]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
6ce2c31b9a813b848e0b54727c9f1f5eb9c124cb
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58                 return true;
59
60         return obj->pin_display;
61 }
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65                                   size_t size)
66 {
67         spin_lock(&dev_priv->mm.object_stat_lock);
68         dev_priv->mm.object_count++;
69         dev_priv->mm.object_memory += size;
70         spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74                                      size_t size)
75 {
76         spin_lock(&dev_priv->mm.object_stat_lock);
77         dev_priv->mm.object_count--;
78         dev_priv->mm.object_memory -= size;
79         spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85         int ret;
86
87         if (!i915_reset_in_progress(error))
88                 return 0;
89
90         /*
91          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92          * userspace. If it takes that long something really bad is going on and
93          * we should simply try to bail out and fail as gracefully as possible.
94          */
95         ret = wait_event_interruptible_timeout(error->reset_queue,
96                                                !i915_reset_in_progress(error),
97                                                10*HZ);
98         if (ret == 0) {
99                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100                 return -EIO;
101         } else if (ret < 0) {
102                 return ret;
103         } else {
104                 return 0;
105         }
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110         struct drm_i915_private *dev_priv = dev->dev_private;
111         int ret;
112
113         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114         if (ret)
115                 return ret;
116
117         ret = mutex_lock_interruptible(&dev->struct_mutex);
118         if (ret)
119                 return ret;
120
121         WARN_ON(i915_verify_lists(dev));
122         return 0;
123 }
124
125 int
126 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127                             struct drm_file *file)
128 {
129         struct drm_i915_private *dev_priv = to_i915(dev);
130         struct i915_ggtt *ggtt = &dev_priv->ggtt;
131         struct drm_i915_gem_get_aperture *args = data;
132         struct i915_vma *vma;
133         size_t pinned;
134
135         pinned = 0;
136         mutex_lock(&dev->struct_mutex);
137         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138                 if (vma->pin_count)
139                         pinned += vma->node.size;
140         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141                 if (vma->pin_count)
142                         pinned += vma->node.size;
143         mutex_unlock(&dev->struct_mutex);
144
145         args->aper_size = ggtt->base.total;
146         args->aper_available_size = args->aper_size - pinned;
147
148         return 0;
149 }
150
151 static int
152 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153 {
154         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155         char *vaddr = obj->phys_handle->vaddr;
156         struct sg_table *st;
157         struct scatterlist *sg;
158         int i;
159
160         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161                 return -EINVAL;
162
163         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164                 struct page *page;
165                 char *src;
166
167                 page = shmem_read_mapping_page(mapping, i);
168                 if (IS_ERR(page))
169                         return PTR_ERR(page);
170
171                 src = kmap_atomic(page);
172                 memcpy(vaddr, src, PAGE_SIZE);
173                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174                 kunmap_atomic(src);
175
176                 put_page(page);
177                 vaddr += PAGE_SIZE;
178         }
179
180         i915_gem_chipset_flush(obj->base.dev);
181
182         st = kmalloc(sizeof(*st), GFP_KERNEL);
183         if (st == NULL)
184                 return -ENOMEM;
185
186         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187                 kfree(st);
188                 return -ENOMEM;
189         }
190
191         sg = st->sgl;
192         sg->offset = 0;
193         sg->length = obj->base.size;
194
195         sg_dma_address(sg) = obj->phys_handle->busaddr;
196         sg_dma_len(sg) = obj->base.size;
197
198         obj->pages = st;
199         return 0;
200 }
201
202 static void
203 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204 {
205         int ret;
206
207         BUG_ON(obj->madv == __I915_MADV_PURGED);
208
209         ret = i915_gem_object_set_to_cpu_domain(obj, true);
210         if (WARN_ON(ret)) {
211                 /* In the event of a disaster, abandon all caches and
212                  * hope for the best.
213                  */
214                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215         }
216
217         if (obj->madv == I915_MADV_DONTNEED)
218                 obj->dirty = 0;
219
220         if (obj->dirty) {
221                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222                 char *vaddr = obj->phys_handle->vaddr;
223                 int i;
224
225                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226                         struct page *page;
227                         char *dst;
228
229                         page = shmem_read_mapping_page(mapping, i);
230                         if (IS_ERR(page))
231                                 continue;
232
233                         dst = kmap_atomic(page);
234                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
235                         memcpy(dst, vaddr, PAGE_SIZE);
236                         kunmap_atomic(dst);
237
238                         set_page_dirty(page);
239                         if (obj->madv == I915_MADV_WILLNEED)
240                                 mark_page_accessed(page);
241                         put_page(page);
242                         vaddr += PAGE_SIZE;
243                 }
244                 obj->dirty = 0;
245         }
246
247         sg_free_table(obj->pages);
248         kfree(obj->pages);
249 }
250
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254         drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258         .get_pages = i915_gem_object_get_pages_phys,
259         .put_pages = i915_gem_object_put_pages_phys,
260         .release = i915_gem_object_release_phys,
261 };
262
263 static int
264 drop_pages(struct drm_i915_gem_object *obj)
265 {
266         struct i915_vma *vma, *next;
267         int ret;
268
269         drm_gem_object_reference(&obj->base);
270         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271                 if (i915_vma_unbind(vma))
272                         break;
273
274         ret = i915_gem_object_put_pages(obj);
275         drm_gem_object_unreference(&obj->base);
276
277         return ret;
278 }
279
280 int
281 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282                             int align)
283 {
284         drm_dma_handle_t *phys;
285         int ret;
286
287         if (obj->phys_handle) {
288                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289                         return -EBUSY;
290
291                 return 0;
292         }
293
294         if (obj->madv != I915_MADV_WILLNEED)
295                 return -EFAULT;
296
297         if (obj->base.filp == NULL)
298                 return -EINVAL;
299
300         ret = drop_pages(obj);
301         if (ret)
302                 return ret;
303
304         /* create a new object */
305         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306         if (!phys)
307                 return -ENOMEM;
308
309         obj->phys_handle = phys;
310         obj->ops = &i915_gem_phys_ops;
311
312         return i915_gem_object_get_pages(obj);
313 }
314
315 static int
316 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317                      struct drm_i915_gem_pwrite *args,
318                      struct drm_file *file_priv)
319 {
320         struct drm_device *dev = obj->base.dev;
321         void *vaddr = obj->phys_handle->vaddr + args->offset;
322         char __user *user_data = to_user_ptr(args->data_ptr);
323         int ret = 0;
324
325         /* We manually control the domain here and pretend that it
326          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327          */
328         ret = i915_gem_object_wait_rendering(obj, false);
329         if (ret)
330                 return ret;
331
332         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334                 unsigned long unwritten;
335
336                 /* The physical object once assigned is fixed for the lifetime
337                  * of the obj, so we can safely drop the lock and continue
338                  * to access vaddr.
339                  */
340                 mutex_unlock(&dev->struct_mutex);
341                 unwritten = copy_from_user(vaddr, user_data, args->size);
342                 mutex_lock(&dev->struct_mutex);
343                 if (unwritten) {
344                         ret = -EFAULT;
345                         goto out;
346                 }
347         }
348
349         drm_clflush_virt_range(vaddr, args->size);
350         i915_gem_chipset_flush(dev);
351
352 out:
353         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354         return ret;
355 }
356
357 void *i915_gem_object_alloc(struct drm_device *dev)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 }
362
363 void i915_gem_object_free(struct drm_i915_gem_object *obj)
364 {
365         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366         kmem_cache_free(dev_priv->objects, obj);
367 }
368
369 static int
370 i915_gem_create(struct drm_file *file,
371                 struct drm_device *dev,
372                 uint64_t size,
373                 uint32_t *handle_p)
374 {
375         struct drm_i915_gem_object *obj;
376         int ret;
377         u32 handle;
378
379         size = roundup(size, PAGE_SIZE);
380         if (size == 0)
381                 return -EINVAL;
382
383         /* Allocate the new object */
384         obj = i915_gem_alloc_object(dev, size);
385         if (obj == NULL)
386                 return -ENOMEM;
387
388         ret = drm_gem_handle_create(file, &obj->base, &handle);
389         /* drop reference from allocate - handle holds it now */
390         drm_gem_object_unreference_unlocked(&obj->base);
391         if (ret)
392                 return ret;
393
394         *handle_p = handle;
395         return 0;
396 }
397
398 int
399 i915_gem_dumb_create(struct drm_file *file,
400                      struct drm_device *dev,
401                      struct drm_mode_create_dumb *args)
402 {
403         /* have to work out size/pitch and return them */
404         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405         args->size = args->pitch * args->height;
406         return i915_gem_create(file, dev,
407                                args->size, &args->handle);
408 }
409
410 /**
411  * Creates a new mm object and returns a handle to it.
412  */
413 int
414 i915_gem_create_ioctl(struct drm_device *dev, void *data,
415                       struct drm_file *file)
416 {
417         struct drm_i915_gem_create *args = data;
418
419         return i915_gem_create(file, dev,
420                                args->size, &args->handle);
421 }
422
423 static inline int
424 __copy_to_user_swizzled(char __user *cpu_vaddr,
425                         const char *gpu_vaddr, int gpu_offset,
426                         int length)
427 {
428         int ret, cpu_offset = 0;
429
430         while (length > 0) {
431                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432                 int this_length = min(cacheline_end - gpu_offset, length);
433                 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436                                      gpu_vaddr + swizzled_gpu_offset,
437                                      this_length);
438                 if (ret)
439                         return ret + length;
440
441                 cpu_offset += this_length;
442                 gpu_offset += this_length;
443                 length -= this_length;
444         }
445
446         return 0;
447 }
448
449 static inline int
450 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451                           const char __user *cpu_vaddr,
452                           int length)
453 {
454         int ret, cpu_offset = 0;
455
456         while (length > 0) {
457                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458                 int this_length = min(cacheline_end - gpu_offset, length);
459                 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462                                        cpu_vaddr + cpu_offset,
463                                        this_length);
464                 if (ret)
465                         return ret + length;
466
467                 cpu_offset += this_length;
468                 gpu_offset += this_length;
469                 length -= this_length;
470         }
471
472         return 0;
473 }
474
475 /*
476  * Pins the specified object's pages and synchronizes the object with
477  * GPU accesses. Sets needs_clflush to non-zero if the caller should
478  * flush the object from the CPU cache.
479  */
480 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481                                     int *needs_clflush)
482 {
483         int ret;
484
485         *needs_clflush = 0;
486
487         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488                 return -EINVAL;
489
490         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491                 /* If we're not in the cpu read domain, set ourself into the gtt
492                  * read domain and manually flush cachelines (if required). This
493                  * optimizes for the case when the gpu will dirty the data
494                  * anyway again before the next pread happens. */
495                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496                                                         obj->cache_level);
497                 ret = i915_gem_object_wait_rendering(obj, true);
498                 if (ret)
499                         return ret;
500         }
501
502         ret = i915_gem_object_get_pages(obj);
503         if (ret)
504                 return ret;
505
506         i915_gem_object_pin_pages(obj);
507
508         return ret;
509 }
510
511 /* Per-page copy function for the shmem pread fastpath.
512  * Flushes invalid cachelines before reading the target if
513  * needs_clflush is set. */
514 static int
515 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516                  char __user *user_data,
517                  bool page_do_bit17_swizzling, bool needs_clflush)
518 {
519         char *vaddr;
520         int ret;
521
522         if (unlikely(page_do_bit17_swizzling))
523                 return -EINVAL;
524
525         vaddr = kmap_atomic(page);
526         if (needs_clflush)
527                 drm_clflush_virt_range(vaddr + shmem_page_offset,
528                                        page_length);
529         ret = __copy_to_user_inatomic(user_data,
530                                       vaddr + shmem_page_offset,
531                                       page_length);
532         kunmap_atomic(vaddr);
533
534         return ret ? -EFAULT : 0;
535 }
536
537 static void
538 shmem_clflush_swizzled_range(char *addr, unsigned long length,
539                              bool swizzled)
540 {
541         if (unlikely(swizzled)) {
542                 unsigned long start = (unsigned long) addr;
543                 unsigned long end = (unsigned long) addr + length;
544
545                 /* For swizzling simply ensure that we always flush both
546                  * channels. Lame, but simple and it works. Swizzled
547                  * pwrite/pread is far from a hotpath - current userspace
548                  * doesn't use it at all. */
549                 start = round_down(start, 128);
550                 end = round_up(end, 128);
551
552                 drm_clflush_virt_range((void *)start, end - start);
553         } else {
554                 drm_clflush_virt_range(addr, length);
555         }
556
557 }
558
559 /* Only difference to the fast-path function is that this can handle bit17
560  * and uses non-atomic copy and kmap functions. */
561 static int
562 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563                  char __user *user_data,
564                  bool page_do_bit17_swizzling, bool needs_clflush)
565 {
566         char *vaddr;
567         int ret;
568
569         vaddr = kmap(page);
570         if (needs_clflush)
571                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572                                              page_length,
573                                              page_do_bit17_swizzling);
574
575         if (page_do_bit17_swizzling)
576                 ret = __copy_to_user_swizzled(user_data,
577                                               vaddr, shmem_page_offset,
578                                               page_length);
579         else
580                 ret = __copy_to_user(user_data,
581                                      vaddr + shmem_page_offset,
582                                      page_length);
583         kunmap(page);
584
585         return ret ? - EFAULT : 0;
586 }
587
588 static int
589 i915_gem_shmem_pread(struct drm_device *dev,
590                      struct drm_i915_gem_object *obj,
591                      struct drm_i915_gem_pread *args,
592                      struct drm_file *file)
593 {
594         char __user *user_data;
595         ssize_t remain;
596         loff_t offset;
597         int shmem_page_offset, page_length, ret = 0;
598         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599         int prefaulted = 0;
600         int needs_clflush = 0;
601         struct sg_page_iter sg_iter;
602
603         user_data = to_user_ptr(args->data_ptr);
604         remain = args->size;
605
606         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607
608         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609         if (ret)
610                 return ret;
611
612         offset = args->offset;
613
614         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615                          offset >> PAGE_SHIFT) {
616                 struct page *page = sg_page_iter_page(&sg_iter);
617
618                 if (remain <= 0)
619                         break;
620
621                 /* Operation in this page
622                  *
623                  * shmem_page_offset = offset within page in shmem file
624                  * page_length = bytes to copy for this page
625                  */
626                 shmem_page_offset = offset_in_page(offset);
627                 page_length = remain;
628                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629                         page_length = PAGE_SIZE - shmem_page_offset;
630
631                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632                         (page_to_phys(page) & (1 << 17)) != 0;
633
634                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635                                        user_data, page_do_bit17_swizzling,
636                                        needs_clflush);
637                 if (ret == 0)
638                         goto next_page;
639
640                 mutex_unlock(&dev->struct_mutex);
641
642                 if (likely(!i915.prefault_disable) && !prefaulted) {
643                         ret = fault_in_multipages_writeable(user_data, remain);
644                         /* Userspace is tricking us, but we've already clobbered
645                          * its pages with the prefault and promised to write the
646                          * data up to the first fault. Hence ignore any errors
647                          * and just continue. */
648                         (void)ret;
649                         prefaulted = 1;
650                 }
651
652                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653                                        user_data, page_do_bit17_swizzling,
654                                        needs_clflush);
655
656                 mutex_lock(&dev->struct_mutex);
657
658                 if (ret)
659                         goto out;
660
661 next_page:
662                 remain -= page_length;
663                 user_data += page_length;
664                 offset += page_length;
665         }
666
667 out:
668         i915_gem_object_unpin_pages(obj);
669
670         return ret;
671 }
672
673 /**
674  * Reads data from the object referenced by handle.
675  *
676  * On error, the contents of *data are undefined.
677  */
678 int
679 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680                      struct drm_file *file)
681 {
682         struct drm_i915_gem_pread *args = data;
683         struct drm_i915_gem_object *obj;
684         int ret = 0;
685
686         if (args->size == 0)
687                 return 0;
688
689         if (!access_ok(VERIFY_WRITE,
690                        to_user_ptr(args->data_ptr),
691                        args->size))
692                 return -EFAULT;
693
694         ret = i915_mutex_lock_interruptible(dev);
695         if (ret)
696                 return ret;
697
698         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699         if (&obj->base == NULL) {
700                 ret = -ENOENT;
701                 goto unlock;
702         }
703
704         /* Bounds check source.  */
705         if (args->offset > obj->base.size ||
706             args->size > obj->base.size - args->offset) {
707                 ret = -EINVAL;
708                 goto out;
709         }
710
711         /* prime objects have no backing filp to GEM pread/pwrite
712          * pages from.
713          */
714         if (!obj->base.filp) {
715                 ret = -EINVAL;
716                 goto out;
717         }
718
719         trace_i915_gem_object_pread(obj, args->offset, args->size);
720
721         ret = i915_gem_shmem_pread(dev, obj, args, file);
722
723 out:
724         drm_gem_object_unreference(&obj->base);
725 unlock:
726         mutex_unlock(&dev->struct_mutex);
727         return ret;
728 }
729
730 /* This is the fast write path which cannot handle
731  * page faults in the source data
732  */
733
734 static inline int
735 fast_user_write(struct io_mapping *mapping,
736                 loff_t page_base, int page_offset,
737                 char __user *user_data,
738                 int length)
739 {
740         void __iomem *vaddr_atomic;
741         void *vaddr;
742         unsigned long unwritten;
743
744         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745         /* We can use the cpu mem copy function because this is X86. */
746         vaddr = (void __force*)vaddr_atomic + page_offset;
747         unwritten = __copy_from_user_inatomic_nocache(vaddr,
748                                                       user_data, length);
749         io_mapping_unmap_atomic(vaddr_atomic);
750         return unwritten;
751 }
752
753 /**
754  * This is the fast pwrite path, where we copy the data directly from the
755  * user into the GTT, uncached.
756  */
757 static int
758 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759                          struct drm_i915_gem_object *obj,
760                          struct drm_i915_gem_pwrite *args,
761                          struct drm_file *file)
762 {
763         struct drm_i915_private *dev_priv = to_i915(dev);
764         struct i915_ggtt *ggtt = &dev_priv->ggtt;
765         ssize_t remain;
766         loff_t offset, page_base;
767         char __user *user_data;
768         int page_offset, page_length, ret;
769
770         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
771         if (ret)
772                 goto out;
773
774         ret = i915_gem_object_set_to_gtt_domain(obj, true);
775         if (ret)
776                 goto out_unpin;
777
778         ret = i915_gem_object_put_fence(obj);
779         if (ret)
780                 goto out_unpin;
781
782         user_data = to_user_ptr(args->data_ptr);
783         remain = args->size;
784
785         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786
787         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788
789         while (remain > 0) {
790                 /* Operation in this page
791                  *
792                  * page_base = page offset within aperture
793                  * page_offset = offset within page
794                  * page_length = bytes to copy for this page
795                  */
796                 page_base = offset & PAGE_MASK;
797                 page_offset = offset_in_page(offset);
798                 page_length = remain;
799                 if ((page_offset + remain) > PAGE_SIZE)
800                         page_length = PAGE_SIZE - page_offset;
801
802                 /* If we get a fault while copying data, then (presumably) our
803                  * source page isn't available.  Return the error and we'll
804                  * retry in the slow path.
805                  */
806                 if (fast_user_write(ggtt->mappable, page_base,
807                                     page_offset, user_data, page_length)) {
808                         ret = -EFAULT;
809                         goto out_flush;
810                 }
811
812                 remain -= page_length;
813                 user_data += page_length;
814                 offset += page_length;
815         }
816
817 out_flush:
818         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
819 out_unpin:
820         i915_gem_object_ggtt_unpin(obj);
821 out:
822         return ret;
823 }
824
825 /* Per-page copy function for the shmem pwrite fastpath.
