]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Check we have an wake device before flushing GTT writes
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55                 return false;
56
57         if (!i915_gem_object_is_coherent(obj))
58                 return true;
59
60         return obj->pin_display;
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67         memset(node, 0, sizeof(*node));
68         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69                                            size, 0, I915_COLOR_UNEVICTABLE,
70                                            0, ggtt->mappable_end,
71                                            DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77         drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82                                   u64 size)
83 {
84         spin_lock(&dev_priv->mm.object_stat_lock);
85         dev_priv->mm.object_count++;
86         dev_priv->mm.object_memory += size;
87         spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91                                      u64 size)
92 {
93         spin_lock(&dev_priv->mm.object_stat_lock);
94         dev_priv->mm.object_count--;
95         dev_priv->mm.object_memory -= size;
96         spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102         int ret;
103
104         might_sleep();
105
106         /*
107          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108          * userspace. If it takes that long something really bad is going on and
109          * we should simply try to bail out and fail as gracefully as possible.
110          */
111         ret = wait_event_interruptible_timeout(error->reset_queue,
112                                                !i915_reset_backoff(error),
113                                                I915_RESET_TIMEOUT);
114         if (ret == 0) {
115                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116                 return -EIO;
117         } else if (ret < 0) {
118                 return ret;
119         } else {
120                 return 0;
121         }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = to_i915(dev);
127         int ret;
128
129         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130         if (ret)
131                 return ret;
132
133         ret = mutex_lock_interruptible(&dev->struct_mutex);
134         if (ret)
135                 return ret;
136
137         return 0;
138 }
139
140 int
141 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
142                             struct drm_file *file)
143 {
144         struct drm_i915_private *dev_priv = to_i915(dev);
145         struct i915_ggtt *ggtt = &dev_priv->ggtt;
146         struct drm_i915_gem_get_aperture *args = data;
147         struct i915_vma *vma;
148         size_t pinned;
149
150         pinned = 0;
151         mutex_lock(&dev->struct_mutex);
152         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
153                 if (i915_vma_is_pinned(vma))
154                         pinned += vma->node.size;
155         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
156                 if (i915_vma_is_pinned(vma))
157                         pinned += vma->node.size;
158         mutex_unlock(&dev->struct_mutex);
159
160         args->aper_size = ggtt->base.total;
161         args->aper_available_size = args->aper_size - pinned;
162
163         return 0;
164 }
165
166 static struct sg_table *
167 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
168 {
169         struct address_space *mapping = obj->base.filp->f_mapping;
170         drm_dma_handle_t *phys;
171         struct sg_table *st;
172         struct scatterlist *sg;
173         char *vaddr;
174         int i;
175
176         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
177                 return ERR_PTR(-EINVAL);
178
179         /* Always aligning to the object size, allows a single allocation
180          * to handle all possible callers, and given typical object sizes,
181          * the alignment of the buddy allocation will naturally match.
182          */
183         phys = drm_pci_alloc(obj->base.dev,
184                              obj->base.size,
185                              roundup_pow_of_two(obj->base.size));
186         if (!phys)
187                 return ERR_PTR(-ENOMEM);
188
189         vaddr = phys->vaddr;
190         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191                 struct page *page;
192                 char *src;
193
194                 page = shmem_read_mapping_page(mapping, i);
195                 if (IS_ERR(page)) {
196                         st = ERR_CAST(page);
197                         goto err_phys;
198                 }
199
200                 src = kmap_atomic(page);
201                 memcpy(vaddr, src, PAGE_SIZE);
202                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
203                 kunmap_atomic(src);
204
205                 put_page(page);
206                 vaddr += PAGE_SIZE;
207         }
208
209         i915_gem_chipset_flush(to_i915(obj->base.dev));
210
211         st = kmalloc(sizeof(*st), GFP_KERNEL);
212         if (!st) {
213                 st = ERR_PTR(-ENOMEM);
214                 goto err_phys;
215         }
216
217         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
218                 kfree(st);
219                 st = ERR_PTR(-ENOMEM);
220                 goto err_phys;
221         }
222
223         sg = st->sgl;
224         sg->offset = 0;
225         sg->length = obj->base.size;
226
227         sg_dma_address(sg) = phys->busaddr;
228         sg_dma_len(sg) = obj->base.size;
229
230         obj->phys_handle = phys;
231         return st;
232
233 err_phys:
234         drm_pci_free(obj->base.dev, phys);
235         return st;
236 }
237
238 static void
239 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
240                                 struct sg_table *pages,
241                                 bool needs_clflush)
242 {
243         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
244
245         if (obj->mm.madv == I915_MADV_DONTNEED)
246                 obj->mm.dirty = false;
247
248         if (needs_clflush &&
249             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
250             !i915_gem_object_is_coherent(obj))
251                 drm_clflush_sg(pages);
252
253         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
254         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
255 }
256
257 static void
258 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
259                                struct sg_table *pages)
260 {
261         __i915_gem_object_release_shmem(obj, pages, false);
262
263         if (obj->mm.dirty) {
264                 struct address_space *mapping = obj->base.filp->f_mapping;
265                 char *vaddr = obj->phys_handle->vaddr;
266                 int i;
267
268                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
269                         struct page *page;
270                         char *dst;
271
272                         page = shmem_read_mapping_page(mapping, i);
273                         if (IS_ERR(page))
274                                 continue;
275
276                         dst = kmap_atomic(page);
277                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
278                         memcpy(dst, vaddr, PAGE_SIZE);
279                         kunmap_atomic(dst);
280
281                         set_page_dirty(page);
282                         if (obj->mm.madv == I915_MADV_WILLNEED)
283                                 mark_page_accessed(page);
284                         put_page(page);
285                         vaddr += PAGE_SIZE;
286                 }
287                 obj->mm.dirty = false;
288         }
289
290         sg_free_table(pages);
291         kfree(pages);
292
293         drm_pci_free(obj->base.dev, obj->phys_handle);
294 }
295
296 static void
297 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
298 {
299         i915_gem_object_unpin_pages(obj);
300 }
301
302 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
303         .get_pages = i915_gem_object_get_pages_phys,
304         .put_pages = i915_gem_object_put_pages_phys,
305         .release = i915_gem_object_release_phys,
306 };
307
308 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
309
310 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
311 {
312         struct i915_vma *vma;
313         LIST_HEAD(still_in_list);
314         int ret;
315
316         lockdep_assert_held(&obj->base.dev->struct_mutex);
317
318         /* Closed vma are removed from the obj->vma_list - but they may
319          * still have an active binding on the object. To remove those we
320          * must wait for all rendering to complete to the object (as unbinding
321          * must anyway), and retire the requests.
322          */
323         ret = i915_gem_object_wait(obj,
324                                    I915_WAIT_INTERRUPTIBLE |
325                                    I915_WAIT_LOCKED |
326                                    I915_WAIT_ALL,
327                                    MAX_SCHEDULE_TIMEOUT,
328                                    NULL);
329         if (ret)
330                 return ret;
331
332         i915_gem_retire_requests(to_i915(obj->base.dev));
333
334         while ((vma = list_first_entry_or_null(&obj->vma_list,
335                                                struct i915_vma,
336                                                obj_link))) {
337                 list_move_tail(&vma->obj_link, &still_in_list);
338                 ret = i915_vma_unbind(vma);
339                 if (ret)
340                         break;
341         }
342         list_splice(&still_in_list, &obj->vma_list);
343
344         return ret;
345 }
346
347 static long
348 i915_gem_object_wait_fence(struct dma_fence *fence,
349                            unsigned int flags,
350                            long timeout,
351                            struct intel_rps_client *rps)
352 {
353         struct drm_i915_gem_request *rq;
354
355         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
356
357         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
358                 return timeout;
359
360         if (!dma_fence_is_i915(fence))
361                 return dma_fence_wait_timeout(fence,
362                                               flags & I915_WAIT_INTERRUPTIBLE,
363                                               timeout);
364
365         rq = to_request(fence);
366         if (i915_gem_request_completed(rq))
367                 goto out;
368
369         /* This client is about to stall waiting for the GPU. In many cases
370          * this is undesirable and limits the throughput of the system, as
371          * many clients cannot continue processing user input/output whilst
372          * blocked. RPS autotuning may take tens of milliseconds to respond
373          * to the GPU load and thus incurs additional latency for the client.
374          * We can circumvent that by promoting the GPU frequency to maximum
375          * before we wait. This makes the GPU throttle up much more quickly
376          * (good for benchmarks and user experience, e.g. window animations),
377          * but at a cost of spending more power processing the workload
378          * (bad for battery). Not all clients even want their results
379          * immediately and for them we should just let the GPU select its own
380          * frequency to maximise efficiency. To prevent a single client from
381          * forcing the clocks too high for the whole system, we only allow
382          * each client to waitboost once in a busy period.
383          */
384         if (rps) {
385                 if (INTEL_GEN(rq->i915) >= 6)
386                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
387                 else
388                         rps = NULL;
389         }
390
391         timeout = i915_wait_request(rq, flags, timeout);
392
393 out:
394         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
395                 i915_gem_request_retire_upto(rq);
396
397         if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
398                 /* The GPU is now idle and this client has stalled.
399                  * Since no other client has submitted a request in the
400                  * meantime, assume that this client is the only one
401                  * supplying work to the GPU but is unable to keep that
402                  * work supplied because it is waiting. Since the GPU is
403                  * then never kept fully busy, RPS autoclocking will
404                  * keep the clocks relatively low, causing further delays.
405                  * Compensate by giving the synchronous client credit for
406                  * a waitboost next time.
407                  */
408                 spin_lock(&rq->i915->rps.client_lock);
409                 list_del_init(&rps->link);
410                 spin_unlock(&rq->i915->rps.client_lock);
411         }
412
413         return timeout;
414 }
415
416 static long
417 i915_gem_object_wait_reservation(struct reservation_object *resv,
418                                  unsigned int flags,
419                                  long timeout,
420                                  struct intel_rps_client *rps)
421 {
422         unsigned int seq = __read_seqcount_begin(&resv->seq);
423         struct dma_fence *excl;
424         bool prune_fences = false;
425
426         if (flags & I915_WAIT_ALL) {
427                 struct dma_fence **shared;
428                 unsigned int count, i;
429                 int ret;
430
431                 ret = reservation_object_get_fences_rcu(resv,
432                                                         &excl, &count, &shared);
433                 if (ret)
434                         return ret;
435
436                 for (i = 0; i < count; i++) {
437                         timeout = i915_gem_object_wait_fence(shared[i],
438                                                              flags, timeout,
439                                                              rps);
440                         if (timeout < 0)
441                                 break;
442
443                         dma_fence_put(shared[i]);
444                 }
445
446                 for (; i < count; i++)
447                         dma_fence_put(shared[i]);
448                 kfree(shared);
449
450                 prune_fences = count && timeout >= 0;
451         } else {
452                 excl = reservation_object_get_excl_rcu(resv);
453         }
454
455         if (excl && timeout >= 0) {
456                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
457                 prune_fences = timeout >= 0;
458         }
459
460         dma_fence_put(excl);
461
462         /* Oportunistically prune the fences iff we know they have *all* been
463          * signaled and that the reservation object has not been changed (i.e.
464          * no new fences have been added).
465          */
466         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
467                 if (reservation_object_trylock(resv)) {
468                         if (!__read_seqcount_retry(&resv->seq, seq))
469                                 reservation_object_add_excl_fence(resv, NULL);
470                         reservation_object_unlock(resv);
471                 }
472         }
473
474         return timeout;
475 }
476
477 static void __fence_set_priority(struct dma_fence *fence, int prio)
478 {
479         struct drm_i915_gem_request *rq;
480         struct intel_engine_cs *engine;
481
482         if (!dma_fence_is_i915(fence))
483                 return;
484
485         rq = to_request(fence);
486         engine = rq->engine;
487         if (!engine->schedule)
488                 return;
489
490         engine->schedule(rq, prio);
491 }
492
493 static void fence_set_priority(struct dma_fence *fence, int prio)
494 {
495         /* Recurse once into a fence-array */
496         if (dma_fence_is_array(fence)) {
497                 struct dma_fence_array *array = to_dma_fence_array(fence);
498                 int i;
499
500                 for (i = 0; i < array->num_fences; i++)
501                         __fence_set_priority(array->fences[i], prio);
502         } else {
503                 __fence_set_priority(fence, prio);
504         }
505 }
506
507 int
508 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
509                               unsigned int flags,
510                               int prio)
511 {
512         struct dma_fence *excl;
513
514         if (flags & I915_WAIT_ALL) {
515                 struct dma_fence **shared;
516                 unsigned int count, i;
517                 int ret;
518
519                 ret = reservation_object_get_fences_rcu(obj->resv,
520                                                         &excl, &count, &shared);
521                 if (ret)
522                         return ret;
523
524                 for (i = 0; i < count; i++) {
525                         fence_set_priority(shared[i], prio);
526                         dma_fence_put(shared[i]);
527                 }
528
529                 kfree(shared);
530         } else {
531                 excl = reservation_object_get_excl_rcu(obj->resv);
532         }
533
534         if (excl) {
535                 fence_set_priority(excl, prio);
536                 dma_fence_put(excl);
537         }
538         return 0;
539 }
540
541 /**
542  * Waits for rendering to the object to be completed
543  * @obj: i915 gem object
544  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
545  * @timeout: how long to wait
546  * @rps: client (user process) to charge for any waitboosting
547  */
548 int
549 i915_gem_object_wait(struct drm_i915_gem_object *obj,
550                      unsigned int flags,
551                      long timeout,
552                      struct intel_rps_client *rps)
553 {
554         might_sleep();
555 #if IS_ENABLED(CONFIG_LOCKDEP)
556         GEM_BUG_ON(debug_locks &&
557                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
558                    !!(flags & I915_WAIT_LOCKED));
559 #endif
560         GEM_BUG_ON(timeout < 0);
561
562         timeout = i915_gem_object_wait_reservation(obj->resv,
563                                                    flags, timeout,
564                                                    rps);
565         return timeout < 0 ? timeout : 0;
566 }
567
568 static struct intel_rps_client *to_rps_client(struct drm_file *file)
569 {
570         struct drm_i915_file_private *fpriv = file->driver_priv;
571
572         return &fpriv->rps;
573 }
574
575 int
576 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
577                             int align)
578 {
579         int ret;
580
581         if (align > obj->base.size)
582                 return -EINVAL;
583
584         if (obj->ops == &i915_gem_phys_ops)
585                 return 0;
586
587         if (obj->mm.madv != I915_MADV_WILLNEED)
588                 return -EFAULT;
589
590         if (obj->base.filp == NULL)
591                 return -EINVAL;
592
593         ret = i915_gem_object_unbind(obj);
594         if (ret)
595                 return ret;
596
597         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
598         if (obj->mm.pages)
599                 return -EBUSY;
600
601         GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
602         obj->ops = &i915_gem_phys_ops;
603
604         ret = i915_gem_object_pin_pages(obj);
605         if (ret)
606                 goto err_xfer;
607
608         return 0;
609
610 err_xfer:
611         obj->ops = &i915_gem_object_ops;
612         return ret;
613 }
614
615 static int
616 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
617                      struct drm_i915_gem_pwrite *args,
618                      struct drm_file *file)
619 {
620         void *vaddr = obj->phys_handle->vaddr + args->offset;
621         char __user *user_data = u64_to_user_ptr(args->data_ptr);
622
623         /* We manually control the domain here and pretend that it
624          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
625          */
626         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
627         if (copy_from_user(vaddr, user_data, args->size))
628                 return -EFAULT;
629
630         drm_clflush_virt_range(vaddr, args->size);
631         i915_gem_chipset_flush(to_i915(obj->base.dev));
632
633         intel_fb_obj_flush(obj, ORIGIN_CPU);
634         return 0;
635 }
636
637 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
638 {
639         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
640 }
641
642 void i915_gem_object_free(struct drm_i915_gem_object *obj)
643 {
644         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
645         kmem_cache_free(dev_priv->objects, obj);
646 }
647
648 static int
649 i915_gem_create(struct drm_file *file,
650                 struct drm_i915_private *dev_priv,
651                 uint64_t size,
652                 uint32_t *handle_p)
653 {
654         struct drm_i915_gem_object *obj;
655         int ret;
656         u32 handle;
657
658         size = roundup(size, PAGE_SIZE);
659         if (size == 0)
660                 return -EINVAL;
661
662         /* Allocate the new object */
663         obj = i915_gem_object_create(dev_priv, size);
664         if (IS_ERR(obj))
665                 return PTR_ERR(obj);
666
667         ret = drm_gem_handle_create(file, &obj->base, &handle);
668         /* drop reference from allocate - handle holds it now */
669         i915_gem_object_put(obj);
670         if (ret)
671                 return ret;
672
673         *handle_p = handle;
674         return 0;
675 }
676
677 int
678 i915_gem_dumb_create(struct drm_file *file,
679                      struct drm_device *dev,
680                      struct drm_mode_create_dumb *args)
681 {
682         /* have to work out size/pitch and return them */
683         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
684         args->size = args->pitch * args->height;
685         return i915_gem_create(file, to_i915(dev),
686                                args->size, &args->handle);
687 }
688
689 /**
690  * Creates a new mm object and returns a handle to it.
691  * @dev: drm device pointer
692  * @data: ioctl data blob
693  * @file: drm file pointer
694  */
695 int
696 i915_gem_create_ioctl(struct drm_device *dev, void *data,
697                       struct drm_file *file)
698 {
699         struct drm_i915_private *dev_priv = to_i915(dev);
700         struct drm_i915_gem_create *args = data;
701
702         i915_gem_flush_free_objects(dev_priv);
703
704         return i915_gem_create(file, dev_priv,
705                                args->size, &args->handle);
706 }
707
708 static inline int
709 __copy_to_user_swizzled(char __user *cpu_vaddr,
710                         const char *gpu_vaddr, int gpu_offset,
711                         int length)
712 {
713         int ret, cpu_offset = 0;
714
715         while (length > 0) {
716                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
717                 int this_length = min(cacheline_end - gpu_offset, length);
718                 int swizzled_gpu_offset = gpu_offset ^ 64;
719
720                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
721                                      gpu_vaddr + swizzled_gpu_offset,
722                                      this_length);
723                 if (ret)
724                         return ret + length;
725
726                 cpu_offset += this_length;
727                 gpu_offset += this_length;
728                 length -= this_length;
729         }
730
731         return 0;
732 }
733
734 static inline int
735 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
736                           const char __user *cpu_vaddr,
737                           int length)
738 {
739         int ret, cpu_offset = 0;
740
741         while (length > 0) {
742                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
743                 int this_length = min(cacheline_end - gpu_offset, length);
744                 int swizzled_gpu_offset = gpu_offset ^ 64;
745
746                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
747                                        cpu_vaddr + cpu_offset,
748                                        this_length);
749                 if (ret)
750                         return ret + length;
751
752                 cpu_offset += this_length;
753                 gpu_offset += this_length;
754                 length -= this_length;
755         }
756
757         return 0;
758 }
759
760 /*
761  * Pins the specified object's pages and synchronizes the object with
762  * GPU accesses. Sets needs_clflush to non-zero if the caller should
763  * flush the object from the CPU cache.
