]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Avoid accessing request->timeline outside of its lifetime
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/reservation.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/pci.h>
42 #include <linux/dma-buf.h>
43
44 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49                                   enum i915_cache_level level)
50 {
51         return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57                 return false;
58
59         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60                 return true;
61
62         return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct i915_ggtt *ggtt,
67                      struct drm_mm_node *node, u32 size)
68 {
69         memset(node, 0, sizeof(*node));
70         return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
71                                                    size, 0, -1,
72                                                    0, ggtt->mappable_end,
73                                                    DRM_MM_SEARCH_DEFAULT,
74                                                    DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80         drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85                                   u64 size)
86 {
87         spin_lock(&dev_priv->mm.object_stat_lock);
88         dev_priv->mm.object_count++;
89         dev_priv->mm.object_memory += size;
90         spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94                                      u64 size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count--;
98         dev_priv->mm.object_memory -= size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105         int ret;
106
107         might_sleep();
108
109         if (!i915_reset_in_progress(error))
110                 return 0;
111
112         /*
113          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
114          * userspace. If it takes that long something really bad is going on and
115          * we should simply try to bail out and fail as gracefully as possible.
116          */
117         ret = wait_event_interruptible_timeout(error->reset_queue,
118                                                !i915_reset_in_progress(error),
119                                                I915_RESET_TIMEOUT);
120         if (ret == 0) {
121                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
122                 return -EIO;
123         } else if (ret < 0) {
124                 return ret;
125         } else {
126                 return 0;
127         }
128 }
129
130 int i915_mutex_lock_interruptible(struct drm_device *dev)
131 {
132         struct drm_i915_private *dev_priv = to_i915(dev);
133         int ret;
134
135         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
136         if (ret)
137                 return ret;
138
139         ret = mutex_lock_interruptible(&dev->struct_mutex);
140         if (ret)
141                 return ret;
142
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = to_i915(dev);
151         struct i915_ggtt *ggtt = &dev_priv->ggtt;
152         struct drm_i915_gem_get_aperture *args = data;
153         struct i915_vma *vma;
154         size_t pinned;
155
156         pinned = 0;
157         mutex_lock(&dev->struct_mutex);
158         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159                 if (i915_vma_is_pinned(vma))
160                         pinned += vma->node.size;
161         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162                 if (i915_vma_is_pinned(vma))
163                         pinned += vma->node.size;
164         mutex_unlock(&dev->struct_mutex);
165
166         args->aper_size = ggtt->base.total;
167         args->aper_available_size = args->aper_size - pinned;
168
169         return 0;
170 }
171
172 static struct sg_table *
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175         struct address_space *mapping = obj->base.filp->f_mapping;
176         char *vaddr = obj->phys_handle->vaddr;
177         struct sg_table *st;
178         struct scatterlist *sg;
179         int i;
180
181         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182                 return ERR_PTR(-EINVAL);
183
184         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185                 struct page *page;
186                 char *src;
187
188                 page = shmem_read_mapping_page(mapping, i);
189                 if (IS_ERR(page))
190                         return ERR_CAST(page);
191
192                 src = kmap_atomic(page);
193                 memcpy(vaddr, src, PAGE_SIZE);
194                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195                 kunmap_atomic(src);
196
197                 put_page(page);
198                 vaddr += PAGE_SIZE;
199         }
200
201         i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203         st = kmalloc(sizeof(*st), GFP_KERNEL);
204         if (st == NULL)
205                 return ERR_PTR(-ENOMEM);
206
207         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208                 kfree(st);
209                 return ERR_PTR(-ENOMEM);
210         }
211
212         sg = st->sgl;
213         sg->offset = 0;
214         sg->length = obj->base.size;
215
216         sg_dma_address(sg) = obj->phys_handle->busaddr;
217         sg_dma_len(sg) = obj->base.size;
218
219         return st;
220 }
221
222 static void
223 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj)
224 {
225         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
226
227         if (obj->mm.madv == I915_MADV_DONTNEED)
228                 obj->mm.dirty = false;
229
230         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
231                 i915_gem_clflush_object(obj, false);
232
233         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
234         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
235 }
236
237 static void
238 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
239                                struct sg_table *pages)
240 {
241         __i915_gem_object_release_shmem(obj);
242
243         if (obj->mm.dirty) {
244                 struct address_space *mapping = obj->base.filp->f_mapping;
245                 char *vaddr = obj->phys_handle->vaddr;
246                 int i;
247
248                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249                         struct page *page;
250                         char *dst;
251
252                         page = shmem_read_mapping_page(mapping, i);
253                         if (IS_ERR(page))
254                                 continue;
255
256                         dst = kmap_atomic(page);
257                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
258                         memcpy(dst, vaddr, PAGE_SIZE);
259                         kunmap_atomic(dst);
260
261                         set_page_dirty(page);
262                         if (obj->mm.madv == I915_MADV_WILLNEED)
263                                 mark_page_accessed(page);
264                         put_page(page);
265                         vaddr += PAGE_SIZE;
266                 }
267                 obj->mm.dirty = false;
268         }
269
270         sg_free_table(pages);
271         kfree(pages);
272 }
273
274 static void
275 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
276 {
277         drm_pci_free(obj->base.dev, obj->phys_handle);
278         i915_gem_object_unpin_pages(obj);
279 }
280
281 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
282         .get_pages = i915_gem_object_get_pages_phys,
283         .put_pages = i915_gem_object_put_pages_phys,
284         .release = i915_gem_object_release_phys,
285 };
286
287 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
288 {
289         struct i915_vma *vma;
290         LIST_HEAD(still_in_list);
291         int ret;
292
293         lockdep_assert_held(&obj->base.dev->struct_mutex);
294
295         /* Closed vma are removed from the obj->vma_list - but they may
296          * still have an active binding on the object. To remove those we
297          * must wait for all rendering to complete to the object (as unbinding
298          * must anyway), and retire the requests.
299          */
300         ret = i915_gem_object_wait(obj,
301                                    I915_WAIT_INTERRUPTIBLE |
302                                    I915_WAIT_LOCKED |
303                                    I915_WAIT_ALL,
304                                    MAX_SCHEDULE_TIMEOUT,
305                                    NULL);
306         if (ret)
307                 return ret;
308
309         i915_gem_retire_requests(to_i915(obj->base.dev));
310
311         while ((vma = list_first_entry_or_null(&obj->vma_list,
312                                                struct i915_vma,
313                                                obj_link))) {
314                 list_move_tail(&vma->obj_link, &still_in_list);
315                 ret = i915_vma_unbind(vma);
316                 if (ret)
317                         break;
318         }
319         list_splice(&still_in_list, &obj->vma_list);
320
321         return ret;
322 }
323
324 static long
325 i915_gem_object_wait_fence(struct dma_fence *fence,
326                            unsigned int flags,
327                            long timeout,
328                            struct intel_rps_client *rps)
329 {
330         struct drm_i915_gem_request *rq;
331
332         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
333
334         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
335                 return timeout;
336
337         if (!dma_fence_is_i915(fence))
338                 return dma_fence_wait_timeout(fence,
339                                               flags & I915_WAIT_INTERRUPTIBLE,
340                                               timeout);
341
342         rq = to_request(fence);
343         if (i915_gem_request_completed(rq))
344                 goto out;
345
346         /* This client is about to stall waiting for the GPU. In many cases
347          * this is undesirable and limits the throughput of the system, as
348          * many clients cannot continue processing user input/output whilst
349          * blocked. RPS autotuning may take tens of milliseconds to respond
350          * to the GPU load and thus incurs additional latency for the client.
351          * We can circumvent that by promoting the GPU frequency to maximum
352          * before we wait. This makes the GPU throttle up much more quickly
353          * (good for benchmarks and user experience, e.g. window animations),
354          * but at a cost of spending more power processing the workload
355          * (bad for battery). Not all clients even want their results
356          * immediately and for them we should just let the GPU select its own
357          * frequency to maximise efficiency. To prevent a single client from
358          * forcing the clocks too high for the whole system, we only allow
359          * each client to waitboost once in a busy period.
360          */
361         if (rps) {
362                 if (INTEL_GEN(rq->i915) >= 6)
363                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
364                 else
365                         rps = NULL;
366         }
367
368         timeout = i915_wait_request(rq, flags, timeout);
369
370 out:
371         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
372                 i915_gem_request_retire_upto(rq);
373
374         if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
375                 /* The GPU is now idle and this client has stalled.
376                  * Since no other client has submitted a request in the
377                  * meantime, assume that this client is the only one
378                  * supplying work to the GPU but is unable to keep that
379                  * work supplied because it is waiting. Since the GPU is
380                  * then never kept fully busy, RPS autoclocking will
381                  * keep the clocks relatively low, causing further delays.
382                  * Compensate by giving the synchronous client credit for
383                  * a waitboost next time.
384                  */
385                 spin_lock(&rq->i915->rps.client_lock);
386                 list_del_init(&rps->link);
387                 spin_unlock(&rq->i915->rps.client_lock);
388         }
389
390         return timeout;
391 }
392
393 static long
394 i915_gem_object_wait_reservation(struct reservation_object *resv,
395                                  unsigned int flags,
396                                  long timeout,
397                                  struct intel_rps_client *rps)
398 {
399         struct dma_fence *excl;
400
401         if (flags & I915_WAIT_ALL) {
402                 struct dma_fence **shared;
403                 unsigned int count, i;
404                 int ret;
405
406                 ret = reservation_object_get_fences_rcu(resv,
407                                                         &excl, &count, &shared);
408                 if (ret)
409                         return ret;
410
411                 for (i = 0; i < count; i++) {
412                         timeout = i915_gem_object_wait_fence(shared[i],
413                                                              flags, timeout,
414                                                              rps);
415                         if (timeout <= 0)
416                                 break;
417
418                         dma_fence_put(shared[i]);
419                 }
420
421                 for (; i < count; i++)
422                         dma_fence_put(shared[i]);
423                 kfree(shared);
424         } else {
425                 excl = reservation_object_get_excl_rcu(resv);
426         }
427
428         if (excl && timeout > 0)
429                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
430
431         dma_fence_put(excl);
432
433         return timeout;
434 }
435
436 /**
437  * Waits for rendering to the object to be completed
438  * @obj: i915 gem object
439  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
440  * @timeout: how long to wait
441  * @rps: client (user process) to charge for any waitboosting
442  */
443 int
444 i915_gem_object_wait(struct drm_i915_gem_object *obj,
445                      unsigned int flags,
446                      long timeout,
447                      struct intel_rps_client *rps)
448 {
449         might_sleep();
450 #if IS_ENABLED(CONFIG_LOCKDEP)
451         GEM_BUG_ON(debug_locks &&
452                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
453                    !!(flags & I915_WAIT_LOCKED));
454 #endif
455         GEM_BUG_ON(timeout < 0);
456
457         timeout = i915_gem_object_wait_reservation(obj->resv,
458                                                    flags, timeout,
459                                                    rps);
460         return timeout < 0 ? timeout : 0;
461 }
462
463 static struct intel_rps_client *to_rps_client(struct drm_file *file)
464 {
465         struct drm_i915_file_private *fpriv = file->driver_priv;
466
467         return &fpriv->rps;
468 }
469
470 int
471 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
472                             int align)
473 {
474         drm_dma_handle_t *phys;
475         int ret;
476
477         if (obj->phys_handle) {
478                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
479                         return -EBUSY;
480
481                 return 0;
482         }
483
484         if (obj->mm.madv != I915_MADV_WILLNEED)
485                 return -EFAULT;
486
487         if (obj->base.filp == NULL)
488                 return -EINVAL;
489
490         ret = i915_gem_object_unbind(obj);
491         if (ret)
492                 return ret;
493
494         __i915_gem_object_put_pages(obj);
495         if (obj->mm.pages)
496                 return -EBUSY;
497
498         /* create a new object */
499         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
500         if (!phys)
501                 return -ENOMEM;
502
503         obj->phys_handle = phys;
504         obj->ops = &i915_gem_phys_ops;
505
506         return i915_gem_object_pin_pages(obj);
507 }
508
509 static int
510 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
511                      struct drm_i915_gem_pwrite *args,
512                      struct drm_file *file)
513 {
514         struct drm_device *dev = obj->base.dev;
515         void *vaddr = obj->phys_handle->vaddr + args->offset;
516         char __user *user_data = u64_to_user_ptr(args->data_ptr);
517         int ret;
518
519         /* We manually control the domain here and pretend that it
520          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
521          */
522         lockdep_assert_held(&obj->base.dev->struct_mutex);
523         ret = i915_gem_object_wait(obj,
524                                    I915_WAIT_INTERRUPTIBLE |
525                                    I915_WAIT_LOCKED |
526                                    I915_WAIT_ALL,
527                                    MAX_SCHEDULE_TIMEOUT,
528                                    to_rps_client(file));
529         if (ret)
530                 return ret;
531
532         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
533         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
534                 unsigned long unwritten;
535
536                 /* The physical object once assigned is fixed for the lifetime
537                  * of the obj, so we can safely drop the lock and continue
538                  * to access vaddr.
539                  */
540                 mutex_unlock(&dev->struct_mutex);
541                 unwritten = copy_from_user(vaddr, user_data, args->size);
542                 mutex_lock(&dev->struct_mutex);
543                 if (unwritten) {
544                         ret = -EFAULT;
545                         goto out;
546                 }
547         }
548
549         drm_clflush_virt_range(vaddr, args->size);
550         i915_gem_chipset_flush(to_i915(dev));
551
552 out:
553         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
554         return ret;
555 }
556
557 void *i915_gem_object_alloc(struct drm_device *dev)
558 {
559         struct drm_i915_private *dev_priv = to_i915(dev);
560         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
561 }
562
563 void i915_gem_object_free(struct drm_i915_gem_object *obj)
564 {
565         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
566         kmem_cache_free(dev_priv->objects, obj);
567 }
568
569 static int
570 i915_gem_create(struct drm_file *file,
571                 struct drm_device *dev,
572                 uint64_t size,
573                 uint32_t *handle_p)
574 {
575         struct drm_i915_gem_object *obj;
576         int ret;
577         u32 handle;
578
579         size = roundup(size, PAGE_SIZE);
580         if (size == 0)
581                 return -EINVAL;
582
583         /* Allocate the new object */
584         obj = i915_gem_object_create(dev, size);
585         if (IS_ERR(obj))
586                 return PTR_ERR(obj);
587
588         ret = drm_gem_handle_create(file, &obj->base, &handle);
589         /* drop reference from allocate - handle holds it now */
590         i915_gem_object_put(obj);
591         if (ret)
592                 return ret;
593
594         *handle_p = handle;
595         return 0;
596 }
597
598 int
599 i915_gem_dumb_create(struct drm_file *file,
600                      struct drm_device *dev,
601                      struct drm_mode_create_dumb *args)
602 {
603         /* have to work out size/pitch and return them */
604         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
605         args->size = args->pitch * args->height;
606         return i915_gem_create(file, dev,
607                                args->size, &args->handle);
608 }
609
610 /**
611  * Creates a new mm object and returns a handle to it.
612  * @dev: drm device pointer
613  * @data: ioctl data blob
614  * @file: drm file pointer
615  */
616 int
617 i915_gem_create_ioctl(struct drm_device *dev, void *data,
618                       struct drm_file *file)
619 {
620         struct drm_i915_gem_create *args = data;
621
622         i915_gem_flush_free_objects(to_i915(dev));
623
624         return i915_gem_create(file, dev,
625                                args->size, &args->handle);
626 }
627
628 static inline int
629 __copy_to_user_swizzled(char __user *cpu_vaddr,
630                         const char *gpu_vaddr, int gpu_offset,
631                         int length)
632 {
633         int ret, cpu_offset = 0;
634
635         while (length > 0) {
636                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
637                 int this_length = min(cacheline_end - gpu_offset, length);
638                 int swizzled_gpu_offset = gpu_offset ^ 64;
639
640                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
641                                      gpu_vaddr + swizzled_gpu_offset,
642                                      this_length);
643                 if (ret)
644                         return ret + length;
645
646                 cpu_offset += this_length;
647                 gpu_offset += this_length;
648                 length -= this_length;
649         }
650
651         return 0;
652 }
653
654 static inline int
655 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
656                           const char __user *cpu_vaddr,
657                           int length)
658 {
659         int ret, cpu_offset = 0;
660
661         while (length > 0) {
662                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
663                 int this_length = min(cacheline_end - gpu_offset, length);
664                 int swizzled_gpu_offset = gpu_offset ^ 64;
665
666                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
667                                        cpu_vaddr + cpu_offset,
668                                        this_length);
669                 if (ret)
670                         return ret + length;
671
672                 cpu_offset += this_length;
673                 gpu_offset += this_length;
674                 length -= this_length;
675         }
676
677         return 0;
678 }
679
680 /*
681  * Pins the specified object's pages and synchronizes the object with
682  * GPU accesses. Sets needs_clflush to non-zero if the caller should
683  * flush the object from the CPU cache.
684  */
685 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
686                                     unsigned int *needs_clflush)
687 {
688         int ret;
689
690         lockdep_assert_held(&obj->base.dev->struct_mutex);
691
692         *needs_clflush = 0;
693         if (!i915_gem_object_has_struct_page(obj))
694                 return -ENODEV;
695
696         ret = i915_gem_object_wait(obj,
697                                    I915_WAIT_INTERRUPTIBLE |
698                                    I915_WAIT_LOCKED,
699                                    MAX_SCHEDULE_TIMEOUT,
700                                    NULL);
701         if (ret)
702                 return ret;
703
704         ret = i915_gem_object_pin_pages(obj);
705         if (ret)
706                 return ret;
707
708         i915_gem_object_flush_gtt_write_domain(obj);
709
710         /* If we're not in the cpu read domain, set ourself into the gtt
711          * read domain and manually flush cachelines (if required). This
712          * optimizes for the case when the gpu will dirty the data
713          * anyway again before the next pread happens.
714          */
715         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
716                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
717                                                         obj->cache_level);
718
719         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
720                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
721                 if (ret)
722                         goto err_unpin;
723
724                 *needs_clflush = 0;
725         }
726
727         /* return with the pages pinned */
728         return 0;
729
730 err_unpin:
731         i915_gem_object_unpin_pages(obj);
732         return ret;
733 }
734
735 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
736                                      unsigned int *needs_clflush)
737 {
738         int ret;
739
740         lockdep_assert_held(&obj->base.dev->struct_mutex);
741
742         *needs_clflush = 0;
743         if (!i915_gem_object_has_struct_page(obj))
744                 return -ENODEV;
745
746         ret = i915_gem_object_wait(obj,
747                                    I915_WAIT_INTERRUPTIBLE |
748                                    I915_WAIT_LOCKED |
749                                    I915_WAIT_ALL,
750                                    MAX_SCHEDULE_TIMEOUT,
751                                    NULL);
752         if (ret)
753                 return ret;
754
755         ret = i915_gem_object_pin_pages(obj);
756         if (ret)
757                 return ret;
758
759         i915_gem_object_flush_gtt_write_domain(obj);
760
761         /* If we're not in the cpu write domain, set ourself into the
762          * gtt write domain and manually flush cachelines (as required).
763          * This optimizes for the case when the gpu will use the data
764          * right away and we therefore have to clflush anyway.
765          */
766         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
767                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
768
769         /* Same trick applies to invalidate partially written cachelines read
770          * before writing.
