inline bool
140 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
141 {
142         return i915_gem_obj_ggtt_bound(obj) && !obj->active;
143 }
144
145 int
146 i915_gem_init_ioctl(struct drm_device *dev, void *data,
147                     struct drm_file *file)
148 {
149         struct drm_i915_private *dev_priv = dev->dev_private;
150         struct drm_i915_gem_init *args = data;
151
152         if (drm_core_check_feature(dev, DRIVER_MODESET))
153                 return -ENODEV;
154
155         if (args->gtt_start >= args->gtt_end ||
156             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
157                 return -EINVAL;
158
159         /* GEM with user mode setting was never supported on ilk and later. */
160         if (INTEL_INFO(dev)->gen >= 5)
161                 return -ENODEV;
162
163         mutex_lock(&dev->struct_mutex);
164         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
165                                   args->gtt_end);
166         dev_priv->gtt.mappable_end = args->gtt_end;
167         mutex_unlock(&dev->struct_mutex);
168
169         return 0;
170 }
171
172 int
173 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174                             struct drm_file *file)
175 {
176         struct drm_i915_private *dev_priv = dev->dev_private;
177         struct drm_i915_gem_get_aperture *args = data;
178         struct drm_i915_gem_object *obj;
179         size_t pinned;
180
181         pinned = 0;
182         mutex_lock(&dev->struct_mutex);
183         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
184                 if (obj->pin_count)
185                         pinned += i915_gem_obj_ggtt_size(obj);
186         mutex_unlock(&dev->struct_mutex);
187
188         args->aper_size = dev_priv->gtt.base.total;
189         args->aper_available_size = args->aper_size - pinned;
190
191         return 0;
192 }
193
194 void *i915_gem_object_alloc(struct drm_device *dev)
195 {
196         struct drm_i915_private *dev_priv = dev->dev_private;
197         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
198 }
199
200 void i915_gem_object_free(struct drm_i915_gem_object *obj)
201 {
202         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
203         kmem_cache_free(dev_priv->slab, obj);
204 }
205
206 static int
207 i915_gem_create(struct drm_file *file,
208                 struct drm_device *dev,
209                 uint64_t size,
210                 uint32_t *handle_p)
211 {
212         struct drm_i915_gem_object *obj;
213         int ret;
214         u32 handle;
215
216         size = roundup(size, PAGE_SIZE);
217         if (size == 0)
218                 return -EINVAL;
219
220         /* Allocate the new object */
221         obj = i915_gem_alloc_object(dev, size);
222         if (obj == NULL)
223                 return -ENOMEM;
224
225         ret = drm_gem_handle_create(file, &obj->base, &handle);
226         /* drop reference from allocate - handle holds it now */
227         drm_gem_object_unreference_unlocked(&obj->base);
228         if (ret)
229                 return ret;
230
231         *handle_p = handle;
232         return 0;
233 }
234
235 int
236 i915_gem_dumb_create(struct drm_file *file,
237                      struct drm_device *dev,
238                      struct drm_mode_create_dumb *args)
239 {
240         /* have to work out size/pitch and return them */
241         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
242         args->size = args->pitch * args->height;
243         return i915_gem_create(file, dev,
244                                args->size, &args->handle);
245 }
246
247 int i915_gem_dumb_destroy(struct drm_file *file,
248                           struct drm_device *dev,
249                           uint32_t handle)
250 {
251         return drm_gem_handle_delete(file, handle);
252 }
253
254 /**
255  * Creates a new mm object and returns a handle to it.
256  */
257 int
258 i915_gem_create_ioctl(struct drm_device *dev, void *data,
259                       struct drm_file *file)
260 {
261         struct drm_i915_gem_create *args = data;
262
263         return i915_gem_create(file, dev,
264                                args->size, &args->handle);
265 }
266
267 static inline int
268 __copy_to_user_swizzled(char __user *cpu_vaddr,
269                         const char *gpu_vaddr, int gpu_offset,
270                         int length)
271 {
272         int ret, cpu_offset = 0;
273
274         while (length > 0) {
275                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
276                 int this_length = min(cacheline_end - gpu_offset, length);
277                 int swizzled_gpu_offset = gpu_offset ^ 64;
278
279                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
280                                      gpu_vaddr + swizzled_gpu_offset,
281                                      this_length);
282                 if (ret)
283                         return ret + length;
284
285                 cpu_offset += this_length;
286                 gpu_offset += this_length;
287                 length -= this_length;
288         }
289
290         return 0;
291 }
292
293 static inline int
294 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
295                           const char __user *cpu_vaddr,
296                           int length)
297 {
298         int ret, cpu_offset = 0;
299
300         while (length > 0) {
301                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
302                 int this_length = min(cacheline_end - gpu_offset, length);
303                 int swizzled_gpu_offset = gpu_offset ^ 64;
304
305                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
306                                        cpu_vaddr + cpu_offset,
307                                        this_length);
308                 if (ret)
309                         return ret + length;
310
311                 cpu_offset += this_length;
312                 gpu_offset += this_length;
313                 length -= this_length;
314         }
315
316         return 0;
317 }
318
319 /* Per-page copy function for the shmem pread fastpath.
320  * Flushes invalid cachelines before reading the target if
321  * needs_clflush is set. */
322 static int
323 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
324                  char __user *user_data,
325                  bool page_do_bit17_swizzling, bool needs_clflush)
326 {
327         char *vaddr;
328         int ret;
329
330         if (unlikely(page_do_bit17_swizzling))
331                 return -EINVAL;
332
333         vaddr = kmap_atomic(page);
334         if (needs_clflush)
335                 drm_clflush_virt_range(vaddr + shmem_page_offset,
336                                        page_length);
337         ret = __copy_to_user_inatomic(user_data,
338                                       vaddr + shmem_page_offset,
339                                       page_length);
340         kunmap_atomic(vaddr);
341
342         return ret ? -EFAULT : 0;
343 }
344
345 static void
346 shmem_clflush_swizzled_range(char *addr, unsigned long length,
347                              bool swizzled)
348 {
349         if (unlikely(swizzled)) {
350                 unsigned long start = (unsigned long) addr;
351                 unsigned long end = (unsigned long) addr + length;
352
353                 /* For swizzling simply ensure that we always flush both
354                  * channels. Lame, but simple and it works. Swizzled
355                  * pwrite/pread is far from a hotpath - current userspace
356                  * doesn't use it at all. */
357                 start = round_down(start, 128);
358                 end = round_up(end, 128);
359
360                 drm_clflush_virt_range((void *)start, end - start);
361         } else {
362                 drm_clflush_virt_range(addr, length);
363         }
364
365 }
366
367 /* Only difference to the fast-path function is that this can handle bit17
368  * and uses non-atomic copy and kmap functions. */
369 static int
370 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
371                  char __user *user_data,
372                  bool page_do_bit17_swizzling, bool needs_clflush)
373 {
374         char *vaddr;
375         int ret;
376
377         vaddr = kmap(page);
378         if (needs_clflush)
379                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
380                                              page_length,
381                                              page_do_bit17_swizzling);
382
383         if (page_do_bit17_swizzling)
384                 ret = __copy_to_user_swizzled(user_data,
385                                               vaddr, shmem_page_offset,
386                                               page_length);
387         else
388                 ret = __copy_to_user(user_data,
389                                      vaddr + shmem_page_offset,
390                                      page_length);
391         kunmap(page);
392
393         return ret ? - EFAULT : 0;
394 }
395
396 static int
397 i915_gem_shmem_pread(struct drm_device *dev,
398                      struct drm_i915_gem_object *obj,
399                      struct drm_i915_gem_pread *args,
400                      struct drm_file *file)
401 {
402         char __user *user_data;
403         ssize_t remain;
404         loff_t offset;
405         int shmem_page_offset, page_length, ret = 0;
406         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
407         int prefaulted = 0;
408         int needs_clflush = 0;
409         struct sg_page_iter sg_iter;
410
411         user_data = to_user_ptr(args->data_ptr);
412         remain = args->size;
413
414         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
415
416         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
417                 /* If we're not in the cpu read domain, set ourself into the gtt
418                  * read domain and manually flush cachelines (if required). This
419                  * optimizes for the case when the gpu will dirty the data
420                  * anyway again before the next pread happens. */
421                 if (obj->cache_level == I915_CACHE_NONE)
422                         needs_clflush = 1;
423                 if (i915_gem_obj_ggtt_bound(obj)) {
424                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
425                         if (ret)
426                                 return ret;
427                 }
428         }
429
430         ret = i915_gem_object_get_pages(obj);
431         if (ret)
432                 return ret;
433
434         i915_gem_object_pin_pages(obj);
435
436         offset = args->offset;
437
438         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
439                          offset >> PAGE_SHIFT) {
440                 struct page *page = sg_page_iter_page(&sg_iter);
441
442                 if (remain <= 0)
443                         break;
444
445                 /* Operation in this page
446                  *
447                  * shmem_page_offset = offset within page in shmem file
448                  * page_length = bytes to copy for this page
449                  */
450                 shmem_page_offset = offset_in_page(offset);
451                 page_length = remain;
452                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
453                         page_length = PAGE_SIZE - shmem_page_offset;
454
455                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
456                         (page_to_phys(page) & (1 << 17)) != 0;
457
458                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
459                                        user_data, page_do_bit17_swizzling,
460                                        needs_clflush);
461                 if (ret == 0)
462                         goto next_page;
463
464                 mutex_unlock(&dev->struct_mutex);
465
466                 if (likely(!i915_prefault_disable) && !prefaulted) {
467                         ret = fault_in_multipages_writeable(user_data, remain);
468                         /* Userspace is tricking us, but we've already clobbered
469                          * its pages with the prefault and promised to write the
470                          * data up to the first fault. Hence ignore any errors
471                          * and just continue. */
472                         (void)ret;
473                         prefaulted = 1;
474                 }
475
476                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
477                                        user_data, page_do_bit17_swizzling,
478                                        needs_clflush);
479
480                 mutex_lock(&dev->struct_mutex);
481
482 next_page:
483                 mark_page_accessed(page);
484
485                 if (ret)
486                         goto out;
487
488                 remain -= page_length;
489                 user_data += page_length;
490                 offset += page_length;
491         }
492
493 out:
494         i915_gem_object_unpin_pages(obj);
495
496         return ret;
497 }
498
499 /**
500  * Reads data from the object referenced by handle.
501  *
502  * On error, the contents of *data are undefined.
503  */
504 int
505 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
506                      struct drm_file *file)
507 {
508         struct drm_i915_gem_pread *args = data;
509         struct drm_i915_gem_object *obj;
510         int ret = 0;
511
512         if (args->size == 0)
513                 return 0;
514
515         if (!access_ok(VERIFY_WRITE,
516                        to_user_ptr(args->data_ptr),
517                        args->size))
518                 return -EFAULT;
519
520         ret = i915_mutex_lock_interruptible(dev);
521         if (ret)
522                 return ret;
523
524         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
525         if (&obj->base == NULL) {
526                 ret = -ENOENT;
527                 goto unlock;
528         }
529
530         /* Bounds check source.  */
531         if (args->offset > obj->base.size ||
532             args->size > obj->base.size - args->offset) {
533                 ret = -EINVAL;
534                 goto out;
535         }
536
537         /* prime objects have no backing filp to GEM pread/pwrite
538          * pages from.
539          */
540         if (!obj->base.filp) {
541                 ret = -EINVAL;
542                 goto out;
543         }
544
545         trace_i915_gem_object_pread(obj, args->offset, args->size);
546
547         ret = i915_gem_shmem_pread(dev, obj, args, file);
548
549 out:
550         drm_gem_object_unreference(&obj->base);
551 unlock:
552         mutex_unlock(&dev->struct_mutex);
553         return ret;
554 }
555
556 /* This is the fast write path which cannot handle
557  * page faults in the source data
558  */
559
560 static inline int
561 fast_user_write(struct io_mapping *mapping,
562                 loff_t page_base, int page_offset,
563                 char __user *user_data,
564                 int length)
565 {
566         void __iomem *vaddr_atomic;
567         void *vaddr;
568         unsigned long unwritten;
569
570         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
571         /* We can use the cpu mem copy function because this is X86. */
572         vaddr = (void __force*)vaddr_atomic + page_offset;
573         unwritten = __copy_from_user_inatomic_nocache(vaddr,
574                                                       user_data, length);
575         io_mapping_unmap_atomic(vaddr_atomic);
576         return unwritten;
577 }
578
579 /**
580  * This is the fast pwrite path, where we copy the data directly from the
581  * user into the GTT, uncached.
582  */
583 static int
584 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
585                          struct drm_i915_gem_object *obj,
586                          struct drm_i915_gem_pwrite *args,
587                          struct drm_file *file)
588 {
589         drm_i915_private_t *dev_priv = dev->dev_private;
590         ssize_t remain;
591         loff_t offset, page_base;
592         char __user *user_data;
593         int page_offset, page_length, ret;
594
595         ret = i915_gem_object_pin(obj, 0, true, true);
596         if (ret)
597                 goto out;
598
599         ret = i915_gem_object_set_to_gtt_domain(obj, true);
600         if (ret)
601                 goto out_unpin;
602
603         ret = i915_gem_object_put_fence(obj);
604         if (ret)
605                 goto out_unpin;
606
607         user_data = to_user_ptr(args->data_ptr);
608         remain = args->size;
609
610         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
611
612         while (remain > 0) {
613                 /* Operation in this page
614                  *
615                  * page_base = page offset within aperture
616                  * page_offset = offset within page
617                  * page_length = bytes to copy for this page
618                  */
619                 page_base = offset & PAGE_MASK;
620                 page_offset = offset_in_page(offset);
621                 page_length = remain;
622                 if ((page_offset + remain) > PAGE_SIZE)
623                         page_length = PAGE_SIZE - page_offset;
624
625                 /* If we get a fault while copying data, then (presumably) our
626                  * source page isn't available.  Return the error and we'll
627                  * retry in the slow path.
628                  */
629                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
630                                     page_offset, user_data, page_length)) {
631                         ret = -EFAULT;
632                         goto out_unpin;
633                 }
634
635                 remain -= page_length;
636                 user_data += page_length;
637                 offset += page_length;
638         }
639
640 out_unpin:
641         i915_gem_object_unpin(obj);
642 out:
643         return ret;
644 }
645
646 /* Per-page copy function for the shmem pwrite fastpath.