826  * Flushes invalid cachelines before writing to the target if
827  * needs_clflush_before is set and flushes out any written cachelines after
828  * writing if needs_clflush is set. */
829 static int
830 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831                   char __user *user_data,
832                   bool page_do_bit17_swizzling,
833                   bool needs_clflush_before,
834                   bool needs_clflush_after)
835 {
836         char *vaddr;
837         int ret;
838
839         if (unlikely(page_do_bit17_swizzling))
840                 return -EINVAL;
841
842         vaddr = kmap_atomic(page);
843         if (needs_clflush_before)
844                 drm_clflush_virt_range(vaddr + shmem_page_offset,
845                                        page_length);
846         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847                                         user_data, page_length);
848         if (needs_clflush_after)
849                 drm_clflush_virt_range(vaddr + shmem_page_offset,
850                                        page_length);
851         kunmap_atomic(vaddr);
852
853         return ret ? -EFAULT : 0;
854 }
855
856 /* Only difference to the fast-path function is that this can handle bit17
857  * and uses non-atomic copy and kmap functions. */
858 static int
859 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860                   char __user *user_data,
861                   bool page_do_bit17_swizzling,
862                   bool needs_clflush_before,
863                   bool needs_clflush_after)
864 {
865         char *vaddr;
866         int ret;
867
868         vaddr = kmap(page);
869         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871                                              page_length,
872                                              page_do_bit17_swizzling);
873         if (page_do_bit17_swizzling)
874                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875                                                 user_data,
876                                                 page_length);
877         else
878                 ret = __copy_from_user(vaddr + shmem_page_offset,
879                                        user_data,
880                                        page_length);
881         if (needs_clflush_after)
882                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883                                              page_length,
884                                              page_do_bit17_swizzling);
885         kunmap(page);
886
887         return ret ? -EFAULT : 0;
888 }
889
890 static int
891 i915_gem_shmem_pwrite(struct drm_device *dev,
892                       struct drm_i915_gem_object *obj,
893                       struct drm_i915_gem_pwrite *args,
894                       struct drm_file *file)
895 {
896         ssize_t remain;
897         loff_t offset;
898         char __user *user_data;
899         int shmem_page_offset, page_length, ret = 0;
900         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901         int hit_slowpath = 0;
902         int needs_clflush_after = 0;
903         int needs_clflush_before = 0;
904         struct sg_page_iter sg_iter;
905
906         user_data = to_user_ptr(args->data_ptr);
907         remain = args->size;
908
909         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910
911         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912                 /* If we're not in the cpu write domain, set ourself into the gtt
913                  * write domain and manually flush cachelines (if required). This
914                  * optimizes for the case when the gpu will use the data
915                  * right away and we therefore have to clflush anyway. */
916                 needs_clflush_after = cpu_write_needs_clflush(obj);
917                 ret = i915_gem_object_wait_rendering(obj, false);
918                 if (ret)
919                         return ret;
920         }
921         /* Same trick applies to invalidate partially written cachelines read
922          * before writing. */
923         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924                 needs_clflush_before =
925                         !cpu_cache_is_coherent(dev, obj->cache_level);
926
927         ret = i915_gem_object_get_pages(obj);
928         if (ret)
929                 return ret;
930
931         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932
933         i915_gem_object_pin_pages(obj);
934
935         offset = args->offset;
936         obj->dirty = 1;
937
938         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939                          offset >> PAGE_SHIFT) {
940                 struct page *page = sg_page_iter_page(&sg_iter);
941                 int partial_cacheline_write;
942
943                 if (remain <= 0)
944                         break;
945
946                 /* Operation in this page
947                  *
948                  * shmem_page_offset = offset within page in shmem file
949                  * page_length = bytes to copy for this page
950                  */
951                 shmem_page_offset = offset_in_page(offset);
952
953                 page_length = remain;
954                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955                         page_length = PAGE_SIZE - shmem_page_offset;
956
957                 /* If we don't overwrite a cacheline completely we need to be
958                  * careful to have up-to-date data by first clflushing. Don't
959                  * overcomplicate things and flush the entire patch. */
960                 partial_cacheline_write = needs_clflush_before &&
961                         ((shmem_page_offset | page_length)
962                                 & (boot_cpu_data.x86_clflush_size - 1));
963
964                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965                         (page_to_phys(page) & (1 << 17)) != 0;
966
967                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968                                         user_data, page_do_bit17_swizzling,
969                                         partial_cacheline_write,
970                                         needs_clflush_after);
971                 if (ret == 0)
972                         goto next_page;
973
974                 hit_slowpath = 1;
975                 mutex_unlock(&dev->struct_mutex);
976                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977                                         user_data, page_do_bit17_swizzling,
978                                         partial_cacheline_write,
979                                         needs_clflush_after);
980
981                 mutex_lock(&dev->struct_mutex);
982
983                 if (ret)
984                         goto out;
985
986 next_page:
987                 remain -= page_length;
988                 user_data += page_length;
989                 offset += page_length;
990         }
991
992 out:
993         i915_gem_object_unpin_pages(obj);
994
995         if (hit_slowpath) {
996                 /*
997                  * Fixup: Flush cpu caches in case we didn't flush the dirty
998                  * cachelines in-line while writing and the object moved
999                  * out of the cpu write domain while we've dropped the lock.
1000                  */
1001                 if (!needs_clflush_after &&
1002                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003                         if (i915_gem_clflush_object(obj, obj->pin_display))
1004                                 needs_clflush_after = true;
1005                 }
1006         }
1007
1008         if (needs_clflush_after)
1009                 i915_gem_chipset_flush(dev);
1010         else
1011                 obj->cache_dirty = true;
1012
1013         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014         return ret;
1015 }
1016
1017 /**
1018  * Writes data to the object referenced by handle.
1019  *
1020  * On error, the contents of the buffer that were to be modified are undefined.
1021  */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024                       struct drm_file *file)
1025 {
1026         struct drm_i915_private *dev_priv = dev->dev_private;
1027         struct drm_i915_gem_pwrite *args = data;
1028         struct drm_i915_gem_object *obj;
1029         int ret;
1030
1031         if (args->size == 0)
1032                 return 0;
1033
1034         if (!access_ok(VERIFY_READ,
1035                        to_user_ptr(args->data_ptr),
1036                        args->size))
1037                 return -EFAULT;
1038
1039         if (likely(!i915.prefault_disable)) {
1040                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041                                                    args->size);
1042                 if (ret)
1043                         return -EFAULT;
1044         }
1045
1046         intel_runtime_pm_get(dev_priv);
1047
1048         ret = i915_mutex_lock_interruptible(dev);
1049         if (ret)
1050                 goto put_rpm;
1051
1052         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053         if (&obj->base == NULL) {
1054                 ret = -ENOENT;
1055                 goto unlock;
1056         }
1057
1058         /* Bounds check destination. */
1059         if (args->offset > obj->base.size ||
1060             args->size > obj->base.size - args->offset) {
1061                 ret = -EINVAL;
1062                 goto out;
1063         }
1064
1065         /* prime objects have no backing filp to GEM pread/pwrite
1066          * pages from.
1067          */
1068         if (!obj->base.filp) {
1069                 ret = -EINVAL;
1070                 goto out;
1071         }
1072
1073         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075         ret = -EFAULT;
1076         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077          * it would end up going through the fenced access, and we'll get
1078          * different detiling behavior between reading and writing.
1079          * pread/pwrite currently are reading and writing from the CPU
1080          * perspective, requiring manual detiling by the client.
1081          */
1082         if (obj->tiling_mode == I915_TILING_NONE &&
1083             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084             cpu_write_needs_clflush(obj)) {
1085                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086                 /* Note that the gtt paths might fail with non-page-backed user
1087                  * pointers (e.g. gtt mappings when moving data between
1088                  * textures). Fallback to the shmem path in that case. */
1089         }
1090
1091         if (ret == -EFAULT || ret == -ENOSPC) {
1092                 if (obj->phys_handle)
1093                         ret = i915_gem_phys_pwrite(obj, args, file);
1094                 else
1095                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096         }
1097
1098 out:
1099         drm_gem_object_unreference(&obj->base);
1100 unlock:
1101         mutex_unlock(&dev->struct_mutex);
1102 put_rpm:
1103         intel_runtime_pm_put(dev_priv);
1104
1105         return ret;
1106 }
1107
1108 static int
1109 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110 {
1111         if (__i915_terminally_wedged(reset_counter))
1112                 return -EIO;
1113
1114         if (__i915_reset_in_progress(reset_counter)) {
1115                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116                  * -EIO unconditionally for these. */
1117                 if (!interruptible)
1118                         return -EIO;
1119
1120                 return -EAGAIN;
1121         }
1122
1123         return 0;
1124 }
1125
1126 static void fake_irq(unsigned long data)
1127 {
1128         wake_up_process((struct task_struct *)data);
1129 }
1130
1131 static bool missed_irq(struct drm_i915_private *dev_priv,
1132                        struct intel_engine_cs *engine)
1133 {
1134         return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 }
1136
1137 static unsigned long local_clock_us(unsigned *cpu)
1138 {
1139         unsigned long t;
1140
1141         /* Cheaply and approximately convert from nanoseconds to microseconds.
1142          * The result and subsequent calculations are also defined in the same
1143          * approximate microseconds units. The principal source of timing
1144          * error here is from the simple truncation.
1145          *
1146          * Note that local_clock() is only defined wrt to the current CPU;
1147          * the comparisons are no longer valid if we switch CPUs. Instead of
1148          * blocking preemption for the entire busywait, we can detect the CPU
1149          * switch and use that as indicator of system load and a reason to
1150          * stop busywaiting, see busywait_stop().
1151          */
1152         *cpu = get_cpu();
1153         t = local_clock() >> 10;
1154         put_cpu();
1155
1156         return t;
1157 }
1158
1159 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160 {
1161         unsigned this_cpu;
1162
1163         if (time_after(local_clock_us(&this_cpu), timeout))
1164                 return true;
1165
1166         return this_cpu != cpu;
1167 }
1168
1169 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170 {
1171         unsigned long timeout;
1172         unsigned cpu;
1173
1174         /* When waiting for high frequency requests, e.g. during synchronous
1175          * rendering split between the CPU and GPU, the finite amount of time
1176          * required to set up the irq and wait upon it limits the response
1177          * rate. By busywaiting on the request completion for a short while we
1178          * can service the high frequency waits as quick as possible. However,
1179          * if it is a slow request, we want to sleep as quickly as possible.
1180          * The tradeoff between waiting and sleeping is roughly the time it
1181          * takes to sleep on a request, on the order of a microsecond.
1182          */
1183
1184         if (req->engine->irq_refcount)
1185                 return -EBUSY;
1186
1187         /* Only spin if we know the GPU is processing this request */
1188         if (!i915_gem_request_started(req, true))
1189                 return -EAGAIN;
1190
1191         timeout = local_clock_us(&cpu) + 5;
1192         while (!need_resched()) {
1193                 if (i915_gem_request_completed(req, true))
1194                         return 0;
1195
1196                 if (signal_pending_state(state, current))
1197                         break;
1198
1199                 if (busywait_stop(timeout, cpu))
1200                         break;
1201
1202                 cpu_relax_lowlatency();
1203         }
1204
1205         if (i915_gem_request_completed(req, false))
1206                 return 0;
1207
1208         return -EAGAIN;
1209 }
1210
1211 /**
1212  * __i915_wait_request - wait until execution of request has finished
1213  * @req: duh!
1214  * @interruptible: do an interruptible wait (normally yes)
1215  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216  *
1217  * Note: It is of utmost importance that the passed in seqno and reset_counter
1218  * values have been read by the caller in an smp safe manner. Where read-side
1219  * locks are involved, it is sufficient to read the reset_counter before
1220  * unlocking the lock that protects the seqno. For lockless tricks, the
1221  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222  * inserted.
1223  *
1224  * Returns 0 if the request was found within the alloted time. Else returns the
1225  * errno with remaining time filled in timeout argument.
1226  */
1227 int __i915_wait_request(struct drm_i915_gem_request *req,
1228                         bool interruptible,
1229                         s64 *timeout,
1230                         struct intel_rps_client *rps)
1231 {
1232         struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233         struct drm_device *dev = engine->dev;
1234         struct drm_i915_private *dev_priv = dev->dev_private;
1235         const bool irq_test_in_progress =
1236                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238         DEFINE_WAIT(wait);
1239         unsigned long timeout_expire;
1240         s64 before = 0; /* Only to silence a compiler warning. */
1241         int ret;
1242
1243         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244
1245         if (list_empty(&req->list))
1246                 return 0;
1247
1248         if (i915_gem_request_completed(req, true))
1249                 return 0;
1250
1251         timeout_expire = 0;
1252         if (timeout) {
1253                 if (WARN_ON(*timeout < 0))
1254                         return -EINVAL;
1255
1256                 if (*timeout == 0)
1257                         return -ETIME;
1258
1259                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260
1261                 /*
1262                  * Record current time in case interrupted by signal, or wedged.
1263                  */
1264                 before = ktime_get_raw_ns();
1265         }
1266
1267         if (INTEL_INFO(dev_priv)->gen >= 6)
1268                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269
1270         trace_i915_gem_request_wait_begin(req);
1271
1272         /* Optimistic spin for the next jiffie before touching IRQs */
1273         ret = __i915_spin_request(req, state);
1274         if (ret == 0)
1275                 goto out;
1276
1277         if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278                 ret = -ENODEV;
1279                 goto out;
1280         }
1281
1282         for (;;) {
1283                 struct timer_list timer;
1284
1285                 prepare_to_wait(&engine->irq_queue, &wait, state);
1286
1287                 /* We need to check whether any gpu reset happened in between
1288                  * the request being submitted and now. If a reset has occurred,
1289                  * the request is effectively complete (we either are in the
1290                  * process of or have discarded the rendering and completely
1291                  * reset the GPU. The results of the request are lost and we
1292                  * are free to continue on with the original operation.
1293                  */
1294                 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295                         ret = 0;
1296                         break;
1297                 }
1298
1299                 if (i915_gem_request_completed(req, false)) {
1300                         ret = 0;
1301                         break;
1302                 }
1303
1304                 if (signal_pending_state(state, current)) {
1305                         ret = -ERESTARTSYS;
1306                         break;
1307                 }
1308
1309                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310                         ret = -ETIME;
1311                         break;
1312                 }
1313
1314                 timer.function = NULL;
1315                 if (timeout || missed_irq(dev_priv, engine)) {
1316                         unsigned long expire;
1317
1318                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319                         expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320                         mod_timer(&timer, expire);
1321                 }
1322
1323                 io_schedule();
1324
1325                 if (timer.function) {
1326                         del_singleshot_timer_sync(&timer);
1327                         destroy_timer_on_stack(&timer);
1328                 }
1329         }
1330         if (!irq_test_in_progress)
1331                 engine->irq_put(engine);
1332
1333         finish_wait(&engine->irq_queue, &wait);
1334
1335 out:
1336         trace_i915_gem_request_wait_end(req);
1337
1338         if (timeout) {
1339                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340
1341                 *timeout = tres < 0 ? 0 : tres;
1342
1343                 /*
1344                  * Apparently ktime isn't accurate enough and occasionally has a
1345                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346                  * things up to make the test happy. We allow up to 1 jiffy.
1347                  *
1348                  * This is a regrssion from the timespec->ktime conversion.
1349                  */
1350                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351                         *timeout = 0;
1352         }
1353
1354         return ret;
1355 }
1356
1357 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358                                    struct drm_file *file)
1359 {
1360         struct drm_i915_file_private *file_priv;
1361
1362         WARN_ON(!req || !file || req->file_priv);
1363
1364         if (!req || !file)
1365                 return -EINVAL;
1366
1367         if (req->file_priv)
1368                 return -EINVAL;
1369
1370         file_priv = file->driver_priv;
1371
1372         spin_lock(&file_priv->mm.lock);
1373         req->file_priv = file_priv;
1374         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375         spin_unlock(&file_priv->mm.lock);
1376
1377         req->pid = get_pid(task_pid(current));
1378
1379         return 0;
1380 }
1381
1382 static inline void
1383 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384 {
1385         struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387         if (!file_priv)
1388                 return;
1389
1390         spin_lock(&file_priv->mm.lock);
1391         list_del(&request->client_list);
1392         request->file_priv = NULL;
1393         spin_unlock(&file_priv->mm.lock);
1394
1395         put_pid(request->pid);
1396         request->pid = NULL;
1397 }
1398
1399 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400 {
1401         trace_i915_gem_request_retire(request);
1402
1403         /* We know the GPU must have read the request to have
1404          * sent us the seqno + interrupt, so use the position
1405          * of tail of the request to update the last known position
1406          * of the GPU head.
1407          *
1408          * Note this requires that we are always called in request
1409          * completion order.
1410          */
1411         request->ringbuf->last_retired_head = request->postfix;
1412
1413         list_del_init(&request->list);
1414         i915_gem_request_remove_from_client(request);
1415
1416         i915_gem_request_unreference(request);
1417 }
1418
1419 static void
1420 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1421 {
1422         struct intel_engine_cs *engine = req->engine;
1423         struct drm_i915_gem_request *tmp;
1424
1425         lockdep_assert_held(&engine->dev->struct_mutex);
1426
1427         if (list_empty(&req->list))
1428                 return;
1429
1430         do {
1431                 tmp = list_first_entry(&engine->request_list,
1432                                        typeof(*tmp), list);
1433
1434                 i915_gem_request_retire(tmp);
1435         } while (tmp != req);
1436
1437         WARN_ON(i915_verify_lists(engine->dev));
1438 }
1439
1440 /**
1441  * Waits for a request to be signaled, and cleans up the
1442  * request and object lists appropriately for that event.
1443  */
1444 int
1445 i915_wait_request(struct drm_i915_gem_request *req)
1446 {
1447         struct drm_device *dev;
1448         struct drm_i915_private *dev_priv;
1449         bool interruptible;
1450         int ret;
1451
1452         BUG_ON(req == NULL);
1453
1454         dev = req->engine->dev;
1455         dev_priv = dev->dev_private;
1456         interruptible = dev_priv->mm.interruptible;
1457
1458         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1459
1460         ret = __i915_wait_request(req, interruptible, NULL, NULL);
1461         if (ret)
1462                 return ret;
1463
1464         __i915_gem_request_retire__upto(req);
1465         return 0;
1466 }
1467
1468 /**
1469  * Ensures that all rendering to the object has completed and the object is
1470  * safe to unbind from the GTT or access from the CPU.
1471  */
1472 int
1473 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1474                                bool readonly)
1475 {
1476         int ret, i;
1477
1478         if (!obj->active)
1479                 return 0;
1480
1481         if (readonly) {
1482                 if (obj->last_write_req != NULL) {
1483                         ret = i915_wait_request(obj->last_write_req);
1484                         if (ret)
1485                                 return ret;
1486
1487                         i = obj->last_write_req->engine->id;
1488                         if (obj->last_read_req[i] == obj->last_write_req)
1489                                 i915_gem_object_retire__read(obj, i);
1490                         else
1491                                 i915_gem_object_retire__write(obj);
1492                 }
1493         } else {
1494                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1495                         if (obj->last_read_req[i] == NULL)
1496                                 continue;
1497
1498                         ret = i915_wait_request(obj->last_read_req[i]);
1499                         if (ret)
1500                                 return ret;
1501
1502                         i915_gem_object_retire__read(obj, i);
1503                 }
1504                 GEM_BUG_ON(obj->active);
1505         }
1506
1507         return 0;
1508 }
1509
1510 static void
1511 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1512                                struct drm_i915_gem_request *req)
1513 {
1514         int ring = req->engine->id;
1515
1516         if (obj->last_read_req[ring] == req)
1517                 i915_gem_object_retire__read(obj, ring);
1518         else if (obj->last_write_req == req)
1519                 i915_gem_object_retire__write(obj);
1520
1521         __i915_gem_request_retire__upto(req);
1522 }
1523
1524 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1525  * as the object state may change during this call.