764  */
765 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
766                                     unsigned int *needs_clflush)
767 {
768         int ret;
769
770         lockdep_assert_held(&obj->base.dev->struct_mutex);
771
772         *needs_clflush = 0;
773         if (!i915_gem_object_has_struct_page(obj))
774                 return -ENODEV;
775
776         ret = i915_gem_object_wait(obj,
777                                    I915_WAIT_INTERRUPTIBLE |
778                                    I915_WAIT_LOCKED,
779                                    MAX_SCHEDULE_TIMEOUT,
780                                    NULL);
781         if (ret)
782                 return ret;
783
784         ret = i915_gem_object_pin_pages(obj);
785         if (ret)
786                 return ret;
787
788         if (i915_gem_object_is_coherent(obj) ||
789             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
790                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
791                 if (ret)
792                         goto err_unpin;
793                 else
794                         goto out;
795         }
796
797         i915_gem_object_flush_gtt_write_domain(obj);
798
799         /* If we're not in the cpu read domain, set ourself into the gtt
800          * read domain and manually flush cachelines (if required). This
801          * optimizes for the case when the gpu will dirty the data
802          * anyway again before the next pread happens.
803          */
804         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
805                 *needs_clflush = CLFLUSH_BEFORE;
806
807 out:
808         /* return with the pages pinned */
809         return 0;
810
811 err_unpin:
812         i915_gem_object_unpin_pages(obj);
813         return ret;
814 }
815
816 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
817                                      unsigned int *needs_clflush)
818 {
819         int ret;
820
821         lockdep_assert_held(&obj->base.dev->struct_mutex);
822
823         *needs_clflush = 0;
824         if (!i915_gem_object_has_struct_page(obj))
825                 return -ENODEV;
826
827         ret = i915_gem_object_wait(obj,
828                                    I915_WAIT_INTERRUPTIBLE |
829                                    I915_WAIT_LOCKED |
830                                    I915_WAIT_ALL,
831                                    MAX_SCHEDULE_TIMEOUT,
832                                    NULL);
833         if (ret)
834                 return ret;
835
836         ret = i915_gem_object_pin_pages(obj);
837         if (ret)
838                 return ret;
839
840         if (i915_gem_object_is_coherent(obj) ||
841             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
842                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
843                 if (ret)
844                         goto err_unpin;
845                 else
846                         goto out;
847         }
848
849         i915_gem_object_flush_gtt_write_domain(obj);
850
851         /* If we're not in the cpu write domain, set ourself into the
852          * gtt write domain and manually flush cachelines (as required).
853          * This optimizes for the case when the gpu will use the data
854          * right away and we therefore have to clflush anyway.
855          */
856         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
857                 *needs_clflush |= CLFLUSH_AFTER;
858
859         /* Same trick applies to invalidate partially written cachelines read
860          * before writing.
861          */
862         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
863                 *needs_clflush |= CLFLUSH_BEFORE;
864
865 out:
866         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
867         obj->mm.dirty = true;
868         /* return with the pages pinned */
869         return 0;
870
871 err_unpin:
872         i915_gem_object_unpin_pages(obj);
873         return ret;
874 }
875
876 static void
877 shmem_clflush_swizzled_range(char *addr, unsigned long length,
878                              bool swizzled)
879 {
880         if (unlikely(swizzled)) {
881                 unsigned long start = (unsigned long) addr;
882                 unsigned long end = (unsigned long) addr + length;
883
884                 /* For swizzling simply ensure that we always flush both
885                  * channels. Lame, but simple and it works. Swizzled
886                  * pwrite/pread is far from a hotpath - current userspace
887                  * doesn't use it at all. */
888                 start = round_down(start, 128);
889                 end = round_up(end, 128);
890
891                 drm_clflush_virt_range((void *)start, end - start);
892         } else {
893                 drm_clflush_virt_range(addr, length);
894         }
895
896 }
897
898 /* Only difference to the fast-path function is that this can handle bit17
899  * and uses non-atomic copy and kmap functions. */
900 static int
901 shmem_pread_slow(struct page *page, int offset, int length,
902                  char __user *user_data,
903                  bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905         char *vaddr;
906         int ret;
907
908         vaddr = kmap(page);
909         if (needs_clflush)
910                 shmem_clflush_swizzled_range(vaddr + offset, length,
911                                              page_do_bit17_swizzling);
912
913         if (page_do_bit17_swizzling)
914                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
915         else
916                 ret = __copy_to_user(user_data, vaddr + offset, length);
917         kunmap(page);
918
919         return ret ? - EFAULT : 0;
920 }
921
922 static int
923 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
924             bool page_do_bit17_swizzling, bool needs_clflush)
925 {
926         int ret;
927
928         ret = -ENODEV;
929         if (!page_do_bit17_swizzling) {
930                 char *vaddr = kmap_atomic(page);
931
932                 if (needs_clflush)
933                         drm_clflush_virt_range(vaddr + offset, length);
934                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
935                 kunmap_atomic(vaddr);
936         }
937         if (ret == 0)
938                 return 0;
939
940         return shmem_pread_slow(page, offset, length, user_data,
941                                 page_do_bit17_swizzling, needs_clflush);
942 }
943
944 static int
945 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
946                      struct drm_i915_gem_pread *args)
947 {
948         char __user *user_data;
949         u64 remain;
950         unsigned int obj_do_bit17_swizzling;
951         unsigned int needs_clflush;
952         unsigned int idx, offset;
953         int ret;
954
955         obj_do_bit17_swizzling = 0;
956         if (i915_gem_object_needs_bit17_swizzle(obj))
957                 obj_do_bit17_swizzling = BIT(17);
958
959         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
960         if (ret)
961                 return ret;
962
963         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
964         mutex_unlock(&obj->base.dev->struct_mutex);
965         if (ret)
966                 return ret;
967
968         remain = args->size;
969         user_data = u64_to_user_ptr(args->data_ptr);
970         offset = offset_in_page(args->offset);
971         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
972                 struct page *page = i915_gem_object_get_page(obj, idx);
973                 int length;
974
975                 length = remain;
976                 if (offset + length > PAGE_SIZE)
977                         length = PAGE_SIZE - offset;
978
979                 ret = shmem_pread(page, offset, length, user_data,
980                                   page_to_phys(page) & obj_do_bit17_swizzling,
981                                   needs_clflush);
982                 if (ret)
983                         break;
984
985                 remain -= length;
986                 user_data += length;
987                 offset = 0;
988         }
989
990         i915_gem_obj_finish_shmem_access(obj);
991         return ret;
992 }
993
994 static inline bool
995 gtt_user_read(struct io_mapping *mapping,
996               loff_t base, int offset,
997               char __user *user_data, int length)
998 {
999         void *vaddr;
1000         unsigned long unwritten;
1001
1002         /* We can use the cpu mem copy function because this is X86. */
1003         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1004         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1005         io_mapping_unmap_atomic(vaddr);
1006         if (unwritten) {
1007                 vaddr = (void __force *)
1008                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1009                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1010                 io_mapping_unmap(vaddr);
1011         }
1012         return unwritten;
1013 }
1014
1015 static int
1016 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1017                    const struct drm_i915_gem_pread *args)
1018 {
1019         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1020         struct i915_ggtt *ggtt = &i915->ggtt;
1021         struct drm_mm_node node;
1022         struct i915_vma *vma;
1023         void __user *user_data;
1024         u64 remain, offset;
1025         int ret;
1026
1027         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1028         if (ret)
1029                 return ret;
1030
1031         intel_runtime_pm_get(i915);
1032         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1033                                        PIN_MAPPABLE | PIN_NONBLOCK);
1034         if (!IS_ERR(vma)) {
1035                 node.start = i915_ggtt_offset(vma);
1036                 node.allocated = false;
1037                 ret = i915_vma_put_fence(vma);
1038                 if (ret) {
1039                         i915_vma_unpin(vma);
1040                         vma = ERR_PTR(ret);
1041                 }
1042         }
1043         if (IS_ERR(vma)) {
1044                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1045                 if (ret)
1046                         goto out_unlock;
1047                 GEM_BUG_ON(!node.allocated);
1048         }
1049
1050         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1051         if (ret)
1052                 goto out_unpin;
1053
1054         mutex_unlock(&i915->drm.struct_mutex);
1055
1056         user_data = u64_to_user_ptr(args->data_ptr);
1057         remain = args->size;
1058         offset = args->offset;
1059
1060         while (remain > 0) {
1061                 /* Operation in this page
1062                  *
1063                  * page_base = page offset within aperture
1064                  * page_offset = offset within page
1065                  * page_length = bytes to copy for this page
1066                  */
1067                 u32 page_base = node.start;
1068                 unsigned page_offset = offset_in_page(offset);
1069                 unsigned page_length = PAGE_SIZE - page_offset;
1070                 page_length = remain < page_length ? remain : page_length;
1071                 if (node.allocated) {
1072                         wmb();
1073                         ggtt->base.insert_page(&ggtt->base,
1074                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1075                                                node.start, I915_CACHE_NONE, 0);
1076                         wmb();
1077                 } else {
1078                         page_base += offset & PAGE_MASK;
1079                 }
1080
1081                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1082                                   user_data, page_length)) {
1083                         ret = -EFAULT;
1084                         break;
1085                 }
1086
1087                 remain -= page_length;
1088                 user_data += page_length;
1089                 offset += page_length;
1090         }
1091
1092         mutex_lock(&i915->drm.struct_mutex);
1093 out_unpin:
1094         if (node.allocated) {
1095                 wmb();
1096                 ggtt->base.clear_range(&ggtt->base,
1097                                        node.start, node.size);
1098                 remove_mappable_node(&node);
1099         } else {
1100                 i915_vma_unpin(vma);
1101         }
1102 out_unlock:
1103         intel_runtime_pm_put(i915);
1104         mutex_unlock(&i915->drm.struct_mutex);
1105
1106         return ret;
1107 }
1108
1109 /**
1110  * Reads data from the object referenced by handle.
1111  * @dev: drm device pointer
1112  * @data: ioctl data blob
1113  * @file: drm file pointer
1114  *
1115  * On error, the contents of *data are undefined.
1116  */
1117 int
1118 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1119                      struct drm_file *file)
1120 {
1121         struct drm_i915_gem_pread *args = data;
1122         struct drm_i915_gem_object *obj;
1123         int ret;
1124
1125         if (args->size == 0)
1126                 return 0;
1127
1128         if (!access_ok(VERIFY_WRITE,
1129                        u64_to_user_ptr(args->data_ptr),
1130                        args->size))
1131                 return -EFAULT;
1132
1133         obj = i915_gem_object_lookup(file, args->handle);
1134         if (!obj)
1135                 return -ENOENT;
1136
1137         /* Bounds check source.  */
1138         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1139                 ret = -EINVAL;
1140                 goto out;
1141         }
1142
1143         trace_i915_gem_object_pread(obj, args->offset, args->size);
1144
1145         ret = i915_gem_object_wait(obj,
1146                                    I915_WAIT_INTERRUPTIBLE,
1147                                    MAX_SCHEDULE_TIMEOUT,
1148                                    to_rps_client(file));
1149         if (ret)
1150                 goto out;
1151
1152         ret = i915_gem_object_pin_pages(obj);
1153         if (ret)
1154                 goto out;
1155
1156         ret = i915_gem_shmem_pread(obj, args);
1157         if (ret == -EFAULT || ret == -ENODEV)
1158                 ret = i915_gem_gtt_pread(obj, args);
1159
1160         i915_gem_object_unpin_pages(obj);
1161 out:
1162         i915_gem_object_put(obj);
1163         return ret;
1164 }
1165
1166 /* This is the fast write path which cannot handle
1167  * page faults in the source data
1168  */
1169
1170 static inline bool
1171 ggtt_write(struct io_mapping *mapping,
1172            loff_t base, int offset,
1173            char __user *user_data, int length)
1174 {
1175         void *vaddr;
1176         unsigned long unwritten;
1177
1178         /* We can use the cpu mem copy function because this is X86. */
1179         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1180         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1181                                                       user_data, length);
1182         io_mapping_unmap_atomic(vaddr);
1183         if (unwritten) {
1184                 vaddr = (void __force *)
1185                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1186                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1187                 io_mapping_unmap(vaddr);
1188         }
1189
1190         return unwritten;
1191 }
1192
1193 /**
1194  * This is the fast pwrite path, where we copy the data directly from the
1195  * user into the GTT, uncached.
1196  * @obj: i915 GEM object
1197  * @args: pwrite arguments structure
1198  */
1199 static int
1200 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1201                          const struct drm_i915_gem_pwrite *args)
1202 {
1203         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1204         struct i915_ggtt *ggtt = &i915->ggtt;
1205         struct drm_mm_node node;
1206         struct i915_vma *vma;
1207         u64 remain, offset;
1208         void __user *user_data;
1209         int ret;
1210
1211         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1212         if (ret)
1213                 return ret;
1214
1215         intel_runtime_pm_get(i915);
1216         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1217                                        PIN_MAPPABLE | PIN_NONBLOCK);
1218         if (!IS_ERR(vma)) {
1219                 node.start = i915_ggtt_offset(vma);
1220                 node.allocated = false;
1221                 ret = i915_vma_put_fence(vma);
1222                 if (ret) {
1223                         i915_vma_unpin(vma);
1224                         vma = ERR_PTR(ret);
1225                 }
1226         }
1227         if (IS_ERR(vma)) {
1228                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1229                 if (ret)
1230                         goto out_unlock;
1231                 GEM_BUG_ON(!node.allocated);
1232         }
1233
1234         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1235         if (ret)
1236                 goto out_unpin;
1237
1238         mutex_unlock(&i915->drm.struct_mutex);
1239
1240         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1241
1242         user_data = u64_to_user_ptr(args->data_ptr);
1243         offset = args->offset;
1244         remain = args->size;
1245         while (remain) {
1246                 /* Operation in this page
1247                  *
1248                  * page_base = page offset within aperture
1249                  * page_offset = offset within page
1250                  * page_length = bytes to copy for this page
1251                  */
1252                 u32 page_base = node.start;
1253                 unsigned int page_offset = offset_in_page(offset);
1254                 unsigned int page_length = PAGE_SIZE - page_offset;
1255                 page_length = remain < page_length ? remain : page_length;
1256                 if (node.allocated) {
1257                         wmb(); /* flush the write before we modify the GGTT */
1258                         ggtt->base.insert_page(&ggtt->base,
1259                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1260                                                node.start, I915_CACHE_NONE, 0);
1261                         wmb(); /* flush modifications to the GGTT (insert_page) */
1262                 } else {
1263                         page_base += offset & PAGE_MASK;
1264                 }
1265                 /* If we get a fault while copying data, then (presumably) our
1266                  * source page isn't available.  Return the error and we'll
1267                  * retry in the slow path.
1268                  * If the object is non-shmem backed, we retry again with the
1269                  * path that handles page fault.
1270                  */
1271                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1272                                user_data, page_length)) {
1273                         ret = -EFAULT;
1274                         break;
1275                 }
1276
1277                 remain -= page_length;
1278                 user_data += page_length;
1279                 offset += page_length;
1280         }
1281         intel_fb_obj_flush(obj, ORIGIN_CPU);
1282
1283         mutex_lock(&i915->drm.struct_mutex);
1284 out_unpin:
1285         if (node.allocated) {
1286                 wmb();
1287                 ggtt->base.clear_range(&ggtt->base,
1288                                        node.start, node.size);
1289                 remove_mappable_node(&node);
1290         } else {
1291                 i915_vma_unpin(vma);
1292         }
1293 out_unlock:
1294         intel_runtime_pm_put(i915);
1295         mutex_unlock(&i915->drm.struct_mutex);
1296         return ret;
1297 }
1298
1299 static int
1300 shmem_pwrite_slow(struct page *page, int offset, int length,
1301                   char __user *user_data,
1302                   bool page_do_bit17_swizzling,
1303                   bool needs_clflush_before,
1304                   bool needs_clflush_after)
1305 {
1306         char *vaddr;
1307         int ret;
1308
1309         vaddr = kmap(page);
1310         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1311                 shmem_clflush_swizzled_range(vaddr + offset, length,
1312                                              page_do_bit17_swizzling);
1313         if (page_do_bit17_swizzling)
1314                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1315                                                 length);
1316         else
1317                 ret = __copy_from_user(vaddr + offset, user_data, length);
1318         if (needs_clflush_after)
1319                 shmem_clflush_swizzled_range(vaddr + offset, length,
1320                                              page_do_bit17_swizzling);
1321         kunmap(page);
1322
1323         return ret ? -EFAULT : 0;
1324 }
1325
1326 /* Per-page copy function for the shmem pwrite fastpath.
1327  * Flushes invalid cachelines before writing to the target if
1328  * needs_clflush_before is set and flushes out any written cachelines after
1329  * writing if needs_clflush is set.
1330  */
1331 static int
1332 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1333              bool page_do_bit17_swizzling,
1334              bool needs_clflush_before,
1335              bool needs_clflush_after)
1336 {
1337         int ret;
1338
1339         ret = -ENODEV;
1340         if (!page_do_bit17_swizzling) {
1341                 char *vaddr = kmap_atomic(page);
1342
1343                 if (needs_clflush_before)
1344                         drm_clflush_virt_range(vaddr + offset, len);
1345                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1346                 if (needs_clflush_after)
1347                         drm_clflush_virt_range(vaddr + offset, len);
1348
1349                 kunmap_atomic(vaddr);
1350         }
1351         if (ret == 0)
1352                 return ret;
1353
1354         return shmem_pwrite_slow(page, offset, len, user_data,
1355                                  page_do_bit17_swizzling,
1356                                  needs_clflush_before,
1357                                  needs_clflush_after);
1358 }
1359
1360 static int
1361 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1362                       const struct drm_i915_gem_pwrite *args)
1363 {
1364         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365         void __user *user_data;
1366         u64 remain;
1367         unsigned int obj_do_bit17_swizzling;
1368         unsigned int partial_cacheline_write;
1369         unsigned int needs_clflush;
1370         unsigned int offset, idx;
1371         int ret;
1372
1373         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1374         if (ret)
1375                 return ret;
1376
1377         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1378         mutex_unlock(&i915->drm.struct_mutex);
1379         if (ret)
1380                 return ret;
1381
1382         obj_do_bit17_swizzling = 0;
1383         if (i915_gem_object_needs_bit17_swizzle(obj))
1384                 obj_do_bit17_swizzling = BIT(17);
1385
1386         /* If we don't overwrite a cacheline completely we need to be
1387          * careful to have up-to-date data by first clflushing. Don't
1388          * overcomplicate things and flush the entire patch.