647  * Flushes invalid cachelines before writing to the target if
648  * needs_clflush_before is set and flushes out any written cachelines after
649  * writing if needs_clflush is set. */
650 static int
651 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
652                   char __user *user_data,
653                   bool page_do_bit17_swizzling,
654                   bool needs_clflush_before,
655                   bool needs_clflush_after)
656 {
657         char *vaddr;
658         int ret;
659
660         if (unlikely(page_do_bit17_swizzling))
661                 return -EINVAL;
662
663         vaddr = kmap_atomic(page);
664         if (needs_clflush_before)
665                 drm_clflush_virt_range(vaddr + shmem_page_offset,
666                                        page_length);
667         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
668                                                 user_data,
669                                                 page_length);
670         if (needs_clflush_after)
671                 drm_clflush_virt_range(vaddr + shmem_page_offset,
672                                        page_length);
673         kunmap_atomic(vaddr);
674
675         return ret ? -EFAULT : 0;
676 }
677
678 /* Only difference to the fast-path function is that this can handle bit17
679  * and uses non-atomic copy and kmap functions. */
680 static int
681 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
682                   char __user *user_data,
683                   bool page_do_bit17_swizzling,
684                   bool needs_clflush_before,
685                   bool needs_clflush_after)
686 {
687         char *vaddr;
688         int ret;
689
690         vaddr = kmap(page);
691         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
692                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
693                                              page_length,
694                                              page_do_bit17_swizzling);
695         if (page_do_bit17_swizzling)
696                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
697                                                 user_data,
698                                                 page_length);
699         else
700                 ret = __copy_from_user(vaddr + shmem_page_offset,
701                                        user_data,
702                                        page_length);
703         if (needs_clflush_after)
704                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
705                                              page_length,
706                                              page_do_bit17_swizzling);
707         kunmap(page);
708
709         return ret ? -EFAULT : 0;
710 }
711
712 static int
713 i915_gem_shmem_pwrite(struct drm_device *dev,
714                       struct drm_i915_gem_object *obj,
715                       struct drm_i915_gem_pwrite *args,
716                       struct drm_file *file)
717 {
718         ssize_t remain;
719         loff_t offset;
720         char __user *user_data;
721         int shmem_page_offset, page_length, ret = 0;
722         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
723         int hit_slowpath = 0;
724         int needs_clflush_after = 0;
725         int needs_clflush_before = 0;
726         struct sg_page_iter sg_iter;
727
728         user_data = to_user_ptr(args->data_ptr);
729         remain = args->size;
730
731         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
732
733         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
734                 /* If we're not in the cpu write domain, set ourself into the gtt
735                  * write domain and manually flush cachelines (if required). This
736                  * optimizes for the case when the gpu will use the data
737                  * right away and we therefore have to clflush anyway. */
738                 if (obj->cache_level == I915_CACHE_NONE)
739                         needs_clflush_after = 1;
740                 if (i915_gem_obj_ggtt_bound(obj)) {
741                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
742                         if (ret)
743                                 return ret;
744                 }
745         }
746         /* Same trick applies for invalidate partially written cachelines before
747          * writing.  */
748         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
749             && obj->cache_level == I915_CACHE_NONE)
750                 needs_clflush_before = 1;
751
752         ret = i915_gem_object_get_pages(obj);
753         if (ret)
754                 return ret;
755
756         i915_gem_object_pin_pages(obj);
757
758         offset = args->offset;
759         obj->dirty = 1;
760
761         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
762                          offset >> PAGE_SHIFT) {
763                 struct page *page = sg_page_iter_page(&sg_iter);
764                 int partial_cacheline_write;
765
766                 if (remain <= 0)
767                         break;
768
769                 /* Operation in this page
770                  *
771                  * shmem_page_offset = offset within page in shmem file
772                  * page_length = bytes to copy for this page
773                  */
774                 shmem_page_offset = offset_in_page(offset);
775
776                 page_length = remain;
777                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
778                         page_length = PAGE_SIZE - shmem_page_offset;
779
780                 /* If we don't overwrite a cacheline completely we need to be
781                  * careful to have up-to-date data by first clflushing. Don't
782                  * overcomplicate things and flush the entire patch. */
783                 partial_cacheline_write = needs_clflush_before &&
784                         ((shmem_page_offset | page_length)
785                                 & (boot_cpu_data.x86_clflush_size - 1));
786
787                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
788                         (page_to_phys(page) & (1 << 17)) != 0;
789
790                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
791                                         user_data, page_do_bit17_swizzling,
792                                         partial_cacheline_write,
793                                         needs_clflush_after);
794                 if (ret == 0)
795                         goto next_page;
796
797                 hit_slowpath = 1;
798                 mutex_unlock(&dev->struct_mutex);
799                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
800                                         user_data, page_do_bit17_swizzling,
801                                         partial_cacheline_write,
802                                         needs_clflush_after);
803
804                 mutex_lock(&dev->struct_mutex);
805
806 next_page:
807                 set_page_dirty(page);
808                 mark_page_accessed(page);
809
810                 if (ret)
811                         goto out;
812
813                 remain -= page_length;
814                 user_data += page_length;
815                 offset += page_length;
816         }
817
818 out:
819         i915_gem_object_unpin_pages(obj);
820
821         if (hit_slowpath) {
822                 /*
823                  * Fixup: Flush cpu caches in case we didn't flush the dirty
824                  * cachelines in-line while writing and the object moved
825                  * out of the cpu write domain while we've dropped the lock.
826                  */
827                 if (!needs_clflush_after &&
828                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
829                         i915_gem_clflush_object(obj);
830                         i915_gem_chipset_flush(dev);
831                 }
832         }
833
834         if (needs_clflush_after)
835                 i915_gem_chipset_flush(dev);
836
837         return ret;
838 }
839
840 /**
841  * Writes data to the object referenced by handle.
842  *
843  * On error, the contents of the buffer that were to be modified are undefined.
844  */
845 int
846 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
847                       struct drm_file *file)
848 {
849         struct drm_i915_gem_pwrite *args = data;
850         struct drm_i915_gem_object *obj;
851         int ret;
852
853         if (args->size == 0)
854                 return 0;
855
856         if (!access_ok(VERIFY_READ,
857                        to_user_ptr(args->data_ptr),
858                        args->size))
859                 return -EFAULT;
860
861         if (likely(!i915_prefault_disable)) {
862                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
863                                                    args->size);
864                 if (ret)
865                         return -EFAULT;
866         }
867
868         ret = i915_mutex_lock_interruptible(dev);
869         if (ret)
870                 return ret;
871
872         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873         if (&obj->base == NULL) {
874                 ret = -ENOENT;
875                 goto unlock;
876         }
877
878         /* Bounds check destination. */
879         if (args->offset > obj->base.size ||
880             args->size > obj->base.size - args->offset) {
881                 ret = -EINVAL;
882                 goto out;
883         }
884
885         /* prime objects have no backing filp to GEM pread/pwrite
886          * pages from.
887          */
888         if (!obj->base.filp) {
889                 ret = -EINVAL;
890                 goto out;
891         }
892
893         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895         ret = -EFAULT;
896         /* We can only do the GTT pwrite on untiled buffers, as otherwise
897          * it would end up going through the fenced access, and we'll get
898          * different detiling behavior between reading and writing.
899          * pread/pwrite currently are reading and writing from the CPU
900          * perspective, requiring manual detiling by the client.
901          */
902         if (obj->phys_obj) {
903                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904                 goto out;
905         }
906
907         if (obj->cache_level == I915_CACHE_NONE &&
908             obj->tiling_mode == I915_TILING_NONE &&
909             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911                 /* Note that the gtt paths might fail with non-page-backed user
912                  * pointers (e.g. gtt mappings when moving data between
913                  * textures). Fallback to the shmem path in that case. */
914         }
915
916         if (ret == -EFAULT || ret == -ENOSPC)
917                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920         drm_gem_object_unreference(&obj->base);
921 unlock:
922         mutex_unlock(&dev->struct_mutex);
923         return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928                      bool interruptible)
929 {
930         if (i915_reset_in_progress(error)) {
931                 /* Non-interruptible callers can't handle -EAGAIN, hence return
932                  * -EIO unconditionally for these. */
933                 if (!interruptible)
934                         return -EIO;
935
936                 /* Recovery complete, but the reset failed ... */
937                 if (i915_terminally_wedged(error))
938                         return -EIO;
939
940                 return -EAGAIN;
941         }
942
943         return 0;
944 }
945
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953         int ret;
954
955         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957         ret = 0;
958         if (seqno == ring->outstanding_lazy_request)
959                 ret = i915_add_request(ring, NULL);
960
961         return ret;
962 }
963
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983                         unsigned reset_counter,
984                         bool interruptible, struct timespec *timeout)
985 {
986         drm_i915_private_t *dev_priv = ring->dev->dev_private;
987         struct timespec before, now, wait_time={1,0};
988         unsigned long timeout_jiffies;
989         long end;
990         bool wait_forever = true;
991         int ret;
992
993         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994                 return 0;
995
996         trace_i915_gem_request_wait_begin(ring, seqno);
997
998         if (timeout != NULL) {
999                 wait_time = *timeout;
1000                 wait_forever = false;
1001         }
1002
1003         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005         if (WARN_ON(!ring->irq_get(ring)))
1006                 return -ENODEV;
1007
1008         /* Record current time in case interrupted by signal, or wedged * */
1009         getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013          i915_reset_in_progress(&dev_priv->gpu_error) || \
1014          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015         do {
1016                 if (interruptible)
1017                         end = wait_event_interruptible_timeout(ring->irq_queue,
1018                                                                EXIT_COND,
1019                                                                timeout_jiffies);
1020                 else
1021                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022                                                  timeout_jiffies);
1023
1024                 /* We need to check whether any gpu reset happened in between
1025                  * the caller grabbing the seqno and now ... */
1026                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027                         end = -EAGAIN;
1028
1029                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030                  * gone. */
1031                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032                 if (ret)
1033                         end = ret;
1034         } while (end == 0 && wait_forever);
1035
1036         getrawmonotonic(&now);
1037
1038         ring->irq_put(ring);
1039         trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042         if (timeout) {
1043                 struct timespec sleep_time = timespec_sub(now, before);
1044                 *timeout = timespec_sub(*timeout, sleep_time);
1045                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046                         set_normalized_timespec(timeout, 0, 0);
1047         }
1048
1049         switch (end) {
1050         case -EIO:
1051         case -EAGAIN: /* Wedged */
1052         case -ERESTARTSYS: /* Signal */
1053                 return (int)end;
1054         case 0: /* Timeout */
1055                 return -ETIME;
1056         default: /* Completed */
1057                 WARN_ON(end < 0); /* We're not aware of other errors */
1058                 return 0;
1059         }
1060 }
1061
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069         struct drm_device *dev = ring->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         bool interruptible = dev_priv->mm.interruptible;
1072         int ret;
1073
1074         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075         BUG_ON(seqno == 0);
1076
1077         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078         if (ret)
1079                 return ret;
1080
1081         ret = i915_gem_check_olr(ring, seqno);
1082         if (ret)
1083                 return ret;
1084
1085         return __wait_seqno(ring, seqno,
1086                             atomic_read(&dev_priv->gpu_error.reset_counter),
1087                             interruptible, NULL);
1088 }
1089
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092                                      struct intel_ring_buffer *ring)
1093 {
1094         i915_gem_retire_requests_ring(ring);
1095
1096         /* Manually manage the write flush as we may have not yet
1097          * retired the buffer.
1098          *
1099          * Note that the last_write_seqno is always the earlier of
1100          * the two (read/write) seqno, so if we haved successfully waited,
1101          * we know we have passed the last write.
1102          */
1103         obj->last_write_seqno = 0;
1104         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * Ensures that all rendering to the object has completed and the object is
1111  * safe to unbind from the GTT or access from the CPU.
1112  */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115                                bool readonly)
1116 {
1117         struct intel_ring_buffer *ring = obj->ring;
1118         u32 seqno;
1119         int ret;
1120
1121         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122         if (seqno == 0)
1123                 return 0;
1124
1125         ret = i915_wait_seqno(ring, seqno);
1126         if (ret)
1127                 return ret;
1128
1129         return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133  * as the object state may change during this call.
1134  */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137                                             bool readonly)
1138 {
1139         struct drm_device *dev = obj->base.dev;
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         struct intel_ring_buffer *ring = obj->ring;
1142         unsigned reset_counter;
1143         u32 seqno;
1144         int ret;
1145
1146         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147         BUG_ON(!dev_priv->mm.interruptible);
1148
1149         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150         if (seqno == 0)
1151                 return 0;
1152
1153         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154         if (ret)
1155                 return ret;
1156
1157         ret = i915_gem_check_olr(ring, seqno);
1158         if (ret)
1159                 return ret;
1160
1161         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162         mutex_unlock(&dev->struct_mutex);
1163         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164         mutex_lock(&dev->struct_mutex);
1165         if (ret)
1166                 return ret;
1167
1168         return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170
1171 /**
1172  * Called when user space prepares to use an object with the CPU, either
1173  * through the mmap ioctl's mapping or a GTT mapping.
1174  */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177                           struct drm_file *file)
1178 {
1179         struct drm_i915_gem_set_domain *args = data;
1180         struct drm_i915_gem_object *obj;
1181         uint32_t read_domains = args->read_domains;
1182         uint32_t write_domain = args->write_domain;
1183         int ret;
1184
1185         /* Only handle setting domains to types used by the CPU. */
1186         if (write_domain & I915_GEM_GPU_DOMAINS)
1187                 return -EINVAL;
1188
1189         if (read_domains & I915_GEM_GPU_DOMAINS)
1190                 return -EINVAL;
1191
1192         /* Having something in the write domain implies it's in the read
1193          * domain, and only that read domain.  Enforce that in the request.
1194          */
1195         if (write_domain != 0 && read_domains != write_domain)
1196                 return -EINVAL;
1197
1198         ret = i915_mutex_lock_interruptible(dev);
1199         if (ret)
1200                 return ret;
1201
1202         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203         if (&obj->base == NULL) {
1204                 ret = -ENOENT;
1205                 goto unlock;
1206         }
1207
1208         /* Try to flush the object off the GPU without holding the lock.
1209          * We will repeat the flush holding the lock in the normal manner
1210          * to catch cases where we are gazumped.
1211          */
1212         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213         if (ret)
1214                 goto unref;
1215
1216         if (read_domains & I915_GEM_DOMAIN_GTT) {
1217                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218
1219                 /* Silently promote "you're not bound, there was nothing to do"
1220                  * to success, since the client was just asking us to
1221                  * make sure everything was done.
1222                  */
1223                 if (ret == -EINVAL)
1224                         ret = 0;
1225         } else {
1226                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227         }
1228
1229 unref:
1230         drm_gem_object_unreference(&obj->base);
1231 unlock:
1232         mutex_unlock(&dev->struct_mutex);
1233         return ret;
1234 }
1235
1236 /**
1237  * Called when user space has done writes to this buffer
1238  */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241                          struct drm_file *file)
1242 {
1243         struct drm_i915_gem_sw_finish *args = data;
1244         struct drm_i915_gem_object *obj;
1245         int ret = 0;
1246
1247         ret = i915_mutex_lock_interruptible(dev);
1248         if (ret)
1249                 return ret;
1250
1251         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252         if (&obj->base == NULL) {
1253                 ret = -ENOENT;
1254                 goto unlock;
1255         }
1256
1257         /* Pinned buffers may be scanout, so flush the cache */
1258         if (obj->pin_count)
1259                 i915_gem_object_flush_cpu_write_domain(obj);
1260
1261         drm_gem_object_unreference(&obj->base);
1262 unlock:
1263         mutex_unlock(&dev->struct_mutex);
1264         return ret;
1265 }
1266
1267 /**
1268  * Maps the contents of an object, returning the address it is mapped
1269  * into.
1270  *
1271  * While the mapping holds a reference on the contents of the object, it doesn't
1272  * imply a ref on the object itself.
1273  */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276                     struct drm_file *file)
1277 {
1278         struct drm_i915_gem_mmap *args = data;
1279         struct drm_gem_object *obj;
1280         unsigned long addr;
1281
1282         obj = drm_gem_object_lookup(dev, file, args->handle);
1283         if (obj == NULL)
1284                 return -ENOENT;
1285
1286         /* prime objects have no backing filp to GEM mmap
1287          * pages from.
1288          */
1289         if (!obj->filp) {
1290                 drm_gem_object_unreference_unlocked(obj);
1291                 return -EINVAL;
1292         }
1293
1294         addr = vm_mmap(obj->filp, 0, args->size,
1295                        PROT_READ | PROT_WRITE, MAP_SHARED,
1296                        args->offset);
1297         drm_gem_object_unreference_unlocked(obj);
1298         if (IS_ERR((void *)addr))
1299                 return addr;
1300
1301         args->addr_ptr = (uint64_t) addr;
1302
1303         return 0;
1304 }
1305
1306 /**
1307  * i915_gem_fault - fault a page into the GTT
1308  * vma: VMA in question
1309  * vmf: fault info
1310  *
1311  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312  * from userspace.  The fault handler takes care of binding the object to
1313  * the GTT (if needed), allocating and programming a fence register (again,
1314  * only if needed based on whether the old reg is still valid or the object
1315  * is tiled) and inserting a new PTE into the faulting process.
1316  *
1317  * Note that the faulting process may involve evicting existing objects
1318  * from the GTT and/or fence registers to make room.  So performance may
1319  * suffer if the GTT working set is large or there are few fence registers
1320  * left.
