]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
59065ae0b1536ec88159828ae80d2e9e5ab9e782
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/stop_machine.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
45
46 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59                 return false;
60
61         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62                 return true;
63
64         return obj->pin_display;
65 }
66
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69                      struct drm_mm_node *node, u32 size)
70 {
71         memset(node, 0, sizeof(*node));
72         return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73                                                    size, 0, -1,
74                                                    0, ggtt->mappable_end,
75                                                    DRM_MM_SEARCH_DEFAULT,
76                                                    DRM_MM_CREATE_DEFAULT);
77 }
78
79 static void
80 remove_mappable_node(struct drm_mm_node *node)
81 {
82         drm_mm_remove_node(node);
83 }
84
85 /* some bookkeeping */
86 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87                                   u64 size)
88 {
89         spin_lock(&dev_priv->mm.object_stat_lock);
90         dev_priv->mm.object_count++;
91         dev_priv->mm.object_memory += size;
92         spin_unlock(&dev_priv->mm.object_stat_lock);
93 }
94
95 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96                                      u64 size)
97 {
98         spin_lock(&dev_priv->mm.object_stat_lock);
99         dev_priv->mm.object_count--;
100         dev_priv->mm.object_memory -= size;
101         spin_unlock(&dev_priv->mm.object_stat_lock);
102 }
103
104 static int
105 i915_gem_wait_for_error(struct i915_gpu_error *error)
106 {
107         int ret;
108
109         might_sleep();
110
111         if (!i915_reset_in_progress(error))
112                 return 0;
113
114         /*
115          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
116          * userspace. If it takes that long something really bad is going on and
117          * we should simply try to bail out and fail as gracefully as possible.
118          */
119         ret = wait_event_interruptible_timeout(error->reset_queue,
120                                                !i915_reset_in_progress(error),
121                                                I915_RESET_TIMEOUT);
122         if (ret == 0) {
123                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
124                 return -EIO;
125         } else if (ret < 0) {
126                 return ret;
127         } else {
128                 return 0;
129         }
130 }
131
132 int i915_mutex_lock_interruptible(struct drm_device *dev)
133 {
134         struct drm_i915_private *dev_priv = to_i915(dev);
135         int ret;
136
137         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
138         if (ret)
139                 return ret;
140
141         ret = mutex_lock_interruptible(&dev->struct_mutex);
142         if (ret)
143                 return ret;
144
145         return 0;
146 }
147
148 int
149 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
150                             struct drm_file *file)
151 {
152         struct drm_i915_private *dev_priv = to_i915(dev);
153         struct i915_ggtt *ggtt = &dev_priv->ggtt;
154         struct drm_i915_gem_get_aperture *args = data;
155         struct i915_vma *vma;
156         size_t pinned;
157
158         pinned = 0;
159         mutex_lock(&dev->struct_mutex);
160         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
161                 if (i915_vma_is_pinned(vma))
162                         pinned += vma->node.size;
163         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
164                 if (i915_vma_is_pinned(vma))
165                         pinned += vma->node.size;
166         mutex_unlock(&dev->struct_mutex);
167
168         args->aper_size = ggtt->base.total;
169         args->aper_available_size = args->aper_size - pinned;
170
171         return 0;
172 }
173
174 static struct sg_table *
175 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
176 {
177         struct address_space *mapping = obj->base.filp->f_mapping;
178         char *vaddr = obj->phys_handle->vaddr;
179         struct sg_table *st;
180         struct scatterlist *sg;
181         int i;
182
183         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184                 return ERR_PTR(-EINVAL);
185
186         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
187                 struct page *page;
188                 char *src;
189
190                 page = shmem_read_mapping_page(mapping, i);
191                 if (IS_ERR(page))
192                         return ERR_CAST(page);
193
194                 src = kmap_atomic(page);
195                 memcpy(vaddr, src, PAGE_SIZE);
196                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
197                 kunmap_atomic(src);
198
199                 put_page(page);
200                 vaddr += PAGE_SIZE;
201         }
202
203         i915_gem_chipset_flush(to_i915(obj->base.dev));
204
205         st = kmalloc(sizeof(*st), GFP_KERNEL);
206         if (st == NULL)
207                 return ERR_PTR(-ENOMEM);
208
209         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
210                 kfree(st);
211                 return ERR_PTR(-ENOMEM);
212         }
213
214         sg = st->sgl;
215         sg->offset = 0;
216         sg->length = obj->base.size;
217
218         sg_dma_address(sg) = obj->phys_handle->busaddr;
219         sg_dma_len(sg) = obj->base.size;
220
221         return st;
222 }
223
224 static void
225 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
226                                 struct sg_table *pages)
227 {
228         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
229
230         if (obj->mm.madv == I915_MADV_DONTNEED)
231                 obj->mm.dirty = false;
232
233         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
234             !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
235                 drm_clflush_sg(pages);
236
237         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
238         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
239 }
240
241 static void
242 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
243                                struct sg_table *pages)
244 {
245         __i915_gem_object_release_shmem(obj, pages);
246
247         if (obj->mm.dirty) {
248                 struct address_space *mapping = obj->base.filp->f_mapping;
249                 char *vaddr = obj->phys_handle->vaddr;
250                 int i;
251
252                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
253                         struct page *page;
254                         char *dst;
255
256                         page = shmem_read_mapping_page(mapping, i);
257                         if (IS_ERR(page))
258                                 continue;
259
260                         dst = kmap_atomic(page);
261                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
262                         memcpy(dst, vaddr, PAGE_SIZE);
263                         kunmap_atomic(dst);
264
265                         set_page_dirty(page);
266                         if (obj->mm.madv == I915_MADV_WILLNEED)
267                                 mark_page_accessed(page);
268                         put_page(page);
269                         vaddr += PAGE_SIZE;
270                 }
271                 obj->mm.dirty = false;
272         }
273
274         sg_free_table(pages);
275         kfree(pages);
276 }
277
278 static void
279 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
280 {
281         drm_pci_free(obj->base.dev, obj->phys_handle);
282         i915_gem_object_unpin_pages(obj);
283 }
284
285 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
286         .get_pages = i915_gem_object_get_pages_phys,
287         .put_pages = i915_gem_object_put_pages_phys,
288         .release = i915_gem_object_release_phys,
289 };
290
291 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
292 {
293         struct i915_vma *vma;
294         LIST_HEAD(still_in_list);
295         int ret;
296
297         lockdep_assert_held(&obj->base.dev->struct_mutex);
298
299         /* Closed vma are removed from the obj->vma_list - but they may
300          * still have an active binding on the object. To remove those we
301          * must wait for all rendering to complete to the object (as unbinding
302          * must anyway), and retire the requests.
303          */
304         ret = i915_gem_object_wait(obj,
305                                    I915_WAIT_INTERRUPTIBLE |
306                                    I915_WAIT_LOCKED |
307                                    I915_WAIT_ALL,
308                                    MAX_SCHEDULE_TIMEOUT,
309                                    NULL);
310         if (ret)
311                 return ret;
312
313         i915_gem_retire_requests(to_i915(obj->base.dev));
314
315         while ((vma = list_first_entry_or_null(&obj->vma_list,
316                                                struct i915_vma,
317                                                obj_link))) {
318                 list_move_tail(&vma->obj_link, &still_in_list);
319                 ret = i915_vma_unbind(vma);
320                 if (ret)
321                         break;
322         }
323         list_splice(&still_in_list, &obj->vma_list);
324
325         return ret;
326 }
327
328 static long
329 i915_gem_object_wait_fence(struct dma_fence *fence,
330                            unsigned int flags,
331                            long timeout,
332                            struct intel_rps_client *rps)
333 {
334         struct drm_i915_gem_request *rq;
335
336         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
337
338         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
339                 return timeout;
340
341         if (!dma_fence_is_i915(fence))
342                 return dma_fence_wait_timeout(fence,
343                                               flags & I915_WAIT_INTERRUPTIBLE,
344                                               timeout);
345
346         rq = to_request(fence);
347         if (i915_gem_request_completed(rq))
348                 goto out;
349
350         /* This client is about to stall waiting for the GPU. In many cases
351          * this is undesirable and limits the throughput of the system, as
352          * many clients cannot continue processing user input/output whilst
353          * blocked. RPS autotuning may take tens of milliseconds to respond
354          * to the GPU load and thus incurs additional latency for the client.
355          * We can circumvent that by promoting the GPU frequency to maximum
356          * before we wait. This makes the GPU throttle up much more quickly
357          * (good for benchmarks and user experience, e.g. window animations),
358          * but at a cost of spending more power processing the workload
359          * (bad for battery). Not all clients even want their results
360          * immediately and for them we should just let the GPU select its own
361          * frequency to maximise efficiency. To prevent a single client from
362          * forcing the clocks too high for the whole system, we only allow
363          * each client to waitboost once in a busy period.
364          */
365         if (rps) {
366                 if (INTEL_GEN(rq->i915) >= 6)
367                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
368                 else
369                         rps = NULL;
370         }
371
372         timeout = i915_wait_request(rq, flags, timeout);
373
374 out:
375         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
376                 i915_gem_request_retire_upto(rq);
377
378         if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
379                 /* The GPU is now idle and this client has stalled.
380                  * Since no other client has submitted a request in the
381                  * meantime, assume that this client is the only one
382                  * supplying work to the GPU but is unable to keep that
383                  * work supplied because it is waiting. Since the GPU is
384                  * then never kept fully busy, RPS autoclocking will
385                  * keep the clocks relatively low, causing further delays.
386                  * Compensate by giving the synchronous client credit for
387                  * a waitboost next time.
388                  */
389                 spin_lock(&rq->i915->rps.client_lock);
390                 list_del_init(&rps->link);
391                 spin_unlock(&rq->i915->rps.client_lock);
392         }
393
394         return timeout;
395 }
396
397 static long
398 i915_gem_object_wait_reservation(struct reservation_object *resv,
399                                  unsigned int flags,
400                                  long timeout,
401                                  struct intel_rps_client *rps)
402 {
403         struct dma_fence *excl;
404
405         if (flags & I915_WAIT_ALL) {
406                 struct dma_fence **shared;
407                 unsigned int count, i;
408                 int ret;
409
410                 ret = reservation_object_get_fences_rcu(resv,
411                                                         &excl, &count, &shared);
412                 if (ret)
413                         return ret;
414
415                 for (i = 0; i < count; i++) {
416                         timeout = i915_gem_object_wait_fence(shared[i],
417                                                              flags, timeout,
418                                                              rps);
419                         if (timeout <= 0)
420                                 break;
421
422                         dma_fence_put(shared[i]);
423                 }
424
425                 for (; i < count; i++)
426                         dma_fence_put(shared[i]);
427                 kfree(shared);
428         } else {
429                 excl = reservation_object_get_excl_rcu(resv);
430         }
431
432         if (excl && timeout > 0)
433                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
434
435         dma_fence_put(excl);
436
437         return timeout;
438 }
439
440 static void __fence_set_priority(struct dma_fence *fence, int prio)
441 {
442         struct drm_i915_gem_request *rq;
443         struct intel_engine_cs *engine;
444
445         if (!dma_fence_is_i915(fence))
446                 return;
447
448         rq = to_request(fence);
449         engine = rq->engine;
450         if (!engine->schedule)
451                 return;
452
453         engine->schedule(rq, prio);
454 }
455
456 static void fence_set_priority(struct dma_fence *fence, int prio)
457 {
458         /* Recurse once into a fence-array */
459         if (dma_fence_is_array(fence)) {
460                 struct dma_fence_array *array = to_dma_fence_array(fence);
461                 int i;
462
463                 for (i = 0; i < array->num_fences; i++)
464                         __fence_set_priority(array->fences[i], prio);
465         } else {
466                 __fence_set_priority(fence, prio);
467         }
468 }
469
470 int
471 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
472                               unsigned int flags,
473                               int prio)
474 {
475         struct dma_fence *excl;
476
477         if (flags & I915_WAIT_ALL) {
478                 struct dma_fence **shared;
479                 unsigned int count, i;
480                 int ret;
481
482                 ret = reservation_object_get_fences_rcu(obj->resv,
483                                                         &excl, &count, &shared);
484                 if (ret)
485                         return ret;
486
487                 for (i = 0; i < count; i++) {
488                         fence_set_priority(shared[i], prio);
489                         dma_fence_put(shared[i]);
490                 }
491
492                 kfree(shared);
493         } else {
494                 excl = reservation_object_get_excl_rcu(obj->resv);
495         }
496
497         if (excl) {
498                 fence_set_priority(excl, prio);
499                 dma_fence_put(excl);
500         }
501         return 0;
502 }
503
504 /**
505  * Waits for rendering to the object to be completed
506  * @obj: i915 gem object
507  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
508  * @timeout: how long to wait
509  * @rps: client (user process) to charge for any waitboosting
510  */
511 int
512 i915_gem_object_wait(struct drm_i915_gem_object *obj,
513                      unsigned int flags,
514                      long timeout,
515                      struct intel_rps_client *rps)
516 {
517         might_sleep();
518 #if IS_ENABLED(CONFIG_LOCKDEP)
519         GEM_BUG_ON(debug_locks &&
520                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
521                    !!(flags & I915_WAIT_LOCKED));
522 #endif
523         GEM_BUG_ON(timeout < 0);
524
525         timeout = i915_gem_object_wait_reservation(obj->resv,
526                                                    flags, timeout,
527                                                    rps);
528         return timeout < 0 ? timeout : 0;
529 }
530
531 static struct intel_rps_client *to_rps_client(struct drm_file *file)
532 {
533         struct drm_i915_file_private *fpriv = file->driver_priv;
534
535         return &fpriv->rps;
536 }
537
538 int
539 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
540                             int align)
541 {
542         drm_dma_handle_t *phys;
543         int ret;
544
545         if (obj->phys_handle) {
546                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
547                         return -EBUSY;
548
549                 return 0;
550         }
551
552         if (obj->mm.madv != I915_MADV_WILLNEED)
553                 return -EFAULT;
554
555         if (obj->base.filp == NULL)
556                 return -EINVAL;
557
558         ret = i915_gem_object_unbind(obj);
559         if (ret)
560                 return ret;
561
562         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
563         if (obj->mm.pages)
564                 return -EBUSY;
565
566         /* create a new object */
567         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
568         if (!phys)
569                 return -ENOMEM;
570
571         obj->phys_handle = phys;
572         obj->ops = &i915_gem_phys_ops;
573
574         return i915_gem_object_pin_pages(obj);
575 }
576
577 static int
578 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
579                      struct drm_i915_gem_pwrite *args,
580                      struct drm_file *file)
581 {
582         struct drm_device *dev = obj->base.dev;
583         void *vaddr = obj->phys_handle->vaddr + args->offset;
584         char __user *user_data = u64_to_user_ptr(args->data_ptr);
585         int ret;
586
587         /* We manually control the domain here and pretend that it
588          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
589          */
590         lockdep_assert_held(&obj->base.dev->struct_mutex);
591         ret = i915_gem_object_wait(obj,
592                                    I915_WAIT_INTERRUPTIBLE |
593                                    I915_WAIT_LOCKED |
594                                    I915_WAIT_ALL,
595                                    MAX_SCHEDULE_TIMEOUT,
596                                    to_rps_client(file));
597         if (ret)
598                 return ret;
599
600         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
601         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
602                 unsigned long unwritten;
603
604                 /* The physical object once assigned is fixed for the lifetime
605                  * of the obj, so we can safely drop the lock and continue
606                  * to access vaddr.
607                  */
608                 mutex_unlock(&dev->struct_mutex);
609                 unwritten = copy_from_user(vaddr, user_data, args->size);
610                 mutex_lock(&dev->struct_mutex);
611                 if (unwritten) {
612                         ret = -EFAULT;
613                         goto out;
614                 }
615         }
616
617         drm_clflush_virt_range(vaddr, args->size);
618         i915_gem_chipset_flush(to_i915(dev));
619
620 out:
621         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
622         return ret;
623 }
624
625 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
626 {
627         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
628 }
629
630 void i915_gem_object_free(struct drm_i915_gem_object *obj)
631 {
632         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
633         kmem_cache_free(dev_priv->objects, obj);
634 }
635
636 static int
637 i915_gem_create(struct drm_file *file,
638                 struct drm_i915_private *dev_priv,
639                 uint64_t size,
640                 uint32_t *handle_p)
641 {
642         struct drm_i915_gem_object *obj;
643         int ret;
644         u32 handle;
645
646         size = roundup(size, PAGE_SIZE);
647         if (size == 0)
648                 return -EINVAL;
649
650         /* Allocate the new object */
651         obj = i915_gem_object_create(dev_priv, size);
652         if (IS_ERR(obj))
653                 return PTR_ERR(obj);
654
655         ret = drm_gem_handle_create(file, &obj->base, &handle);
656         /* drop reference from allocate - handle holds it now */
657         i915_gem_object_put(obj);
658         if (ret)
659                 return ret;
660
661         *handle_p = handle;
662         return 0;
663 }
664
665 int
666 i915_gem_dumb_create(struct drm_file *file,
667                      struct drm_device *dev,
668                      struct drm_mode_create_dumb *args)
669 {
670         /* have to work out size/pitch and return them */
671         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
672         args->size = args->pitch * args->height;
673         return i915_gem_create(file, to_i915(dev),
674                                args->size, &args->handle);
675 }
676
677 /**
678  * Creates a new mm object and returns a handle to it.
679  * @dev: drm device pointer
680  * @data: ioctl data blob
681  * @file: drm file pointer
682  */
683 int
684 i915_gem_create_ioctl(struct drm_device *dev, void *data,
685                       struct drm_file *file)
686 {
687         struct drm_i915_private *dev_priv = to_i915(dev);
688         struct drm_i915_gem_create *args = data;
689
690         i915_gem_flush_free_objects(dev_priv);
691
692         return i915_gem_create(file, dev_priv,
693                                args->size, &args->handle);
694 }
695
696 static inline int
697 __copy_to_user_swizzled(char __user *cpu_vaddr,
698                         const char *gpu_vaddr, int gpu_offset,
699                         int length)
700 {
701         int ret, cpu_offset = 0;
702
703         while (length > 0) {
704                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
705                 int this_length = min(cacheline_end - gpu_offset, length);
706                 int swizzled_gpu_offset = gpu_offset ^ 64;
707
708                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
709                                      gpu_vaddr + swizzled_gpu_offset,
710                                      this_length);
711                 if (ret)
712                         return ret + length;
713
714                 cpu_offset += this_length;
715                 gpu_offset += this_length;
716                 length -= this_length;
717         }
718
719         return 0;
720 }
721
722 static inline int
723 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
724                           const char __user *cpu_vaddr,
725                           int length)
726 {
727         int ret, cpu_offset = 0;
728
729         while (length > 0) {
730                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
731                 int this_length = min(cacheline_end - gpu_offset, length);
732                 int swizzled_gpu_offset = gpu_offset ^ 64;
733
734                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
735                                        cpu_vaddr + cpu_offset,
736                                        this_length);
737                 if (ret)
738                         return ret + length;
739
740                 cpu_offset += this_length;
741                 gpu_offset += this_length;
742                 length -= this_length;
743         }
744
745         return 0;
746 }
747
748 /*
749  * Pins the specified object's pages and synchronizes the object with
750  * GPU accesses. Sets needs_clflush to non-zero if the caller should
751  * flush the object from the CPU cache.