1389          */
1390         partial_cacheline_write = 0;
1391         if (needs_clflush & CLFLUSH_BEFORE)
1392                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1393
1394         user_data = u64_to_user_ptr(args->data_ptr);
1395         remain = args->size;
1396         offset = offset_in_page(args->offset);
1397         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1398                 struct page *page = i915_gem_object_get_page(obj, idx);
1399                 int length;
1400
1401                 length = remain;
1402                 if (offset + length > PAGE_SIZE)
1403                         length = PAGE_SIZE - offset;
1404
1405                 ret = shmem_pwrite(page, offset, length, user_data,
1406                                    page_to_phys(page) & obj_do_bit17_swizzling,
1407                                    (offset | length) & partial_cacheline_write,
1408                                    needs_clflush & CLFLUSH_AFTER);
1409                 if (ret)
1410                         break;
1411
1412                 remain -= length;
1413                 user_data += length;
1414                 offset = 0;
1415         }
1416
1417         intel_fb_obj_flush(obj, ORIGIN_CPU);
1418         i915_gem_obj_finish_shmem_access(obj);
1419         return ret;
1420 }
1421
1422 /**
1423  * Writes data to the object referenced by handle.
1424  * @dev: drm device
1425  * @data: ioctl data blob
1426  * @file: drm file
1427  *
1428  * On error, the contents of the buffer that were to be modified are undefined.
1429  */
1430 int
1431 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1432                       struct drm_file *file)
1433 {
1434         struct drm_i915_gem_pwrite *args = data;
1435         struct drm_i915_gem_object *obj;
1436         int ret;
1437
1438         if (args->size == 0)
1439                 return 0;
1440
1441         if (!access_ok(VERIFY_READ,
1442                        u64_to_user_ptr(args->data_ptr),
1443                        args->size))
1444                 return -EFAULT;
1445
1446         obj = i915_gem_object_lookup(file, args->handle);
1447         if (!obj)
1448                 return -ENOENT;
1449
1450         /* Bounds check destination. */
1451         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1452                 ret = -EINVAL;
1453                 goto err;
1454         }
1455
1456         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1457
1458         ret = -ENODEV;
1459         if (obj->ops->pwrite)
1460                 ret = obj->ops->pwrite(obj, args);
1461         if (ret != -ENODEV)
1462                 goto err;
1463
1464         ret = i915_gem_object_wait(obj,
1465                                    I915_WAIT_INTERRUPTIBLE |
1466                                    I915_WAIT_ALL,
1467                                    MAX_SCHEDULE_TIMEOUT,
1468                                    to_rps_client(file));
1469         if (ret)
1470                 goto err;
1471
1472         ret = i915_gem_object_pin_pages(obj);
1473         if (ret)
1474                 goto err;
1475
1476         ret = -EFAULT;
1477         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1478          * it would end up going through the fenced access, and we'll get
1479          * different detiling behavior between reading and writing.
1480          * pread/pwrite currently are reading and writing from the CPU
1481          * perspective, requiring manual detiling by the client.
1482          */
1483         if (!i915_gem_object_has_struct_page(obj) ||
1484             cpu_write_needs_clflush(obj))
1485                 /* Note that the gtt paths might fail with non-page-backed user
1486                  * pointers (e.g. gtt mappings when moving data between
1487                  * textures). Fallback to the shmem path in that case.
1488                  */
1489                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1490
1491         if (ret == -EFAULT || ret == -ENOSPC) {
1492                 if (obj->phys_handle)
1493                         ret = i915_gem_phys_pwrite(obj, args, file);
1494                 else
1495                         ret = i915_gem_shmem_pwrite(obj, args);
1496         }
1497
1498         i915_gem_object_unpin_pages(obj);
1499 err:
1500         i915_gem_object_put(obj);
1501         return ret;
1502 }
1503
1504 static inline enum fb_op_origin
1505 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1506 {
1507         return (domain == I915_GEM_DOMAIN_GTT ?
1508                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1509 }
1510
1511 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1512 {
1513         struct drm_i915_private *i915;
1514         struct list_head *list;
1515         struct i915_vma *vma;
1516
1517         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1518                 if (!i915_vma_is_ggtt(vma))
1519                         break;
1520
1521                 if (i915_vma_is_active(vma))
1522                         continue;
1523
1524                 if (!drm_mm_node_allocated(&vma->node))
1525                         continue;
1526
1527                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1528         }
1529
1530         i915 = to_i915(obj->base.dev);
1531         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1532         list_move_tail(&obj->global_link, list);
1533 }
1534
1535 /**
1536  * Called when user space prepares to use an object with the CPU, either
1537  * through the mmap ioctl's mapping or a GTT mapping.
1538  * @dev: drm device
1539  * @data: ioctl data blob
1540  * @file: drm file
1541  */
1542 int
1543 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1544                           struct drm_file *file)
1545 {
1546         struct drm_i915_gem_set_domain *args = data;
1547         struct drm_i915_gem_object *obj;
1548         uint32_t read_domains = args->read_domains;
1549         uint32_t write_domain = args->write_domain;
1550         int err;
1551
1552         /* Only handle setting domains to types used by the CPU. */
1553         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1554                 return -EINVAL;
1555
1556         /* Having something in the write domain implies it's in the read
1557          * domain, and only that read domain.  Enforce that in the request.
1558          */
1559         if (write_domain != 0 && read_domains != write_domain)
1560                 return -EINVAL;
1561
1562         obj = i915_gem_object_lookup(file, args->handle);
1563         if (!obj)
1564                 return -ENOENT;
1565
1566         /* Try to flush the object off the GPU without holding the lock.
1567          * We will repeat the flush holding the lock in the normal manner
1568          * to catch cases where we are gazumped.
1569          */
1570         err = i915_gem_object_wait(obj,
1571                                    I915_WAIT_INTERRUPTIBLE |
1572                                    (write_domain ? I915_WAIT_ALL : 0),
1573                                    MAX_SCHEDULE_TIMEOUT,
1574                                    to_rps_client(file));
1575         if (err)
1576                 goto out;
1577
1578         /* Flush and acquire obj->pages so that we are coherent through
1579          * direct access in memory with previous cached writes through
1580          * shmemfs and that our cache domain tracking remains valid.
1581          * For example, if the obj->filp was moved to swap without us
1582          * being notified and releasing the pages, we would mistakenly
1583          * continue to assume that the obj remained out of the CPU cached
1584          * domain.
1585          */
1586         err = i915_gem_object_pin_pages(obj);
1587         if (err)
1588                 goto out;
1589
1590         err = i915_mutex_lock_interruptible(dev);
1591         if (err)
1592                 goto out_unpin;
1593
1594         if (read_domains & I915_GEM_DOMAIN_GTT)
1595                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1596         else
1597                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1598
1599         /* And bump the LRU for this access */
1600         i915_gem_object_bump_inactive_ggtt(obj);
1601
1602         mutex_unlock(&dev->struct_mutex);
1603
1604         if (write_domain != 0)
1605                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1606
1607 out_unpin:
1608         i915_gem_object_unpin_pages(obj);
1609 out:
1610         i915_gem_object_put(obj);
1611         return err;
1612 }
1613
1614 /**
1615  * Called when user space has done writes to this buffer
1616  * @dev: drm device
1617  * @data: ioctl data blob
1618  * @file: drm file
1619  */
1620 int
1621 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1622                          struct drm_file *file)
1623 {
1624         struct drm_i915_gem_sw_finish *args = data;
1625         struct drm_i915_gem_object *obj;
1626
1627         obj = i915_gem_object_lookup(file, args->handle);
1628         if (!obj)
1629                 return -ENOENT;
1630
1631         /* Pinned buffers may be scanout, so flush the cache */
1632         i915_gem_object_flush_if_display(obj);
1633         i915_gem_object_put(obj);
1634
1635         return 0;
1636 }
1637
1638 /**
1639  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1640  *                       it is mapped to.
1641  * @dev: drm device
1642  * @data: ioctl data blob
1643  * @file: drm file
1644  *
1645  * While the mapping holds a reference on the contents of the object, it doesn't
1646  * imply a ref on the object itself.
1647  *
1648  * IMPORTANT:
1649  *
1650  * DRM driver writers who look a this function as an example for how to do GEM
1651  * mmap support, please don't implement mmap support like here. The modern way
1652  * to implement DRM mmap support is with an mmap offset ioctl (like
1653  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1654  * That way debug tooling like valgrind will understand what's going on, hiding
1655  * the mmap call in a driver private ioctl will break that. The i915 driver only
1656  * does cpu mmaps this way because we didn't know better.
1657  */
1658 int
1659 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1660                     struct drm_file *file)
1661 {
1662         struct drm_i915_gem_mmap *args = data;
1663         struct drm_i915_gem_object *obj;
1664         unsigned long addr;
1665
1666         if (args->flags & ~(I915_MMAP_WC))
1667                 return -EINVAL;
1668
1669         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1670                 return -ENODEV;
1671
1672         obj = i915_gem_object_lookup(file, args->handle);
1673         if (!obj)
1674                 return -ENOENT;
1675
1676         /* prime objects have no backing filp to GEM mmap
1677          * pages from.
1678          */
1679         if (!obj->base.filp) {
1680                 i915_gem_object_put(obj);
1681                 return -EINVAL;
1682         }
1683
1684         addr = vm_mmap(obj->base.filp, 0, args->size,
1685                        PROT_READ | PROT_WRITE, MAP_SHARED,
1686                        args->offset);
1687         if (args->flags & I915_MMAP_WC) {
1688                 struct mm_struct *mm = current->mm;
1689                 struct vm_area_struct *vma;
1690
1691                 if (down_write_killable(&mm->mmap_sem)) {
1692                         i915_gem_object_put(obj);
1693                         return -EINTR;
1694                 }
1695                 vma = find_vma(mm, addr);
1696                 if (vma)
1697                         vma->vm_page_prot =
1698                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699                 else
1700                         addr = -ENOMEM;
1701                 up_write(&mm->mmap_sem);
1702
1703                 /* This may race, but that's ok, it only gets set */
1704                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1705         }
1706         i915_gem_object_put(obj);
1707         if (IS_ERR((void *)addr))
1708                 return addr;
1709
1710         args->addr_ptr = (uint64_t) addr;
1711
1712         return 0;
1713 }
1714
1715 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1716 {
1717         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1718 }
1719
1720 /**
1721  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1722  *
1723  * A history of the GTT mmap interface:
1724  *
1725  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1726  *     aligned and suitable for fencing, and still fit into the available
1727  *     mappable space left by the pinned display objects. A classic problem
1728  *     we called the page-fault-of-doom where we would ping-pong between
1729  *     two objects that could not fit inside the GTT and so the memcpy
1730  *     would page one object in at the expense of the other between every
1731  *     single byte.
1732  *
1733  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1734  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1735  *     object is too large for the available space (or simply too large
1736  *     for the mappable aperture!), a view is created instead and faulted
1737  *     into userspace. (This view is aligned and sized appropriately for
1738  *     fenced access.)
1739  *
1740  * Restrictions:
1741  *
1742  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1743  *    hangs on some architectures, corruption on others. An attempt to service
1744  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1745  *
1746  *  * the object must be able to fit into RAM (physical memory, though no
1747  *    limited to the mappable aperture).
1748  *
1749  *
1750  * Caveats:
1751  *
1752  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1753  *    all data to system memory. Subsequent access will not be synchronized.
1754  *
1755  *  * all mappings are revoked on runtime device suspend.
1756  *
1757  *  * there are only 8, 16 or 32 fence registers to share between all users
1758  *    (older machines require fence register for display and blitter access
1759  *    as well). Contention of the fence registers will cause the previous users
1760  *    to be unmapped and any new access will generate new page faults.
1761  *
1762  *  * running out of memory while servicing a fault may generate a SIGBUS,
1763  *    rather than the expected SIGSEGV.
1764  */
1765 int i915_gem_mmap_gtt_version(void)
1766 {
1767         return 1;
1768 }
1769
1770 static inline struct i915_ggtt_view
1771 compute_partial_view(struct drm_i915_gem_object *obj,
1772                      pgoff_t page_offset,
1773                      unsigned int chunk)
1774 {
1775         struct i915_ggtt_view view;
1776
1777         if (i915_gem_object_is_tiled(obj))
1778                 chunk = roundup(chunk, tile_row_pages(obj));
1779
1780         view.type = I915_GGTT_VIEW_PARTIAL;
1781         view.partial.offset = rounddown(page_offset, chunk);
1782         view.partial.size =
1783                 min_t(unsigned int, chunk,
1784                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1785
1786         /* If the partial covers the entire object, just create a normal VMA. */
1787         if (chunk >= obj->base.size >> PAGE_SHIFT)
1788                 view.type = I915_GGTT_VIEW_NORMAL;
1789
1790         return view;
1791 }
1792
1793 /**
1794  * i915_gem_fault - fault a page into the GTT
1795  * @vmf: fault info
1796  *
1797  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1798  * from userspace.  The fault handler takes care of binding the object to
1799  * the GTT (if needed), allocating and programming a fence register (again,
1800  * only if needed based on whether the old reg is still valid or the object
1801  * is tiled) and inserting a new PTE into the faulting process.
1802  *
1803  * Note that the faulting process may involve evicting existing objects
1804  * from the GTT and/or fence registers to make room.  So performance may
1805  * suffer if the GTT working set is large or there are few fence registers
1806  * left.
1807  *
1808  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1809  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1810  */
1811 int i915_gem_fault(struct vm_fault *vmf)
1812 {
1813 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1814         struct vm_area_struct *area = vmf->vma;
1815         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1816         struct drm_device *dev = obj->base.dev;
1817         struct drm_i915_private *dev_priv = to_i915(dev);
1818         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1819         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1820         struct i915_vma *vma;
1821         pgoff_t page_offset;
1822         unsigned int flags;
1823         int ret;
1824
1825         /* We don't use vmf->pgoff since that has the fake offset */
1826         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1827
1828         trace_i915_gem_object_fault(obj, page_offset, true, write);
1829
1830         /* Try to flush the object off the GPU first without holding the lock.
1831          * Upon acquiring the lock, we will perform our sanity checks and then
1832          * repeat the flush holding the lock in the normal manner to catch cases
1833          * where we are gazumped.
1834          */
1835         ret = i915_gem_object_wait(obj,
1836                                    I915_WAIT_INTERRUPTIBLE,
1837                                    MAX_SCHEDULE_TIMEOUT,
1838                                    NULL);
1839         if (ret)
1840                 goto err;
1841
1842         ret = i915_gem_object_pin_pages(obj);
1843         if (ret)
1844                 goto err;
1845
1846         intel_runtime_pm_get(dev_priv);
1847
1848         ret = i915_mutex_lock_interruptible(dev);
1849         if (ret)
1850                 goto err_rpm;
1851
1852         /* Access to snoopable pages through the GTT is incoherent. */
1853         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1854                 ret = -EFAULT;
1855                 goto err_unlock;
1856         }
1857
1858         /* If the object is smaller than a couple of partial vma, it is
1859          * not worth only creating a single partial vma - we may as well
1860          * clear enough space for the full object.
1861          */
1862         flags = PIN_MAPPABLE;
1863         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1864                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1865
1866         /* Now pin it into the GTT as needed */
1867         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1868         if (IS_ERR(vma)) {
1869                 /* Use a partial view if it is bigger than available space */
1870                 struct i915_ggtt_view view =
1871                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1872
1873                 /* Userspace is now writing through an untracked VMA, abandon
1874                  * all hope that the hardware is able to track future writes.
1875                  */
1876                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1877
1878                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1879         }
1880         if (IS_ERR(vma)) {
1881                 ret = PTR_ERR(vma);
1882                 goto err_unlock;
1883         }
1884
1885         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1886         if (ret)
1887                 goto err_unpin;
1888
1889         ret = i915_vma_get_fence(vma);
1890         if (ret)
1891                 goto err_unpin;
1892
1893         /* Mark as being mmapped into userspace for later revocation */
1894         assert_rpm_wakelock_held(dev_priv);
1895         if (list_empty(&obj->userfault_link))
1896                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1897
1898         /* Finally, remap it using the new GTT offset */
1899         ret = remap_io_mapping(area,
1900                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1901                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1902                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1903                                &ggtt->mappable);
1904
1905 err_unpin:
1906         __i915_vma_unpin(vma);
1907 err_unlock:
1908         mutex_unlock(&dev->struct_mutex);
1909 err_rpm:
1910         intel_runtime_pm_put(dev_priv);
1911         i915_gem_object_unpin_pages(obj);
1912 err:
1913         switch (ret) {
1914         case -EIO:
1915                 /*
1916                  * We eat errors when the gpu is terminally wedged to avoid
1917                  * userspace unduly crashing (gl has no provisions for mmaps to
1918                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1919                  * and so needs to be reported.
1920                  */
1921                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1922                         ret = VM_FAULT_SIGBUS;
1923                         break;
1924                 }
1925         case -EAGAIN:
1926                 /*
1927                  * EAGAIN means the gpu is hung and we'll wait for the error
1928                  * handler to reset everything when re-faulting in
1929                  * i915_mutex_lock_interruptible.
1930                  */
1931         case 0:
1932         case -ERESTARTSYS:
1933         case -EINTR:
1934         case -EBUSY:
1935                 /*
1936                  * EBUSY is ok: this just means that another thread
1937                  * already did the job.
1938                  */
1939                 ret = VM_FAULT_NOPAGE;
1940                 break;
1941         case -ENOMEM:
1942                 ret = VM_FAULT_OOM;
1943                 break;
1944         case -ENOSPC:
1945         case -EFAULT:
1946                 ret = VM_FAULT_SIGBUS;
1947                 break;
1948         default:
1949                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1950                 ret = VM_FAULT_SIGBUS;
1951                 break;
1952         }
1953         return ret;
1954 }
1955
1956 /**
1957  * i915_gem_release_mmap - remove physical page mappings
1958  * @obj: obj in question
1959  *
1960  * Preserve the reservation of the mmapping with the DRM core code, but
1961  * relinquish ownership of the pages back to the system.
1962  *
1963  * It is vital that we remove the page mapping if we have mapped a tiled
1964  * object through the GTT and then lose the fence register due to
1965  * resource pressure. Similarly if the object has been moved out of the
1966  * aperture, than pages mapped into userspace must be revoked. Removing the
1967  * mapping will then trigger a page fault on the next user access, allowing
1968  * fixup by i915_gem_fault().