771          */
772         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
773                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
774                                                          obj->cache_level);
775
776         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
777                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
778                 if (ret)
779                         goto err_unpin;
780
781                 *needs_clflush = 0;
782         }
783
784         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
785                 obj->cache_dirty = true;
786
787         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
788         obj->mm.dirty = true;
789         /* return with the pages pinned */
790         return 0;
791
792 err_unpin:
793         i915_gem_object_unpin_pages(obj);
794         return ret;
795 }
796
797 static void
798 shmem_clflush_swizzled_range(char *addr, unsigned long length,
799                              bool swizzled)
800 {
801         if (unlikely(swizzled)) {
802                 unsigned long start = (unsigned long) addr;
803                 unsigned long end = (unsigned long) addr + length;
804
805                 /* For swizzling simply ensure that we always flush both
806                  * channels. Lame, but simple and it works. Swizzled
807                  * pwrite/pread is far from a hotpath - current userspace
808                  * doesn't use it at all. */
809                 start = round_down(start, 128);
810                 end = round_up(end, 128);
811
812                 drm_clflush_virt_range((void *)start, end - start);
813         } else {
814                 drm_clflush_virt_range(addr, length);
815         }
816
817 }
818
819 /* Only difference to the fast-path function is that this can handle bit17
820  * and uses non-atomic copy and kmap functions. */
821 static int
822 shmem_pread_slow(struct page *page, int offset, int length,
823                  char __user *user_data,
824                  bool page_do_bit17_swizzling, bool needs_clflush)
825 {
826         char *vaddr;
827         int ret;
828
829         vaddr = kmap(page);
830         if (needs_clflush)
831                 shmem_clflush_swizzled_range(vaddr + offset, length,
832                                              page_do_bit17_swizzling);
833
834         if (page_do_bit17_swizzling)
835                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
836         else
837                 ret = __copy_to_user(user_data, vaddr + offset, length);
838         kunmap(page);
839
840         return ret ? - EFAULT : 0;
841 }
842
843 static int
844 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
845             bool page_do_bit17_swizzling, bool needs_clflush)
846 {
847         int ret;
848
849         ret = -ENODEV;
850         if (!page_do_bit17_swizzling) {
851                 char *vaddr = kmap_atomic(page);
852
853                 if (needs_clflush)
854                         drm_clflush_virt_range(vaddr + offset, length);
855                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
856                 kunmap_atomic(vaddr);
857         }
858         if (ret == 0)
859                 return 0;
860
861         return shmem_pread_slow(page, offset, length, user_data,
862                                 page_do_bit17_swizzling, needs_clflush);
863 }
864
865 static int
866 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
867                      struct drm_i915_gem_pread *args)
868 {
869         char __user *user_data;
870         u64 remain;
871         unsigned int obj_do_bit17_swizzling;
872         unsigned int needs_clflush;
873         unsigned int idx, offset;
874         int ret;
875
876         obj_do_bit17_swizzling = 0;
877         if (i915_gem_object_needs_bit17_swizzle(obj))
878                 obj_do_bit17_swizzling = BIT(17);
879
880         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
881         if (ret)
882                 return ret;
883
884         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
885         mutex_unlock(&obj->base.dev->struct_mutex);
886         if (ret)
887                 return ret;
888
889         remain = args->size;
890         user_data = u64_to_user_ptr(args->data_ptr);
891         offset = offset_in_page(args->offset);
892         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
893                 struct page *page = i915_gem_object_get_page(obj, idx);
894                 int length;
895
896                 length = remain;
897                 if (offset + length > PAGE_SIZE)
898                         length = PAGE_SIZE - offset;
899
900                 ret = shmem_pread(page, offset, length, user_data,
901                                   page_to_phys(page) & obj_do_bit17_swizzling,
902                                   needs_clflush);
903                 if (ret)
904                         break;
905
906                 remain -= length;
907                 user_data += length;
908                 offset = 0;
909         }
910
911         i915_gem_obj_finish_shmem_access(obj);
912         return ret;
913 }
914
915 static inline bool
916 gtt_user_read(struct io_mapping *mapping,
917               loff_t base, int offset,
918               char __user *user_data, int length)
919 {
920         void *vaddr;
921         unsigned long unwritten;
922
923         /* We can use the cpu mem copy function because this is X86. */
924         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
925         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
926         io_mapping_unmap_atomic(vaddr);
927         if (unwritten) {
928                 vaddr = (void __force *)
929                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
930                 unwritten = copy_to_user(user_data, vaddr + offset, length);
931                 io_mapping_unmap(vaddr);
932         }
933         return unwritten;
934 }
935
936 static int
937 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
938                    const struct drm_i915_gem_pread *args)
939 {
940         struct drm_i915_private *i915 = to_i915(obj->base.dev);
941         struct i915_ggtt *ggtt = &i915->ggtt;
942         struct drm_mm_node node;
943         struct i915_vma *vma;
944         void __user *user_data;
945         u64 remain, offset;
946         int ret;
947
948         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
949         if (ret)
950                 return ret;
951
952         intel_runtime_pm_get(i915);
953         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
954                                        PIN_MAPPABLE | PIN_NONBLOCK);
955         if (!IS_ERR(vma)) {
956                 node.start = i915_ggtt_offset(vma);
957                 node.allocated = false;
958                 ret = i915_vma_put_fence(vma);
959                 if (ret) {
960                         i915_vma_unpin(vma);
961                         vma = ERR_PTR(ret);
962                 }
963         }
964         if (IS_ERR(vma)) {
965                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
966                 if (ret)
967                         goto out_unlock;
968                 GEM_BUG_ON(!node.allocated);
969         }
970
971         ret = i915_gem_object_set_to_gtt_domain(obj, false);
972         if (ret)
973                 goto out_unpin;
974
975         mutex_unlock(&i915->drm.struct_mutex);
976
977         user_data = u64_to_user_ptr(args->data_ptr);
978         remain = args->size;
979         offset = args->offset;
980
981         while (remain > 0) {
982                 /* Operation in this page
983                  *
984                  * page_base = page offset within aperture
985                  * page_offset = offset within page
986                  * page_length = bytes to copy for this page
987                  */
988                 u32 page_base = node.start;
989                 unsigned page_offset = offset_in_page(offset);
990                 unsigned page_length = PAGE_SIZE - page_offset;
991                 page_length = remain < page_length ? remain : page_length;
992                 if (node.allocated) {
993                         wmb();
994                         ggtt->base.insert_page(&ggtt->base,
995                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
996                                                node.start, I915_CACHE_NONE, 0);
997                         wmb();
998                 } else {
999                         page_base += offset & PAGE_MASK;
1000                 }
1001
1002                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1003                                   user_data, page_length)) {
1004                         ret = -EFAULT;
1005                         break;
1006                 }
1007
1008                 remain -= page_length;
1009                 user_data += page_length;
1010                 offset += page_length;
1011         }
1012
1013         mutex_lock(&i915->drm.struct_mutex);
1014 out_unpin:
1015         if (node.allocated) {
1016                 wmb();
1017                 ggtt->base.clear_range(&ggtt->base,
1018                                        node.start, node.size);
1019                 remove_mappable_node(&node);
1020         } else {
1021                 i915_vma_unpin(vma);
1022         }
1023 out_unlock:
1024         intel_runtime_pm_put(i915);
1025         mutex_unlock(&i915->drm.struct_mutex);
1026
1027         return ret;
1028 }
1029
1030 /**
1031  * Reads data from the object referenced by handle.
1032  * @dev: drm device pointer
1033  * @data: ioctl data blob
1034  * @file: drm file pointer
1035  *
1036  * On error, the contents of *data are undefined.
1037  */
1038 int
1039 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1040                      struct drm_file *file)
1041 {
1042         struct drm_i915_gem_pread *args = data;
1043         struct drm_i915_gem_object *obj;
1044         int ret;
1045
1046         if (args->size == 0)
1047                 return 0;
1048
1049         if (!access_ok(VERIFY_WRITE,
1050                        u64_to_user_ptr(args->data_ptr),
1051                        args->size))
1052                 return -EFAULT;
1053
1054         obj = i915_gem_object_lookup(file, args->handle);
1055         if (!obj)
1056                 return -ENOENT;
1057
1058         /* Bounds check source.  */
1059         if (args->offset > obj->base.size ||
1060             args->size > obj->base.size - args->offset) {
1061                 ret = -EINVAL;
1062                 goto out;
1063         }
1064
1065         trace_i915_gem_object_pread(obj, args->offset, args->size);
1066
1067         ret = i915_gem_object_wait(obj,
1068                                    I915_WAIT_INTERRUPTIBLE,
1069                                    MAX_SCHEDULE_TIMEOUT,
1070                                    to_rps_client(file));
1071         if (ret)
1072                 goto out;
1073
1074         ret = i915_gem_object_pin_pages(obj);
1075         if (ret)
1076                 goto out;
1077
1078         ret = i915_gem_shmem_pread(obj, args);
1079         if (ret == -EFAULT || ret == -ENODEV)
1080                 ret = i915_gem_gtt_pread(obj, args);
1081
1082         i915_gem_object_unpin_pages(obj);
1083 out:
1084         i915_gem_object_put(obj);
1085         return ret;
1086 }
1087
1088 /* This is the fast write path which cannot handle
1089  * page faults in the source data
1090  */
1091
1092 static inline bool
1093 ggtt_write(struct io_mapping *mapping,
1094            loff_t base, int offset,
1095            char __user *user_data, int length)
1096 {
1097         void *vaddr;
1098         unsigned long unwritten;
1099
1100         /* We can use the cpu mem copy function because this is X86. */
1101         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1102         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1103                                                       user_data, length);
1104         io_mapping_unmap_atomic(vaddr);
1105         if (unwritten) {
1106                 vaddr = (void __force *)
1107                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1108                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1109                 io_mapping_unmap(vaddr);
1110         }
1111
1112         return unwritten;
1113 }
1114
1115 /**
1116  * This is the fast pwrite path, where we copy the data directly from the
1117  * user into the GTT, uncached.
1118  * @obj: i915 GEM object
1119  * @args: pwrite arguments structure
1120  */
1121 static int
1122 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1123                          const struct drm_i915_gem_pwrite *args)
1124 {
1125         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1126         struct i915_ggtt *ggtt = &i915->ggtt;
1127         struct drm_mm_node node;
1128         struct i915_vma *vma;
1129         u64 remain, offset;
1130         void __user *user_data;
1131         int ret;
1132
1133         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1134         if (ret)
1135                 return ret;
1136
1137         intel_runtime_pm_get(i915);
1138         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1139                                        PIN_MAPPABLE | PIN_NONBLOCK);
1140         if (!IS_ERR(vma)) {
1141                 node.start = i915_ggtt_offset(vma);
1142                 node.allocated = false;
1143                 ret = i915_vma_put_fence(vma);
1144                 if (ret) {
1145                         i915_vma_unpin(vma);
1146                         vma = ERR_PTR(ret);
1147                 }
1148         }
1149         if (IS_ERR(vma)) {
1150                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1151                 if (ret)
1152                         goto out_unlock;
1153                 GEM_BUG_ON(!node.allocated);
1154         }
1155
1156         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1157         if (ret)
1158                 goto out_unpin;
1159
1160         mutex_unlock(&i915->drm.struct_mutex);
1161
1162         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1163
1164         user_data = u64_to_user_ptr(args->data_ptr);
1165         offset = args->offset;
1166         remain = args->size;
1167         while (remain) {
1168                 /* Operation in this page
1169                  *
1170                  * page_base = page offset within aperture
1171                  * page_offset = offset within page
1172                  * page_length = bytes to copy for this page
1173                  */
1174                 u32 page_base = node.start;
1175                 unsigned int page_offset = offset_in_page(offset);
1176                 unsigned int page_length = PAGE_SIZE - page_offset;
1177                 page_length = remain < page_length ? remain : page_length;
1178                 if (node.allocated) {
1179                         wmb(); /* flush the write before we modify the GGTT */
1180                         ggtt->base.insert_page(&ggtt->base,
1181                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1182                                                node.start, I915_CACHE_NONE, 0);
1183                         wmb(); /* flush modifications to the GGTT (insert_page) */
1184                 } else {
1185                         page_base += offset & PAGE_MASK;
1186                 }
1187                 /* If we get a fault while copying data, then (presumably) our
1188                  * source page isn't available.  Return the error and we'll
1189                  * retry in the slow path.
1190                  * If the object is non-shmem backed, we retry again with the
1191                  * path that handles page fault.
1192                  */
1193                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1194                                user_data, page_length)) {
1195                         ret = -EFAULT;
1196                         break;
1197                 }
1198
1199                 remain -= page_length;
1200                 user_data += page_length;
1201                 offset += page_length;
1202         }
1203         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1204
1205         mutex_lock(&i915->drm.struct_mutex);
1206 out_unpin:
1207         if (node.allocated) {
1208                 wmb();
1209                 ggtt->base.clear_range(&ggtt->base,
1210                                        node.start, node.size);
1211                 remove_mappable_node(&node);
1212         } else {
1213                 i915_vma_unpin(vma);
1214         }
1215 out_unlock:
1216         intel_runtime_pm_put(i915);
1217         mutex_unlock(&i915->drm.struct_mutex);
1218         return ret;
1219 }
1220
1221 static int
1222 shmem_pwrite_slow(struct page *page, int offset, int length,
1223                   char __user *user_data,
1224                   bool page_do_bit17_swizzling,
1225                   bool needs_clflush_before,
1226                   bool needs_clflush_after)
1227 {
1228         char *vaddr;
1229         int ret;
1230
1231         vaddr = kmap(page);
1232         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1233                 shmem_clflush_swizzled_range(vaddr + offset, length,
1234                                              page_do_bit17_swizzling);
1235         if (page_do_bit17_swizzling)
1236                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1237                                                 length);
1238         else
1239                 ret = __copy_from_user(vaddr + offset, user_data, length);
1240         if (needs_clflush_after)
1241                 shmem_clflush_swizzled_range(vaddr + offset, length,
1242                                              page_do_bit17_swizzling);
1243         kunmap(page);
1244
1245         return ret ? -EFAULT : 0;
1246 }
1247
1248 /* Per-page copy function for the shmem pwrite fastpath.
1249  * Flushes invalid cachelines before writing to the target if
1250  * needs_clflush_before is set and flushes out any written cachelines after
1251  * writing if needs_clflush is set.
1252  */
1253 static int
1254 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1255              bool page_do_bit17_swizzling,
1256              bool needs_clflush_before,
1257              bool needs_clflush_after)
1258 {
1259         int ret;
1260
1261         ret = -ENODEV;
1262         if (!page_do_bit17_swizzling) {
1263                 char *vaddr = kmap_atomic(page);
1264
1265                 if (needs_clflush_before)
1266                         drm_clflush_virt_range(vaddr + offset, len);
1267                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1268                 if (needs_clflush_after)
1269                         drm_clflush_virt_range(vaddr + offset, len);
1270
1271                 kunmap_atomic(vaddr);
1272         }
1273         if (ret == 0)
1274                 return ret;
1275
1276         return shmem_pwrite_slow(page, offset, len, user_data,
1277                                  page_do_bit17_swizzling,
1278                                  needs_clflush_before,
1279                                  needs_clflush_after);
1280 }
1281
1282 static int
1283 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1284                       const struct drm_i915_gem_pwrite *args)
1285 {
1286         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1287         void __user *user_data;
1288         u64 remain;
1289         unsigned int obj_do_bit17_swizzling;
1290         unsigned int partial_cacheline_write;
1291         unsigned int needs_clflush;
1292         unsigned int offset, idx;
1293         int ret;
1294
1295         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1296         if (ret)
1297                 return ret;
1298
1299         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1300         mutex_unlock(&i915->drm.struct_mutex);
1301         if (ret)
1302                 return ret;
1303
1304         obj_do_bit17_swizzling = 0;
1305         if (i915_gem_object_needs_bit17_swizzle(obj))
1306                 obj_do_bit17_swizzling = BIT(17);
1307
1308         /* If we don't overwrite a cacheline completely we need to be
1309          * careful to have up-to-date data by first clflushing. Don't
1310          * overcomplicate things and flush the entire patch.
1311          */
1312         partial_cacheline_write = 0;
1313         if (needs_clflush & CLFLUSH_BEFORE)
1314                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1315
1316         user_data = u64_to_user_ptr(args->data_ptr);
1317         remain = args->size;
1318         offset = offset_in_page(args->offset);
1319         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1320                 struct page *page = i915_gem_object_get_page(obj, idx);
1321                 int length;
1322
1323                 length = remain;
1324                 if (offset + length > PAGE_SIZE)
1325                         length = PAGE_SIZE - offset;
1326
1327                 ret = shmem_pwrite(page, offset, length, user_data,
1328                                    page_to_phys(page) & obj_do_bit17_swizzling,
1329                                    (offset | length) & partial_cacheline_write,
1330                                    needs_clflush & CLFLUSH_AFTER);
1331                 if (ret)
1332                         break;
1333
1334                 remain -= length;
1335                 user_data += length;
1336                 offset = 0;
1337         }
1338
1339         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1340         i915_gem_obj_finish_shmem_access(obj);
1341         return ret;
1342 }
1343
1344 /**
1345  * Writes data to the object referenced by handle.
1346  * @dev: drm device
1347  * @data: ioctl data blob
1348  * @file: drm file
1349  *
1350  * On error, the contents of the buffer that were to be modified are undefined.
1351  */
1352 int
1353 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1354                       struct drm_file *file)
1355 {
1356         struct drm_i915_gem_pwrite *args = data;
1357         struct drm_i915_gem_object *obj;
1358         int ret;
1359
1360         if (args->size == 0)
1361                 return 0;
1362
1363         if (!access_ok(VERIFY_READ,
1364                        u64_to_user_ptr(args->data_ptr),
1365                        args->size))
1366                 return -EFAULT;
1367
1368         obj = i915_gem_object_lookup(file, args->handle);
1369         if (!obj)
1370                 return -ENOENT;
1371
1372         /* Bounds check destination. */
1373         if (args->offset > obj->base.size ||
1374             args->size > obj->base.size - args->offset) {
1375                 ret = -EINVAL;
1376                 goto err;
1377         }
1378
1379         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1380
1381         ret = i915_gem_object_wait(obj,
1382                                    I915_WAIT_INTERRUPTIBLE |
1383                                    I915_WAIT_ALL,
1384                                    MAX_SCHEDULE_TIMEOUT,
1385                                    to_rps_client(file));
1386         if (ret)
1387                 goto err;
1388
1389         ret = i915_gem_object_pin_pages(obj);
1390         if (ret)
1391                 goto err;
1392
1393         ret = -EFAULT;
1394         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1395          * it would end up going through the fenced access, and we'll get
1396          * different detiling behavior between reading and writing.
1397          * pread/pwrite currently are reading and writing from the CPU
1398          * perspective, requiring manual detiling by the client.
1399          */
1400         if (!i915_gem_object_has_struct_page(obj) ||
1401             cpu_write_needs_clflush(obj))
1402                 /* Note that the gtt paths might fail with non-page-backed user
1403                  * pointers (e.g. gtt mappings when moving data between
1404                  * textures). Fallback to the shmem path in that case.