752  */
753 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
754                                     unsigned int *needs_clflush)
755 {
756         int ret;
757
758         lockdep_assert_held(&obj->base.dev->struct_mutex);
759
760         *needs_clflush = 0;
761         if (!i915_gem_object_has_struct_page(obj))
762                 return -ENODEV;
763
764         ret = i915_gem_object_wait(obj,
765                                    I915_WAIT_INTERRUPTIBLE |
766                                    I915_WAIT_LOCKED,
767                                    MAX_SCHEDULE_TIMEOUT,
768                                    NULL);
769         if (ret)
770                 return ret;
771
772         ret = i915_gem_object_pin_pages(obj);
773         if (ret)
774                 return ret;
775
776         i915_gem_object_flush_gtt_write_domain(obj);
777
778         /* If we're not in the cpu read domain, set ourself into the gtt
779          * read domain and manually flush cachelines (if required). This
780          * optimizes for the case when the gpu will dirty the data
781          * anyway again before the next pread happens.
782          */
783         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
784                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
785                                                         obj->cache_level);
786
787         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
788                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
789                 if (ret)
790                         goto err_unpin;
791
792                 *needs_clflush = 0;
793         }
794
795         /* return with the pages pinned */
796         return 0;
797
798 err_unpin:
799         i915_gem_object_unpin_pages(obj);
800         return ret;
801 }
802
803 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
804                                      unsigned int *needs_clflush)
805 {
806         int ret;
807
808         lockdep_assert_held(&obj->base.dev->struct_mutex);
809
810         *needs_clflush = 0;
811         if (!i915_gem_object_has_struct_page(obj))
812                 return -ENODEV;
813
814         ret = i915_gem_object_wait(obj,
815                                    I915_WAIT_INTERRUPTIBLE |
816                                    I915_WAIT_LOCKED |
817                                    I915_WAIT_ALL,
818                                    MAX_SCHEDULE_TIMEOUT,
819                                    NULL);
820         if (ret)
821                 return ret;
822
823         ret = i915_gem_object_pin_pages(obj);
824         if (ret)
825                 return ret;
826
827         i915_gem_object_flush_gtt_write_domain(obj);
828
829         /* If we're not in the cpu write domain, set ourself into the
830          * gtt write domain and manually flush cachelines (as required).
831          * This optimizes for the case when the gpu will use the data
832          * right away and we therefore have to clflush anyway.
833          */
834         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
835                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
836
837         /* Same trick applies to invalidate partially written cachelines read
838          * before writing.
839          */
840         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
841                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
842                                                          obj->cache_level);
843
844         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
845                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
846                 if (ret)
847                         goto err_unpin;
848
849                 *needs_clflush = 0;
850         }
851
852         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
853                 obj->cache_dirty = true;
854
855         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
856         obj->mm.dirty = true;
857         /* return with the pages pinned */
858         return 0;
859
860 err_unpin:
861         i915_gem_object_unpin_pages(obj);
862         return ret;
863 }
864
865 static void
866 shmem_clflush_swizzled_range(char *addr, unsigned long length,
867                              bool swizzled)
868 {
869         if (unlikely(swizzled)) {
870                 unsigned long start = (unsigned long) addr;
871                 unsigned long end = (unsigned long) addr + length;
872
873                 /* For swizzling simply ensure that we always flush both
874                  * channels. Lame, but simple and it works. Swizzled
875                  * pwrite/pread is far from a hotpath - current userspace
876                  * doesn't use it at all. */
877                 start = round_down(start, 128);
878                 end = round_up(end, 128);
879
880                 drm_clflush_virt_range((void *)start, end - start);
881         } else {
882                 drm_clflush_virt_range(addr, length);
883         }
884
885 }
886
887 /* Only difference to the fast-path function is that this can handle bit17
888  * and uses non-atomic copy and kmap functions. */
889 static int
890 shmem_pread_slow(struct page *page, int offset, int length,
891                  char __user *user_data,
892                  bool page_do_bit17_swizzling, bool needs_clflush)
893 {
894         char *vaddr;
895         int ret;
896
897         vaddr = kmap(page);
898         if (needs_clflush)
899                 shmem_clflush_swizzled_range(vaddr + offset, length,
900                                              page_do_bit17_swizzling);
901
902         if (page_do_bit17_swizzling)
903                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
904         else
905                 ret = __copy_to_user(user_data, vaddr + offset, length);
906         kunmap(page);
907
908         return ret ? - EFAULT : 0;
909 }
910
911 static int
912 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
913             bool page_do_bit17_swizzling, bool needs_clflush)
914 {
915         int ret;
916
917         ret = -ENODEV;
918         if (!page_do_bit17_swizzling) {
919                 char *vaddr = kmap_atomic(page);
920
921                 if (needs_clflush)
922                         drm_clflush_virt_range(vaddr + offset, length);
923                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
924                 kunmap_atomic(vaddr);
925         }
926         if (ret == 0)
927                 return 0;
928
929         return shmem_pread_slow(page, offset, length, user_data,
930                                 page_do_bit17_swizzling, needs_clflush);
931 }
932
933 static int
934 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
935                      struct drm_i915_gem_pread *args)
936 {
937         char __user *user_data;
938         u64 remain;
939         unsigned int obj_do_bit17_swizzling;
940         unsigned int needs_clflush;
941         unsigned int idx, offset;
942         int ret;
943
944         obj_do_bit17_swizzling = 0;
945         if (i915_gem_object_needs_bit17_swizzle(obj))
946                 obj_do_bit17_swizzling = BIT(17);
947
948         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
949         if (ret)
950                 return ret;
951
952         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
953         mutex_unlock(&obj->base.dev->struct_mutex);
954         if (ret)
955                 return ret;
956
957         remain = args->size;
958         user_data = u64_to_user_ptr(args->data_ptr);
959         offset = offset_in_page(args->offset);
960         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
961                 struct page *page = i915_gem_object_get_page(obj, idx);
962                 int length;
963
964                 length = remain;
965                 if (offset + length > PAGE_SIZE)
966                         length = PAGE_SIZE - offset;
967
968                 ret = shmem_pread(page, offset, length, user_data,
969                                   page_to_phys(page) & obj_do_bit17_swizzling,
970                                   needs_clflush);
971                 if (ret)
972                         break;
973
974                 remain -= length;
975                 user_data += length;
976                 offset = 0;
977         }
978
979         i915_gem_obj_finish_shmem_access(obj);
980         return ret;
981 }
982
983 static inline bool
984 gtt_user_read(struct io_mapping *mapping,
985               loff_t base, int offset,
986               char __user *user_data, int length)
987 {
988         void *vaddr;
989         unsigned long unwritten;
990
991         /* We can use the cpu mem copy function because this is X86. */
992         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
993         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
994         io_mapping_unmap_atomic(vaddr);
995         if (unwritten) {
996                 vaddr = (void __force *)
997                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
998                 unwritten = copy_to_user(user_data, vaddr + offset, length);
999                 io_mapping_unmap(vaddr);
1000         }
1001         return unwritten;
1002 }
1003
1004 static int
1005 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1006                    const struct drm_i915_gem_pread *args)
1007 {
1008         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1009         struct i915_ggtt *ggtt = &i915->ggtt;
1010         struct drm_mm_node node;
1011         struct i915_vma *vma;
1012         void __user *user_data;
1013         u64 remain, offset;
1014         int ret;
1015
1016         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1017         if (ret)
1018                 return ret;
1019
1020         intel_runtime_pm_get(i915);
1021         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1022                                        PIN_MAPPABLE | PIN_NONBLOCK);
1023         if (!IS_ERR(vma)) {
1024                 node.start = i915_ggtt_offset(vma);
1025                 node.allocated = false;
1026                 ret = i915_vma_put_fence(vma);
1027                 if (ret) {
1028                         i915_vma_unpin(vma);
1029                         vma = ERR_PTR(ret);
1030                 }
1031         }
1032         if (IS_ERR(vma)) {
1033                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1034                 if (ret)
1035                         goto out_unlock;
1036                 GEM_BUG_ON(!node.allocated);
1037         }
1038
1039         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1040         if (ret)
1041                 goto out_unpin;
1042
1043         mutex_unlock(&i915->drm.struct_mutex);
1044
1045         user_data = u64_to_user_ptr(args->data_ptr);
1046         remain = args->size;
1047         offset = args->offset;
1048
1049         while (remain > 0) {
1050                 /* Operation in this page
1051                  *
1052                  * page_base = page offset within aperture
1053                  * page_offset = offset within page
1054                  * page_length = bytes to copy for this page
1055                  */
1056                 u32 page_base = node.start;
1057                 unsigned page_offset = offset_in_page(offset);
1058                 unsigned page_length = PAGE_SIZE - page_offset;
1059                 page_length = remain < page_length ? remain : page_length;
1060                 if (node.allocated) {
1061                         wmb();
1062                         ggtt->base.insert_page(&ggtt->base,
1063                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1064                                                node.start, I915_CACHE_NONE, 0);
1065                         wmb();
1066                 } else {
1067                         page_base += offset & PAGE_MASK;
1068                 }
1069
1070                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1071                                   user_data, page_length)) {
1072                         ret = -EFAULT;
1073                         break;
1074                 }
1075
1076                 remain -= page_length;
1077                 user_data += page_length;
1078                 offset += page_length;
1079         }
1080
1081         mutex_lock(&i915->drm.struct_mutex);
1082 out_unpin:
1083         if (node.allocated) {
1084                 wmb();
1085                 ggtt->base.clear_range(&ggtt->base,
1086                                        node.start, node.size);
1087                 remove_mappable_node(&node);
1088         } else {
1089                 i915_vma_unpin(vma);
1090         }
1091 out_unlock:
1092         intel_runtime_pm_put(i915);
1093         mutex_unlock(&i915->drm.struct_mutex);
1094
1095         return ret;
1096 }
1097
1098 /**
1099  * Reads data from the object referenced by handle.
1100  * @dev: drm device pointer
1101  * @data: ioctl data blob
1102  * @file: drm file pointer
1103  *
1104  * On error, the contents of *data are undefined.
1105  */
1106 int
1107 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1108                      struct drm_file *file)
1109 {
1110         struct drm_i915_gem_pread *args = data;
1111         struct drm_i915_gem_object *obj;
1112         int ret;
1113
1114         if (args->size == 0)
1115                 return 0;
1116
1117         if (!access_ok(VERIFY_WRITE,
1118                        u64_to_user_ptr(args->data_ptr),
1119                        args->size))
1120                 return -EFAULT;
1121
1122         obj = i915_gem_object_lookup(file, args->handle);
1123         if (!obj)
1124                 return -ENOENT;
1125
1126         /* Bounds check source.  */
1127         if (args->offset > obj->base.size ||
1128             args->size > obj->base.size - args->offset) {
1129                 ret = -EINVAL;
1130                 goto out;
1131         }
1132
1133         trace_i915_gem_object_pread(obj, args->offset, args->size);
1134
1135         ret = i915_gem_object_wait(obj,
1136                                    I915_WAIT_INTERRUPTIBLE,
1137                                    MAX_SCHEDULE_TIMEOUT,
1138                                    to_rps_client(file));
1139         if (ret)
1140                 goto out;
1141
1142         ret = i915_gem_object_pin_pages(obj);
1143         if (ret)
1144                 goto out;
1145
1146         ret = i915_gem_shmem_pread(obj, args);
1147         if (ret == -EFAULT || ret == -ENODEV)
1148                 ret = i915_gem_gtt_pread(obj, args);
1149
1150         i915_gem_object_unpin_pages(obj);
1151 out:
1152         i915_gem_object_put(obj);
1153         return ret;
1154 }
1155
1156 /* This is the fast write path which cannot handle
1157  * page faults in the source data
1158  */
1159
1160 static inline bool
1161 ggtt_write(struct io_mapping *mapping,
1162            loff_t base, int offset,
1163            char __user *user_data, int length)
1164 {
1165         void *vaddr;
1166         unsigned long unwritten;
1167
1168         /* We can use the cpu mem copy function because this is X86. */
1169         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1170         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1171                                                       user_data, length);
1172         io_mapping_unmap_atomic(vaddr);
1173         if (unwritten) {
1174                 vaddr = (void __force *)
1175                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1176                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1177                 io_mapping_unmap(vaddr);
1178         }
1179
1180         return unwritten;
1181 }
1182
1183 /**
1184  * This is the fast pwrite path, where we copy the data directly from the
1185  * user into the GTT, uncached.
1186  * @obj: i915 GEM object
1187  * @args: pwrite arguments structure
1188  */
1189 static int
1190 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1191                          const struct drm_i915_gem_pwrite *args)
1192 {
1193         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1194         struct i915_ggtt *ggtt = &i915->ggtt;
1195         struct drm_mm_node node;
1196         struct i915_vma *vma;
1197         u64 remain, offset;
1198         void __user *user_data;
1199         int ret;
1200
1201         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1202         if (ret)
1203                 return ret;
1204
1205         intel_runtime_pm_get(i915);
1206         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1207                                        PIN_MAPPABLE | PIN_NONBLOCK);
1208         if (!IS_ERR(vma)) {
1209                 node.start = i915_ggtt_offset(vma);
1210                 node.allocated = false;
1211                 ret = i915_vma_put_fence(vma);
1212                 if (ret) {
1213                         i915_vma_unpin(vma);
1214                         vma = ERR_PTR(ret);
1215                 }
1216         }
1217         if (IS_ERR(vma)) {
1218                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1219                 if (ret)
1220                         goto out_unlock;
1221                 GEM_BUG_ON(!node.allocated);
1222         }
1223
1224         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1225         if (ret)
1226                 goto out_unpin;
1227
1228         mutex_unlock(&i915->drm.struct_mutex);
1229
1230         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1231
1232         user_data = u64_to_user_ptr(args->data_ptr);
1233         offset = args->offset;
1234         remain = args->size;
1235         while (remain) {
1236                 /* Operation in this page
1237                  *
1238                  * page_base = page offset within aperture
1239                  * page_offset = offset within page
1240                  * page_length = bytes to copy for this page
1241                  */
1242                 u32 page_base = node.start;
1243                 unsigned int page_offset = offset_in_page(offset);
1244                 unsigned int page_length = PAGE_SIZE - page_offset;
1245                 page_length = remain < page_length ? remain : page_length;
1246                 if (node.allocated) {
1247                         wmb(); /* flush the write before we modify the GGTT */
1248                         ggtt->base.insert_page(&ggtt->base,
1249                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1250                                                node.start, I915_CACHE_NONE, 0);
1251                         wmb(); /* flush modifications to the GGTT (insert_page) */
1252                 } else {
1253                         page_base += offset & PAGE_MASK;
1254                 }
1255                 /* If we get a fault while copying data, then (presumably) our
1256                  * source page isn't available.  Return the error and we'll
1257                  * retry in the slow path.
1258                  * If the object is non-shmem backed, we retry again with the
1259                  * path that handles page fault.
1260                  */
1261                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1262                                user_data, page_length)) {
1263                         ret = -EFAULT;
1264                         break;
1265                 }
1266
1267                 remain -= page_length;
1268                 user_data += page_length;
1269                 offset += page_length;
1270         }
1271         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1272
1273         mutex_lock(&i915->drm.struct_mutex);
1274 out_unpin:
1275         if (node.allocated) {
1276                 wmb();
1277                 ggtt->base.clear_range(&ggtt->base,
1278                                        node.start, node.size);
1279                 remove_mappable_node(&node);
1280         } else {
1281                 i915_vma_unpin(vma);
1282         }
1283 out_unlock:
1284         intel_runtime_pm_put(i915);
1285         mutex_unlock(&i915->drm.struct_mutex);
1286         return ret;
1287 }
1288
1289 static int
1290 shmem_pwrite_slow(struct page *page, int offset, int length,
1291                   char __user *user_data,
1292                   bool page_do_bit17_swizzling,
1293                   bool needs_clflush_before,
1294                   bool needs_clflush_after)
1295 {
1296         char *vaddr;
1297         int ret;
1298
1299         vaddr = kmap(page);
1300         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1301                 shmem_clflush_swizzled_range(vaddr + offset, length,
1302                                              page_do_bit17_swizzling);
1303         if (page_do_bit17_swizzling)
1304                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1305                                                 length);
1306         else
1307                 ret = __copy_from_user(vaddr + offset, user_data, length);
1308         if (needs_clflush_after)
1309                 shmem_clflush_swizzled_range(vaddr + offset, length,
1310                                              page_do_bit17_swizzling);
1311         kunmap(page);
1312
1313         return ret ? -EFAULT : 0;
1314 }
1315
1316 /* Per-page copy function for the shmem pwrite fastpath.
1317  * Flushes invalid cachelines before writing to the target if
1318  * needs_clflush_before is set and flushes out any written cachelines after
1319  * writing if needs_clflush is set.