1969  */
1970 void
1971 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1972 {
1973         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1974
1975         /* Serialisation between user GTT access and our code depends upon
1976          * revoking the CPU's PTE whilst the mutex is held. The next user
1977          * pagefault then has to wait until we release the mutex.
1978          *
1979          * Note that RPM complicates somewhat by adding an additional
1980          * requirement that operations to the GGTT be made holding the RPM
1981          * wakeref.
1982          */
1983         lockdep_assert_held(&i915->drm.struct_mutex);
1984         intel_runtime_pm_get(i915);
1985
1986         if (list_empty(&obj->userfault_link))
1987                 goto out;
1988
1989         list_del_init(&obj->userfault_link);
1990         drm_vma_node_unmap(&obj->base.vma_node,
1991                            obj->base.dev->anon_inode->i_mapping);
1992
1993         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1994          * memory transactions from userspace before we return. The TLB
1995          * flushing implied above by changing the PTE above *should* be
1996          * sufficient, an extra barrier here just provides us with a bit
1997          * of paranoid documentation about our requirement to serialise
1998          * memory writes before touching registers / GSM.
1999          */
2000         wmb();
2001
2002 out:
2003         intel_runtime_pm_put(i915);
2004 }
2005
2006 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2007 {
2008         struct drm_i915_gem_object *obj, *on;
2009         int i;
2010
2011         /*
2012          * Only called during RPM suspend. All users of the userfault_list
2013          * must be holding an RPM wakeref to ensure that this can not
2014          * run concurrently with themselves (and use the struct_mutex for
2015          * protection between themselves).
2016          */
2017
2018         list_for_each_entry_safe(obj, on,
2019                                  &dev_priv->mm.userfault_list, userfault_link) {
2020                 list_del_init(&obj->userfault_link);
2021                 drm_vma_node_unmap(&obj->base.vma_node,
2022                                    obj->base.dev->anon_inode->i_mapping);
2023         }
2024
2025         /* The fence will be lost when the device powers down. If any were
2026          * in use by hardware (i.e. they are pinned), we should not be powering
2027          * down! All other fences will be reacquired by the user upon waking.
2028          */
2029         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2030                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2031
2032                 /* Ideally we want to assert that the fence register is not
2033                  * live at this point (i.e. that no piece of code will be
2034                  * trying to write through fence + GTT, as that both violates
2035                  * our tracking of activity and associated locking/barriers,
2036                  * but also is illegal given that the hw is powered down).
2037                  *
2038                  * Previously we used reg->pin_count as a "liveness" indicator.
2039                  * That is not sufficient, and we need a more fine-grained
2040                  * tool if we want to have a sanity check here.
2041                  */
2042
2043                 if (!reg->vma)
2044                         continue;
2045
2046                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2047                 reg->dirty = true;
2048         }
2049 }
2050
2051 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2052 {
2053         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2054         int err;
2055
2056         err = drm_gem_create_mmap_offset(&obj->base);
2057         if (likely(!err))
2058                 return 0;
2059
2060         /* Attempt to reap some mmap space from dead objects */
2061         do {
2062                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2063                 if (err)
2064                         break;
2065
2066                 i915_gem_drain_freed_objects(dev_priv);
2067                 err = drm_gem_create_mmap_offset(&obj->base);
2068                 if (!err)
2069                         break;
2070
2071         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2072
2073         return err;
2074 }
2075
2076 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2077 {
2078         drm_gem_free_mmap_offset(&obj->base);
2079 }
2080
2081 int
2082 i915_gem_mmap_gtt(struct drm_file *file,
2083                   struct drm_device *dev,
2084                   uint32_t handle,
2085                   uint64_t *offset)
2086 {
2087         struct drm_i915_gem_object *obj;
2088         int ret;
2089
2090         obj = i915_gem_object_lookup(file, handle);
2091         if (!obj)
2092                 return -ENOENT;
2093
2094         ret = i915_gem_object_create_mmap_offset(obj);
2095         if (ret == 0)
2096                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2097
2098         i915_gem_object_put(obj);
2099         return ret;
2100 }
2101
2102 /**
2103  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2104  * @dev: DRM device
2105  * @data: GTT mapping ioctl data
2106  * @file: GEM object info
2107  *
2108  * Simply returns the fake offset to userspace so it can mmap it.
2109  * The mmap call will end up in drm_gem_mmap(), which will set things
2110  * up so we can get faults in the handler above.
2111  *
2112  * The fault handler will take care of binding the object into the GTT
2113  * (since it may have been evicted to make room for something), allocating
2114  * a fence register, and mapping the appropriate aperture address into
2115  * userspace.
2116  */
2117 int
2118 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2119                         struct drm_file *file)
2120 {
2121         struct drm_i915_gem_mmap_gtt *args = data;
2122
2123         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2124 }
2125
2126 /* Immediately discard the backing storage */
2127 static void
2128 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2129 {
2130         i915_gem_object_free_mmap_offset(obj);
2131
2132         if (obj->base.filp == NULL)
2133                 return;
2134
2135         /* Our goal here is to return as much of the memory as
2136          * is possible back to the system as we are called from OOM.
2137          * To do this we must instruct the shmfs to drop all of its
2138          * backing pages, *now*.
2139          */
2140         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2141         obj->mm.madv = __I915_MADV_PURGED;
2142         obj->mm.pages = ERR_PTR(-EFAULT);
2143 }
2144
2145 /* Try to discard unwanted pages */
2146 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2147 {
2148         struct address_space *mapping;
2149
2150         lockdep_assert_held(&obj->mm.lock);
2151         GEM_BUG_ON(obj->mm.pages);
2152
2153         switch (obj->mm.madv) {
2154         case I915_MADV_DONTNEED:
2155                 i915_gem_object_truncate(obj);
2156         case __I915_MADV_PURGED:
2157                 return;
2158         }
2159
2160         if (obj->base.filp == NULL)
2161                 return;
2162
2163         mapping = obj->base.filp->f_mapping,
2164         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 }
2166
2167 static void
2168 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2169                               struct sg_table *pages)
2170 {
2171         struct sgt_iter sgt_iter;
2172         struct page *page;
2173
2174         __i915_gem_object_release_shmem(obj, pages, true);
2175
2176         i915_gem_gtt_finish_pages(obj, pages);
2177
2178         if (i915_gem_object_needs_bit17_swizzle(obj))
2179                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2180
2181         for_each_sgt_page(page, sgt_iter, pages) {
2182                 if (obj->mm.dirty)
2183                         set_page_dirty(page);
2184
2185                 if (obj->mm.madv == I915_MADV_WILLNEED)
2186                         mark_page_accessed(page);
2187
2188                 put_page(page);
2189         }
2190         obj->mm.dirty = false;
2191
2192         sg_free_table(pages);
2193         kfree(pages);
2194 }
2195
2196 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2197 {
2198         struct radix_tree_iter iter;
2199         void **slot;
2200
2201         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2202                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2203 }
2204
2205 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2206                                  enum i915_mm_subclass subclass)
2207 {
2208         struct sg_table *pages;
2209
2210         if (i915_gem_object_has_pinned_pages(obj))
2211                 return;
2212
2213         GEM_BUG_ON(obj->bind_count);
2214         if (!READ_ONCE(obj->mm.pages))
2215                 return;
2216
2217         /* May be called by shrinker from within get_pages() (on another bo) */
2218         mutex_lock_nested(&obj->mm.lock, subclass);
2219         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2220                 goto unlock;
2221
2222         /* ->put_pages might need to allocate memory for the bit17 swizzle
2223          * array, hence protect them from being reaped by removing them from gtt
2224          * lists early. */
2225         pages = fetch_and_zero(&obj->mm.pages);
2226         GEM_BUG_ON(!pages);
2227
2228         if (obj->mm.mapping) {
2229                 void *ptr;
2230
2231                 ptr = ptr_mask_bits(obj->mm.mapping);
2232                 if (is_vmalloc_addr(ptr))
2233                         vunmap(ptr);
2234                 else
2235                         kunmap(kmap_to_page(ptr));
2236
2237                 obj->mm.mapping = NULL;
2238         }
2239
2240         __i915_gem_object_reset_page_iter(obj);
2241
2242         if (!IS_ERR(pages))
2243                 obj->ops->put_pages(obj, pages);
2244
2245 unlock:
2246         mutex_unlock(&obj->mm.lock);
2247 }
2248
2249 static bool i915_sg_trim(struct sg_table *orig_st)
2250 {
2251         struct sg_table new_st;
2252         struct scatterlist *sg, *new_sg;
2253         unsigned int i;
2254
2255         if (orig_st->nents == orig_st->orig_nents)
2256                 return false;
2257
2258         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2259                 return false;
2260
2261         new_sg = new_st.sgl;
2262         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2263                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2264                 /* called before being DMA mapped, no need to copy sg->dma_* */
2265                 new_sg = sg_next(new_sg);
2266         }
2267         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2268
2269         sg_free_table(orig_st);
2270
2271         *orig_st = new_st;
2272         return true;
2273 }
2274
2275 static struct sg_table *
2276 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2277 {
2278         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2279         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2280         unsigned long i;
2281         struct address_space *mapping;
2282         struct sg_table *st;
2283         struct scatterlist *sg;
2284         struct sgt_iter sgt_iter;
2285         struct page *page;
2286         unsigned long last_pfn = 0;     /* suppress gcc warning */
2287         unsigned int max_segment;
2288         int ret;
2289         gfp_t gfp;
2290
2291         /* Assert that the object is not currently in any GPU domain. As it
2292          * wasn't in the GTT, there shouldn't be any way it could have been in
2293          * a GPU cache
2294          */
2295         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2296         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2297
2298         max_segment = swiotlb_max_segment();
2299         if (!max_segment)
2300                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2301
2302         st = kmalloc(sizeof(*st), GFP_KERNEL);
2303         if (st == NULL)
2304                 return ERR_PTR(-ENOMEM);
2305
2306 rebuild_st:
2307         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2308                 kfree(st);
2309                 return ERR_PTR(-ENOMEM);
2310         }
2311
2312         /* Get the list of pages out of our struct file.  They'll be pinned
2313          * at this point until we release them.
2314          *
2315          * Fail silently without starting the shrinker
2316          */
2317         mapping = obj->base.filp->f_mapping;
2318         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2319         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2320         sg = st->sgl;
2321         st->nents = 0;
2322         for (i = 0; i < page_count; i++) {
2323                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2324                 if (unlikely(IS_ERR(page))) {
2325                         i915_gem_shrink(dev_priv,
2326                                         page_count,
2327                                         I915_SHRINK_BOUND |
2328                                         I915_SHRINK_UNBOUND |
2329                                         I915_SHRINK_PURGEABLE);
2330                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2331                 }
2332                 if (unlikely(IS_ERR(page))) {
2333                         gfp_t reclaim;
2334
2335                         /* We've tried hard to allocate the memory by reaping
2336                          * our own buffer, now let the real VM do its job and
2337                          * go down in flames if truly OOM.
2338                          *
2339                          * However, since graphics tend to be disposable,
2340                          * defer the oom here by reporting the ENOMEM back
2341                          * to userspace.
2342                          */
2343                         reclaim = mapping_gfp_constraint(mapping, 0);
2344                         reclaim |= __GFP_NORETRY; /* reclaim, but no oom */
2345
2346                         page = shmem_read_mapping_page_gfp(mapping, i, reclaim);
2347                         if (IS_ERR(page)) {
2348                                 ret = PTR_ERR(page);
2349                                 goto err_sg;
2350                         }
2351                 }
2352                 if (!i ||
2353                     sg->length >= max_segment ||
2354                     page_to_pfn(page) != last_pfn + 1) {
2355                         if (i)
2356                                 sg = sg_next(sg);
2357                         st->nents++;
2358                         sg_set_page(sg, page, PAGE_SIZE, 0);
2359                 } else {
2360                         sg->length += PAGE_SIZE;
2361                 }
2362                 last_pfn = page_to_pfn(page);
2363
2364                 /* Check that the i965g/gm workaround works. */
2365                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2366         }
2367         if (sg) /* loop terminated early; short sg table */
2368                 sg_mark_end(sg);
2369
2370         /* Trim unused sg entries to avoid wasting memory. */
2371         i915_sg_trim(st);
2372
2373         ret = i915_gem_gtt_prepare_pages(obj, st);
2374         if (ret) {
2375                 /* DMA remapping failed? One possible cause is that
2376                  * it could not reserve enough large entries, asking
2377                  * for PAGE_SIZE chunks instead may be helpful.
2378                  */
2379                 if (max_segment > PAGE_SIZE) {
2380                         for_each_sgt_page(page, sgt_iter, st)
2381                                 put_page(page);
2382                         sg_free_table(st);
2383
2384                         max_segment = PAGE_SIZE;
2385                         goto rebuild_st;
2386                 } else {
2387                         dev_warn(&dev_priv->drm.pdev->dev,
2388                                  "Failed to DMA remap %lu pages\n",
2389                                  page_count);
2390                         goto err_pages;
2391                 }
2392         }
2393
2394         if (i915_gem_object_needs_bit17_swizzle(obj))
2395                 i915_gem_object_do_bit_17_swizzle(obj, st);
2396
2397         return st;
2398
2399 err_sg:
2400         sg_mark_end(sg);
2401 err_pages:
2402         for_each_sgt_page(page, sgt_iter, st)
2403                 put_page(page);
2404         sg_free_table(st);
2405         kfree(st);
2406
2407         /* shmemfs first checks if there is enough memory to allocate the page
2408          * and reports ENOSPC should there be insufficient, along with the usual
2409          * ENOMEM for a genuine allocation failure.
2410          *
2411          * We use ENOSPC in our driver to mean that we have run out of aperture
2412          * space and so want to translate the error from shmemfs back to our
2413          * usual understanding of ENOMEM.
2414          */
2415         if (ret == -ENOSPC)
2416                 ret = -ENOMEM;
2417
2418         return ERR_PTR(ret);
2419 }
2420
2421 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2422                                  struct sg_table *pages)
2423 {
2424         lockdep_assert_held(&obj->mm.lock);
2425
2426         obj->mm.get_page.sg_pos = pages->sgl;
2427         obj->mm.get_page.sg_idx = 0;
2428
2429         obj->mm.pages = pages;
2430
2431         if (i915_gem_object_is_tiled(obj) &&
2432             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2433                 GEM_BUG_ON(obj->mm.quirked);
2434                 __i915_gem_object_pin_pages(obj);
2435                 obj->mm.quirked = true;
2436         }
2437 }
2438
2439 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2440 {
2441         struct sg_table *pages;
2442
2443         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2444
2445         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2446                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2447                 return -EFAULT;
2448         }
2449
2450         pages = obj->ops->get_pages(obj);
2451         if (unlikely(IS_ERR(pages)))
2452                 return PTR_ERR(pages);
2453
2454         __i915_gem_object_set_pages(obj, pages);
2455         return 0;
2456 }
2457
2458 /* Ensure that the associated pages are gathered from the backing storage
2459  * and pinned into our object. i915_gem_object_pin_pages() may be called
2460  * multiple times before they are released by a single call to
2461  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2462  * either as a result of memory pressure (reaping pages under the shrinker)
2463  * or as the object is itself released.
2464  */
2465 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2466 {
2467         int err;
2468
2469         err = mutex_lock_interruptible(&obj->mm.lock);
2470         if (err)
2471                 return err;
2472
2473         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2474                 err = ____i915_gem_object_get_pages(obj);
2475                 if (err)
2476                         goto unlock;
2477
2478                 smp_mb__before_atomic();
2479         }
2480         atomic_inc(&obj->mm.pages_pin_count);
2481
2482 unlock:
2483         mutex_unlock(&obj->mm.lock);
2484         return err;
2485 }
2486
2487 /* The 'mapping' part of i915_gem_object_pin_map() below */
2488 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2489                                  enum i915_map_type type)
2490 {
2491         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2492         struct sg_table *sgt = obj->mm.pages;
2493         struct sgt_iter sgt_iter;
2494         struct page *page;
2495         struct page *stack_pages[32];
2496         struct page **pages = stack_pages;
2497         unsigned long i = 0;
2498         pgprot_t pgprot;
2499         void *addr;
2500
2501         /* A single page can always be kmapped */
2502         if (n_pages == 1 && type == I915_MAP_WB)
2503                 return kmap(sg_page(sgt->sgl));
2504
2505         if (n_pages > ARRAY_SIZE(stack_pages)) {
2506                 /* Too big for stack -- allocate temporary array instead */
2507                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2508                 if (!pages)
2509                         return NULL;
2510         }
2511
2512         for_each_sgt_page(page, sgt_iter, sgt)
2513                 pages[i++] = page;
2514
2515         /* Check that we have the expected number of pages */
2516         GEM_BUG_ON(i != n_pages);
2517
2518         switch (type) {
2519         case I915_MAP_WB:
2520                 pgprot = PAGE_KERNEL;
2521                 break;
2522         case I915_MAP_WC:
2523                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2524                 break;
2525         }
2526         addr = vmap(pages, n_pages, 0, pgprot);
2527
2528         if (pages != stack_pages)
2529                 drm_free_large(pages);
2530
2531         return addr;
2532 }
2533
2534 /* get, pin, and map the pages of the object into kernel space */
2535 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2536                               enum i915_map_type type)
2537 {
2538         enum i915_map_type has_type;
2539         bool pinned;
2540         void *ptr;
2541         int ret;
2542
2543         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2544
2545         ret = mutex_lock_interruptible(&obj->mm.lock);
2546         if (ret)
2547                 return ERR_PTR(ret);
2548
2549         pinned = true;
2550         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2551                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2552                         ret = ____i915_gem_object_get_pages(obj);
2553                         if (ret)
2554                                 goto err_unlock;
2555
2556                         smp_mb__before_atomic();
2557                 }
2558                 atomic_inc(&obj->mm.pages_pin_count);
2559                 pinned = false;
2560         }
2561         GEM_BUG_ON(!obj->mm.pages);
2562
2563         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2564         if (ptr && has_type != type) {
2565                 if (pinned) {
2566                         ret = -EBUSY;
2567                         goto err_unpin;
2568                 }
2569
2570                 if (is_vmalloc_addr(ptr))
2571                         vunmap(ptr);
2572                 else
2573                         kunmap(kmap_to_page(ptr));
2574
2575                 ptr = obj->mm.mapping = NULL;
2576         }
2577
2578         if (!ptr) {
2579                 ptr = i915_gem_object_map(obj, type);
2580                 if (!ptr) {
2581                         ret = -ENOMEM;
2582                         goto err_unpin;
2583                 }
2584
2585                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2586         }
2587
2588 out_unlock:
2589         mutex_unlock(&obj->mm.lock);
2590         return ptr;
2591
2592 err_unpin:
2593         atomic_dec(&obj->mm.pages_pin_count);
2594 err_unlock:
2595         ptr = ERR_PTR(ret);
2596         goto out_unlock;
2597 }
2598
2599 static int
2600 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2601                            const struct drm_i915_gem_pwrite *arg)
2602 {
2603         struct address_space *mapping = obj->base.filp->f_mapping;
2604         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2605         u64 remain, offset;
2606         unsigned int pg;
2607
2608         /* Before we instantiate/pin the backing store for our use, we
2609          * can prepopulate the shmemfs filp efficiently using a write into
2610          * the pagecache. We avoid the penalty of instantiating all the
2611          * pages, important if the user is just writing to a few and never
2612          * uses the object on the GPU, and using a direct write into shmemfs
2613          * allows it to avoid the cost of retrieving a page (either swapin
2614          * or clearing-before-use) before it is overwritten.