1405                  */
1406                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1407
1408         if (ret == -EFAULT || ret == -ENOSPC) {
1409                 if (obj->phys_handle)
1410                         ret = i915_gem_phys_pwrite(obj, args, file);
1411                 else
1412                         ret = i915_gem_shmem_pwrite(obj, args);
1413         }
1414
1415         i915_gem_object_unpin_pages(obj);
1416 err:
1417         i915_gem_object_put(obj);
1418         return ret;
1419 }
1420
1421 static inline enum fb_op_origin
1422 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1423 {
1424         return (domain == I915_GEM_DOMAIN_GTT ?
1425                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1426 }
1427
1428 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1429 {
1430         struct drm_i915_private *i915;
1431         struct list_head *list;
1432         struct i915_vma *vma;
1433
1434         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1435                 if (!i915_vma_is_ggtt(vma))
1436                         continue;
1437
1438                 if (i915_vma_is_active(vma))
1439                         continue;
1440
1441                 if (!drm_mm_node_allocated(&vma->node))
1442                         continue;
1443
1444                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1445         }
1446
1447         i915 = to_i915(obj->base.dev);
1448         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1449         list_move_tail(&obj->global_list, list);
1450 }
1451
1452 /**
1453  * Called when user space prepares to use an object with the CPU, either
1454  * through the mmap ioctl's mapping or a GTT mapping.
1455  * @dev: drm device
1456  * @data: ioctl data blob
1457  * @file: drm file
1458  */
1459 int
1460 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1461                           struct drm_file *file)
1462 {
1463         struct drm_i915_gem_set_domain *args = data;
1464         struct drm_i915_gem_object *obj;
1465         uint32_t read_domains = args->read_domains;
1466         uint32_t write_domain = args->write_domain;
1467         int err;
1468
1469         /* Only handle setting domains to types used by the CPU. */
1470         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1471                 return -EINVAL;
1472
1473         /* Having something in the write domain implies it's in the read
1474          * domain, and only that read domain.  Enforce that in the request.
1475          */
1476         if (write_domain != 0 && read_domains != write_domain)
1477                 return -EINVAL;
1478
1479         obj = i915_gem_object_lookup(file, args->handle);
1480         if (!obj)
1481                 return -ENOENT;
1482
1483         /* Try to flush the object off the GPU without holding the lock.
1484          * We will repeat the flush holding the lock in the normal manner
1485          * to catch cases where we are gazumped.
1486          */
1487         err = i915_gem_object_wait(obj,
1488                                    I915_WAIT_INTERRUPTIBLE |
1489                                    (write_domain ? I915_WAIT_ALL : 0),
1490                                    MAX_SCHEDULE_TIMEOUT,
1491                                    to_rps_client(file));
1492         if (err)
1493                 goto out;
1494
1495         /* Flush and acquire obj->pages so that we are coherent through
1496          * direct access in memory with previous cached writes through
1497          * shmemfs and that our cache domain tracking remains valid.
1498          * For example, if the obj->filp was moved to swap without us
1499          * being notified and releasing the pages, we would mistakenly
1500          * continue to assume that the obj remained out of the CPU cached
1501          * domain.
1502          */
1503         err = i915_gem_object_pin_pages(obj);
1504         if (err)
1505                 goto out;
1506
1507         err = i915_mutex_lock_interruptible(dev);
1508         if (err)
1509                 goto out_unpin;
1510
1511         if (read_domains & I915_GEM_DOMAIN_GTT)
1512                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1513         else
1514                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1515
1516         /* And bump the LRU for this access */
1517         i915_gem_object_bump_inactive_ggtt(obj);
1518
1519         mutex_unlock(&dev->struct_mutex);
1520
1521         if (write_domain != 0)
1522                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1523
1524 out_unpin:
1525         i915_gem_object_unpin_pages(obj);
1526 out:
1527         i915_gem_object_put(obj);
1528         return err;
1529 }
1530
1531 /**
1532  * Called when user space has done writes to this buffer
1533  * @dev: drm device
1534  * @data: ioctl data blob
1535  * @file: drm file
1536  */
1537 int
1538 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1539                          struct drm_file *file)
1540 {
1541         struct drm_i915_gem_sw_finish *args = data;
1542         struct drm_i915_gem_object *obj;
1543         int err = 0;
1544
1545         obj = i915_gem_object_lookup(file, args->handle);
1546         if (!obj)
1547                 return -ENOENT;
1548
1549         /* Pinned buffers may be scanout, so flush the cache */
1550         if (READ_ONCE(obj->pin_display)) {
1551                 err = i915_mutex_lock_interruptible(dev);
1552                 if (!err) {
1553                         i915_gem_object_flush_cpu_write_domain(obj);
1554                         mutex_unlock(&dev->struct_mutex);
1555                 }
1556         }
1557
1558         i915_gem_object_put(obj);
1559         return err;
1560 }
1561
1562 /**
1563  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1564  *                       it is mapped to.
1565  * @dev: drm device
1566  * @data: ioctl data blob
1567  * @file: drm file
1568  *
1569  * While the mapping holds a reference on the contents of the object, it doesn't
1570  * imply a ref on the object itself.
1571  *
1572  * IMPORTANT:
1573  *
1574  * DRM driver writers who look a this function as an example for how to do GEM
1575  * mmap support, please don't implement mmap support like here. The modern way
1576  * to implement DRM mmap support is with an mmap offset ioctl (like
1577  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1578  * That way debug tooling like valgrind will understand what's going on, hiding
1579  * the mmap call in a driver private ioctl will break that. The i915 driver only
1580  * does cpu mmaps this way because we didn't know better.
1581  */
1582 int
1583 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1584                     struct drm_file *file)
1585 {
1586         struct drm_i915_gem_mmap *args = data;
1587         struct drm_i915_gem_object *obj;
1588         unsigned long addr;
1589
1590         if (args->flags & ~(I915_MMAP_WC))
1591                 return -EINVAL;
1592
1593         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1594                 return -ENODEV;
1595
1596         obj = i915_gem_object_lookup(file, args->handle);
1597         if (!obj)
1598                 return -ENOENT;
1599
1600         /* prime objects have no backing filp to GEM mmap
1601          * pages from.
1602          */
1603         if (!obj->base.filp) {
1604                 i915_gem_object_put(obj);
1605                 return -EINVAL;
1606         }
1607
1608         addr = vm_mmap(obj->base.filp, 0, args->size,
1609                        PROT_READ | PROT_WRITE, MAP_SHARED,
1610                        args->offset);
1611         if (args->flags & I915_MMAP_WC) {
1612                 struct mm_struct *mm = current->mm;
1613                 struct vm_area_struct *vma;
1614
1615                 if (down_write_killable(&mm->mmap_sem)) {
1616                         i915_gem_object_put(obj);
1617                         return -EINTR;
1618                 }
1619                 vma = find_vma(mm, addr);
1620                 if (vma)
1621                         vma->vm_page_prot =
1622                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1623                 else
1624                         addr = -ENOMEM;
1625                 up_write(&mm->mmap_sem);
1626
1627                 /* This may race, but that's ok, it only gets set */
1628                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1629         }
1630         i915_gem_object_put(obj);
1631         if (IS_ERR((void *)addr))
1632                 return addr;
1633
1634         args->addr_ptr = (uint64_t) addr;
1635
1636         return 0;
1637 }
1638
1639 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1640 {
1641         u64 size;
1642
1643         size = i915_gem_object_get_stride(obj);
1644         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1645
1646         return size >> PAGE_SHIFT;
1647 }
1648
1649 /**
1650  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1651  *
1652  * A history of the GTT mmap interface:
1653  *
1654  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1655  *     aligned and suitable for fencing, and still fit into the available
1656  *     mappable space left by the pinned display objects. A classic problem
1657  *     we called the page-fault-of-doom where we would ping-pong between
1658  *     two objects that could not fit inside the GTT and so the memcpy
1659  *     would page one object in at the expense of the other between every
1660  *     single byte.
1661  *
1662  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1663  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1664  *     object is too large for the available space (or simply too large
1665  *     for the mappable aperture!), a view is created instead and faulted
1666  *     into userspace. (This view is aligned and sized appropriately for
1667  *     fenced access.)
1668  *
1669  * Restrictions:
1670  *
1671  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1672  *    hangs on some architectures, corruption on others. An attempt to service
1673  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1674  *
1675  *  * the object must be able to fit into RAM (physical memory, though no
1676  *    limited to the mappable aperture).
1677  *
1678  *
1679  * Caveats:
1680  *
1681  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1682  *    all data to system memory. Subsequent access will not be synchronized.
1683  *
1684  *  * all mappings are revoked on runtime device suspend.
1685  *
1686  *  * there are only 8, 16 or 32 fence registers to share between all users
1687  *    (older machines require fence register for display and blitter access
1688  *    as well). Contention of the fence registers will cause the previous users
1689  *    to be unmapped and any new access will generate new page faults.
1690  *
1691  *  * running out of memory while servicing a fault may generate a SIGBUS,
1692  *    rather than the expected SIGSEGV.
1693  */
1694 int i915_gem_mmap_gtt_version(void)
1695 {
1696         return 1;
1697 }
1698
1699 /**
1700  * i915_gem_fault - fault a page into the GTT
1701  * @area: CPU VMA in question
1702  * @vmf: fault info
1703  *
1704  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1705  * from userspace.  The fault handler takes care of binding the object to
1706  * the GTT (if needed), allocating and programming a fence register (again,
1707  * only if needed based on whether the old reg is still valid or the object
1708  * is tiled) and inserting a new PTE into the faulting process.
1709  *
1710  * Note that the faulting process may involve evicting existing objects
1711  * from the GTT and/or fence registers to make room.  So performance may
1712  * suffer if the GTT working set is large or there are few fence registers
1713  * left.
1714  *
1715  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1716  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1717  */
1718 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1719 {
1720 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1721         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1722         struct drm_device *dev = obj->base.dev;
1723         struct drm_i915_private *dev_priv = to_i915(dev);
1724         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1725         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1726         struct i915_vma *vma;
1727         pgoff_t page_offset;
1728         unsigned int flags;
1729         int ret;
1730
1731         /* We don't use vmf->pgoff since that has the fake offset */
1732         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1733                 PAGE_SHIFT;
1734
1735         trace_i915_gem_object_fault(obj, page_offset, true, write);
1736
1737         /* Try to flush the object off the GPU first without holding the lock.
1738          * Upon acquiring the lock, we will perform our sanity checks and then
1739          * repeat the flush holding the lock in the normal manner to catch cases
1740          * where we are gazumped.
1741          */
1742         ret = i915_gem_object_wait(obj,
1743                                    I915_WAIT_INTERRUPTIBLE,
1744                                    MAX_SCHEDULE_TIMEOUT,
1745                                    NULL);
1746         if (ret)
1747                 goto err;
1748
1749         ret = i915_gem_object_pin_pages(obj);
1750         if (ret)
1751                 goto err;
1752
1753         intel_runtime_pm_get(dev_priv);
1754
1755         ret = i915_mutex_lock_interruptible(dev);
1756         if (ret)
1757                 goto err_rpm;
1758
1759         /* Access to snoopable pages through the GTT is incoherent. */
1760         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1761                 ret = -EFAULT;
1762                 goto err_unlock;
1763         }
1764
1765         /* If the object is smaller than a couple of partial vma, it is
1766          * not worth only creating a single partial vma - we may as well
1767          * clear enough space for the full object.
1768          */
1769         flags = PIN_MAPPABLE;
1770         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1771                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1772
1773         /* Now pin it into the GTT as needed */
1774         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1775         if (IS_ERR(vma)) {
1776                 struct i915_ggtt_view view;
1777                 unsigned int chunk_size;
1778
1779                 /* Use a partial view if it is bigger than available space */
1780                 chunk_size = MIN_CHUNK_PAGES;
1781                 if (i915_gem_object_is_tiled(obj))
1782                         chunk_size = max(chunk_size, tile_row_pages(obj));
1783
1784                 memset(&view, 0, sizeof(view));
1785                 view.type = I915_GGTT_VIEW_PARTIAL;
1786                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787                 view.params.partial.size =
1788                         min_t(unsigned int, chunk_size,
1789                               vma_pages(area) - view.params.partial.offset);
1790
1791                 /* If the partial covers the entire object, just create a
1792                  * normal VMA.
1793                  */
1794                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1795                         view.type = I915_GGTT_VIEW_NORMAL;
1796
1797                 /* Userspace is now writing through an untracked VMA, abandon
1798                  * all hope that the hardware is able to track future writes.
1799                  */
1800                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1801
1802                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1803         }
1804         if (IS_ERR(vma)) {
1805                 ret = PTR_ERR(vma);
1806                 goto err_unlock;
1807         }
1808
1809         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1810         if (ret)
1811                 goto err_unpin;
1812
1813         ret = i915_vma_get_fence(vma);
1814         if (ret)
1815                 goto err_unpin;
1816
1817         /* Mark as being mmapped into userspace for later revocation */
1818         assert_rpm_wakelock_held(dev_priv);
1819         if (list_empty(&obj->userfault_link))
1820                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1821
1822         /* Finally, remap it using the new GTT offset */
1823         ret = remap_io_mapping(area,
1824                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1825                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1826                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1827                                &ggtt->mappable);
1828
1829 err_unpin:
1830         __i915_vma_unpin(vma);
1831 err_unlock:
1832         mutex_unlock(&dev->struct_mutex);
1833 err_rpm:
1834         intel_runtime_pm_put(dev_priv);
1835         i915_gem_object_unpin_pages(obj);
1836 err:
1837         switch (ret) {
1838         case -EIO:
1839                 /*
1840                  * We eat errors when the gpu is terminally wedged to avoid
1841                  * userspace unduly crashing (gl has no provisions for mmaps to
1842                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1843                  * and so needs to be reported.
1844                  */
1845                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1846                         ret = VM_FAULT_SIGBUS;
1847                         break;
1848                 }
1849         case -EAGAIN:
1850                 /*
1851                  * EAGAIN means the gpu is hung and we'll wait for the error
1852                  * handler to reset everything when re-faulting in
1853                  * i915_mutex_lock_interruptible.
1854                  */
1855         case 0:
1856         case -ERESTARTSYS:
1857         case -EINTR:
1858         case -EBUSY:
1859                 /*
1860                  * EBUSY is ok: this just means that another thread
1861                  * already did the job.
1862                  */
1863                 ret = VM_FAULT_NOPAGE;
1864                 break;
1865         case -ENOMEM:
1866                 ret = VM_FAULT_OOM;
1867                 break;
1868         case -ENOSPC:
1869         case -EFAULT:
1870                 ret = VM_FAULT_SIGBUS;
1871                 break;
1872         default:
1873                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1874                 ret = VM_FAULT_SIGBUS;
1875                 break;
1876         }
1877         return ret;
1878 }
1879
1880 /**
1881  * i915_gem_release_mmap - remove physical page mappings
1882  * @obj: obj in question
1883  *
1884  * Preserve the reservation of the mmapping with the DRM core code, but
1885  * relinquish ownership of the pages back to the system.
1886  *
1887  * It is vital that we remove the page mapping if we have mapped a tiled
1888  * object through the GTT and then lose the fence register due to
1889  * resource pressure. Similarly if the object has been moved out of the
1890  * aperture, than pages mapped into userspace must be revoked. Removing the
1891  * mapping will then trigger a page fault on the next user access, allowing
1892  * fixup by i915_gem_fault().
1893  */
1894 void
1895 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1896 {
1897         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1898
1899         /* Serialisation between user GTT access and our code depends upon
1900          * revoking the CPU's PTE whilst the mutex is held. The next user
1901          * pagefault then has to wait until we release the mutex.
1902          *
1903          * Note that RPM complicates somewhat by adding an additional
1904          * requirement that operations to the GGTT be made holding the RPM
1905          * wakeref.
1906          */
1907         lockdep_assert_held(&i915->drm.struct_mutex);
1908         intel_runtime_pm_get(i915);
1909
1910         if (list_empty(&obj->userfault_link))
1911                 goto out;
1912
1913         list_del_init(&obj->userfault_link);
1914         drm_vma_node_unmap(&obj->base.vma_node,
1915                            obj->base.dev->anon_inode->i_mapping);
1916
1917         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1918          * memory transactions from userspace before we return. The TLB
1919          * flushing implied above by changing the PTE above *should* be
1920          * sufficient, an extra barrier here just provides us with a bit
1921          * of paranoid documentation about our requirement to serialise
1922          * memory writes before touching registers / GSM.
1923          */
1924         wmb();
1925
1926 out:
1927         intel_runtime_pm_put(i915);
1928 }
1929
1930 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1931 {
1932         struct drm_i915_gem_object *obj, *on;
1933         int i;
1934
1935         /*
1936          * Only called during RPM suspend. All users of the userfault_list
1937          * must be holding an RPM wakeref to ensure that this can not
1938          * run concurrently with themselves (and use the struct_mutex for
1939          * protection between themselves).
1940          */
1941
1942         list_for_each_entry_safe(obj, on,
1943                                  &dev_priv->mm.userfault_list, userfault_link) {
1944                 list_del_init(&obj->userfault_link);
1945                 drm_vma_node_unmap(&obj->base.vma_node,
1946                                    obj->base.dev->anon_inode->i_mapping);
1947         }
1948
1949         /* The fence will be lost when the device powers down. If any were
1950          * in use by hardware (i.e. they are pinned), we should not be powering
1951          * down! All other fences will be reacquired by the user upon waking.
1952          */
1953         for (i = 0; i < dev_priv->num_fence_regs; i++) {
1954                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1955
1956                 if (WARN_ON(reg->pin_count))
1957                         continue;
1958
1959                 if (!reg->vma)
1960                         continue;
1961
1962                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
1963                 reg->dirty = true;
1964         }
1965 }
1966
1967 /**
1968  * i915_gem_get_ggtt_size - return required global GTT size for an object
1969  * @dev_priv: i915 device
1970  * @size: object size
1971  * @tiling_mode: tiling mode
1972  *
1973  * Return the required global GTT size for an object, taking into account
1974  * potential fence register mapping.
1975  */
1976 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1977                            u64 size, int tiling_mode)
1978 {
1979         u64 ggtt_size;
1980
1981         GEM_BUG_ON(size == 0);
1982
1983         if (INTEL_GEN(dev_priv) >= 4 ||
1984             tiling_mode == I915_TILING_NONE)
1985                 return size;
1986
1987         /* Previous chips need a power-of-two fence region when tiling */
1988         if (IS_GEN3(dev_priv))
1989                 ggtt_size = 1024*1024;
1990         else
1991                 ggtt_size = 512*1024;
1992
1993         while (ggtt_size < size)
1994                 ggtt_size <<= 1;
1995
1996         return ggtt_size;
1997 }
1998
1999 /**
2000  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2001  * @dev_priv: i915 device
2002  * @size: object size
2003  * @tiling_mode: tiling mode
2004  * @fenced: is fenced alignment required or not
2005  *
2006  * Return the required global GTT alignment for an object, taking into account
2007  * potential fence register mapping.
2008  */
2009 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2010                                 int tiling_mode, bool fenced)
2011 {
2012         GEM_BUG_ON(size == 0);
2013
2014         /*
2015          * Minimum alignment is 4k (GTT page size), but might be greater
2016          * if a fence register is needed for the object.