1320  */
1321 static int
1322 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1323              bool page_do_bit17_swizzling,
1324              bool needs_clflush_before,
1325              bool needs_clflush_after)
1326 {
1327         int ret;
1328
1329         ret = -ENODEV;
1330         if (!page_do_bit17_swizzling) {
1331                 char *vaddr = kmap_atomic(page);
1332
1333                 if (needs_clflush_before)
1334                         drm_clflush_virt_range(vaddr + offset, len);
1335                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1336                 if (needs_clflush_after)
1337                         drm_clflush_virt_range(vaddr + offset, len);
1338
1339                 kunmap_atomic(vaddr);
1340         }
1341         if (ret == 0)
1342                 return ret;
1343
1344         return shmem_pwrite_slow(page, offset, len, user_data,
1345                                  page_do_bit17_swizzling,
1346                                  needs_clflush_before,
1347                                  needs_clflush_after);
1348 }
1349
1350 static int
1351 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1352                       const struct drm_i915_gem_pwrite *args)
1353 {
1354         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1355         void __user *user_data;
1356         u64 remain;
1357         unsigned int obj_do_bit17_swizzling;
1358         unsigned int partial_cacheline_write;
1359         unsigned int needs_clflush;
1360         unsigned int offset, idx;
1361         int ret;
1362
1363         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1364         if (ret)
1365                 return ret;
1366
1367         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1368         mutex_unlock(&i915->drm.struct_mutex);
1369         if (ret)
1370                 return ret;
1371
1372         obj_do_bit17_swizzling = 0;
1373         if (i915_gem_object_needs_bit17_swizzle(obj))
1374                 obj_do_bit17_swizzling = BIT(17);
1375
1376         /* If we don't overwrite a cacheline completely we need to be
1377          * careful to have up-to-date data by first clflushing. Don't
1378          * overcomplicate things and flush the entire patch.
1379          */
1380         partial_cacheline_write = 0;
1381         if (needs_clflush & CLFLUSH_BEFORE)
1382                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1383
1384         user_data = u64_to_user_ptr(args->data_ptr);
1385         remain = args->size;
1386         offset = offset_in_page(args->offset);
1387         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1388                 struct page *page = i915_gem_object_get_page(obj, idx);
1389                 int length;
1390
1391                 length = remain;
1392                 if (offset + length > PAGE_SIZE)
1393                         length = PAGE_SIZE - offset;
1394
1395                 ret = shmem_pwrite(page, offset, length, user_data,
1396                                    page_to_phys(page) & obj_do_bit17_swizzling,
1397                                    (offset | length) & partial_cacheline_write,
1398                                    needs_clflush & CLFLUSH_AFTER);
1399                 if (ret)
1400                         break;
1401
1402                 remain -= length;
1403                 user_data += length;
1404                 offset = 0;
1405         }
1406
1407         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1408         i915_gem_obj_finish_shmem_access(obj);
1409         return ret;
1410 }
1411
1412 /**
1413  * Writes data to the object referenced by handle.
1414  * @dev: drm device
1415  * @data: ioctl data blob
1416  * @file: drm file
1417  *
1418  * On error, the contents of the buffer that were to be modified are undefined.
1419  */
1420 int
1421 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1422                       struct drm_file *file)
1423 {
1424         struct drm_i915_gem_pwrite *args = data;
1425         struct drm_i915_gem_object *obj;
1426         int ret;
1427
1428         if (args->size == 0)
1429                 return 0;
1430
1431         if (!access_ok(VERIFY_READ,
1432                        u64_to_user_ptr(args->data_ptr),
1433                        args->size))
1434                 return -EFAULT;
1435
1436         obj = i915_gem_object_lookup(file, args->handle);
1437         if (!obj)
1438                 return -ENOENT;
1439
1440         /* Bounds check destination. */
1441         if (args->offset > obj->base.size ||
1442             args->size > obj->base.size - args->offset) {
1443                 ret = -EINVAL;
1444                 goto err;
1445         }
1446
1447         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1448
1449         ret = i915_gem_object_wait(obj,
1450                                    I915_WAIT_INTERRUPTIBLE |
1451                                    I915_WAIT_ALL,
1452                                    MAX_SCHEDULE_TIMEOUT,
1453                                    to_rps_client(file));
1454         if (ret)
1455                 goto err;
1456
1457         ret = i915_gem_object_pin_pages(obj);
1458         if (ret)
1459                 goto err;
1460
1461         ret = -EFAULT;
1462         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1463          * it would end up going through the fenced access, and we'll get
1464          * different detiling behavior between reading and writing.
1465          * pread/pwrite currently are reading and writing from the CPU
1466          * perspective, requiring manual detiling by the client.
1467          */
1468         if (!i915_gem_object_has_struct_page(obj) ||
1469             cpu_write_needs_clflush(obj))
1470                 /* Note that the gtt paths might fail with non-page-backed user
1471                  * pointers (e.g. gtt mappings when moving data between
1472                  * textures). Fallback to the shmem path in that case.
1473                  */
1474                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1475
1476         if (ret == -EFAULT || ret == -ENOSPC) {
1477                 if (obj->phys_handle)
1478                         ret = i915_gem_phys_pwrite(obj, args, file);
1479                 else
1480                         ret = i915_gem_shmem_pwrite(obj, args);
1481         }
1482
1483         i915_gem_object_unpin_pages(obj);
1484 err:
1485         i915_gem_object_put(obj);
1486         return ret;
1487 }
1488
1489 static inline enum fb_op_origin
1490 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1491 {
1492         return (domain == I915_GEM_DOMAIN_GTT ?
1493                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1494 }
1495
1496 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1497 {
1498         struct drm_i915_private *i915;
1499         struct list_head *list;
1500         struct i915_vma *vma;
1501
1502         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1503                 if (!i915_vma_is_ggtt(vma))
1504                         continue;
1505
1506                 if (i915_vma_is_active(vma))
1507                         continue;
1508
1509                 if (!drm_mm_node_allocated(&vma->node))
1510                         continue;
1511
1512                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1513         }
1514
1515         i915 = to_i915(obj->base.dev);
1516         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1517         list_move_tail(&obj->global_link, list);
1518 }
1519
1520 /**
1521  * Called when user space prepares to use an object with the CPU, either
1522  * through the mmap ioctl's mapping or a GTT mapping.
1523  * @dev: drm device
1524  * @data: ioctl data blob
1525  * @file: drm file
1526  */
1527 int
1528 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1529                           struct drm_file *file)
1530 {
1531         struct drm_i915_gem_set_domain *args = data;
1532         struct drm_i915_gem_object *obj;
1533         uint32_t read_domains = args->read_domains;
1534         uint32_t write_domain = args->write_domain;
1535         int err;
1536
1537         /* Only handle setting domains to types used by the CPU. */
1538         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1539                 return -EINVAL;
1540
1541         /* Having something in the write domain implies it's in the read
1542          * domain, and only that read domain.  Enforce that in the request.
1543          */
1544         if (write_domain != 0 && read_domains != write_domain)
1545                 return -EINVAL;
1546
1547         obj = i915_gem_object_lookup(file, args->handle);
1548         if (!obj)
1549                 return -ENOENT;
1550
1551         /* Try to flush the object off the GPU without holding the lock.
1552          * We will repeat the flush holding the lock in the normal manner
1553          * to catch cases where we are gazumped.
1554          */
1555         err = i915_gem_object_wait(obj,
1556                                    I915_WAIT_INTERRUPTIBLE |
1557                                    (write_domain ? I915_WAIT_ALL : 0),
1558                                    MAX_SCHEDULE_TIMEOUT,
1559                                    to_rps_client(file));
1560         if (err)
1561                 goto out;
1562
1563         /* Flush and acquire obj->pages so that we are coherent through
1564          * direct access in memory with previous cached writes through
1565          * shmemfs and that our cache domain tracking remains valid.
1566          * For example, if the obj->filp was moved to swap without us
1567          * being notified and releasing the pages, we would mistakenly
1568          * continue to assume that the obj remained out of the CPU cached
1569          * domain.
1570          */
1571         err = i915_gem_object_pin_pages(obj);
1572         if (err)
1573                 goto out;
1574
1575         err = i915_mutex_lock_interruptible(dev);
1576         if (err)
1577                 goto out_unpin;
1578
1579         if (read_domains & I915_GEM_DOMAIN_GTT)
1580                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1581         else
1582                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1583
1584         /* And bump the LRU for this access */
1585         i915_gem_object_bump_inactive_ggtt(obj);
1586
1587         mutex_unlock(&dev->struct_mutex);
1588
1589         if (write_domain != 0)
1590                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1591
1592 out_unpin:
1593         i915_gem_object_unpin_pages(obj);
1594 out:
1595         i915_gem_object_put(obj);
1596         return err;
1597 }
1598
1599 /**
1600  * Called when user space has done writes to this buffer
1601  * @dev: drm device
1602  * @data: ioctl data blob
1603  * @file: drm file
1604  */
1605 int
1606 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1607                          struct drm_file *file)
1608 {
1609         struct drm_i915_gem_sw_finish *args = data;
1610         struct drm_i915_gem_object *obj;
1611         int err = 0;
1612
1613         obj = i915_gem_object_lookup(file, args->handle);
1614         if (!obj)
1615                 return -ENOENT;
1616
1617         /* Pinned buffers may be scanout, so flush the cache */
1618         if (READ_ONCE(obj->pin_display)) {
1619                 err = i915_mutex_lock_interruptible(dev);
1620                 if (!err) {
1621                         i915_gem_object_flush_cpu_write_domain(obj);
1622                         mutex_unlock(&dev->struct_mutex);
1623                 }
1624         }
1625
1626         i915_gem_object_put(obj);
1627         return err;
1628 }
1629
1630 /**
1631  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1632  *                       it is mapped to.
1633  * @dev: drm device
1634  * @data: ioctl data blob
1635  * @file: drm file
1636  *
1637  * While the mapping holds a reference on the contents of the object, it doesn't
1638  * imply a ref on the object itself.
1639  *
1640  * IMPORTANT:
1641  *
1642  * DRM driver writers who look a this function as an example for how to do GEM
1643  * mmap support, please don't implement mmap support like here. The modern way
1644  * to implement DRM mmap support is with an mmap offset ioctl (like
1645  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1646  * That way debug tooling like valgrind will understand what's going on, hiding
1647  * the mmap call in a driver private ioctl will break that. The i915 driver only
1648  * does cpu mmaps this way because we didn't know better.
1649  */
1650 int
1651 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1652                     struct drm_file *file)
1653 {
1654         struct drm_i915_gem_mmap *args = data;
1655         struct drm_i915_gem_object *obj;
1656         unsigned long addr;
1657
1658         if (args->flags & ~(I915_MMAP_WC))
1659                 return -EINVAL;
1660
1661         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1662                 return -ENODEV;
1663
1664         obj = i915_gem_object_lookup(file, args->handle);
1665         if (!obj)
1666                 return -ENOENT;
1667
1668         /* prime objects have no backing filp to GEM mmap
1669          * pages from.
1670          */
1671         if (!obj->base.filp) {
1672                 i915_gem_object_put(obj);
1673                 return -EINVAL;
1674         }
1675
1676         addr = vm_mmap(obj->base.filp, 0, args->size,
1677                        PROT_READ | PROT_WRITE, MAP_SHARED,
1678                        args->offset);
1679         if (args->flags & I915_MMAP_WC) {
1680                 struct mm_struct *mm = current->mm;
1681                 struct vm_area_struct *vma;
1682
1683                 if (down_write_killable(&mm->mmap_sem)) {
1684                         i915_gem_object_put(obj);
1685                         return -EINTR;
1686                 }
1687                 vma = find_vma(mm, addr);
1688                 if (vma)
1689                         vma->vm_page_prot =
1690                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1691                 else
1692                         addr = -ENOMEM;
1693                 up_write(&mm->mmap_sem);
1694
1695                 /* This may race, but that's ok, it only gets set */
1696                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1697         }
1698         i915_gem_object_put(obj);
1699         if (IS_ERR((void *)addr))
1700                 return addr;
1701
1702         args->addr_ptr = (uint64_t) addr;
1703
1704         return 0;
1705 }
1706
1707 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1708 {
1709         u64 size;
1710
1711         size = i915_gem_object_get_stride(obj);
1712         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1713
1714         return size >> PAGE_SHIFT;
1715 }
1716
1717 /**
1718  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1719  *
1720  * A history of the GTT mmap interface:
1721  *
1722  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1723  *     aligned and suitable for fencing, and still fit into the available
1724  *     mappable space left by the pinned display objects. A classic problem
1725  *     we called the page-fault-of-doom where we would ping-pong between
1726  *     two objects that could not fit inside the GTT and so the memcpy
1727  *     would page one object in at the expense of the other between every
1728  *     single byte.
1729  *
1730  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1731  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1732  *     object is too large for the available space (or simply too large
1733  *     for the mappable aperture!), a view is created instead and faulted
1734  *     into userspace. (This view is aligned and sized appropriately for
1735  *     fenced access.)
1736  *
1737  * Restrictions:
1738  *
1739  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1740  *    hangs on some architectures, corruption on others. An attempt to service
1741  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1742  *
1743  *  * the object must be able to fit into RAM (physical memory, though no
1744  *    limited to the mappable aperture).
1745  *
1746  *
1747  * Caveats:
1748  *
1749  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1750  *    all data to system memory. Subsequent access will not be synchronized.
1751  *
1752  *  * all mappings are revoked on runtime device suspend.
1753  *
1754  *  * there are only 8, 16 or 32 fence registers to share between all users
1755  *    (older machines require fence register for display and blitter access
1756  *    as well). Contention of the fence registers will cause the previous users
1757  *    to be unmapped and any new access will generate new page faults.
1758  *
1759  *  * running out of memory while servicing a fault may generate a SIGBUS,
1760  *    rather than the expected SIGSEGV.
1761  */
1762 int i915_gem_mmap_gtt_version(void)
1763 {
1764         return 1;
1765 }
1766
1767 /**
1768  * i915_gem_fault - fault a page into the GTT
1769  * @area: CPU VMA in question
1770  * @vmf: fault info
1771  *
1772  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1773  * from userspace.  The fault handler takes care of binding the object to
1774  * the GTT (if needed), allocating and programming a fence register (again,
1775  * only if needed based on whether the old reg is still valid or the object
1776  * is tiled) and inserting a new PTE into the faulting process.
1777  *
1778  * Note that the faulting process may involve evicting existing objects
1779  * from the GTT and/or fence registers to make room.  So performance may
1780  * suffer if the GTT working set is large or there are few fence registers
1781  * left.
1782  *
1783  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1784  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1785  */
1786 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1787 {
1788 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1789         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1790         struct drm_device *dev = obj->base.dev;
1791         struct drm_i915_private *dev_priv = to_i915(dev);
1792         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1793         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1794         struct i915_vma *vma;
1795         pgoff_t page_offset;
1796         unsigned int flags;
1797         int ret;
1798
1799         /* We don't use vmf->pgoff since that has the fake offset */
1800         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1801                 PAGE_SHIFT;
1802
1803         trace_i915_gem_object_fault(obj, page_offset, true, write);
1804
1805         /* Try to flush the object off the GPU first without holding the lock.
1806          * Upon acquiring the lock, we will perform our sanity checks and then
1807          * repeat the flush holding the lock in the normal manner to catch cases
1808          * where we are gazumped.
1809          */
1810         ret = i915_gem_object_wait(obj,
1811                                    I915_WAIT_INTERRUPTIBLE,
1812                                    MAX_SCHEDULE_TIMEOUT,
1813                                    NULL);
1814         if (ret)
1815                 goto err;
1816
1817         ret = i915_gem_object_pin_pages(obj);
1818         if (ret)
1819                 goto err;
1820
1821         intel_runtime_pm_get(dev_priv);
1822
1823         ret = i915_mutex_lock_interruptible(dev);
1824         if (ret)
1825                 goto err_rpm;
1826
1827         /* Access to snoopable pages through the GTT is incoherent. */
1828         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1829                 ret = -EFAULT;
1830                 goto err_unlock;
1831         }
1832
1833         /* If the object is smaller than a couple of partial vma, it is
1834          * not worth only creating a single partial vma - we may as well
1835          * clear enough space for the full object.
1836          */
1837         flags = PIN_MAPPABLE;
1838         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1839                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1840
1841         /* Now pin it into the GTT as needed */
1842         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1843         if (IS_ERR(vma)) {
1844                 struct i915_ggtt_view view;
1845                 unsigned int chunk_size;
1846
1847                 /* Use a partial view if it is bigger than available space */
1848                 chunk_size = MIN_CHUNK_PAGES;
1849                 if (i915_gem_object_is_tiled(obj))
1850                         chunk_size = roundup(chunk_size, tile_row_pages(obj));
1851
1852                 memset(&view, 0, sizeof(view));
1853                 view.type = I915_GGTT_VIEW_PARTIAL;
1854                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1855                 view.params.partial.size =
1856                         min_t(unsigned int, chunk_size,
1857                               vma_pages(area) - view.params.partial.offset);
1858
1859                 /* If the partial covers the entire object, just create a
1860                  * normal VMA.
1861                  */
1862                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1863                         view.type = I915_GGTT_VIEW_NORMAL;
1864
1865                 /* Userspace is now writing through an untracked VMA, abandon
1866                  * all hope that the hardware is able to track future writes.
1867                  */
1868                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1869
1870                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1871         }
1872         if (IS_ERR(vma)) {
1873                 ret = PTR_ERR(vma);
1874                 goto err_unlock;
1875         }
1876
1877         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1878         if (ret)
1879                 goto err_unpin;
1880
1881         ret = i915_vma_get_fence(vma);
1882         if (ret)
1883                 goto err_unpin;
1884
1885         /* Mark as being mmapped into userspace for later revocation */
1886         assert_rpm_wakelock_held(dev_priv);
1887         if (list_empty(&obj->userfault_link))
1888                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1889
1890         /* Finally, remap it using the new GTT offset */
1891         ret = remap_io_mapping(area,
1892                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1893                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1894                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1895                                &ggtt->mappable);
1896
1897 err_unpin:
1898         __i915_vma_unpin(vma);
1899 err_unlock:
1900         mutex_unlock(&dev->struct_mutex);
1901 err_rpm:
1902         intel_runtime_pm_put(dev_priv);
1903         i915_gem_object_unpin_pages(obj);
1904 err:
1905         switch (ret) {
1906         case -EIO:
1907                 /*
1908                  * We eat errors when the gpu is terminally wedged to avoid
1909                  * userspace unduly crashing (gl has no provisions for mmaps to
1910                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911                  * and so needs to be reported.
1912                  */
1913                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914                         ret = VM_FAULT_SIGBUS;
1915                         break;
1916                 }
1917         case -EAGAIN:
1918                 /*
1919                  * EAGAIN means the gpu is hung and we'll wait for the error
1920                  * handler to reset everything when re-faulting in
1921                  * i915_mutex_lock_interruptible.
1922                  */
1923         case 0:
1924         case -ERESTARTSYS:
1925         case -EINTR:
1926         case -EBUSY:
1927                 /*
1928                  * EBUSY is ok: this just means that another thread
1929                  * already did the job.