1526  */
1527 static __must_check int
1528 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1529                                             struct intel_rps_client *rps,
1530                                             bool readonly)
1531 {
1532         struct drm_device *dev = obj->base.dev;
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1535         int ret, i, n = 0;
1536
1537         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1538         BUG_ON(!dev_priv->mm.interruptible);
1539
1540         if (!obj->active)
1541                 return 0;
1542
1543         if (readonly) {
1544                 struct drm_i915_gem_request *req;
1545
1546                 req = obj->last_write_req;
1547                 if (req == NULL)
1548                         return 0;
1549
1550                 requests[n++] = i915_gem_request_reference(req);
1551         } else {
1552                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1553                         struct drm_i915_gem_request *req;
1554
1555                         req = obj->last_read_req[i];
1556                         if (req == NULL)
1557                                 continue;
1558
1559                         requests[n++] = i915_gem_request_reference(req);
1560                 }
1561         }
1562
1563         mutex_unlock(&dev->struct_mutex);
1564         ret = 0;
1565         for (i = 0; ret == 0 && i < n; i++)
1566                 ret = __i915_wait_request(requests[i], true, NULL, rps);
1567         mutex_lock(&dev->struct_mutex);
1568
1569         for (i = 0; i < n; i++) {
1570                 if (ret == 0)
1571                         i915_gem_object_retire_request(obj, requests[i]);
1572                 i915_gem_request_unreference(requests[i]);
1573         }
1574
1575         return ret;
1576 }
1577
1578 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1579 {
1580         struct drm_i915_file_private *fpriv = file->driver_priv;
1581         return &fpriv->rps;
1582 }
1583
1584 /**
1585  * Called when user space prepares to use an object with the CPU, either
1586  * through the mmap ioctl's mapping or a GTT mapping.
1587  */
1588 int
1589 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1590                           struct drm_file *file)
1591 {
1592         struct drm_i915_gem_set_domain *args = data;
1593         struct drm_i915_gem_object *obj;
1594         uint32_t read_domains = args->read_domains;
1595         uint32_t write_domain = args->write_domain;
1596         int ret;
1597
1598         /* Only handle setting domains to types used by the CPU. */
1599         if (write_domain & I915_GEM_GPU_DOMAINS)
1600                 return -EINVAL;
1601
1602         if (read_domains & I915_GEM_GPU_DOMAINS)
1603                 return -EINVAL;
1604
1605         /* Having something in the write domain implies it's in the read
1606          * domain, and only that read domain.  Enforce that in the request.
1607          */
1608         if (write_domain != 0 && read_domains != write_domain)
1609                 return -EINVAL;
1610
1611         ret = i915_mutex_lock_interruptible(dev);
1612         if (ret)
1613                 return ret;
1614
1615         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1616         if (&obj->base == NULL) {
1617                 ret = -ENOENT;
1618                 goto unlock;
1619         }
1620
1621         /* Try to flush the object off the GPU without holding the lock.
1622          * We will repeat the flush holding the lock in the normal manner
1623          * to catch cases where we are gazumped.
1624          */
1625         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1626                                                           to_rps_client(file),
1627                                                           !write_domain);
1628         if (ret)
1629                 goto unref;
1630
1631         if (read_domains & I915_GEM_DOMAIN_GTT)
1632                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1633         else
1634                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1635
1636         if (write_domain != 0)
1637                 intel_fb_obj_invalidate(obj,
1638                                         write_domain == I915_GEM_DOMAIN_GTT ?
1639                                         ORIGIN_GTT : ORIGIN_CPU);
1640
1641 unref:
1642         drm_gem_object_unreference(&obj->base);
1643 unlock:
1644         mutex_unlock(&dev->struct_mutex);
1645         return ret;
1646 }
1647
1648 /**
1649  * Called when user space has done writes to this buffer
1650  */
1651 int
1652 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1653                          struct drm_file *file)
1654 {
1655         struct drm_i915_gem_sw_finish *args = data;
1656         struct drm_i915_gem_object *obj;
1657         int ret = 0;
1658
1659         ret = i915_mutex_lock_interruptible(dev);
1660         if (ret)
1661                 return ret;
1662
1663         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1664         if (&obj->base == NULL) {
1665                 ret = -ENOENT;
1666                 goto unlock;
1667         }
1668
1669         /* Pinned buffers may be scanout, so flush the cache */
1670         if (obj->pin_display)
1671                 i915_gem_object_flush_cpu_write_domain(obj);
1672
1673         drm_gem_object_unreference(&obj->base);
1674 unlock:
1675         mutex_unlock(&dev->struct_mutex);
1676         return ret;
1677 }
1678
1679 /**
1680  * Maps the contents of an object, returning the address it is mapped
1681  * into.
1682  *
1683  * While the mapping holds a reference on the contents of the object, it doesn't
1684  * imply a ref on the object itself.
1685  *
1686  * IMPORTANT:
1687  *
1688  * DRM driver writers who look a this function as an example for how to do GEM
1689  * mmap support, please don't implement mmap support like here. The modern way
1690  * to implement DRM mmap support is with an mmap offset ioctl (like
1691  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1692  * That way debug tooling like valgrind will understand what's going on, hiding
1693  * the mmap call in a driver private ioctl will break that. The i915 driver only
1694  * does cpu mmaps this way because we didn't know better.
1695  */
1696 int
1697 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1698                     struct drm_file *file)
1699 {
1700         struct drm_i915_gem_mmap *args = data;
1701         struct drm_gem_object *obj;
1702         unsigned long addr;
1703
1704         if (args->flags & ~(I915_MMAP_WC))
1705                 return -EINVAL;
1706
1707         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1708                 return -ENODEV;
1709
1710         obj = drm_gem_object_lookup(dev, file, args->handle);
1711         if (obj == NULL)
1712                 return -ENOENT;
1713
1714         /* prime objects have no backing filp to GEM mmap
1715          * pages from.
1716          */
1717         if (!obj->filp) {
1718                 drm_gem_object_unreference_unlocked(obj);
1719                 return -EINVAL;
1720         }
1721
1722         addr = vm_mmap(obj->filp, 0, args->size,
1723                        PROT_READ | PROT_WRITE, MAP_SHARED,
1724                        args->offset);
1725         if (args->flags & I915_MMAP_WC) {
1726                 struct mm_struct *mm = current->mm;
1727                 struct vm_area_struct *vma;
1728
1729                 down_write(&mm->mmap_sem);
1730                 vma = find_vma(mm, addr);
1731                 if (vma)
1732                         vma->vm_page_prot =
1733                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1734                 else
1735                         addr = -ENOMEM;
1736                 up_write(&mm->mmap_sem);
1737         }
1738         drm_gem_object_unreference_unlocked(obj);
1739         if (IS_ERR((void *)addr))
1740                 return addr;
1741
1742         args->addr_ptr = (uint64_t) addr;
1743
1744         return 0;
1745 }
1746
1747 /**
1748  * i915_gem_fault - fault a page into the GTT
1749  * @vma: VMA in question
1750  * @vmf: fault info
1751  *
1752  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1753  * from userspace.  The fault handler takes care of binding the object to
1754  * the GTT (if needed), allocating and programming a fence register (again,
1755  * only if needed based on whether the old reg is still valid or the object
1756  * is tiled) and inserting a new PTE into the faulting process.
1757  *
1758  * Note that the faulting process may involve evicting existing objects
1759  * from the GTT and/or fence registers to make room.  So performance may
1760  * suffer if the GTT working set is large or there are few fence registers
1761  * left.
1762  */
1763 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1764 {
1765         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1766         struct drm_device *dev = obj->base.dev;
1767         struct drm_i915_private *dev_priv = to_i915(dev);
1768         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1769         struct i915_ggtt_view view = i915_ggtt_view_normal;
1770         pgoff_t page_offset;
1771         unsigned long pfn;
1772         int ret = 0;
1773         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1774
1775         intel_runtime_pm_get(dev_priv);
1776
1777         /* We don't use vmf->pgoff since that has the fake offset */
1778         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1779                 PAGE_SHIFT;
1780
1781         ret = i915_mutex_lock_interruptible(dev);
1782         if (ret)
1783                 goto out;
1784
1785         trace_i915_gem_object_fault(obj, page_offset, true, write);
1786
1787         /* Try to flush the object off the GPU first without holding the lock.
1788          * Upon reacquiring the lock, we will perform our sanity checks and then
1789          * repeat the flush holding the lock in the normal manner to catch cases
1790          * where we are gazumped.
1791          */
1792         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1793         if (ret)
1794                 goto unlock;
1795
1796         /* Access to snoopable pages through the GTT is incoherent. */
1797         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1798                 ret = -EFAULT;
1799                 goto unlock;
1800         }
1801
1802         /* Use a partial view if the object is bigger than the aperture. */
1803         if (obj->base.size >= ggtt->mappable_end &&
1804             obj->tiling_mode == I915_TILING_NONE) {
1805                 static const unsigned int chunk_size = 256; // 1 MiB
1806
1807                 memset(&view, 0, sizeof(view));
1808                 view.type = I915_GGTT_VIEW_PARTIAL;
1809                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1810                 view.params.partial.size =
1811                         min_t(unsigned int,
1812                               chunk_size,
1813                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1814                               view.params.partial.offset);
1815         }
1816
1817         /* Now pin it into the GTT if needed */
1818         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1819         if (ret)
1820                 goto unlock;
1821
1822         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1823         if (ret)
1824                 goto unpin;
1825
1826         ret = i915_gem_object_get_fence(obj);
1827         if (ret)
1828                 goto unpin;
1829
1830         /* Finally, remap it using the new GTT offset */
1831         pfn = ggtt->mappable_base +
1832                 i915_gem_obj_ggtt_offset_view(obj, &view);
1833         pfn >>= PAGE_SHIFT;
1834
1835         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1836                 /* Overriding existing pages in partial view does not cause
1837                  * us any trouble as TLBs are still valid because the fault
1838                  * is due to userspace losing part of the mapping or never
1839                  * having accessed it before (at this partials' range).
1840                  */
1841                 unsigned long base = vma->vm_start +
1842                                      (view.params.partial.offset << PAGE_SHIFT);
1843                 unsigned int i;
1844
1845                 for (i = 0; i < view.params.partial.size; i++) {
1846                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1847                         if (ret)
1848                                 break;
1849                 }
1850
1851                 obj->fault_mappable = true;
1852         } else {
1853                 if (!obj->fault_mappable) {
1854                         unsigned long size = min_t(unsigned long,
1855                                                    vma->vm_end - vma->vm_start,
1856                                                    obj->base.size);
1857                         int i;
1858
1859                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1860                                 ret = vm_insert_pfn(vma,
1861                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1862                                                     pfn + i);
1863                                 if (ret)
1864                                         break;
1865                         }
1866
1867                         obj->fault_mappable = true;
1868                 } else
1869                         ret = vm_insert_pfn(vma,
1870                                             (unsigned long)vmf->virtual_address,
1871                                             pfn + page_offset);
1872         }
1873 unpin:
1874         i915_gem_object_ggtt_unpin_view(obj, &view);
1875 unlock:
1876         mutex_unlock(&dev->struct_mutex);
1877 out:
1878         switch (ret) {
1879         case -EIO:
1880                 /*
1881                  * We eat errors when the gpu is terminally wedged to avoid
1882                  * userspace unduly crashing (gl has no provisions for mmaps to
1883                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1884                  * and so needs to be reported.
1885                  */
1886                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1887                         ret = VM_FAULT_SIGBUS;
1888                         break;
1889                 }
1890         case -EAGAIN:
1891                 /*
1892                  * EAGAIN means the gpu is hung and we'll wait for the error
1893                  * handler to reset everything when re-faulting in
1894                  * i915_mutex_lock_interruptible.
1895                  */
1896         case 0:
1897         case -ERESTARTSYS:
1898         case -EINTR:
1899         case -EBUSY:
1900                 /*
1901                  * EBUSY is ok: this just means that another thread
1902                  * already did the job.
1903                  */
1904                 ret = VM_FAULT_NOPAGE;
1905                 break;
1906         case -ENOMEM:
1907                 ret = VM_FAULT_OOM;
1908                 break;
1909         case -ENOSPC:
1910         case -EFAULT:
1911                 ret = VM_FAULT_SIGBUS;
1912                 break;
1913         default:
1914                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1915                 ret = VM_FAULT_SIGBUS;
1916                 break;
1917         }
1918
1919         intel_runtime_pm_put(dev_priv);
1920         return ret;
1921 }
1922
1923 /**
1924  * i915_gem_release_mmap - remove physical page mappings
1925  * @obj: obj in question
1926  *
1927  * Preserve the reservation of the mmapping with the DRM core code, but
1928  * relinquish ownership of the pages back to the system.
1929  *
1930  * It is vital that we remove the page mapping if we have mapped a tiled
1931  * object through the GTT and then lose the fence register due to
1932  * resource pressure. Similarly if the object has been moved out of the
1933  * aperture, than pages mapped into userspace must be revoked. Removing the
1934  * mapping will then trigger a page fault on the next user access, allowing
1935  * fixup by i915_gem_fault().
1936  */
1937 void
1938 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1939 {
1940         /* Serialisation between user GTT access and our code depends upon
1941          * revoking the CPU's PTE whilst the mutex is held. The next user
1942          * pagefault then has to wait until we release the mutex.
1943          */
1944         lockdep_assert_held(&obj->base.dev->struct_mutex);
1945
1946         if (!obj->fault_mappable)
1947                 return;
1948
1949         drm_vma_node_unmap(&obj->base.vma_node,
1950                            obj->base.dev->anon_inode->i_mapping);
1951
1952         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1953          * memory transactions from userspace before we return. The TLB
1954          * flushing implied above by changing the PTE above *should* be
1955          * sufficient, an extra barrier here just provides us with a bit
1956          * of paranoid documentation about our requirement to serialise
1957          * memory writes before touching registers / GSM.
1958          */
1959         wmb();
1960
1961         obj->fault_mappable = false;
1962 }
1963
1964 void
1965 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1966 {
1967         struct drm_i915_gem_object *obj;
1968
1969         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1970                 i915_gem_release_mmap(obj);
1971 }
1972
1973 uint32_t
1974 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1975 {
1976         uint32_t gtt_size;
1977
1978         if (INTEL_INFO(dev)->gen >= 4 ||
1979             tiling_mode == I915_TILING_NONE)
1980                 return size;
1981
1982         /* Previous chips need a power-of-two fence region when tiling */
1983         if (INTEL_INFO(dev)->gen == 3)
1984                 gtt_size = 1024*1024;
1985         else
1986                 gtt_size = 512*1024;
1987
1988         while (gtt_size < size)
1989                 gtt_size <<= 1;
1990
1991         return gtt_size;
1992 }
1993
1994 /**
1995  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1996  * @obj: object to check
1997  *
1998  * Return the required GTT alignment for an object, taking into account
1999  * potential fence register mapping.
2000  */
2001 uint32_t
2002 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2003                            int tiling_mode, bool fenced)
2004 {
2005         /*
2006          * Minimum alignment is 4k (GTT page size), but might be greater
2007          * if a fence register is needed for the object.
2008          */
2009         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2010             tiling_mode == I915_TILING_NONE)
2011                 return 4096;
2012
2013         /*
2014          * Previous chips need to be aligned to the size of the smallest
2015          * fence register that can contain the object.
2016          */
2017         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2018 }
2019
2020 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2021 {
2022         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2023         int ret;
2024
2025         if (drm_vma_node_has_offset(&obj->base.vma_node))
2026                 return 0;
2027
2028         dev_priv->mm.shrinker_no_lock_stealing = true;
2029
2030         ret = drm_gem_create_mmap_offset(&obj->base);
2031         if (ret != -ENOSPC)
2032                 goto out;
2033
2034         /* Badly fragmented mmap space? The only way we can recover
2035          * space is by destroying unwanted objects. We can't randomly release
2036          * mmap_offsets as userspace expects them to be persistent for the
2037          * lifetime of the objects. The closest we can is to release the
2038          * offsets on purgeable objects by truncating it and marking it purged,
2039          * which prevents userspace from ever using that object again.
2040          */
2041         i915_gem_shrink(dev_priv,
2042                         obj->base.size >> PAGE_SHIFT,
2043                         I915_SHRINK_BOUND |
2044                         I915_SHRINK_UNBOUND |
2045                         I915_SHRINK_PURGEABLE);
2046         ret = drm_gem_create_mmap_offset(&obj->base);
2047         if (ret != -ENOSPC)
2048                 goto out;
2049
2050         i915_gem_shrink_all(dev_priv);
2051         ret = drm_gem_create_mmap_offset(&obj->base);
2052 out:
2053         dev_priv->mm.shrinker_no_lock_stealing = false;
2054
2055         return ret;
2056 }
2057
2058 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2059 {
2060         drm_gem_free_mmap_offset(&obj->base);
2061 }
2062
2063 int
2064 i915_gem_mmap_gtt(struct drm_file *file,
2065                   struct drm_device *dev,
2066                   uint32_t handle,
2067                   uint64_t *offset)
2068 {
2069         struct drm_i915_gem_object *obj;
2070         int ret;
2071
2072         ret = i915_mutex_lock_interruptible(dev);
2073         if (ret)
2074                 return ret;
2075
2076         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2077         if (&obj->base == NULL) {
2078                 ret = -ENOENT;
2079                 goto unlock;
2080         }
2081
2082         if (obj->madv != I915_MADV_WILLNEED) {
2083                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2084                 ret = -EFAULT;
2085                 goto out;
2086         }
2087
2088         ret = i915_gem_object_create_mmap_offset(obj);
2089         if (ret)
2090                 goto out;
2091
2092         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2093
2094 out:
2095         drm_gem_object_unreference(&obj->base);
2096 unlock:
2097         mutex_unlock(&dev->struct_mutex);
2098         return ret;
2099 }
2100
2101 /**
2102  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2103  * @dev: DRM device
2104  * @data: GTT mapping ioctl data
2105  * @file: GEM object info
2106  *
2107  * Simply returns the fake offset to userspace so it can mmap it.
2108  * The mmap call will end up in drm_gem_mmap(), which will set things
2109  * up so we can get faults in the handler above.
2110  *
2111  * The fault handler will take care of binding the object into the GTT
2112  * (since it may have been evicted to make room for something), allocating
2113  * a fence register, and mapping the appropriate aperture address into
2114  * userspace.
2115  */
2116 int
2117 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2118                         struct drm_file *file)
2119 {
2120         struct drm_i915_gem_mmap_gtt *args = data;
2121
2122         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2123 }
2124
2125 /* Immediately discard the backing storage */
2126 static void
2127 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2128 {
2129         i915_gem_object_free_mmap_offset(obj);
2130
2131         if (obj->base.filp == NULL)
2132                 return;
2133
2134         /* Our goal here is to return as much of the memory as
2135          * is possible back to the system as we are called from OOM.
2136          * To do this we must instruct the shmfs to drop all of its
2137          * backing pages, *now*.