2017          */
2018         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2019             tiling_mode == I915_TILING_NONE)
2020                 return 4096;
2021
2022         /*
2023          * Previous chips need to be aligned to the size of the smallest
2024          * fence register that can contain the object.
2025          */
2026         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2027 }
2028
2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2032         int err;
2033
2034         err = drm_gem_create_mmap_offset(&obj->base);
2035         if (!err)
2036                 return 0;
2037
2038         /* We can idle the GPU locklessly to flush stale objects, but in order
2039          * to claim that space for ourselves, we need to take the big
2040          * struct_mutex to free the requests+objects and allocate our slot.
2041          */
2042         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2043         if (err)
2044                 return err;
2045
2046         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2047         if (!err) {
2048                 i915_gem_retire_requests(dev_priv);
2049                 err = drm_gem_create_mmap_offset(&obj->base);
2050                 mutex_unlock(&dev_priv->drm.struct_mutex);
2051         }
2052
2053         return err;
2054 }
2055
2056 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2057 {
2058         drm_gem_free_mmap_offset(&obj->base);
2059 }
2060
2061 int
2062 i915_gem_mmap_gtt(struct drm_file *file,
2063                   struct drm_device *dev,
2064                   uint32_t handle,
2065                   uint64_t *offset)
2066 {
2067         struct drm_i915_gem_object *obj;
2068         int ret;
2069
2070         obj = i915_gem_object_lookup(file, handle);
2071         if (!obj)
2072                 return -ENOENT;
2073
2074         ret = i915_gem_object_create_mmap_offset(obj);
2075         if (ret == 0)
2076                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2077
2078         i915_gem_object_put(obj);
2079         return ret;
2080 }
2081
2082 /**
2083  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2084  * @dev: DRM device
2085  * @data: GTT mapping ioctl data
2086  * @file: GEM object info
2087  *
2088  * Simply returns the fake offset to userspace so it can mmap it.
2089  * The mmap call will end up in drm_gem_mmap(), which will set things
2090  * up so we can get faults in the handler above.
2091  *
2092  * The fault handler will take care of binding the object into the GTT
2093  * (since it may have been evicted to make room for something), allocating
2094  * a fence register, and mapping the appropriate aperture address into
2095  * userspace.
2096  */
2097 int
2098 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2099                         struct drm_file *file)
2100 {
2101         struct drm_i915_gem_mmap_gtt *args = data;
2102
2103         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2104 }
2105
2106 /* Immediately discard the backing storage */
2107 static void
2108 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2109 {
2110         i915_gem_object_free_mmap_offset(obj);
2111
2112         if (obj->base.filp == NULL)
2113                 return;
2114
2115         /* Our goal here is to return as much of the memory as
2116          * is possible back to the system as we are called from OOM.
2117          * To do this we must instruct the shmfs to drop all of its
2118          * backing pages, *now*.
2119          */
2120         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2121         obj->mm.madv = __I915_MADV_PURGED;
2122 }
2123
2124 /* Try to discard unwanted pages */
2125 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2126 {
2127         struct address_space *mapping;
2128
2129         lockdep_assert_held(&obj->mm.lock);
2130         GEM_BUG_ON(obj->mm.pages);
2131
2132         switch (obj->mm.madv) {
2133         case I915_MADV_DONTNEED:
2134                 i915_gem_object_truncate(obj);
2135         case __I915_MADV_PURGED:
2136                 return;
2137         }
2138
2139         if (obj->base.filp == NULL)
2140                 return;
2141
2142         mapping = obj->base.filp->f_mapping,
2143         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 }
2145
2146 static void
2147 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2148                               struct sg_table *pages)
2149 {
2150         struct sgt_iter sgt_iter;
2151         struct page *page;
2152
2153         __i915_gem_object_release_shmem(obj);
2154
2155         i915_gem_gtt_finish_pages(obj, pages);
2156
2157         if (i915_gem_object_needs_bit17_swizzle(obj))
2158                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2159
2160         for_each_sgt_page(page, sgt_iter, pages) {
2161                 if (obj->mm.dirty)
2162                         set_page_dirty(page);
2163
2164                 if (obj->mm.madv == I915_MADV_WILLNEED)
2165                         mark_page_accessed(page);
2166
2167                 put_page(page);
2168         }
2169         obj->mm.dirty = false;
2170
2171         sg_free_table(pages);
2172         kfree(pages);
2173 }
2174
2175 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2176 {
2177         struct radix_tree_iter iter;
2178         void **slot;
2179
2180         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2181                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2182 }
2183
2184 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2185 {
2186         struct sg_table *pages;
2187
2188         if (i915_gem_object_has_pinned_pages(obj))
2189                 return;
2190
2191         GEM_BUG_ON(obj->bind_count);
2192         if (!READ_ONCE(obj->mm.pages))
2193                 return;
2194
2195         /* May be called by shrinker from within get_pages() (on another bo) */
2196         mutex_lock_nested(&obj->mm.lock, SINGLE_DEPTH_NESTING);
2197         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2198                 goto unlock;
2199
2200         /* ->put_pages might need to allocate memory for the bit17 swizzle
2201          * array, hence protect them from being reaped by removing them from gtt
2202          * lists early. */
2203         pages = fetch_and_zero(&obj->mm.pages);
2204         GEM_BUG_ON(!pages);
2205
2206         if (obj->mm.mapping) {
2207                 void *ptr;
2208
2209                 ptr = ptr_mask_bits(obj->mm.mapping);
2210                 if (is_vmalloc_addr(ptr))
2211                         vunmap(ptr);
2212                 else
2213                         kunmap(kmap_to_page(ptr));
2214
2215                 obj->mm.mapping = NULL;
2216         }
2217
2218         __i915_gem_object_reset_page_iter(obj);
2219
2220         obj->ops->put_pages(obj, pages);
2221 unlock:
2222         mutex_unlock(&obj->mm.lock);
2223 }
2224
2225 static unsigned int swiotlb_max_size(void)
2226 {
2227 #if IS_ENABLED(CONFIG_SWIOTLB)
2228         return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2229 #else
2230         return 0;
2231 #endif
2232 }
2233
2234 static struct sg_table *
2235 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2236 {
2237         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2238         int page_count, i;
2239         struct address_space *mapping;
2240         struct sg_table *st;
2241         struct scatterlist *sg;
2242         struct sgt_iter sgt_iter;
2243         struct page *page;
2244         unsigned long last_pfn = 0;     /* suppress gcc warning */
2245         unsigned int max_segment;
2246         int ret;
2247         gfp_t gfp;
2248
2249         /* Assert that the object is not currently in any GPU domain. As it
2250          * wasn't in the GTT, there shouldn't be any way it could have been in
2251          * a GPU cache
2252          */
2253         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2254         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2255
2256         max_segment = swiotlb_max_size();
2257         if (!max_segment)
2258                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2259
2260         st = kmalloc(sizeof(*st), GFP_KERNEL);
2261         if (st == NULL)
2262                 return ERR_PTR(-ENOMEM);
2263
2264         page_count = obj->base.size / PAGE_SIZE;
2265         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2266                 kfree(st);
2267                 return ERR_PTR(-ENOMEM);
2268         }
2269
2270         /* Get the list of pages out of our struct file.  They'll be pinned
2271          * at this point until we release them.
2272          *
2273          * Fail silently without starting the shrinker
2274          */
2275         mapping = obj->base.filp->f_mapping;
2276         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2277         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2278         sg = st->sgl;
2279         st->nents = 0;
2280         for (i = 0; i < page_count; i++) {
2281                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2282                 if (IS_ERR(page)) {
2283                         i915_gem_shrink(dev_priv,
2284                                         page_count,
2285                                         I915_SHRINK_BOUND |
2286                                         I915_SHRINK_UNBOUND |
2287                                         I915_SHRINK_PURGEABLE);
2288                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2289                 }
2290                 if (IS_ERR(page)) {
2291                         /* We've tried hard to allocate the memory by reaping
2292                          * our own buffer, now let the real VM do its job and
2293                          * go down in flames if truly OOM.
2294                          */
2295                         page = shmem_read_mapping_page(mapping, i);
2296                         if (IS_ERR(page)) {
2297                                 ret = PTR_ERR(page);
2298                                 goto err_pages;
2299                         }
2300                 }
2301                 if (!i ||
2302                     sg->length >= max_segment ||
2303                     page_to_pfn(page) != last_pfn + 1) {
2304                         if (i)
2305                                 sg = sg_next(sg);
2306                         st->nents++;
2307                         sg_set_page(sg, page, PAGE_SIZE, 0);
2308                 } else {
2309                         sg->length += PAGE_SIZE;
2310                 }
2311                 last_pfn = page_to_pfn(page);
2312
2313                 /* Check that the i965g/gm workaround works. */
2314                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2315         }
2316         if (sg) /* loop terminated early; short sg table */
2317                 sg_mark_end(sg);
2318
2319         ret = i915_gem_gtt_prepare_pages(obj, st);
2320         if (ret)
2321                 goto err_pages;
2322
2323         if (i915_gem_object_needs_bit17_swizzle(obj))
2324                 i915_gem_object_do_bit_17_swizzle(obj, st);
2325
2326         if (i915_gem_object_is_tiled(obj) &&
2327             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2328                 __i915_gem_object_pin_pages(obj);
2329
2330         return st;
2331
2332 err_pages:
2333         sg_mark_end(sg);
2334         for_each_sgt_page(page, sgt_iter, st)
2335                 put_page(page);
2336         sg_free_table(st);
2337         kfree(st);
2338
2339         /* shmemfs first checks if there is enough memory to allocate the page
2340          * and reports ENOSPC should there be insufficient, along with the usual
2341          * ENOMEM for a genuine allocation failure.
2342          *
2343          * We use ENOSPC in our driver to mean that we have run out of aperture
2344          * space and so want to translate the error from shmemfs back to our
2345          * usual understanding of ENOMEM.
2346          */
2347         if (ret == -ENOSPC)
2348                 ret = -ENOMEM;
2349
2350         return ERR_PTR(ret);
2351 }
2352
2353 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2354                                  struct sg_table *pages)
2355 {
2356         lockdep_assert_held(&obj->mm.lock);
2357
2358         obj->mm.get_page.sg_pos = pages->sgl;
2359         obj->mm.get_page.sg_idx = 0;
2360
2361         obj->mm.pages = pages;
2362 }
2363
2364 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2365 {
2366         struct sg_table *pages;
2367
2368         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2369                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2370                 return -EFAULT;
2371         }
2372
2373         pages = obj->ops->get_pages(obj);
2374         if (unlikely(IS_ERR(pages)))
2375                 return PTR_ERR(pages);
2376
2377         __i915_gem_object_set_pages(obj, pages);
2378         return 0;
2379 }
2380
2381 /* Ensure that the associated pages are gathered from the backing storage
2382  * and pinned into our object. i915_gem_object_pin_pages() may be called
2383  * multiple times before they are released by a single call to
2384  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2385  * either as a result of memory pressure (reaping pages under the shrinker)
2386  * or as the object is itself released.
2387  */
2388 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2389 {
2390         int err;
2391
2392         err = mutex_lock_interruptible(&obj->mm.lock);
2393         if (err)
2394                 return err;
2395
2396         if (likely(obj->mm.pages)) {
2397                 __i915_gem_object_pin_pages(obj);
2398                 goto unlock;
2399         }
2400
2401         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2402
2403         err = ____i915_gem_object_get_pages(obj);
2404         if (!err)
2405                 atomic_set_release(&obj->mm.pages_pin_count, 1);
2406
2407 unlock:
2408         mutex_unlock(&obj->mm.lock);
2409         return err;
2410 }
2411
2412 /* The 'mapping' part of i915_gem_object_pin_map() below */
2413 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2414                                  enum i915_map_type type)
2415 {
2416         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2417         struct sg_table *sgt = obj->mm.pages;
2418         struct sgt_iter sgt_iter;
2419         struct page *page;
2420         struct page *stack_pages[32];
2421         struct page **pages = stack_pages;
2422         unsigned long i = 0;
2423         pgprot_t pgprot;
2424         void *addr;
2425
2426         /* A single page can always be kmapped */
2427         if (n_pages == 1 && type == I915_MAP_WB)
2428                 return kmap(sg_page(sgt->sgl));
2429
2430         if (n_pages > ARRAY_SIZE(stack_pages)) {
2431                 /* Too big for stack -- allocate temporary array instead */
2432                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2433                 if (!pages)
2434                         return NULL;
2435         }
2436
2437         for_each_sgt_page(page, sgt_iter, sgt)
2438                 pages[i++] = page;
2439
2440         /* Check that we have the expected number of pages */
2441         GEM_BUG_ON(i != n_pages);
2442
2443         switch (type) {
2444         case I915_MAP_WB:
2445                 pgprot = PAGE_KERNEL;
2446                 break;
2447         case I915_MAP_WC:
2448                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2449                 break;
2450         }
2451         addr = vmap(pages, n_pages, 0, pgprot);
2452
2453         if (pages != stack_pages)
2454                 drm_free_large(pages);
2455
2456         return addr;
2457 }
2458
2459 /* get, pin, and map the pages of the object into kernel space */
2460 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2461                               enum i915_map_type type)
2462 {
2463         enum i915_map_type has_type;
2464         bool pinned;
2465         void *ptr;
2466         int ret;
2467
2468         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2469
2470         ret = mutex_lock_interruptible(&obj->mm.lock);
2471         if (ret)
2472                 return ERR_PTR(ret);
2473
2474         pinned = true;
2475         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2476                 ret = ____i915_gem_object_get_pages(obj);
2477                 if (ret)
2478                         goto err_unlock;
2479
2480                 GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count));
2481                 atomic_set_release(&obj->mm.pages_pin_count, 1);
2482                 pinned = false;
2483         }
2484         GEM_BUG_ON(!obj->mm.pages);
2485
2486         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2487         if (ptr && has_type != type) {
2488                 if (pinned) {
2489                         ret = -EBUSY;
2490                         goto err_unpin;
2491                 }
2492
2493                 if (is_vmalloc_addr(ptr))
2494                         vunmap(ptr);
2495                 else
2496                         kunmap(kmap_to_page(ptr));
2497
2498                 ptr = obj->mm.mapping = NULL;
2499         }
2500
2501         if (!ptr) {
2502                 ptr = i915_gem_object_map(obj, type);
2503                 if (!ptr) {
2504                         ret = -ENOMEM;
2505                         goto err_unpin;
2506                 }
2507
2508                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2509         }
2510
2511 out_unlock:
2512         mutex_unlock(&obj->mm.lock);
2513         return ptr;
2514
2515 err_unpin:
2516         atomic_dec(&obj->mm.pages_pin_count);
2517 err_unlock:
2518         ptr = ERR_PTR(ret);
2519         goto out_unlock;
2520 }
2521
2522 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2523 {
2524         unsigned long elapsed;
2525
2526         if (ctx->hang_stats.banned)
2527                 return true;
2528
2529         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2530         if (ctx->hang_stats.ban_period_seconds &&
2531             elapsed <= ctx->hang_stats.ban_period_seconds) {
2532                 DRM_DEBUG("context hanging too fast, banning!\n");
2533                 return true;
2534         }
2535
2536         return false;
2537 }
2538
2539 static void i915_set_reset_status(struct i915_gem_context *ctx,
2540                                   const bool guilty)
2541 {
2542         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2543
2544         if (guilty) {
2545                 hs->banned = i915_context_is_banned(ctx);
2546                 hs->batch_active++;
2547                 hs->guilty_ts = get_seconds();
2548         } else {
2549                 hs->batch_pending++;
2550         }
2551 }
2552
2553 struct drm_i915_gem_request *
2554 i915_gem_find_active_request(struct intel_engine_cs *engine)
2555 {
2556         struct drm_i915_gem_request *request;
2557
2558         /* We are called by the error capture and reset at a random
2559          * point in time. In particular, note that neither is crucially
2560          * ordered with an interrupt. After a hang, the GPU is dead and we
2561          * assume that no more writes can happen (we waited long enough for
2562          * all writes that were in transaction to be flushed) - adding an
2563          * extra delay for a recent interrupt is pointless. Hence, we do
2564          * not need an engine->irq_seqno_barrier() before the seqno reads.
2565          */
2566         list_for_each_entry(request, &engine->timeline->requests, link) {
2567                 if (__i915_gem_request_completed(request))
2568                         continue;
2569
2570                 return request;
2571         }
2572
2573         return NULL;
2574 }
2575
2576 static void reset_request(struct drm_i915_gem_request *request)
2577 {
2578         void *vaddr = request->ring->vaddr;
2579         u32 head;
2580
2581         /* As this request likely depends on state from the lost
2582          * context, clear out all the user operations leaving the
2583          * breadcrumb at the end (so we get the fence notifications).
2584          */
2585         head = request->head;
2586         if (request->postfix < head) {
2587                 memset(vaddr + head, 0, request->ring->size - head);
2588                 head = 0;
2589         }
2590         memset(vaddr + head, 0, request->postfix - head);
2591 }
2592
2593 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2594 {
2595         struct drm_i915_gem_request *request;
2596         struct i915_gem_context *incomplete_ctx;
2597         struct intel_timeline *timeline;
2598         bool ring_hung;
2599
2600         if (engine->irq_seqno_barrier)
2601                 engine->irq_seqno_barrier(engine);
2602
2603         request = i915_gem_find_active_request(engine);
2604         if (!request)
2605                 return;
2606
2607         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2608         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2609                 ring_hung = false;
2610
2611         i915_set_reset_status(request->ctx, ring_hung);
2612         if (!ring_hung)
2613                 return;
2614
2615         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2616                          engine->name, request->global_seqno);
2617
2618         /* Setup the CS to resume from the breadcrumb of the hung request */
2619         engine->reset_hw(engine, request);
2620
2621         /* Users of the default context do not rely on logical state
2622          * preserved between batches. They have to emit full state on
2623          * every batch and so it is safe to execute queued requests following
2624          * the hang.
2625          *
2626          * Other contexts preserve state, now corrupt. We want to skip all
2627          * queued requests that reference the corrupt context.
2628          */
2629         incomplete_ctx = request->ctx;
2630         if (i915_gem_context_is_default(incomplete_ctx))
2631                 return;
2632
2633         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2634                 if (request->ctx == incomplete_ctx)
2635                         reset_request(request);
2636
2637         timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2638         list_for_each_entry(request, &timeline->requests, link)
2639                 reset_request(request);
2640 }
2641
2642 void i915_gem_reset(struct drm_i915_private *dev_priv)
2643 {
2644         struct intel_engine_cs *engine;
2645         enum intel_engine_id id;
2646
2647         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2648
2649         i915_gem_retire_requests(dev_priv);
2650
2651         for_each_engine(engine, dev_priv, id)
2652                 i915_gem_reset_engine(engine);
2653
2654         i915_gem_restore_fences(&dev_priv->drm);
2655
2656         if (dev_priv->gt.awake) {
2657                 intel_sanitize_gt_powersave(dev_priv);
2658                 intel_enable_gt_powersave(dev_priv);
2659                 if (INTEL_GEN(dev_priv) >= 6)
2660                         gen6_rps_busy(dev_priv);
2661         }
2662 }
2663
2664 static void nop_submit_request(struct drm_i915_gem_request *request)
2665 {
2666 }
2667
2668 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2669 {
2670         engine->submit_request = nop_submit_request;
2671
2672         /* Mark all pending requests as complete so that any concurrent
2673          * (lockless) lookup doesn't try and wait upon the request as we
2674          * reset it.