1930                  */
1931                 ret = VM_FAULT_NOPAGE;
1932                 break;
1933         case -ENOMEM:
1934                 ret = VM_FAULT_OOM;
1935                 break;
1936         case -ENOSPC:
1937         case -EFAULT:
1938                 ret = VM_FAULT_SIGBUS;
1939                 break;
1940         default:
1941                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942                 ret = VM_FAULT_SIGBUS;
1943                 break;
1944         }
1945         return ret;
1946 }
1947
1948 /**
1949  * i915_gem_release_mmap - remove physical page mappings
1950  * @obj: obj in question
1951  *
1952  * Preserve the reservation of the mmapping with the DRM core code, but
1953  * relinquish ownership of the pages back to the system.
1954  *
1955  * It is vital that we remove the page mapping if we have mapped a tiled
1956  * object through the GTT and then lose the fence register due to
1957  * resource pressure. Similarly if the object has been moved out of the
1958  * aperture, than pages mapped into userspace must be revoked. Removing the
1959  * mapping will then trigger a page fault on the next user access, allowing
1960  * fixup by i915_gem_fault().
1961  */
1962 void
1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1966
1967         /* Serialisation between user GTT access and our code depends upon
1968          * revoking the CPU's PTE whilst the mutex is held. The next user
1969          * pagefault then has to wait until we release the mutex.
1970          *
1971          * Note that RPM complicates somewhat by adding an additional
1972          * requirement that operations to the GGTT be made holding the RPM
1973          * wakeref.
1974          */
1975         lockdep_assert_held(&i915->drm.struct_mutex);
1976         intel_runtime_pm_get(i915);
1977
1978         if (list_empty(&obj->userfault_link))
1979                 goto out;
1980
1981         list_del_init(&obj->userfault_link);
1982         drm_vma_node_unmap(&obj->base.vma_node,
1983                            obj->base.dev->anon_inode->i_mapping);
1984
1985         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1986          * memory transactions from userspace before we return. The TLB
1987          * flushing implied above by changing the PTE above *should* be
1988          * sufficient, an extra barrier here just provides us with a bit
1989          * of paranoid documentation about our requirement to serialise
1990          * memory writes before touching registers / GSM.
1991          */
1992         wmb();
1993
1994 out:
1995         intel_runtime_pm_put(i915);
1996 }
1997
1998 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1999 {
2000         struct drm_i915_gem_object *obj, *on;
2001         int i;
2002
2003         /*
2004          * Only called during RPM suspend. All users of the userfault_list
2005          * must be holding an RPM wakeref to ensure that this can not
2006          * run concurrently with themselves (and use the struct_mutex for
2007          * protection between themselves).
2008          */
2009
2010         list_for_each_entry_safe(obj, on,
2011                                  &dev_priv->mm.userfault_list, userfault_link) {
2012                 list_del_init(&obj->userfault_link);
2013                 drm_vma_node_unmap(&obj->base.vma_node,
2014                                    obj->base.dev->anon_inode->i_mapping);
2015         }
2016
2017         /* The fence will be lost when the device powers down. If any were
2018          * in use by hardware (i.e. they are pinned), we should not be powering
2019          * down! All other fences will be reacquired by the user upon waking.
2020          */
2021         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2022                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2023
2024                 if (WARN_ON(reg->pin_count))
2025                         continue;
2026
2027                 if (!reg->vma)
2028                         continue;
2029
2030                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2031                 reg->dirty = true;
2032         }
2033 }
2034
2035 /**
2036  * i915_gem_get_ggtt_size - return required global GTT size for an object
2037  * @dev_priv: i915 device
2038  * @size: object size
2039  * @tiling_mode: tiling mode
2040  *
2041  * Return the required global GTT size for an object, taking into account
2042  * potential fence register mapping.
2043  */
2044 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2045                            u64 size, int tiling_mode)
2046 {
2047         u64 ggtt_size;
2048
2049         GEM_BUG_ON(size == 0);
2050
2051         if (INTEL_GEN(dev_priv) >= 4 ||
2052             tiling_mode == I915_TILING_NONE)
2053                 return size;
2054
2055         /* Previous chips need a power-of-two fence region when tiling */
2056         if (IS_GEN3(dev_priv))
2057                 ggtt_size = 1024*1024;
2058         else
2059                 ggtt_size = 512*1024;
2060
2061         while (ggtt_size < size)
2062                 ggtt_size <<= 1;
2063
2064         return ggtt_size;
2065 }
2066
2067 /**
2068  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2069  * @dev_priv: i915 device
2070  * @size: object size
2071  * @tiling_mode: tiling mode
2072  * @fenced: is fenced alignment required or not
2073  *
2074  * Return the required global GTT alignment for an object, taking into account
2075  * potential fence register mapping.
2076  */
2077 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2078                                 int tiling_mode, bool fenced)
2079 {
2080         GEM_BUG_ON(size == 0);
2081
2082         /*
2083          * Minimum alignment is 4k (GTT page size), but might be greater
2084          * if a fence register is needed for the object.
2085          */
2086         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2087             tiling_mode == I915_TILING_NONE)
2088                 return 4096;
2089
2090         /*
2091          * Previous chips need to be aligned to the size of the smallest
2092          * fence register that can contain the object.
2093          */
2094         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2095 }
2096
2097 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2098 {
2099         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2100         int err;
2101
2102         err = drm_gem_create_mmap_offset(&obj->base);
2103         if (!err)
2104                 return 0;
2105
2106         /* We can idle the GPU locklessly to flush stale objects, but in order
2107          * to claim that space for ourselves, we need to take the big
2108          * struct_mutex to free the requests+objects and allocate our slot.
2109          */
2110         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2111         if (err)
2112                 return err;
2113
2114         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2115         if (!err) {
2116                 i915_gem_retire_requests(dev_priv);
2117                 err = drm_gem_create_mmap_offset(&obj->base);
2118                 mutex_unlock(&dev_priv->drm.struct_mutex);
2119         }
2120
2121         return err;
2122 }
2123
2124 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2125 {
2126         drm_gem_free_mmap_offset(&obj->base);
2127 }
2128
2129 int
2130 i915_gem_mmap_gtt(struct drm_file *file,
2131                   struct drm_device *dev,
2132                   uint32_t handle,
2133                   uint64_t *offset)
2134 {
2135         struct drm_i915_gem_object *obj;
2136         int ret;
2137
2138         obj = i915_gem_object_lookup(file, handle);
2139         if (!obj)
2140                 return -ENOENT;
2141
2142         ret = i915_gem_object_create_mmap_offset(obj);
2143         if (ret == 0)
2144                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2145
2146         i915_gem_object_put(obj);
2147         return ret;
2148 }
2149
2150 /**
2151  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2152  * @dev: DRM device
2153  * @data: GTT mapping ioctl data
2154  * @file: GEM object info
2155  *
2156  * Simply returns the fake offset to userspace so it can mmap it.
2157  * The mmap call will end up in drm_gem_mmap(), which will set things
2158  * up so we can get faults in the handler above.
2159  *
2160  * The fault handler will take care of binding the object into the GTT
2161  * (since it may have been evicted to make room for something), allocating
2162  * a fence register, and mapping the appropriate aperture address into
2163  * userspace.
2164  */
2165 int
2166 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2167                         struct drm_file *file)
2168 {
2169         struct drm_i915_gem_mmap_gtt *args = data;
2170
2171         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2172 }
2173
2174 /* Immediately discard the backing storage */
2175 static void
2176 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2177 {
2178         i915_gem_object_free_mmap_offset(obj);
2179
2180         if (obj->base.filp == NULL)
2181                 return;
2182
2183         /* Our goal here is to return as much of the memory as
2184          * is possible back to the system as we are called from OOM.
2185          * To do this we must instruct the shmfs to drop all of its
2186          * backing pages, *now*.
2187          */
2188         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2189         obj->mm.madv = __I915_MADV_PURGED;
2190 }
2191
2192 /* Try to discard unwanted pages */
2193 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2194 {
2195         struct address_space *mapping;
2196
2197         lockdep_assert_held(&obj->mm.lock);
2198         GEM_BUG_ON(obj->mm.pages);
2199
2200         switch (obj->mm.madv) {
2201         case I915_MADV_DONTNEED:
2202                 i915_gem_object_truncate(obj);
2203         case __I915_MADV_PURGED:
2204                 return;
2205         }
2206
2207         if (obj->base.filp == NULL)
2208                 return;
2209
2210         mapping = obj->base.filp->f_mapping,
2211         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2212 }
2213
2214 static void
2215 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2216                               struct sg_table *pages)
2217 {
2218         struct sgt_iter sgt_iter;
2219         struct page *page;
2220
2221         __i915_gem_object_release_shmem(obj, pages);
2222
2223         i915_gem_gtt_finish_pages(obj, pages);
2224
2225         if (i915_gem_object_needs_bit17_swizzle(obj))
2226                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2227
2228         for_each_sgt_page(page, sgt_iter, pages) {
2229                 if (obj->mm.dirty)
2230                         set_page_dirty(page);
2231
2232                 if (obj->mm.madv == I915_MADV_WILLNEED)
2233                         mark_page_accessed(page);
2234
2235                 put_page(page);
2236         }
2237         obj->mm.dirty = false;
2238
2239         sg_free_table(pages);
2240         kfree(pages);
2241 }
2242
2243 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2244 {
2245         struct radix_tree_iter iter;
2246         void **slot;
2247
2248         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2249                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2250 }
2251
2252 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2253                                  enum i915_mm_subclass subclass)
2254 {
2255         struct sg_table *pages;
2256
2257         if (i915_gem_object_has_pinned_pages(obj))
2258                 return;
2259
2260         GEM_BUG_ON(obj->bind_count);
2261         if (!READ_ONCE(obj->mm.pages))
2262                 return;
2263
2264         /* May be called by shrinker from within get_pages() (on another bo) */
2265         mutex_lock_nested(&obj->mm.lock, subclass);
2266         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2267                 goto unlock;
2268
2269         /* ->put_pages might need to allocate memory for the bit17 swizzle
2270          * array, hence protect them from being reaped by removing them from gtt
2271          * lists early. */
2272         pages = fetch_and_zero(&obj->mm.pages);
2273         GEM_BUG_ON(!pages);
2274
2275         if (obj->mm.mapping) {
2276                 void *ptr;
2277
2278                 ptr = ptr_mask_bits(obj->mm.mapping);
2279                 if (is_vmalloc_addr(ptr))
2280                         vunmap(ptr);
2281                 else
2282                         kunmap(kmap_to_page(ptr));
2283
2284                 obj->mm.mapping = NULL;
2285         }
2286
2287         __i915_gem_object_reset_page_iter(obj);
2288
2289         obj->ops->put_pages(obj, pages);
2290 unlock:
2291         mutex_unlock(&obj->mm.lock);
2292 }
2293
2294 static unsigned int swiotlb_max_size(void)
2295 {
2296 #if IS_ENABLED(CONFIG_SWIOTLB)
2297         return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2298 #else
2299         return 0;
2300 #endif
2301 }
2302
2303 static void i915_sg_trim(struct sg_table *orig_st)
2304 {
2305         struct sg_table new_st;
2306         struct scatterlist *sg, *new_sg;
2307         unsigned int i;
2308
2309         if (orig_st->nents == orig_st->orig_nents)
2310                 return;
2311
2312         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2313                 return;
2314
2315         new_sg = new_st.sgl;
2316         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2317                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2318                 /* called before being DMA mapped, no need to copy sg->dma_* */
2319                 new_sg = sg_next(new_sg);
2320         }
2321
2322         sg_free_table(orig_st);
2323
2324         *orig_st = new_st;
2325 }
2326
2327 static struct sg_table *
2328 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2329 {
2330         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2331         int page_count, i;
2332         struct address_space *mapping;
2333         struct sg_table *st;
2334         struct scatterlist *sg;
2335         struct sgt_iter sgt_iter;
2336         struct page *page;
2337         unsigned long last_pfn = 0;     /* suppress gcc warning */
2338         unsigned int max_segment;
2339         int ret;
2340         gfp_t gfp;
2341
2342         /* Assert that the object is not currently in any GPU domain. As it
2343          * wasn't in the GTT, there shouldn't be any way it could have been in
2344          * a GPU cache
2345          */
2346         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2347         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2348
2349         max_segment = swiotlb_max_size();
2350         if (!max_segment)
2351                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2352
2353         st = kmalloc(sizeof(*st), GFP_KERNEL);
2354         if (st == NULL)
2355                 return ERR_PTR(-ENOMEM);
2356
2357         page_count = obj->base.size / PAGE_SIZE;
2358         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2359                 kfree(st);
2360                 return ERR_PTR(-ENOMEM);
2361         }
2362
2363         /* Get the list of pages out of our struct file.  They'll be pinned
2364          * at this point until we release them.
2365          *
2366          * Fail silently without starting the shrinker
2367          */
2368         mapping = obj->base.filp->f_mapping;
2369         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2370         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2371         sg = st->sgl;
2372         st->nents = 0;
2373         for (i = 0; i < page_count; i++) {
2374                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2375                 if (IS_ERR(page)) {
2376                         i915_gem_shrink(dev_priv,
2377                                         page_count,
2378                                         I915_SHRINK_BOUND |
2379                                         I915_SHRINK_UNBOUND |
2380                                         I915_SHRINK_PURGEABLE);
2381                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2382                 }
2383                 if (IS_ERR(page)) {
2384                         /* We've tried hard to allocate the memory by reaping
2385                          * our own buffer, now let the real VM do its job and
2386                          * go down in flames if truly OOM.
2387                          */
2388                         page = shmem_read_mapping_page(mapping, i);
2389                         if (IS_ERR(page)) {
2390                                 ret = PTR_ERR(page);
2391                                 goto err_sg;
2392                         }
2393                 }
2394                 if (!i ||
2395                     sg->length >= max_segment ||
2396                     page_to_pfn(page) != last_pfn + 1) {
2397                         if (i)
2398                                 sg = sg_next(sg);
2399                         st->nents++;
2400                         sg_set_page(sg, page, PAGE_SIZE, 0);
2401                 } else {
2402                         sg->length += PAGE_SIZE;
2403                 }
2404                 last_pfn = page_to_pfn(page);
2405
2406                 /* Check that the i965g/gm workaround works. */
2407                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2408         }
2409         if (sg) /* loop terminated early; short sg table */
2410                 sg_mark_end(sg);
2411
2412         /* Trim unused sg entries to avoid wasting memory. */
2413         i915_sg_trim(st);
2414
2415         ret = i915_gem_gtt_prepare_pages(obj, st);
2416         if (ret)
2417                 goto err_pages;
2418
2419         if (i915_gem_object_needs_bit17_swizzle(obj))
2420                 i915_gem_object_do_bit_17_swizzle(obj, st);
2421
2422         return st;
2423
2424 err_sg:
2425         sg_mark_end(sg);
2426 err_pages:
2427         for_each_sgt_page(page, sgt_iter, st)
2428                 put_page(page);
2429         sg_free_table(st);
2430         kfree(st);
2431
2432         /* shmemfs first checks if there is enough memory to allocate the page
2433          * and reports ENOSPC should there be insufficient, along with the usual
2434          * ENOMEM for a genuine allocation failure.
2435          *
2436          * We use ENOSPC in our driver to mean that we have run out of aperture
2437          * space and so want to translate the error from shmemfs back to our
2438          * usual understanding of ENOMEM.
2439          */
2440         if (ret == -ENOSPC)
2441                 ret = -ENOMEM;
2442
2443         return ERR_PTR(ret);
2444 }
2445
2446 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2447                                  struct sg_table *pages)
2448 {
2449         lockdep_assert_held(&obj->mm.lock);
2450
2451         obj->mm.get_page.sg_pos = pages->sgl;
2452         obj->mm.get_page.sg_idx = 0;
2453
2454         obj->mm.pages = pages;
2455
2456         if (i915_gem_object_is_tiled(obj) &&
2457             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2458                 GEM_BUG_ON(obj->mm.quirked);
2459                 __i915_gem_object_pin_pages(obj);
2460                 obj->mm.quirked = true;
2461         }
2462 }
2463
2464 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2465 {
2466         struct sg_table *pages;
2467
2468         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2469
2470         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2471                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2472                 return -EFAULT;
2473         }
2474
2475         pages = obj->ops->get_pages(obj);
2476         if (unlikely(IS_ERR(pages)))
2477                 return PTR_ERR(pages);
2478
2479         __i915_gem_object_set_pages(obj, pages);
2480         return 0;
2481 }
2482
2483 /* Ensure that the associated pages are gathered from the backing storage
2484  * and pinned into our object. i915_gem_object_pin_pages() may be called
2485  * multiple times before they are released by a single call to
2486  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2487  * either as a result of memory pressure (reaping pages under the shrinker)
2488  * or as the object is itself released.