2138          */
2139         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2140         obj->madv = __I915_MADV_PURGED;
2141 }
2142
2143 /* Try to discard unwanted pages */
2144 static void
2145 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2146 {
2147         struct address_space *mapping;
2148
2149         switch (obj->madv) {
2150         case I915_MADV_DONTNEED:
2151                 i915_gem_object_truncate(obj);
2152         case __I915_MADV_PURGED:
2153                 return;
2154         }
2155
2156         if (obj->base.filp == NULL)
2157                 return;
2158
2159         mapping = file_inode(obj->base.filp)->i_mapping,
2160         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2161 }
2162
2163 static void
2164 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2165 {
2166         struct sg_page_iter sg_iter;
2167         int ret;
2168
2169         BUG_ON(obj->madv == __I915_MADV_PURGED);
2170
2171         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2172         if (WARN_ON(ret)) {
2173                 /* In the event of a disaster, abandon all caches and
2174                  * hope for the best.
2175                  */
2176                 i915_gem_clflush_object(obj, true);
2177                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2178         }
2179
2180         i915_gem_gtt_finish_object(obj);
2181
2182         if (i915_gem_object_needs_bit17_swizzle(obj))
2183                 i915_gem_object_save_bit_17_swizzle(obj);
2184
2185         if (obj->madv == I915_MADV_DONTNEED)
2186                 obj->dirty = 0;
2187
2188         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2189                 struct page *page = sg_page_iter_page(&sg_iter);
2190
2191                 if (obj->dirty)
2192                         set_page_dirty(page);
2193
2194                 if (obj->madv == I915_MADV_WILLNEED)
2195                         mark_page_accessed(page);
2196
2197                 put_page(page);
2198         }
2199         obj->dirty = 0;
2200
2201         sg_free_table(obj->pages);
2202         kfree(obj->pages);
2203 }
2204
2205 int
2206 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2207 {
2208         const struct drm_i915_gem_object_ops *ops = obj->ops;
2209
2210         if (obj->pages == NULL)
2211                 return 0;
2212
2213         if (obj->pages_pin_count)
2214                 return -EBUSY;
2215
2216         BUG_ON(i915_gem_obj_bound_any(obj));
2217
2218         /* ->put_pages might need to allocate memory for the bit17 swizzle
2219          * array, hence protect them from being reaped by removing them from gtt
2220          * lists early. */
2221         list_del(&obj->global_list);
2222
2223         if (obj->mapping) {
2224                 if (is_vmalloc_addr(obj->mapping))
2225                         vunmap(obj->mapping);
2226                 else
2227                         kunmap(kmap_to_page(obj->mapping));
2228                 obj->mapping = NULL;
2229         }
2230
2231         ops->put_pages(obj);
2232         obj->pages = NULL;
2233
2234         i915_gem_object_invalidate(obj);
2235
2236         return 0;
2237 }
2238
2239 static int
2240 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2241 {
2242         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2243         int page_count, i;
2244         struct address_space *mapping;
2245         struct sg_table *st;
2246         struct scatterlist *sg;
2247         struct sg_page_iter sg_iter;
2248         struct page *page;
2249         unsigned long last_pfn = 0;     /* suppress gcc warning */
2250         int ret;
2251         gfp_t gfp;
2252
2253         /* Assert that the object is not currently in any GPU domain. As it
2254          * wasn't in the GTT, there shouldn't be any way it could have been in
2255          * a GPU cache
2256          */
2257         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2258         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2259
2260         st = kmalloc(sizeof(*st), GFP_KERNEL);
2261         if (st == NULL)
2262                 return -ENOMEM;
2263
2264         page_count = obj->base.size / PAGE_SIZE;
2265         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2266                 kfree(st);
2267                 return -ENOMEM;
2268         }
2269
2270         /* Get the list of pages out of our struct file.  They'll be pinned
2271          * at this point until we release them.
2272          *
2273          * Fail silently without starting the shrinker
2274          */
2275         mapping = file_inode(obj->base.filp)->i_mapping;
2276         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2277         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2278         sg = st->sgl;
2279         st->nents = 0;
2280         for (i = 0; i < page_count; i++) {
2281                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2282                 if (IS_ERR(page)) {
2283                         i915_gem_shrink(dev_priv,
2284                                         page_count,
2285                                         I915_SHRINK_BOUND |
2286                                         I915_SHRINK_UNBOUND |
2287                                         I915_SHRINK_PURGEABLE);
2288                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2289                 }
2290                 if (IS_ERR(page)) {
2291                         /* We've tried hard to allocate the memory by reaping
2292                          * our own buffer, now let the real VM do its job and
2293                          * go down in flames if truly OOM.
2294                          */
2295                         i915_gem_shrink_all(dev_priv);
2296                         page = shmem_read_mapping_page(mapping, i);
2297                         if (IS_ERR(page)) {
2298                                 ret = PTR_ERR(page);
2299                                 goto err_pages;
2300                         }
2301                 }
2302 #ifdef CONFIG_SWIOTLB
2303                 if (swiotlb_nr_tbl()) {
2304                         st->nents++;
2305                         sg_set_page(sg, page, PAGE_SIZE, 0);
2306                         sg = sg_next(sg);
2307                         continue;
2308                 }
2309 #endif
2310                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2311                         if (i)
2312                                 sg = sg_next(sg);
2313                         st->nents++;
2314                         sg_set_page(sg, page, PAGE_SIZE, 0);
2315                 } else {
2316                         sg->length += PAGE_SIZE;
2317                 }
2318                 last_pfn = page_to_pfn(page);
2319
2320                 /* Check that the i965g/gm workaround works. */
2321                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2322         }
2323 #ifdef CONFIG_SWIOTLB
2324         if (!swiotlb_nr_tbl())
2325 #endif
2326                 sg_mark_end(sg);
2327         obj->pages = st;
2328
2329         ret = i915_gem_gtt_prepare_object(obj);
2330         if (ret)
2331                 goto err_pages;
2332
2333         if (i915_gem_object_needs_bit17_swizzle(obj))
2334                 i915_gem_object_do_bit_17_swizzle(obj);
2335
2336         if (obj->tiling_mode != I915_TILING_NONE &&
2337             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2338                 i915_gem_object_pin_pages(obj);
2339
2340         return 0;
2341
2342 err_pages:
2343         sg_mark_end(sg);
2344         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2345                 put_page(sg_page_iter_page(&sg_iter));
2346         sg_free_table(st);
2347         kfree(st);
2348
2349         /* shmemfs first checks if there is enough memory to allocate the page
2350          * and reports ENOSPC should there be insufficient, along with the usual
2351          * ENOMEM for a genuine allocation failure.
2352          *
2353          * We use ENOSPC in our driver to mean that we have run out of aperture
2354          * space and so want to translate the error from shmemfs back to our
2355          * usual understanding of ENOMEM.
2356          */
2357         if (ret == -ENOSPC)
2358                 ret = -ENOMEM;
2359
2360         return ret;
2361 }
2362
2363 /* Ensure that the associated pages are gathered from the backing storage
2364  * and pinned into our object. i915_gem_object_get_pages() may be called
2365  * multiple times before they are released by a single call to
2366  * i915_gem_object_put_pages() - once the pages are no longer referenced
2367  * either as a result of memory pressure (reaping pages under the shrinker)
2368  * or as the object is itself released.
2369  */
2370 int
2371 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2372 {
2373         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2374         const struct drm_i915_gem_object_ops *ops = obj->ops;
2375         int ret;
2376
2377         if (obj->pages)
2378                 return 0;
2379
2380         if (obj->madv != I915_MADV_WILLNEED) {
2381                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2382                 return -EFAULT;
2383         }
2384
2385         BUG_ON(obj->pages_pin_count);
2386
2387         ret = ops->get_pages(obj);
2388         if (ret)
2389                 return ret;
2390
2391         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2392
2393         obj->get_page.sg = obj->pages->sgl;
2394         obj->get_page.last = 0;
2395
2396         return 0;
2397 }
2398
2399 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2400 {
2401         int ret;
2402
2403         lockdep_assert_held(&obj->base.dev->struct_mutex);
2404
2405         ret = i915_gem_object_get_pages(obj);
2406         if (ret)
2407                 return ERR_PTR(ret);
2408
2409         i915_gem_object_pin_pages(obj);
2410
2411         if (obj->mapping == NULL) {
2412                 struct page **pages;
2413
2414                 pages = NULL;
2415                 if (obj->base.size == PAGE_SIZE)
2416                         obj->mapping = kmap(sg_page(obj->pages->sgl));
2417                 else
2418                         pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2419                                                sizeof(*pages),
2420                                                GFP_TEMPORARY);
2421                 if (pages != NULL) {
2422                         struct sg_page_iter sg_iter;
2423                         int n;
2424
2425                         n = 0;
2426                         for_each_sg_page(obj->pages->sgl, &sg_iter,
2427                                          obj->pages->nents, 0)
2428                                 pages[n++] = sg_page_iter_page(&sg_iter);
2429
2430                         obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2431                         drm_free_large(pages);
2432                 }
2433                 if (obj->mapping == NULL) {
2434                         i915_gem_object_unpin_pages(obj);
2435                         return ERR_PTR(-ENOMEM);
2436                 }
2437         }
2438
2439         return obj->mapping;
2440 }
2441
2442 void i915_vma_move_to_active(struct i915_vma *vma,
2443                              struct drm_i915_gem_request *req)
2444 {
2445         struct drm_i915_gem_object *obj = vma->obj;
2446         struct intel_engine_cs *engine;
2447
2448         engine = i915_gem_request_get_engine(req);
2449
2450         /* Add a reference if we're newly entering the active list. */
2451         if (obj->active == 0)
2452                 drm_gem_object_reference(&obj->base);
2453         obj->active |= intel_engine_flag(engine);
2454
2455         list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2456         i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2457
2458         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2459 }
2460
2461 static void
2462 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2463 {
2464         GEM_BUG_ON(obj->last_write_req == NULL);
2465         GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2466
2467         i915_gem_request_assign(&obj->last_write_req, NULL);
2468         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2469 }
2470
2471 static void
2472 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2473 {
2474         struct i915_vma *vma;
2475
2476         GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2477         GEM_BUG_ON(!(obj->active & (1 << ring)));
2478
2479         list_del_init(&obj->engine_list[ring]);
2480         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2481
2482         if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2483                 i915_gem_object_retire__write(obj);
2484
2485         obj->active &= ~(1 << ring);
2486         if (obj->active)
2487                 return;
2488
2489         /* Bump our place on the bound list to keep it roughly in LRU order
2490          * so that we don't steal from recently used but inactive objects
2491          * (unless we are forced to ofc!)
2492          */
2493         list_move_tail(&obj->global_list,
2494                        &to_i915(obj->base.dev)->mm.bound_list);
2495
2496         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2497                 if (!list_empty(&vma->vm_link))
2498                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2499         }
2500
2501         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2502         drm_gem_object_unreference(&obj->base);
2503 }
2504
2505 static int
2506 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2507 {
2508         struct drm_i915_private *dev_priv = dev->dev_private;
2509         struct intel_engine_cs *engine;
2510         int ret;
2511
2512         /* Carefully retire all requests without writing to the rings */
2513         for_each_engine(engine, dev_priv) {
2514                 ret = intel_engine_idle(engine);
2515                 if (ret)
2516                         return ret;
2517         }
2518         i915_gem_retire_requests(dev);
2519
2520         /* Finally reset hw state */
2521         for_each_engine(engine, dev_priv)
2522                 intel_ring_init_seqno(engine, seqno);
2523
2524         return 0;
2525 }
2526
2527 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2528 {
2529         struct drm_i915_private *dev_priv = dev->dev_private;
2530         int ret;
2531
2532         if (seqno == 0)
2533                 return -EINVAL;
2534
2535         /* HWS page needs to be set less than what we
2536          * will inject to ring
2537          */
2538         ret = i915_gem_init_seqno(dev, seqno - 1);
2539         if (ret)
2540                 return ret;
2541
2542         /* Carefully set the last_seqno value so that wrap
2543          * detection still works
2544          */
2545         dev_priv->next_seqno = seqno;
2546         dev_priv->last_seqno = seqno - 1;
2547         if (dev_priv->last_seqno == 0)
2548                 dev_priv->last_seqno--;
2549
2550         return 0;
2551 }
2552
2553 int
2554 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2555 {
2556         struct drm_i915_private *dev_priv = dev->dev_private;
2557
2558         /* reserve 0 for non-seqno */
2559         if (dev_priv->next_seqno == 0) {
2560                 int ret = i915_gem_init_seqno(dev, 0);
2561                 if (ret)
2562                         return ret;
2563
2564                 dev_priv->next_seqno = 1;
2565         }
2566
2567         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2568         return 0;
2569 }
2570
2571 /*
2572  * NB: This function is not allowed to fail. Doing so would mean the the
2573  * request is not being tracked for completion but the work itself is
2574  * going to happen on the hardware. This would be a Bad Thing(tm).
2575  */
2576 void __i915_add_request(struct drm_i915_gem_request *request,
2577                         struct drm_i915_gem_object *obj,
2578                         bool flush_caches)
2579 {
2580         struct intel_engine_cs *engine;
2581         struct drm_i915_private *dev_priv;
2582         struct intel_ringbuffer *ringbuf;
2583         u32 request_start;
2584         int ret;
2585
2586         if (WARN_ON(request == NULL))
2587                 return;
2588
2589         engine = request->engine;
2590         dev_priv = request->i915;
2591         ringbuf = request->ringbuf;
2592
2593         /*
2594          * To ensure that this call will not fail, space for its emissions
2595          * should already have been reserved in the ring buffer. Let the ring
2596          * know that it is time to use that space up.
2597          */
2598         intel_ring_reserved_space_use(ringbuf);
2599
2600         request_start = intel_ring_get_tail(ringbuf);
2601         /*
2602          * Emit any outstanding flushes - execbuf can fail to emit the flush
2603          * after having emitted the batchbuffer command. Hence we need to fix
2604          * things up similar to emitting the lazy request. The difference here
2605          * is that the flush _must_ happen before the next request, no matter
2606          * what.
2607          */
2608         if (flush_caches) {
2609                 if (i915.enable_execlists)
2610                         ret = logical_ring_flush_all_caches(request);
2611                 else
2612                         ret = intel_ring_flush_all_caches(request);
2613                 /* Not allowed to fail! */
2614                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2615         }
2616
2617         trace_i915_gem_request_add(request);
2618
2619         request->head = request_start;
2620
2621         /* Whilst this request exists, batch_obj will be on the
2622          * active_list, and so will hold the active reference. Only when this
2623          * request is retired will the the batch_obj be moved onto the
2624          * inactive_list and lose its active reference. Hence we do not need
2625          * to explicitly hold another reference here.
2626          */
2627         request->batch_obj = obj;
2628
2629         /* Seal the request and mark it as pending execution. Note that
2630          * we may inspect this state, without holding any locks, during
2631          * hangcheck. Hence we apply the barrier to ensure that we do not
2632          * see a more recent value in the hws than we are tracking.
2633          */
2634         request->emitted_jiffies = jiffies;
2635         request->previous_seqno = engine->last_submitted_seqno;
2636         smp_store_mb(engine->last_submitted_seqno, request->seqno);
2637         list_add_tail(&request->list, &engine->request_list);
2638
2639         /* Record the position of the start of the request so that
2640          * should we detect the updated seqno part-way through the
2641          * GPU processing the request, we never over-estimate the
2642          * position of the head.
2643          */
2644         request->postfix = intel_ring_get_tail(ringbuf);
2645
2646         if (i915.enable_execlists)
2647                 ret = engine->emit_request(request);
2648         else {
2649                 ret = engine->add_request(request);
2650
2651                 request->tail = intel_ring_get_tail(ringbuf);
2652         }
2653         /* Not allowed to fail! */
2654         WARN(ret, "emit|add_request failed: %d!\n", ret);
2655
2656         i915_queue_hangcheck(engine->dev);
2657
2658         queue_delayed_work(dev_priv->wq,
2659                            &dev_priv->mm.retire_work,
2660                            round_jiffies_up_relative(HZ));
2661         intel_mark_busy(dev_priv->dev);
2662
2663         /* Sanity check that the reserved size was large enough. */
2664         intel_ring_reserved_space_end(ringbuf);
2665 }
2666
2667 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2668                                    const struct intel_context *ctx)
2669 {
2670         unsigned long elapsed;
2671
2672         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2673
2674         if (ctx->hang_stats.banned)
2675                 return true;
2676
2677         if (ctx->hang_stats.ban_period_seconds &&
2678             elapsed <= ctx->hang_stats.ban_period_seconds) {
2679                 if (!i915_gem_context_is_default(ctx)) {
2680                         DRM_DEBUG("context hanging too fast, banning!\n");
2681                         return true;
2682                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2683                         if (i915_stop_ring_allow_warn(dev_priv))
2684                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2685                         return true;
2686                 }
2687         }
2688
2689         return false;
2690 }
2691
2692 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2693                                   struct intel_context *ctx,
2694                                   const bool guilty)
2695 {
2696         struct i915_ctx_hang_stats *hs;
2697
2698         if (WARN_ON(!ctx))
2699                 return;
2700
2701         hs = &ctx->hang_stats;
2702
2703         if (guilty) {
2704                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2705                 hs->batch_active++;
2706                 hs->guilty_ts = get_seconds();
2707         } else {
2708                 hs->batch_pending++;
2709         }
2710 }
2711
2712 void i915_gem_request_free(struct kref *req_ref)
2713 {
2714         struct drm_i915_gem_request *req = container_of(req_ref,
2715                                                  typeof(*req), ref);
2716         struct intel_context *ctx = req->ctx;
2717
2718         if (req->file_priv)
2719                 i915_gem_request_remove_from_client(req);
2720
2721         if (ctx) {
2722                 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2723                         intel_lr_context_unpin(ctx, req->engine);
2724
2725                 i915_gem_context_unreference(ctx);
2726         }
2727
2728         kmem_cache_free(req->i915->requests, req);
2729 }
2730
2731 static inline int
2732 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2733                          struct intel_context *ctx,
2734                          struct drm_i915_gem_request **req_out)
2735 {
2736         struct drm_i915_private *dev_priv = to_i915(engine->dev);
2737         unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2738         struct drm_i915_gem_request *req;
2739         int ret;
2740
2741         if (!req_out)
2742                 return -EINVAL;
2743
2744         *req_out = NULL;
2745
2746         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2747          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2748          * and restart.
2749          */
2750         ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2751         if (ret)
2752                 return ret;
2753
2754         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2755         if (req == NULL)
2756                 return -ENOMEM;
2757
2758         ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2759         if (ret)
2760                 goto err;
2761
2762         kref_init(&req->ref);
2763         req->i915 = dev_priv;
2764         req->engine = engine;
2765         req->reset_counter = reset_counter;
2766         req->ctx  = ctx;
2767         i915_gem_context_reference(req->ctx);
2768
2769         if (i915.enable_execlists)
2770                 ret = intel_logical_ring_alloc_request_extras(req);
2771         else
2772                 ret = intel_ring_alloc_request_extras(req);
2773         if (ret) {
2774                 i915_gem_context_unreference(req->ctx);
2775                 goto err;
2776         }
2777
2778         /*
2779          * Reserve space in the ring buffer for all the commands required to
2780          * eventually emit this request. This is to guarantee that the
2781          * i915_add_request() call can't fail. Note that the reserve may need
2782          * to be redone if the request is not actually submitted straight
2783          * away, e.g. because a GPU scheduler has deferred it.
2784          */
2785         if (i915.enable_execlists)
2786                 ret = intel_logical_ring_reserve_space(req);
2787         else
2788                 ret = intel_ring_reserve_space(req);
2789         if (ret) {
2790                 /*
2791                  * At this point, the request is fully allocated even if not
2792                  * fully prepared. Thus it can be cleaned up using the proper
2793                  * free code.