2675          */
2676         intel_engine_init_global_seqno(engine,
2677                                        intel_engine_last_submit(engine));
2678
2679         /*
2680          * Clear the execlists queue up before freeing the requests, as those
2681          * are the ones that keep the context and ringbuffer backing objects
2682          * pinned in place.
2683          */
2684
2685         if (i915.enable_execlists) {
2686                 spin_lock(&engine->execlist_lock);
2687                 INIT_LIST_HEAD(&engine->execlist_queue);
2688                 i915_gem_request_put(engine->execlist_port[0].request);
2689                 i915_gem_request_put(engine->execlist_port[1].request);
2690                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2691                 spin_unlock(&engine->execlist_lock);
2692         }
2693 }
2694
2695 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2696 {
2697         struct intel_engine_cs *engine;
2698         enum intel_engine_id id;
2699
2700         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2701         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2702
2703         i915_gem_context_lost(dev_priv);
2704         for_each_engine(engine, dev_priv, id)
2705                 i915_gem_cleanup_engine(engine);
2706         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2707
2708         i915_gem_retire_requests(dev_priv);
2709 }
2710
2711 static void
2712 i915_gem_retire_work_handler(struct work_struct *work)
2713 {
2714         struct drm_i915_private *dev_priv =
2715                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2716         struct drm_device *dev = &dev_priv->drm;
2717
2718         /* Come back later if the device is busy... */
2719         if (mutex_trylock(&dev->struct_mutex)) {
2720                 i915_gem_retire_requests(dev_priv);
2721                 mutex_unlock(&dev->struct_mutex);
2722         }
2723
2724         /* Keep the retire handler running until we are finally idle.
2725          * We do not need to do this test under locking as in the worst-case
2726          * we queue the retire worker once too often.
2727          */
2728         if (READ_ONCE(dev_priv->gt.awake)) {
2729                 i915_queue_hangcheck(dev_priv);
2730                 queue_delayed_work(dev_priv->wq,
2731                                    &dev_priv->gt.retire_work,
2732                                    round_jiffies_up_relative(HZ));
2733         }
2734 }
2735
2736 static void
2737 i915_gem_idle_work_handler(struct work_struct *work)
2738 {
2739         struct drm_i915_private *dev_priv =
2740                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2741         struct drm_device *dev = &dev_priv->drm;
2742         struct intel_engine_cs *engine;
2743         enum intel_engine_id id;
2744         bool rearm_hangcheck;
2745
2746         if (!READ_ONCE(dev_priv->gt.awake))
2747                 return;
2748
2749         if (READ_ONCE(dev_priv->gt.active_requests))
2750                 return;
2751
2752         rearm_hangcheck =
2753                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2754
2755         if (!mutex_trylock(&dev->struct_mutex)) {
2756                 /* Currently busy, come back later */
2757                 mod_delayed_work(dev_priv->wq,
2758                                  &dev_priv->gt.idle_work,
2759                                  msecs_to_jiffies(50));
2760                 goto out_rearm;
2761         }
2762
2763         if (dev_priv->gt.active_requests)
2764                 goto out_unlock;
2765
2766         for_each_engine(engine, dev_priv, id)
2767                 i915_gem_batch_pool_fini(&engine->batch_pool);
2768
2769         GEM_BUG_ON(!dev_priv->gt.awake);
2770         dev_priv->gt.awake = false;
2771         rearm_hangcheck = false;
2772
2773         if (INTEL_GEN(dev_priv) >= 6)
2774                 gen6_rps_idle(dev_priv);
2775         intel_runtime_pm_put(dev_priv);
2776 out_unlock:
2777         mutex_unlock(&dev->struct_mutex);
2778
2779 out_rearm:
2780         if (rearm_hangcheck) {
2781                 GEM_BUG_ON(!dev_priv->gt.awake);
2782                 i915_queue_hangcheck(dev_priv);
2783         }
2784 }
2785
2786 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2787 {
2788         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2789         struct drm_i915_file_private *fpriv = file->driver_priv;
2790         struct i915_vma *vma, *vn;
2791
2792         mutex_lock(&obj->base.dev->struct_mutex);
2793         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2794                 if (vma->vm->file == fpriv)
2795                         i915_vma_close(vma);
2796
2797         if (i915_gem_object_is_active(obj) &&
2798             !i915_gem_object_has_active_reference(obj)) {
2799                 i915_gem_object_set_active_reference(obj);
2800                 i915_gem_object_get(obj);
2801         }
2802         mutex_unlock(&obj->base.dev->struct_mutex);
2803 }
2804
2805 static unsigned long to_wait_timeout(s64 timeout_ns)
2806 {
2807         if (timeout_ns < 0)
2808                 return MAX_SCHEDULE_TIMEOUT;
2809
2810         if (timeout_ns == 0)
2811                 return 0;
2812
2813         return nsecs_to_jiffies_timeout(timeout_ns);
2814 }
2815
2816 /**
2817  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2818  * @dev: drm device pointer
2819  * @data: ioctl data blob
2820  * @file: drm file pointer
2821  *
2822  * Returns 0 if successful, else an error is returned with the remaining time in
2823  * the timeout parameter.
2824  *  -ETIME: object is still busy after timeout
2825  *  -ERESTARTSYS: signal interrupted the wait
2826  *  -ENONENT: object doesn't exist
2827  * Also possible, but rare:
2828  *  -EAGAIN: GPU wedged
2829  *  -ENOMEM: damn
2830  *  -ENODEV: Internal IRQ fail
2831  *  -E?: The add request failed
2832  *
2833  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2834  * non-zero timeout parameter the wait ioctl will wait for the given number of
2835  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2836  * without holding struct_mutex the object may become re-busied before this
2837  * function completes. A similar but shorter * race condition exists in the busy
2838  * ioctl
2839  */
2840 int
2841 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2842 {
2843         struct drm_i915_gem_wait *args = data;
2844         struct drm_i915_gem_object *obj;
2845         ktime_t start;
2846         long ret;
2847
2848         if (args->flags != 0)
2849                 return -EINVAL;
2850
2851         obj = i915_gem_object_lookup(file, args->bo_handle);
2852         if (!obj)
2853                 return -ENOENT;
2854
2855         start = ktime_get();
2856
2857         ret = i915_gem_object_wait(obj,
2858                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2859                                    to_wait_timeout(args->timeout_ns),
2860                                    to_rps_client(file));
2861
2862         if (args->timeout_ns > 0) {
2863                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2864                 if (args->timeout_ns < 0)
2865                         args->timeout_ns = 0;
2866         }
2867
2868         i915_gem_object_put(obj);
2869         return ret;
2870 }
2871
2872 static void __i915_vma_iounmap(struct i915_vma *vma)
2873 {
2874         GEM_BUG_ON(i915_vma_is_pinned(vma));
2875
2876         if (vma->iomap == NULL)
2877                 return;
2878
2879         io_mapping_unmap(vma->iomap);
2880         vma->iomap = NULL;
2881 }
2882
2883 int i915_vma_unbind(struct i915_vma *vma)
2884 {
2885         struct drm_i915_gem_object *obj = vma->obj;
2886         unsigned long active;
2887         int ret;
2888
2889         lockdep_assert_held(&obj->base.dev->struct_mutex);
2890
2891         /* First wait upon any activity as retiring the request may
2892          * have side-effects such as unpinning or even unbinding this vma.
2893          */
2894         active = i915_vma_get_active(vma);
2895         if (active) {
2896                 int idx;
2897
2898                 /* When a closed VMA is retired, it is unbound - eek.
2899                  * In order to prevent it from being recursively closed,
2900                  * take a pin on the vma so that the second unbind is
2901                  * aborted.
2902                  *
2903                  * Even more scary is that the retire callback may free
2904                  * the object (last active vma). To prevent the explosion
2905                  * we defer the actual object free to a worker that can
2906                  * only proceed once it acquires the struct_mutex (which
2907                  * we currently hold, therefore it cannot free this object
2908                  * before we are finished).
2909                  */
2910                 __i915_vma_pin(vma);
2911
2912                 for_each_active(active, idx) {
2913                         ret = i915_gem_active_retire(&vma->last_read[idx],
2914                                                    &vma->vm->dev->struct_mutex);
2915                         if (ret)
2916                                 break;
2917                 }
2918
2919                 __i915_vma_unpin(vma);
2920                 if (ret)
2921                         return ret;
2922
2923                 GEM_BUG_ON(i915_vma_is_active(vma));
2924         }
2925
2926         if (i915_vma_is_pinned(vma))
2927                 return -EBUSY;
2928
2929         if (!drm_mm_node_allocated(&vma->node))
2930                 goto destroy;
2931
2932         GEM_BUG_ON(obj->bind_count == 0);
2933         GEM_BUG_ON(!obj->mm.pages);
2934
2935         if (i915_vma_is_map_and_fenceable(vma)) {
2936                 /* release the fence reg _after_ flushing */
2937                 ret = i915_vma_put_fence(vma);
2938                 if (ret)
2939                         return ret;
2940
2941                 /* Force a pagefault for domain tracking on next user access */
2942                 i915_gem_release_mmap(obj);
2943
2944                 __i915_vma_iounmap(vma);
2945                 vma->flags &= ~I915_VMA_CAN_FENCE;
2946         }
2947
2948         if (likely(!vma->vm->closed)) {
2949                 trace_i915_vma_unbind(vma);
2950                 vma->vm->unbind_vma(vma);
2951         }
2952         vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2953
2954         drm_mm_remove_node(&vma->node);
2955         list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2956
2957         if (vma->pages != obj->mm.pages) {
2958                 GEM_BUG_ON(!vma->pages);
2959                 sg_free_table(vma->pages);
2960                 kfree(vma->pages);
2961         }
2962         vma->pages = NULL;
2963
2964         /* Since the unbound list is global, only move to that list if
2965          * no more VMAs exist. */
2966         if (--obj->bind_count == 0)
2967                 list_move_tail(&obj->global_list,
2968                                &to_i915(obj->base.dev)->mm.unbound_list);
2969
2970         /* And finally now the object is completely decoupled from this vma,
2971          * we can drop its hold on the backing storage and allow it to be
2972          * reaped by the shrinker.
2973          */
2974         i915_gem_object_unpin_pages(obj);
2975
2976 destroy:
2977         if (unlikely(i915_vma_is_closed(vma)))
2978                 i915_vma_destroy(vma);
2979
2980         return 0;
2981 }
2982
2983 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
2984 {
2985         int ret, i;
2986
2987         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
2988                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
2989                 if (ret)
2990                         return ret;
2991         }
2992
2993         return 0;
2994 }
2995
2996 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
2997 {
2998         struct i915_gem_timeline *tl;
2999         int ret;
3000
3001         list_for_each_entry(tl, &i915->gt.timelines, link) {
3002                 ret = wait_for_timeline(tl, flags);
3003                 if (ret)
3004                         return ret;
3005         }
3006
3007         return 0;
3008 }
3009
3010 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3011                                      unsigned long cache_level)
3012 {
3013         struct drm_mm_node *gtt_space = &vma->node;
3014         struct drm_mm_node *other;
3015
3016         /*
3017          * On some machines we have to be careful when putting differing types
3018          * of snoopable memory together to avoid the prefetcher crossing memory
3019          * domains and dying. During vm initialisation, we decide whether or not
3020          * these constraints apply and set the drm_mm.color_adjust
3021          * appropriately.
3022          */
3023         if (vma->vm->mm.color_adjust == NULL)
3024                 return true;
3025
3026         if (!drm_mm_node_allocated(gtt_space))
3027                 return true;
3028
3029         if (list_empty(&gtt_space->node_list))
3030                 return true;
3031
3032         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3033         if (other->allocated && !other->hole_follows && other->color != cache_level)
3034                 return false;
3035
3036         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3037         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3038                 return false;
3039
3040         return true;
3041 }
3042
3043 /**
3044  * i915_vma_insert - finds a slot for the vma in its address space
3045  * @vma: the vma
3046  * @size: requested size in bytes (can be larger than the VMA)
3047  * @alignment: required alignment
3048  * @flags: mask of PIN_* flags to use
3049  *
3050  * First we try to allocate some free space that meets the requirements for
3051  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3052  * preferrably the oldest idle entry to make room for the new VMA.
3053  *
3054  * Returns:
3055  * 0 on success, negative error code otherwise.
3056  */
3057 static int
3058 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3059 {
3060         struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3061         struct drm_i915_gem_object *obj = vma->obj;
3062         u64 start, end;
3063         int ret;
3064
3065         GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3066         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3067
3068         size = max(size, vma->size);
3069         if (flags & PIN_MAPPABLE)
3070                 size = i915_gem_get_ggtt_size(dev_priv, size,
3071                                               i915_gem_object_get_tiling(obj));
3072
3073         alignment = max(max(alignment, vma->display_alignment),
3074                         i915_gem_get_ggtt_alignment(dev_priv, size,
3075                                                     i915_gem_object_get_tiling(obj),
3076                                                     flags & PIN_MAPPABLE));
3077
3078         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3079
3080         end = vma->vm->total;
3081         if (flags & PIN_MAPPABLE)
3082                 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3083         if (flags & PIN_ZONE_4G)
3084                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3085
3086         /* If binding the object/GGTT view requires more space than the entire
3087          * aperture has, reject it early before evicting everything in a vain
3088          * attempt to find space.
3089          */
3090         if (size > end) {
3091                 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3092                           size, obj->base.size,
3093                           flags & PIN_MAPPABLE ? "mappable" : "total",
3094                           end);
3095                 return -E2BIG;
3096         }
3097
3098         ret = i915_gem_object_pin_pages(obj);
3099         if (ret)
3100                 return ret;
3101
3102         if (flags & PIN_OFFSET_FIXED) {
3103                 u64 offset = flags & PIN_OFFSET_MASK;
3104                 if (offset & (alignment - 1) || offset > end - size) {
3105                         ret = -EINVAL;
3106                         goto err_unpin;
3107                 }
3108
3109                 vma->node.start = offset;
3110                 vma->node.size = size;
3111                 vma->node.color = obj->cache_level;
3112                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3113                 if (ret) {
3114                         ret = i915_gem_evict_for_vma(vma);
3115                         if (ret == 0)
3116                                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3117                         if (ret)
3118                                 goto err_unpin;
3119                 }
3120         } else {
3121                 u32 search_flag, alloc_flag;
3122
3123                 if (flags & PIN_HIGH) {
3124                         search_flag = DRM_MM_SEARCH_BELOW;
3125                         alloc_flag = DRM_MM_CREATE_TOP;
3126                 } else {
3127                         search_flag = DRM_MM_SEARCH_DEFAULT;
3128                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3129                 }
3130
3131                 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3132                  * so we know that we always have a minimum alignment of 4096.
3133                  * The drm_mm range manager is optimised to return results
3134                  * with zero alignment, so where possible use the optimal
3135                  * path.
3136                  */
3137                 if (alignment <= 4096)
3138                         alignment = 0;
3139
3140 search_free:
3141                 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3142                                                           &vma->node,
3143                                                           size, alignment,
3144                                                           obj->cache_level,
3145                                                           start, end,
3146                                                           search_flag,
3147                                                           alloc_flag);
3148                 if (ret) {
3149                         ret = i915_gem_evict_something(vma->vm, size, alignment,
3150                                                        obj->cache_level,
3151                                                        start, end,
3152                                                        flags);
3153                         if (ret == 0)
3154                                 goto search_free;
3155
3156                         goto err_unpin;
3157                 }
3158
3159                 GEM_BUG_ON(vma->node.start < start);
3160                 GEM_BUG_ON(vma->node.start + vma->node.size > end);
3161         }
3162         GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3163
3164         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3165         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3166         obj->bind_count++;
3167
3168         return 0;
3169
3170 err_unpin:
3171         i915_gem_object_unpin_pages(obj);
3172         return ret;
3173 }
3174
3175 bool
3176 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3177                         bool force)
3178 {
3179         /* If we don't have a page list set up, then we're not pinned
3180          * to GPU, and we can ignore the cache flush because it'll happen
3181          * again at bind time.
3182          */
3183         if (!obj->mm.pages)
3184                 return false;
3185
3186         /*
3187          * Stolen memory is always coherent with the GPU as it is explicitly
3188          * marked as wc by the system, or the system is cache-coherent.
3189          */
3190         if (obj->stolen || obj->phys_handle)
3191                 return false;
3192
3193         /* If the GPU is snooping the contents of the CPU cache,
3194          * we do not need to manually clear the CPU cache lines.  However,
3195          * the caches are only snooped when the render cache is
3196          * flushed/invalidated.  As we always have to emit invalidations
3197          * and flushes when moving into and out of the RENDER domain, correct
3198          * snooping behaviour occurs naturally as the result of our domain
3199          * tracking.
3200          */
3201         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3202                 obj->cache_dirty = true;
3203                 return false;
3204         }
3205
3206         trace_i915_gem_object_clflush(obj);
3207         drm_clflush_sg(obj->mm.pages);
3208         obj->cache_dirty = false;
3209
3210         return true;
3211 }
3212
3213 /** Flushes the GTT write domain for the object if it's dirty. */
3214 static void
3215 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3216 {
3217         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3218
3219         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3220                 return;
3221
3222         /* No actual flushing is required for the GTT write domain.  Writes
3223          * to it "immediately" go to main memory as far as we know, so there's
3224          * no chipset flush.  It also doesn't land in render cache.
3225          *
3226          * However, we do have to enforce the order so that all writes through
3227          * the GTT land before any writes to the device, such as updates to
3228          * the GATT itself.
3229          *
3230          * We also have to wait a bit for the writes to land from the GTT.
3231          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3232          * timing. This issue has only been observed when switching quickly
3233          * between GTT writes and CPU reads from inside the kernel on recent hw,
3234          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3235          * system agents we cannot reproduce this behaviour).
3236          */
3237         wmb();
3238         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3239                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3240
3241         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3242
3243         obj->base.write_domain = 0;
3244         trace_i915_gem_object_change_domain(obj,
3245                                             obj->base.read_domains,
3246                                             I915_GEM_DOMAIN_GTT);
3247 }
3248
3249 /** Flushes the CPU write domain for the object if it's dirty. */
3250 static void
3251 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3252 {
3253         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3254                 return;
3255
3256         if (i915_gem_clflush_object(obj, obj->pin_display))
3257                 i915_gem_chipset_flush(to_i915(obj->base.dev));
3258
3259         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3260
3261         obj->base.write_domain = 0;
3262         trace_i915_gem_object_change_domain(obj,
3263                                             obj->base.read_domains,
3264                                             I915_GEM_DOMAIN_CPU);
3265 }
3266
3267 /**
3268  * Moves a single object to the GTT read, and possibly write domain.
3269  * @obj: object to act on
3270  * @write: ask for write access or read only
3271  *
3272  * This function returns when the move is complete, including waiting on
3273  * flushes to occur.