1321  */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325         struct drm_device *dev = obj->base.dev;
1326         drm_i915_private_t *dev_priv = dev->dev_private;
1327         pgoff_t page_offset;
1328         unsigned long pfn;
1329         int ret = 0;
1330         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331
1332         /* We don't use vmf->pgoff since that has the fake offset */
1333         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334                 PAGE_SHIFT;
1335
1336         ret = i915_mutex_lock_interruptible(dev);
1337         if (ret)
1338                 goto out;
1339
1340         trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
1342         /* Access to snoopable pages through the GTT is incoherent. */
1343         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344                 ret = -EINVAL;
1345                 goto unlock;
1346         }
1347
1348         /* Now bind it into the GTT if needed */
1349         ret = i915_gem_object_pin(obj, 0, true, false);
1350         if (ret)
1351                 goto unlock;
1352
1353         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354         if (ret)
1355                 goto unpin;
1356
1357         ret = i915_gem_object_get_fence(obj);
1358         if (ret)
1359                 goto unpin;
1360
1361         obj->fault_mappable = true;
1362
1363         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1364         pfn >>= PAGE_SHIFT;
1365         pfn += page_offset;
1366
1367         /* Finally, remap it using the new GTT offset */
1368         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370         i915_gem_object_unpin(obj);
1371 unlock:
1372         mutex_unlock(&dev->struct_mutex);
1373 out:
1374         switch (ret) {
1375         case -EIO:
1376                 /* If this -EIO is due to a gpu hang, give the reset code a
1377                  * chance to clean up the mess. Otherwise return the proper
1378                  * SIGBUS. */
1379                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380                         return VM_FAULT_SIGBUS;
1381         case -EAGAIN:
1382                 /* Give the error handler a chance to run and move the
1383                  * objects off the GPU active list. Next time we service the
1384                  * fault, we should be able to transition the page into the
1385                  * GTT without touching the GPU (and so avoid further
1386                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387                  * with coherency, just lost writes.
1388                  */
1389                 set_need_resched();
1390         case 0:
1391         case -ERESTARTSYS:
1392         case -EINTR:
1393         case -EBUSY:
1394                 /*
1395                  * EBUSY is ok: this just means that another thread
1396                  * already did the job.
1397                  */
1398                 return VM_FAULT_NOPAGE;
1399         case -ENOMEM:
1400                 return VM_FAULT_OOM;
1401         case -ENOSPC:
1402                 return VM_FAULT_SIGBUS;
1403         default:
1404                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405                 return VM_FAULT_SIGBUS;
1406         }
1407 }
1408
1409 /**
1410  * i915_gem_release_mmap - remove physical page mappings
1411  * @obj: obj in question
1412  *
1413  * Preserve the reservation of the mmapping with the DRM core code, but
1414  * relinquish ownership of the pages back to the system.
1415  *
1416  * It is vital that we remove the page mapping if we have mapped a tiled
1417  * object through the GTT and then lose the fence register due to
1418  * resource pressure. Similarly if the object has been moved out of the
1419  * aperture, than pages mapped into userspace must be revoked. Removing the
1420  * mapping will then trigger a page fault on the next user access, allowing
1421  * fixup by i915_gem_fault().
1422  */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426         if (!obj->fault_mappable)
1427                 return;
1428
1429         if (obj->base.dev->dev_mapping)
1430                 unmap_mapping_range(obj->base.dev->dev_mapping,
1431                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432                                     obj->base.size, 1);
1433
1434         obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440         uint32_t gtt_size;
1441
1442         if (INTEL_INFO(dev)->gen >= 4 ||
1443             tiling_mode == I915_TILING_NONE)
1444                 return size;
1445
1446         /* Previous chips need a power-of-two fence region when tiling */
1447         if (INTEL_INFO(dev)->gen == 3)
1448                 gtt_size = 1024*1024;
1449         else
1450                 gtt_size = 512*1024;
1451
1452         while (gtt_size < size)
1453                 gtt_size <<= 1;
1454
1455         return gtt_size;
1456 }
1457
1458 /**
1459  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460  * @obj: object to check
1461  *
1462  * Return the required GTT alignment for an object, taking into account
1463  * potential fence register mapping.
1464  */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467                            int tiling_mode, bool fenced)
1468 {
1469         /*
1470          * Minimum alignment is 4k (GTT page size), but might be greater
1471          * if a fence register is needed for the object.
1472          */
1473         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474             tiling_mode == I915_TILING_NONE)
1475                 return 4096;
1476
1477         /*
1478          * Previous chips need to be aligned to the size of the smallest
1479          * fence register that can contain the object.
1480          */
1481         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487         int ret;
1488
1489         if (obj->base.map_list.map)
1490                 return 0;
1491
1492         dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494         ret = drm_gem_create_mmap_offset(&obj->base);
1495         if (ret != -ENOSPC)
1496                 goto out;
1497
1498         /* Badly fragmented mmap space? The only way we can recover
1499          * space is by destroying unwanted objects. We can't randomly release
1500          * mmap_offsets as userspace expects them to be persistent for the
1501          * lifetime of the objects. The closest we can is to release the
1502          * offsets on purgeable objects by truncating it and marking it purged,
1503          * which prevents userspace from ever using that object again.
1504          */
1505         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506         ret = drm_gem_create_mmap_offset(&obj->base);
1507         if (ret != -ENOSPC)
1508                 goto out;
1509
1510         i915_gem_shrink_all(dev_priv);
1511         ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513         dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515         return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520         if (!obj->base.map_list.map)
1521                 return;
1522
1523         drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528                   struct drm_device *dev,
1529                   uint32_t handle,
1530                   uint64_t *offset)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         struct drm_i915_gem_object *obj;
1534         int ret;
1535
1536         ret = i915_mutex_lock_interruptible(dev);
1537         if (ret)
1538                 return ret;
1539
1540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541         if (&obj->base == NULL) {
1542                 ret = -ENOENT;
1543                 goto unlock;
1544         }
1545
1546         if (obj->base.size > dev_priv->gtt.mappable_end) {
1547                 ret = -E2BIG;
1548                 goto out;
1549         }
1550
1551         if (obj->madv != I915_MADV_WILLNEED) {
1552                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553                 ret = -EINVAL;
1554                 goto out;
1555         }
1556
1557         ret = i915_gem_object_create_mmap_offset(obj);
1558         if (ret)
1559                 goto out;
1560
1561         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564         drm_gem_object_unreference(&obj->base);
1565 unlock:
1566         mutex_unlock(&dev->struct_mutex);
1567         return ret;
1568 }
1569
1570 /**
1571  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572  * @dev: DRM device
1573  * @data: GTT mapping ioctl data
1574  * @file: GEM object info
1575  *
1576  * Simply returns the fake offset to userspace so it can mmap it.
1577  * The mmap call will end up in drm_gem_mmap(), which will set things
1578  * up so we can get faults in the handler above.
1579  *
1580  * The fault handler will take care of binding the object into the GTT
1581  * (since it may have been evicted to make room for something), allocating
1582  * a fence register, and mapping the appropriate aperture address into
1583  * userspace.
1584  */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587                         struct drm_file *file)
1588 {
1589         struct drm_i915_gem_mmap_gtt *args = data;
1590
1591         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598         struct inode *inode;
1599
1600         i915_gem_object_free_mmap_offset(obj);
1601
1602         if (obj->base.filp == NULL)
1603                 return;
1604
1605         /* Our goal here is to return as much of the memory as
1606          * is possible back to the system as we are called from OOM.
1607          * To do this we must instruct the shmfs to drop all of its
1608          * backing pages, *now*.
1609          */
1610         inode = file_inode(obj->base.filp);
1611         shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613         obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619         return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625         struct sg_page_iter sg_iter;
1626         int ret;
1627
1628         BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631         if (ret) {
1632                 /* In the event of a disaster, abandon all caches and
1633                  * hope for the best.
1634                  */
1635                 WARN_ON(ret != -EIO);
1636                 i915_gem_clflush_object(obj);
1637                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638         }
1639
1640         if (i915_gem_object_needs_bit17_swizzle(obj))
1641                 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643         if (obj->madv == I915_MADV_DONTNEED)
1644                 obj->dirty = 0;
1645
1646         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647                 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649                 if (obj->dirty)
1650                         set_page_dirty(page);
1651
1652                 if (obj->madv == I915_MADV_WILLNEED)
1653                         mark_page_accessed(page);
1654
1655                 page_cache_release(page);
1656         }
1657         obj->dirty = 0;
1658
1659         sg_free_table(obj->pages);
1660         kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666         const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668         if (obj->pages == NULL)
1669                 return 0;
1670
1671         BUG_ON(i915_gem_obj_ggtt_bound(obj));
1672
1673         if (obj->pages_pin_count)
1674                 return -EBUSY;
1675
1676         /* ->put_pages might need to allocate memory for the bit17 swizzle
1677          * array, hence protect them from being reaped by removing them from gtt
1678          * lists early. */
1679         list_del(&obj->global_list);
1680
1681         ops->put_pages(obj);
1682         obj->pages = NULL;
1683
1684         if (i915_gem_object_is_purgeable(obj))
1685                 i915_gem_object_truncate(obj);
1686
1687         return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692                   bool purgeable_only)
1693 {
1694         struct drm_i915_gem_object *obj, *next;
1695         struct i915_address_space *vm = &dev_priv->gtt.base;
1696         long count = 0;
1697
1698         list_for_each_entry_safe(obj, next,
1699                                  &dev_priv->mm.unbound_list,
1700                                  global_list) {
1701                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1702                     i915_gem_object_put_pages(obj) == 0) {
1703                         count += obj->base.size >> PAGE_SHIFT;
1704                         if (count >= target)
1705                                 return count;
1706                 }
1707         }
1708
1709         list_for_each_entry_safe(obj, next, &vm->inactive_list, mm_list) {
1710                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1711                     i915_gem_object_unbind(obj) == 0 &&
1712                     i915_gem_object_put_pages(obj) == 0) {
1713                         count += obj->base.size >> PAGE_SHIFT;
1714                         if (count >= target)
1715                                 return count;
1716                 }
1717         }
1718
1719         return count;
1720 }
1721
1722 static long
1723 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724 {
1725         return __i915_gem_shrink(dev_priv, target, true);
1726 }
1727
1728 static void
1729 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730 {
1731         struct drm_i915_gem_object *obj, *next;
1732
1733         i915_gem_evict_everything(dev_priv->dev);
1734
1735         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736                                  global_list)
1737                 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744         int page_count, i;
1745         struct address_space *mapping;
1746         struct sg_table *st;
1747         struct scatterlist *sg;
1748         struct sg_page_iter sg_iter;
1749         struct page *page;
1750         unsigned long last_pfn = 0;     /* suppress gcc warning */
1751         gfp_t gfp;
1752
1753         /* Assert that the object is not currently in any GPU domain. As it
1754          * wasn't in the GTT, there shouldn't be any way it could have been in
1755          * a GPU cache
1756          */
1757         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760         st = kmalloc(sizeof(*st), GFP_KERNEL);
1761         if (st == NULL)
1762                 return -ENOMEM;
1763
1764         page_count = obj->base.size / PAGE_SIZE;
1765         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766                 sg_free_table(st);
1767                 kfree(st);
1768                 return -ENOMEM;
1769         }
1770
1771         /* Get the list of pages out of our struct file.  They'll be pinned
1772          * at this point until we release them.
1773          *
1774          * Fail silently without starting the shrinker
1775          */
1776         mapping = file_inode(obj->base.filp)->i_mapping;
1777         gfp = mapping_gfp_mask(mapping);
1778         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779         gfp &= ~(__GFP_IO | __GFP_WAIT);
1780         sg = st->sgl;
1781         st->nents = 0;
1782         for (i = 0; i < page_count; i++) {
1783                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784                 if (IS_ERR(page)) {
1785                         i915_gem_purge(dev_priv, page_count);
1786                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787                 }
1788                 if (IS_ERR(page)) {
1789                         /* We've tried hard to allocate the memory by reaping
1790                          * our own buffer, now let the real VM do its job and
1791                          * go down in flames if truly OOM.
1792                          */
1793                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794                         gfp |= __GFP_IO | __GFP_WAIT;
1795
1796                         i915_gem_shrink_all(dev_priv);
1797                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798                         if (IS_ERR(page))
1799                                 goto err_pages;
1800
1801                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1803                 }
1804 #ifdef CONFIG_SWIOTLB
1805                 if (swiotlb_nr_tbl()) {
1806                         st->nents++;
1807                         sg_set_page(sg, page, PAGE_SIZE, 0);
1808                         sg = sg_next(sg);
1809                         continue;
1810                 }
1811 #endif
1812                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813                         if (i)
1814                                 sg = sg_next(sg);
1815                         st->nents++;
1816                         sg_set_page(sg, page, PAGE_SIZE, 0);
1817                 } else {
1818                         sg->length += PAGE_SIZE;
1819                 }
1820                 last_pfn = page_to_pfn(page);
1821         }
1822 #ifdef CONFIG_SWIOTLB
1823         if (!swiotlb_nr_tbl())
1824 #endif
1825                 sg_mark_end(sg);
1826         obj->pages = st;
1827
1828         if (i915_gem_object_needs_bit17_swizzle(obj))
1829                 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831         return 0;
1832
1833 err_pages:
1834         sg_mark_end(sg);
1835         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836                 page_cache_release(sg_page_iter_page(&sg_iter));
1837         sg_free_table(st);
1838         kfree(st);
1839         return PTR_ERR(page);
1840 }
1841
1842 /* Ensure that the associated pages are gathered from the backing storage
1843  * and pinned into our object. i915_gem_object_get_pages() may be called
1844  * multiple times before they are released by a single call to
1845  * i915_gem_object_put_pages() - once the pages are no longer referenced
1846  * either as a result of memory pressure (reaping pages under the shrinker)
1847  * or as the object is itself released.