2489  */
2490 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2491 {
2492         int err;
2493
2494         err = mutex_lock_interruptible(&obj->mm.lock);
2495         if (err)
2496                 return err;
2497
2498         if (unlikely(!obj->mm.pages)) {
2499                 err = ____i915_gem_object_get_pages(obj);
2500                 if (err)
2501                         goto unlock;
2502
2503                 smp_mb__before_atomic();
2504         }
2505         atomic_inc(&obj->mm.pages_pin_count);
2506
2507 unlock:
2508         mutex_unlock(&obj->mm.lock);
2509         return err;
2510 }
2511
2512 /* The 'mapping' part of i915_gem_object_pin_map() below */
2513 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2514                                  enum i915_map_type type)
2515 {
2516         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2517         struct sg_table *sgt = obj->mm.pages;
2518         struct sgt_iter sgt_iter;
2519         struct page *page;
2520         struct page *stack_pages[32];
2521         struct page **pages = stack_pages;
2522         unsigned long i = 0;
2523         pgprot_t pgprot;
2524         void *addr;
2525
2526         /* A single page can always be kmapped */
2527         if (n_pages == 1 && type == I915_MAP_WB)
2528                 return kmap(sg_page(sgt->sgl));
2529
2530         if (n_pages > ARRAY_SIZE(stack_pages)) {
2531                 /* Too big for stack -- allocate temporary array instead */
2532                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2533                 if (!pages)
2534                         return NULL;
2535         }
2536
2537         for_each_sgt_page(page, sgt_iter, sgt)
2538                 pages[i++] = page;
2539
2540         /* Check that we have the expected number of pages */
2541         GEM_BUG_ON(i != n_pages);
2542
2543         switch (type) {
2544         case I915_MAP_WB:
2545                 pgprot = PAGE_KERNEL;
2546                 break;
2547         case I915_MAP_WC:
2548                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2549                 break;
2550         }
2551         addr = vmap(pages, n_pages, 0, pgprot);
2552
2553         if (pages != stack_pages)
2554                 drm_free_large(pages);
2555
2556         return addr;
2557 }
2558
2559 /* get, pin, and map the pages of the object into kernel space */
2560 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2561                               enum i915_map_type type)
2562 {
2563         enum i915_map_type has_type;
2564         bool pinned;
2565         void *ptr;
2566         int ret;
2567
2568         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2569
2570         ret = mutex_lock_interruptible(&obj->mm.lock);
2571         if (ret)
2572                 return ERR_PTR(ret);
2573
2574         pinned = true;
2575         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2576                 if (unlikely(!obj->mm.pages)) {
2577                         ret = ____i915_gem_object_get_pages(obj);
2578                         if (ret)
2579                                 goto err_unlock;
2580
2581                         smp_mb__before_atomic();
2582                 }
2583                 atomic_inc(&obj->mm.pages_pin_count);
2584                 pinned = false;
2585         }
2586         GEM_BUG_ON(!obj->mm.pages);
2587
2588         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2589         if (ptr && has_type != type) {
2590                 if (pinned) {
2591                         ret = -EBUSY;
2592                         goto err_unpin;
2593                 }
2594
2595                 if (is_vmalloc_addr(ptr))
2596                         vunmap(ptr);
2597                 else
2598                         kunmap(kmap_to_page(ptr));
2599
2600                 ptr = obj->mm.mapping = NULL;
2601         }
2602
2603         if (!ptr) {
2604                 ptr = i915_gem_object_map(obj, type);
2605                 if (!ptr) {
2606                         ret = -ENOMEM;
2607                         goto err_unpin;
2608                 }
2609
2610                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2611         }
2612
2613 out_unlock:
2614         mutex_unlock(&obj->mm.lock);
2615         return ptr;
2616
2617 err_unpin:
2618         atomic_dec(&obj->mm.pages_pin_count);
2619 err_unlock:
2620         ptr = ERR_PTR(ret);
2621         goto out_unlock;
2622 }
2623
2624 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2625 {
2626         if (ctx->banned)
2627                 return true;
2628
2629         if (!ctx->bannable)
2630                 return false;
2631
2632         if (ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD) {
2633                 DRM_DEBUG("context hanging too often, banning!\n");
2634                 return true;
2635         }
2636
2637         return false;
2638 }
2639
2640 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2641 {
2642         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2643
2644         ctx->banned = i915_context_is_banned(ctx);
2645         ctx->guilty_count++;
2646
2647         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2648                          ctx->name, ctx->ban_score,
2649                          yesno(ctx->banned));
2650
2651         if (!ctx->banned || IS_ERR_OR_NULL(ctx->file_priv))
2652                 return;
2653
2654         ctx->file_priv->context_bans++;
2655         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2656                          ctx->name, ctx->file_priv->context_bans);
2657 }
2658
2659 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2660 {
2661         ctx->active_count++;
2662 }
2663
2664 struct drm_i915_gem_request *
2665 i915_gem_find_active_request(struct intel_engine_cs *engine)
2666 {
2667         struct drm_i915_gem_request *request;
2668
2669         /* We are called by the error capture and reset at a random
2670          * point in time. In particular, note that neither is crucially
2671          * ordered with an interrupt. After a hang, the GPU is dead and we
2672          * assume that no more writes can happen (we waited long enough for
2673          * all writes that were in transaction to be flushed) - adding an
2674          * extra delay for a recent interrupt is pointless. Hence, we do
2675          * not need an engine->irq_seqno_barrier() before the seqno reads.
2676          */
2677         list_for_each_entry(request, &engine->timeline->requests, link) {
2678                 if (__i915_gem_request_completed(request))
2679                         continue;
2680
2681                 return request;
2682         }
2683
2684         return NULL;
2685 }
2686
2687 static void reset_request(struct drm_i915_gem_request *request)
2688 {
2689         void *vaddr = request->ring->vaddr;
2690         u32 head;
2691
2692         /* As this request likely depends on state from the lost
2693          * context, clear out all the user operations leaving the
2694          * breadcrumb at the end (so we get the fence notifications).
2695          */
2696         head = request->head;
2697         if (request->postfix < head) {
2698                 memset(vaddr + head, 0, request->ring->size - head);
2699                 head = 0;
2700         }
2701         memset(vaddr + head, 0, request->postfix - head);
2702 }
2703
2704 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2705 {
2706         struct drm_i915_gem_request *request;
2707         struct i915_gem_context *incomplete_ctx;
2708         struct intel_timeline *timeline;
2709         bool ring_hung;
2710
2711         if (engine->irq_seqno_barrier)
2712                 engine->irq_seqno_barrier(engine);
2713
2714         request = i915_gem_find_active_request(engine);
2715         if (!request)
2716                 return;
2717
2718         ring_hung = engine->hangcheck.stalled;
2719         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2720                 DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
2721                                  engine->name,
2722                                  yesno(ring_hung));
2723                 ring_hung = false;
2724         }
2725
2726         if (ring_hung)
2727                 i915_gem_context_mark_guilty(request->ctx);
2728         else
2729                 i915_gem_context_mark_innocent(request->ctx);
2730
2731         if (!ring_hung)
2732                 return;
2733
2734         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2735                          engine->name, request->global_seqno);
2736
2737         /* Setup the CS to resume from the breadcrumb of the hung request */
2738         engine->reset_hw(engine, request);
2739
2740         /* Users of the default context do not rely on logical state
2741          * preserved between batches. They have to emit full state on
2742          * every batch and so it is safe to execute queued requests following
2743          * the hang.
2744          *
2745          * Other contexts preserve state, now corrupt. We want to skip all
2746          * queued requests that reference the corrupt context.
2747          */
2748         incomplete_ctx = request->ctx;
2749         if (i915_gem_context_is_default(incomplete_ctx))
2750                 return;
2751
2752         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2753                 if (request->ctx == incomplete_ctx)
2754                         reset_request(request);
2755
2756         timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2757         list_for_each_entry(request, &timeline->requests, link)
2758                 reset_request(request);
2759 }
2760
2761 void i915_gem_reset(struct drm_i915_private *dev_priv)
2762 {
2763         struct intel_engine_cs *engine;
2764         enum intel_engine_id id;
2765
2766         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2767
2768         i915_gem_retire_requests(dev_priv);
2769
2770         for_each_engine(engine, dev_priv, id)
2771                 i915_gem_reset_engine(engine);
2772
2773         i915_gem_restore_fences(dev_priv);
2774
2775         if (dev_priv->gt.awake) {
2776                 intel_sanitize_gt_powersave(dev_priv);
2777                 intel_enable_gt_powersave(dev_priv);
2778                 if (INTEL_GEN(dev_priv) >= 6)
2779                         gen6_rps_busy(dev_priv);
2780         }
2781 }
2782
2783 static void nop_submit_request(struct drm_i915_gem_request *request)
2784 {
2785         i915_gem_request_submit(request);
2786         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2787 }
2788
2789 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2790 {
2791         /* We need to be sure that no thread is running the old callback as
2792          * we install the nop handler (otherwise we would submit a request
2793          * to hardware that will never complete). In order to prevent this
2794          * race, we wait until the machine is idle before making the swap
2795          * (using stop_machine()).
2796          */
2797         engine->submit_request = nop_submit_request;
2798
2799         /* Mark all pending requests as complete so that any concurrent
2800          * (lockless) lookup doesn't try and wait upon the request as we
2801          * reset it.
2802          */
2803         intel_engine_init_global_seqno(engine,
2804                                        intel_engine_last_submit(engine));
2805
2806         /*
2807          * Clear the execlists queue up before freeing the requests, as those
2808          * are the ones that keep the context and ringbuffer backing objects
2809          * pinned in place.
2810          */
2811
2812         if (i915.enable_execlists) {
2813                 unsigned long flags;
2814
2815                 spin_lock_irqsave(&engine->timeline->lock, flags);
2816
2817                 i915_gem_request_put(engine->execlist_port[0].request);
2818                 i915_gem_request_put(engine->execlist_port[1].request);
2819                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2820                 engine->execlist_queue = RB_ROOT;
2821                 engine->execlist_first = NULL;
2822
2823                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2824         }
2825 }
2826
2827 static int __i915_gem_set_wedged_BKL(void *data)
2828 {
2829         struct drm_i915_private *i915 = data;
2830         struct intel_engine_cs *engine;
2831         enum intel_engine_id id;
2832
2833         for_each_engine(engine, i915, id)
2834                 i915_gem_cleanup_engine(engine);
2835
2836         return 0;
2837 }
2838
2839 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2840 {
2841         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2842         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2843
2844         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2845
2846         i915_gem_context_lost(dev_priv);
2847         i915_gem_retire_requests(dev_priv);
2848
2849         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2850 }
2851
2852 static void
2853 i915_gem_retire_work_handler(struct work_struct *work)
2854 {
2855         struct drm_i915_private *dev_priv =
2856                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2857         struct drm_device *dev = &dev_priv->drm;
2858
2859         /* Come back later if the device is busy... */
2860         if (mutex_trylock(&dev->struct_mutex)) {
2861                 i915_gem_retire_requests(dev_priv);
2862                 mutex_unlock(&dev->struct_mutex);
2863         }
2864
2865         /* Keep the retire handler running until we are finally idle.
2866          * We do not need to do this test under locking as in the worst-case
2867          * we queue the retire worker once too often.
2868          */
2869         if (READ_ONCE(dev_priv->gt.awake)) {
2870                 i915_queue_hangcheck(dev_priv);
2871                 queue_delayed_work(dev_priv->wq,
2872                                    &dev_priv->gt.retire_work,
2873                                    round_jiffies_up_relative(HZ));
2874         }
2875 }
2876
2877 static void
2878 i915_gem_idle_work_handler(struct work_struct *work)
2879 {
2880         struct drm_i915_private *dev_priv =
2881                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2882         struct drm_device *dev = &dev_priv->drm;
2883         struct intel_engine_cs *engine;
2884         enum intel_engine_id id;
2885         bool rearm_hangcheck;
2886
2887         if (!READ_ONCE(dev_priv->gt.awake))
2888                 return;
2889
2890         /*
2891          * Wait for last execlists context complete, but bail out in case a
2892          * new request is submitted.
2893          */
2894         wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2895                  intel_execlists_idle(dev_priv), 10);
2896
2897         if (READ_ONCE(dev_priv->gt.active_requests))
2898                 return;
2899
2900         rearm_hangcheck =
2901                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2902
2903         if (!mutex_trylock(&dev->struct_mutex)) {
2904                 /* Currently busy, come back later */
2905                 mod_delayed_work(dev_priv->wq,
2906                                  &dev_priv->gt.idle_work,
2907                                  msecs_to_jiffies(50));
2908                 goto out_rearm;
2909         }
2910
2911         /*
2912          * New request retired after this work handler started, extend active
2913          * period until next instance of the work.
2914          */
2915         if (work_pending(work))
2916                 goto out_unlock;
2917
2918         if (dev_priv->gt.active_requests)
2919                 goto out_unlock;
2920
2921         if (wait_for(intel_execlists_idle(dev_priv), 10))
2922                 DRM_ERROR("Timeout waiting for engines to idle\n");
2923
2924         for_each_engine(engine, dev_priv, id)
2925                 i915_gem_batch_pool_fini(&engine->batch_pool);
2926
2927         GEM_BUG_ON(!dev_priv->gt.awake);
2928         dev_priv->gt.awake = false;
2929         rearm_hangcheck = false;
2930
2931         if (INTEL_GEN(dev_priv) >= 6)
2932                 gen6_rps_idle(dev_priv);
2933         intel_runtime_pm_put(dev_priv);
2934 out_unlock:
2935         mutex_unlock(&dev->struct_mutex);
2936
2937 out_rearm:
2938         if (rearm_hangcheck) {
2939                 GEM_BUG_ON(!dev_priv->gt.awake);
2940                 i915_queue_hangcheck(dev_priv);
2941         }
2942 }
2943
2944 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2945 {
2946         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2947         struct drm_i915_file_private *fpriv = file->driver_priv;
2948         struct i915_vma *vma, *vn;
2949
2950         mutex_lock(&obj->base.dev->struct_mutex);
2951         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2952                 if (vma->vm->file == fpriv)
2953                         i915_vma_close(vma);
2954
2955         if (i915_gem_object_is_active(obj) &&
2956             !i915_gem_object_has_active_reference(obj)) {
2957                 i915_gem_object_set_active_reference(obj);
2958                 i915_gem_object_get(obj);
2959         }
2960         mutex_unlock(&obj->base.dev->struct_mutex);
2961 }
2962
2963 static unsigned long to_wait_timeout(s64 timeout_ns)
2964 {
2965         if (timeout_ns < 0)
2966                 return MAX_SCHEDULE_TIMEOUT;
2967
2968         if (timeout_ns == 0)
2969                 return 0;
2970
2971         return nsecs_to_jiffies_timeout(timeout_ns);
2972 }
2973
2974 /**
2975  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2976  * @dev: drm device pointer
2977  * @data: ioctl data blob
2978  * @file: drm file pointer
2979  *
2980  * Returns 0 if successful, else an error is returned with the remaining time in
2981  * the timeout parameter.
2982  *  -ETIME: object is still busy after timeout
2983  *  -ERESTARTSYS: signal interrupted the wait
2984  *  -ENONENT: object doesn't exist
2985  * Also possible, but rare:
2986  *  -EAGAIN: GPU wedged
2987  *  -ENOMEM: damn
2988  *  -ENODEV: Internal IRQ fail
2989  *  -E?: The add request failed
2990  *
2991  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2992  * non-zero timeout parameter the wait ioctl will wait for the given number of
2993  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2994  * without holding struct_mutex the object may become re-busied before this
2995  * function completes. A similar but shorter * race condition exists in the busy
2996  * ioctl
2997  */
2998 int
2999 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3000 {
3001         struct drm_i915_gem_wait *args = data;
3002         struct drm_i915_gem_object *obj;
3003         ktime_t start;
3004         long ret;
3005
3006         if (args->flags != 0)
3007                 return -EINVAL;
3008
3009         obj = i915_gem_object_lookup(file, args->bo_handle);
3010         if (!obj)
3011                 return -ENOENT;
3012
3013         start = ktime_get();
3014
3015         ret = i915_gem_object_wait(obj,
3016                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3017                                    to_wait_timeout(args->timeout_ns),
3018                                    to_rps_client(file));
3019
3020         if (args->timeout_ns > 0) {
3021                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3022                 if (args->timeout_ns < 0)
3023                         args->timeout_ns = 0;
3024         }
3025
3026         i915_gem_object_put(obj);
3027         return ret;
3028 }
3029
3030 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3031 {
3032         int ret, i;
3033
3034         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3035                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3036                 if (ret)
3037                         return ret;
3038         }
3039
3040         return 0;
3041 }
3042
3043 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3044 {
3045         int ret;
3046
3047         if (flags & I915_WAIT_LOCKED) {
3048                 struct i915_gem_timeline *tl;
3049
3050                 lockdep_assert_held(&i915->drm.struct_mutex);
3051
3052                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3053                         ret = wait_for_timeline(tl, flags);
3054                         if (ret)
3055                                 return ret;
3056                 }
3057         } else {
3058                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3059                 if (ret)
3060                         return ret;
3061         }
3062
3063         return 0;
3064 }
3065
3066 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3067                              bool force)
3068 {
3069         /* If we don't have a page list set up, then we're not pinned
3070          * to GPU, and we can ignore the cache flush because it'll happen
3071          * again at bind time.
3072          */
3073         if (!obj->mm.pages)
3074                 return;
3075
3076         /*
3077          * Stolen memory is always coherent with the GPU as it is explicitly
3078          * marked as wc by the system, or the system is cache-coherent.
3079          */
3080         if (obj->stolen || obj->phys_handle)
3081                 return;
3082
3083         /* If the GPU is snooping the contents of the CPU cache,
3084          * we do not need to manually clear the CPU cache lines.  However,
3085          * the caches are only snooped when the render cache is
3086          * flushed/invalidated.  As we always have to emit invalidations
3087          * and flushes when moving into and out of the RENDER domain, correct
3088          * snooping behaviour occurs naturally as the result of our domain
3089          * tracking.
3090          */
3091         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3092                 obj->cache_dirty = true;
3093                 return;
3094         }
3095
3096         trace_i915_gem_object_clflush(obj);
3097         drm_clflush_sg(obj->mm.pages);
3098         obj->cache_dirty = false;
3099 }
3100
3101 /** Flushes the GTT write domain for the object if it's dirty. */
3102 static void
3103 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3104 {
3105         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3106
3107         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3108                 return;
3109
3110         /* No actual flushing is required for the GTT write domain.  Writes
3111          * to it "immediately" go to main memory as far as we know, so there's
3112          * no chipset flush.  It also doesn't land in render cache.
3113          *
3114          * However, we do have to enforce the order so that all writes through
3115          * the GTT land before any writes to the device, such as updates to
3116          * the GATT itself.
3117          *
3118          * We also have to wait a bit for the writes to land from the GTT.
3119          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3120          * timing. This issue has only been observed when switching quickly
3121          * between GTT writes and CPU reads from inside the kernel on recent hw,
3122          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3123          * system agents we cannot reproduce this behaviour).
3124          */
3125         wmb();
3126         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3127                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3128
3129         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3130
3131         obj->base.write_domain = 0;
3132         trace_i915_gem_object_change_domain(obj,
3133                                             obj->base.read_domains,
3134                                             I915_GEM_DOMAIN_GTT);
3135 }
3136
3137 /** Flushes the CPU write domain for the object if it's dirty. */
3138 static void
3139 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3140 {
3141         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3142                 return;
3143
3144         i915_gem_clflush_object(obj, obj->pin_display);
3145         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3146
3147         obj->base.write_domain = 0;
3148         trace_i915_gem_object_change_domain(obj,
3149                                             obj->base.read_domains,
3150                                             I915_GEM_DOMAIN_CPU);
3151 }
3152
3153 /**
3154  * Moves a single object to the GTT read, and possibly write domain.
3155  * @obj: object to act on
3156  * @write: ask for write access or read only
3157  *
3158  * This function returns when the move is complete, including waiting on
3159  * flushes to occur.