2615          */
2616         if (READ_ONCE(obj->mm.pages))
2617                 return -ENODEV;
2618
2619         /* Before the pages are instantiated the object is treated as being
2620          * in the CPU domain. The pages will be clflushed as required before
2621          * use, and we can freely write into the pages directly. If userspace
2622          * races pwrite with any other operation; corruption will ensue -
2623          * that is userspace's prerogative!
2624          */
2625
2626         remain = arg->size;
2627         offset = arg->offset;
2628         pg = offset_in_page(offset);
2629
2630         do {
2631                 unsigned int len, unwritten;
2632                 struct page *page;
2633                 void *data, *vaddr;
2634                 int err;
2635
2636                 len = PAGE_SIZE - pg;
2637                 if (len > remain)
2638                         len = remain;
2639
2640                 err = pagecache_write_begin(obj->base.filp, mapping,
2641                                             offset, len, 0,
2642                                             &page, &data);
2643                 if (err < 0)
2644                         return err;
2645
2646                 vaddr = kmap(page);
2647                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2648                 kunmap(page);
2649
2650                 err = pagecache_write_end(obj->base.filp, mapping,
2651                                           offset, len, len - unwritten,
2652                                           page, data);
2653                 if (err < 0)
2654                         return err;
2655
2656                 if (unwritten)
2657                         return -EFAULT;
2658
2659                 remain -= len;
2660                 user_data += len;
2661                 offset += len;
2662                 pg = 0;
2663         } while (remain);
2664
2665         return 0;
2666 }
2667
2668 static bool ban_context(const struct i915_gem_context *ctx)
2669 {
2670         return (i915_gem_context_is_bannable(ctx) &&
2671                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2672 }
2673
2674 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2675 {
2676         ctx->guilty_count++;
2677         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2678         if (ban_context(ctx))
2679                 i915_gem_context_set_banned(ctx);
2680
2681         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2682                          ctx->name, ctx->ban_score,
2683                          yesno(i915_gem_context_is_banned(ctx)));
2684
2685         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2686                 return;
2687
2688         ctx->file_priv->context_bans++;
2689         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2690                          ctx->name, ctx->file_priv->context_bans);
2691 }
2692
2693 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2694 {
2695         ctx->active_count++;
2696 }
2697
2698 struct drm_i915_gem_request *
2699 i915_gem_find_active_request(struct intel_engine_cs *engine)
2700 {
2701         struct drm_i915_gem_request *request, *active = NULL;
2702         unsigned long flags;
2703
2704         /* We are called by the error capture and reset at a random
2705          * point in time. In particular, note that neither is crucially
2706          * ordered with an interrupt. After a hang, the GPU is dead and we
2707          * assume that no more writes can happen (we waited long enough for
2708          * all writes that were in transaction to be flushed) - adding an
2709          * extra delay for a recent interrupt is pointless. Hence, we do
2710          * not need an engine->irq_seqno_barrier() before the seqno reads.
2711          */
2712         spin_lock_irqsave(&engine->timeline->lock, flags);
2713         list_for_each_entry(request, &engine->timeline->requests, link) {
2714                 if (__i915_gem_request_completed(request,
2715                                                  request->global_seqno))
2716                         continue;
2717
2718                 GEM_BUG_ON(request->engine != engine);
2719                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2720                                     &request->fence.flags));
2721
2722                 active = request;
2723                 break;
2724         }
2725         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2726
2727         return active;
2728 }
2729
2730 static bool engine_stalled(struct intel_engine_cs *engine)
2731 {
2732         if (!engine->hangcheck.stalled)
2733                 return false;
2734
2735         /* Check for possible seqno movement after hang declaration */
2736         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2737                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2738                 return false;
2739         }
2740
2741         return true;
2742 }
2743
2744 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2745 {
2746         struct intel_engine_cs *engine;
2747         enum intel_engine_id id;
2748         int err = 0;
2749
2750         /* Ensure irq handler finishes, and not run again. */
2751         for_each_engine(engine, dev_priv, id) {
2752                 struct drm_i915_gem_request *request;
2753
2754                 /* Prevent the signaler thread from updating the request
2755                  * state (by calling dma_fence_signal) as we are processing
2756                  * the reset. The write from the GPU of the seqno is
2757                  * asynchronous and the signaler thread may see a different
2758                  * value to us and declare the request complete, even though
2759                  * the reset routine have picked that request as the active
2760                  * (incomplete) request. This conflict is not handled
2761                  * gracefully!
2762                  */
2763                 kthread_park(engine->breadcrumbs.signaler);
2764
2765                 /* Prevent request submission to the hardware until we have
2766                  * completed the reset in i915_gem_reset_finish(). If a request
2767                  * is completed by one engine, it may then queue a request
2768                  * to a second via its engine->irq_tasklet *just* as we are
2769                  * calling engine->init_hw() and also writing the ELSP.
2770                  * Turning off the engine->irq_tasklet until the reset is over
2771                  * prevents the race.
2772                  */
2773                 tasklet_kill(&engine->irq_tasklet);
2774                 tasklet_disable(&engine->irq_tasklet);
2775
2776                 if (engine->irq_seqno_barrier)
2777                         engine->irq_seqno_barrier(engine);
2778
2779                 if (engine_stalled(engine)) {
2780                         request = i915_gem_find_active_request(engine);
2781                         if (request && request->fence.error == -EIO)
2782                                 err = -EIO; /* Previous reset failed! */
2783                 }
2784         }
2785
2786         i915_gem_revoke_fences(dev_priv);
2787
2788         return err;
2789 }
2790
2791 static void skip_request(struct drm_i915_gem_request *request)
2792 {
2793         void *vaddr = request->ring->vaddr;
2794         u32 head;
2795
2796         /* As this request likely depends on state from the lost
2797          * context, clear out all the user operations leaving the
2798          * breadcrumb at the end (so we get the fence notifications).
2799          */
2800         head = request->head;
2801         if (request->postfix < head) {
2802                 memset(vaddr + head, 0, request->ring->size - head);
2803                 head = 0;
2804         }
2805         memset(vaddr + head, 0, request->postfix - head);
2806
2807         dma_fence_set_error(&request->fence, -EIO);
2808 }
2809
2810 static void engine_skip_context(struct drm_i915_gem_request *request)
2811 {
2812         struct intel_engine_cs *engine = request->engine;
2813         struct i915_gem_context *hung_ctx = request->ctx;
2814         struct intel_timeline *timeline;
2815         unsigned long flags;
2816
2817         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2818
2819         spin_lock_irqsave(&engine->timeline->lock, flags);
2820         spin_lock(&timeline->lock);
2821
2822         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2823                 if (request->ctx == hung_ctx)
2824                         skip_request(request);
2825
2826         list_for_each_entry(request, &timeline->requests, link)
2827                 skip_request(request);
2828
2829         spin_unlock(&timeline->lock);
2830         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2831 }
2832
2833 /* Returns true if the request was guilty of hang */
2834 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2835 {
2836         /* Read once and return the resolution */
2837         const bool guilty = engine_stalled(request->engine);
2838
2839         /* The guilty request will get skipped on a hung engine.
2840          *
2841          * Users of client default contexts do not rely on logical
2842          * state preserved between batches so it is safe to execute
2843          * queued requests following the hang. Non default contexts
2844          * rely on preserved state, so skipping a batch loses the
2845          * evolution of the state and it needs to be considered corrupted.
2846          * Executing more queued batches on top of corrupted state is
2847          * risky. But we take the risk by trying to advance through
2848          * the queued requests in order to make the client behaviour
2849          * more predictable around resets, by not throwing away random
2850          * amount of batches it has prepared for execution. Sophisticated
2851          * clients can use gem_reset_stats_ioctl and dma fence status
2852          * (exported via sync_file info ioctl on explicit fences) to observe
2853          * when it loses the context state and should rebuild accordingly.
2854          *
2855          * The context ban, and ultimately the client ban, mechanism are safety
2856          * valves if client submission ends up resulting in nothing more than
2857          * subsequent hangs.
2858          */
2859
2860         if (guilty) {
2861                 i915_gem_context_mark_guilty(request->ctx);
2862                 skip_request(request);
2863         } else {
2864                 i915_gem_context_mark_innocent(request->ctx);
2865                 dma_fence_set_error(&request->fence, -EAGAIN);
2866         }
2867
2868         return guilty;
2869 }
2870
2871 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2872 {
2873         struct drm_i915_gem_request *request;
2874
2875         request = i915_gem_find_active_request(engine);
2876         if (request && i915_gem_reset_request(request)) {
2877                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2878                                  engine->name, request->global_seqno);
2879
2880                 /* If this context is now banned, skip all pending requests. */
2881                 if (i915_gem_context_is_banned(request->ctx))
2882                         engine_skip_context(request);
2883         }
2884
2885         /* Setup the CS to resume from the breadcrumb of the hung request */
2886         engine->reset_hw(engine, request);
2887 }
2888
2889 void i915_gem_reset(struct drm_i915_private *dev_priv)
2890 {
2891         struct intel_engine_cs *engine;
2892         enum intel_engine_id id;
2893
2894         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2895
2896         i915_gem_retire_requests(dev_priv);
2897
2898         for_each_engine(engine, dev_priv, id) {
2899                 struct i915_gem_context *ctx;
2900
2901                 i915_gem_reset_engine(engine);
2902                 ctx = fetch_and_zero(&engine->last_retired_context);
2903                 if (ctx)
2904                         engine->context_unpin(engine, ctx);
2905         }
2906
2907         i915_gem_restore_fences(dev_priv);
2908
2909         if (dev_priv->gt.awake) {
2910                 intel_sanitize_gt_powersave(dev_priv);
2911                 intel_enable_gt_powersave(dev_priv);
2912                 if (INTEL_GEN(dev_priv) >= 6)
2913                         gen6_rps_busy(dev_priv);
2914         }
2915 }
2916
2917 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2918 {
2919         struct intel_engine_cs *engine;
2920         enum intel_engine_id id;
2921
2922         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2923
2924         for_each_engine(engine, dev_priv, id) {
2925                 tasklet_enable(&engine->irq_tasklet);
2926                 kthread_unpark(engine->breadcrumbs.signaler);
2927         }
2928 }
2929
2930 static void nop_submit_request(struct drm_i915_gem_request *request)
2931 {
2932         dma_fence_set_error(&request->fence, -EIO);
2933         i915_gem_request_submit(request);
2934         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2935 }
2936
2937 static void engine_set_wedged(struct intel_engine_cs *engine)
2938 {
2939         struct drm_i915_gem_request *request;
2940         unsigned long flags;
2941
2942         /* We need to be sure that no thread is running the old callback as
2943          * we install the nop handler (otherwise we would submit a request
2944          * to hardware that will never complete). In order to prevent this
2945          * race, we wait until the machine is idle before making the swap
2946          * (using stop_machine()).
2947          */
2948         engine->submit_request = nop_submit_request;
2949
2950         /* Mark all executing requests as skipped */
2951         spin_lock_irqsave(&engine->timeline->lock, flags);
2952         list_for_each_entry(request, &engine->timeline->requests, link)
2953                 dma_fence_set_error(&request->fence, -EIO);
2954         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2955
2956         /* Mark all pending requests as complete so that any concurrent
2957          * (lockless) lookup doesn't try and wait upon the request as we
2958          * reset it.
2959          */
2960         intel_engine_init_global_seqno(engine,
2961                                        intel_engine_last_submit(engine));
2962
2963         /*
2964          * Clear the execlists queue up before freeing the requests, as those
2965          * are the ones that keep the context and ringbuffer backing objects
2966          * pinned in place.
2967          */
2968
2969         if (i915.enable_execlists) {
2970                 unsigned long flags;
2971
2972                 spin_lock_irqsave(&engine->timeline->lock, flags);
2973
2974                 i915_gem_request_put(engine->execlist_port[0].request);
2975                 i915_gem_request_put(engine->execlist_port[1].request);
2976                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2977                 engine->execlist_queue = RB_ROOT;
2978                 engine->execlist_first = NULL;
2979
2980                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2981         }
2982 }
2983
2984 static int __i915_gem_set_wedged_BKL(void *data)
2985 {
2986         struct drm_i915_private *i915 = data;
2987         struct intel_engine_cs *engine;
2988         enum intel_engine_id id;
2989
2990         for_each_engine(engine, i915, id)
2991                 engine_set_wedged(engine);
2992
2993         return 0;
2994 }
2995
2996 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2997 {
2998         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2999         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3000
3001         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3002
3003         i915_gem_context_lost(dev_priv);
3004         i915_gem_retire_requests(dev_priv);
3005
3006         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3007 }
3008
3009 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3010 {
3011         struct i915_gem_timeline *tl;
3012         int i;
3013
3014         lockdep_assert_held(&i915->drm.struct_mutex);
3015         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3016                 return true;
3017
3018         /* Before unwedging, make sure that all pending operations
3019          * are flushed and errored out - we may have requests waiting upon
3020          * third party fences. We marked all inflight requests as EIO, and
3021          * every execbuf since returned EIO, for consistency we want all
3022          * the currently pending requests to also be marked as EIO, which
3023          * is done inside our nop_submit_request - and so we must wait.
3024          *
3025          * No more can be submitted until we reset the wedged bit.
3026          */
3027         list_for_each_entry(tl, &i915->gt.timelines, link) {
3028                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3029                         struct drm_i915_gem_request *rq;
3030
3031                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3032                                                   &i915->drm.struct_mutex);
3033                         if (!rq)
3034                                 continue;
3035
3036                         /* We can't use our normal waiter as we want to
3037                          * avoid recursively trying to handle the current
3038                          * reset. The basic dma_fence_default_wait() installs
3039                          * a callback for dma_fence_signal(), which is
3040                          * triggered by our nop handler (indirectly, the
3041                          * callback enables the signaler thread which is
3042                          * woken by the nop_submit_request() advancing the seqno
3043                          * and when the seqno passes the fence, the signaler
3044                          * then signals the fence waking us up).
3045                          */
3046                         if (dma_fence_default_wait(&rq->fence, true,
3047                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3048                                 return false;
3049                 }
3050         }
3051
3052         /* Undo nop_submit_request. We prevent all new i915 requests from
3053          * being queued (by disallowing execbuf whilst wedged) so having
3054          * waited for all active requests above, we know the system is idle
3055          * and do not have to worry about a thread being inside
3056          * engine->submit_request() as we swap over. So unlike installing
3057          * the nop_submit_request on reset, we can do this from normal
3058          * context and do not require stop_machine().
3059          */
3060         intel_engines_reset_default_submission(i915);
3061
3062         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3063         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3064
3065         return true;
3066 }
3067
3068 static void
3069 i915_gem_retire_work_handler(struct work_struct *work)
3070 {
3071         struct drm_i915_private *dev_priv =
3072                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3073         struct drm_device *dev = &dev_priv->drm;
3074
3075         /* Come back later if the device is busy... */
3076         if (mutex_trylock(&dev->struct_mutex)) {
3077                 i915_gem_retire_requests(dev_priv);
3078                 mutex_unlock(&dev->struct_mutex);
3079         }
3080
3081         /* Keep the retire handler running until we are finally idle.
3082          * We do not need to do this test under locking as in the worst-case
3083          * we queue the retire worker once too often.
3084          */
3085         if (READ_ONCE(dev_priv->gt.awake)) {
3086                 i915_queue_hangcheck(dev_priv);
3087                 queue_delayed_work(dev_priv->wq,
3088                                    &dev_priv->gt.retire_work,
3089                                    round_jiffies_up_relative(HZ));
3090         }
3091 }
3092
3093 static void
3094 i915_gem_idle_work_handler(struct work_struct *work)
3095 {
3096         struct drm_i915_private *dev_priv =
3097                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3098         struct drm_device *dev = &dev_priv->drm;
3099         struct intel_engine_cs *engine;
3100         enum intel_engine_id id;
3101         bool rearm_hangcheck;
3102
3103         if (!READ_ONCE(dev_priv->gt.awake))
3104                 return;
3105
3106         /*
3107          * Wait for last execlists context complete, but bail out in case a
3108          * new request is submitted.
3109          */
3110         wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
3111                  intel_engines_are_idle(dev_priv),
3112                  10);
3113         if (READ_ONCE(dev_priv->gt.active_requests))
3114                 return;
3115
3116         rearm_hangcheck =
3117                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3118
3119         if (!mutex_trylock(&dev->struct_mutex)) {
3120                 /* Currently busy, come back later */
3121                 mod_delayed_work(dev_priv->wq,
3122                                  &dev_priv->gt.idle_work,
3123                                  msecs_to_jiffies(50));
3124                 goto out_rearm;
3125         }
3126
3127         /*
3128          * New request retired after this work handler started, extend active
3129          * period until next instance of the work.