1848  */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853         const struct drm_i915_gem_object_ops *ops = obj->ops;
1854         int ret;
1855
1856         if (obj->pages)
1857                 return 0;
1858
1859         if (obj->madv != I915_MADV_WILLNEED) {
1860                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861                 return -EINVAL;
1862         }
1863
1864         BUG_ON(obj->pages_pin_count);
1865
1866         ret = ops->get_pages(obj);
1867         if (ret)
1868                 return ret;
1869
1870         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1871         return 0;
1872 }
1873
1874 void
1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876                                struct intel_ring_buffer *ring)
1877 {
1878         struct drm_device *dev = obj->base.dev;
1879         struct drm_i915_private *dev_priv = dev->dev_private;
1880         struct i915_address_space *vm = &dev_priv->gtt.base;
1881         u32 seqno = intel_ring_get_seqno(ring);
1882
1883         BUG_ON(ring == NULL);
1884         if (obj->ring != ring && obj->last_write_seqno) {
1885                 /* Keep the seqno relative to the current ring */
1886                 obj->last_write_seqno = seqno;
1887         }
1888         obj->ring = ring;
1889
1890         /* Add a reference if we're newly entering the active list. */
1891         if (!obj->active) {
1892                 drm_gem_object_reference(&obj->base);
1893                 obj->active = 1;
1894         }
1895
1896         /* Move from whatever list we were on to the tail of execution. */
1897         list_move_tail(&obj->mm_list, &vm->active_list);
1898         list_move_tail(&obj->ring_list, &ring->active_list);
1899
1900         obj->last_read_seqno = seqno;
1901
1902         if (obj->fenced_gpu_access) {
1903                 obj->last_fenced_seqno = seqno;
1904
1905                 /* Bump MRU to take account of the delayed flush */
1906                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1907                         struct drm_i915_fence_reg *reg;
1908
1909                         reg = &dev_priv->fence_regs[obj->fence_reg];
1910                         list_move_tail(&reg->lru_list,
1911                                        &dev_priv->mm.fence_list);
1912                 }
1913         }
1914 }
1915
1916 static void
1917 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1918 {
1919         struct drm_device *dev = obj->base.dev;
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct i915_address_space *vm = &dev_priv->gtt.base;
1922
1923         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1924         BUG_ON(!obj->active);
1925
1926         list_move_tail(&obj->mm_list, &vm->inactive_list);
1927
1928         list_del_init(&obj->ring_list);
1929         obj->ring = NULL;
1930
1931         obj->last_read_seqno = 0;
1932         obj->last_write_seqno = 0;
1933         obj->base.write_domain = 0;
1934
1935         obj->last_fenced_seqno = 0;
1936         obj->fenced_gpu_access = false;
1937
1938         obj->active = 0;
1939         drm_gem_object_unreference(&obj->base);
1940
1941         WARN_ON(i915_verify_lists(dev));
1942 }
1943
1944 static int
1945 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1946 {
1947         struct drm_i915_private *dev_priv = dev->dev_private;
1948         struct intel_ring_buffer *ring;
1949         int ret, i, j;
1950
1951         /* Carefully retire all requests without writing to the rings */
1952         for_each_ring(ring, dev_priv, i) {
1953                 ret = intel_ring_idle(ring);
1954                 if (ret)
1955                         return ret;
1956         }
1957         i915_gem_retire_requests(dev);
1958
1959         /* Finally reset hw state */
1960         for_each_ring(ring, dev_priv, i) {
1961                 intel_ring_init_seqno(ring, seqno);
1962
1963                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1964                         ring->sync_seqno[j] = 0;
1965         }
1966
1967         return 0;
1968 }
1969
1970 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1971 {
1972         struct drm_i915_private *dev_priv = dev->dev_private;
1973         int ret;
1974
1975         if (seqno == 0)
1976                 return -EINVAL;
1977
1978         /* HWS page needs to be set less than what we
1979          * will inject to ring
1980          */
1981         ret = i915_gem_init_seqno(dev, seqno - 1);
1982         if (ret)
1983                 return ret;
1984
1985         /* Carefully set the last_seqno value so that wrap
1986          * detection still works
1987          */
1988         dev_priv->next_seqno = seqno;
1989         dev_priv->last_seqno = seqno - 1;
1990         if (dev_priv->last_seqno == 0)
1991                 dev_priv->last_seqno--;
1992
1993         return 0;
1994 }
1995
1996 int
1997 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1998 {
1999         struct drm_i915_private *dev_priv = dev->dev_private;
2000
2001         /* reserve 0 for non-seqno */
2002         if (dev_priv->next_seqno == 0) {
2003                 int ret = i915_gem_init_seqno(dev, 0);
2004                 if (ret)
2005                         return ret;
2006
2007                 dev_priv->next_seqno = 1;
2008         }
2009
2010         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2011         return 0;
2012 }
2013
2014 int __i915_add_request(struct intel_ring_buffer *ring,
2015                        struct drm_file *file,
2016                        struct drm_i915_gem_object *obj,
2017                        u32 *out_seqno)
2018 {
2019         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2020         struct drm_i915_gem_request *request;
2021         u32 request_ring_position, request_start;
2022         int was_empty;
2023         int ret;
2024
2025         request_start = intel_ring_get_tail(ring);
2026         /*
2027          * Emit any outstanding flushes - execbuf can fail to emit the flush
2028          * after having emitted the batchbuffer command. Hence we need to fix
2029          * things up similar to emitting the lazy request. The difference here
2030          * is that the flush _must_ happen before the next request, no matter
2031          * what.
2032          */
2033         ret = intel_ring_flush_all_caches(ring);
2034         if (ret)
2035                 return ret;
2036
2037         request = kmalloc(sizeof(*request), GFP_KERNEL);
2038         if (request == NULL)
2039                 return -ENOMEM;
2040
2041
2042         /* Record the position of the start of the request so that
2043          * should we detect the updated seqno part-way through the
2044          * GPU processing the request, we never over-estimate the
2045          * position of the head.
2046          */
2047         request_ring_position = intel_ring_get_tail(ring);
2048
2049         ret = ring->add_request(ring);
2050         if (ret) {
2051                 kfree(request);
2052                 return ret;
2053         }
2054
2055         request->seqno = intel_ring_get_seqno(ring);
2056         request->ring = ring;
2057         request->head = request_start;
2058         request->tail = request_ring_position;
2059         request->ctx = ring->last_context;
2060         request->batch_obj = obj;
2061
2062         /* Whilst this request exists, batch_obj will be on the
2063          * active_list, and so will hold the active reference. Only when this
2064          * request is retired will the the batch_obj be moved onto the
2065          * inactive_list and lose its active reference. Hence we do not need
2066          * to explicitly hold another reference here.
2067          */
2068
2069         if (request->ctx)
2070                 i915_gem_context_reference(request->ctx);
2071
2072         request->emitted_jiffies = jiffies;
2073         was_empty = list_empty(&ring->request_list);
2074         list_add_tail(&request->list, &ring->request_list);
2075         request->file_priv = NULL;
2076
2077         if (file) {
2078                 struct drm_i915_file_private *file_priv = file->driver_priv;
2079
2080                 spin_lock(&file_priv->mm.lock);
2081                 request->file_priv = file_priv;
2082                 list_add_tail(&request->client_list,
2083                               &file_priv->mm.request_list);
2084                 spin_unlock(&file_priv->mm.lock);
2085         }
2086
2087         trace_i915_gem_request_add(ring, request->seqno);
2088         ring->outstanding_lazy_request = 0;
2089
2090         if (!dev_priv->ums.mm_suspended) {
2091                 i915_queue_hangcheck(ring->dev);
2092
2093                 if (was_empty) {
2094                         queue_delayed_work(dev_priv->wq,
2095                                            &dev_priv->mm.retire_work,
2096                                            round_jiffies_up_relative(HZ));
2097                         intel_mark_busy(dev_priv->dev);
2098                 }
2099         }
2100
2101         if (out_seqno)
2102                 *out_seqno = request->seqno;
2103         return 0;
2104 }
2105
2106 static inline void
2107 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2108 {
2109         struct drm_i915_file_private *file_priv = request->file_priv;
2110
2111         if (!file_priv)
2112                 return;
2113
2114         spin_lock(&file_priv->mm.lock);
2115         if (request->file_priv) {
2116                 list_del(&request->client_list);
2117                 request->file_priv = NULL;
2118         }
2119         spin_unlock(&file_priv->mm.lock);
2120 }
2121
2122 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2123 {
2124         if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2125             acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
2126                 return true;
2127
2128         return false;
2129 }
2130
2131 static bool i915_head_inside_request(const u32 acthd_unmasked,
2132                                      const u32 request_start,
2133                                      const u32 request_end)
2134 {
2135         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2136
2137         if (request_start < request_end) {
2138                 if (acthd >= request_start && acthd < request_end)
2139                         return true;
2140         } else if (request_start > request_end) {
2141                 if (acthd >= request_start || acthd < request_end)
2142                         return true;
2143         }
2144
2145         return false;
2146 }
2147
2148 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2149                                 const u32 acthd, bool *inside)
2150 {
2151         /* There is a possibility that unmasked head address
2152          * pointing inside the ring, matches the batch_obj address range.
2153          * However this is extremely unlikely.
2154          */
2155
2156         if (request->batch_obj) {
2157                 if (i915_head_inside_object(acthd, request->batch_obj)) {
2158                         *inside = true;
2159                         return true;
2160                 }
2161         }
2162
2163         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2164                 *inside = false;
2165                 return true;
2166         }
2167
2168         return false;
2169 }
2170
2171 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2172                                   struct drm_i915_gem_request *request,
2173                                   u32 acthd)
2174 {
2175         struct i915_ctx_hang_stats *hs = NULL;
2176         bool inside, guilty;
2177
2178         /* Innocent until proven guilty */
2179         guilty = false;
2180
2181         if (ring->hangcheck.action != wait &&
2182             i915_request_guilty(request, acthd, &inside)) {
2183                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2184                           ring->name,
2185                           inside ? "inside" : "flushing",
2186                           request->batch_obj ?
2187                           i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
2188                           request->ctx ? request->ctx->id : 0,
2189                           acthd);
2190
2191                 guilty = true;
2192         }
2193
2194         /* If contexts are disabled or this is the default context, use
2195          * file_priv->reset_state
2196          */
2197         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2198                 hs = &request->ctx->hang_stats;
2199         else if (request->file_priv)
2200                 hs = &request->file_priv->hang_stats;
2201
2202         if (hs) {
2203                 if (guilty)
2204                         hs->batch_active++;
2205                 else
2206                         hs->batch_pending++;
2207         }
2208 }
2209
2210 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2211 {
2212         list_del(&request->list);
2213         i915_gem_request_remove_from_client(request);
2214
2215         if (request->ctx)
2216                 i915_gem_context_unreference(request->ctx);
2217
2218         kfree(request);
2219 }
2220
2221 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2222                                       struct intel_ring_buffer *ring)
2223 {
2224         u32 completed_seqno;
2225         u32 acthd;
2226
2227         acthd = intel_ring_get_active_head(ring);
2228         completed_seqno = ring->get_seqno(ring, false);
2229
2230         while (!list_empty(&ring->request_list)) {
2231                 struct drm_i915_gem_request *request;
2232
2233                 request = list_first_entry(&ring->request_list,
2234                                            struct drm_i915_gem_request,
2235                                            list);
2236
2237                 if (request->seqno > completed_seqno)
2238                         i915_set_reset_status(ring, request, acthd);
2239
2240                 i915_gem_free_request(request);
2241         }
2242
2243         while (!list_empty(&ring->active_list)) {
2244                 struct drm_i915_gem_object *obj;
2245
2246                 obj = list_first_entry(&ring->active_list,
2247                                        struct drm_i915_gem_object,
2248                                        ring_list);
2249
2250                 i915_gem_object_move_to_inactive(obj);
2251         }
2252 }
2253
2254 void i915_gem_restore_fences(struct drm_device *dev)
2255 {
2256         struct drm_i915_private *dev_priv = dev->dev_private;
2257         int i;
2258
2259         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2260                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2261
2262                 /*
2263                  * Commit delayed tiling changes if we have an object still
2264                  * attached to the fence, otherwise just clear the fence.
2265                  */
2266                 if (reg->obj) {
2267                         i915_gem_object_update_fence(reg->obj, reg,
2268                                                      reg->obj->tiling_mode);
2269                 } else {
2270                         i915_gem_write_fence(dev, i, NULL);
2271                 }
2272         }
2273 }
2274
2275 void i915_gem_reset(struct drm_device *dev)
2276 {
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278         struct i915_address_space *vm = &dev_priv->gtt.base;
2279         struct drm_i915_gem_object *obj;
2280         struct intel_ring_buffer *ring;
2281         int i;
2282
2283         for_each_ring(ring, dev_priv, i)
2284                 i915_gem_reset_ring_lists(dev_priv, ring);
2285
2286         /* Move everything out of the GPU domains to ensure we do any
2287          * necessary invalidation upon reuse.
2288          */
2289         list_for_each_entry(obj, &vm->inactive_list, mm_list)
2290                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2291
2292         i915_gem_restore_fences(dev);
2293 }
2294
2295 /**
2296  * This function clears the request list as sequence numbers are passed.
2297  */
2298 void
2299 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2300 {
2301         uint32_t seqno;
2302
2303         if (list_empty(&ring->request_list))
2304                 return;
2305
2306         WARN_ON(i915_verify_lists(ring->dev));
2307
2308         seqno = ring->get_seqno(ring, true);
2309
2310         while (!list_empty(&ring->request_list)) {
2311                 struct drm_i915_gem_request *request;
2312
2313                 request = list_first_entry(&ring->request_list,
2314                                            struct drm_i915_gem_request,
2315                                            list);
2316
2317                 if (!i915_seqno_passed(seqno, request->seqno))
2318                         break;
2319
2320                 trace_i915_gem_request_retire(ring, request->seqno);
2321                 /* We know the GPU must have read the request to have
2322                  * sent us the seqno + interrupt, so use the position
2323                  * of tail of the request to update the last known position
2324                  * of the GPU head.
2325                  */
2326                 ring->last_retired_head = request->tail;
2327
2328                 i915_gem_free_request(request);
2329         }
2330
2331         /* Move any buffers on the active list that are no longer referenced
2332          * by the ringbuffer to the flushing/inactive lists as appropriate.
2333          */
2334         while (!list_empty(&ring->active_list)) {
2335                 struct drm_i915_gem_object *obj;
2336
2337                 obj = list_first_entry(&ring->active_list,
2338                                       struct drm_i915_gem_object,
2339                                       ring_list);
2340
2341                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2342                         break;
2343
2344                 i915_gem_object_move_to_inactive(obj);
2345         }
2346
2347         if (unlikely(ring->trace_irq_seqno &&
2348                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2349                 ring->irq_put(ring);
2350                 ring->trace_irq_seqno = 0;
2351         }
2352
2353         WARN_ON(i915_verify_lists(ring->dev));
2354 }
2355
2356 void
2357 i915_gem_retire_requests(struct drm_device *dev)
2358 {
2359         drm_i915_private_t *dev_priv = dev->dev_private;
2360         struct intel_ring_buffer *ring;
2361         int i;
2362
2363         for_each_ring(ring, dev_priv, i)
2364                 i915_gem_retire_requests_ring(ring);
2365 }
2366
2367 static void
2368 i915_gem_retire_work_handler(struct work_struct *work)
2369 {
2370         drm_i915_private_t *dev_priv;
2371         struct drm_device *dev;
2372         struct intel_ring_buffer *ring;
2373         bool idle;
2374         int i;
2375
2376         dev_priv = container_of(work, drm_i915_private_t,
2377                                 mm.retire_work.work);
2378         dev = dev_priv->dev;
2379
2380         /* Come back later if the device is busy... */
2381         if (!mutex_trylock(&dev->struct_mutex)) {
2382                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2383                                    round_jiffies_up_relative(HZ));
2384                 return;
2385         }
2386
2387         i915_gem_retire_requests(dev);
2388
2389         /* Send a periodic flush down the ring so we don't hold onto GEM
2390          * objects indefinitely.
2391          */
2392         idle = true;
2393         for_each_ring(ring, dev_priv, i) {
2394                 if (ring->gpu_caches_dirty)
2395                         i915_add_request(ring, NULL);
2396
2397                 idle &= list_empty(&ring->request_list);
2398         }
2399
2400         if (!dev_priv->ums.mm_suspended && !idle)
2401                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2402                                    round_jiffies_up_relative(HZ));
2403         if (idle)
2404                 intel_mark_idle(dev);
2405
2406         mutex_unlock(&dev->struct_mutex);
2407 }
2408
2409 /**
2410  * Ensures that an object will eventually get non-busy by flushing any required
2411  * write domains, emitting any outstanding lazy request and retiring and
2412  * completed requests.
2413  */
2414 static int
2415 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2416 {
2417         int ret;
2418
2419         if (obj->active) {
2420                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2421                 if (ret)
2422                         return ret;
2423
2424                 i915_gem_retire_requests_ring(obj->ring);
2425         }
2426
2427         return 0;
2428 }
2429
2430 /**
2431  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2432  * @DRM_IOCTL_ARGS: standard ioctl arguments
2433  *
2434  * Returns 0 if successful, else an error is returned with the remaining time in
2435  * the timeout parameter.