3160  */
3161 int
3162 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3163 {
3164         uint32_t old_write_domain, old_read_domains;
3165         int ret;
3166
3167         lockdep_assert_held(&obj->base.dev->struct_mutex);
3168
3169         ret = i915_gem_object_wait(obj,
3170                                    I915_WAIT_INTERRUPTIBLE |
3171                                    I915_WAIT_LOCKED |
3172                                    (write ? I915_WAIT_ALL : 0),
3173                                    MAX_SCHEDULE_TIMEOUT,
3174                                    NULL);
3175         if (ret)
3176                 return ret;
3177
3178         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3179                 return 0;
3180
3181         /* Flush and acquire obj->pages so that we are coherent through
3182          * direct access in memory with previous cached writes through
3183          * shmemfs and that our cache domain tracking remains valid.
3184          * For example, if the obj->filp was moved to swap without us
3185          * being notified and releasing the pages, we would mistakenly
3186          * continue to assume that the obj remained out of the CPU cached
3187          * domain.
3188          */
3189         ret = i915_gem_object_pin_pages(obj);
3190         if (ret)
3191                 return ret;
3192
3193         i915_gem_object_flush_cpu_write_domain(obj);
3194
3195         /* Serialise direct access to this object with the barriers for
3196          * coherent writes from the GPU, by effectively invalidating the
3197          * GTT domain upon first access.
3198          */
3199         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3200                 mb();
3201
3202         old_write_domain = obj->base.write_domain;
3203         old_read_domains = obj->base.read_domains;
3204
3205         /* It should now be out of any other write domains, and we can update
3206          * the domain values for our changes.
3207          */
3208         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3209         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3210         if (write) {
3211                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3212                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3213                 obj->mm.dirty = true;
3214         }
3215
3216         trace_i915_gem_object_change_domain(obj,
3217                                             old_read_domains,
3218                                             old_write_domain);
3219
3220         i915_gem_object_unpin_pages(obj);
3221         return 0;
3222 }
3223
3224 /**
3225  * Changes the cache-level of an object across all VMA.
3226  * @obj: object to act on
3227  * @cache_level: new cache level to set for the object
3228  *
3229  * After this function returns, the object will be in the new cache-level
3230  * across all GTT and the contents of the backing storage will be coherent,
3231  * with respect to the new cache-level. In order to keep the backing storage
3232  * coherent for all users, we only allow a single cache level to be set
3233  * globally on the object and prevent it from being changed whilst the
3234  * hardware is reading from the object. That is if the object is currently
3235  * on the scanout it will be set to uncached (or equivalent display
3236  * cache coherency) and all non-MOCS GPU access will also be uncached so
3237  * that all direct access to the scanout remains coherent.
3238  */
3239 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3240                                     enum i915_cache_level cache_level)
3241 {
3242         struct i915_vma *vma;
3243         int ret;
3244
3245         lockdep_assert_held(&obj->base.dev->struct_mutex);
3246
3247         if (obj->cache_level == cache_level)
3248                 return 0;
3249
3250         /* Inspect the list of currently bound VMA and unbind any that would
3251          * be invalid given the new cache-level. This is principally to
3252          * catch the issue of the CS prefetch crossing page boundaries and
3253          * reading an invalid PTE on older architectures.
3254          */
3255 restart:
3256         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3257                 if (!drm_mm_node_allocated(&vma->node))
3258                         continue;
3259
3260                 if (i915_vma_is_pinned(vma)) {
3261                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3262                         return -EBUSY;
3263                 }
3264
3265                 if (i915_gem_valid_gtt_space(vma, cache_level))
3266                         continue;
3267
3268                 ret = i915_vma_unbind(vma);
3269                 if (ret)
3270                         return ret;
3271
3272                 /* As unbinding may affect other elements in the
3273                  * obj->vma_list (due to side-effects from retiring
3274                  * an active vma), play safe and restart the iterator.
3275                  */
3276                 goto restart;
3277         }
3278
3279         /* We can reuse the existing drm_mm nodes but need to change the
3280          * cache-level on the PTE. We could simply unbind them all and
3281          * rebind with the correct cache-level on next use. However since
3282          * we already have a valid slot, dma mapping, pages etc, we may as
3283          * rewrite the PTE in the belief that doing so tramples upon less
3284          * state and so involves less work.
3285          */
3286         if (obj->bind_count) {
3287                 /* Before we change the PTE, the GPU must not be accessing it.
3288                  * If we wait upon the object, we know that all the bound
3289                  * VMA are no longer active.
3290                  */
3291                 ret = i915_gem_object_wait(obj,
3292                                            I915_WAIT_INTERRUPTIBLE |
3293                                            I915_WAIT_LOCKED |
3294                                            I915_WAIT_ALL,
3295                                            MAX_SCHEDULE_TIMEOUT,
3296                                            NULL);
3297                 if (ret)
3298                         return ret;
3299
3300                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3301                     cache_level != I915_CACHE_NONE) {
3302                         /* Access to snoopable pages through the GTT is
3303                          * incoherent and on some machines causes a hard
3304                          * lockup. Relinquish the CPU mmaping to force
3305                          * userspace to refault in the pages and we can
3306                          * then double check if the GTT mapping is still
3307                          * valid for that pointer access.
3308                          */
3309                         i915_gem_release_mmap(obj);
3310
3311                         /* As we no longer need a fence for GTT access,
3312                          * we can relinquish it now (and so prevent having
3313                          * to steal a fence from someone else on the next
3314                          * fence request). Note GPU activity would have
3315                          * dropped the fence as all snoopable access is
3316                          * supposed to be linear.
3317                          */
3318                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3319                                 ret = i915_vma_put_fence(vma);
3320                                 if (ret)
3321                                         return ret;
3322                         }
3323                 } else {
3324                         /* We either have incoherent backing store and
3325                          * so no GTT access or the architecture is fully
3326                          * coherent. In such cases, existing GTT mmaps
3327                          * ignore the cache bit in the PTE and we can
3328                          * rewrite it without confusing the GPU or having
3329                          * to force userspace to fault back in its mmaps.
3330                          */
3331                 }
3332
3333                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3334                         if (!drm_mm_node_allocated(&vma->node))
3335                                 continue;
3336
3337                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3338                         if (ret)
3339                                 return ret;
3340                 }
3341         }
3342
3343         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3344             cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3345                 obj->cache_dirty = true;
3346
3347         list_for_each_entry(vma, &obj->vma_list, obj_link)
3348                 vma->node.color = cache_level;
3349         obj->cache_level = cache_level;
3350
3351         return 0;
3352 }
3353
3354 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3355                                struct drm_file *file)
3356 {
3357         struct drm_i915_gem_caching *args = data;
3358         struct drm_i915_gem_object *obj;
3359         int err = 0;
3360
3361         rcu_read_lock();
3362         obj = i915_gem_object_lookup_rcu(file, args->handle);
3363         if (!obj) {
3364                 err = -ENOENT;
3365                 goto out;
3366         }
3367
3368         switch (obj->cache_level) {
3369         case I915_CACHE_LLC:
3370         case I915_CACHE_L3_LLC:
3371                 args->caching = I915_CACHING_CACHED;
3372                 break;
3373
3374         case I915_CACHE_WT:
3375                 args->caching = I915_CACHING_DISPLAY;
3376                 break;
3377
3378         default:
3379                 args->caching = I915_CACHING_NONE;
3380                 break;
3381         }
3382 out:
3383         rcu_read_unlock();
3384         return err;
3385 }
3386
3387 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3388                                struct drm_file *file)
3389 {
3390         struct drm_i915_private *i915 = to_i915(dev);
3391         struct drm_i915_gem_caching *args = data;
3392         struct drm_i915_gem_object *obj;
3393         enum i915_cache_level level;
3394         int ret;
3395
3396         switch (args->caching) {
3397         case I915_CACHING_NONE:
3398                 level = I915_CACHE_NONE;
3399                 break;
3400         case I915_CACHING_CACHED:
3401                 /*
3402                  * Due to a HW issue on BXT A stepping, GPU stores via a
3403                  * snooped mapping may leave stale data in a corresponding CPU
3404                  * cacheline, whereas normally such cachelines would get
3405                  * invalidated.
3406                  */
3407                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3408                         return -ENODEV;
3409
3410                 level = I915_CACHE_LLC;
3411                 break;
3412         case I915_CACHING_DISPLAY:
3413                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3414                 break;
3415         default:
3416                 return -EINVAL;
3417         }
3418
3419         ret = i915_mutex_lock_interruptible(dev);
3420         if (ret)
3421                 return ret;
3422
3423         obj = i915_gem_object_lookup(file, args->handle);
3424         if (!obj) {
3425                 ret = -ENOENT;
3426                 goto unlock;
3427         }
3428
3429         ret = i915_gem_object_set_cache_level(obj, level);
3430         i915_gem_object_put(obj);
3431 unlock:
3432         mutex_unlock(&dev->struct_mutex);
3433         return ret;
3434 }
3435
3436 /*
3437  * Prepare buffer for display plane (scanout, cursors, etc).
3438  * Can be called from an uninterruptible phase (modesetting) and allows
3439  * any flushes to be pipelined (for pageflips).
3440  */
3441 struct i915_vma *
3442 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3443                                      u32 alignment,
3444                                      const struct i915_ggtt_view *view)
3445 {
3446         struct i915_vma *vma;
3447         u32 old_read_domains, old_write_domain;
3448         int ret;
3449
3450         lockdep_assert_held(&obj->base.dev->struct_mutex);
3451
3452         /* Mark the pin_display early so that we account for the
3453          * display coherency whilst setting up the cache domains.
3454          */
3455         obj->pin_display++;
3456
3457         /* The display engine is not coherent with the LLC cache on gen6.  As
3458          * a result, we make sure that the pinning that is about to occur is
3459          * done with uncached PTEs. This is lowest common denominator for all
3460          * chipsets.
3461          *
3462          * However for gen6+, we could do better by using the GFDT bit instead
3463          * of uncaching, which would allow us to flush all the LLC-cached data
3464          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3465          */
3466         ret = i915_gem_object_set_cache_level(obj,
3467                                               HAS_WT(to_i915(obj->base.dev)) ?
3468                                               I915_CACHE_WT : I915_CACHE_NONE);
3469         if (ret) {
3470                 vma = ERR_PTR(ret);
3471                 goto err_unpin_display;
3472         }
3473
3474         /* As the user may map the buffer once pinned in the display plane
3475          * (e.g. libkms for the bootup splash), we have to ensure that we
3476          * always use map_and_fenceable for all scanout buffers. However,
3477          * it may simply be too big to fit into mappable, in which case
3478          * put it anyway and hope that userspace can cope (but always first
3479          * try to preserve the existing ABI).
3480          */
3481         vma = ERR_PTR(-ENOSPC);
3482         if (view->type == I915_GGTT_VIEW_NORMAL)
3483                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3484                                                PIN_MAPPABLE | PIN_NONBLOCK);
3485         if (IS_ERR(vma)) {
3486                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3487                 unsigned int flags;
3488
3489                 /* Valleyview is definitely limited to scanning out the first
3490                  * 512MiB. Lets presume this behaviour was inherited from the
3491                  * g4x display engine and that all earlier gen are similarly
3492                  * limited. Testing suggests that it is a little more
3493                  * complicated than this. For example, Cherryview appears quite
3494                  * happy to scanout from anywhere within its global aperture.
3495                  */
3496                 flags = 0;
3497                 if (HAS_GMCH_DISPLAY(i915))
3498                         flags = PIN_MAPPABLE;
3499                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3500         }
3501         if (IS_ERR(vma))
3502                 goto err_unpin_display;
3503
3504         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3505
3506         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3507         if (obj->cache_dirty) {
3508                 i915_gem_clflush_object(obj, true);
3509                 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3510         }
3511
3512         old_write_domain = obj->base.write_domain;
3513         old_read_domains = obj->base.read_domains;
3514
3515         /* It should now be out of any other write domains, and we can update
3516          * the domain values for our changes.
3517          */
3518         obj->base.write_domain = 0;
3519         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3520
3521         trace_i915_gem_object_change_domain(obj,
3522                                             old_read_domains,
3523                                             old_write_domain);
3524
3525         return vma;
3526
3527 err_unpin_display:
3528         obj->pin_display--;
3529         return vma;
3530 }
3531
3532 void
3533 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3534 {
3535         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3536
3537         if (WARN_ON(vma->obj->pin_display == 0))
3538                 return;
3539
3540         if (--vma->obj->pin_display == 0)
3541                 vma->display_alignment = 0;
3542
3543         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3544         if (!i915_vma_is_active(vma))
3545                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3546
3547         i915_vma_unpin(vma);
3548 }
3549
3550 /**
3551  * Moves a single object to the CPU read, and possibly write domain.
3552  * @obj: object to act on
3553  * @write: requesting write or read-only access
3554  *
3555  * This function returns when the move is complete, including waiting on
3556  * flushes to occur.
3557  */
3558 int
3559 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3560 {
3561         uint32_t old_write_domain, old_read_domains;
3562         int ret;
3563
3564         lockdep_assert_held(&obj->base.dev->struct_mutex);
3565
3566         ret = i915_gem_object_wait(obj,
3567                                    I915_WAIT_INTERRUPTIBLE |
3568                                    I915_WAIT_LOCKED |
3569                                    (write ? I915_WAIT_ALL : 0),
3570                                    MAX_SCHEDULE_TIMEOUT,
3571                                    NULL);
3572         if (ret)
3573                 return ret;
3574
3575         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3576                 return 0;
3577
3578         i915_gem_object_flush_gtt_write_domain(obj);
3579
3580         old_write_domain = obj->base.write_domain;
3581         old_read_domains = obj->base.read_domains;
3582
3583         /* Flush the CPU cache if it's still invalid. */
3584         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3585                 i915_gem_clflush_object(obj, false);
3586
3587                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3588         }
3589
3590         /* It should now be out of any other write domains, and we can update
3591          * the domain values for our changes.
3592          */
3593         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3594
3595         /* If we're writing through the CPU, then the GPU read domains will
3596          * need to be invalidated at next use.
3597          */
3598         if (write) {
3599                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3600                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3601         }
3602
3603         trace_i915_gem_object_change_domain(obj,
3604                                             old_read_domains,
3605                                             old_write_domain);
3606
3607         return 0;
3608 }
3609
3610 /* Throttle our rendering by waiting until the ring has completed our requests
3611  * emitted over 20 msec ago.
3612  *
3613  * Note that if we were to use the current jiffies each time around the loop,
3614  * we wouldn't escape the function with any frames outstanding if the time to
3615  * render a frame was over 20ms.
3616  *
3617  * This should get us reasonable parallelism between CPU and GPU but also
3618  * relatively low latency when blocking on a particular request to finish.
3619  */
3620 static int
3621 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3622 {
3623         struct drm_i915_private *dev_priv = to_i915(dev);
3624         struct drm_i915_file_private *file_priv = file->driver_priv;
3625         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3626         struct drm_i915_gem_request *request, *target = NULL;
3627         long ret;
3628
3629         /* ABI: return -EIO if already wedged */
3630         if (i915_terminally_wedged(&dev_priv->gpu_error))
3631                 return -EIO;
3632
3633         spin_lock(&file_priv->mm.lock);
3634         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3635                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3636                         break;
3637
3638                 /*
3639                  * Note that the request might not have been submitted yet.
3640                  * In which case emitted_jiffies will be zero.
3641                  */
3642                 if (!request->emitted_jiffies)
3643                         continue;
3644
3645                 target = request;
3646         }
3647         if (target)
3648                 i915_gem_request_get(target);
3649         spin_unlock(&file_priv->mm.lock);
3650
3651         if (target == NULL)
3652                 return 0;
3653
3654         ret = i915_wait_request(target,
3655                                 I915_WAIT_INTERRUPTIBLE,
3656                                 MAX_SCHEDULE_TIMEOUT);
3657         i915_gem_request_put(target);
3658
3659         return ret < 0 ? ret : 0;
3660 }
3661
3662 struct i915_vma *
3663 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3664                          const struct i915_ggtt_view *view,
3665                          u64 size,
3666                          u64 alignment,
3667                          u64 flags)
3668 {
3669         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3670         struct i915_address_space *vm = &dev_priv->ggtt.base;
3671         struct i915_vma *vma;
3672         int ret;
3673
3674         lockdep_assert_held(&obj->base.dev->struct_mutex);
3675
3676         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3677         if (IS_ERR(vma))
3678                 return vma;
3679
3680         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3681                 if (flags & PIN_NONBLOCK &&
3682                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3683                         return ERR_PTR(-ENOSPC);
3684
3685                 if (flags & PIN_MAPPABLE) {
3686                         u32 fence_size;
3687
3688                         fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3689                                                             i915_gem_object_get_tiling(obj));
3690                         /* If the required space is larger than the available
3691                          * aperture, we will not able to find a slot for the
3692                          * object and unbinding the object now will be in
3693                          * vain. Worse, doing so may cause us to ping-pong
3694                          * the object in and out of the Global GTT and
3695                          * waste a lot of cycles under the mutex.
3696                          */
3697                         if (fence_size > dev_priv->ggtt.mappable_end)
3698                                 return ERR_PTR(-E2BIG);
3699
3700                         /* If NONBLOCK is set the caller is optimistically
3701                          * trying to cache the full object within the mappable
3702                          * aperture, and *must* have a fallback in place for
3703                          * situations where we cannot bind the object. We
3704                          * can be a little more lax here and use the fallback
3705                          * more often to avoid costly migrations of ourselves
3706                          * and other objects within the aperture.
3707                          *
3708                          * Half-the-aperture is used as a simple heuristic.
3709                          * More interesting would to do search for a free
3710                          * block prior to making the commitment to unbind.
3711                          * That caters for the self-harm case, and with a
3712                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3713                          * we could try to minimise harm to others.
3714                          */
3715                         if (flags & PIN_NONBLOCK &&
3716                             fence_size > dev_priv->ggtt.mappable_end / 2)
3717                                 return ERR_PTR(-ENOSPC);
3718                 }
3719
3720                 WARN(i915_vma_is_pinned(vma),
3721                      "bo is already pinned in ggtt with incorrect alignment:"
3722                      " offset=%08x, req.alignment=%llx,"
3723                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3724                      i915_ggtt_offset(vma), alignment,
3725                      !!(flags & PIN_MAPPABLE),
3726                      i915_vma_is_map_and_fenceable(vma));
3727                 ret = i915_vma_unbind(vma);
3728                 if (ret)
3729                         return ERR_PTR(ret);
3730         }
3731
3732         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3733         if (ret)
3734                 return ERR_PTR(ret);
3735
3736         return vma;
3737 }
3738
3739 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3740 {
3741         /* Note that we could alias engines in the execbuf API, but
3742          * that would be very unwise as it prevents userspace from
3743          * fine control over engine selection. Ahem.