2794                  */
2795                 intel_ring_reserved_space_cancel(req->ringbuf);
2796                 i915_gem_request_unreference(req);
2797                 return ret;
2798         }
2799
2800         *req_out = req;
2801         return 0;
2802
2803 err:
2804         kmem_cache_free(dev_priv->requests, req);
2805         return ret;
2806 }
2807
2808 /**
2809  * i915_gem_request_alloc - allocate a request structure
2810  *
2811  * @engine: engine that we wish to issue the request on.
2812  * @ctx: context that the request will be associated with.
2813  *       This can be NULL if the request is not directly related to
2814  *       any specific user context, in which case this function will
2815  *       choose an appropriate context to use.
2816  *
2817  * Returns a pointer to the allocated request if successful,
2818  * or an error code if not.
2819  */
2820 struct drm_i915_gem_request *
2821 i915_gem_request_alloc(struct intel_engine_cs *engine,
2822                        struct intel_context *ctx)
2823 {
2824         struct drm_i915_gem_request *req;
2825         int err;
2826
2827         if (ctx == NULL)
2828                 ctx = to_i915(engine->dev)->kernel_context;
2829         err = __i915_gem_request_alloc(engine, ctx, &req);
2830         return err ? ERR_PTR(err) : req;
2831 }
2832
2833 struct drm_i915_gem_request *
2834 i915_gem_find_active_request(struct intel_engine_cs *engine)
2835 {
2836         struct drm_i915_gem_request *request;
2837
2838         list_for_each_entry(request, &engine->request_list, list) {
2839                 if (i915_gem_request_completed(request, false))
2840                         continue;
2841
2842                 return request;
2843         }
2844
2845         return NULL;
2846 }
2847
2848 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2849                                        struct intel_engine_cs *engine)
2850 {
2851         struct drm_i915_gem_request *request;
2852         bool ring_hung;
2853
2854         request = i915_gem_find_active_request(engine);
2855
2856         if (request == NULL)
2857                 return;
2858
2859         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2860
2861         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2862
2863         list_for_each_entry_continue(request, &engine->request_list, list)
2864                 i915_set_reset_status(dev_priv, request->ctx, false);
2865 }
2866
2867 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2868                                         struct intel_engine_cs *engine)
2869 {
2870         struct intel_ringbuffer *buffer;
2871
2872         while (!list_empty(&engine->active_list)) {
2873                 struct drm_i915_gem_object *obj;
2874
2875                 obj = list_first_entry(&engine->active_list,
2876                                        struct drm_i915_gem_object,
2877                                        engine_list[engine->id]);
2878
2879                 i915_gem_object_retire__read(obj, engine->id);
2880         }
2881
2882         /*
2883          * Clear the execlists queue up before freeing the requests, as those
2884          * are the ones that keep the context and ringbuffer backing objects
2885          * pinned in place.
2886          */
2887
2888         if (i915.enable_execlists) {
2889                 /* Ensure irq handler finishes or is cancelled. */
2890                 tasklet_kill(&engine->irq_tasklet);
2891
2892                 spin_lock_bh(&engine->execlist_lock);
2893                 /* list_splice_tail_init checks for empty lists */
2894                 list_splice_tail_init(&engine->execlist_queue,
2895                                       &engine->execlist_retired_req_list);
2896                 spin_unlock_bh(&engine->execlist_lock);
2897
2898                 intel_execlists_retire_requests(engine);
2899         }
2900
2901         /*
2902          * We must free the requests after all the corresponding objects have
2903          * been moved off active lists. Which is the same order as the normal
2904          * retire_requests function does. This is important if object hold
2905          * implicit references on things like e.g. ppgtt address spaces through
2906          * the request.
2907          */
2908         while (!list_empty(&engine->request_list)) {
2909                 struct drm_i915_gem_request *request;
2910
2911                 request = list_first_entry(&engine->request_list,
2912                                            struct drm_i915_gem_request,
2913                                            list);
2914
2915                 i915_gem_request_retire(request);
2916         }
2917
2918         /* Having flushed all requests from all queues, we know that all
2919          * ringbuffers must now be empty. However, since we do not reclaim
2920          * all space when retiring the request (to prevent HEADs colliding
2921          * with rapid ringbuffer wraparound) the amount of available space
2922          * upon reset is less than when we start. Do one more pass over
2923          * all the ringbuffers to reset last_retired_head.
2924          */
2925         list_for_each_entry(buffer, &engine->buffers, link) {
2926                 buffer->last_retired_head = buffer->tail;
2927                 intel_ring_update_space(buffer);
2928         }
2929
2930         intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2931 }
2932
2933 void i915_gem_reset(struct drm_device *dev)
2934 {
2935         struct drm_i915_private *dev_priv = dev->dev_private;
2936         struct intel_engine_cs *engine;
2937
2938         /*
2939          * Before we free the objects from the requests, we need to inspect
2940          * them for finding the guilty party. As the requests only borrow
2941          * their reference to the objects, the inspection must be done first.
2942          */
2943         for_each_engine(engine, dev_priv)
2944                 i915_gem_reset_engine_status(dev_priv, engine);
2945
2946         for_each_engine(engine, dev_priv)
2947                 i915_gem_reset_engine_cleanup(dev_priv, engine);
2948
2949         i915_gem_context_reset(dev);
2950
2951         i915_gem_restore_fences(dev);
2952
2953         WARN_ON(i915_verify_lists(dev));
2954 }
2955
2956 /**
2957  * This function clears the request list as sequence numbers are passed.
2958  */
2959 void
2960 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2961 {
2962         WARN_ON(i915_verify_lists(engine->dev));
2963
2964         /* Retire requests first as we use it above for the early return.
2965          * If we retire requests last, we may use a later seqno and so clear
2966          * the requests lists without clearing the active list, leading to
2967          * confusion.
2968          */
2969         while (!list_empty(&engine->request_list)) {
2970                 struct drm_i915_gem_request *request;
2971
2972                 request = list_first_entry(&engine->request_list,
2973                                            struct drm_i915_gem_request,
2974                                            list);
2975
2976                 if (!i915_gem_request_completed(request, true))
2977                         break;
2978
2979                 i915_gem_request_retire(request);
2980         }
2981
2982         /* Move any buffers on the active list that are no longer referenced
2983          * by the ringbuffer to the flushing/inactive lists as appropriate,
2984          * before we free the context associated with the requests.
2985          */
2986         while (!list_empty(&engine->active_list)) {
2987                 struct drm_i915_gem_object *obj;
2988
2989                 obj = list_first_entry(&engine->active_list,
2990                                        struct drm_i915_gem_object,
2991                                        engine_list[engine->id]);
2992
2993                 if (!list_empty(&obj->last_read_req[engine->id]->list))
2994                         break;
2995
2996                 i915_gem_object_retire__read(obj, engine->id);
2997         }
2998
2999         if (unlikely(engine->trace_irq_req &&
3000                      i915_gem_request_completed(engine->trace_irq_req, true))) {
3001                 engine->irq_put(engine);
3002                 i915_gem_request_assign(&engine->trace_irq_req, NULL);
3003         }
3004
3005         WARN_ON(i915_verify_lists(engine->dev));
3006 }
3007
3008 bool
3009 i915_gem_retire_requests(struct drm_device *dev)
3010 {
3011         struct drm_i915_private *dev_priv = dev->dev_private;
3012         struct intel_engine_cs *engine;
3013         bool idle = true;
3014
3015         for_each_engine(engine, dev_priv) {
3016                 i915_gem_retire_requests_ring(engine);
3017                 idle &= list_empty(&engine->request_list);
3018                 if (i915.enable_execlists) {
3019                         spin_lock_bh(&engine->execlist_lock);
3020                         idle &= list_empty(&engine->execlist_queue);
3021                         spin_unlock_bh(&engine->execlist_lock);
3022
3023                         intel_execlists_retire_requests(engine);
3024                 }
3025         }
3026
3027         if (idle)
3028                 mod_delayed_work(dev_priv->wq,
3029                                    &dev_priv->mm.idle_work,
3030                                    msecs_to_jiffies(100));
3031
3032         return idle;
3033 }
3034
3035 static void
3036 i915_gem_retire_work_handler(struct work_struct *work)
3037 {
3038         struct drm_i915_private *dev_priv =
3039                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3040         struct drm_device *dev = dev_priv->dev;
3041         bool idle;
3042
3043         /* Come back later if the device is busy... */
3044         idle = false;
3045         if (mutex_trylock(&dev->struct_mutex)) {
3046                 idle = i915_gem_retire_requests(dev);
3047                 mutex_unlock(&dev->struct_mutex);
3048         }
3049         if (!idle)
3050                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3051                                    round_jiffies_up_relative(HZ));
3052 }
3053
3054 static void
3055 i915_gem_idle_work_handler(struct work_struct *work)
3056 {
3057         struct drm_i915_private *dev_priv =
3058                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3059         struct drm_device *dev = dev_priv->dev;
3060         struct intel_engine_cs *engine;
3061
3062         for_each_engine(engine, dev_priv)
3063                 if (!list_empty(&engine->request_list))
3064                         return;
3065
3066         /* we probably should sync with hangcheck here, using cancel_work_sync.
3067          * Also locking seems to be fubar here, engine->request_list is protected
3068          * by dev->struct_mutex. */
3069
3070         intel_mark_idle(dev);
3071
3072         if (mutex_trylock(&dev->struct_mutex)) {
3073                 for_each_engine(engine, dev_priv)
3074                         i915_gem_batch_pool_fini(&engine->batch_pool);
3075
3076                 mutex_unlock(&dev->struct_mutex);
3077         }
3078 }
3079
3080 /**
3081  * Ensures that an object will eventually get non-busy by flushing any required
3082  * write domains, emitting any outstanding lazy request and retiring and
3083  * completed requests.
3084  */
3085 static int
3086 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3087 {
3088         int i;
3089
3090         if (!obj->active)
3091                 return 0;
3092
3093         for (i = 0; i < I915_NUM_ENGINES; i++) {
3094                 struct drm_i915_gem_request *req;
3095
3096                 req = obj->last_read_req[i];
3097                 if (req == NULL)
3098                         continue;
3099
3100                 if (list_empty(&req->list))
3101                         goto retire;
3102
3103                 if (i915_gem_request_completed(req, true)) {
3104                         __i915_gem_request_retire__upto(req);
3105 retire:
3106                         i915_gem_object_retire__read(obj, i);
3107                 }
3108         }
3109
3110         return 0;
3111 }
3112
3113 /**
3114  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3115  * @DRM_IOCTL_ARGS: standard ioctl arguments
3116  *
3117  * Returns 0 if successful, else an error is returned with the remaining time in
3118  * the timeout parameter.
3119  *  -ETIME: object is still busy after timeout
3120  *  -ERESTARTSYS: signal interrupted the wait
3121  *  -ENONENT: object doesn't exist
3122  * Also possible, but rare:
3123  *  -EAGAIN: GPU wedged
3124  *  -ENOMEM: damn
3125  *  -ENODEV: Internal IRQ fail
3126  *  -E?: The add request failed
3127  *
3128  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3129  * non-zero timeout parameter the wait ioctl will wait for the given number of
3130  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3131  * without holding struct_mutex the object may become re-busied before this
3132  * function completes. A similar but shorter * race condition exists in the busy
3133  * ioctl
3134  */
3135 int
3136 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3137 {
3138         struct drm_i915_gem_wait *args = data;
3139         struct drm_i915_gem_object *obj;
3140         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3141         int i, n = 0;
3142         int ret;
3143
3144         if (args->flags != 0)
3145                 return -EINVAL;
3146
3147         ret = i915_mutex_lock_interruptible(dev);
3148         if (ret)
3149                 return ret;
3150
3151         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3152         if (&obj->base == NULL) {
3153                 mutex_unlock(&dev->struct_mutex);
3154                 return -ENOENT;
3155         }
3156
3157         /* Need to make sure the object gets inactive eventually. */
3158         ret = i915_gem_object_flush_active(obj);
3159         if (ret)
3160                 goto out;
3161
3162         if (!obj->active)
3163                 goto out;
3164
3165         /* Do this after OLR check to make sure we make forward progress polling
3166          * on this IOCTL with a timeout == 0 (like busy ioctl)
3167          */
3168         if (args->timeout_ns == 0) {
3169                 ret = -ETIME;
3170                 goto out;
3171         }
3172
3173         drm_gem_object_unreference(&obj->base);
3174
3175         for (i = 0; i < I915_NUM_ENGINES; i++) {
3176                 if (obj->last_read_req[i] == NULL)
3177                         continue;
3178
3179                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3180         }
3181
3182         mutex_unlock(&dev->struct_mutex);
3183
3184         for (i = 0; i < n; i++) {
3185                 if (ret == 0)
3186                         ret = __i915_wait_request(req[i], true,
3187                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3188                                                   to_rps_client(file));
3189                 i915_gem_request_unreference__unlocked(req[i]);
3190         }
3191         return ret;
3192
3193 out:
3194         drm_gem_object_unreference(&obj->base);
3195         mutex_unlock(&dev->struct_mutex);
3196         return ret;
3197 }
3198
3199 static int
3200 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3201                        struct intel_engine_cs *to,
3202                        struct drm_i915_gem_request *from_req,
3203                        struct drm_i915_gem_request **to_req)
3204 {
3205         struct intel_engine_cs *from;
3206         int ret;
3207
3208         from = i915_gem_request_get_engine(from_req);
3209         if (to == from)
3210                 return 0;
3211
3212         if (i915_gem_request_completed(from_req, true))
3213                 return 0;
3214
3215         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3216                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3217                 ret = __i915_wait_request(from_req,
3218                                           i915->mm.interruptible,
3219                                           NULL,
3220                                           &i915->rps.semaphores);
3221                 if (ret)
3222                         return ret;
3223
3224                 i915_gem_object_retire_request(obj, from_req);
3225         } else {
3226                 int idx = intel_ring_sync_index(from, to);
3227                 u32 seqno = i915_gem_request_get_seqno(from_req);
3228
3229                 WARN_ON(!to_req);
3230
3231                 if (seqno <= from->semaphore.sync_seqno[idx])
3232                         return 0;
3233
3234                 if (*to_req == NULL) {
3235                         struct drm_i915_gem_request *req;
3236
3237                         req = i915_gem_request_alloc(to, NULL);
3238                         if (IS_ERR(req))
3239                                 return PTR_ERR(req);
3240
3241                         *to_req = req;
3242                 }
3243
3244                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3245                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3246                 if (ret)
3247                         return ret;
3248
3249                 /* We use last_read_req because sync_to()
3250                  * might have just caused seqno wrap under
3251                  * the radar.
3252                  */
3253                 from->semaphore.sync_seqno[idx] =
3254                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3255         }
3256
3257         return 0;
3258 }
3259
3260 /**
3261  * i915_gem_object_sync - sync an object to a ring.
3262  *
3263  * @obj: object which may be in use on another ring.
3264  * @to: ring we wish to use the object on. May be NULL.
3265  * @to_req: request we wish to use the object for. See below.
3266  *          This will be allocated and returned if a request is
3267  *          required but not passed in.
3268  *
3269  * This code is meant to abstract object synchronization with the GPU.
3270  * Calling with NULL implies synchronizing the object with the CPU
3271  * rather than a particular GPU ring. Conceptually we serialise writes
3272  * between engines inside the GPU. We only allow one engine to write
3273  * into a buffer at any time, but multiple readers. To ensure each has
3274  * a coherent view of memory, we must:
3275  *
3276  * - If there is an outstanding write request to the object, the new
3277  *   request must wait for it to complete (either CPU or in hw, requests
3278  *   on the same ring will be naturally ordered).
3279  *
3280  * - If we are a write request (pending_write_domain is set), the new
3281  *   request must wait for outstanding read requests to complete.
3282  *
3283  * For CPU synchronisation (NULL to) no request is required. For syncing with
3284  * rings to_req must be non-NULL. However, a request does not have to be
3285  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3286  * request will be allocated automatically and returned through *to_req. Note
3287  * that it is not guaranteed that commands will be emitted (because the system
3288  * might already be idle). Hence there is no need to create a request that
3289  * might never have any work submitted. Note further that if a request is
3290  * returned in *to_req, it is the responsibility of the caller to submit
3291  * that request (after potentially adding more work to it).
3292  *
3293  * Returns 0 if successful, else propagates up the lower layer error.
3294  */
3295 int
3296 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3297                      struct intel_engine_cs *to,
3298                      struct drm_i915_gem_request **to_req)
3299 {
3300         const bool readonly = obj->base.pending_write_domain == 0;
3301         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3302         int ret, i, n;
3303
3304         if (!obj->active)
3305                 return 0;
3306
3307         if (to == NULL)
3308                 return i915_gem_object_wait_rendering(obj, readonly);
3309
3310         n = 0;
3311         if (readonly) {
3312                 if (obj->last_write_req)
3313                         req[n++] = obj->last_write_req;
3314         } else {
3315                 for (i = 0; i < I915_NUM_ENGINES; i++)
3316                         if (obj->last_read_req[i])
3317                                 req[n++] = obj->last_read_req[i];
3318         }
3319         for (i = 0; i < n; i++) {
3320                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3321                 if (ret)
3322                         return ret;
3323         }
3324
3325         return 0;
3326 }
3327
3328 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3329 {
3330         u32 old_write_domain, old_read_domains;
3331
3332         /* Force a pagefault for domain tracking on next user access */
3333         i915_gem_release_mmap(obj);
3334
3335         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3336                 return;
3337
3338         old_read_domains = obj->base.read_domains;
3339         old_write_domain = obj->base.write_domain;
3340
3341         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3342         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3343
3344         trace_i915_gem_object_change_domain(obj,
3345                                             old_read_domains,
3346                                             old_write_domain);
3347 }
3348
3349 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3350 {
3351         struct drm_i915_gem_object *obj = vma->obj;
3352         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3353         int ret;
3354
3355         if (list_empty(&vma->obj_link))
3356                 return 0;
3357
3358         if (!drm_mm_node_allocated(&vma->node)) {
3359                 i915_gem_vma_destroy(vma);
3360                 return 0;
3361         }
3362
3363         if (vma->pin_count)
3364                 return -EBUSY;
3365
3366         BUG_ON(obj->pages == NULL);
3367
3368         if (wait) {
3369                 ret = i915_gem_object_wait_rendering(obj, false);
3370                 if (ret)
3371                         return ret;
3372         }
3373
3374         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3375                 i915_gem_object_finish_gtt(obj);
3376
3377                 /* release the fence reg _after_ flushing */
3378                 ret = i915_gem_object_put_fence(obj);
3379                 if (ret)
3380                         return ret;
3381         }
3382
3383         trace_i915_vma_unbind(vma);
3384
3385         vma->vm->unbind_vma(vma);
3386         vma->bound = 0;
3387
3388         list_del_init(&vma->vm_link);
3389         if (vma->is_ggtt) {
3390                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3391                         obj->map_and_fenceable = false;
3392                 } else if (vma->ggtt_view.pages) {
3393                         sg_free_table(vma->ggtt_view.pages);
3394                         kfree(vma->ggtt_view.pages);
3395                 }
3396                 vma->ggtt_view.pages = NULL;
3397         }
3398
3399         drm_mm_remove_node(&vma->node);
3400         i915_gem_vma_destroy(vma);
3401
3402         /* Since the unbound list is global, only move to that list if
3403          * no more VMAs exist. */
3404         if (list_empty(&obj->vma_list))
3405                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3406
3407         /* And finally now the object is completely decoupled from this vma,
3408          * we can drop its hold on the backing storage and allow it to be
3409          * reaped by the shrinker.