3130          */
3131         if (work_pending(work))
3132                 goto out_unlock;
3133
3134         if (dev_priv->gt.active_requests)
3135                 goto out_unlock;
3136
3137         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3138                 DRM_ERROR("Timeout waiting for engines to idle\n");
3139
3140         for_each_engine(engine, dev_priv, id) {
3141                 intel_engine_disarm_breadcrumbs(engine);
3142                 i915_gem_batch_pool_fini(&engine->batch_pool);
3143         }
3144
3145         GEM_BUG_ON(!dev_priv->gt.awake);
3146         dev_priv->gt.awake = false;
3147         rearm_hangcheck = false;
3148
3149         if (INTEL_GEN(dev_priv) >= 6)
3150                 gen6_rps_idle(dev_priv);
3151         intel_runtime_pm_put(dev_priv);
3152 out_unlock:
3153         mutex_unlock(&dev->struct_mutex);
3154
3155 out_rearm:
3156         if (rearm_hangcheck) {
3157                 GEM_BUG_ON(!dev_priv->gt.awake);
3158                 i915_queue_hangcheck(dev_priv);
3159         }
3160 }
3161
3162 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3163 {
3164         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3165         struct drm_i915_file_private *fpriv = file->driver_priv;
3166         struct i915_vma *vma, *vn;
3167
3168         mutex_lock(&obj->base.dev->struct_mutex);
3169         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3170                 if (vma->vm->file == fpriv)
3171                         i915_vma_close(vma);
3172
3173         if (i915_gem_object_is_active(obj) &&
3174             !i915_gem_object_has_active_reference(obj)) {
3175                 i915_gem_object_set_active_reference(obj);
3176                 i915_gem_object_get(obj);
3177         }
3178         mutex_unlock(&obj->base.dev->struct_mutex);
3179 }
3180
3181 static unsigned long to_wait_timeout(s64 timeout_ns)
3182 {
3183         if (timeout_ns < 0)
3184                 return MAX_SCHEDULE_TIMEOUT;
3185
3186         if (timeout_ns == 0)
3187                 return 0;
3188
3189         return nsecs_to_jiffies_timeout(timeout_ns);
3190 }
3191
3192 /**
3193  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3194  * @dev: drm device pointer
3195  * @data: ioctl data blob
3196  * @file: drm file pointer
3197  *
3198  * Returns 0 if successful, else an error is returned with the remaining time in
3199  * the timeout parameter.
3200  *  -ETIME: object is still busy after timeout
3201  *  -ERESTARTSYS: signal interrupted the wait
3202  *  -ENONENT: object doesn't exist
3203  * Also possible, but rare:
3204  *  -EAGAIN: GPU wedged
3205  *  -ENOMEM: damn
3206  *  -ENODEV: Internal IRQ fail
3207  *  -E?: The add request failed
3208  *
3209  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3210  * non-zero timeout parameter the wait ioctl will wait for the given number of
3211  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3212  * without holding struct_mutex the object may become re-busied before this
3213  * function completes. A similar but shorter * race condition exists in the busy
3214  * ioctl
3215  */
3216 int
3217 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3218 {
3219         struct drm_i915_gem_wait *args = data;
3220         struct drm_i915_gem_object *obj;
3221         ktime_t start;
3222         long ret;
3223
3224         if (args->flags != 0)
3225                 return -EINVAL;
3226
3227         obj = i915_gem_object_lookup(file, args->bo_handle);
3228         if (!obj)
3229                 return -ENOENT;
3230
3231         start = ktime_get();
3232
3233         ret = i915_gem_object_wait(obj,
3234                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3235                                    to_wait_timeout(args->timeout_ns),
3236                                    to_rps_client(file));
3237
3238         if (args->timeout_ns > 0) {
3239                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3240                 if (args->timeout_ns < 0)
3241                         args->timeout_ns = 0;
3242
3243                 /*
3244                  * Apparently ktime isn't accurate enough and occasionally has a
3245                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3246                  * things up to make the test happy. We allow up to 1 jiffy.
3247                  *
3248                  * This is a regression from the timespec->ktime conversion.
3249                  */
3250                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3251                         args->timeout_ns = 0;
3252         }
3253
3254         i915_gem_object_put(obj);
3255         return ret;
3256 }
3257
3258 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3259 {
3260         int ret, i;
3261
3262         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3263                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3264                 if (ret)
3265                         return ret;
3266         }
3267
3268         return 0;
3269 }
3270
3271 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3272 {
3273         int ret;
3274
3275         if (flags & I915_WAIT_LOCKED) {
3276                 struct i915_gem_timeline *tl;
3277
3278                 lockdep_assert_held(&i915->drm.struct_mutex);
3279
3280                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3281                         ret = wait_for_timeline(tl, flags);
3282                         if (ret)
3283                                 return ret;
3284                 }
3285         } else {
3286                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3287                 if (ret)
3288                         return ret;
3289         }
3290
3291         return 0;
3292 }
3293
3294 /** Flushes the GTT write domain for the object if it's dirty. */
3295 static void
3296 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3297 {
3298         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3299
3300         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3301                 return;
3302
3303         /* No actual flushing is required for the GTT write domain.  Writes
3304          * to it "immediately" go to main memory as far as we know, so there's
3305          * no chipset flush.  It also doesn't land in render cache.
3306          *
3307          * However, we do have to enforce the order so that all writes through
3308          * the GTT land before any writes to the device, such as updates to
3309          * the GATT itself.
3310          *
3311          * We also have to wait a bit for the writes to land from the GTT.
3312          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3313          * timing. This issue has only been observed when switching quickly
3314          * between GTT writes and CPU reads from inside the kernel on recent hw,
3315          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3316          * system agents we cannot reproduce this behaviour).
3317          */
3318         wmb();
3319         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
3320                 if (intel_runtime_pm_get_if_in_use(dev_priv)) {
3321                         spin_lock_irq(&dev_priv->uncore.lock);
3322                         POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3323                         spin_unlock_irq(&dev_priv->uncore.lock);
3324                         intel_runtime_pm_put(dev_priv);
3325                 }
3326         }
3327
3328         intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3329
3330         obj->base.write_domain = 0;
3331 }
3332
3333 /** Flushes the CPU write domain for the object if it's dirty. */
3334 static void
3335 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3336 {
3337         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3338                 return;
3339
3340         i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3341         obj->base.write_domain = 0;
3342 }
3343
3344 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3345 {
3346         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3347                 return;
3348
3349         i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3350         obj->base.write_domain = 0;
3351 }
3352
3353 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3354 {
3355         if (!READ_ONCE(obj->pin_display))
3356                 return;
3357
3358         mutex_lock(&obj->base.dev->struct_mutex);
3359         __i915_gem_object_flush_for_display(obj);
3360         mutex_unlock(&obj->base.dev->struct_mutex);
3361 }
3362
3363 /**
3364  * Moves a single object to the GTT read, and possibly write domain.
3365  * @obj: object to act on
3366  * @write: ask for write access or read only
3367  *
3368  * This function returns when the move is complete, including waiting on
3369  * flushes to occur.
3370  */
3371 int
3372 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3373 {
3374         int ret;
3375
3376         lockdep_assert_held(&obj->base.dev->struct_mutex);
3377
3378         ret = i915_gem_object_wait(obj,
3379                                    I915_WAIT_INTERRUPTIBLE |
3380                                    I915_WAIT_LOCKED |
3381                                    (write ? I915_WAIT_ALL : 0),
3382                                    MAX_SCHEDULE_TIMEOUT,
3383                                    NULL);
3384         if (ret)
3385                 return ret;
3386
3387         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3388                 return 0;
3389
3390         /* Flush and acquire obj->pages so that we are coherent through
3391          * direct access in memory with previous cached writes through
3392          * shmemfs and that our cache domain tracking remains valid.
3393          * For example, if the obj->filp was moved to swap without us
3394          * being notified and releasing the pages, we would mistakenly
3395          * continue to assume that the obj remained out of the CPU cached
3396          * domain.
3397          */
3398         ret = i915_gem_object_pin_pages(obj);
3399         if (ret)
3400                 return ret;
3401
3402         i915_gem_object_flush_cpu_write_domain(obj);
3403
3404         /* Serialise direct access to this object with the barriers for
3405          * coherent writes from the GPU, by effectively invalidating the
3406          * GTT domain upon first access.
3407          */
3408         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3409                 mb();
3410
3411         /* It should now be out of any other write domains, and we can update
3412          * the domain values for our changes.
3413          */
3414         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3415         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3416         if (write) {
3417                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3418                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3419                 obj->mm.dirty = true;
3420         }
3421
3422         i915_gem_object_unpin_pages(obj);
3423         return 0;
3424 }
3425
3426 /**
3427  * Changes the cache-level of an object across all VMA.
3428  * @obj: object to act on
3429  * @cache_level: new cache level to set for the object
3430  *
3431  * After this function returns, the object will be in the new cache-level
3432  * across all GTT and the contents of the backing storage will be coherent,
3433  * with respect to the new cache-level. In order to keep the backing storage
3434  * coherent for all users, we only allow a single cache level to be set
3435  * globally on the object and prevent it from being changed whilst the
3436  * hardware is reading from the object. That is if the object is currently
3437  * on the scanout it will be set to uncached (or equivalent display
3438  * cache coherency) and all non-MOCS GPU access will also be uncached so
3439  * that all direct access to the scanout remains coherent.
3440  */
3441 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3442                                     enum i915_cache_level cache_level)
3443 {
3444         struct i915_vma *vma;
3445         int ret;
3446
3447         lockdep_assert_held(&obj->base.dev->struct_mutex);
3448
3449         if (obj->cache_level == cache_level)
3450                 return 0;
3451
3452         /* Inspect the list of currently bound VMA and unbind any that would
3453          * be invalid given the new cache-level. This is principally to
3454          * catch the issue of the CS prefetch crossing page boundaries and
3455          * reading an invalid PTE on older architectures.
3456          */
3457 restart:
3458         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3459                 if (!drm_mm_node_allocated(&vma->node))
3460                         continue;
3461
3462                 if (i915_vma_is_pinned(vma)) {
3463                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3464                         return -EBUSY;
3465                 }
3466
3467                 if (i915_gem_valid_gtt_space(vma, cache_level))
3468                         continue;
3469
3470                 ret = i915_vma_unbind(vma);
3471                 if (ret)
3472                         return ret;
3473
3474                 /* As unbinding may affect other elements in the
3475                  * obj->vma_list (due to side-effects from retiring
3476                  * an active vma), play safe and restart the iterator.
3477                  */
3478                 goto restart;
3479         }
3480
3481         /* We can reuse the existing drm_mm nodes but need to change the
3482          * cache-level on the PTE. We could simply unbind them all and
3483          * rebind with the correct cache-level on next use. However since
3484          * we already have a valid slot, dma mapping, pages etc, we may as
3485          * rewrite the PTE in the belief that doing so tramples upon less
3486          * state and so involves less work.
3487          */
3488         if (obj->bind_count) {
3489                 /* Before we change the PTE, the GPU must not be accessing it.
3490                  * If we wait upon the object, we know that all the bound
3491                  * VMA are no longer active.
3492                  */
3493                 ret = i915_gem_object_wait(obj,
3494                                            I915_WAIT_INTERRUPTIBLE |
3495                                            I915_WAIT_LOCKED |
3496                                            I915_WAIT_ALL,
3497                                            MAX_SCHEDULE_TIMEOUT,
3498                                            NULL);
3499                 if (ret)
3500                         return ret;
3501
3502                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3503                     cache_level != I915_CACHE_NONE) {
3504                         /* Access to snoopable pages through the GTT is
3505                          * incoherent and on some machines causes a hard
3506                          * lockup. Relinquish the CPU mmaping to force
3507                          * userspace to refault in the pages and we can
3508                          * then double check if the GTT mapping is still
3509                          * valid for that pointer access.
3510                          */
3511                         i915_gem_release_mmap(obj);
3512
3513                         /* As we no longer need a fence for GTT access,
3514                          * we can relinquish it now (and so prevent having
3515                          * to steal a fence from someone else on the next
3516                          * fence request). Note GPU activity would have
3517                          * dropped the fence as all snoopable access is
3518                          * supposed to be linear.
3519                          */
3520                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3521                                 ret = i915_vma_put_fence(vma);
3522                                 if (ret)
3523                                         return ret;
3524                         }
3525                 } else {
3526                         /* We either have incoherent backing store and
3527                          * so no GTT access or the architecture is fully
3528                          * coherent. In such cases, existing GTT mmaps
3529                          * ignore the cache bit in the PTE and we can
3530                          * rewrite it without confusing the GPU or having
3531                          * to force userspace to fault back in its mmaps.
3532                          */
3533                 }
3534
3535                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3536                         if (!drm_mm_node_allocated(&vma->node))
3537                                 continue;
3538
3539                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3540                         if (ret)
3541                                 return ret;
3542                 }
3543         }
3544
3545         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3546             i915_gem_object_is_coherent(obj))
3547                 obj->cache_dirty = true;
3548
3549         list_for_each_entry(vma, &obj->vma_list, obj_link)
3550                 vma->node.color = cache_level;
3551         obj->cache_level = cache_level;
3552
3553         return 0;
3554 }
3555
3556 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3557                                struct drm_file *file)
3558 {
3559         struct drm_i915_gem_caching *args = data;
3560         struct drm_i915_gem_object *obj;
3561         int err = 0;
3562
3563         rcu_read_lock();
3564         obj = i915_gem_object_lookup_rcu(file, args->handle);
3565         if (!obj) {
3566                 err = -ENOENT;
3567                 goto out;
3568         }
3569
3570         switch (obj->cache_level) {
3571         case I915_CACHE_LLC:
3572         case I915_CACHE_L3_LLC:
3573                 args->caching = I915_CACHING_CACHED;
3574                 break;
3575
3576         case I915_CACHE_WT:
3577                 args->caching = I915_CACHING_DISPLAY;
3578                 break;
3579
3580         default:
3581                 args->caching = I915_CACHING_NONE;
3582                 break;
3583         }
3584 out:
3585         rcu_read_unlock();
3586         return err;
3587 }
3588
3589 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3590                                struct drm_file *file)
3591 {
3592         struct drm_i915_private *i915 = to_i915(dev);
3593         struct drm_i915_gem_caching *args = data;
3594         struct drm_i915_gem_object *obj;
3595         enum i915_cache_level level;
3596         int ret = 0;
3597
3598         switch (args->caching) {
3599         case I915_CACHING_NONE:
3600                 level = I915_CACHE_NONE;
3601                 break;
3602         case I915_CACHING_CACHED:
3603                 /*
3604                  * Due to a HW issue on BXT A stepping, GPU stores via a
3605                  * snooped mapping may leave stale data in a corresponding CPU
3606                  * cacheline, whereas normally such cachelines would get
3607                  * invalidated.
3608                  */
3609                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3610                         return -ENODEV;
3611
3612                 level = I915_CACHE_LLC;
3613                 break;
3614         case I915_CACHING_DISPLAY:
3615                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3616                 break;
3617         default:
3618                 return -EINVAL;
3619         }
3620
3621         obj = i915_gem_object_lookup(file, args->handle);
3622         if (!obj)
3623                 return -ENOENT;
3624
3625         if (obj->cache_level == level)
3626                 goto out;
3627
3628         ret = i915_gem_object_wait(obj,
3629                                    I915_WAIT_INTERRUPTIBLE,
3630                                    MAX_SCHEDULE_TIMEOUT,
3631                                    to_rps_client(file));
3632         if (ret)
3633                 goto out;
3634
3635         ret = i915_mutex_lock_interruptible(dev);
3636         if (ret)
3637                 goto out;
3638
3639         ret = i915_gem_object_set_cache_level(obj, level);
3640         mutex_unlock(&dev->struct_mutex);
3641
3642 out:
3643         i915_gem_object_put(obj);
3644         return ret;
3645 }
3646
3647 /*
3648  * Prepare buffer for display plane (scanout, cursors, etc).
3649  * Can be called from an uninterruptible phase (modesetting) and allows
3650  * any flushes to be pipelined (for pageflips).
3651  */
3652 struct i915_vma *
3653 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3654                                      u32 alignment,
3655                                      const struct i915_ggtt_view *view)
3656 {
3657         struct i915_vma *vma;
3658         int ret;
3659
3660         lockdep_assert_held(&obj->base.dev->struct_mutex);
3661
3662         /* Mark the pin_display early so that we account for the
3663          * display coherency whilst setting up the cache domains.
3664          */
3665         obj->pin_display++;
3666
3667         /* The display engine is not coherent with the LLC cache on gen6.  As
3668          * a result, we make sure that the pinning that is about to occur is
3669          * done with uncached PTEs. This is lowest common denominator for all
3670          * chipsets.
3671          *
3672          * However for gen6+, we could do better by using the GFDT bit instead
3673          * of uncaching, which would allow us to flush all the LLC-cached data
3674          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3675          */
3676         ret = i915_gem_object_set_cache_level(obj,
3677                                               HAS_WT(to_i915(obj->base.dev)) ?
3678                                               I915_CACHE_WT : I915_CACHE_NONE);
3679         if (ret) {
3680                 vma = ERR_PTR(ret);
3681                 goto err_unpin_display;
3682         }
3683
3684         /* As the user may map the buffer once pinned in the display plane
3685          * (e.g. libkms for the bootup splash), we have to ensure that we
3686          * always use map_and_fenceable for all scanout buffers. However,
3687          * it may simply be too big to fit into mappable, in which case
3688          * put it anyway and hope that userspace can cope (but always first
3689          * try to preserve the existing ABI).
3690          */
3691         vma = ERR_PTR(-ENOSPC);
3692         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3693                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3694                                                PIN_MAPPABLE | PIN_NONBLOCK);
3695         if (IS_ERR(vma)) {
3696                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3697                 unsigned int flags;
3698
3699                 /* Valleyview is definitely limited to scanning out the first
3700                  * 512MiB. Lets presume this behaviour was inherited from the
3701                  * g4x display engine and that all earlier gen are similarly
3702                  * limited. Testing suggests that it is a little more
3703                  * complicated than this. For example, Cherryview appears quite
3704                  * happy to scanout from anywhere within its global aperture.
3705                  */
3706                 flags = 0;
3707                 if (HAS_GMCH_DISPLAY(i915))
3708                         flags = PIN_MAPPABLE;
3709                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3710         }
3711         if (IS_ERR(vma))
3712                 goto err_unpin_display;
3713
3714         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3715
3716         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3717         __i915_gem_object_flush_for_display(obj);
3718         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3719
3720         /* It should now be out of any other write domains, and we can update
3721          * the domain values for our changes.
3722          */
3723         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3724
3725         return vma;
3726
3727 err_unpin_display:
3728         obj->pin_display--;
3729         return vma;
3730 }
3731
3732 void
3733 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3734 {
3735         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3736
3737         if (WARN_ON(vma->obj->pin_display == 0))
3738                 return;
3739
3740         if (--vma->obj->pin_display == 0)
3741                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3742
3743         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3744         i915_gem_object_bump_inactive_ggtt(vma->obj);
3745
3746         i915_vma_unpin(vma);
3747 }
3748
3749 /**
3750  * Moves a single object to the CPU read, and possibly write domain.
3751  * @obj: object to act on
3752  * @write: requesting write or read-only access
3753  *
3754  * This function returns when the move is complete, including waiting on
3755  * flushes to occur.
3756  */
3757 int
3758 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3759 {
3760         int ret;
3761
3762         lockdep_assert_held(&obj->base.dev->struct_mutex);
3763
3764         ret = i915_gem_object_wait(obj,
3765                                    I915_WAIT_INTERRUPTIBLE |
3766                                    I915_WAIT_LOCKED |
3767                                    (write ? I915_WAIT_ALL : 0),
3768                                    MAX_SCHEDULE_TIMEOUT,
3769                                    NULL);
3770         if (ret)
3771                 return ret;
3772
3773         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3774                 return 0;
3775
3776         i915_gem_object_flush_gtt_write_domain(obj);
3777
3778         /* Flush the CPU cache if it's still invalid. */
3779         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3780                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3781                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3782         }
3783
3784         /* It should now be out of any other write domains, and we can update
3785          * the domain values for our changes.