3744          *
3745          * This should be something like EXEC_MAX_ENGINE instead of
3746          * I915_NUM_ENGINES.
3747          */
3748         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3749         return 0x10000 << id;
3750 }
3751
3752 static __always_inline unsigned int __busy_write_id(unsigned int id)
3753 {
3754         /* The uABI guarantees an active writer is also amongst the read
3755          * engines. This would be true if we accessed the activity tracking
3756          * under the lock, but as we perform the lookup of the object and
3757          * its activity locklessly we can not guarantee that the last_write
3758          * being active implies that we have set the same engine flag from
3759          * last_read - hence we always set both read and write busy for
3760          * last_write.
3761          */
3762         return id | __busy_read_flag(id);
3763 }
3764
3765 static __always_inline unsigned int
3766 __busy_set_if_active(const struct dma_fence *fence,
3767                      unsigned int (*flag)(unsigned int id))
3768 {
3769         struct drm_i915_gem_request *rq;
3770
3771         /* We have to check the current hw status of the fence as the uABI
3772          * guarantees forward progress. We could rely on the idle worker
3773          * to eventually flush us, but to minimise latency just ask the
3774          * hardware.
3775          *
3776          * Note we only report on the status of native fences.
3777          */
3778         if (!dma_fence_is_i915(fence))
3779                 return 0;
3780
3781         /* opencode to_request() in order to avoid const warnings */
3782         rq = container_of(fence, struct drm_i915_gem_request, fence);
3783         if (i915_gem_request_completed(rq))
3784                 return 0;
3785
3786         return flag(rq->engine->exec_id);
3787 }
3788
3789 static __always_inline unsigned int
3790 busy_check_reader(const struct dma_fence *fence)
3791 {
3792         return __busy_set_if_active(fence, __busy_read_flag);
3793 }
3794
3795 static __always_inline unsigned int
3796 busy_check_writer(const struct dma_fence *fence)
3797 {
3798         if (!fence)
3799                 return 0;
3800
3801         return __busy_set_if_active(fence, __busy_write_id);
3802 }
3803
3804 int
3805 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3806                     struct drm_file *file)
3807 {
3808         struct drm_i915_gem_busy *args = data;
3809         struct drm_i915_gem_object *obj;
3810         struct reservation_object_list *list;
3811         unsigned int seq;
3812         int err;
3813
3814         err = -ENOENT;
3815         rcu_read_lock();
3816         obj = i915_gem_object_lookup_rcu(file, args->handle);
3817         if (!obj)
3818                 goto out;
3819
3820         /* A discrepancy here is that we do not report the status of
3821          * non-i915 fences, i.e. even though we may report the object as idle,
3822          * a call to set-domain may still stall waiting for foreign rendering.
3823          * This also means that wait-ioctl may report an object as busy,
3824          * where busy-ioctl considers it idle.
3825          *
3826          * We trade the ability to warn of foreign fences to report on which
3827          * i915 engines are active for the object.
3828          *
3829          * Alternatively, we can trade that extra information on read/write
3830          * activity with
3831          *      args->busy =
3832          *              !reservation_object_test_signaled_rcu(obj->resv, true);
3833          * to report the overall busyness. This is what the wait-ioctl does.
3834          *
3835          */
3836 retry:
3837         seq = raw_read_seqcount(&obj->resv->seq);
3838
3839         /* Translate the exclusive fence to the READ *and* WRITE engine */
3840         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3841
3842         /* Translate shared fences to READ set of engines */
3843         list = rcu_dereference(obj->resv->fence);
3844         if (list) {
3845                 unsigned int shared_count = list->shared_count, i;
3846
3847                 for (i = 0; i < shared_count; ++i) {
3848                         struct dma_fence *fence =
3849                                 rcu_dereference(list->shared[i]);
3850
3851                         args->busy |= busy_check_reader(fence);
3852                 }
3853         }
3854
3855         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3856                 goto retry;
3857
3858         err = 0;
3859 out:
3860         rcu_read_unlock();
3861         return err;
3862 }
3863
3864 int
3865 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3866                         struct drm_file *file_priv)
3867 {
3868         return i915_gem_ring_throttle(dev, file_priv);
3869 }
3870
3871 int
3872 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3873                        struct drm_file *file_priv)
3874 {
3875         struct drm_i915_private *dev_priv = to_i915(dev);
3876         struct drm_i915_gem_madvise *args = data;
3877         struct drm_i915_gem_object *obj;
3878         int err;
3879
3880         switch (args->madv) {
3881         case I915_MADV_DONTNEED:
3882         case I915_MADV_WILLNEED:
3883             break;
3884         default:
3885             return -EINVAL;
3886         }
3887
3888         obj = i915_gem_object_lookup(file_priv, args->handle);
3889         if (!obj)
3890                 return -ENOENT;
3891
3892         err = mutex_lock_interruptible(&obj->mm.lock);
3893         if (err)
3894                 goto out;
3895
3896         if (obj->mm.pages &&
3897             i915_gem_object_is_tiled(obj) &&
3898             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3899                 if (obj->mm.madv == I915_MADV_WILLNEED) {
3900                         GEM_BUG_ON(!obj->mm.quirked);
3901                         __i915_gem_object_unpin_pages(obj);
3902                         obj->mm.quirked = false;
3903                 }
3904                 if (args->madv == I915_MADV_WILLNEED) {
3905                         GEM_BUG_ON(obj->mm.quirked);
3906                         __i915_gem_object_pin_pages(obj);
3907                         obj->mm.quirked = true;
3908                 }
3909         }
3910
3911         if (obj->mm.madv != __I915_MADV_PURGED)
3912                 obj->mm.madv = args->madv;
3913
3914         /* if the object is no longer attached, discard its backing storage */
3915         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3916                 i915_gem_object_truncate(obj);
3917
3918         args->retained = obj->mm.madv != __I915_MADV_PURGED;
3919         mutex_unlock(&obj->mm.lock);
3920
3921 out:
3922         i915_gem_object_put(obj);
3923         return err;
3924 }
3925
3926 static void
3927 frontbuffer_retire(struct i915_gem_active *active,
3928                    struct drm_i915_gem_request *request)
3929 {
3930         struct drm_i915_gem_object *obj =
3931                 container_of(active, typeof(*obj), frontbuffer_write);
3932
3933         intel_fb_obj_flush(obj, true, ORIGIN_CS);
3934 }
3935
3936 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3937                           const struct drm_i915_gem_object_ops *ops)
3938 {
3939         mutex_init(&obj->mm.lock);
3940
3941         INIT_LIST_HEAD(&obj->global_link);
3942         INIT_LIST_HEAD(&obj->userfault_link);
3943         INIT_LIST_HEAD(&obj->obj_exec_link);
3944         INIT_LIST_HEAD(&obj->vma_list);
3945         INIT_LIST_HEAD(&obj->batch_pool_link);
3946
3947         obj->ops = ops;
3948
3949         reservation_object_init(&obj->__builtin_resv);
3950         obj->resv = &obj->__builtin_resv;
3951
3952         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3953         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3954
3955         obj->mm.madv = I915_MADV_WILLNEED;
3956         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3957         mutex_init(&obj->mm.get_page.lock);
3958
3959         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3960 }
3961
3962 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3963         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3964                  I915_GEM_OBJECT_IS_SHRINKABLE,
3965         .get_pages = i915_gem_object_get_pages_gtt,
3966         .put_pages = i915_gem_object_put_pages_gtt,
3967 };
3968
3969 /* Note we don't consider signbits :| */
3970 #define overflows_type(x, T) \
3971         (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3972
3973 struct drm_i915_gem_object *
3974 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3975 {
3976         struct drm_i915_gem_object *obj;
3977         struct address_space *mapping;
3978         gfp_t mask;
3979         int ret;
3980
3981         /* There is a prevalence of the assumption that we fit the object's
3982          * page count inside a 32bit _signed_ variable. Let's document this and
3983          * catch if we ever need to fix it. In the meantime, if you do spot
3984          * such a local variable, please consider fixing!
3985          */
3986         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3987                 return ERR_PTR(-E2BIG);
3988
3989         if (overflows_type(size, obj->base.size))
3990                 return ERR_PTR(-E2BIG);
3991
3992         obj = i915_gem_object_alloc(dev_priv);
3993         if (obj == NULL)
3994                 return ERR_PTR(-ENOMEM);
3995
3996         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
3997         if (ret)
3998                 goto fail;
3999
4000         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4001         if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
4002                 /* 965gm cannot relocate objects above 4GiB. */
4003                 mask &= ~__GFP_HIGHMEM;
4004                 mask |= __GFP_DMA32;
4005         }
4006
4007         mapping = obj->base.filp->f_mapping;
4008         mapping_set_gfp_mask(mapping, mask);
4009
4010         i915_gem_object_init(obj, &i915_gem_object_ops);
4011
4012         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4013         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4014
4015         if (HAS_LLC(dev_priv)) {
4016                 /* On some devices, we can have the GPU use the LLC (the CPU
4017                  * cache) for about a 10% performance improvement
4018                  * compared to uncached.  Graphics requests other than
4019                  * display scanout are coherent with the CPU in
4020                  * accessing this cache.  This means in this mode we
4021                  * don't need to clflush on the CPU side, and on the
4022                  * GPU side we only need to flush internal caches to
4023                  * get data visible to the CPU.
4024                  *
4025                  * However, we maintain the display planes as UC, and so
4026                  * need to rebind when first used as such.
4027                  */
4028                 obj->cache_level = I915_CACHE_LLC;
4029         } else
4030                 obj->cache_level = I915_CACHE_NONE;
4031
4032         trace_i915_gem_object_create(obj);
4033
4034         return obj;
4035
4036 fail:
4037         i915_gem_object_free(obj);
4038         return ERR_PTR(ret);
4039 }
4040
4041 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4042 {
4043         /* If we are the last user of the backing storage (be it shmemfs
4044          * pages or stolen etc), we know that the pages are going to be
4045          * immediately released. In this case, we can then skip copying
4046          * back the contents from the GPU.
4047          */
4048
4049         if (obj->mm.madv != I915_MADV_WILLNEED)
4050                 return false;
4051
4052         if (obj->base.filp == NULL)
4053                 return true;
4054
4055         /* At first glance, this looks racy, but then again so would be
4056          * userspace racing mmap against close. However, the first external
4057          * reference to the filp can only be obtained through the
4058          * i915_gem_mmap_ioctl() which safeguards us against the user
4059          * acquiring such a reference whilst we are in the middle of
4060          * freeing the object.
4061          */
4062         return atomic_long_read(&obj->base.filp->f_count) == 1;
4063 }
4064
4065 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4066                                     struct llist_node *freed)
4067 {
4068         struct drm_i915_gem_object *obj, *on;
4069
4070         mutex_lock(&i915->drm.struct_mutex);
4071         intel_runtime_pm_get(i915);
4072         llist_for_each_entry(obj, freed, freed) {
4073                 struct i915_vma *vma, *vn;
4074
4075                 trace_i915_gem_object_destroy(obj);
4076
4077                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4078                 list_for_each_entry_safe(vma, vn,
4079                                          &obj->vma_list, obj_link) {
4080                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4081                         GEM_BUG_ON(i915_vma_is_active(vma));
4082                         vma->flags &= ~I915_VMA_PIN_MASK;
4083                         i915_vma_close(vma);
4084                 }
4085                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4086                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4087
4088                 list_del(&obj->global_link);
4089         }
4090         intel_runtime_pm_put(i915);
4091         mutex_unlock(&i915->drm.struct_mutex);
4092
4093         llist_for_each_entry_safe(obj, on, freed, freed) {
4094                 GEM_BUG_ON(obj->bind_count);
4095                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4096
4097                 if (obj->ops->release)
4098                         obj->ops->release(obj);
4099
4100                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4101                         atomic_set(&obj->mm.pages_pin_count, 0);
4102                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4103                 GEM_BUG_ON(obj->mm.pages);
4104
4105                 if (obj->base.import_attach)
4106                         drm_prime_gem_destroy(&obj->base, NULL);
4107
4108                 reservation_object_fini(&obj->__builtin_resv);
4109                 drm_gem_object_release(&obj->base);
4110                 i915_gem_info_remove_obj(i915, obj->base.size);
4111
4112                 kfree(obj->bit_17);
4113                 i915_gem_object_free(obj);
4114         }
4115 }
4116
4117 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4118 {
4119         struct llist_node *freed;
4120
4121         freed = llist_del_all(&i915->mm.free_list);
4122         if (unlikely(freed))
4123                 __i915_gem_free_objects(i915, freed);
4124 }
4125
4126 static void __i915_gem_free_work(struct work_struct *work)
4127 {
4128         struct drm_i915_private *i915 =
4129                 container_of(work, struct drm_i915_private, mm.free_work);
4130         struct llist_node *freed;
4131
4132         /* All file-owned VMA should have been released by this point through
4133          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4134          * However, the object may also be bound into the global GTT (e.g.
4135          * older GPUs without per-process support, or for direct access through
4136          * the GTT either for the user or for scanout). Those VMA still need to
4137          * unbound now.
4138          */
4139
4140         while ((freed = llist_del_all(&i915->mm.free_list)))
4141                 __i915_gem_free_objects(i915, freed);
4142 }
4143
4144 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4145 {
4146         struct drm_i915_gem_object *obj =
4147                 container_of(head, typeof(*obj), rcu);
4148         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4149
4150         /* We can't simply use call_rcu() from i915_gem_free_object()
4151          * as we need to block whilst unbinding, and the call_rcu
4152          * task may be called from softirq context. So we take a
4153          * detour through a worker.
4154          */
4155         if (llist_add(&obj->freed, &i915->mm.free_list))
4156                 schedule_work(&i915->mm.free_work);
4157 }
4158
4159 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4160 {
4161         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4162
4163         if (obj->mm.quirked)
4164                 __i915_gem_object_unpin_pages(obj);
4165
4166         if (discard_backing_storage(obj))
4167                 obj->mm.madv = I915_MADV_DONTNEED;
4168
4169         /* Before we free the object, make sure any pure RCU-only
4170          * read-side critical sections are complete, e.g.
4171          * i915_gem_busy_ioctl(). For the corresponding synchronized
4172          * lookup see i915_gem_object_lookup_rcu().
4173          */
4174         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4175 }
4176
4177 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4178 {
4179         lockdep_assert_held(&obj->base.dev->struct_mutex);
4180
4181         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4182         if (i915_gem_object_is_active(obj))
4183                 i915_gem_object_set_active_reference(obj);
4184         else
4185                 i915_gem_object_put(obj);
4186 }
4187
4188 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4189 {
4190         struct intel_engine_cs *engine;
4191         enum intel_engine_id id;
4192
4193         for_each_engine(engine, dev_priv, id)
4194                 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4195 }
4196
4197 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4198 {
4199         struct drm_device *dev = &dev_priv->drm;
4200         int ret;
4201
4202         intel_suspend_gt_powersave(dev_priv);
4203
4204         mutex_lock(&dev->struct_mutex);
4205
4206         /* We have to flush all the executing contexts to main memory so
4207          * that they can saved in the hibernation image. To ensure the last
4208          * context image is coherent, we have to switch away from it. That
4209          * leaves the dev_priv->kernel_context still active when
4210          * we actually suspend, and its image in memory may not match the GPU
4211          * state. Fortunately, the kernel_context is disposable and we do
4212          * not rely on its state.
4213          */
4214         ret = i915_gem_switch_to_kernel_context(dev_priv);
4215         if (ret)
4216                 goto err;
4217
4218         ret = i915_gem_wait_for_idle(dev_priv,
4219                                      I915_WAIT_INTERRUPTIBLE |
4220                                      I915_WAIT_LOCKED);
4221         if (ret)
4222                 goto err;
4223
4224         i915_gem_retire_requests(dev_priv);
4225         GEM_BUG_ON(dev_priv->gt.active_requests);
4226
4227         assert_kernel_context_is_current(dev_priv);
4228         i915_gem_context_lost(dev_priv);
4229         mutex_unlock(&dev->struct_mutex);
4230
4231         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4232         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4233         flush_delayed_work(&dev_priv->gt.idle_work);
4234         flush_work(&dev_priv->mm.free_work);
4235
4236         /* Assert that we sucessfully flushed all the work and
4237          * reset the GPU back to its idle, low power state.
4238          */
4239         WARN_ON(dev_priv->gt.awake);
4240         WARN_ON(!intel_execlists_idle(dev_priv));
4241
4242         /*
4243          * Neither the BIOS, ourselves or any other kernel
4244          * expects the system to be in execlists mode on startup,
4245          * so we need to reset the GPU back to legacy mode. And the only
4246          * known way to disable logical contexts is through a GPU reset.
4247          *
4248          * So in order to leave the system in a known default configuration,
4249          * always reset the GPU upon unload and suspend. Afterwards we then
4250          * clean up the GEM state tracking, flushing off the requests and
4251          * leaving the system in a known idle state.
4252          *
4253          * Note that is of the upmost importance that the GPU is idle and
4254          * all stray writes are flushed *before* we dismantle the backing
4255          * storage for the pinned objects.
4256          *
4257          * However, since we are uncertain that resetting the GPU on older
4258          * machines is a good idea, we don't - just in case it leaves the
4259          * machine in an unusable condition.
4260          */
4261         if (HAS_HW_CONTEXTS(dev_priv)) {
4262                 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4263                 WARN_ON(reset && reset != -ENODEV);
4264         }
4265
4266         return 0;
4267
4268 err:
4269         mutex_unlock(&dev->struct_mutex);
4270         return ret;
4271 }
4272
4273 void i915_gem_resume(struct drm_i915_private *dev_priv)
4274 {
4275         struct drm_device *dev = &dev_priv->drm;
4276
4277         WARN_ON(dev_priv->gt.awake);
4278
4279         mutex_lock(&dev->struct_mutex);
4280         i915_gem_restore_gtt_mappings(dev_priv);
4281
4282         /* As we didn't flush the kernel context before suspend, we cannot
4283          * guarantee that the context image is complete. So let's just reset
4284          * it and start again.