3274  */
3275 int
3276 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3277 {
3278         uint32_t old_write_domain, old_read_domains;
3279         int ret;
3280
3281         lockdep_assert_held(&obj->base.dev->struct_mutex);
3282
3283         ret = i915_gem_object_wait(obj,
3284                                    I915_WAIT_INTERRUPTIBLE |
3285                                    I915_WAIT_LOCKED |
3286                                    (write ? I915_WAIT_ALL : 0),
3287                                    MAX_SCHEDULE_TIMEOUT,
3288                                    NULL);
3289         if (ret)
3290                 return ret;
3291
3292         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3293                 return 0;
3294
3295         /* Flush and acquire obj->pages so that we are coherent through
3296          * direct access in memory with previous cached writes through
3297          * shmemfs and that our cache domain tracking remains valid.
3298          * For example, if the obj->filp was moved to swap without us
3299          * being notified and releasing the pages, we would mistakenly
3300          * continue to assume that the obj remained out of the CPU cached
3301          * domain.
3302          */
3303         ret = i915_gem_object_pin_pages(obj);
3304         if (ret)
3305                 return ret;
3306
3307         i915_gem_object_flush_cpu_write_domain(obj);
3308
3309         /* Serialise direct access to this object with the barriers for
3310          * coherent writes from the GPU, by effectively invalidating the
3311          * GTT domain upon first access.
3312          */
3313         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3314                 mb();
3315
3316         old_write_domain = obj->base.write_domain;
3317         old_read_domains = obj->base.read_domains;
3318
3319         /* It should now be out of any other write domains, and we can update
3320          * the domain values for our changes.
3321          */
3322         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3323         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3324         if (write) {
3325                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3326                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3327                 obj->mm.dirty = true;
3328         }
3329
3330         trace_i915_gem_object_change_domain(obj,
3331                                             old_read_domains,
3332                                             old_write_domain);
3333
3334         i915_gem_object_unpin_pages(obj);
3335         return 0;
3336 }
3337
3338 /**
3339  * Changes the cache-level of an object across all VMA.
3340  * @obj: object to act on
3341  * @cache_level: new cache level to set for the object
3342  *
3343  * After this function returns, the object will be in the new cache-level
3344  * across all GTT and the contents of the backing storage will be coherent,
3345  * with respect to the new cache-level. In order to keep the backing storage
3346  * coherent for all users, we only allow a single cache level to be set
3347  * globally on the object and prevent it from being changed whilst the
3348  * hardware is reading from the object. That is if the object is currently
3349  * on the scanout it will be set to uncached (or equivalent display
3350  * cache coherency) and all non-MOCS GPU access will also be uncached so
3351  * that all direct access to the scanout remains coherent.
3352  */
3353 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3354                                     enum i915_cache_level cache_level)
3355 {
3356         struct i915_vma *vma;
3357         int ret = 0;
3358
3359         lockdep_assert_held(&obj->base.dev->struct_mutex);
3360
3361         if (obj->cache_level == cache_level)
3362                 goto out;
3363
3364         /* Inspect the list of currently bound VMA and unbind any that would
3365          * be invalid given the new cache-level. This is principally to
3366          * catch the issue of the CS prefetch crossing page boundaries and
3367          * reading an invalid PTE on older architectures.
3368          */
3369 restart:
3370         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3371                 if (!drm_mm_node_allocated(&vma->node))
3372                         continue;
3373
3374                 if (i915_vma_is_pinned(vma)) {
3375                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3376                         return -EBUSY;
3377                 }
3378
3379                 if (i915_gem_valid_gtt_space(vma, cache_level))
3380                         continue;
3381
3382                 ret = i915_vma_unbind(vma);
3383                 if (ret)
3384                         return ret;
3385
3386                 /* As unbinding may affect other elements in the
3387                  * obj->vma_list (due to side-effects from retiring
3388                  * an active vma), play safe and restart the iterator.
3389                  */
3390                 goto restart;
3391         }
3392
3393         /* We can reuse the existing drm_mm nodes but need to change the
3394          * cache-level on the PTE. We could simply unbind them all and
3395          * rebind with the correct cache-level on next use. However since
3396          * we already have a valid slot, dma mapping, pages etc, we may as
3397          * rewrite the PTE in the belief that doing so tramples upon less
3398          * state and so involves less work.
3399          */
3400         if (obj->bind_count) {
3401                 /* Before we change the PTE, the GPU must not be accessing it.
3402                  * If we wait upon the object, we know that all the bound
3403                  * VMA are no longer active.
3404                  */
3405                 ret = i915_gem_object_wait(obj,
3406                                            I915_WAIT_INTERRUPTIBLE |
3407                                            I915_WAIT_LOCKED |
3408                                            I915_WAIT_ALL,
3409                                            MAX_SCHEDULE_TIMEOUT,
3410                                            NULL);
3411                 if (ret)
3412                         return ret;
3413
3414                 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3415                         /* Access to snoopable pages through the GTT is
3416                          * incoherent and on some machines causes a hard
3417                          * lockup. Relinquish the CPU mmaping to force
3418                          * userspace to refault in the pages and we can
3419                          * then double check if the GTT mapping is still
3420                          * valid for that pointer access.
3421                          */
3422                         i915_gem_release_mmap(obj);
3423
3424                         /* As we no longer need a fence for GTT access,
3425                          * we can relinquish it now (and so prevent having
3426                          * to steal a fence from someone else on the next
3427                          * fence request). Note GPU activity would have
3428                          * dropped the fence as all snoopable access is
3429                          * supposed to be linear.
3430                          */
3431                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3432                                 ret = i915_vma_put_fence(vma);
3433                                 if (ret)
3434                                         return ret;
3435                         }
3436                 } else {
3437                         /* We either have incoherent backing store and
3438                          * so no GTT access or the architecture is fully
3439                          * coherent. In such cases, existing GTT mmaps
3440                          * ignore the cache bit in the PTE and we can
3441                          * rewrite it without confusing the GPU or having
3442                          * to force userspace to fault back in its mmaps.
3443                          */
3444                 }
3445
3446                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3447                         if (!drm_mm_node_allocated(&vma->node))
3448                                 continue;
3449
3450                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3451                         if (ret)
3452                                 return ret;
3453                 }
3454         }
3455
3456         list_for_each_entry(vma, &obj->vma_list, obj_link)
3457                 vma->node.color = cache_level;
3458         obj->cache_level = cache_level;
3459
3460 out:
3461         /* Flush the dirty CPU caches to the backing storage so that the
3462          * object is now coherent at its new cache level (with respect
3463          * to the access domain).
3464          */
3465         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3466                 if (i915_gem_clflush_object(obj, true))
3467                         i915_gem_chipset_flush(to_i915(obj->base.dev));
3468         }
3469
3470         return 0;
3471 }
3472
3473 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3474                                struct drm_file *file)
3475 {
3476         struct drm_i915_gem_caching *args = data;
3477         struct drm_i915_gem_object *obj;
3478         int err = 0;
3479
3480         rcu_read_lock();
3481         obj = i915_gem_object_lookup_rcu(file, args->handle);
3482         if (!obj) {
3483                 err = -ENOENT;
3484                 goto out;
3485         }
3486
3487         switch (obj->cache_level) {
3488         case I915_CACHE_LLC:
3489         case I915_CACHE_L3_LLC:
3490                 args->caching = I915_CACHING_CACHED;
3491                 break;
3492
3493         case I915_CACHE_WT:
3494                 args->caching = I915_CACHING_DISPLAY;
3495                 break;
3496
3497         default:
3498                 args->caching = I915_CACHING_NONE;
3499                 break;
3500         }
3501 out:
3502         rcu_read_unlock();
3503         return err;
3504 }
3505
3506 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3507                                struct drm_file *file)
3508 {
3509         struct drm_i915_private *i915 = to_i915(dev);
3510         struct drm_i915_gem_caching *args = data;
3511         struct drm_i915_gem_object *obj;
3512         enum i915_cache_level level;
3513         int ret;
3514
3515         switch (args->caching) {
3516         case I915_CACHING_NONE:
3517                 level = I915_CACHE_NONE;
3518                 break;
3519         case I915_CACHING_CACHED:
3520                 /*
3521                  * Due to a HW issue on BXT A stepping, GPU stores via a
3522                  * snooped mapping may leave stale data in a corresponding CPU
3523                  * cacheline, whereas normally such cachelines would get
3524                  * invalidated.
3525                  */
3526                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3527                         return -ENODEV;
3528
3529                 level = I915_CACHE_LLC;
3530                 break;
3531         case I915_CACHING_DISPLAY:
3532                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3533                 break;
3534         default:
3535                 return -EINVAL;
3536         }
3537
3538         ret = i915_mutex_lock_interruptible(dev);
3539         if (ret)
3540                 return ret;
3541
3542         obj = i915_gem_object_lookup(file, args->handle);
3543         if (!obj) {
3544                 ret = -ENOENT;
3545                 goto unlock;
3546         }
3547
3548         ret = i915_gem_object_set_cache_level(obj, level);
3549         i915_gem_object_put(obj);
3550 unlock:
3551         mutex_unlock(&dev->struct_mutex);
3552         return ret;
3553 }
3554
3555 /*
3556  * Prepare buffer for display plane (scanout, cursors, etc).
3557  * Can be called from an uninterruptible phase (modesetting) and allows
3558  * any flushes to be pipelined (for pageflips).
3559  */
3560 struct i915_vma *
3561 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3562                                      u32 alignment,
3563                                      const struct i915_ggtt_view *view)
3564 {
3565         struct i915_vma *vma;
3566         u32 old_read_domains, old_write_domain;
3567         int ret;
3568
3569         lockdep_assert_held(&obj->base.dev->struct_mutex);
3570
3571         /* Mark the pin_display early so that we account for the
3572          * display coherency whilst setting up the cache domains.
3573          */
3574         obj->pin_display++;
3575
3576         /* The display engine is not coherent with the LLC cache on gen6.  As
3577          * a result, we make sure that the pinning that is about to occur is
3578          * done with uncached PTEs. This is lowest common denominator for all
3579          * chipsets.
3580          *
3581          * However for gen6+, we could do better by using the GFDT bit instead
3582          * of uncaching, which would allow us to flush all the LLC-cached data
3583          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3584          */
3585         ret = i915_gem_object_set_cache_level(obj,
3586                                               HAS_WT(to_i915(obj->base.dev)) ?
3587                                               I915_CACHE_WT : I915_CACHE_NONE);
3588         if (ret) {
3589                 vma = ERR_PTR(ret);
3590                 goto err_unpin_display;
3591         }
3592
3593         /* As the user may map the buffer once pinned in the display plane
3594          * (e.g. libkms for the bootup splash), we have to ensure that we
3595          * always use map_and_fenceable for all scanout buffers. However,
3596          * it may simply be too big to fit into mappable, in which case
3597          * put it anyway and hope that userspace can cope (but always first
3598          * try to preserve the existing ABI).
3599          */
3600         vma = ERR_PTR(-ENOSPC);
3601         if (view->type == I915_GGTT_VIEW_NORMAL)
3602                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3603                                                PIN_MAPPABLE | PIN_NONBLOCK);
3604         if (IS_ERR(vma))
3605                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
3606         if (IS_ERR(vma))
3607                 goto err_unpin_display;
3608
3609         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3610
3611         i915_gem_object_flush_cpu_write_domain(obj);
3612
3613         old_write_domain = obj->base.write_domain;
3614         old_read_domains = obj->base.read_domains;
3615
3616         /* It should now be out of any other write domains, and we can update
3617          * the domain values for our changes.
3618          */
3619         obj->base.write_domain = 0;
3620         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3621
3622         trace_i915_gem_object_change_domain(obj,
3623                                             old_read_domains,
3624                                             old_write_domain);
3625
3626         return vma;
3627
3628 err_unpin_display:
3629         obj->pin_display--;
3630         return vma;
3631 }
3632
3633 void
3634 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3635 {
3636         lockdep_assert_held(&vma->vm->dev->struct_mutex);
3637
3638         if (WARN_ON(vma->obj->pin_display == 0))
3639                 return;
3640
3641         if (--vma->obj->pin_display == 0)
3642                 vma->display_alignment = 0;
3643
3644         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3645         if (!i915_vma_is_active(vma))
3646                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3647
3648         i915_vma_unpin(vma);
3649 }
3650
3651 /**
3652  * Moves a single object to the CPU read, and possibly write domain.
3653  * @obj: object to act on
3654  * @write: requesting write or read-only access
3655  *
3656  * This function returns when the move is complete, including waiting on
3657  * flushes to occur.
3658  */
3659 int
3660 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3661 {
3662         uint32_t old_write_domain, old_read_domains;
3663         int ret;
3664
3665         lockdep_assert_held(&obj->base.dev->struct_mutex);
3666
3667         ret = i915_gem_object_wait(obj,
3668                                    I915_WAIT_INTERRUPTIBLE |
3669                                    I915_WAIT_LOCKED |
3670                                    (write ? I915_WAIT_ALL : 0),
3671                                    MAX_SCHEDULE_TIMEOUT,
3672                                    NULL);
3673         if (ret)
3674                 return ret;
3675
3676         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3677                 return 0;
3678
3679         i915_gem_object_flush_gtt_write_domain(obj);
3680
3681         old_write_domain = obj->base.write_domain;
3682         old_read_domains = obj->base.read_domains;
3683
3684         /* Flush the CPU cache if it's still invalid. */
3685         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3686                 i915_gem_clflush_object(obj, false);
3687
3688                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3689         }
3690
3691         /* It should now be out of any other write domains, and we can update
3692          * the domain values for our changes.
3693          */
3694         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3695
3696         /* If we're writing through the CPU, then the GPU read domains will
3697          * need to be invalidated at next use.
3698          */
3699         if (write) {
3700                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3701                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3702         }
3703
3704         trace_i915_gem_object_change_domain(obj,
3705                                             old_read_domains,
3706                                             old_write_domain);
3707
3708         return 0;
3709 }
3710
3711 /* Throttle our rendering by waiting until the ring has completed our requests
3712  * emitted over 20 msec ago.
3713  *
3714  * Note that if we were to use the current jiffies each time around the loop,
3715  * we wouldn't escape the function with any frames outstanding if the time to
3716  * render a frame was over 20ms.
3717  *
3718  * This should get us reasonable parallelism between CPU and GPU but also
3719  * relatively low latency when blocking on a particular request to finish.
3720  */
3721 static int
3722 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3723 {
3724         struct drm_i915_private *dev_priv = to_i915(dev);
3725         struct drm_i915_file_private *file_priv = file->driver_priv;
3726         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3727         struct drm_i915_gem_request *request, *target = NULL;
3728         long ret;
3729
3730         /* ABI: return -EIO if already wedged */
3731         if (i915_terminally_wedged(&dev_priv->gpu_error))
3732                 return -EIO;
3733
3734         spin_lock(&file_priv->mm.lock);
3735         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3736                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3737                         break;
3738
3739                 /*
3740                  * Note that the request might not have been submitted yet.
3741                  * In which case emitted_jiffies will be zero.
3742                  */
3743                 if (!request->emitted_jiffies)
3744                         continue;
3745
3746                 target = request;
3747         }
3748         if (target)
3749                 i915_gem_request_get(target);
3750         spin_unlock(&file_priv->mm.lock);
3751
3752         if (target == NULL)
3753                 return 0;
3754
3755         ret = i915_wait_request(target,
3756                                 I915_WAIT_INTERRUPTIBLE,
3757                                 MAX_SCHEDULE_TIMEOUT);
3758         i915_gem_request_put(target);
3759
3760         return ret < 0 ? ret : 0;
3761 }
3762
3763 static bool
3764 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3765 {
3766         if (!drm_mm_node_allocated(&vma->node))
3767                 return false;
3768
3769         if (vma->node.size < size)
3770                 return true;
3771
3772         if (alignment && vma->node.start & (alignment - 1))
3773                 return true;
3774
3775         if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3776                 return true;
3777
3778         if (flags & PIN_OFFSET_BIAS &&
3779             vma->node.start < (flags & PIN_OFFSET_MASK))
3780                 return true;
3781
3782         if (flags & PIN_OFFSET_FIXED &&
3783             vma->node.start != (flags & PIN_OFFSET_MASK))
3784                 return true;
3785
3786         return false;
3787 }
3788
3789 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3790 {
3791         struct drm_i915_gem_object *obj = vma->obj;
3792         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3793         bool mappable, fenceable;
3794         u32 fence_size, fence_alignment;
3795
3796         fence_size = i915_gem_get_ggtt_size(dev_priv,
3797                                             vma->size,
3798                                             i915_gem_object_get_tiling(obj));
3799         fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3800                                                       vma->size,
3801                                                       i915_gem_object_get_tiling(obj),
3802                                                       true);
3803
3804         fenceable = (vma->node.size == fence_size &&
3805                      (vma->node.start & (fence_alignment - 1)) == 0);
3806
3807         mappable = (vma->node.start + fence_size <=
3808                     dev_priv->ggtt.mappable_end);
3809
3810         /*
3811          * Explicitly disable for rotated VMA since the display does not
3812          * need the fence and the VMA is not accessible to other users.
3813          */
3814         if (mappable && fenceable &&
3815             vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3816                 vma->flags |= I915_VMA_CAN_FENCE;
3817         else
3818                 vma->flags &= ~I915_VMA_CAN_FENCE;
3819 }
3820
3821 int __i915_vma_do_pin(struct i915_vma *vma,
3822                       u64 size, u64 alignment, u64 flags)
3823 {
3824         unsigned int bound = vma->flags;
3825         int ret;
3826
3827         lockdep_assert_held(&vma->vm->dev->struct_mutex);
3828         GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3829         GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3830
3831         if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3832                 ret = -EBUSY;
3833                 goto err;
3834         }
3835
3836         if ((bound & I915_VMA_BIND_MASK) == 0) {
3837                 ret = i915_vma_insert(vma, size, alignment, flags);
3838                 if (ret)
3839                         goto err;
3840         }
3841
3842         ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3843         if (ret)
3844                 goto err;
3845
3846         if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3847                 __i915_vma_set_map_and_fenceable(vma);
3848
3849         GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3850         return 0;
3851
3852 err:
3853         __i915_vma_unpin(vma);
3854         return ret;
3855 }
3856
3857 struct i915_vma *
3858 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3859                          const struct i915_ggtt_view *view,
3860                          u64 size,
3861                          u64 alignment,
3862                          u64 flags)
3863 {
3864         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3865         struct i915_address_space *vm = &dev_priv->ggtt.base;
3866         struct i915_vma *vma;
3867         int ret;
3868
3869         lockdep_assert_held(&obj->base.dev->struct_mutex);
3870
3871         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3872         if (IS_ERR(vma))
3873                 return vma;
3874
3875         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3876                 if (flags & PIN_NONBLOCK &&
3877                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3878                         return ERR_PTR(-ENOSPC);
3879
3880                 if (flags & PIN_MAPPABLE) {
3881                         u32 fence_size;
3882
3883                         fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3884                                                             i915_gem_object_get_tiling(obj));
3885                         /* If the required space is larger than the available
3886                          * aperture, we will not able to find a slot for the
3887                          * object and unbinding the object now will be in
3888                          * vain. Worse, doing so may cause us to ping-pong
3889                          * the object in and out of the Global GTT and
3890                          * waste a lot of cycles under the mutex.
3891                          */
3892                         if (fence_size > dev_priv->ggtt.mappable_end)
3893                                 return ERR_PTR(-E2BIG);
3894
3895                         /* If NONBLOCK is set the caller is optimistically
3896                          * trying to cache the full object within the mappable
3897                          * aperture, and *must* have a fallback in place for
3898                          * situations where we cannot bind the object. We
3899                          * can be a little more lax here and use the fallback
3900                          * more often to avoid costly migrations of ourselves
3901                          * and other objects within the aperture.