3786          */
3787         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3788
3789         /* If we're writing through the CPU, then the GPU read domains will
3790          * need to be invalidated at next use.
3791          */
3792         if (write) {
3793                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3794                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3795         }
3796
3797         return 0;
3798 }
3799
3800 /* Throttle our rendering by waiting until the ring has completed our requests
3801  * emitted over 20 msec ago.
3802  *
3803  * Note that if we were to use the current jiffies each time around the loop,
3804  * we wouldn't escape the function with any frames outstanding if the time to
3805  * render a frame was over 20ms.
3806  *
3807  * This should get us reasonable parallelism between CPU and GPU but also
3808  * relatively low latency when blocking on a particular request to finish.
3809  */
3810 static int
3811 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3812 {
3813         struct drm_i915_private *dev_priv = to_i915(dev);
3814         struct drm_i915_file_private *file_priv = file->driver_priv;
3815         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3816         struct drm_i915_gem_request *request, *target = NULL;
3817         long ret;
3818
3819         /* ABI: return -EIO if already wedged */
3820         if (i915_terminally_wedged(&dev_priv->gpu_error))
3821                 return -EIO;
3822
3823         spin_lock(&file_priv->mm.lock);
3824         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3825                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3826                         break;
3827
3828                 if (target) {
3829                         list_del(&target->client_link);
3830                         target->file_priv = NULL;
3831                 }
3832
3833                 target = request;
3834         }
3835         if (target)
3836                 i915_gem_request_get(target);
3837         spin_unlock(&file_priv->mm.lock);
3838
3839         if (target == NULL)
3840                 return 0;
3841
3842         ret = i915_wait_request(target,
3843                                 I915_WAIT_INTERRUPTIBLE,
3844                                 MAX_SCHEDULE_TIMEOUT);
3845         i915_gem_request_put(target);
3846
3847         return ret < 0 ? ret : 0;
3848 }
3849
3850 struct i915_vma *
3851 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3852                          const struct i915_ggtt_view *view,
3853                          u64 size,
3854                          u64 alignment,
3855                          u64 flags)
3856 {
3857         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3858         struct i915_address_space *vm = &dev_priv->ggtt.base;
3859         struct i915_vma *vma;
3860         int ret;
3861
3862         lockdep_assert_held(&obj->base.dev->struct_mutex);
3863
3864         vma = i915_vma_instance(obj, vm, view);
3865         if (unlikely(IS_ERR(vma)))
3866                 return vma;
3867
3868         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3869                 if (flags & PIN_NONBLOCK &&
3870                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3871                         return ERR_PTR(-ENOSPC);
3872
3873                 if (flags & PIN_MAPPABLE) {
3874                         /* If the required space is larger than the available
3875                          * aperture, we will not able to find a slot for the
3876                          * object and unbinding the object now will be in
3877                          * vain. Worse, doing so may cause us to ping-pong
3878                          * the object in and out of the Global GTT and
3879                          * waste a lot of cycles under the mutex.
3880                          */
3881                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
3882                                 return ERR_PTR(-E2BIG);
3883
3884                         /* If NONBLOCK is set the caller is optimistically
3885                          * trying to cache the full object within the mappable
3886                          * aperture, and *must* have a fallback in place for
3887                          * situations where we cannot bind the object. We
3888                          * can be a little more lax here and use the fallback
3889                          * more often to avoid costly migrations of ourselves
3890                          * and other objects within the aperture.
3891                          *
3892                          * Half-the-aperture is used as a simple heuristic.
3893                          * More interesting would to do search for a free
3894                          * block prior to making the commitment to unbind.
3895                          * That caters for the self-harm case, and with a
3896                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3897                          * we could try to minimise harm to others.
3898                          */
3899                         if (flags & PIN_NONBLOCK &&
3900                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3901                                 return ERR_PTR(-ENOSPC);
3902                 }
3903
3904                 WARN(i915_vma_is_pinned(vma),
3905                      "bo is already pinned in ggtt with incorrect alignment:"
3906                      " offset=%08x, req.alignment=%llx,"
3907                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3908                      i915_ggtt_offset(vma), alignment,
3909                      !!(flags & PIN_MAPPABLE),
3910                      i915_vma_is_map_and_fenceable(vma));
3911                 ret = i915_vma_unbind(vma);
3912                 if (ret)
3913                         return ERR_PTR(ret);
3914         }
3915
3916         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3917         if (ret)
3918                 return ERR_PTR(ret);
3919
3920         return vma;
3921 }
3922
3923 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3924 {
3925         /* Note that we could alias engines in the execbuf API, but
3926          * that would be very unwise as it prevents userspace from
3927          * fine control over engine selection. Ahem.
3928          *
3929          * This should be something like EXEC_MAX_ENGINE instead of
3930          * I915_NUM_ENGINES.
3931          */
3932         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3933         return 0x10000 << id;
3934 }
3935
3936 static __always_inline unsigned int __busy_write_id(unsigned int id)
3937 {
3938         /* The uABI guarantees an active writer is also amongst the read
3939          * engines. This would be true if we accessed the activity tracking
3940          * under the lock, but as we perform the lookup of the object and
3941          * its activity locklessly we can not guarantee that the last_write
3942          * being active implies that we have set the same engine flag from
3943          * last_read - hence we always set both read and write busy for
3944          * last_write.
3945          */
3946         return id | __busy_read_flag(id);
3947 }
3948
3949 static __always_inline unsigned int
3950 __busy_set_if_active(const struct dma_fence *fence,
3951                      unsigned int (*flag)(unsigned int id))
3952 {
3953         struct drm_i915_gem_request *rq;
3954
3955         /* We have to check the current hw status of the fence as the uABI
3956          * guarantees forward progress. We could rely on the idle worker
3957          * to eventually flush us, but to minimise latency just ask the
3958          * hardware.
3959          *
3960          * Note we only report on the status of native fences.
3961          */
3962         if (!dma_fence_is_i915(fence))
3963                 return 0;
3964
3965         /* opencode to_request() in order to avoid const warnings */
3966         rq = container_of(fence, struct drm_i915_gem_request, fence);
3967         if (i915_gem_request_completed(rq))
3968                 return 0;
3969
3970         return flag(rq->engine->exec_id);
3971 }
3972
3973 static __always_inline unsigned int
3974 busy_check_reader(const struct dma_fence *fence)
3975 {
3976         return __busy_set_if_active(fence, __busy_read_flag);
3977 }
3978
3979 static __always_inline unsigned int
3980 busy_check_writer(const struct dma_fence *fence)
3981 {
3982         if (!fence)
3983                 return 0;
3984
3985         return __busy_set_if_active(fence, __busy_write_id);
3986 }
3987
3988 int
3989 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3990                     struct drm_file *file)
3991 {
3992         struct drm_i915_gem_busy *args = data;
3993         struct drm_i915_gem_object *obj;
3994         struct reservation_object_list *list;
3995         unsigned int seq;
3996         int err;
3997
3998         err = -ENOENT;
3999         rcu_read_lock();
4000         obj = i915_gem_object_lookup_rcu(file, args->handle);
4001         if (!obj)
4002                 goto out;
4003
4004         /* A discrepancy here is that we do not report the status of
4005          * non-i915 fences, i.e. even though we may report the object as idle,
4006          * a call to set-domain may still stall waiting for foreign rendering.
4007          * This also means that wait-ioctl may report an object as busy,
4008          * where busy-ioctl considers it idle.
4009          *
4010          * We trade the ability to warn of foreign fences to report on which
4011          * i915 engines are active for the object.
4012          *
4013          * Alternatively, we can trade that extra information on read/write
4014          * activity with
4015          *      args->busy =
4016          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4017          * to report the overall busyness. This is what the wait-ioctl does.
4018          *
4019          */
4020 retry:
4021         seq = raw_read_seqcount(&obj->resv->seq);
4022
4023         /* Translate the exclusive fence to the READ *and* WRITE engine */
4024         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4025
4026         /* Translate shared fences to READ set of engines */
4027         list = rcu_dereference(obj->resv->fence);
4028         if (list) {
4029                 unsigned int shared_count = list->shared_count, i;
4030
4031                 for (i = 0; i < shared_count; ++i) {
4032                         struct dma_fence *fence =
4033                                 rcu_dereference(list->shared[i]);
4034
4035                         args->busy |= busy_check_reader(fence);
4036                 }
4037         }
4038
4039         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4040                 goto retry;
4041
4042         err = 0;
4043 out:
4044         rcu_read_unlock();
4045         return err;
4046 }
4047
4048 int
4049 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4050                         struct drm_file *file_priv)
4051 {
4052         return i915_gem_ring_throttle(dev, file_priv);
4053 }
4054
4055 int
4056 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4057                        struct drm_file *file_priv)
4058 {
4059         struct drm_i915_private *dev_priv = to_i915(dev);
4060         struct drm_i915_gem_madvise *args = data;
4061         struct drm_i915_gem_object *obj;
4062         int err;
4063
4064         switch (args->madv) {
4065         case I915_MADV_DONTNEED:
4066         case I915_MADV_WILLNEED:
4067             break;
4068         default:
4069             return -EINVAL;
4070         }
4071
4072         obj = i915_gem_object_lookup(file_priv, args->handle);
4073         if (!obj)
4074                 return -ENOENT;
4075
4076         err = mutex_lock_interruptible(&obj->mm.lock);
4077         if (err)
4078                 goto out;
4079
4080         if (obj->mm.pages &&
4081             i915_gem_object_is_tiled(obj) &&
4082             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4083                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4084                         GEM_BUG_ON(!obj->mm.quirked);
4085                         __i915_gem_object_unpin_pages(obj);
4086                         obj->mm.quirked = false;
4087                 }
4088                 if (args->madv == I915_MADV_WILLNEED) {
4089                         GEM_BUG_ON(obj->mm.quirked);
4090                         __i915_gem_object_pin_pages(obj);
4091                         obj->mm.quirked = true;
4092                 }
4093         }
4094
4095         if (obj->mm.madv != __I915_MADV_PURGED)
4096                 obj->mm.madv = args->madv;
4097
4098         /* if the object is no longer attached, discard its backing storage */
4099         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4100                 i915_gem_object_truncate(obj);
4101
4102         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4103         mutex_unlock(&obj->mm.lock);
4104
4105 out:
4106         i915_gem_object_put(obj);
4107         return err;
4108 }
4109
4110 static void
4111 frontbuffer_retire(struct i915_gem_active *active,
4112                    struct drm_i915_gem_request *request)
4113 {
4114         struct drm_i915_gem_object *obj =
4115                 container_of(active, typeof(*obj), frontbuffer_write);
4116
4117         intel_fb_obj_flush(obj, ORIGIN_CS);
4118 }
4119
4120 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4121                           const struct drm_i915_gem_object_ops *ops)
4122 {
4123         mutex_init(&obj->mm.lock);
4124
4125         INIT_LIST_HEAD(&obj->global_link);
4126         INIT_LIST_HEAD(&obj->userfault_link);
4127         INIT_LIST_HEAD(&obj->obj_exec_link);
4128         INIT_LIST_HEAD(&obj->vma_list);
4129         INIT_LIST_HEAD(&obj->batch_pool_link);
4130
4131         obj->ops = ops;
4132
4133         reservation_object_init(&obj->__builtin_resv);
4134         obj->resv = &obj->__builtin_resv;
4135
4136         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4137         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4138
4139         obj->mm.madv = I915_MADV_WILLNEED;
4140         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4141         mutex_init(&obj->mm.get_page.lock);
4142
4143         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4144 }
4145
4146 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4147         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4148                  I915_GEM_OBJECT_IS_SHRINKABLE,
4149
4150         .get_pages = i915_gem_object_get_pages_gtt,
4151         .put_pages = i915_gem_object_put_pages_gtt,
4152
4153         .pwrite = i915_gem_object_pwrite_gtt,
4154 };
4155
4156 struct drm_i915_gem_object *
4157 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4158 {
4159         struct drm_i915_gem_object *obj;
4160         struct address_space *mapping;
4161         gfp_t mask;
4162         int ret;
4163
4164         /* There is a prevalence of the assumption that we fit the object's
4165          * page count inside a 32bit _signed_ variable. Let's document this and
4166          * catch if we ever need to fix it. In the meantime, if you do spot
4167          * such a local variable, please consider fixing!
4168          */
4169         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4170                 return ERR_PTR(-E2BIG);
4171
4172         if (overflows_type(size, obj->base.size))
4173                 return ERR_PTR(-E2BIG);
4174
4175         obj = i915_gem_object_alloc(dev_priv);
4176         if (obj == NULL)
4177                 return ERR_PTR(-ENOMEM);
4178
4179         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4180         if (ret)
4181                 goto fail;
4182
4183         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4184         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4185                 /* 965gm cannot relocate objects above 4GiB. */
4186                 mask &= ~__GFP_HIGHMEM;
4187                 mask |= __GFP_DMA32;
4188         }
4189
4190         mapping = obj->base.filp->f_mapping;
4191         mapping_set_gfp_mask(mapping, mask);
4192
4193         i915_gem_object_init(obj, &i915_gem_object_ops);
4194
4195         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4196         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4197
4198         if (HAS_LLC(dev_priv)) {
4199                 /* On some devices, we can have the GPU use the LLC (the CPU
4200                  * cache) for about a 10% performance improvement
4201                  * compared to uncached.  Graphics requests other than
4202                  * display scanout are coherent with the CPU in
4203                  * accessing this cache.  This means in this mode we
4204                  * don't need to clflush on the CPU side, and on the
4205                  * GPU side we only need to flush internal caches to
4206                  * get data visible to the CPU.
4207                  *
4208                  * However, we maintain the display planes as UC, and so
4209                  * need to rebind when first used as such.
4210                  */
4211                 obj->cache_level = I915_CACHE_LLC;
4212         } else
4213                 obj->cache_level = I915_CACHE_NONE;
4214
4215         trace_i915_gem_object_create(obj);
4216
4217         return obj;
4218
4219 fail:
4220         i915_gem_object_free(obj);
4221         return ERR_PTR(ret);
4222 }
4223
4224 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4225 {
4226         /* If we are the last user of the backing storage (be it shmemfs
4227          * pages or stolen etc), we know that the pages are going to be
4228          * immediately released. In this case, we can then skip copying
4229          * back the contents from the GPU.
4230          */
4231
4232         if (obj->mm.madv != I915_MADV_WILLNEED)
4233                 return false;
4234
4235         if (obj->base.filp == NULL)
4236                 return true;
4237
4238         /* At first glance, this looks racy, but then again so would be
4239          * userspace racing mmap against close. However, the first external
4240          * reference to the filp can only be obtained through the
4241          * i915_gem_mmap_ioctl() which safeguards us against the user
4242          * acquiring such a reference whilst we are in the middle of
4243          * freeing the object.
4244          */
4245         return atomic_long_read(&obj->base.filp->f_count) == 1;
4246 }
4247
4248 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4249                                     struct llist_node *freed)
4250 {
4251         struct drm_i915_gem_object *obj, *on;
4252
4253         mutex_lock(&i915->drm.struct_mutex);
4254         intel_runtime_pm_get(i915);
4255         llist_for_each_entry(obj, freed, freed) {
4256                 struct i915_vma *vma, *vn;
4257
4258                 trace_i915_gem_object_destroy(obj);
4259
4260                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4261                 list_for_each_entry_safe(vma, vn,
4262                                          &obj->vma_list, obj_link) {
4263                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4264                         GEM_BUG_ON(i915_vma_is_active(vma));
4265                         vma->flags &= ~I915_VMA_PIN_MASK;
4266                         i915_vma_close(vma);
4267                 }
4268                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4269                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4270
4271                 list_del(&obj->global_link);
4272         }
4273         intel_runtime_pm_put(i915);
4274         mutex_unlock(&i915->drm.struct_mutex);
4275
4276         llist_for_each_entry_safe(obj, on, freed, freed) {
4277                 GEM_BUG_ON(obj->bind_count);
4278                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4279
4280                 if (obj->ops->release)
4281                         obj->ops->release(obj);
4282
4283                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4284                         atomic_set(&obj->mm.pages_pin_count, 0);
4285                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4286                 GEM_BUG_ON(obj->mm.pages);
4287
4288                 if (obj->base.import_attach)
4289                         drm_prime_gem_destroy(&obj->base, NULL);
4290
4291                 reservation_object_fini(&obj->__builtin_resv);
4292                 drm_gem_object_release(&obj->base);
4293                 i915_gem_info_remove_obj(i915, obj->base.size);
4294
4295                 kfree(obj->bit_17);
4296                 i915_gem_object_free(obj);
4297         }
4298 }
4299
4300 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4301 {
4302         struct llist_node *freed;
4303
4304         freed = llist_del_all(&i915->mm.free_list);
4305         if (unlikely(freed))
4306                 __i915_gem_free_objects(i915, freed);
4307 }
4308
4309 static void __i915_gem_free_work(struct work_struct *work)
4310 {
4311         struct drm_i915_private *i915 =
4312                 container_of(work, struct drm_i915_private, mm.free_work);
4313         struct llist_node *freed;
4314
4315         /* All file-owned VMA should have been released by this point through
4316          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4317          * However, the object may also be bound into the global GTT (e.g.
4318          * older GPUs without per-process support, or for direct access through
4319          * the GTT either for the user or for scanout). Those VMA still need to
4320          * unbound now.
4321          */
4322
4323         while ((freed = llist_del_all(&i915->mm.free_list)))
4324                 __i915_gem_free_objects(i915, freed);
4325 }
4326
4327 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4328 {
4329         struct drm_i915_gem_object *obj =
4330                 container_of(head, typeof(*obj), rcu);
4331         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4332
4333         /* We can't simply use call_rcu() from i915_gem_free_object()
4334          * as we need to block whilst unbinding, and the call_rcu
4335          * task may be called from softirq context. So we take a
4336          * detour through a worker.
4337          */
4338         if (llist_add(&obj->freed, &i915->mm.free_list))
4339                 schedule_work(&i915->mm.free_work);
4340 }
4341
4342 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4343 {
4344         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4345
4346         if (obj->mm.quirked)
4347                 __i915_gem_object_unpin_pages(obj);
4348
4349         if (discard_backing_storage(obj))
4350                 obj->mm.madv = I915_MADV_DONTNEED;
4351
4352         /* Before we free the object, make sure any pure RCU-only
4353          * read-side critical sections are complete, e.g.