3410          */
3411         i915_gem_object_unpin_pages(obj);
3412
3413         return 0;
3414 }
3415
3416 int i915_vma_unbind(struct i915_vma *vma)
3417 {
3418         return __i915_vma_unbind(vma, true);
3419 }
3420
3421 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3422 {
3423         return __i915_vma_unbind(vma, false);
3424 }
3425
3426 int i915_gpu_idle(struct drm_device *dev)
3427 {
3428         struct drm_i915_private *dev_priv = dev->dev_private;
3429         struct intel_engine_cs *engine;
3430         int ret;
3431
3432         /* Flush everything onto the inactive list. */
3433         for_each_engine(engine, dev_priv) {
3434                 if (!i915.enable_execlists) {
3435                         struct drm_i915_gem_request *req;
3436
3437                         req = i915_gem_request_alloc(engine, NULL);
3438                         if (IS_ERR(req))
3439                                 return PTR_ERR(req);
3440
3441                         ret = i915_switch_context(req);
3442                         i915_add_request_no_flush(req);
3443                         if (ret)
3444                                 return ret;
3445                 }
3446
3447                 ret = intel_engine_idle(engine);
3448                 if (ret)
3449                         return ret;
3450         }
3451
3452         WARN_ON(i915_verify_lists(dev));
3453         return 0;
3454 }
3455
3456 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3457                                      unsigned long cache_level)
3458 {
3459         struct drm_mm_node *gtt_space = &vma->node;
3460         struct drm_mm_node *other;
3461
3462         /*
3463          * On some machines we have to be careful when putting differing types
3464          * of snoopable memory together to avoid the prefetcher crossing memory
3465          * domains and dying. During vm initialisation, we decide whether or not
3466          * these constraints apply and set the drm_mm.color_adjust
3467          * appropriately.
3468          */
3469         if (vma->vm->mm.color_adjust == NULL)
3470                 return true;
3471
3472         if (!drm_mm_node_allocated(gtt_space))
3473                 return true;
3474
3475         if (list_empty(&gtt_space->node_list))
3476                 return true;
3477
3478         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3479         if (other->allocated && !other->hole_follows && other->color != cache_level)
3480                 return false;
3481
3482         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3483         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3484                 return false;
3485
3486         return true;
3487 }
3488
3489 /**
3490  * Finds free space in the GTT aperture and binds the object or a view of it
3491  * there.
3492  */
3493 static struct i915_vma *
3494 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3495                            struct i915_address_space *vm,
3496                            const struct i915_ggtt_view *ggtt_view,
3497                            unsigned alignment,
3498                            uint64_t flags)
3499 {
3500         struct drm_device *dev = obj->base.dev;
3501         struct drm_i915_private *dev_priv = to_i915(dev);
3502         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3503         u32 fence_alignment, unfenced_alignment;
3504         u32 search_flag, alloc_flag;
3505         u64 start, end;
3506         u64 size, fence_size;
3507         struct i915_vma *vma;
3508         int ret;
3509
3510         if (i915_is_ggtt(vm)) {
3511                 u32 view_size;
3512
3513                 if (WARN_ON(!ggtt_view))
3514                         return ERR_PTR(-EINVAL);
3515
3516                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3517
3518                 fence_size = i915_gem_get_gtt_size(dev,
3519                                                    view_size,
3520                                                    obj->tiling_mode);
3521                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3522                                                              view_size,
3523                                                              obj->tiling_mode,
3524                                                              true);
3525                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3526                                                                 view_size,
3527                                                                 obj->tiling_mode,
3528                                                                 false);
3529                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3530         } else {
3531                 fence_size = i915_gem_get_gtt_size(dev,
3532                                                    obj->base.size,
3533                                                    obj->tiling_mode);
3534                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3535                                                              obj->base.size,
3536                                                              obj->tiling_mode,
3537                                                              true);
3538                 unfenced_alignment =
3539                         i915_gem_get_gtt_alignment(dev,
3540                                                    obj->base.size,
3541                                                    obj->tiling_mode,
3542                                                    false);
3543                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3544         }
3545
3546         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3547         end = vm->total;
3548         if (flags & PIN_MAPPABLE)
3549                 end = min_t(u64, end, ggtt->mappable_end);
3550         if (flags & PIN_ZONE_4G)
3551                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3552
3553         if (alignment == 0)
3554                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3555                                                 unfenced_alignment;
3556         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3557                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3558                           ggtt_view ? ggtt_view->type : 0,
3559                           alignment);
3560                 return ERR_PTR(-EINVAL);
3561         }
3562
3563         /* If binding the object/GGTT view requires more space than the entire
3564          * aperture has, reject it early before evicting everything in a vain
3565          * attempt to find space.
3566          */
3567         if (size > end) {
3568                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3569                           ggtt_view ? ggtt_view->type : 0,
3570                           size,
3571                           flags & PIN_MAPPABLE ? "mappable" : "total",
3572                           end);
3573                 return ERR_PTR(-E2BIG);
3574         }
3575
3576         ret = i915_gem_object_get_pages(obj);
3577         if (ret)
3578                 return ERR_PTR(ret);
3579
3580         i915_gem_object_pin_pages(obj);
3581
3582         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3583                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3584
3585         if (IS_ERR(vma))
3586                 goto err_unpin;
3587
3588         if (flags & PIN_OFFSET_FIXED) {
3589                 uint64_t offset = flags & PIN_OFFSET_MASK;
3590
3591                 if (offset & (alignment - 1) || offset + size > end) {
3592                         ret = -EINVAL;
3593                         goto err_free_vma;
3594                 }
3595                 vma->node.start = offset;
3596                 vma->node.size = size;
3597                 vma->node.color = obj->cache_level;
3598                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3599                 if (ret) {
3600                         ret = i915_gem_evict_for_vma(vma);
3601                         if (ret == 0)
3602                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3603                 }
3604                 if (ret)
3605                         goto err_free_vma;
3606         } else {
3607                 if (flags & PIN_HIGH) {
3608                         search_flag = DRM_MM_SEARCH_BELOW;
3609                         alloc_flag = DRM_MM_CREATE_TOP;
3610                 } else {
3611                         search_flag = DRM_MM_SEARCH_DEFAULT;
3612                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3613                 }
3614
3615 search_free:
3616                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3617                                                           size, alignment,
3618                                                           obj->cache_level,
3619                                                           start, end,
3620                                                           search_flag,
3621                                                           alloc_flag);
3622                 if (ret) {
3623                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3624                                                        obj->cache_level,
3625                                                        start, end,
3626                                                        flags);
3627                         if (ret == 0)
3628                                 goto search_free;
3629
3630                         goto err_free_vma;
3631                 }
3632         }
3633         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3634                 ret = -EINVAL;
3635                 goto err_remove_node;
3636         }
3637
3638         trace_i915_vma_bind(vma, flags);
3639         ret = i915_vma_bind(vma, obj->cache_level, flags);
3640         if (ret)
3641                 goto err_remove_node;
3642
3643         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3644         list_add_tail(&vma->vm_link, &vm->inactive_list);
3645
3646         return vma;
3647
3648 err_remove_node:
3649         drm_mm_remove_node(&vma->node);
3650 err_free_vma:
3651         i915_gem_vma_destroy(vma);
3652         vma = ERR_PTR(ret);
3653 err_unpin:
3654         i915_gem_object_unpin_pages(obj);
3655         return vma;
3656 }
3657
3658 bool
3659 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3660                         bool force)
3661 {
3662         /* If we don't have a page list set up, then we're not pinned
3663          * to GPU, and we can ignore the cache flush because it'll happen
3664          * again at bind time.
3665          */
3666         if (obj->pages == NULL)
3667                 return false;
3668
3669         /*
3670          * Stolen memory is always coherent with the GPU as it is explicitly
3671          * marked as wc by the system, or the system is cache-coherent.
3672          */
3673         if (obj->stolen || obj->phys_handle)
3674                 return false;
3675
3676         /* If the GPU is snooping the contents of the CPU cache,
3677          * we do not need to manually clear the CPU cache lines.  However,
3678          * the caches are only snooped when the render cache is
3679          * flushed/invalidated.  As we always have to emit invalidations
3680          * and flushes when moving into and out of the RENDER domain, correct
3681          * snooping behaviour occurs naturally as the result of our domain
3682          * tracking.
3683          */
3684         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3685                 obj->cache_dirty = true;
3686                 return false;
3687         }
3688
3689         trace_i915_gem_object_clflush(obj);
3690         drm_clflush_sg(obj->pages);
3691         obj->cache_dirty = false;
3692
3693         return true;
3694 }
3695
3696 /** Flushes the GTT write domain for the object if it's dirty. */
3697 static void
3698 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3699 {
3700         uint32_t old_write_domain;
3701
3702         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3703                 return;
3704
3705         /* No actual flushing is required for the GTT write domain.  Writes
3706          * to it immediately go to main memory as far as we know, so there's
3707          * no chipset flush.  It also doesn't land in render cache.
3708          *
3709          * However, we do have to enforce the order so that all writes through
3710          * the GTT land before any writes to the device, such as updates to
3711          * the GATT itself.
3712          */
3713         wmb();
3714
3715         old_write_domain = obj->base.write_domain;
3716         obj->base.write_domain = 0;
3717
3718         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3719
3720         trace_i915_gem_object_change_domain(obj,
3721                                             obj->base.read_domains,
3722                                             old_write_domain);
3723 }
3724
3725 /** Flushes the CPU write domain for the object if it's dirty. */
3726 static void
3727 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3728 {
3729         uint32_t old_write_domain;
3730
3731         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3732                 return;
3733
3734         if (i915_gem_clflush_object(obj, obj->pin_display))
3735                 i915_gem_chipset_flush(obj->base.dev);
3736
3737         old_write_domain = obj->base.write_domain;
3738         obj->base.write_domain = 0;
3739
3740         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3741
3742         trace_i915_gem_object_change_domain(obj,
3743                                             obj->base.read_domains,
3744                                             old_write_domain);
3745 }
3746
3747 /**
3748  * Moves a single object to the GTT read, and possibly write domain.
3749  *
3750  * This function returns when the move is complete, including waiting on
3751  * flushes to occur.
3752  */
3753 int
3754 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3755 {
3756         struct drm_device *dev = obj->base.dev;
3757         struct drm_i915_private *dev_priv = to_i915(dev);
3758         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3759         uint32_t old_write_domain, old_read_domains;
3760         struct i915_vma *vma;
3761         int ret;
3762
3763         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3764                 return 0;
3765
3766         ret = i915_gem_object_wait_rendering(obj, !write);
3767         if (ret)
3768                 return ret;
3769
3770         /* Flush and acquire obj->pages so that we are coherent through
3771          * direct access in memory with previous cached writes through
3772          * shmemfs and that our cache domain tracking remains valid.
3773          * For example, if the obj->filp was moved to swap without us
3774          * being notified and releasing the pages, we would mistakenly
3775          * continue to assume that the obj remained out of the CPU cached
3776          * domain.
3777          */
3778         ret = i915_gem_object_get_pages(obj);
3779         if (ret)
3780                 return ret;
3781
3782         i915_gem_object_flush_cpu_write_domain(obj);
3783
3784         /* Serialise direct access to this object with the barriers for
3785          * coherent writes from the GPU, by effectively invalidating the
3786          * GTT domain upon first access.
3787          */
3788         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3789                 mb();
3790
3791         old_write_domain = obj->base.write_domain;
3792         old_read_domains = obj->base.read_domains;
3793
3794         /* It should now be out of any other write domains, and we can update
3795          * the domain values for our changes.
3796          */
3797         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3798         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3799         if (write) {
3800                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3801                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3802                 obj->dirty = 1;
3803         }
3804
3805         trace_i915_gem_object_change_domain(obj,
3806                                             old_read_domains,
3807                                             old_write_domain);
3808
3809         /* And bump the LRU for this access */
3810         vma = i915_gem_obj_to_ggtt(obj);
3811         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3812                 list_move_tail(&vma->vm_link,
3813                                &ggtt->base.inactive_list);
3814
3815         return 0;
3816 }
3817
3818 /**
3819  * Changes the cache-level of an object across all VMA.
3820  *
3821  * After this function returns, the object will be in the new cache-level
3822  * across all GTT and the contents of the backing storage will be coherent,
3823  * with respect to the new cache-level. In order to keep the backing storage
3824  * coherent for all users, we only allow a single cache level to be set
3825  * globally on the object and prevent it from being changed whilst the
3826  * hardware is reading from the object. That is if the object is currently
3827  * on the scanout it will be set to uncached (or equivalent display
3828  * cache coherency) and all non-MOCS GPU access will also be uncached so
3829  * that all direct access to the scanout remains coherent.
3830  */
3831 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3832                                     enum i915_cache_level cache_level)
3833 {
3834         struct drm_device *dev = obj->base.dev;
3835         struct i915_vma *vma, *next;
3836         bool bound = false;
3837         int ret = 0;
3838
3839         if (obj->cache_level == cache_level)
3840                 goto out;
3841
3842         /* Inspect the list of currently bound VMA and unbind any that would
3843          * be invalid given the new cache-level. This is principally to
3844          * catch the issue of the CS prefetch crossing page boundaries and
3845          * reading an invalid PTE on older architectures.
3846          */
3847         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3848                 if (!drm_mm_node_allocated(&vma->node))
3849                         continue;
3850
3851                 if (vma->pin_count) {
3852                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3853                         return -EBUSY;
3854                 }
3855
3856                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3857                         ret = i915_vma_unbind(vma);
3858                         if (ret)
3859                                 return ret;
3860                 } else
3861                         bound = true;
3862         }
3863
3864         /* We can reuse the existing drm_mm nodes but need to change the
3865          * cache-level on the PTE. We could simply unbind them all and
3866          * rebind with the correct cache-level on next use. However since
3867          * we already have a valid slot, dma mapping, pages etc, we may as
3868          * rewrite the PTE in the belief that doing so tramples upon less
3869          * state and so involves less work.
3870          */
3871         if (bound) {
3872                 /* Before we change the PTE, the GPU must not be accessing it.
3873                  * If we wait upon the object, we know that all the bound
3874                  * VMA are no longer active.
3875                  */
3876                 ret = i915_gem_object_wait_rendering(obj, false);
3877                 if (ret)
3878                         return ret;
3879
3880                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3881                         /* Access to snoopable pages through the GTT is
3882                          * incoherent and on some machines causes a hard
3883                          * lockup. Relinquish the CPU mmaping to force
3884                          * userspace to refault in the pages and we can
3885                          * then double check if the GTT mapping is still
3886                          * valid for that pointer access.
3887                          */
3888                         i915_gem_release_mmap(obj);
3889
3890                         /* As we no longer need a fence for GTT access,
3891                          * we can relinquish it now (and so prevent having
3892                          * to steal a fence from someone else on the next
3893                          * fence request). Note GPU activity would have
3894                          * dropped the fence as all snoopable access is
3895                          * supposed to be linear.
3896                          */
3897                         ret = i915_gem_object_put_fence(obj);
3898                         if (ret)
3899                                 return ret;
3900                 } else {
3901                         /* We either have incoherent backing store and
3902                          * so no GTT access or the architecture is fully
3903                          * coherent. In such cases, existing GTT mmaps
3904                          * ignore the cache bit in the PTE and we can
3905                          * rewrite it without confusing the GPU or having
3906                          * to force userspace to fault back in its mmaps.
3907                          */
3908                 }
3909
3910                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3911                         if (!drm_mm_node_allocated(&vma->node))
3912                                 continue;
3913
3914                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3915                         if (ret)
3916                                 return ret;
3917                 }
3918         }
3919
3920         list_for_each_entry(vma, &obj->vma_list, obj_link)
3921                 vma->node.color = cache_level;
3922         obj->cache_level = cache_level;
3923
3924 out:
3925         /* Flush the dirty CPU caches to the backing storage so that the
3926          * object is now coherent at its new cache level (with respect
3927          * to the access domain).
3928          */
3929         if (obj->cache_dirty &&
3930             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3931             cpu_write_needs_clflush(obj)) {
3932                 if (i915_gem_clflush_object(obj, true))
3933                         i915_gem_chipset_flush(obj->base.dev);
3934         }
3935
3936         return 0;
3937 }
3938
3939 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3940                                struct drm_file *file)
3941 {
3942         struct drm_i915_gem_caching *args = data;
3943         struct drm_i915_gem_object *obj;
3944
3945         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3946         if (&obj->base == NULL)
3947                 return -ENOENT;
3948
3949         switch (obj->cache_level) {
3950         case I915_CACHE_LLC:
3951         case I915_CACHE_L3_LLC:
3952                 args->caching = I915_CACHING_CACHED;
3953                 break;
3954
3955         case I915_CACHE_WT:
3956                 args->caching = I915_CACHING_DISPLAY;
3957                 break;
3958
3959         default:
3960                 args->caching = I915_CACHING_NONE;
3961                 break;
3962         }
3963
3964         drm_gem_object_unreference_unlocked(&obj->base);
3965         return 0;
3966 }
3967
3968 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3969                                struct drm_file *file)
3970 {
3971         struct drm_i915_private *dev_priv = dev->dev_private;
3972         struct drm_i915_gem_caching *args = data;
3973         struct drm_i915_gem_object *obj;
3974         enum i915_cache_level level;
3975         int ret;
3976
3977         switch (args->caching) {
3978         case I915_CACHING_NONE:
3979                 level = I915_CACHE_NONE;
3980                 break;
3981         case I915_CACHING_CACHED:
3982                 /*
3983                  * Due to a HW issue on BXT A stepping, GPU stores via a
3984                  * snooped mapping may leave stale data in a corresponding CPU
3985                  * cacheline, whereas normally such cachelines would get
3986                  * invalidated.
3987                  */
3988                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3989                         return -ENODEV;
3990
3991                 level = I915_CACHE_LLC;
3992                 break;
3993         case I915_CACHING_DISPLAY:
3994                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3995                 break;
3996         default:
3997                 return -EINVAL;
3998         }
3999
4000         intel_runtime_pm_get(dev_priv);
4001
4002         ret = i915_mutex_lock_interruptible(dev);
4003         if (ret)
4004                 goto rpm_put;
4005
4006         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4007         if (&obj->base == NULL) {
4008                 ret = -ENOENT;
4009                 goto unlock;
4010         }
4011
4012         ret = i915_gem_object_set_cache_level(obj, level);
4013
4014         drm_gem_object_unreference(&obj->base);
4015 unlock:
4016         mutex_unlock(&dev->struct_mutex);
4017 rpm_put:
4018         intel_runtime_pm_put(dev_priv);
4019
4020         return ret;
4021 }
4022
4023 /*
4024  * Prepare buffer for display plane (scanout, cursors, etc).
4025  * Can be called from an uninterruptible phase (modesetting) and allows
4026  * any flushes to be pipelined (for pageflips).
4027  */
4028 int
4029 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4030                                      u32 alignment,
4031                                      const struct i915_ggtt_view *view)
4032 {
4033         u32 old_read_domains, old_write_domain;
4034         int ret;
4035
4036         /* Mark the pin_display early so that we account for the
4037          * display coherency whilst setting up the cache domains.
4038          */
4039         obj->pin_display++;
4040
4041         /* The display engine is not coherent with the LLC cache on gen6.  As
4042          * a result, we make sure that the pinning that is about to occur is
4043          * done with uncached PTEs. This is lowest common denominator for all
4044          * chipsets.