3902                          *
3903                          * Half-the-aperture is used as a simple heuristic.
3904                          * More interesting would to do search for a free
3905                          * block prior to making the commitment to unbind.
3906                          * That caters for the self-harm case, and with a
3907                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3908                          * we could try to minimise harm to others.
3909                          */
3910                         if (flags & PIN_NONBLOCK &&
3911                             fence_size > dev_priv->ggtt.mappable_end / 2)
3912                                 return ERR_PTR(-ENOSPC);
3913                 }
3914
3915                 WARN(i915_vma_is_pinned(vma),
3916                      "bo is already pinned in ggtt with incorrect alignment:"
3917                      " offset=%08x, req.alignment=%llx,"
3918                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3919                      i915_ggtt_offset(vma), alignment,
3920                      !!(flags & PIN_MAPPABLE),
3921                      i915_vma_is_map_and_fenceable(vma));
3922                 ret = i915_vma_unbind(vma);
3923                 if (ret)
3924                         return ERR_PTR(ret);
3925         }
3926
3927         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3928         if (ret)
3929                 return ERR_PTR(ret);
3930
3931         return vma;
3932 }
3933
3934 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3935 {
3936         /* Note that we could alias engines in the execbuf API, but
3937          * that would be very unwise as it prevents userspace from
3938          * fine control over engine selection. Ahem.
3939          *
3940          * This should be something like EXEC_MAX_ENGINE instead of
3941          * I915_NUM_ENGINES.
3942          */
3943         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3944         return 0x10000 << id;
3945 }
3946
3947 static __always_inline unsigned int __busy_write_id(unsigned int id)
3948 {
3949         /* The uABI guarantees an active writer is also amongst the read
3950          * engines. This would be true if we accessed the activity tracking
3951          * under the lock, but as we perform the lookup of the object and
3952          * its activity locklessly we can not guarantee that the last_write
3953          * being active implies that we have set the same engine flag from
3954          * last_read - hence we always set both read and write busy for
3955          * last_write.
3956          */
3957         return id | __busy_read_flag(id);
3958 }
3959
3960 static __always_inline unsigned int
3961 __busy_set_if_active(const struct dma_fence *fence,
3962                      unsigned int (*flag)(unsigned int id))
3963 {
3964         struct drm_i915_gem_request *rq;
3965
3966         /* We have to check the current hw status of the fence as the uABI
3967          * guarantees forward progress. We could rely on the idle worker
3968          * to eventually flush us, but to minimise latency just ask the
3969          * hardware.
3970          *
3971          * Note we only report on the status of native fences.
3972          */
3973         if (!dma_fence_is_i915(fence))
3974                 return 0;
3975
3976         /* opencode to_request() in order to avoid const warnings */
3977         rq = container_of(fence, struct drm_i915_gem_request, fence);
3978         if (i915_gem_request_completed(rq))
3979                 return 0;
3980
3981         return flag(rq->engine->exec_id);
3982 }
3983
3984 static __always_inline unsigned int
3985 busy_check_reader(const struct dma_fence *fence)
3986 {
3987         return __busy_set_if_active(fence, __busy_read_flag);
3988 }
3989
3990 static __always_inline unsigned int
3991 busy_check_writer(const struct dma_fence *fence)
3992 {
3993         if (!fence)
3994                 return 0;
3995
3996         return __busy_set_if_active(fence, __busy_write_id);
3997 }
3998
3999 int
4000 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4001                     struct drm_file *file)
4002 {
4003         struct drm_i915_gem_busy *args = data;
4004         struct drm_i915_gem_object *obj;
4005         struct reservation_object_list *list;
4006         unsigned int seq;
4007         int err;
4008
4009         err = -ENOENT;
4010         rcu_read_lock();
4011         obj = i915_gem_object_lookup_rcu(file, args->handle);
4012         if (!obj)
4013                 goto out;
4014
4015         /* A discrepancy here is that we do not report the status of
4016          * non-i915 fences, i.e. even though we may report the object as idle,
4017          * a call to set-domain may still stall waiting for foreign rendering.
4018          * This also means that wait-ioctl may report an object as busy,
4019          * where busy-ioctl considers it idle.
4020          *
4021          * We trade the ability to warn of foreign fences to report on which
4022          * i915 engines are active for the object.
4023          *
4024          * Alternatively, we can trade that extra information on read/write
4025          * activity with
4026          *      args->busy =
4027          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4028          * to report the overall busyness. This is what the wait-ioctl does.
4029          *
4030          */
4031 retry:
4032         seq = raw_read_seqcount(&obj->resv->seq);
4033
4034         /* Translate the exclusive fence to the READ *and* WRITE engine */
4035         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4036
4037         /* Translate shared fences to READ set of engines */
4038         list = rcu_dereference(obj->resv->fence);
4039         if (list) {
4040                 unsigned int shared_count = list->shared_count, i;
4041
4042                 for (i = 0; i < shared_count; ++i) {
4043                         struct dma_fence *fence =
4044                                 rcu_dereference(list->shared[i]);
4045
4046                         args->busy |= busy_check_reader(fence);
4047                 }
4048         }
4049
4050         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4051                 goto retry;
4052
4053         err = 0;
4054 out:
4055         rcu_read_unlock();
4056         return err;
4057 }
4058
4059 int
4060 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4061                         struct drm_file *file_priv)
4062 {
4063         return i915_gem_ring_throttle(dev, file_priv);
4064 }
4065
4066 int
4067 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4068                        struct drm_file *file_priv)
4069 {
4070         struct drm_i915_private *dev_priv = to_i915(dev);
4071         struct drm_i915_gem_madvise *args = data;
4072         struct drm_i915_gem_object *obj;
4073         int err;
4074
4075         switch (args->madv) {
4076         case I915_MADV_DONTNEED:
4077         case I915_MADV_WILLNEED:
4078             break;
4079         default:
4080             return -EINVAL;
4081         }
4082
4083         obj = i915_gem_object_lookup(file_priv, args->handle);
4084         if (!obj)
4085                 return -ENOENT;
4086
4087         err = mutex_lock_interruptible(&obj->mm.lock);
4088         if (err)
4089                 goto out;
4090
4091         if (obj->mm.pages &&
4092             i915_gem_object_is_tiled(obj) &&
4093             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4094                 if (obj->mm.madv == I915_MADV_WILLNEED)
4095                         __i915_gem_object_unpin_pages(obj);
4096                 if (args->madv == I915_MADV_WILLNEED)
4097                         __i915_gem_object_pin_pages(obj);
4098         }
4099
4100         if (obj->mm.madv != __I915_MADV_PURGED)
4101                 obj->mm.madv = args->madv;
4102
4103         /* if the object is no longer attached, discard its backing storage */
4104         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4105                 i915_gem_object_truncate(obj);
4106
4107         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4108         mutex_unlock(&obj->mm.lock);
4109
4110 out:
4111         i915_gem_object_put(obj);
4112         return err;
4113 }
4114
4115 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4116                           const struct drm_i915_gem_object_ops *ops)
4117 {
4118         mutex_init(&obj->mm.lock);
4119
4120         INIT_LIST_HEAD(&obj->global_list);
4121         INIT_LIST_HEAD(&obj->userfault_link);
4122         INIT_LIST_HEAD(&obj->obj_exec_link);
4123         INIT_LIST_HEAD(&obj->vma_list);
4124         INIT_LIST_HEAD(&obj->batch_pool_link);
4125
4126         obj->ops = ops;
4127
4128         reservation_object_init(&obj->__builtin_resv);
4129         obj->resv = &obj->__builtin_resv;
4130
4131         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4132
4133         obj->mm.madv = I915_MADV_WILLNEED;
4134         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4135         mutex_init(&obj->mm.get_page.lock);
4136
4137         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4138 }
4139
4140 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4141         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4142         .get_pages = i915_gem_object_get_pages_gtt,
4143         .put_pages = i915_gem_object_put_pages_gtt,
4144 };
4145
4146 /* Note we don't consider signbits :| */
4147 #define overflows_type(x, T) \
4148         (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
4149
4150 struct drm_i915_gem_object *
4151 i915_gem_object_create(struct drm_device *dev, u64 size)
4152 {
4153         struct drm_i915_gem_object *obj;
4154         struct address_space *mapping;
4155         gfp_t mask;
4156         int ret;
4157
4158         /* There is a prevalence of the assumption that we fit the object's
4159          * page count inside a 32bit _signed_ variable. Let's document this and
4160          * catch if we ever need to fix it. In the meantime, if you do spot
4161          * such a local variable, please consider fixing!
4162          */
4163         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4164                 return ERR_PTR(-E2BIG);
4165
4166         if (overflows_type(size, obj->base.size))
4167                 return ERR_PTR(-E2BIG);
4168
4169         obj = i915_gem_object_alloc(dev);
4170         if (obj == NULL)
4171                 return ERR_PTR(-ENOMEM);
4172
4173         ret = drm_gem_object_init(dev, &obj->base, size);
4174         if (ret)
4175                 goto fail;
4176
4177         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4178         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4179                 /* 965gm cannot relocate objects above 4GiB. */
4180                 mask &= ~__GFP_HIGHMEM;
4181                 mask |= __GFP_DMA32;
4182         }
4183
4184         mapping = obj->base.filp->f_mapping;
4185         mapping_set_gfp_mask(mapping, mask);
4186
4187         i915_gem_object_init(obj, &i915_gem_object_ops);
4188
4189         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4190         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4191
4192         if (HAS_LLC(dev)) {
4193                 /* On some devices, we can have the GPU use the LLC (the CPU
4194                  * cache) for about a 10% performance improvement
4195                  * compared to uncached.  Graphics requests other than
4196                  * display scanout are coherent with the CPU in
4197                  * accessing this cache.  This means in this mode we
4198                  * don't need to clflush on the CPU side, and on the
4199                  * GPU side we only need to flush internal caches to
4200                  * get data visible to the CPU.
4201                  *
4202                  * However, we maintain the display planes as UC, and so
4203                  * need to rebind when first used as such.
4204                  */
4205                 obj->cache_level = I915_CACHE_LLC;
4206         } else
4207                 obj->cache_level = I915_CACHE_NONE;
4208
4209         trace_i915_gem_object_create(obj);
4210
4211         return obj;
4212
4213 fail:
4214         i915_gem_object_free(obj);
4215         return ERR_PTR(ret);
4216 }
4217
4218 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4219 {
4220         /* If we are the last user of the backing storage (be it shmemfs
4221          * pages or stolen etc), we know that the pages are going to be
4222          * immediately released. In this case, we can then skip copying
4223          * back the contents from the GPU.
4224          */
4225
4226         if (obj->mm.madv != I915_MADV_WILLNEED)
4227                 return false;
4228
4229         if (obj->base.filp == NULL)
4230                 return true;
4231
4232         /* At first glance, this looks racy, but then again so would be
4233          * userspace racing mmap against close. However, the first external
4234          * reference to the filp can only be obtained through the
4235          * i915_gem_mmap_ioctl() which safeguards us against the user
4236          * acquiring such a reference whilst we are in the middle of
4237          * freeing the object.
4238          */
4239         return atomic_long_read(&obj->base.filp->f_count) == 1;
4240 }
4241
4242 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4243                                     struct llist_node *freed)
4244 {
4245         struct drm_i915_gem_object *obj, *on;
4246
4247         mutex_lock(&i915->drm.struct_mutex);
4248         intel_runtime_pm_get(i915);
4249         llist_for_each_entry(obj, freed, freed) {
4250                 struct i915_vma *vma, *vn;
4251
4252                 trace_i915_gem_object_destroy(obj);
4253
4254                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4255                 list_for_each_entry_safe(vma, vn,
4256                                          &obj->vma_list, obj_link) {
4257                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4258                         GEM_BUG_ON(i915_vma_is_active(vma));
4259                         vma->flags &= ~I915_VMA_PIN_MASK;
4260                         i915_vma_close(vma);
4261                 }
4262
4263                 list_del(&obj->global_list);
4264         }
4265         intel_runtime_pm_put(i915);
4266         mutex_unlock(&i915->drm.struct_mutex);
4267
4268         llist_for_each_entry_safe(obj, on, freed, freed) {
4269                 GEM_BUG_ON(obj->bind_count);
4270                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4271
4272                 if (obj->ops->release)
4273                         obj->ops->release(obj);
4274
4275                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4276                         atomic_set(&obj->mm.pages_pin_count, 0);
4277                 __i915_gem_object_put_pages(obj);
4278                 GEM_BUG_ON(obj->mm.pages);
4279
4280                 if (obj->base.import_attach)
4281                         drm_prime_gem_destroy(&obj->base, NULL);
4282
4283                 reservation_object_fini(&obj->__builtin_resv);
4284                 drm_gem_object_release(&obj->base);
4285                 i915_gem_info_remove_obj(i915, obj->base.size);
4286
4287                 kfree(obj->bit_17);
4288                 i915_gem_object_free(obj);
4289         }
4290 }
4291
4292 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4293 {
4294         struct llist_node *freed;
4295
4296         freed = llist_del_all(&i915->mm.free_list);
4297         if (unlikely(freed))
4298                 __i915_gem_free_objects(i915, freed);
4299 }
4300
4301 static void __i915_gem_free_work(struct work_struct *work)
4302 {
4303         struct drm_i915_private *i915 =
4304                 container_of(work, struct drm_i915_private, mm.free_work);
4305         struct llist_node *freed;
4306
4307         /* All file-owned VMA should have been released by this point through
4308          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4309          * However, the object may also be bound into the global GTT (e.g.
4310          * older GPUs without per-process support, or for direct access through
4311          * the GTT either for the user or for scanout). Those VMA still need to
4312          * unbound now.
4313          */
4314
4315         while ((freed = llist_del_all(&i915->mm.free_list)))
4316                 __i915_gem_free_objects(i915, freed);
4317 }
4318
4319 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4320 {
4321         struct drm_i915_gem_object *obj =
4322                 container_of(head, typeof(*obj), rcu);
4323         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4324
4325         /* We can't simply use call_rcu() from i915_gem_free_object()
4326          * as we need to block whilst unbinding, and the call_rcu
4327          * task may be called from softirq context. So we take a
4328          * detour through a worker.
4329          */
4330         if (llist_add(&obj->freed, &i915->mm.free_list))
4331                 schedule_work(&i915->mm.free_work);
4332 }
4333
4334 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4335 {
4336         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4337
4338         if (discard_backing_storage(obj))
4339                 obj->mm.madv = I915_MADV_DONTNEED;
4340
4341         if (obj->mm.pages && obj->mm.madv == I915_MADV_WILLNEED &&
4342             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4343             i915_gem_object_is_tiled(obj))
4344                 __i915_gem_object_unpin_pages(obj);
4345
4346         /* Before we free the object, make sure any pure RCU-only
4347          * read-side critical sections are complete, e.g.
4348          * i915_gem_busy_ioctl(). For the corresponding synchronized
4349          * lookup see i915_gem_object_lookup_rcu().
4350          */
4351         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4352 }
4353
4354 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4355 {
4356         lockdep_assert_held(&obj->base.dev->struct_mutex);
4357
4358         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4359         if (i915_gem_object_is_active(obj))
4360                 i915_gem_object_set_active_reference(obj);
4361         else
4362                 i915_gem_object_put(obj);
4363 }
4364
4365 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4366 {
4367         struct intel_engine_cs *engine;
4368         enum intel_engine_id id;
4369
4370         for_each_engine(engine, dev_priv, id)
4371                 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4372 }
4373
4374 int i915_gem_suspend(struct drm_device *dev)
4375 {
4376         struct drm_i915_private *dev_priv = to_i915(dev);
4377         int ret;
4378
4379         intel_suspend_gt_powersave(dev_priv);
4380
4381         mutex_lock(&dev->struct_mutex);
4382
4383         /* We have to flush all the executing contexts to main memory so
4384          * that they can saved in the hibernation image. To ensure the last
4385          * context image is coherent, we have to switch away from it. That
4386          * leaves the dev_priv->kernel_context still active when
4387          * we actually suspend, and its image in memory may not match the GPU
4388          * state. Fortunately, the kernel_context is disposable and we do
4389          * not rely on its state.
4390          */
4391         ret = i915_gem_switch_to_kernel_context(dev_priv);
4392         if (ret)
4393                 goto err;
4394
4395         ret = i915_gem_wait_for_idle(dev_priv,
4396                                      I915_WAIT_INTERRUPTIBLE |
4397                                      I915_WAIT_LOCKED);
4398         if (ret)
4399                 goto err;
4400
4401         i915_gem_retire_requests(dev_priv);
4402         GEM_BUG_ON(dev_priv->gt.active_requests);
4403
4404         assert_kernel_context_is_current(dev_priv);
4405         i915_gem_context_lost(dev_priv);
4406         mutex_unlock(&dev->struct_mutex);
4407
4408         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4409         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4410         flush_delayed_work(&dev_priv->gt.idle_work);
4411         flush_work(&dev_priv->mm.free_work);
4412
4413         /* Assert that we sucessfully flushed all the work and
4414          * reset the GPU back to its idle, low power state.
4415          */
4416         WARN_ON(dev_priv->gt.awake);
4417
4418         /*
4419          * Neither the BIOS, ourselves or any other kernel
4420          * expects the system to be in execlists mode on startup,
4421          * so we need to reset the GPU back to legacy mode. And the only
4422          * known way to disable logical contexts is through a GPU reset.
4423          *
4424          * So in order to leave the system in a known default configuration,
4425          * always reset the GPU upon unload and suspend. Afterwards we then
4426          * clean up the GEM state tracking, flushing off the requests and
4427          * leaving the system in a known idle state.
4428          *
4429          * Note that is of the upmost importance that the GPU is idle and
4430          * all stray writes are flushed *before* we dismantle the backing
4431          * storage for the pinned objects.
4432          *
4433          * However, since we are uncertain that resetting the GPU on older
4434          * machines is a good idea, we don't - just in case it leaves the
4435          * machine in an unusable condition.
4436          */
4437         if (HAS_HW_CONTEXTS(dev)) {
4438                 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4439                 WARN_ON(reset && reset != -ENODEV);
4440         }
4441
4442         return 0;
4443
4444 err:
4445         mutex_unlock(&dev->struct_mutex);
4446         return ret;
4447 }
4448
4449 void i915_gem_resume(struct drm_device *dev)
4450 {
4451         struct drm_i915_private *dev_priv = to_i915(dev);
4452
4453         mutex_lock(&dev->struct_mutex);
4454         i915_gem_restore_gtt_mappings(dev);
4455
4456         /* As we didn't flush the kernel context before suspend, we cannot
4457          * guarantee that the context image is complete. So let's just reset
4458          * it and start again.