4285          */
4286         dev_priv->gt.resume(dev_priv);
4287
4288         mutex_unlock(&dev->struct_mutex);
4289 }
4290
4291 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4292 {
4293         if (INTEL_GEN(dev_priv) < 5 ||
4294             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4295                 return;
4296
4297         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4298                                  DISP_TILE_SURFACE_SWIZZLING);
4299
4300         if (IS_GEN5(dev_priv))
4301                 return;
4302
4303         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4304         if (IS_GEN6(dev_priv))
4305                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4306         else if (IS_GEN7(dev_priv))
4307                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4308         else if (IS_GEN8(dev_priv))
4309                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4310         else
4311                 BUG();
4312 }
4313
4314 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4315 {
4316         I915_WRITE(RING_CTL(base), 0);
4317         I915_WRITE(RING_HEAD(base), 0);
4318         I915_WRITE(RING_TAIL(base), 0);
4319         I915_WRITE(RING_START(base), 0);
4320 }
4321
4322 static void init_unused_rings(struct drm_i915_private *dev_priv)
4323 {
4324         if (IS_I830(dev_priv)) {
4325                 init_unused_ring(dev_priv, PRB1_BASE);
4326                 init_unused_ring(dev_priv, SRB0_BASE);
4327                 init_unused_ring(dev_priv, SRB1_BASE);
4328                 init_unused_ring(dev_priv, SRB2_BASE);
4329                 init_unused_ring(dev_priv, SRB3_BASE);
4330         } else if (IS_GEN2(dev_priv)) {
4331                 init_unused_ring(dev_priv, SRB0_BASE);
4332                 init_unused_ring(dev_priv, SRB1_BASE);
4333         } else if (IS_GEN3(dev_priv)) {
4334                 init_unused_ring(dev_priv, PRB1_BASE);
4335                 init_unused_ring(dev_priv, PRB2_BASE);
4336         }
4337 }
4338
4339 int
4340 i915_gem_init_hw(struct drm_i915_private *dev_priv)
4341 {
4342         struct intel_engine_cs *engine;
4343         enum intel_engine_id id;
4344         int ret;
4345
4346         dev_priv->gt.last_init_time = ktime_get();
4347
4348         /* Double layer security blanket, see i915_gem_init() */
4349         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4350
4351         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4352                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4353
4354         if (IS_HASWELL(dev_priv))
4355                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4356                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4357
4358         if (HAS_PCH_NOP(dev_priv)) {
4359                 if (IS_IVYBRIDGE(dev_priv)) {
4360                         u32 temp = I915_READ(GEN7_MSG_CTL);
4361                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4362                         I915_WRITE(GEN7_MSG_CTL, temp);
4363                 } else if (INTEL_GEN(dev_priv) >= 7) {
4364                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4365                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4366                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4367                 }
4368         }
4369
4370         i915_gem_init_swizzling(dev_priv);
4371
4372         /*
4373          * At least 830 can leave some of the unused rings
4374          * "active" (ie. head != tail) after resume which
4375          * will prevent c3 entry. Makes sure all unused rings
4376          * are totally idle.
4377          */
4378         init_unused_rings(dev_priv);
4379
4380         BUG_ON(!dev_priv->kernel_context);
4381
4382         ret = i915_ppgtt_init_hw(dev_priv);
4383         if (ret) {
4384                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4385                 goto out;
4386         }
4387
4388         /* Need to do basic initialisation of all rings first: */
4389         for_each_engine(engine, dev_priv, id) {
4390                 ret = engine->init_hw(engine);
4391                 if (ret)
4392                         goto out;
4393         }
4394
4395         intel_mocs_init_l3cc_table(dev_priv);
4396
4397         /* We can't enable contexts until all firmware is loaded */
4398         ret = intel_guc_setup(dev_priv);
4399         if (ret)
4400                 goto out;
4401
4402 out:
4403         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4404         return ret;
4405 }
4406
4407 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4408 {
4409         if (INTEL_INFO(dev_priv)->gen < 6)
4410                 return false;
4411
4412         /* TODO: make semaphores and Execlists play nicely together */
4413         if (i915.enable_execlists)
4414                 return false;
4415
4416         if (value >= 0)
4417                 return value;
4418
4419 #ifdef CONFIG_INTEL_IOMMU
4420         /* Enable semaphores on SNB when IO remapping is off */
4421         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4422                 return false;
4423 #endif
4424
4425         return true;
4426 }
4427
4428 int i915_gem_init(struct drm_i915_private *dev_priv)
4429 {
4430         int ret;
4431
4432         mutex_lock(&dev_priv->drm.struct_mutex);
4433
4434         if (!i915.enable_execlists) {
4435                 dev_priv->gt.resume = intel_legacy_submission_resume;
4436                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4437         } else {
4438                 dev_priv->gt.resume = intel_lr_context_resume;
4439                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4440         }
4441
4442         /* This is just a security blanket to placate dragons.
4443          * On some systems, we very sporadically observe that the first TLBs
4444          * used by the CS may be stale, despite us poking the TLB reset. If
4445          * we hold the forcewake during initialisation these problems
4446          * just magically go away.
4447          */
4448         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4449
4450         i915_gem_init_userptr(dev_priv);
4451
4452         ret = i915_gem_init_ggtt(dev_priv);
4453         if (ret)
4454                 goto out_unlock;
4455
4456         ret = i915_gem_context_init(dev_priv);
4457         if (ret)
4458                 goto out_unlock;
4459
4460         ret = intel_engines_init(dev_priv);
4461         if (ret)
4462                 goto out_unlock;
4463
4464         ret = i915_gem_init_hw(dev_priv);
4465         if (ret == -EIO) {
4466                 /* Allow engine initialisation to fail by marking the GPU as
4467                  * wedged. But we only want to do this where the GPU is angry,
4468                  * for all other failure, such as an allocation failure, bail.
4469                  */
4470                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4471                 i915_gem_set_wedged(dev_priv);
4472                 ret = 0;
4473         }
4474
4475 out_unlock:
4476         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4477         mutex_unlock(&dev_priv->drm.struct_mutex);
4478
4479         return ret;
4480 }
4481
4482 void
4483 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4484 {
4485         struct intel_engine_cs *engine;
4486         enum intel_engine_id id;
4487
4488         for_each_engine(engine, dev_priv, id)
4489                 dev_priv->gt.cleanup_engine(engine);
4490 }
4491
4492 void
4493 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4494 {
4495         int i;
4496
4497         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4498             !IS_CHERRYVIEW(dev_priv))
4499                 dev_priv->num_fence_regs = 32;
4500         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4501                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4502                 dev_priv->num_fence_regs = 16;
4503         else
4504                 dev_priv->num_fence_regs = 8;
4505
4506         if (intel_vgpu_active(dev_priv))
4507                 dev_priv->num_fence_regs =
4508                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4509
4510         /* Initialize fence registers to zero */
4511         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4512                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4513
4514                 fence->i915 = dev_priv;
4515                 fence->id = i;
4516                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4517         }
4518         i915_gem_restore_fences(dev_priv);
4519
4520         i915_gem_detect_bit_6_swizzle(dev_priv);
4521 }
4522
4523 int
4524 i915_gem_load_init(struct drm_i915_private *dev_priv)
4525 {
4526         int err = -ENOMEM;
4527
4528         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4529         if (!dev_priv->objects)
4530                 goto err_out;
4531
4532         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4533         if (!dev_priv->vmas)
4534                 goto err_objects;
4535
4536         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4537                                         SLAB_HWCACHE_ALIGN |
4538                                         SLAB_RECLAIM_ACCOUNT |
4539                                         SLAB_DESTROY_BY_RCU);
4540         if (!dev_priv->requests)
4541                 goto err_vmas;
4542
4543         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4544                                             SLAB_HWCACHE_ALIGN |
4545                                             SLAB_RECLAIM_ACCOUNT);
4546         if (!dev_priv->dependencies)
4547                 goto err_requests;
4548
4549         mutex_lock(&dev_priv->drm.struct_mutex);
4550         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4551         err = i915_gem_timeline_init__global(dev_priv);
4552         mutex_unlock(&dev_priv->drm.struct_mutex);
4553         if (err)
4554                 goto err_dependencies;
4555
4556         INIT_LIST_HEAD(&dev_priv->context_list);
4557         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4558         init_llist_head(&dev_priv->mm.free_list);
4559         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4560         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4561         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4562         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4563         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4564                           i915_gem_retire_work_handler);
4565         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4566                           i915_gem_idle_work_handler);
4567         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4568         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4569
4570         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4571
4572         init_waitqueue_head(&dev_priv->pending_flip_queue);
4573
4574         dev_priv->mm.interruptible = true;
4575
4576         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4577
4578         spin_lock_init(&dev_priv->fb_tracking.lock);
4579
4580         return 0;
4581
4582 err_dependencies:
4583         kmem_cache_destroy(dev_priv->dependencies);
4584 err_requests:
4585         kmem_cache_destroy(dev_priv->requests);
4586 err_vmas:
4587         kmem_cache_destroy(dev_priv->vmas);
4588 err_objects:
4589         kmem_cache_destroy(dev_priv->objects);
4590 err_out:
4591         return err;
4592 }
4593
4594 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4595 {
4596         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4597
4598         mutex_lock(&dev_priv->drm.struct_mutex);
4599         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4600         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4601         mutex_unlock(&dev_priv->drm.struct_mutex);
4602
4603         kmem_cache_destroy(dev_priv->dependencies);
4604         kmem_cache_destroy(dev_priv->requests);
4605         kmem_cache_destroy(dev_priv->vmas);
4606         kmem_cache_destroy(dev_priv->objects);
4607
4608         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4609         rcu_barrier();
4610 }
4611
4612 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4613 {
4614         intel_runtime_pm_get(dev_priv);
4615
4616         mutex_lock(&dev_priv->drm.struct_mutex);
4617         i915_gem_shrink_all(dev_priv);
4618         mutex_unlock(&dev_priv->drm.struct_mutex);
4619
4620         intel_runtime_pm_put(dev_priv);
4621
4622         return 0;
4623 }
4624
4625 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4626 {
4627         struct drm_i915_gem_object *obj;
4628         struct list_head *phases[] = {
4629                 &dev_priv->mm.unbound_list,
4630                 &dev_priv->mm.bound_list,
4631                 NULL
4632         }, **p;
4633
4634         /* Called just before we write the hibernation image.
4635          *
4636          * We need to update the domain tracking to reflect that the CPU
4637          * will be accessing all the pages to create and restore from the
4638          * hibernation, and so upon restoration those pages will be in the
4639          * CPU domain.
4640          *
4641          * To make sure the hibernation image contains the latest state,
4642          * we update that state just before writing out the image.
4643          *
4644          * To try and reduce the hibernation image, we manually shrink
4645          * the objects as well.
4646          */
4647
4648         mutex_lock(&dev_priv->drm.struct_mutex);
4649         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4650
4651         for (p = phases; *p; p++) {
4652                 list_for_each_entry(obj, *p, global_link) {
4653                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4654                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4655                 }
4656         }
4657         mutex_unlock(&dev_priv->drm.struct_mutex);
4658
4659         return 0;
4660 }
4661
4662 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4663 {
4664         struct drm_i915_file_private *file_priv = file->driver_priv;
4665         struct drm_i915_gem_request *request;
4666
4667         /* Clean up our request list when the client is going away, so that
4668          * later retire_requests won't dereference our soon-to-be-gone
4669          * file_priv.
4670          */
4671         spin_lock(&file_priv->mm.lock);
4672         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4673                 request->file_priv = NULL;
4674         spin_unlock(&file_priv->mm.lock);
4675
4676         if (!list_empty(&file_priv->rps.link)) {
4677                 spin_lock(&to_i915(dev)->rps.client_lock);
4678                 list_del(&file_priv->rps.link);
4679                 spin_unlock(&to_i915(dev)->rps.client_lock);
4680         }
4681 }
4682
4683 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4684 {
4685         struct drm_i915_file_private *file_priv;
4686         int ret;
4687
4688         DRM_DEBUG("\n");
4689
4690         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4691         if (!file_priv)
4692                 return -ENOMEM;
4693
4694         file->driver_priv = file_priv;
4695         file_priv->dev_priv = to_i915(dev);
4696         file_priv->file = file;
4697         INIT_LIST_HEAD(&file_priv->rps.link);
4698
4699         spin_lock_init(&file_priv->mm.lock);
4700         INIT_LIST_HEAD(&file_priv->mm.request_list);
4701
4702         file_priv->bsd_engine = -1;
4703
4704         ret = i915_gem_context_open(dev, file);
4705         if (ret)
4706                 kfree(file_priv);
4707
4708         return ret;
4709 }
4710
4711 /**
4712  * i915_gem_track_fb - update frontbuffer tracking
4713  * @old: current GEM buffer for the frontbuffer slots
4714  * @new: new GEM buffer for the frontbuffer slots
4715  * @frontbuffer_bits: bitmask of frontbuffer slots
4716  *
4717  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4718  * from @old and setting them in @new. Both @old and @new can be NULL.
4719  */
4720 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4721                        struct drm_i915_gem_object *new,
4722                        unsigned frontbuffer_bits)
4723 {
4724         /* Control of individual bits within the mask are guarded by
4725          * the owning plane->mutex, i.e. we can never see concurrent
4726          * manipulation of individual bits. But since the bitfield as a whole
4727          * is updated using RMW, we need to use atomics in order to update
4728          * the bits.
4729          */
4730         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4731                      sizeof(atomic_t) * BITS_PER_BYTE);
4732
4733         if (old) {
4734                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4735                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4736         }
4737
4738         if (new) {
4739                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4740                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4741         }
4742 }
4743
4744 /* Allocate a new GEM object and fill it with the supplied data */
4745 struct drm_i915_gem_object *
4746 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4747                                  const void *data, size_t size)
4748 {
4749         struct drm_i915_gem_object *obj;
4750         struct sg_table *sg;
4751         size_t bytes;
4752         int ret;
4753
4754         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4755         if (IS_ERR(obj))
4756                 return obj;
4757
4758         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4759         if (ret)
4760                 goto fail;
4761
4762         ret = i915_gem_object_pin_pages(obj);
4763         if (ret)
4764                 goto fail;
4765
4766         sg = obj->mm.pages;
4767         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4768         obj->mm.dirty = true; /* Backing store is now out of date */
4769         i915_gem_object_unpin_pages(obj);
4770
4771         if (WARN_ON(bytes != size)) {
4772                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4773                 ret = -EFAULT;
4774                 goto fail;
4775         }
4776
4777         return obj;
4778
4779 fail:
4780         i915_gem_object_put(obj);
4781         return ERR_PTR(ret);
4782 }
4783
4784 struct scatterlist *
4785 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4786                        unsigned int n,
4787                        unsigned int *offset)
4788 {
4789         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4790         struct scatterlist *sg;
4791         unsigned int idx, count;
4792
4793         might_sleep();
4794         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4795         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4796
4797         /* As we iterate forward through the sg, we record each entry in a
4798          * radixtree for quick repeated (backwards) lookups. If we have seen
4799          * this index previously, we will have an entry for it.
4800          *
4801          * Initial lookup is O(N), but this is amortized to O(1) for
4802          * sequential page access (where each new request is consecutive
4803          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4804          * i.e. O(1) with a large constant!
4805          */
4806         if (n < READ_ONCE(iter->sg_idx))
4807                 goto lookup;
4808
4809         mutex_lock(&iter->lock);
4810
4811         /* We prefer to reuse the last sg so that repeated lookup of this
4812          * (or the subsequent) sg are fast - comparing against the last
4813          * sg is faster than going through the radixtree.
4814          */
4815
4816         sg = iter->sg_pos;
4817         idx = iter->sg_idx;
4818         count = __sg_page_count(sg);
4819
4820         while (idx + count <= n) {
4821                 unsigned long exception, i;
4822                 int ret;
4823
4824                 /* If we cannot allocate and insert this entry, or the
4825                  * individual pages from this range, cancel updating the
4826                  * sg_idx so that on this lookup we are forced to linearly
4827                  * scan onwards, but on future lookups we will try the
4828                  * insertion again (in which case we need to be careful of
4829                  * the error return reporting that we have already inserted
4830                  * this index).
4831                  */
4832                 ret = radix_tree_insert(&iter->radix, idx, sg);
4833                 if (ret && ret != -EEXIST)
4834                         goto scan;
4835
4836                 exception =
4837                         RADIX_TREE_EXCEPTIONAL_ENTRY |
4838                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4839                 for (i = 1; i < count; i++) {
4840                         ret = radix_tree_insert(&iter->radix, idx + i,
4841                                                 (void *)exception);
4842                         if (ret && ret != -EEXIST)
4843                                 goto scan;
4844                 }
4845
4846                 idx += count;
4847                 sg = ____sg_next(sg);
4848                 count = __sg_page_count(sg);
4849         }
4850
4851 scan:
4852         iter->sg_pos = sg;
4853         iter->sg_idx = idx;
4854
4855         mutex_unlock(&iter->lock);
4856
4857         if (unlikely(n < idx)) /* insertion completed by another thread */
4858                 goto lookup;
4859
4860         /* In case we failed to insert the entry into the radixtree, we need
4861          * to look beyond the current sg.
4862          */
4863         while (idx + count <= n) {
4864                 idx += count;
4865                 sg = ____sg_next(sg);
4866                 count = __sg_page_count(sg);
4867         }
4868
4869         *offset = n - idx;
4870         return sg;
4871
4872 lookup:
4873         rcu_read_lock();
4874
4875         sg = radix_tree_lookup(&iter->radix, n);
4876         GEM_BUG_ON(!sg);
4877
4878         /* If this index is in the middle of multi-page sg entry,
4879          * the radixtree will contain an exceptional entry that points
4880          * to the start of that range. We will return the pointer to
4881          * the base page and the offset of this page within the
4882          * sg entry's range.
4883          */
4884         *offset = 0;
4885         if (unlikely(radix_tree_exception(sg))) {
4886                 unsigned long base =
4887                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4888
4889                 sg = radix_tree_lookup(&iter->radix, base);
4890                 GEM_BUG_ON(!sg);
4891
4892                 *offset = n - base;
4893         }
4894
4895         rcu_read_unlock();
4896
4897         return sg;
4898 }
4899
4900 struct page *
4901 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4902 {
4903         struct scatterlist *sg;
4904         unsigned int offset;
4905
4906         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4907
4908         sg = i915_gem_object_get_sg(obj, n, &offset);
4909         return nth_page(sg_page(sg), offset);
4910 }
4911
4912 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4913 struct page *
4914 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4915                                unsigned int n)
4916 {
4917         struct page *page;
4918
4919         page = i915_gem_object_get_page(obj, n);
4920         if (!obj->mm.dirty)
4921                 set_page_dirty(page);
4922
4923         return page;
4924 }
4925
4926 dma_addr_t
4927 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4928                                 unsigned long n)
4929 {
4930         struct scatterlist *sg;
4931         unsigned int offset;
4932
4933         sg = i915_gem_object_get_sg(obj, n, &offset);
4934         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4935 }