2436  *  -ETIME: object is still busy after timeout
2437  *  -ERESTARTSYS: signal interrupted the wait
2438  *  -ENONENT: object doesn't exist
2439  * Also possible, but rare:
2440  *  -EAGAIN: GPU wedged
2441  *  -ENOMEM: damn
2442  *  -ENODEV: Internal IRQ fail
2443  *  -E?: The add request failed
2444  *
2445  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2446  * non-zero timeout parameter the wait ioctl will wait for the given number of
2447  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2448  * without holding struct_mutex the object may become re-busied before this
2449  * function completes. A similar but shorter * race condition exists in the busy
2450  * ioctl
2451  */
2452 int
2453 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2454 {
2455         drm_i915_private_t *dev_priv = dev->dev_private;
2456         struct drm_i915_gem_wait *args = data;
2457         struct drm_i915_gem_object *obj;
2458         struct intel_ring_buffer *ring = NULL;
2459         struct timespec timeout_stack, *timeout = NULL;
2460         unsigned reset_counter;
2461         u32 seqno = 0;
2462         int ret = 0;
2463
2464         if (args->timeout_ns >= 0) {
2465                 timeout_stack = ns_to_timespec(args->timeout_ns);
2466                 timeout = &timeout_stack;
2467         }
2468
2469         ret = i915_mutex_lock_interruptible(dev);
2470         if (ret)
2471                 return ret;
2472
2473         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2474         if (&obj->base == NULL) {
2475                 mutex_unlock(&dev->struct_mutex);
2476                 return -ENOENT;
2477         }
2478
2479         /* Need to make sure the object gets inactive eventually. */
2480         ret = i915_gem_object_flush_active(obj);
2481         if (ret)
2482                 goto out;
2483
2484         if (obj->active) {
2485                 seqno = obj->last_read_seqno;
2486                 ring = obj->ring;
2487         }
2488
2489         if (seqno == 0)
2490                  goto out;
2491
2492         /* Do this after OLR check to make sure we make forward progress polling
2493          * on this IOCTL with a 0 timeout (like busy ioctl)
2494          */
2495         if (!args->timeout_ns) {
2496                 ret = -ETIME;
2497                 goto out;
2498         }
2499
2500         drm_gem_object_unreference(&obj->base);
2501         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2502         mutex_unlock(&dev->struct_mutex);
2503
2504         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2505         if (timeout)
2506                 args->timeout_ns = timespec_to_ns(timeout);
2507         return ret;
2508
2509 out:
2510         drm_gem_object_unreference(&obj->base);
2511         mutex_unlock(&dev->struct_mutex);
2512         return ret;
2513 }
2514
2515 /**
2516  * i915_gem_object_sync - sync an object to a ring.
2517  *
2518  * @obj: object which may be in use on another ring.
2519  * @to: ring we wish to use the object on. May be NULL.
2520  *
2521  * This code is meant to abstract object synchronization with the GPU.
2522  * Calling with NULL implies synchronizing the object with the CPU
2523  * rather than a particular GPU ring.
2524  *
2525  * Returns 0 if successful, else propagates up the lower layer error.
2526  */
2527 int
2528 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2529                      struct intel_ring_buffer *to)
2530 {
2531         struct intel_ring_buffer *from = obj->ring;
2532         u32 seqno;
2533         int ret, idx;
2534
2535         if (from == NULL || to == from)
2536                 return 0;
2537
2538         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2539                 return i915_gem_object_wait_rendering(obj, false);
2540
2541         idx = intel_ring_sync_index(from, to);
2542
2543         seqno = obj->last_read_seqno;
2544         if (seqno <= from->sync_seqno[idx])
2545                 return 0;
2546
2547         ret = i915_gem_check_olr(obj->ring, seqno);
2548         if (ret)
2549                 return ret;
2550
2551         ret = to->sync_to(to, from, seqno);
2552         if (!ret)
2553                 /* We use last_read_seqno because sync_to()
2554                  * might have just caused seqno wrap under
2555                  * the radar.
2556                  */
2557                 from->sync_seqno[idx] = obj->last_read_seqno;
2558
2559         return ret;
2560 }
2561
2562 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2563 {
2564         u32 old_write_domain, old_read_domains;
2565
2566         /* Force a pagefault for domain tracking on next user access */
2567         i915_gem_release_mmap(obj);
2568
2569         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2570                 return;
2571
2572         /* Wait for any direct GTT access to complete */
2573         mb();
2574
2575         old_read_domains = obj->base.read_domains;
2576         old_write_domain = obj->base.write_domain;
2577
2578         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2579         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2580
2581         trace_i915_gem_object_change_domain(obj,
2582                                             old_read_domains,
2583                                             old_write_domain);
2584 }
2585
2586 /**
2587  * Unbinds an object from the GTT aperture.
2588  */
2589 int
2590 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2591 {
2592         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2593         struct i915_vma *vma;
2594         int ret;
2595
2596         if (!i915_gem_obj_ggtt_bound(obj))
2597                 return 0;
2598
2599         if (obj->pin_count)
2600                 return -EBUSY;
2601
2602         BUG_ON(obj->pages == NULL);
2603
2604         ret = i915_gem_object_finish_gpu(obj);
2605         if (ret)
2606                 return ret;
2607         /* Continue on if we fail due to EIO, the GPU is hung so we
2608          * should be safe and we need to cleanup or else we might
2609          * cause memory corruption through use-after-free.
2610          */
2611
2612         i915_gem_object_finish_gtt(obj);
2613
2614         /* release the fence reg _after_ flushing */
2615         ret = i915_gem_object_put_fence(obj);
2616         if (ret)
2617                 return ret;
2618
2619         trace_i915_gem_object_unbind(obj);
2620
2621         if (obj->has_global_gtt_mapping)
2622                 i915_gem_gtt_unbind_object(obj);
2623         if (obj->has_aliasing_ppgtt_mapping) {
2624                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2625                 obj->has_aliasing_ppgtt_mapping = 0;
2626         }
2627         i915_gem_gtt_finish_object(obj);
2628         i915_gem_object_unpin_pages(obj);
2629
2630         list_del(&obj->mm_list);
2631         /* Avoid an unnecessary call to unbind on rebind. */
2632         obj->map_and_fenceable = true;
2633
2634         vma = __i915_gem_obj_to_vma(obj);
2635         list_del(&vma->vma_link);
2636         drm_mm_remove_node(&vma->node);
2637         i915_gem_vma_destroy(vma);
2638
2639         /* Since the unbound list is global, only move to that list if
2640          * no more VMAs exist.
2641          * NB: Until we have real VMAs there will only ever be one */
2642         WARN_ON(!list_empty(&obj->vma_list));
2643         if (list_empty(&obj->vma_list))
2644                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2645
2646         return 0;
2647 }
2648
2649 int i915_gpu_idle(struct drm_device *dev)
2650 {
2651         drm_i915_private_t *dev_priv = dev->dev_private;
2652         struct intel_ring_buffer *ring;
2653         int ret, i;
2654
2655         /* Flush everything onto the inactive list. */
2656         for_each_ring(ring, dev_priv, i) {
2657                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2658                 if (ret)
2659                         return ret;
2660
2661                 ret = intel_ring_idle(ring);
2662                 if (ret)
2663                         return ret;
2664         }
2665
2666         return 0;
2667 }
2668
2669 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2670                                  struct drm_i915_gem_object *obj)
2671 {
2672         drm_i915_private_t *dev_priv = dev->dev_private;
2673         int fence_reg;
2674         int fence_pitch_shift;
2675
2676         if (INTEL_INFO(dev)->gen >= 6) {
2677                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2678                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2679         } else {
2680                 fence_reg = FENCE_REG_965_0;
2681                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2682         }
2683
2684         fence_reg += reg * 8;
2685
2686         /* To w/a incoherency with non-atomic 64-bit register updates,
2687          * we split the 64-bit update into two 32-bit writes. In order
2688          * for a partial fence not to be evaluated between writes, we
2689          * precede the update with write to turn off the fence register,
2690          * and only enable the fence as the last step.
2691          *
2692          * For extra levels of paranoia, we make sure each step lands
2693          * before applying the next step.
2694          */
2695         I915_WRITE(fence_reg, 0);
2696         POSTING_READ(fence_reg);
2697
2698         if (obj) {
2699                 u32 size = i915_gem_obj_ggtt_size(obj);
2700                 uint64_t val;
2701
2702                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2703                                  0xfffff000) << 32;
2704                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2705                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2706                 if (obj->tiling_mode == I915_TILING_Y)
2707                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2708                 val |= I965_FENCE_REG_VALID;
2709
2710                 I915_WRITE(fence_reg + 4, val >> 32);
2711                 POSTING_READ(fence_reg + 4);
2712
2713                 I915_WRITE(fence_reg + 0, val);
2714                 POSTING_READ(fence_reg);
2715         } else {
2716                 I915_WRITE(fence_reg + 4, 0);
2717                 POSTING_READ(fence_reg + 4);
2718         }
2719 }
2720
2721 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2722                                  struct drm_i915_gem_object *obj)
2723 {
2724         drm_i915_private_t *dev_priv = dev->dev_private;
2725         u32 val;
2726
2727         if (obj) {
2728                 u32 size = i915_gem_obj_ggtt_size(obj);
2729                 int pitch_val;
2730                 int tile_width;
2731
2732                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2733                      (size & -size) != size ||
2734                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2735                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2736                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2737
2738                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2739                         tile_width = 128;
2740                 else
2741                         tile_width = 512;
2742
2743                 /* Note: pitch better be a power of two tile widths */
2744                 pitch_val = obj->stride / tile_width;
2745                 pitch_val = ffs(pitch_val) - 1;
2746
2747                 val = i915_gem_obj_ggtt_offset(obj);
2748                 if (obj->tiling_mode == I915_TILING_Y)
2749                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2750                 val |= I915_FENCE_SIZE_BITS(size);
2751                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2752                 val |= I830_FENCE_REG_VALID;
2753         } else
2754                 val = 0;
2755
2756         if (reg < 8)
2757                 reg = FENCE_REG_830_0 + reg * 4;
2758         else
2759                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2760
2761         I915_WRITE(reg, val);
2762         POSTING_READ(reg);
2763 }
2764
2765 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2766                                 struct drm_i915_gem_object *obj)
2767 {
2768         drm_i915_private_t *dev_priv = dev->dev_private;
2769         uint32_t val;
2770
2771         if (obj) {
2772                 u32 size = i915_gem_obj_ggtt_size(obj);
2773                 uint32_t pitch_val;
2774
2775                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2776                      (size & -size) != size ||
2777                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2778                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2779                      i915_gem_obj_ggtt_offset(obj), size);
2780
2781                 pitch_val = obj->stride / 128;
2782                 pitch_val = ffs(pitch_val) - 1;
2783
2784                 val = i915_gem_obj_ggtt_offset(obj);
2785                 if (obj->tiling_mode == I915_TILING_Y)
2786                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2787                 val |= I830_FENCE_SIZE_BITS(size);
2788                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2789                 val |= I830_FENCE_REG_VALID;
2790         } else
2791                 val = 0;
2792
2793         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2794         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2795 }
2796
2797 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2798 {
2799         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2800 }
2801
2802 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2803                                  struct drm_i915_gem_object *obj)
2804 {
2805         struct drm_i915_private *dev_priv = dev->dev_private;
2806
2807         /* Ensure that all CPU reads are completed before installing a fence
2808          * and all writes before removing the fence.
2809          */
2810         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2811                 mb();
2812
2813         WARN(obj && (!obj->stride || !obj->tiling_mode),
2814              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2815              obj->stride, obj->tiling_mode);
2816
2817         switch (INTEL_INFO(dev)->gen) {
2818         case 7:
2819         case 6:
2820         case 5:
2821         case 4: i965_write_fence_reg(dev, reg, obj); break;
2822         case 3: i915_write_fence_reg(dev, reg, obj); break;
2823         case 2: i830_write_fence_reg(dev, reg, obj); break;
2824         default: BUG();
2825         }
2826
2827         /* And similarly be paranoid that no direct access to this region
2828          * is reordered to before the fence is installed.
2829          */
2830         if (i915_gem_object_needs_mb(obj))
2831                 mb();
2832 }
2833
2834 static inline int fence_number(struct drm_i915_private *dev_priv,
2835                                struct drm_i915_fence_reg *fence)
2836 {
2837         return fence - dev_priv->fence_regs;
2838 }
2839
2840 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2841                                          struct drm_i915_fence_reg *fence,
2842                                          bool enable)
2843 {
2844         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2845         int reg = fence_number(dev_priv, fence);
2846
2847         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2848
2849         if (enable) {
2850                 obj->fence_reg = reg;
2851                 fence->obj = obj;
2852                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2853         } else {
2854                 obj->fence_reg = I915_FENCE_REG_NONE;
2855                 fence->obj = NULL;
2856                 list_del_init(&fence->lru_list);
2857         }
2858         obj->fence_dirty = false;
2859 }
2860
2861 static int
2862 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2863 {
2864         if (obj->last_fenced_seqno) {
2865                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2866                 if (ret)
2867                         return ret;
2868
2869                 obj->last_fenced_seqno = 0;
2870         }
2871
2872         obj->fenced_gpu_access = false;
2873         return 0;
2874 }
2875
2876 int
2877 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2878 {
2879         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2880         struct drm_i915_fence_reg *fence;
2881         int ret;
2882
2883         ret = i915_gem_object_wait_fence(obj);
2884         if (ret)
2885                 return ret;
2886
2887         if (obj->fence_reg == I915_FENCE_REG_NONE)
2888                 return 0;
2889
2890         fence = &dev_priv->fence_regs[obj->fence_reg];
2891
2892         i915_gem_object_fence_lost(obj);
2893         i915_gem_object_update_fence(obj, fence, false);
2894
2895         return 0;
2896 }
2897
2898 static struct drm_i915_fence_reg *
2899 i915_find_fence_reg(struct drm_device *dev)
2900 {
2901         struct drm_i915_private *dev_priv = dev->dev_private;
2902         struct drm_i915_fence_reg *reg, *avail;
2903         int i;
2904
2905         /* First try to find a free reg */
2906         avail = NULL;
2907         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2908                 reg = &dev_priv->fence_regs[i];
2909                 if (!reg->obj)
2910                         return reg;
2911
2912                 if (!reg->pin_count)
2913                         avail = reg;
2914         }
2915
2916         if (avail == NULL)
2917                 return NULL;
2918
2919         /* None available, try to steal one or wait for a user to finish */
2920         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2921                 if (reg->pin_count)
2922                         continue;
2923
2924                 return reg;
2925         }
2926
2927         return NULL;
2928 }
2929
2930 /**
2931  * i915_gem_object_get_fence - set up fencing for an object
2932  * @obj: object to map through a fence reg
2933  *
2934  * When mapping objects through the GTT, userspace wants to be able to write
2935  * to them without having to worry about swizzling if the object is tiled.
2936  * This function walks the fence regs looking for a free one for @obj,
2937  * stealing one if it can't find any.
2938  *
2939  * It then sets up the reg based on the object's properties: address, pitch
2940  * and tiling format.
2941  *
2942  * For an untiled surface, this removes any existing fence.
2943  */
2944 int
2945 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2946 {
2947         struct drm_device *dev = obj->base.dev;
2948         struct drm_i915_private *dev_priv = dev->dev_private;
2949         bool enable = obj->tiling_mode != I915_TILING_NONE;
2950         struct drm_i915_fence_reg *reg;
2951         int ret;
2952
2953         /* Have we updated the tiling parameters upon the object and so
2954          * will need to serialise the write to the associated fence register?
2955          */
2956         if (obj->fence_dirty) {
2957                 ret = i915_gem_object_wait_fence(obj);
2958                 if (ret)
2959                         return ret;
2960         }
2961
2962         /* Just update our place in the LRU if our fence is getting reused. */
2963         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2964                 reg = &dev_priv->fence_regs[obj->fence_reg];
2965                 if (!obj->fence_dirty) {
2966                         list_move_tail(&reg->lru_list,
2967                                        &dev_priv->mm.fence_list);
2968                         return 0;
2969                 }
2970         } else if (enable) {
2971                 reg = i915_find_fence_reg(dev);
2972                 if (reg == NULL)
2973                         return -EDEADLK;
2974
2975                 if (reg->obj) {
2976                         struct drm_i915_gem_object *old = reg->obj;
2977
2978                         ret = i915_gem_object_wait_fence(old);
2979                         if (ret)
2980                                 return ret;
2981
2982                         i915_gem_object_fence_lost(old);
2983                 }
2984         } else
2985                 return 0;
2986
2987         i915_gem_object_update_fence(obj, reg, enable);
2988
2989         return 0;
2990 }
2991
2992 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2993                                      struct drm_mm_node *gtt_space,
2994                                      unsigned long cache_level)
2995 {
2996         struct drm_mm_node *other;
2997
2998         /* On non-LLC machines we have to be careful when putting differing
2999          * types of snoopable memory together to avoid the prefetcher
3000          * crossing memory domains and dying.