4459          */
4460         dev_priv->gt.resume(dev_priv);
4461
4462         mutex_unlock(&dev->struct_mutex);
4463 }
4464
4465 void i915_gem_init_swizzling(struct drm_device *dev)
4466 {
4467         struct drm_i915_private *dev_priv = to_i915(dev);
4468
4469         if (INTEL_INFO(dev)->gen < 5 ||
4470             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4471                 return;
4472
4473         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4474                                  DISP_TILE_SURFACE_SWIZZLING);
4475
4476         if (IS_GEN5(dev_priv))
4477                 return;
4478
4479         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4480         if (IS_GEN6(dev_priv))
4481                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4482         else if (IS_GEN7(dev_priv))
4483                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4484         else if (IS_GEN8(dev_priv))
4485                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4486         else
4487                 BUG();
4488 }
4489
4490 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4491 {
4492         I915_WRITE(RING_CTL(base), 0);
4493         I915_WRITE(RING_HEAD(base), 0);
4494         I915_WRITE(RING_TAIL(base), 0);
4495         I915_WRITE(RING_START(base), 0);
4496 }
4497
4498 static void init_unused_rings(struct drm_i915_private *dev_priv)
4499 {
4500         if (IS_I830(dev_priv)) {
4501                 init_unused_ring(dev_priv, PRB1_BASE);
4502                 init_unused_ring(dev_priv, SRB0_BASE);
4503                 init_unused_ring(dev_priv, SRB1_BASE);
4504                 init_unused_ring(dev_priv, SRB2_BASE);
4505                 init_unused_ring(dev_priv, SRB3_BASE);
4506         } else if (IS_GEN2(dev_priv)) {
4507                 init_unused_ring(dev_priv, SRB0_BASE);
4508                 init_unused_ring(dev_priv, SRB1_BASE);
4509         } else if (IS_GEN3(dev_priv)) {
4510                 init_unused_ring(dev_priv, PRB1_BASE);
4511                 init_unused_ring(dev_priv, PRB2_BASE);
4512         }
4513 }
4514
4515 int
4516 i915_gem_init_hw(struct drm_device *dev)
4517 {
4518         struct drm_i915_private *dev_priv = to_i915(dev);
4519         struct intel_engine_cs *engine;
4520         enum intel_engine_id id;
4521         int ret;
4522
4523         dev_priv->gt.last_init_time = ktime_get();
4524
4525         /* Double layer security blanket, see i915_gem_init() */
4526         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4527
4528         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4529                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4530
4531         if (IS_HASWELL(dev_priv))
4532                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4533                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4534
4535         if (HAS_PCH_NOP(dev_priv)) {
4536                 if (IS_IVYBRIDGE(dev_priv)) {
4537                         u32 temp = I915_READ(GEN7_MSG_CTL);
4538                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4539                         I915_WRITE(GEN7_MSG_CTL, temp);
4540                 } else if (INTEL_INFO(dev)->gen >= 7) {
4541                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4542                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4543                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4544                 }
4545         }
4546
4547         i915_gem_init_swizzling(dev);
4548
4549         /*
4550          * At least 830 can leave some of the unused rings
4551          * "active" (ie. head != tail) after resume which
4552          * will prevent c3 entry. Makes sure all unused rings
4553          * are totally idle.
4554          */
4555         init_unused_rings(dev_priv);
4556
4557         BUG_ON(!dev_priv->kernel_context);
4558
4559         ret = i915_ppgtt_init_hw(dev);
4560         if (ret) {
4561                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4562                 goto out;
4563         }
4564
4565         /* Need to do basic initialisation of all rings first: */
4566         for_each_engine(engine, dev_priv, id) {
4567                 ret = engine->init_hw(engine);
4568                 if (ret)
4569                         goto out;
4570         }
4571
4572         intel_mocs_init_l3cc_table(dev);
4573
4574         /* We can't enable contexts until all firmware is loaded */
4575         ret = intel_guc_setup(dev);
4576         if (ret)
4577                 goto out;
4578
4579 out:
4580         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4581         return ret;
4582 }
4583
4584 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4585 {
4586         if (INTEL_INFO(dev_priv)->gen < 6)
4587                 return false;
4588
4589         /* TODO: make semaphores and Execlists play nicely together */
4590         if (i915.enable_execlists)
4591                 return false;
4592
4593         if (value >= 0)
4594                 return value;
4595
4596 #ifdef CONFIG_INTEL_IOMMU
4597         /* Enable semaphores on SNB when IO remapping is off */
4598         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4599                 return false;
4600 #endif
4601
4602         return true;
4603 }
4604
4605 int i915_gem_init(struct drm_device *dev)
4606 {
4607         struct drm_i915_private *dev_priv = to_i915(dev);
4608         int ret;
4609
4610         mutex_lock(&dev->struct_mutex);
4611
4612         if (!i915.enable_execlists) {
4613                 dev_priv->gt.resume = intel_legacy_submission_resume;
4614                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4615         } else {
4616                 dev_priv->gt.resume = intel_lr_context_resume;
4617                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4618         }
4619
4620         /* This is just a security blanket to placate dragons.
4621          * On some systems, we very sporadically observe that the first TLBs
4622          * used by the CS may be stale, despite us poking the TLB reset. If
4623          * we hold the forcewake during initialisation these problems
4624          * just magically go away.
4625          */
4626         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4627
4628         i915_gem_init_userptr(dev_priv);
4629
4630         ret = i915_gem_init_ggtt(dev_priv);
4631         if (ret)
4632                 goto out_unlock;
4633
4634         ret = i915_gem_context_init(dev);
4635         if (ret)
4636                 goto out_unlock;
4637
4638         ret = intel_engines_init(dev);
4639         if (ret)
4640                 goto out_unlock;
4641
4642         ret = i915_gem_init_hw(dev);
4643         if (ret == -EIO) {
4644                 /* Allow engine initialisation to fail by marking the GPU as
4645                  * wedged. But we only want to do this where the GPU is angry,
4646                  * for all other failure, such as an allocation failure, bail.
4647                  */
4648                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4649                 i915_gem_set_wedged(dev_priv);
4650                 ret = 0;
4651         }
4652
4653 out_unlock:
4654         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4655         mutex_unlock(&dev->struct_mutex);
4656
4657         return ret;
4658 }
4659
4660 void
4661 i915_gem_cleanup_engines(struct drm_device *dev)
4662 {
4663         struct drm_i915_private *dev_priv = to_i915(dev);
4664         struct intel_engine_cs *engine;
4665         enum intel_engine_id id;
4666
4667         for_each_engine(engine, dev_priv, id)
4668                 dev_priv->gt.cleanup_engine(engine);
4669 }
4670
4671 void
4672 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4673 {
4674         struct drm_device *dev = &dev_priv->drm;
4675         int i;
4676
4677         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4678             !IS_CHERRYVIEW(dev_priv))
4679                 dev_priv->num_fence_regs = 32;
4680         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4681                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4682                 dev_priv->num_fence_regs = 16;
4683         else
4684                 dev_priv->num_fence_regs = 8;
4685
4686         if (intel_vgpu_active(dev_priv))
4687                 dev_priv->num_fence_regs =
4688                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4689
4690         /* Initialize fence registers to zero */
4691         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4692                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4693
4694                 fence->i915 = dev_priv;
4695                 fence->id = i;
4696                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4697         }
4698         i915_gem_restore_fences(dev);
4699
4700         i915_gem_detect_bit_6_swizzle(dev);
4701 }
4702
4703 int
4704 i915_gem_load_init(struct drm_device *dev)
4705 {
4706         struct drm_i915_private *dev_priv = to_i915(dev);
4707         int err;
4708
4709         dev_priv->objects =
4710                 kmem_cache_create("i915_gem_object",
4711                                   sizeof(struct drm_i915_gem_object), 0,
4712                                   SLAB_HWCACHE_ALIGN,
4713                                   NULL);
4714         if (!dev_priv->objects) {
4715                 err = -ENOMEM;
4716                 goto err_out;
4717         }
4718
4719         dev_priv->vmas =
4720                 kmem_cache_create("i915_gem_vma",
4721                                   sizeof(struct i915_vma), 0,
4722                                   SLAB_HWCACHE_ALIGN,
4723                                   NULL);
4724         if (!dev_priv->vmas) {
4725                 err = -ENOMEM;
4726                 goto err_objects;
4727         }
4728
4729         dev_priv->requests =
4730                 kmem_cache_create("i915_gem_request",
4731                                   sizeof(struct drm_i915_gem_request), 0,
4732                                   SLAB_HWCACHE_ALIGN |
4733                                   SLAB_RECLAIM_ACCOUNT |
4734                                   SLAB_DESTROY_BY_RCU,
4735                                   NULL);
4736         if (!dev_priv->requests) {
4737                 err = -ENOMEM;
4738                 goto err_vmas;
4739         }
4740
4741         mutex_lock(&dev_priv->drm.struct_mutex);
4742         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4743         err = i915_gem_timeline_init(dev_priv,
4744                                      &dev_priv->gt.global_timeline,
4745                                      "[execution]");
4746         mutex_unlock(&dev_priv->drm.struct_mutex);
4747         if (err)
4748                 goto err_requests;
4749
4750         INIT_LIST_HEAD(&dev_priv->context_list);
4751         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4752         init_llist_head(&dev_priv->mm.free_list);
4753         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4754         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4755         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4756         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4757         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4758                           i915_gem_retire_work_handler);
4759         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4760                           i915_gem_idle_work_handler);
4761         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4762         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4763
4764         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4765
4766         init_waitqueue_head(&dev_priv->pending_flip_queue);
4767
4768         dev_priv->mm.interruptible = true;
4769
4770         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4771
4772         spin_lock_init(&dev_priv->fb_tracking.lock);
4773
4774         return 0;
4775
4776 err_requests:
4777         kmem_cache_destroy(dev_priv->requests);
4778 err_vmas:
4779         kmem_cache_destroy(dev_priv->vmas);
4780 err_objects:
4781         kmem_cache_destroy(dev_priv->objects);
4782 err_out:
4783         return err;
4784 }
4785
4786 void i915_gem_load_cleanup(struct drm_device *dev)
4787 {
4788         struct drm_i915_private *dev_priv = to_i915(dev);
4789
4790         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4791
4792         kmem_cache_destroy(dev_priv->requests);
4793         kmem_cache_destroy(dev_priv->vmas);
4794         kmem_cache_destroy(dev_priv->objects);
4795
4796         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4797         rcu_barrier();
4798 }
4799
4800 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4801 {
4802         intel_runtime_pm_get(dev_priv);
4803
4804         mutex_lock(&dev_priv->drm.struct_mutex);
4805         i915_gem_shrink_all(dev_priv);
4806         mutex_unlock(&dev_priv->drm.struct_mutex);
4807
4808         intel_runtime_pm_put(dev_priv);
4809
4810         return 0;
4811 }
4812
4813 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4814 {
4815         struct drm_i915_gem_object *obj;
4816         struct list_head *phases[] = {
4817                 &dev_priv->mm.unbound_list,
4818                 &dev_priv->mm.bound_list,
4819                 NULL
4820         }, **p;
4821
4822         /* Called just before we write the hibernation image.
4823          *
4824          * We need to update the domain tracking to reflect that the CPU
4825          * will be accessing all the pages to create and restore from the
4826          * hibernation, and so upon restoration those pages will be in the
4827          * CPU domain.
4828          *
4829          * To make sure the hibernation image contains the latest state,
4830          * we update that state just before writing out the image.
4831          *
4832          * To try and reduce the hibernation image, we manually shrink
4833          * the objects as well.
4834          */
4835
4836         mutex_lock(&dev_priv->drm.struct_mutex);
4837         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4838
4839         for (p = phases; *p; p++) {
4840                 list_for_each_entry(obj, *p, global_list) {
4841                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4842                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4843                 }
4844         }
4845         mutex_unlock(&dev_priv->drm.struct_mutex);
4846
4847         return 0;
4848 }
4849
4850 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4851 {
4852         struct drm_i915_file_private *file_priv = file->driver_priv;
4853         struct drm_i915_gem_request *request;
4854
4855         /* Clean up our request list when the client is going away, so that
4856          * later retire_requests won't dereference our soon-to-be-gone
4857          * file_priv.
4858          */
4859         spin_lock(&file_priv->mm.lock);
4860         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4861                 request->file_priv = NULL;
4862         spin_unlock(&file_priv->mm.lock);
4863
4864         if (!list_empty(&file_priv->rps.link)) {
4865                 spin_lock(&to_i915(dev)->rps.client_lock);
4866                 list_del(&file_priv->rps.link);
4867                 spin_unlock(&to_i915(dev)->rps.client_lock);
4868         }
4869 }
4870
4871 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4872 {
4873         struct drm_i915_file_private *file_priv;
4874         int ret;
4875
4876         DRM_DEBUG_DRIVER("\n");
4877
4878         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4879         if (!file_priv)
4880                 return -ENOMEM;
4881
4882         file->driver_priv = file_priv;
4883         file_priv->dev_priv = to_i915(dev);
4884         file_priv->file = file;
4885         INIT_LIST_HEAD(&file_priv->rps.link);
4886
4887         spin_lock_init(&file_priv->mm.lock);
4888         INIT_LIST_HEAD(&file_priv->mm.request_list);
4889
4890         file_priv->bsd_engine = -1;
4891
4892         ret = i915_gem_context_open(dev, file);
4893         if (ret)
4894                 kfree(file_priv);
4895
4896         return ret;
4897 }
4898
4899 /**
4900  * i915_gem_track_fb - update frontbuffer tracking
4901  * @old: current GEM buffer for the frontbuffer slots
4902  * @new: new GEM buffer for the frontbuffer slots
4903  * @frontbuffer_bits: bitmask of frontbuffer slots
4904  *
4905  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4906  * from @old and setting them in @new. Both @old and @new can be NULL.
4907  */
4908 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4909                        struct drm_i915_gem_object *new,
4910                        unsigned frontbuffer_bits)
4911 {
4912         /* Control of individual bits within the mask are guarded by
4913          * the owning plane->mutex, i.e. we can never see concurrent
4914          * manipulation of individual bits. But since the bitfield as a whole
4915          * is updated using RMW, we need to use atomics in order to update
4916          * the bits.
4917          */
4918         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4919                      sizeof(atomic_t) * BITS_PER_BYTE);
4920
4921         if (old) {
4922                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4923                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4924         }
4925
4926         if (new) {
4927                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4928                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4929         }
4930 }
4931
4932 /* Allocate a new GEM object and fill it with the supplied data */
4933 struct drm_i915_gem_object *
4934 i915_gem_object_create_from_data(struct drm_device *dev,
4935                                  const void *data, size_t size)
4936 {
4937         struct drm_i915_gem_object *obj;
4938         struct sg_table *sg;
4939         size_t bytes;
4940         int ret;
4941
4942         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4943         if (IS_ERR(obj))
4944                 return obj;
4945
4946         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4947         if (ret)
4948                 goto fail;
4949
4950         ret = i915_gem_object_pin_pages(obj);
4951         if (ret)
4952                 goto fail;
4953
4954         sg = obj->mm.pages;
4955         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4956         obj->mm.dirty = true; /* Backing store is now out of date */
4957         i915_gem_object_unpin_pages(obj);
4958
4959         if (WARN_ON(bytes != size)) {
4960                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4961                 ret = -EFAULT;
4962                 goto fail;
4963         }
4964
4965         return obj;
4966
4967 fail:
4968         i915_gem_object_put(obj);
4969         return ERR_PTR(ret);
4970 }
4971
4972 struct scatterlist *
4973 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4974                        unsigned int n,
4975                        unsigned int *offset)
4976 {
4977         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4978         struct scatterlist *sg;
4979         unsigned int idx, count;
4980
4981         might_sleep();
4982         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4983         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4984
4985         /* As we iterate forward through the sg, we record each entry in a
4986          * radixtree for quick repeated (backwards) lookups. If we have seen
4987          * this index previously, we will have an entry for it.
4988          *
4989          * Initial lookup is O(N), but this is amortized to O(1) for
4990          * sequential page access (where each new request is consecutive
4991          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4992          * i.e. O(1) with a large constant!
4993          */
4994         if (n < READ_ONCE(iter->sg_idx))
4995                 goto lookup;
4996
4997         mutex_lock(&iter->lock);
4998
4999         /* We prefer to reuse the last sg so that repeated lookup of this
5000          * (or the subsequent) sg are fast - comparing against the last
5001          * sg is faster than going through the radixtree.
5002          */
5003
5004         sg = iter->sg_pos;
5005         idx = iter->sg_idx;
5006         count = __sg_page_count(sg);
5007
5008         while (idx + count <= n) {
5009                 unsigned long exception, i;
5010                 int ret;
5011
5012                 /* If we cannot allocate and insert this entry, or the
5013                  * individual pages from this range, cancel updating the
5014                  * sg_idx so that on this lookup we are forced to linearly
5015                  * scan onwards, but on future lookups we will try the
5016                  * insertion again (in which case we need to be careful of
5017                  * the error return reporting that we have already inserted
5018                  * this index).
5019                  */
5020                 ret = radix_tree_insert(&iter->radix, idx, sg);
5021                 if (ret && ret != -EEXIST)
5022                         goto scan;
5023
5024                 exception =
5025                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5026                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5027                 for (i = 1; i < count; i++) {
5028                         ret = radix_tree_insert(&iter->radix, idx + i,
5029                                                 (void *)exception);
5030                         if (ret && ret != -EEXIST)
5031                                 goto scan;
5032                 }
5033
5034                 idx += count;
5035                 sg = ____sg_next(sg);
5036                 count = __sg_page_count(sg);
5037         }
5038
5039 scan:
5040         iter->sg_pos = sg;
5041         iter->sg_idx = idx;
5042
5043         mutex_unlock(&iter->lock);
5044
5045         if (unlikely(n < idx)) /* insertion completed by another thread */
5046                 goto lookup;
5047
5048         /* In case we failed to insert the entry into the radixtree, we need
5049          * to look beyond the current sg.
5050          */
5051         while (idx + count <= n) {
5052                 idx += count;
5053                 sg = ____sg_next(sg);
5054                 count = __sg_page_count(sg);
5055         }
5056
5057         *offset = n - idx;
5058         return sg;
5059
5060 lookup:
5061         rcu_read_lock();
5062
5063         sg = radix_tree_lookup(&iter->radix, n);
5064         GEM_BUG_ON(!sg);
5065
5066         /* If this index is in the middle of multi-page sg entry,
5067          * the radixtree will contain an exceptional entry that points
5068          * to the start of that range. We will return the pointer to
5069          * the base page and the offset of this page within the
5070          * sg entry's range.
5071          */
5072         *offset = 0;
5073         if (unlikely(radix_tree_exception(sg))) {
5074                 unsigned long base =
5075                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5076
5077                 sg = radix_tree_lookup(&iter->radix, base);
5078                 GEM_BUG_ON(!sg);
5079
5080                 *offset = n - base;
5081         }
5082
5083         rcu_read_unlock();
5084
5085         return sg;
5086 }
5087
5088 struct page *
5089 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5090 {
5091         struct scatterlist *sg;
5092         unsigned int offset;
5093
5094         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5095
5096         sg = i915_gem_object_get_sg(obj, n, &offset);
5097         return nth_page(sg_page(sg), offset);
5098 }
5099
5100 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5101 struct page *
5102 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5103                                unsigned int n)
5104 {
5105         struct page *page;
5106
5107         page = i915_gem_object_get_page(obj, n);
5108         if (!obj->mm.dirty)
5109                 set_page_dirty(page);
5110
5111         return page;
5112 }
5113
5114 dma_addr_t
5115 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5116                                 unsigned long n)
5117 {
5118         struct scatterlist *sg;
5119         unsigned int offset;
5120
5121         sg = i915_gem_object_get_sg(obj, n, &offset);
5122         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5123 }