4045          *
4046          * However for gen6+, we could do better by using the GFDT bit instead
4047          * of uncaching, which would allow us to flush all the LLC-cached data
4048          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4049          */
4050         ret = i915_gem_object_set_cache_level(obj,
4051                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4052         if (ret)
4053                 goto err_unpin_display;
4054
4055         /* As the user may map the buffer once pinned in the display plane
4056          * (e.g. libkms for the bootup splash), we have to ensure that we
4057          * always use map_and_fenceable for all scanout buffers.
4058          */
4059         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4060                                        view->type == I915_GGTT_VIEW_NORMAL ?
4061                                        PIN_MAPPABLE : 0);
4062         if (ret)
4063                 goto err_unpin_display;
4064
4065         i915_gem_object_flush_cpu_write_domain(obj);
4066
4067         old_write_domain = obj->base.write_domain;
4068         old_read_domains = obj->base.read_domains;
4069
4070         /* It should now be out of any other write domains, and we can update
4071          * the domain values for our changes.
4072          */
4073         obj->base.write_domain = 0;
4074         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4075
4076         trace_i915_gem_object_change_domain(obj,
4077                                             old_read_domains,
4078                                             old_write_domain);
4079
4080         return 0;
4081
4082 err_unpin_display:
4083         obj->pin_display--;
4084         return ret;
4085 }
4086
4087 void
4088 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4089                                          const struct i915_ggtt_view *view)
4090 {
4091         if (WARN_ON(obj->pin_display == 0))
4092                 return;
4093
4094         i915_gem_object_ggtt_unpin_view(obj, view);
4095
4096         obj->pin_display--;
4097 }
4098
4099 /**
4100  * Moves a single object to the CPU read, and possibly write domain.
4101  *
4102  * This function returns when the move is complete, including waiting on
4103  * flushes to occur.
4104  */
4105 int
4106 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4107 {
4108         uint32_t old_write_domain, old_read_domains;
4109         int ret;
4110
4111         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4112                 return 0;
4113
4114         ret = i915_gem_object_wait_rendering(obj, !write);
4115         if (ret)
4116                 return ret;
4117
4118         i915_gem_object_flush_gtt_write_domain(obj);
4119
4120         old_write_domain = obj->base.write_domain;
4121         old_read_domains = obj->base.read_domains;
4122
4123         /* Flush the CPU cache if it's still invalid. */
4124         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4125                 i915_gem_clflush_object(obj, false);
4126
4127                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4128         }
4129
4130         /* It should now be out of any other write domains, and we can update
4131          * the domain values for our changes.
4132          */
4133         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4134
4135         /* If we're writing through the CPU, then the GPU read domains will
4136          * need to be invalidated at next use.
4137          */
4138         if (write) {
4139                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4140                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4141         }
4142
4143         trace_i915_gem_object_change_domain(obj,
4144                                             old_read_domains,
4145                                             old_write_domain);
4146
4147         return 0;
4148 }
4149
4150 /* Throttle our rendering by waiting until the ring has completed our requests
4151  * emitted over 20 msec ago.
4152  *
4153  * Note that if we were to use the current jiffies each time around the loop,
4154  * we wouldn't escape the function with any frames outstanding if the time to
4155  * render a frame was over 20ms.
4156  *
4157  * This should get us reasonable parallelism between CPU and GPU but also
4158  * relatively low latency when blocking on a particular request to finish.
4159  */
4160 static int
4161 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4162 {
4163         struct drm_i915_private *dev_priv = dev->dev_private;
4164         struct drm_i915_file_private *file_priv = file->driver_priv;
4165         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4166         struct drm_i915_gem_request *request, *target = NULL;
4167         int ret;
4168
4169         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4170         if (ret)
4171                 return ret;
4172
4173         /* ABI: return -EIO if already wedged */
4174         if (i915_terminally_wedged(&dev_priv->gpu_error))
4175                 return -EIO;
4176
4177         spin_lock(&file_priv->mm.lock);
4178         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4179                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4180                         break;
4181
4182                 /*
4183                  * Note that the request might not have been submitted yet.
4184                  * In which case emitted_jiffies will be zero.
4185                  */
4186                 if (!request->emitted_jiffies)
4187                         continue;
4188
4189                 target = request;
4190         }
4191         if (target)
4192                 i915_gem_request_reference(target);
4193         spin_unlock(&file_priv->mm.lock);
4194
4195         if (target == NULL)
4196                 return 0;
4197
4198         ret = __i915_wait_request(target, true, NULL, NULL);
4199         if (ret == 0)
4200                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4201
4202         i915_gem_request_unreference__unlocked(target);
4203
4204         return ret;
4205 }
4206
4207 static bool
4208 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4209 {
4210         struct drm_i915_gem_object *obj = vma->obj;
4211
4212         if (alignment &&
4213             vma->node.start & (alignment - 1))
4214                 return true;
4215
4216         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4217                 return true;
4218
4219         if (flags & PIN_OFFSET_BIAS &&
4220             vma->node.start < (flags & PIN_OFFSET_MASK))
4221                 return true;
4222
4223         if (flags & PIN_OFFSET_FIXED &&
4224             vma->node.start != (flags & PIN_OFFSET_MASK))
4225                 return true;
4226
4227         return false;
4228 }
4229
4230 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4231 {
4232         struct drm_i915_gem_object *obj = vma->obj;
4233         bool mappable, fenceable;
4234         u32 fence_size, fence_alignment;
4235
4236         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4237                                            obj->base.size,
4238                                            obj->tiling_mode);
4239         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4240                                                      obj->base.size,
4241                                                      obj->tiling_mode,
4242                                                      true);
4243
4244         fenceable = (vma->node.size == fence_size &&
4245                      (vma->node.start & (fence_alignment - 1)) == 0);
4246
4247         mappable = (vma->node.start + fence_size <=
4248                     to_i915(obj->base.dev)->ggtt.mappable_end);
4249
4250         obj->map_and_fenceable = mappable && fenceable;
4251 }
4252
4253 static int
4254 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4255                        struct i915_address_space *vm,
4256                        const struct i915_ggtt_view *ggtt_view,
4257                        uint32_t alignment,
4258                        uint64_t flags)
4259 {
4260         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4261         struct i915_vma *vma;
4262         unsigned bound;
4263         int ret;
4264
4265         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4266                 return -ENODEV;
4267
4268         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4269                 return -EINVAL;
4270
4271         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4272                 return -EINVAL;
4273
4274         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4275                 return -EINVAL;
4276
4277         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4278                           i915_gem_obj_to_vma(obj, vm);
4279
4280         if (vma) {
4281                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4282                         return -EBUSY;
4283
4284                 if (i915_vma_misplaced(vma, alignment, flags)) {
4285                         WARN(vma->pin_count,
4286                              "bo is already pinned in %s with incorrect alignment:"
4287                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4288                              " obj->map_and_fenceable=%d\n",
4289                              ggtt_view ? "ggtt" : "ppgtt",
4290                              upper_32_bits(vma->node.start),
4291                              lower_32_bits(vma->node.start),
4292                              alignment,
4293                              !!(flags & PIN_MAPPABLE),
4294                              obj->map_and_fenceable);
4295                         ret = i915_vma_unbind(vma);
4296                         if (ret)
4297                                 return ret;
4298
4299                         vma = NULL;
4300                 }
4301         }
4302
4303         bound = vma ? vma->bound : 0;
4304         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4305                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4306                                                  flags);
4307                 if (IS_ERR(vma))
4308                         return PTR_ERR(vma);
4309         } else {
4310                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4311                 if (ret)
4312                         return ret;
4313         }
4314
4315         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4316             (bound ^ vma->bound) & GLOBAL_BIND) {
4317                 __i915_vma_set_map_and_fenceable(vma);
4318                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4319         }
4320
4321         vma->pin_count++;
4322         return 0;
4323 }
4324
4325 int
4326 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4327                     struct i915_address_space *vm,
4328                     uint32_t alignment,
4329                     uint64_t flags)
4330 {
4331         return i915_gem_object_do_pin(obj, vm,
4332                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4333                                       alignment, flags);
4334 }
4335
4336 int
4337 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4338                          const struct i915_ggtt_view *view,
4339                          uint32_t alignment,
4340                          uint64_t flags)
4341 {
4342         struct drm_device *dev = obj->base.dev;
4343         struct drm_i915_private *dev_priv = to_i915(dev);
4344         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4345
4346         BUG_ON(!view);
4347
4348         return i915_gem_object_do_pin(obj, &ggtt->base, view,
4349                                       alignment, flags | PIN_GLOBAL);
4350 }
4351
4352 void
4353 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4354                                 const struct i915_ggtt_view *view)
4355 {
4356         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4357
4358         BUG_ON(!vma);
4359         WARN_ON(vma->pin_count == 0);
4360         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4361
4362         --vma->pin_count;
4363 }
4364
4365 int
4366 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4367                     struct drm_file *file)
4368 {
4369         struct drm_i915_gem_busy *args = data;
4370         struct drm_i915_gem_object *obj;
4371         int ret;
4372
4373         ret = i915_mutex_lock_interruptible(dev);
4374         if (ret)
4375                 return ret;
4376
4377         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4378         if (&obj->base == NULL) {
4379                 ret = -ENOENT;
4380                 goto unlock;
4381         }
4382
4383         /* Count all active objects as busy, even if they are currently not used
4384          * by the gpu. Users of this interface expect objects to eventually
4385          * become non-busy without any further actions, therefore emit any
4386          * necessary flushes here.
4387          */
4388         ret = i915_gem_object_flush_active(obj);
4389         if (ret)
4390                 goto unref;
4391
4392         args->busy = 0;
4393         if (obj->active) {
4394                 int i;
4395
4396                 for (i = 0; i < I915_NUM_ENGINES; i++) {
4397                         struct drm_i915_gem_request *req;
4398
4399                         req = obj->last_read_req[i];
4400                         if (req)
4401                                 args->busy |= 1 << (16 + req->engine->exec_id);
4402                 }
4403                 if (obj->last_write_req)
4404                         args->busy |= obj->last_write_req->engine->exec_id;
4405         }
4406
4407 unref:
4408         drm_gem_object_unreference(&obj->base);
4409 unlock:
4410         mutex_unlock(&dev->struct_mutex);
4411         return ret;
4412 }
4413
4414 int
4415 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4416                         struct drm_file *file_priv)
4417 {
4418         return i915_gem_ring_throttle(dev, file_priv);
4419 }
4420
4421 int
4422 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4423                        struct drm_file *file_priv)
4424 {
4425         struct drm_i915_private *dev_priv = dev->dev_private;
4426         struct drm_i915_gem_madvise *args = data;
4427         struct drm_i915_gem_object *obj;
4428         int ret;
4429
4430         switch (args->madv) {
4431         case I915_MADV_DONTNEED:
4432         case I915_MADV_WILLNEED:
4433             break;
4434         default:
4435             return -EINVAL;
4436         }
4437
4438         ret = i915_mutex_lock_interruptible(dev);
4439         if (ret)
4440                 return ret;
4441
4442         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4443         if (&obj->base == NULL) {
4444                 ret = -ENOENT;
4445                 goto unlock;
4446         }
4447
4448         if (i915_gem_obj_is_pinned(obj)) {
4449                 ret = -EINVAL;
4450                 goto out;
4451         }
4452
4453         if (obj->pages &&
4454             obj->tiling_mode != I915_TILING_NONE &&
4455             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4456                 if (obj->madv == I915_MADV_WILLNEED)
4457                         i915_gem_object_unpin_pages(obj);
4458                 if (args->madv == I915_MADV_WILLNEED)
4459                         i915_gem_object_pin_pages(obj);
4460         }
4461
4462         if (obj->madv != __I915_MADV_PURGED)
4463                 obj->madv = args->madv;
4464
4465         /* if the object is no longer attached, discard its backing storage */
4466         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4467                 i915_gem_object_truncate(obj);
4468
4469         args->retained = obj->madv != __I915_MADV_PURGED;
4470
4471 out:
4472         drm_gem_object_unreference(&obj->base);
4473 unlock:
4474         mutex_unlock(&dev->struct_mutex);
4475         return ret;
4476 }
4477
4478 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4479                           const struct drm_i915_gem_object_ops *ops)
4480 {
4481         int i;
4482
4483         INIT_LIST_HEAD(&obj->global_list);
4484         for (i = 0; i < I915_NUM_ENGINES; i++)
4485                 INIT_LIST_HEAD(&obj->engine_list[i]);
4486         INIT_LIST_HEAD(&obj->obj_exec_link);
4487         INIT_LIST_HEAD(&obj->vma_list);
4488         INIT_LIST_HEAD(&obj->batch_pool_link);
4489
4490         obj->ops = ops;
4491
4492         obj->fence_reg = I915_FENCE_REG_NONE;
4493         obj->madv = I915_MADV_WILLNEED;
4494
4495         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4496 }
4497
4498 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4499         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4500         .get_pages = i915_gem_object_get_pages_gtt,
4501         .put_pages = i915_gem_object_put_pages_gtt,
4502 };
4503
4504 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4505                                                   size_t size)
4506 {
4507         struct drm_i915_gem_object *obj;
4508         struct address_space *mapping;
4509         gfp_t mask;
4510
4511         obj = i915_gem_object_alloc(dev);
4512         if (obj == NULL)
4513                 return NULL;
4514
4515         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4516                 i915_gem_object_free(obj);
4517                 return NULL;
4518         }
4519
4520         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4521         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4522                 /* 965gm cannot relocate objects above 4GiB. */
4523                 mask &= ~__GFP_HIGHMEM;
4524                 mask |= __GFP_DMA32;
4525         }
4526
4527         mapping = file_inode(obj->base.filp)->i_mapping;
4528         mapping_set_gfp_mask(mapping, mask);
4529
4530         i915_gem_object_init(obj, &i915_gem_object_ops);
4531
4532         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4533         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4534
4535         if (HAS_LLC(dev)) {
4536                 /* On some devices, we can have the GPU use the LLC (the CPU
4537                  * cache) for about a 10% performance improvement
4538                  * compared to uncached.  Graphics requests other than
4539                  * display scanout are coherent with the CPU in
4540                  * accessing this cache.  This means in this mode we
4541                  * don't need to clflush on the CPU side, and on the
4542                  * GPU side we only need to flush internal caches to
4543                  * get data visible to the CPU.
4544                  *
4545                  * However, we maintain the display planes as UC, and so
4546                  * need to rebind when first used as such.
4547                  */
4548                 obj->cache_level = I915_CACHE_LLC;
4549         } else
4550                 obj->cache_level = I915_CACHE_NONE;
4551
4552         trace_i915_gem_object_create(obj);
4553
4554         return obj;
4555 }
4556
4557 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4558 {
4559         /* If we are the last user of the backing storage (be it shmemfs
4560          * pages or stolen etc), we know that the pages are going to be
4561          * immediately released. In this case, we can then skip copying
4562          * back the contents from the GPU.
4563          */
4564
4565         if (obj->madv != I915_MADV_WILLNEED)
4566                 return false;
4567
4568         if (obj->base.filp == NULL)
4569                 return true;
4570
4571         /* At first glance, this looks racy, but then again so would be
4572          * userspace racing mmap against close. However, the first external
4573          * reference to the filp can only be obtained through the
4574          * i915_gem_mmap_ioctl() which safeguards us against the user
4575          * acquiring such a reference whilst we are in the middle of
4576          * freeing the object.
4577          */
4578         return atomic_long_read(&obj->base.filp->f_count) == 1;
4579 }
4580
4581 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4582 {
4583         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4584         struct drm_device *dev = obj->base.dev;
4585         struct drm_i915_private *dev_priv = dev->dev_private;
4586         struct i915_vma *vma, *next;
4587
4588         intel_runtime_pm_get(dev_priv);
4589
4590         trace_i915_gem_object_destroy(obj);
4591
4592         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4593                 int ret;
4594
4595                 vma->pin_count = 0;
4596                 ret = i915_vma_unbind(vma);
4597                 if (WARN_ON(ret == -ERESTARTSYS)) {
4598                         bool was_interruptible;
4599
4600                         was_interruptible = dev_priv->mm.interruptible;
4601                         dev_priv->mm.interruptible = false;
4602
4603                         WARN_ON(i915_vma_unbind(vma));
4604
4605                         dev_priv->mm.interruptible = was_interruptible;
4606                 }
4607         }
4608
4609         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4610          * before progressing. */
4611         if (obj->stolen)
4612                 i915_gem_object_unpin_pages(obj);
4613
4614         WARN_ON(obj->frontbuffer_bits);
4615
4616         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4617             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4618             obj->tiling_mode != I915_TILING_NONE)
4619                 i915_gem_object_unpin_pages(obj);
4620
4621         if (WARN_ON(obj->pages_pin_count))
4622                 obj->pages_pin_count = 0;
4623         if (discard_backing_storage(obj))
4624                 obj->madv = I915_MADV_DONTNEED;
4625         i915_gem_object_put_pages(obj);
4626         i915_gem_object_free_mmap_offset(obj);
4627
4628         BUG_ON(obj->pages);
4629
4630         if (obj->base.import_attach)
4631                 drm_prime_gem_destroy(&obj->base, NULL);
4632
4633         if (obj->ops->release)
4634                 obj->ops->release(obj);
4635
4636         drm_gem_object_release(&obj->base);
4637         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4638
4639         kfree(obj->bit_17);
4640         i915_gem_object_free(obj);
4641
4642         intel_runtime_pm_put(dev_priv);
4643 }
4644
4645 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4646                                      struct i915_address_space *vm)
4647 {
4648         struct i915_vma *vma;
4649         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4650                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4651                     vma->vm == vm)
4652                         return vma;
4653         }
4654         return NULL;
4655 }
4656
4657 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4658                                            const struct i915_ggtt_view *view)
4659 {
4660         struct drm_device *dev = obj->base.dev;
4661         struct drm_i915_private *dev_priv = to_i915(dev);
4662         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4663         struct i915_vma *vma;
4664
4665         BUG_ON(!view);
4666
4667         list_for_each_entry(vma, &obj->vma_list, obj_link)
4668                 if (vma->vm == &ggtt->base &&
4669                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4670                         return vma;
4671         return NULL;
4672 }
4673
4674 void i915_gem_vma_destroy(struct i915_vma *vma)
4675 {
4676         WARN_ON(vma->node.allocated);
4677
4678         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4679         if (!list_empty(&vma->exec_list))
4680                 return;
4681
4682         if (!vma->is_ggtt)
4683                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4684
4685         list_del(&vma->obj_link);
4686
4687         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4688 }
4689
4690 static void
4691 i915_gem_stop_engines(struct drm_device *dev)
4692 {
4693         struct drm_i915_private *dev_priv = dev->dev_private;
4694         struct intel_engine_cs *engine;
4695
4696         for_each_engine(engine, dev_priv)
4697                 dev_priv->gt.stop_engine(engine);
4698 }
4699
4700 int
4701 i915_gem_suspend(struct drm_device *dev)
4702 {
4703         struct drm_i915_private *dev_priv = dev->dev_private;
4704         int ret = 0;
4705
4706         mutex_lock(&dev->struct_mutex);
4707         ret = i915_gpu_idle(dev);
4708         if (ret)
4709                 goto err;
4710
4711         i915_gem_retire_requests(dev);
4712
4713         i915_gem_stop_engines(dev);
4714         mutex_unlock(&dev->struct_mutex);
4715
4716         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4717         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4718         flush_delayed_work(&dev_priv->mm.idle_work);
4719
4720         /* Assert that we sucessfully flushed all the work and
4721          * reset the GPU back to its idle, low power state.