3001          */
3002         if (HAS_LLC(dev))
3003                 return true;
3004
3005         if (!drm_mm_node_allocated(gtt_space))
3006                 return true;
3007
3008         if (list_empty(&gtt_space->node_list))
3009                 return true;
3010
3011         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3012         if (other->allocated && !other->hole_follows && other->color != cache_level)
3013                 return false;
3014
3015         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3016         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3017                 return false;
3018
3019         return true;
3020 }
3021
3022 static void i915_gem_verify_gtt(struct drm_device *dev)
3023 {
3024 #if WATCH_GTT
3025         struct drm_i915_private *dev_priv = dev->dev_private;
3026         struct drm_i915_gem_object *obj;
3027         int err = 0;
3028
3029         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3030                 if (obj->gtt_space == NULL) {
3031                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3032                         err++;
3033                         continue;
3034                 }
3035
3036                 if (obj->cache_level != obj->gtt_space->color) {
3037                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3038                                i915_gem_obj_ggtt_offset(obj),
3039                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3040                                obj->cache_level,
3041                                obj->gtt_space->color);
3042                         err++;
3043                         continue;
3044                 }
3045
3046                 if (!i915_gem_valid_gtt_space(dev,
3047                                               obj->gtt_space,
3048                                               obj->cache_level)) {
3049                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3050                                i915_gem_obj_ggtt_offset(obj),
3051                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3052                                obj->cache_level);
3053                         err++;
3054                         continue;
3055                 }
3056         }
3057
3058         WARN_ON(err);
3059 #endif
3060 }
3061
3062 /**
3063  * Finds free space in the GTT aperture and binds the object there.
3064  */
3065 static int
3066 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3067                             unsigned alignment,
3068                             bool map_and_fenceable,
3069                             bool nonblocking)
3070 {
3071         struct drm_device *dev = obj->base.dev;
3072         drm_i915_private_t *dev_priv = dev->dev_private;
3073         struct i915_address_space *vm = &dev_priv->gtt.base;
3074         u32 size, fence_size, fence_alignment, unfenced_alignment;
3075         bool mappable, fenceable;
3076         size_t gtt_max = map_and_fenceable ?
3077                 dev_priv->gtt.mappable_end : dev_priv->gtt.base.total;
3078         struct i915_vma *vma;
3079         int ret;
3080
3081         if (WARN_ON(!list_empty(&obj->vma_list)))
3082                 return -EBUSY;
3083
3084         fence_size = i915_gem_get_gtt_size(dev,
3085                                            obj->base.size,
3086                                            obj->tiling_mode);
3087         fence_alignment = i915_gem_get_gtt_alignment(dev,
3088                                                      obj->base.size,
3089                                                      obj->tiling_mode, true);
3090         unfenced_alignment =
3091                 i915_gem_get_gtt_alignment(dev,
3092                                                     obj->base.size,
3093                                                     obj->tiling_mode, false);
3094
3095         if (alignment == 0)
3096                 alignment = map_and_fenceable ? fence_alignment :
3097                                                 unfenced_alignment;
3098         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3099                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3100                 return -EINVAL;
3101         }
3102
3103         size = map_and_fenceable ? fence_size : obj->base.size;
3104
3105         /* If the object is bigger than the entire aperture, reject it early
3106          * before evicting everything in a vain attempt to find space.
3107          */
3108         if (obj->base.size > gtt_max) {
3109                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3110                           obj->base.size,
3111                           map_and_fenceable ? "mappable" : "total",
3112                           gtt_max);
3113                 return -E2BIG;
3114         }
3115
3116         ret = i915_gem_object_get_pages(obj);
3117         if (ret)
3118                 return ret;
3119
3120         i915_gem_object_pin_pages(obj);
3121
3122         vma = i915_gem_vma_create(obj, &dev_priv->gtt.base);
3123         if (IS_ERR(vma)) {
3124                 ret = PTR_ERR(vma);
3125                 goto err_unpin;
3126         }
3127
3128 search_free:
3129         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
3130                                                   &vma->node,
3131                                                   size, alignment,
3132                                                   obj->cache_level, 0, gtt_max);
3133         if (ret) {
3134                 ret = i915_gem_evict_something(dev, size, alignment,
3135                                                obj->cache_level,
3136                                                map_and_fenceable,
3137                                                nonblocking);
3138                 if (ret == 0)
3139                         goto search_free;
3140
3141                 goto err_free_vma;
3142         }
3143         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3144                                               obj->cache_level))) {
3145                 ret = -EINVAL;
3146                 goto err_remove_node;
3147         }
3148
3149         ret = i915_gem_gtt_prepare_object(obj);
3150         if (ret)
3151                 goto err_remove_node;
3152
3153         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3154         list_add_tail(&obj->mm_list, &vm->inactive_list);
3155         list_add(&vma->vma_link, &obj->vma_list);
3156
3157         fenceable =
3158                 i915_gem_obj_ggtt_size(obj) == fence_size &&
3159                 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3160
3161         mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3162                 dev_priv->gtt.mappable_end;
3163
3164         obj->map_and_fenceable = mappable && fenceable;
3165
3166         trace_i915_gem_object_bind(obj, map_and_fenceable);
3167         i915_gem_verify_gtt(dev);
3168         return 0;
3169
3170 err_remove_node:
3171         drm_mm_remove_node(&vma->node);
3172 err_free_vma:
3173         i915_gem_vma_destroy(vma);
3174 err_unpin:
3175         i915_gem_object_unpin_pages(obj);
3176         return ret;
3177 }
3178
3179 void
3180 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3181 {
3182         /* If we don't have a page list set up, then we're not pinned
3183          * to GPU, and we can ignore the cache flush because it'll happen
3184          * again at bind time.
3185          */
3186         if (obj->pages == NULL)
3187                 return;
3188
3189         /*
3190          * Stolen memory is always coherent with the GPU as it is explicitly
3191          * marked as wc by the system, or the system is cache-coherent.
3192          */
3193         if (obj->stolen)
3194                 return;
3195
3196         /* If the GPU is snooping the contents of the CPU cache,
3197          * we do not need to manually clear the CPU cache lines.  However,
3198          * the caches are only snooped when the render cache is
3199          * flushed/invalidated.  As we always have to emit invalidations
3200          * and flushes when moving into and out of the RENDER domain, correct
3201          * snooping behaviour occurs naturally as the result of our domain
3202          * tracking.
3203          */
3204         if (obj->cache_level != I915_CACHE_NONE)
3205                 return;
3206
3207         trace_i915_gem_object_clflush(obj);
3208
3209         drm_clflush_sg(obj->pages);
3210 }
3211
3212 /** Flushes the GTT write domain for the object if it's dirty. */
3213 static void
3214 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3215 {
3216         uint32_t old_write_domain;
3217
3218         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3219                 return;
3220
3221         /* No actual flushing is required for the GTT write domain.  Writes
3222          * to it immediately go to main memory as far as we know, so there's
3223          * no chipset flush.  It also doesn't land in render cache.
3224          *
3225          * However, we do have to enforce the order so that all writes through
3226          * the GTT land before any writes to the device, such as updates to
3227          * the GATT itself.
3228          */
3229         wmb();
3230
3231         old_write_domain = obj->base.write_domain;
3232         obj->base.write_domain = 0;
3233
3234         trace_i915_gem_object_change_domain(obj,
3235                                             obj->base.read_domains,
3236                                             old_write_domain);
3237 }
3238
3239 /** Flushes the CPU write domain for the object if it's dirty. */
3240 static void
3241 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3242 {
3243         uint32_t old_write_domain;
3244
3245         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3246                 return;
3247
3248         i915_gem_clflush_object(obj);
3249         i915_gem_chipset_flush(obj->base.dev);
3250         old_write_domain = obj->base.write_domain;
3251         obj->base.write_domain = 0;
3252
3253         trace_i915_gem_object_change_domain(obj,
3254                                             obj->base.read_domains,
3255                                             old_write_domain);
3256 }
3257
3258 /**
3259  * Moves a single object to the GTT read, and possibly write domain.
3260  *
3261  * This function returns when the move is complete, including waiting on
3262  * flushes to occur.
3263  */
3264 int
3265 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3266 {
3267         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3268         uint32_t old_write_domain, old_read_domains;
3269         int ret;
3270
3271         /* Not valid to be called on unbound objects. */
3272         if (!i915_gem_obj_ggtt_bound(obj))
3273                 return -EINVAL;
3274
3275         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3276                 return 0;
3277
3278         ret = i915_gem_object_wait_rendering(obj, !write);
3279         if (ret)
3280                 return ret;
3281
3282         i915_gem_object_flush_cpu_write_domain(obj);
3283
3284         /* Serialise direct access to this object with the barriers for
3285          * coherent writes from the GPU, by effectively invalidating the
3286          * GTT domain upon first access.
3287          */
3288         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3289                 mb();
3290
3291         old_write_domain = obj->base.write_domain;
3292         old_read_domains = obj->base.read_domains;
3293
3294         /* It should now be out of any other write domains, and we can update
3295          * the domain values for our changes.
3296          */
3297         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3298         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3299         if (write) {
3300                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3301                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3302                 obj->dirty = 1;
3303         }
3304
3305         trace_i915_gem_object_change_domain(obj,
3306                                             old_read_domains,
3307                                             old_write_domain);
3308
3309         /* And bump the LRU for this access */
3310         if (i915_gem_object_is_inactive(obj))
3311                 list_move_tail(&obj->mm_list,
3312                                &dev_priv->gtt.base.inactive_list);
3313
3314         return 0;
3315 }
3316
3317 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3318                                     enum i915_cache_level cache_level)
3319 {
3320         struct drm_device *dev = obj->base.dev;
3321         drm_i915_private_t *dev_priv = dev->dev_private;
3322         struct i915_vma *vma = __i915_gem_obj_to_vma(obj);
3323         int ret;
3324
3325         if (obj->cache_level == cache_level)
3326                 return 0;
3327
3328         if (obj->pin_count) {
3329                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3330                 return -EBUSY;
3331         }
3332
3333         if (vma && !i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3334                 ret = i915_gem_object_unbind(obj);
3335                 if (ret)
3336                         return ret;
3337         }
3338
3339         if (i915_gem_obj_ggtt_bound(obj)) {
3340                 ret = i915_gem_object_finish_gpu(obj);
3341                 if (ret)
3342                         return ret;
3343
3344                 i915_gem_object_finish_gtt(obj);
3345
3346                 /* Before SandyBridge, you could not use tiling or fence
3347                  * registers with snooped memory, so relinquish any fences
3348                  * currently pointing to our region in the aperture.
3349                  */
3350                 if (INTEL_INFO(dev)->gen < 6) {
3351                         ret = i915_gem_object_put_fence(obj);
3352                         if (ret)
3353                                 return ret;
3354                 }
3355
3356                 if (obj->has_global_gtt_mapping)
3357                         i915_gem_gtt_bind_object(obj, cache_level);
3358                 if (obj->has_aliasing_ppgtt_mapping)
3359                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3360                                                obj, cache_level);
3361
3362                 i915_gem_obj_ggtt_set_color(obj, cache_level);
3363         }
3364
3365         if (cache_level == I915_CACHE_NONE) {
3366                 u32 old_read_domains, old_write_domain;
3367
3368                 /* If we're coming from LLC cached, then we haven't
3369                  * actually been tracking whether the data is in the
3370                  * CPU cache or not, since we only allow one bit set
3371                  * in obj->write_domain and have been skipping the clflushes.
3372                  * Just set it to the CPU cache for now.
3373                  */
3374                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3375                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3376
3377                 old_read_domains = obj->base.read_domains;
3378                 old_write_domain = obj->base.write_domain;
3379
3380                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3381                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3382
3383                 trace_i915_gem_object_change_domain(obj,
3384                                                     old_read_domains,
3385                                                     old_write_domain);
3386         }
3387
3388         obj->cache_level = cache_level;
3389         i915_gem_verify_gtt(dev);
3390         return 0;
3391 }
3392
3393 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3394                                struct drm_file *file)
3395 {
3396         struct drm_i915_gem_caching *args = data;
3397         struct drm_i915_gem_object *obj;
3398         int ret;
3399
3400         ret = i915_mutex_lock_interruptible(dev);
3401         if (ret)
3402                 return ret;
3403
3404         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3405         if (&obj->base == NULL) {
3406                 ret = -ENOENT;
3407                 goto unlock;
3408         }
3409
3410         args->caching = obj->cache_level != I915_CACHE_NONE;
3411
3412         drm_gem_object_unreference(&obj->base);
3413 unlock:
3414         mutex_unlock(&dev->struct_mutex);
3415         return ret;
3416 }
3417
3418 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3419                                struct drm_file *file)
3420 {
3421         struct drm_i915_gem_caching *args = data;
3422         struct drm_i915_gem_object *obj;
3423         enum i915_cache_level level;
3424         int ret;
3425
3426         switch (args->caching) {
3427         case I915_CACHING_NONE:
3428                 level = I915_CACHE_NONE;
3429                 break;
3430         case I915_CACHING_CACHED:
3431                 level = I915_CACHE_LLC;
3432                 break;
3433         default:
3434                 return -EINVAL;
3435         }
3436
3437         ret = i915_mutex_lock_interruptible(dev);
3438         if (ret)
3439                 return ret;
3440
3441         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3442         if (&obj->base == NULL) {
3443                 ret = -ENOENT;
3444                 goto unlock;
3445         }
3446
3447         ret = i915_gem_object_set_cache_level(obj, level);
3448
3449         drm_gem_object_unreference(&obj->base);
3450 unlock:
3451         mutex_unlock(&dev->struct_mutex);
3452         return ret;
3453 }
3454
3455 /*
3456  * Prepare buffer for display plane (scanout, cursors, etc).
3457  * Can be called from an uninterruptible phase (modesetting) and allows
3458  * any flushes to be pipelined (for pageflips).
3459  */
3460 int
3461 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3462                                      u32 alignment,
3463                                      struct intel_ring_buffer *pipelined)
3464 {
3465         u32 old_read_domains, old_write_domain;
3466         int ret;
3467
3468         if (pipelined != obj->ring) {
3469                 ret = i915_gem_object_sync(obj, pipelined);
3470                 if (ret)
3471                         return ret;
3472         }
3473
3474         /* The display engine is not coherent with the LLC cache on gen6.  As
3475          * a result, we make sure that the pinning that is about to occur is
3476          * done with uncached PTEs. This is lowest common denominator for all
3477          * chipsets.
3478          *
3479          * However for gen6+, we could do better by using the GFDT bit instead
3480          * of uncaching, which would allow us to flush all the LLC-cached data
3481          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3482          */
3483         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3484         if (ret)
3485                 return ret;
3486
3487         /* As the user may map the buffer once pinned in the display plane
3488          * (e.g. libkms for the bootup splash), we have to ensure that we
3489          * always use map_and_fenceable for all scanout buffers.
3490          */
3491         ret = i915_gem_object_pin(obj, alignment, true, false);
3492         if (ret)
3493                 return ret;
3494
3495         i915_gem_object_flush_cpu_write_domain(obj);
3496
3497         old_write_domain = obj->base.write_domain;
3498         old_read_domains = obj->base.read_domains;
3499
3500         /* It should now be out of any other write domains, and we can update
3501          * the domain values for our changes.
3502          */
3503         obj->base.write_domain = 0;
3504         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3505
3506         trace_i915_gem_object_change_domain(obj,
3507                                             old_read_domains,
3508                                             old_write_domain);
3509
3510         return 0;
3511 }
3512
3513 int
3514 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3515 {
3516         int ret;
3517
3518         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3519                 return 0;
3520
3521         ret = i915_gem_object_wait_rendering(obj, false);
3522         if (ret)
3523                 return ret;
3524
3525         /* Ensure that we invalidate the GPU's caches and TLBs. */
3526         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3527         return 0;
3528 }
3529
3530 /**
3531  * Moves a single object to the CPU read, and possibly write domain.
3532  *
3533  * This function returns when the move is complete, including waiting on
3534  * flushes to occur.
3535  */
3536 int
3537 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3538 {
3539         uint32_t old_write_domain, old_read_domains;
3540         int ret;
3541
3542         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3543                 return 0;
3544
3545         ret = i915_gem_object_wait_rendering(obj, !write);
3546         if (ret)
3547                 return ret;
3548
3549         i915_gem_object_flush_gtt_write_domain(obj);
3550
3551         old_write_domain = obj->base.write_domain;
3552         old_read_domains = obj->base.read_domains;
3553
3554         /* Flush the CPU cache if it's still invalid. */
3555         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3556                 i915_gem_clflush_object(obj);
3557
3558                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3559         }
3560
3561         /* It should now be out of any other write domains, and we can update
3562          * the domain values for our changes.
3563          */
3564         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3565
3566         /* If we're writing through the CPU, then the GPU read domains will
3567          * need to be invalidated at next use.
3568          */
3569         if (write) {
3570                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3571                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3572         }
3573
3574         trace_i915_gem_object_change_domain(obj,
3575                                             old_read_domains,
3576                                             old_write_domain);
3577
3578         return 0;
3579 }
3580
3581 /* Throttle our rendering by waiting until the ring has completed our requests
3582  * emitted over 20 msec ago.
3583  *
3584  * Note that if we were to use the current jiffies each time around the loop,
3585  * we wouldn't escape the function with any frames outstanding if the time to
3586  * render a frame was over 20ms.
3587  *
3588  * This should get us reasonable parallelism between CPU and GPU but also
3589  * relatively low latency when blocking on a particular request to finish.
3590  */
3591 static int
3592 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3593 {
3594         struct drm_i915_private *dev_priv = dev->dev_private;
3595         struct drm_i915_file_private *file_priv = file->driver_priv;
3596         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3597         struct drm_i915_gem_request *request;
3598         struct intel_ring_buffer *ring = NULL;
3599         unsigned reset_counter;
3600         u32 seqno = 0;
3601         int ret;
3602
3603         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3604         if (ret)
3605                 return ret;
3606
3607         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3608         if (ret)
3609                 return ret;
3610
3611         spin_lock(&file_priv->mm.lock);
3612         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3613                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3614                         break;
3615
3616                 ring = request->ring;
3617                 seqno = request->seqno;
3618         }
3619         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3620         spin_unlock(&file_priv->mm.lock);
3621
3622         if (seqno == 0)
3623                 return 0;
3624
3625         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3626         if (ret == 0)
3627                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3628
3629         return ret;
3630 }
3631
3632 int
3633 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3634                     uint32_t alignment,
3635                     bool map_and_fenceable,
3636                     bool nonblocking)
3637 {
3638         int ret;
3639
3640         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3641                 return -EBUSY;
3642
3643         if (i915_gem_obj_ggtt_bound(obj)) {
3644                 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
3645                     (map_and_fenceable && !obj->map_and_fenceable)) {
3646                         WARN(obj->pin_count,
3647                              "bo is already pinned with incorrect alignment:"
3648                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3649                              " obj->map_and_fenceable=%d\n",
3650                              i915_gem_obj_ggtt_offset(obj), alignment,
3651                              map_and_fenceable,
3652                              obj->map_and_fenceable);
3653                         ret = i915_gem_object_unbind(obj);
3654                         if (ret)
3655                                 return ret;
3656                 }
3657         }
3658
3659         if (!i915_gem_obj_ggtt_bound(obj)) {
3660                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3661
3662                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3663                                                   map_and_fenceable,
3664                                                   nonblocking);
3665                 if (ret)
3666                         return ret;
3667
3668                 if (!dev_priv->mm.aliasing_ppgtt)
3669                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3670         }
3671
3672         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3673                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3674
3675         obj->pin_count++;
3676         obj->pin_mappable |= map_and_fenceable;
3677
3678         return 0;
3679 }
3680
3681 void
3682 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3683 {
3684         BUG_ON(obj->pin_count == 0);
3685         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3686
3687         if (--obj->pin_count == 0)
3688                 obj->pin_mappable = false;
3689 }
3690
3691 int
3692 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3693                    struct drm_file *file)
3694 {
3695         struct drm_i915_gem_pin *args = data;
3696         struct drm_i915_gem_object *obj;
3697         int ret;
3698
3699         ret = i915_mutex_lock_interruptible(dev);
3700         if (ret)
3701                 return ret;
3702
3703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3704         if (&obj->base == NULL) {
3705                 ret = -ENOENT;
3706                 goto unlock;
3707         }
3708
3709         if (obj->madv != I915_MADV_WILLNEED) {
3710                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3711                 ret = -EINVAL;
3712                 goto out;
3713         }
3714
3715         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3716                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3717                           args->handle);
3718                 ret = -EINVAL;
3719                 goto out;
3720         }
3721
3722         if (obj->user_pin_count == 0) {
3723                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3724                 if (ret)
3725                         goto out;
3726         }
3727
3728         obj->user_pin_count++;
3729         obj->pin_filp = file;
3730
3731         /* XXX - flush the CPU caches for pinned objects
3732          * as the X server doesn't manage domains yet
3733          */
3734         i915_gem_object_flush_cpu_write_domain(obj);
3735         args->offset = i915_gem_obj_ggtt_offset(obj);
3736 out:
3737         drm_gem_object_unreference(&obj->base);
3738 unlock:
3739         mutex_unlock(&dev->struct_mutex);
3740         return ret;
3741 }
3742
3743 int
3744 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3745                      struct drm_file *file)
3746 {
3747         struct drm_i915_gem_pin *args = data;
3748         struct drm_i915_gem_object *obj;
3749         int ret;
3750
3751         ret = i915_mutex_lock_interruptible(dev);
3752         if (ret)
3753                 return ret;
3754
3755         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3756         if (&obj->base == NULL) {
3757                 ret = -ENOENT;
3758                 goto unlock;
3759         }
3760
3761         if (obj->pin_filp != file) {
3762                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3763                           args->handle);
3764                 ret = -EINVAL;
3765                 goto out;
3766         }
3767         obj->user_pin_count--;
3768         if (obj->user_pin_count == 0) {
3769                 obj->pin_filp = NULL;
3770                 i915_gem_object_unpin(obj);
3771         }
3772
3773 out:
3774         drm_gem_object_unreference(&obj->base);
3775 unlock:
3776         mutex_unlock(&dev->struct_mutex);
3777         return ret;
3778 }
3779
3780 int
3781 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3782                     struct drm_file *file)
3783 {
3784         struct drm_i915_gem_busy *args = data;
3785         struct drm_i915_gem_object *obj;
3786         int ret;
3787
3788         ret = i915_mutex_lock_interruptible(dev);
3789         if (ret)
3790                 return ret;
3791
3792         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3793         if (&obj->base == NULL) {
3794                 ret = -ENOENT;
3795                 goto unlock;
3796         }
3797
3798         /* Count all active objects as busy, even if they are currently not used
3799          * by the gpu. Users of this interface expect objects to eventually
3800          * become non-busy without any further actions, therefore emit any
3801          * necessary flushes here.
3802          */
3803         ret = i915_gem_object_flush_active(obj);
3804
3805         args->busy = obj->active;
3806         if (obj->ring) {
3807                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3808                 args->busy |= intel_ring_flag(obj->ring) << 16;
3809         }
3810
3811         drm_gem_object_unreference(&obj->base);
3812 unlock:
3813         mutex_unlock(&dev->struct_mutex);
3814         return ret;
3815 }
3816
3817 int
3818 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3819                         struct drm_file *file_priv)
3820 {
3821         return i915_gem_ring_throttle(dev, file_priv);
3822 }
3823
3824 int
3825 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3826                        struct drm_file *file_priv)
3827 {
3828         struct drm_i915_gem_madvise *args = data;
3829         struct drm_i915_gem_object *obj;
3830         int ret;
3831
3832         switch (args->madv) {
3833         case I915_MADV_DONTNEED:
3834         case I915_MADV_WILLNEED:
3835             break;
3836         default:
3837             return -EINVAL;
3838         }
3839
3840         ret = i915_mutex_lock_interruptible(dev);
3841         if (ret)
3842                 return ret;
3843
3844         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3845         if (&obj->base == NULL) {
3846                 ret = -ENOENT;
3847                 goto unlock;
3848         }
3849
3850         if (obj->pin_count) {
3851                 ret = -EINVAL;
3852                 goto out;
3853         }
3854
3855         if (obj->madv != __I915_MADV_PURGED)
3856                 obj->madv = args->madv;
3857
3858         /* if the object is no longer attached, discard its backing storage */
3859         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3860                 i915_gem_object_truncate(obj);
3861
3862         args->retained = obj->madv != __I915_MADV_PURGED;
3863
3864 out:
3865         drm_gem_object_unreference(&obj->base);
3866 unlock:
3867         mutex_unlock(&dev->struct_mutex);
3868         return ret;
3869 }
3870
3871 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3872                           const struct drm_i915_gem_object_ops *ops)
3873 {
3874         INIT_LIST_HEAD(&obj->mm_list);
3875         INIT_LIST_HEAD(&obj->global_list);
3876         INIT_LIST_HEAD(&obj->ring_list);
3877         INIT_LIST_HEAD(&obj->exec_list);
3878         INIT_LIST_HEAD(&obj->vma_list);
3879
3880         obj->ops = ops;
3881
3882         obj->fence_reg = I915_FENCE_REG_NONE;
3883         obj->madv = I915_MADV_WILLNEED;
3884         /* Avoid an unnecessary call to unbind on the first bind. */
3885         obj->map_and_fenceable = true;
3886
3887         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3888 }
3889
3890 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3891         .get_pages = i915_gem_object_get_pages_gtt,
3892         .put_pages = i915_gem_object_put_pages_gtt,
3893 };
3894
3895 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3896                                                   size_t size)
3897 {
3898         struct drm_i915_gem_object *obj;
3899         struct address_space *mapping;
3900         gfp_t mask;
3901
3902         obj = i915_gem_object_alloc(dev);
3903         if (obj == NULL)
3904                 return NULL;
3905
3906         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3907                 i915_gem_object_free(obj);
3908                 return NULL;
3909         }
3910
3911         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3912         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3913                 /* 965gm cannot relocate objects above 4GiB. */
3914                 mask &= ~__GFP_HIGHMEM;
3915                 mask |= __GFP_DMA32;
3916         }
3917
3918         mapping = file_inode(obj->base.filp)->i_mapping;
3919         mapping_set_gfp_mask(mapping, mask);
3920
3921         i915_gem_object_init(obj, &i915_gem_object_ops);
3922
3923         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3924         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3925
3926         if (HAS_LLC(dev)) {
3927                 /* On some devices, we can have the GPU use the LLC (the CPU
3928                  * cache) for about a 10% performance improvement
3929                  * compared to uncached.  Graphics requests other than
3930                  * display scanout are coherent with the CPU in
3931                  * accessing this cache.  This means in this mode we
3932                  * don't need to clflush on the CPU side, and on the
3933                  * GPU side we only need to flush internal caches to
3934                  * get data visible to the CPU.
3935                  *
3936                  * However, we maintain the display planes as UC, and so
3937                  * need to rebind when first used as such.
3938                  */
3939                 obj->cache_level = I915_CACHE_LLC;
3940         } else
3941                 obj->cache_level = I915_CACHE_NONE;
3942
3943         trace_i915_gem_object_create(obj);
3944
3945         return obj;
3946 }
3947
3948 int i915_gem_init_object(struct drm_gem_object *obj)
3949 {
3950         BUG();
3951
3952         return 0;
3953 }
3954
3955 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3956 {
3957         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3958         struct drm_device *dev = obj->base.dev;
3959         drm_i915_private_t *dev_priv = dev->dev_private;
3960
3961         trace_i915_gem_object_destroy(obj);
3962
3963         if (obj->phys_obj)
3964                 i915_gem_detach_phys_object(dev, obj);
3965
3966         obj->pin_count = 0;
3967         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3968                 bool was_interruptible;
3969
3970                 was_interruptible = dev_priv->mm.interruptible;
3971                 dev_priv->mm.interruptible = false;
3972
3973                 WARN_ON(i915_gem_object_unbind(obj));
3974
3975                 dev_priv->mm.interruptible = was_interruptible;
3976         }
3977
3978         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3979          * before progressing. */
3980         if (obj->stolen)
3981                 i915_gem_object_unpin_pages(obj);
3982
3983         if (WARN_ON(obj->pages_pin_count))
3984                 obj->pages_pin_count = 0;
3985         i915_gem_object_put_pages(obj);
3986         i915_gem_object_free_mmap_offset(obj);
3987         i915_gem_object_release_stolen(obj);
3988
3989         BUG_ON(obj->pages);
3990
3991         if (obj->base.import_attach)
3992                 drm_prime_gem_destroy(&obj->base, NULL);
3993
3994         drm_gem_object_release(&obj->base);
3995         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3996
3997         kfree(obj->bit_17);
3998         i915_gem_object_free(obj);
3999 }
4000
4001 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4002                                      struct i915_address_space *vm)
4003 {
4004         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4005         if (vma == NULL)
4006                 return ERR_PTR(-ENOMEM);
4007
4008         INIT_LIST_HEAD(&vma->vma_link);
4009         vma->vm = vm;
4010         vma->obj = obj;
4011
4012         return vma;
4013 }
4014
4015 void i915_gem_vma_destroy(struct i915_vma *vma)
4016 {
4017         WARN_ON(vma->node.allocated);
4018         kfree(vma);
4019 }
4020
4021 int
4022 i915_gem_idle(struct drm_device *dev)
4023 {
4024         drm_i915_private_t *dev_priv = dev->dev_private;
4025         int ret;
4026
4027         if (dev_priv->ums.mm_suspended) {
4028                 mutex_unlock(&dev->struct_mutex);
4029                 return 0;
4030         }
4031
4032         ret = i915_gpu_idle(dev);
4033         if (ret) {
4034                 mutex_unlock(&dev->struct_mutex);
4035                 return ret;
4036         }
4037         i915_gem_retire_requests(dev);
4038
4039         /* Under UMS, be paranoid and evict. */
4040         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4041                 i915_gem_evict_everything(dev);
4042
4043         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4044
4045         i915_kernel_lost_context(dev);
4046         i915_gem_cleanup_ringbuffer(dev);
4047
4048         /* Cancel the retire work handler, which should be idle now. */
4049         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4050
4051         return 0;
4052 }
4053
4054 void i915_gem_l3_remap(struct drm_device *dev)
4055 {
4056         drm_i915_private_t *dev_priv = dev->dev_private;
4057         u32 misccpctl;
4058         int i;
4059
4060         if (!HAS_L3_GPU_CACHE(dev))
4061                 return;
4062
4063         if (!dev_priv->l3_parity.remap_info)
4064                 return;
4065
4066         misccpctl = I915_READ(GEN7_MISCCPCTL);
4067         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4068         POSTING_READ(GEN7_MISCCPCTL);
4069
4070         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4071                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4072                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4073                         DRM_DEBUG("0x%x was already programmed to %x\n",
4074                                   GEN7_L3LOG_BASE + i, remap);
4075                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4076                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4077                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4078         }
4079
4080         /* Make sure all the writes land before disabling dop clock gating */
4081         POSTING_READ(GEN7_L3LOG_BASE);
4082
4083         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4084 }
4085
4086 void i915_gem_init_swizzling(struct drm_device *dev)
4087 {
4088         drm_i915_private_t *dev_priv = dev->dev_private;
4089
4090         if (INTEL_INFO(dev)->gen < 5 ||
4091             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4092                 return;
4093
4094         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4095                                  DISP_TILE_SURFACE_SWIZZLING);
4096
4097         if (IS_GEN5(dev))
4098                 return;
4099
4100         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4101         if (IS_GEN6(dev))
4102                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4103         else if (IS_GEN7(dev))
4104                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4105         else
4106                 BUG();
4107 }
4108
4109 static bool
4110 intel_enable_blt(struct drm_device *dev)
4111 {
4112         if (!HAS_BLT(dev))
4113                 return false;
4114
4115         /* The blitter was dysfunctional on early prototypes */
4116         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4117                 DRM_INFO("BLT not supported on this pre-production hardware;"
4118                          " graphics performance will be degraded.\n");
4119                 return false;
4120         }
4121
4122         return true;
4123 }
4124
4125 static int i915_gem_init_rings(struct drm_device *dev)
4126 {
4127         struct drm_i915_private *dev_priv = dev->dev_private;
4128         int ret;
4129
4130         ret = intel_init_render_ring_buffer(dev);
4131         if (ret)
4132                 return ret;
4133
4134         if (HAS_BSD(dev)) {
4135                 ret = intel_init_bsd_ring_buffer(dev);
4136                 if (ret)
4137                         goto cleanup_render_ring;
4138         }
4139
4140         if (intel_enable_blt(dev)) {
4141                 ret = intel_init_blt_ring_buffer(dev);
4142                 if (ret)
4143                         goto cleanup_bsd_ring;
4144         }
4145
4146         if (HAS_VEBOX(dev)) {
4147                 ret = intel_init_vebox_ring_buffer(dev);
4148                 if (ret)
4149                         goto cleanup_blt_ring;
4150         }
4151
4152
4153         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4154         if (ret)
4155                 goto cleanup_vebox_ring;
4156
4157         return 0;
4158
4159 cleanup_vebox_ring:
4160         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4161 cleanup_blt_ring:
4162         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4163 cleanup_bsd_ring:
4164         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4165 cleanup_render_ring:
4166         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4167
4168         return ret;
4169 }
4170
4171 int
4172 i915_gem_init_hw(struct drm_device *dev)
4173 {
4174         drm_i915_private_t *dev_priv = dev->dev_private;
4175         int ret;
4176
4177         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4178                 return -EIO;
4179
4180         if (dev_priv->ellc_size)
4181                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4182
4183         if (HAS_PCH_NOP(dev)) {
4184                 u32 temp = I915_READ(GEN7_MSG_CTL);
4185                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4186                 I915_WRITE(GEN7_MSG_CTL, temp);
4187         }
4188
4189         i915_gem_l3_remap(dev);
4190
4191         i915_gem_init_swizzling(dev);
4192
4193         ret = i915_gem_init_rings(dev);
4194         if (ret)
4195                 return ret;
4196
4197         /*
4198          * XXX: There was some w/a described somewhere suggesting loading
4199          * contexts before PPGTT.