4722          */
4723         WARN_ON(dev_priv->mm.busy);
4724
4725         return 0;
4726
4727 err:
4728         mutex_unlock(&dev->struct_mutex);
4729         return ret;
4730 }
4731
4732 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4733 {
4734         struct intel_engine_cs *engine = req->engine;
4735         struct drm_device *dev = engine->dev;
4736         struct drm_i915_private *dev_priv = dev->dev_private;
4737         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4738         int i, ret;
4739
4740         if (!HAS_L3_DPF(dev) || !remap_info)
4741                 return 0;
4742
4743         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4744         if (ret)
4745                 return ret;
4746
4747         /*
4748          * Note: We do not worry about the concurrent register cacheline hang
4749          * here because no other code should access these registers other than
4750          * at initialization time.
4751          */
4752         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4753                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4754                 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4755                 intel_ring_emit(engine, remap_info[i]);
4756         }
4757
4758         intel_ring_advance(engine);
4759
4760         return ret;
4761 }
4762
4763 void i915_gem_init_swizzling(struct drm_device *dev)
4764 {
4765         struct drm_i915_private *dev_priv = dev->dev_private;
4766
4767         if (INTEL_INFO(dev)->gen < 5 ||
4768             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4769                 return;
4770
4771         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4772                                  DISP_TILE_SURFACE_SWIZZLING);
4773
4774         if (IS_GEN5(dev))
4775                 return;
4776
4777         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4778         if (IS_GEN6(dev))
4779                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4780         else if (IS_GEN7(dev))
4781                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4782         else if (IS_GEN8(dev))
4783                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4784         else
4785                 BUG();
4786 }
4787
4788 static void init_unused_ring(struct drm_device *dev, u32 base)
4789 {
4790         struct drm_i915_private *dev_priv = dev->dev_private;
4791
4792         I915_WRITE(RING_CTL(base), 0);
4793         I915_WRITE(RING_HEAD(base), 0);
4794         I915_WRITE(RING_TAIL(base), 0);
4795         I915_WRITE(RING_START(base), 0);
4796 }
4797
4798 static void init_unused_rings(struct drm_device *dev)
4799 {
4800         if (IS_I830(dev)) {
4801                 init_unused_ring(dev, PRB1_BASE);
4802                 init_unused_ring(dev, SRB0_BASE);
4803                 init_unused_ring(dev, SRB1_BASE);
4804                 init_unused_ring(dev, SRB2_BASE);
4805                 init_unused_ring(dev, SRB3_BASE);
4806         } else if (IS_GEN2(dev)) {
4807                 init_unused_ring(dev, SRB0_BASE);
4808                 init_unused_ring(dev, SRB1_BASE);
4809         } else if (IS_GEN3(dev)) {
4810                 init_unused_ring(dev, PRB1_BASE);
4811                 init_unused_ring(dev, PRB2_BASE);
4812         }
4813 }
4814
4815 int i915_gem_init_engines(struct drm_device *dev)
4816 {
4817         struct drm_i915_private *dev_priv = dev->dev_private;
4818         int ret;
4819
4820         ret = intel_init_render_ring_buffer(dev);
4821         if (ret)
4822                 return ret;
4823
4824         if (HAS_BSD(dev)) {
4825                 ret = intel_init_bsd_ring_buffer(dev);
4826                 if (ret)
4827                         goto cleanup_render_ring;
4828         }
4829
4830         if (HAS_BLT(dev)) {
4831                 ret = intel_init_blt_ring_buffer(dev);
4832                 if (ret)
4833                         goto cleanup_bsd_ring;
4834         }
4835
4836         if (HAS_VEBOX(dev)) {
4837                 ret = intel_init_vebox_ring_buffer(dev);
4838                 if (ret)
4839                         goto cleanup_blt_ring;
4840         }
4841
4842         if (HAS_BSD2(dev)) {
4843                 ret = intel_init_bsd2_ring_buffer(dev);
4844                 if (ret)
4845                         goto cleanup_vebox_ring;
4846         }
4847
4848         return 0;
4849
4850 cleanup_vebox_ring:
4851         intel_cleanup_engine(&dev_priv->engine[VECS]);
4852 cleanup_blt_ring:
4853         intel_cleanup_engine(&dev_priv->engine[BCS]);
4854 cleanup_bsd_ring:
4855         intel_cleanup_engine(&dev_priv->engine[VCS]);
4856 cleanup_render_ring:
4857         intel_cleanup_engine(&dev_priv->engine[RCS]);
4858
4859         return ret;
4860 }
4861
4862 int
4863 i915_gem_init_hw(struct drm_device *dev)
4864 {
4865         struct drm_i915_private *dev_priv = dev->dev_private;
4866         struct intel_engine_cs *engine;
4867         int ret, j;
4868
4869         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4870                 return -EIO;
4871
4872         /* Double layer security blanket, see i915_gem_init() */
4873         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4874
4875         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4876                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4877
4878         if (IS_HASWELL(dev))
4879                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4880                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4881
4882         if (HAS_PCH_NOP(dev)) {
4883                 if (IS_IVYBRIDGE(dev)) {
4884                         u32 temp = I915_READ(GEN7_MSG_CTL);
4885                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4886                         I915_WRITE(GEN7_MSG_CTL, temp);
4887                 } else if (INTEL_INFO(dev)->gen >= 7) {
4888                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4889                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4890                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4891                 }
4892         }
4893
4894         i915_gem_init_swizzling(dev);
4895
4896         /*
4897          * At least 830 can leave some of the unused rings
4898          * "active" (ie. head != tail) after resume which
4899          * will prevent c3 entry. Makes sure all unused rings
4900          * are totally idle.
4901          */
4902         init_unused_rings(dev);
4903
4904         BUG_ON(!dev_priv->kernel_context);
4905
4906         ret = i915_ppgtt_init_hw(dev);
4907         if (ret) {
4908                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4909                 goto out;
4910         }
4911
4912         /* Need to do basic initialisation of all rings first: */
4913         for_each_engine(engine, dev_priv) {
4914                 ret = engine->init_hw(engine);
4915                 if (ret)
4916                         goto out;
4917         }
4918
4919         intel_mocs_init_l3cc_table(dev);
4920
4921         /* We can't enable contexts until all firmware is loaded */
4922         if (HAS_GUC_UCODE(dev)) {
4923                 ret = intel_guc_ucode_load(dev);
4924                 if (ret) {
4925                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4926                         ret = -EIO;
4927                         goto out;
4928                 }
4929         }
4930
4931         /*
4932          * Increment the next seqno by 0x100 so we have a visible break
4933          * on re-initialisation
4934          */
4935         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4936         if (ret)
4937                 goto out;
4938
4939         /* Now it is safe to go back round and do everything else: */
4940         for_each_engine(engine, dev_priv) {
4941                 struct drm_i915_gem_request *req;
4942
4943                 req = i915_gem_request_alloc(engine, NULL);
4944                 if (IS_ERR(req)) {
4945                         ret = PTR_ERR(req);
4946                         break;
4947                 }
4948
4949                 if (engine->id == RCS) {
4950                         for (j = 0; j < NUM_L3_SLICES(dev); j++) {
4951                                 ret = i915_gem_l3_remap(req, j);
4952                                 if (ret)
4953                                         goto err_request;
4954                         }
4955                 }
4956
4957                 ret = i915_ppgtt_init_ring(req);
4958                 if (ret)
4959                         goto err_request;
4960
4961                 ret = i915_gem_context_enable(req);
4962                 if (ret)
4963                         goto err_request;
4964
4965 err_request:
4966                 i915_add_request_no_flush(req);
4967                 if (ret) {
4968                         DRM_ERROR("Failed to enable %s, error=%d\n",
4969                                   engine->name, ret);
4970                         i915_gem_cleanup_engines(dev);
4971                         break;
4972                 }
4973         }
4974
4975 out:
4976         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4977         return ret;
4978 }
4979
4980 int i915_gem_init(struct drm_device *dev)
4981 {
4982         struct drm_i915_private *dev_priv = dev->dev_private;
4983         int ret;
4984
4985         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4986                         i915.enable_execlists);
4987
4988         mutex_lock(&dev->struct_mutex);
4989
4990         if (!i915.enable_execlists) {
4991                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4992                 dev_priv->gt.init_engines = i915_gem_init_engines;
4993                 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4994                 dev_priv->gt.stop_engine = intel_stop_engine;
4995         } else {
4996                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4997                 dev_priv->gt.init_engines = intel_logical_rings_init;
4998                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4999                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5000         }
5001
5002         /* This is just a security blanket to placate dragons.
5003          * On some systems, we very sporadically observe that the first TLBs
5004          * used by the CS may be stale, despite us poking the TLB reset. If
5005          * we hold the forcewake during initialisation these problems
5006          * just magically go away.
5007          */
5008         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5009
5010         ret = i915_gem_init_userptr(dev);
5011         if (ret)
5012                 goto out_unlock;
5013
5014         i915_gem_init_ggtt(dev);
5015
5016         ret = i915_gem_context_init(dev);
5017         if (ret)
5018                 goto out_unlock;
5019
5020         ret = dev_priv->gt.init_engines(dev);
5021         if (ret)
5022                 goto out_unlock;
5023
5024         ret = i915_gem_init_hw(dev);
5025         if (ret == -EIO) {
5026                 /* Allow ring initialisation to fail by marking the GPU as
5027                  * wedged. But we only want to do this where the GPU is angry,
5028                  * for all other failure, such as an allocation failure, bail.
5029                  */
5030                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5031                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5032                 ret = 0;
5033         }
5034
5035 out_unlock:
5036         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5037         mutex_unlock(&dev->struct_mutex);
5038
5039         return ret;
5040 }
5041
5042 void
5043 i915_gem_cleanup_engines(struct drm_device *dev)
5044 {
5045         struct drm_i915_private *dev_priv = dev->dev_private;
5046         struct intel_engine_cs *engine;
5047
5048         for_each_engine(engine, dev_priv)
5049                 dev_priv->gt.cleanup_engine(engine);
5050
5051         if (i915.enable_execlists)
5052                 /*
5053                  * Neither the BIOS, ourselves or any other kernel
5054                  * expects the system to be in execlists mode on startup,
5055                  * so we need to reset the GPU back to legacy mode.
5056                  */
5057                 intel_gpu_reset(dev, ALL_ENGINES);
5058 }
5059
5060 static void
5061 init_engine_lists(struct intel_engine_cs *engine)
5062 {
5063         INIT_LIST_HEAD(&engine->active_list);
5064         INIT_LIST_HEAD(&engine->request_list);
5065 }
5066
5067 void
5068 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5069 {
5070         struct drm_device *dev = dev_priv->dev;
5071
5072         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5073             !IS_CHERRYVIEW(dev_priv))
5074                 dev_priv->num_fence_regs = 32;
5075         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5076                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
5077                 dev_priv->num_fence_regs = 16;
5078         else
5079                 dev_priv->num_fence_regs = 8;
5080
5081         if (intel_vgpu_active(dev))
5082                 dev_priv->num_fence_regs =
5083                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5084
5085         /* Initialize fence registers to zero */
5086         i915_gem_restore_fences(dev);
5087
5088         i915_gem_detect_bit_6_swizzle(dev);
5089 }
5090
5091 void
5092 i915_gem_load_init(struct drm_device *dev)
5093 {
5094         struct drm_i915_private *dev_priv = dev->dev_private;
5095         int i;
5096
5097         dev_priv->objects =
5098                 kmem_cache_create("i915_gem_object",
5099                                   sizeof(struct drm_i915_gem_object), 0,
5100                                   SLAB_HWCACHE_ALIGN,
5101                                   NULL);
5102         dev_priv->vmas =
5103                 kmem_cache_create("i915_gem_vma",
5104                                   sizeof(struct i915_vma), 0,
5105                                   SLAB_HWCACHE_ALIGN,
5106                                   NULL);
5107         dev_priv->requests =
5108                 kmem_cache_create("i915_gem_request",
5109                                   sizeof(struct drm_i915_gem_request), 0,
5110                                   SLAB_HWCACHE_ALIGN,
5111                                   NULL);
5112
5113         INIT_LIST_HEAD(&dev_priv->vm_list);
5114         INIT_LIST_HEAD(&dev_priv->context_list);
5115         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5116         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5117         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5118         for (i = 0; i < I915_NUM_ENGINES; i++)
5119                 init_engine_lists(&dev_priv->engine[i]);
5120         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5121                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5122         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5123                           i915_gem_retire_work_handler);
5124         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5125                           i915_gem_idle_work_handler);
5126         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5127
5128         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5129
5130         /*
5131          * Set initial sequence number for requests.
5132          * Using this number allows the wraparound to happen early,
5133          * catching any obvious problems.
5134          */
5135         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5136         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5137
5138         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5139
5140         init_waitqueue_head(&dev_priv->pending_flip_queue);
5141
5142         dev_priv->mm.interruptible = true;
5143
5144         mutex_init(&dev_priv->fb_tracking.lock);
5145 }
5146
5147 void i915_gem_load_cleanup(struct drm_device *dev)
5148 {
5149         struct drm_i915_private *dev_priv = to_i915(dev);
5150
5151         kmem_cache_destroy(dev_priv->requests);
5152         kmem_cache_destroy(dev_priv->vmas);
5153         kmem_cache_destroy(dev_priv->objects);
5154 }
5155
5156 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5157 {
5158         struct drm_i915_file_private *file_priv = file->driver_priv;
5159
5160         /* Clean up our request list when the client is going away, so that
5161          * later retire_requests won't dereference our soon-to-be-gone
5162          * file_priv.
5163          */
5164         spin_lock(&file_priv->mm.lock);
5165         while (!list_empty(&file_priv->mm.request_list)) {
5166                 struct drm_i915_gem_request *request;
5167
5168                 request = list_first_entry(&file_priv->mm.request_list,
5169                                            struct drm_i915_gem_request,
5170                                            client_list);
5171                 list_del(&request->client_list);
5172                 request->file_priv = NULL;
5173         }
5174         spin_unlock(&file_priv->mm.lock);
5175
5176         if (!list_empty(&file_priv->rps.link)) {
5177                 spin_lock(&to_i915(dev)->rps.client_lock);
5178                 list_del(&file_priv->rps.link);
5179                 spin_unlock(&to_i915(dev)->rps.client_lock);
5180         }
5181 }
5182
5183 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5184 {
5185         struct drm_i915_file_private *file_priv;
5186         int ret;
5187
5188         DRM_DEBUG_DRIVER("\n");
5189
5190         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5191         if (!file_priv)
5192                 return -ENOMEM;
5193
5194         file->driver_priv = file_priv;
5195         file_priv->dev_priv = dev->dev_private;
5196         file_priv->file = file;
5197         INIT_LIST_HEAD(&file_priv->rps.link);
5198
5199         spin_lock_init(&file_priv->mm.lock);
5200         INIT_LIST_HEAD(&file_priv->mm.request_list);
5201
5202         file_priv->bsd_ring = -1;
5203
5204         ret = i915_gem_context_open(dev, file);
5205         if (ret)
5206                 kfree(file_priv);
5207
5208         return ret;
5209 }
5210
5211 /**
5212  * i915_gem_track_fb - update frontbuffer tracking
5213  * @old: current GEM buffer for the frontbuffer slots
5214  * @new: new GEM buffer for the frontbuffer slots
5215  * @frontbuffer_bits: bitmask of frontbuffer slots
5216  *
5217  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5218  * from @old and setting them in @new. Both @old and @new can be NULL.
5219  */
5220 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5221                        struct drm_i915_gem_object *new,
5222                        unsigned frontbuffer_bits)
5223 {
5224         if (old) {
5225                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5226                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5227                 old->frontbuffer_bits &= ~frontbuffer_bits;
5228         }
5229
5230         if (new) {
5231                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5232                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5233                 new->frontbuffer_bits |= frontbuffer_bits;
5234         }
5235 }
5236
5237 /* All the new VM stuff */
5238 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5239                         struct i915_address_space *vm)
5240 {
5241         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5242         struct i915_vma *vma;
5243
5244         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5245
5246         list_for_each_entry(vma, &o->vma_list, obj_link) {
5247                 if (vma->is_ggtt &&
5248                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5249                         continue;
5250                 if (vma->vm == vm)
5251                         return vma->node.start;
5252         }
5253
5254         WARN(1, "%s vma for this object not found.\n",
5255              i915_is_ggtt(vm) ? "global" : "ppgtt");
5256         return -1;
5257 }
5258
5259 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5260                                   const struct i915_ggtt_view *view)
5261 {
5262         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5263         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5264         struct i915_vma *vma;
5265
5266         list_for_each_entry(vma, &o->vma_list, obj_link)
5267                 if (vma->vm == &ggtt->base &&
5268                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5269                         return vma->node.start;
5270
5271         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5272         return -1;
5273 }
5274
5275 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5276                         struct i915_address_space *vm)
5277 {
5278         struct i915_vma *vma;
5279
5280         list_for_each_entry(vma, &o->vma_list, obj_link) {
5281                 if (vma->is_ggtt &&
5282                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283                         continue;
5284                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5285                         return true;
5286         }
5287
5288         return false;
5289 }
5290
5291 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5292                                   const struct i915_ggtt_view *view)
5293 {
5294         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5295         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5296         struct i915_vma *vma;
5297
5298         list_for_each_entry(vma, &o->vma_list, obj_link)
5299                 if (vma->vm == &ggtt->base &&
5300                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5301                     drm_mm_node_allocated(&vma->node))
5302                         return true;
5303
5304         return false;
5305 }
5306
5307 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5308 {
5309         struct i915_vma *vma;
5310
5311         list_for_each_entry(vma, &o->vma_list, obj_link)
5312                 if (drm_mm_node_allocated(&vma->node))
5313                         return true;
5314
5315         return false;
5316 }
5317
5318 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5319                                 struct i915_address_space *vm)
5320 {
5321         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5322         struct i915_vma *vma;
5323
5324         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5325
5326         BUG_ON(list_empty(&o->vma_list));
5327
5328         list_for_each_entry(vma, &o->vma_list, obj_link) {
5329                 if (vma->is_ggtt &&
5330                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5331                         continue;
5332                 if (vma->vm == vm)
5333                         return vma->node.size;
5334         }
5335         return 0;
5336 }
5337
5338 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5339 {
5340         struct i915_vma *vma;
5341         list_for_each_entry(vma, &obj->vma_list, obj_link)
5342                 if (vma->pin_count > 0)
5343                         return true;
5344
5345         return false;
5346 }
5347
5348 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5349 struct page *
5350 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5351 {
5352         struct page *page;
5353
5354         /* Only default objects have per-page dirty tracking */
5355         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5356                 return NULL;
5357
5358         page = i915_gem_object_get_page(obj, n);
5359         set_page_dirty(page);
5360         return page;
5361 }
5362
5363 /* Allocate a new GEM object and fill it with the supplied data */
5364 struct drm_i915_gem_object *
5365 i915_gem_object_create_from_data(struct drm_device *dev,
5366                                  const void *data, size_t size)
5367 {
5368         struct drm_i915_gem_object *obj;
5369         struct sg_table *sg;
5370         size_t bytes;
5371         int ret;
5372
5373         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5374         if (IS_ERR_OR_NULL(obj))
5375                 return obj;
5376
5377         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5378         if (ret)
5379                 goto fail;
5380
5381         ret = i915_gem_object_get_pages(obj);
5382         if (ret)
5383                 goto fail;
5384
5385         i915_gem_object_pin_pages(obj);
5386         sg = obj->pages;
5387         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5388         obj->dirty = 1;         /* Backing store is now out of date */
5389         i915_gem_object_unpin_pages(obj);
5390
5391         if (WARN_ON(bytes != size)) {
5392                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5393                 ret = -EFAULT;
5394                 goto fail;
5395         }
5396
5397         return obj;
5398
5399 fail:
5400         drm_gem_object_unreference(&obj->base);
5401         return ERR_PTR(ret);
5402 }