4200          */
4201         i915_gem_context_init(dev);
4202         if (dev_priv->mm.aliasing_ppgtt) {
4203                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4204                 if (ret) {
4205                         i915_gem_cleanup_aliasing_ppgtt(dev);
4206                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4207                 }
4208         }
4209
4210         return 0;
4211 }
4212
4213 int i915_gem_init(struct drm_device *dev)
4214 {
4215         struct drm_i915_private *dev_priv = dev->dev_private;
4216         int ret;
4217
4218         mutex_lock(&dev->struct_mutex);
4219
4220         if (IS_VALLEYVIEW(dev)) {
4221                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4222                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4223                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4224                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4225         }
4226
4227         i915_gem_init_global_gtt(dev);
4228
4229         ret = i915_gem_init_hw(dev);
4230         mutex_unlock(&dev->struct_mutex);
4231         if (ret) {
4232                 i915_gem_cleanup_aliasing_ppgtt(dev);
4233                 return ret;
4234         }
4235
4236         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4237         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4238                 dev_priv->dri1.allow_batchbuffer = 1;
4239         return 0;
4240 }
4241
4242 void
4243 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4244 {
4245         drm_i915_private_t *dev_priv = dev->dev_private;
4246         struct intel_ring_buffer *ring;
4247         int i;
4248
4249         for_each_ring(ring, dev_priv, i)
4250                 intel_cleanup_ring_buffer(ring);
4251 }
4252
4253 int
4254 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4255                        struct drm_file *file_priv)
4256 {
4257         struct drm_i915_private *dev_priv = dev->dev_private;
4258         int ret;
4259
4260         if (drm_core_check_feature(dev, DRIVER_MODESET))
4261                 return 0;
4262
4263         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4264                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4265                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4266         }
4267
4268         mutex_lock(&dev->struct_mutex);
4269         dev_priv->ums.mm_suspended = 0;
4270
4271         ret = i915_gem_init_hw(dev);
4272         if (ret != 0) {
4273                 mutex_unlock(&dev->struct_mutex);
4274                 return ret;
4275         }
4276
4277         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4278         mutex_unlock(&dev->struct_mutex);
4279
4280         ret = drm_irq_install(dev);
4281         if (ret)
4282                 goto cleanup_ringbuffer;
4283
4284         return 0;
4285
4286 cleanup_ringbuffer:
4287         mutex_lock(&dev->struct_mutex);
4288         i915_gem_cleanup_ringbuffer(dev);
4289         dev_priv->ums.mm_suspended = 1;
4290         mutex_unlock(&dev->struct_mutex);
4291
4292         return ret;
4293 }
4294
4295 int
4296 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4297                        struct drm_file *file_priv)
4298 {
4299         struct drm_i915_private *dev_priv = dev->dev_private;
4300         int ret;
4301
4302         if (drm_core_check_feature(dev, DRIVER_MODESET))
4303                 return 0;
4304
4305         drm_irq_uninstall(dev);
4306
4307         mutex_lock(&dev->struct_mutex);
4308         ret =  i915_gem_idle(dev);
4309
4310         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4311          * We need to replace this with a semaphore, or something.
4312          * And not confound ums.mm_suspended!
4313          */
4314         if (ret != 0)
4315                 dev_priv->ums.mm_suspended = 1;
4316         mutex_unlock(&dev->struct_mutex);
4317
4318         return ret;
4319 }
4320
4321 void
4322 i915_gem_lastclose(struct drm_device *dev)
4323 {
4324         int ret;
4325
4326         if (drm_core_check_feature(dev, DRIVER_MODESET))
4327                 return;
4328
4329         mutex_lock(&dev->struct_mutex);
4330         ret = i915_gem_idle(dev);
4331         if (ret)
4332                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4333         mutex_unlock(&dev->struct_mutex);
4334 }
4335
4336 static void
4337 init_ring_lists(struct intel_ring_buffer *ring)
4338 {
4339         INIT_LIST_HEAD(&ring->active_list);
4340         INIT_LIST_HEAD(&ring->request_list);
4341 }
4342
4343 static void i915_init_vm(struct drm_i915_private *dev_priv,
4344                          struct i915_address_space *vm)
4345 {
4346         vm->dev = dev_priv->dev;
4347         INIT_LIST_HEAD(&vm->active_list);
4348         INIT_LIST_HEAD(&vm->inactive_list);
4349         INIT_LIST_HEAD(&vm->global_link);
4350         list_add(&vm->global_link, &dev_priv->vm_list);
4351 }
4352
4353 void
4354 i915_gem_load(struct drm_device *dev)
4355 {
4356         drm_i915_private_t *dev_priv = dev->dev_private;
4357         int i;
4358
4359         dev_priv->slab =
4360                 kmem_cache_create("i915_gem_object",
4361                                   sizeof(struct drm_i915_gem_object), 0,
4362                                   SLAB_HWCACHE_ALIGN,
4363                                   NULL);
4364
4365         INIT_LIST_HEAD(&dev_priv->vm_list);
4366         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4367
4368         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4369         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4370         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4371         for (i = 0; i < I915_NUM_RINGS; i++)
4372                 init_ring_lists(&dev_priv->ring[i]);
4373         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4374                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4375         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4376                           i915_gem_retire_work_handler);
4377         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4378
4379         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4380         if (IS_GEN3(dev)) {
4381                 I915_WRITE(MI_ARB_STATE,
4382                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4383         }
4384
4385         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4386
4387         /* Old X drivers will take 0-2 for front, back, depth buffers */
4388         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4389                 dev_priv->fence_reg_start = 3;
4390
4391         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4392                 dev_priv->num_fence_regs = 32;
4393         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4394                 dev_priv->num_fence_regs = 16;
4395         else
4396                 dev_priv->num_fence_regs = 8;
4397
4398         /* Initialize fence registers to zero */
4399         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4400         i915_gem_restore_fences(dev);
4401
4402         i915_gem_detect_bit_6_swizzle(dev);
4403         init_waitqueue_head(&dev_priv->pending_flip_queue);
4404
4405         dev_priv->mm.interruptible = true;
4406
4407         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4408         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4409         register_shrinker(&dev_priv->mm.inactive_shrinker);
4410 }
4411
4412 /*
4413  * Create a physically contiguous memory object for this object
4414  * e.g. for cursor + overlay regs
4415  */
4416 static int i915_gem_init_phys_object(struct drm_device *dev,
4417                                      int id, int size, int align)
4418 {
4419         drm_i915_private_t *dev_priv = dev->dev_private;
4420         struct drm_i915_gem_phys_object *phys_obj;
4421         int ret;
4422
4423         if (dev_priv->mm.phys_objs[id - 1] || !size)
4424                 return 0;
4425
4426         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4427         if (!phys_obj)
4428                 return -ENOMEM;
4429
4430         phys_obj->id = id;
4431
4432         phys_obj->handle = drm_pci_alloc(dev, size, align);
4433         if (!phys_obj->handle) {
4434                 ret = -ENOMEM;
4435                 goto kfree_obj;
4436         }
4437 #ifdef CONFIG_X86
4438         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4439 #endif
4440
4441         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4442
4443         return 0;
4444 kfree_obj:
4445         kfree(phys_obj);
4446         return ret;
4447 }
4448
4449 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4450 {
4451         drm_i915_private_t *dev_priv = dev->dev_private;
4452         struct drm_i915_gem_phys_object *phys_obj;
4453
4454         if (!dev_priv->mm.phys_objs[id - 1])
4455                 return;
4456
4457         phys_obj = dev_priv->mm.phys_objs[id - 1];
4458         if (phys_obj->cur_obj) {
4459                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4460         }
4461
4462 #ifdef CONFIG_X86
4463         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4464 #endif
4465         drm_pci_free(dev, phys_obj->handle);
4466         kfree(phys_obj);
4467         dev_priv->mm.phys_objs[id - 1] = NULL;
4468 }
4469
4470 void i915_gem_free_all_phys_object(struct drm_device *dev)
4471 {
4472         int i;
4473
4474         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4475                 i915_gem_free_phys_object(dev, i);
4476 }
4477
4478 void i915_gem_detach_phys_object(struct drm_device *dev,
4479                                  struct drm_i915_gem_object *obj)
4480 {
4481         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4482         char *vaddr;
4483         int i;
4484         int page_count;
4485
4486         if (!obj->phys_obj)
4487                 return;
4488         vaddr = obj->phys_obj->handle->vaddr;
4489
4490         page_count = obj->base.size / PAGE_SIZE;
4491         for (i = 0; i < page_count; i++) {
4492                 struct page *page = shmem_read_mapping_page(mapping, i);
4493                 if (!IS_ERR(page)) {
4494                         char *dst = kmap_atomic(page);
4495                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4496                         kunmap_atomic(dst);
4497
4498                         drm_clflush_pages(&page, 1);
4499
4500                         set_page_dirty(page);
4501                         mark_page_accessed(page);
4502                         page_cache_release(page);
4503                 }
4504         }
4505         i915_gem_chipset_flush(dev);
4506
4507         obj->phys_obj->cur_obj = NULL;
4508         obj->phys_obj = NULL;
4509 }
4510
4511 int
4512 i915_gem_attach_phys_object(struct drm_device *dev,
4513                             struct drm_i915_gem_object *obj,
4514                             int id,
4515                             int align)
4516 {
4517         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4518         drm_i915_private_t *dev_priv = dev->dev_private;
4519         int ret = 0;
4520         int page_count;
4521         int i;
4522
4523         if (id > I915_MAX_PHYS_OBJECT)
4524                 return -EINVAL;
4525
4526         if (obj->phys_obj) {
4527                 if (obj->phys_obj->id == id)
4528                         return 0;
4529                 i915_gem_detach_phys_object(dev, obj);
4530         }
4531
4532         /* create a new object */
4533         if (!dev_priv->mm.phys_objs[id - 1]) {
4534                 ret = i915_gem_init_phys_object(dev, id,
4535                                                 obj->base.size, align);
4536                 if (ret) {
4537                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4538                                   id, obj->base.size);
4539                         return ret;
4540                 }
4541         }
4542
4543         /* bind to the object */
4544         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4545         obj->phys_obj->cur_obj = obj;
4546
4547         page_count = obj->base.size / PAGE_SIZE;
4548
4549         for (i = 0; i < page_count; i++) {
4550                 struct page *page;
4551                 char *dst, *src;
4552
4553                 page = shmem_read_mapping_page(mapping, i);
4554                 if (IS_ERR(page))
4555                         return PTR_ERR(page);
4556
4557                 src = kmap_atomic(page);
4558                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4559                 memcpy(dst, src, PAGE_SIZE);
4560                 kunmap_atomic(src);
4561
4562                 mark_page_accessed(page);
4563                 page_cache_release(page);
4564         }
4565
4566         return 0;
4567 }
4568
4569 static int
4570 i915_gem_phys_pwrite(struct drm_device *dev,
4571                      struct drm_i915_gem_object *obj,
4572                      struct drm_i915_gem_pwrite *args,
4573                      struct drm_file *file_priv)
4574 {
4575         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4576         char __user *user_data = to_user_ptr(args->data_ptr);
4577
4578         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4579                 unsigned long unwritten;
4580
4581                 /* The physical object once assigned is fixed for the lifetime
4582                  * of the obj, so we can safely drop the lock and continue
4583                  * to access vaddr.
4584                  */
4585                 mutex_unlock(&dev->struct_mutex);
4586                 unwritten = copy_from_user(vaddr, user_data, args->size);
4587                 mutex_lock(&dev->struct_mutex);
4588                 if (unwritten)
4589                         return -EFAULT;
4590         }
4591
4592         i915_gem_chipset_flush(dev);
4593         return 0;
4594 }
4595
4596 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4597 {
4598         struct drm_i915_file_private *file_priv = file->driver_priv;
4599
4600         /* Clean up our request list when the client is going away, so that
4601          * later retire_requests won't dereference our soon-to-be-gone
4602          * file_priv.
4603          */
4604         spin_lock(&file_priv->mm.lock);
4605         while (!list_empty(&file_priv->mm.request_list)) {
4606                 struct drm_i915_gem_request *request;
4607
4608                 request = list_first_entry(&file_priv->mm.request_list,
4609                                            struct drm_i915_gem_request,
4610                                            client_list);
4611                 list_del(&request->client_list);
4612                 request->file_priv = NULL;
4613         }
4614         spin_unlock(&file_priv->mm.lock);
4615 }
4616
4617 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4618 {
4619         if (!mutex_is_locked(mutex))
4620                 return false;
4621
4622 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4623         return mutex->owner == task;
4624 #else
4625         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4626         return false;
4627 #endif
4628 }
4629
4630 static int
4631 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4632 {
4633         struct drm_i915_private *dev_priv =
4634                 container_of(shrinker,
4635                              struct drm_i915_private,
4636                              mm.inactive_shrinker);
4637         struct drm_device *dev = dev_priv->dev;
4638         struct i915_address_space *vm = &dev_priv->gtt.base;
4639         struct drm_i915_gem_object *obj;
4640         int nr_to_scan = sc->nr_to_scan;
4641         bool unlock = true;
4642         int cnt;
4643
4644         if (!mutex_trylock(&dev->struct_mutex)) {
4645                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4646                         return 0;
4647
4648                 if (dev_priv->mm.shrinker_no_lock_stealing)
4649                         return 0;
4650
4651                 unlock = false;
4652         }
4653
4654         if (nr_to_scan) {
4655                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4656                 if (nr_to_scan > 0)
4657                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4658                                                         false);
4659                 if (nr_to_scan > 0)
4660                         i915_gem_shrink_all(dev_priv);
4661         }
4662
4663         cnt = 0;
4664         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4665                 if (obj->pages_pin_count == 0)
4666                         cnt += obj->base.size >> PAGE_SHIFT;
4667         list_for_each_entry(obj, &vm->inactive_list, mm_list)
4668                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4669                         cnt += obj->base.size >> PAGE_SHIFT;
4670
4671         if (unlock)
4672                 mutex_unlock(&dev->struct_mutex);
4673         return cnt;
4674 }