4354          * i915_gem_busy_ioctl(). For the corresponding synchronized
4355          * lookup see i915_gem_object_lookup_rcu().
4356          */
4357         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4358 }
4359
4360 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4361 {
4362         lockdep_assert_held(&obj->base.dev->struct_mutex);
4363
4364         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4365         if (i915_gem_object_is_active(obj))
4366                 i915_gem_object_set_active_reference(obj);
4367         else
4368                 i915_gem_object_put(obj);
4369 }
4370
4371 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4372 {
4373         struct intel_engine_cs *engine;
4374         enum intel_engine_id id;
4375
4376         for_each_engine(engine, dev_priv, id)
4377                 GEM_BUG_ON(engine->last_retired_context &&
4378                            !i915_gem_context_is_kernel(engine->last_retired_context));
4379 }
4380
4381 void i915_gem_sanitize(struct drm_i915_private *i915)
4382 {
4383         /*
4384          * If we inherit context state from the BIOS or earlier occupants
4385          * of the GPU, the GPU may be in an inconsistent state when we
4386          * try to take over. The only way to remove the earlier state
4387          * is by resetting. However, resetting on earlier gen is tricky as
4388          * it may impact the display and we are uncertain about the stability
4389          * of the reset, so we only reset recent machines with logical
4390          * context support (that must be reset to remove any stray contexts).
4391          */
4392         if (HAS_HW_CONTEXTS(i915)) {
4393                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4394                 WARN_ON(reset && reset != -ENODEV);
4395         }
4396 }
4397
4398 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4399 {
4400         struct drm_device *dev = &dev_priv->drm;
4401         int ret;
4402
4403         intel_runtime_pm_get(dev_priv);
4404         intel_suspend_gt_powersave(dev_priv);
4405
4406         mutex_lock(&dev->struct_mutex);
4407
4408         /* We have to flush all the executing contexts to main memory so
4409          * that they can saved in the hibernation image. To ensure the last
4410          * context image is coherent, we have to switch away from it. That
4411          * leaves the dev_priv->kernel_context still active when
4412          * we actually suspend, and its image in memory may not match the GPU
4413          * state. Fortunately, the kernel_context is disposable and we do
4414          * not rely on its state.
4415          */
4416         ret = i915_gem_switch_to_kernel_context(dev_priv);
4417         if (ret)
4418                 goto err_unlock;
4419
4420         ret = i915_gem_wait_for_idle(dev_priv,
4421                                      I915_WAIT_INTERRUPTIBLE |
4422                                      I915_WAIT_LOCKED);
4423         if (ret)
4424                 goto err_unlock;
4425
4426         i915_gem_retire_requests(dev_priv);
4427         GEM_BUG_ON(dev_priv->gt.active_requests);
4428
4429         assert_kernel_context_is_current(dev_priv);
4430         i915_gem_context_lost(dev_priv);
4431         mutex_unlock(&dev->struct_mutex);
4432
4433         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4434         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4435
4436         /* As the idle_work is rearming if it detects a race, play safe and
4437          * repeat the flush until it is definitely idle.
4438          */
4439         while (flush_delayed_work(&dev_priv->gt.idle_work))
4440                 ;
4441
4442         i915_gem_drain_freed_objects(dev_priv);
4443
4444         /* Assert that we sucessfully flushed all the work and
4445          * reset the GPU back to its idle, low power state.
4446          */
4447         WARN_ON(dev_priv->gt.awake);
4448         WARN_ON(!intel_engines_are_idle(dev_priv));
4449
4450         /*
4451          * Neither the BIOS, ourselves or any other kernel
4452          * expects the system to be in execlists mode on startup,
4453          * so we need to reset the GPU back to legacy mode. And the only
4454          * known way to disable logical contexts is through a GPU reset.
4455          *
4456          * So in order to leave the system in a known default configuration,
4457          * always reset the GPU upon unload and suspend. Afterwards we then
4458          * clean up the GEM state tracking, flushing off the requests and
4459          * leaving the system in a known idle state.
4460          *
4461          * Note that is of the upmost importance that the GPU is idle and
4462          * all stray writes are flushed *before* we dismantle the backing
4463          * storage for the pinned objects.
4464          *
4465          * However, since we are uncertain that resetting the GPU on older
4466          * machines is a good idea, we don't - just in case it leaves the
4467          * machine in an unusable condition.
4468          */
4469         i915_gem_sanitize(dev_priv);
4470         goto out_rpm_put;
4471
4472 err_unlock:
4473         mutex_unlock(&dev->struct_mutex);
4474 out_rpm_put:
4475         intel_runtime_pm_put(dev_priv);
4476         return ret;
4477 }
4478
4479 void i915_gem_resume(struct drm_i915_private *dev_priv)
4480 {
4481         struct drm_device *dev = &dev_priv->drm;
4482
4483         WARN_ON(dev_priv->gt.awake);
4484
4485         mutex_lock(&dev->struct_mutex);
4486         i915_gem_restore_gtt_mappings(dev_priv);
4487
4488         /* As we didn't flush the kernel context before suspend, we cannot
4489          * guarantee that the context image is complete. So let's just reset
4490          * it and start again.
4491          */
4492         dev_priv->gt.resume(dev_priv);
4493
4494         mutex_unlock(&dev->struct_mutex);
4495 }
4496
4497 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4498 {
4499         if (INTEL_GEN(dev_priv) < 5 ||
4500             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4501                 return;
4502
4503         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4504                                  DISP_TILE_SURFACE_SWIZZLING);
4505
4506         if (IS_GEN5(dev_priv))
4507                 return;
4508
4509         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4510         if (IS_GEN6(dev_priv))
4511                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4512         else if (IS_GEN7(dev_priv))
4513                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4514         else if (IS_GEN8(dev_priv))
4515                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4516         else
4517                 BUG();
4518 }
4519
4520 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4521 {
4522         I915_WRITE(RING_CTL(base), 0);
4523         I915_WRITE(RING_HEAD(base), 0);
4524         I915_WRITE(RING_TAIL(base), 0);
4525         I915_WRITE(RING_START(base), 0);
4526 }
4527
4528 static void init_unused_rings(struct drm_i915_private *dev_priv)
4529 {
4530         if (IS_I830(dev_priv)) {
4531                 init_unused_ring(dev_priv, PRB1_BASE);
4532                 init_unused_ring(dev_priv, SRB0_BASE);
4533                 init_unused_ring(dev_priv, SRB1_BASE);
4534                 init_unused_ring(dev_priv, SRB2_BASE);
4535                 init_unused_ring(dev_priv, SRB3_BASE);
4536         } else if (IS_GEN2(dev_priv)) {
4537                 init_unused_ring(dev_priv, SRB0_BASE);
4538                 init_unused_ring(dev_priv, SRB1_BASE);
4539         } else if (IS_GEN3(dev_priv)) {
4540                 init_unused_ring(dev_priv, PRB1_BASE);
4541                 init_unused_ring(dev_priv, PRB2_BASE);
4542         }
4543 }
4544
4545 static int __i915_gem_restart_engines(void *data)
4546 {
4547         struct drm_i915_private *i915 = data;
4548         struct intel_engine_cs *engine;
4549         enum intel_engine_id id;
4550         int err;
4551
4552         for_each_engine(engine, i915, id) {
4553                 err = engine->init_hw(engine);
4554                 if (err)
4555                         return err;
4556         }
4557
4558         return 0;
4559 }
4560
4561 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4562 {
4563         int ret;
4564
4565         dev_priv->gt.last_init_time = ktime_get();
4566
4567         /* Double layer security blanket, see i915_gem_init() */
4568         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4569
4570         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4571                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4572
4573         if (IS_HASWELL(dev_priv))
4574                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4575                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4576
4577         if (HAS_PCH_NOP(dev_priv)) {
4578                 if (IS_IVYBRIDGE(dev_priv)) {
4579                         u32 temp = I915_READ(GEN7_MSG_CTL);
4580                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4581                         I915_WRITE(GEN7_MSG_CTL, temp);
4582                 } else if (INTEL_GEN(dev_priv) >= 7) {
4583                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4584                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4585                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4586                 }
4587         }
4588
4589         i915_gem_init_swizzling(dev_priv);
4590
4591         /*
4592          * At least 830 can leave some of the unused rings
4593          * "active" (ie. head != tail) after resume which
4594          * will prevent c3 entry. Makes sure all unused rings
4595          * are totally idle.
4596          */
4597         init_unused_rings(dev_priv);
4598
4599         BUG_ON(!dev_priv->kernel_context);
4600
4601         ret = i915_ppgtt_init_hw(dev_priv);
4602         if (ret) {
4603                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4604                 goto out;
4605         }
4606
4607         /* Need to do basic initialisation of all rings first: */
4608         ret = __i915_gem_restart_engines(dev_priv);
4609         if (ret)
4610                 goto out;
4611
4612         intel_mocs_init_l3cc_table(dev_priv);
4613
4614         if (i915.enable_guc_loading) {
4615                 /* We can't enable contexts until all firmware is loaded */
4616                 ret = intel_uc_init_hw(dev_priv);
4617                 if (ret)
4618                         goto out;
4619         }
4620
4621 out:
4622         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4623         return ret;
4624 }
4625
4626 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4627 {
4628         if (INTEL_INFO(dev_priv)->gen < 6)
4629                 return false;
4630
4631         /* TODO: make semaphores and Execlists play nicely together */
4632         if (i915.enable_execlists)
4633                 return false;
4634
4635         if (value >= 0)
4636                 return value;
4637
4638 #ifdef CONFIG_INTEL_IOMMU
4639         /* Enable semaphores on SNB when IO remapping is off */
4640         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4641                 return false;
4642 #endif
4643
4644         return true;
4645 }
4646
4647 int i915_gem_init(struct drm_i915_private *dev_priv)
4648 {
4649         int ret;
4650
4651         mutex_lock(&dev_priv->drm.struct_mutex);
4652
4653         i915_gem_clflush_init(dev_priv);
4654
4655         if (!i915.enable_execlists) {
4656                 dev_priv->gt.resume = intel_legacy_submission_resume;
4657                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4658         } else {
4659                 dev_priv->gt.resume = intel_lr_context_resume;
4660                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4661         }
4662
4663         /* This is just a security blanket to placate dragons.
4664          * On some systems, we very sporadically observe that the first TLBs
4665          * used by the CS may be stale, despite us poking the TLB reset. If
4666          * we hold the forcewake during initialisation these problems
4667          * just magically go away.
4668          */
4669         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4670
4671         i915_gem_init_userptr(dev_priv);
4672
4673         ret = i915_gem_init_ggtt(dev_priv);
4674         if (ret)
4675                 goto out_unlock;
4676
4677         ret = i915_gem_context_init(dev_priv);
4678         if (ret)
4679                 goto out_unlock;
4680
4681         ret = intel_engines_init(dev_priv);
4682         if (ret)
4683                 goto out_unlock;
4684
4685         ret = i915_gem_init_hw(dev_priv);
4686         if (ret == -EIO) {
4687                 /* Allow engine initialisation to fail by marking the GPU as
4688                  * wedged. But we only want to do this where the GPU is angry,
4689                  * for all other failure, such as an allocation failure, bail.
4690                  */
4691                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4692                 i915_gem_set_wedged(dev_priv);
4693                 ret = 0;
4694         }
4695
4696 out_unlock:
4697         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4698         mutex_unlock(&dev_priv->drm.struct_mutex);
4699
4700         return ret;
4701 }
4702
4703 void i915_gem_init_mmio(struct drm_i915_private *i915)
4704 {
4705         i915_gem_sanitize(i915);
4706 }
4707
4708 void
4709 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4710 {
4711         struct intel_engine_cs *engine;
4712         enum intel_engine_id id;
4713
4714         for_each_engine(engine, dev_priv, id)
4715                 dev_priv->gt.cleanup_engine(engine);
4716 }
4717
4718 void
4719 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4720 {
4721         int i;
4722
4723         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4724             !IS_CHERRYVIEW(dev_priv))
4725                 dev_priv->num_fence_regs = 32;
4726         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4727                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4728                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4729                 dev_priv->num_fence_regs = 16;
4730         else
4731                 dev_priv->num_fence_regs = 8;
4732
4733         if (intel_vgpu_active(dev_priv))
4734                 dev_priv->num_fence_regs =
4735                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4736
4737         /* Initialize fence registers to zero */
4738         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4739                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4740
4741                 fence->i915 = dev_priv;
4742                 fence->id = i;
4743                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4744         }
4745         i915_gem_restore_fences(dev_priv);
4746
4747         i915_gem_detect_bit_6_swizzle(dev_priv);
4748 }
4749
4750 int
4751 i915_gem_load_init(struct drm_i915_private *dev_priv)
4752 {
4753         int err = -ENOMEM;
4754
4755         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4756         if (!dev_priv->objects)
4757                 goto err_out;
4758
4759         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4760         if (!dev_priv->vmas)
4761                 goto err_objects;
4762
4763         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4764                                         SLAB_HWCACHE_ALIGN |
4765                                         SLAB_RECLAIM_ACCOUNT |
4766                                         SLAB_DESTROY_BY_RCU);
4767         if (!dev_priv->requests)
4768                 goto err_vmas;
4769
4770         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4771                                             SLAB_HWCACHE_ALIGN |
4772                                             SLAB_RECLAIM_ACCOUNT);
4773         if (!dev_priv->dependencies)
4774                 goto err_requests;
4775
4776         mutex_lock(&dev_priv->drm.struct_mutex);
4777         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4778         err = i915_gem_timeline_init__global(dev_priv);
4779         mutex_unlock(&dev_priv->drm.struct_mutex);
4780         if (err)
4781                 goto err_dependencies;
4782
4783         INIT_LIST_HEAD(&dev_priv->context_list);
4784         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4785         init_llist_head(&dev_priv->mm.free_list);
4786         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4787         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4788         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4789         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4790         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4791                           i915_gem_retire_work_handler);
4792         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4793                           i915_gem_idle_work_handler);
4794         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4795         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4796
4797         init_waitqueue_head(&dev_priv->pending_flip_queue);
4798
4799         dev_priv->mm.interruptible = true;
4800
4801         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4802
4803         spin_lock_init(&dev_priv->fb_tracking.lock);
4804
4805         return 0;
4806
4807 err_dependencies:
4808         kmem_cache_destroy(dev_priv->dependencies);
4809 err_requests:
4810         kmem_cache_destroy(dev_priv->requests);
4811 err_vmas:
4812         kmem_cache_destroy(dev_priv->vmas);
4813 err_objects:
4814         kmem_cache_destroy(dev_priv->objects);
4815 err_out:
4816         return err;
4817 }
4818
4819 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4820 {
4821         i915_gem_drain_freed_objects(dev_priv);
4822         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4823         WARN_ON(dev_priv->mm.object_count);
4824
4825         mutex_lock(&dev_priv->drm.struct_mutex);
4826         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4827         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4828         mutex_unlock(&dev_priv->drm.struct_mutex);
4829
4830         kmem_cache_destroy(dev_priv->dependencies);
4831         kmem_cache_destroy(dev_priv->requests);
4832         kmem_cache_destroy(dev_priv->vmas);
4833         kmem_cache_destroy(dev_priv->objects);
4834
4835         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4836         rcu_barrier();
4837 }
4838
4839 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4840 {
4841         mutex_lock(&dev_priv->drm.struct_mutex);
4842         i915_gem_shrink_all(dev_priv);
4843         mutex_unlock(&dev_priv->drm.struct_mutex);
4844
4845         return 0;
4846 }
4847
4848 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4849 {
4850         struct drm_i915_gem_object *obj;
4851         struct list_head *phases[] = {
4852                 &dev_priv->mm.unbound_list,
4853                 &dev_priv->mm.bound_list,
4854                 NULL
4855         }, **p;
4856
4857         /* Called just before we write the hibernation image.
4858          *
4859          * We need to update the domain tracking to reflect that the CPU
4860          * will be accessing all the pages to create and restore from the
4861          * hibernation, and so upon restoration those pages will be in the
4862          * CPU domain.
4863          *
4864          * To make sure the hibernation image contains the latest state,
4865          * we update that state just before writing out the image.
4866          *
4867          * To try and reduce the hibernation image, we manually shrink
4868          * the objects as well.
4869          */
4870
4871         mutex_lock(&dev_priv->drm.struct_mutex);
4872         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4873
4874         for (p = phases; *p; p++) {
4875                 list_for_each_entry(obj, *p, global_link) {
4876                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4877                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4878                 }
4879         }
4880         mutex_unlock(&dev_priv->drm.struct_mutex);
4881
4882         return 0;
4883 }
4884
4885 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4886 {
4887         struct drm_i915_file_private *file_priv = file->driver_priv;
4888         struct drm_i915_gem_request *request;
4889
4890         /* Clean up our request list when the client is going away, so that
4891          * later retire_requests won't dereference our soon-to-be-gone
4892          * file_priv.
4893          */
4894         spin_lock(&file_priv->mm.lock);
4895         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4896                 request->file_priv = NULL;
4897         spin_unlock(&file_priv->mm.lock);
4898
4899         if (!list_empty(&file_priv->rps.link)) {
4900                 spin_lock(&to_i915(dev)->rps.client_lock);
4901                 list_del(&file_priv->rps.link);
4902                 spin_unlock(&to_i915(dev)->rps.client_lock);
4903         }
4904 }
4905
4906 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4907 {
4908         struct drm_i915_file_private *file_priv;
4909         int ret;
4910
4911         DRM_DEBUG("\n");
4912
4913         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4914         if (!file_priv)
4915                 return -ENOMEM;
4916
4917         file->driver_priv = file_priv;
4918         file_priv->dev_priv = to_i915(dev);
4919         file_priv->file = file;
4920         INIT_LIST_HEAD(&file_priv->rps.link);
4921
4922         spin_lock_init(&file_priv->mm.lock);
4923         INIT_LIST_HEAD(&file_priv->mm.request_list);
4924
4925         file_priv->bsd_engine = -1;
4926
4927         ret = i915_gem_context_open(dev, file);
4928         if (ret)
4929                 kfree(file_priv);
4930
4931         return ret;
4932 }
4933
4934 /**
4935  * i915_gem_track_fb - update frontbuffer tracking
4936  * @old: current GEM buffer for the frontbuffer slots
4937  * @new: new GEM buffer for the frontbuffer slots
4938  * @frontbuffer_bits: bitmask of frontbuffer slots
4939  *
4940  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4941  * from @old and setting them in @new. Both @old and @new can be NULL.
4942  */
4943 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4944                        struct drm_i915_gem_object *new,
4945                        unsigned frontbuffer_bits)
4946 {
4947         /* Control of individual bits within the mask are guarded by
4948          * the owning plane->mutex, i.e. we can never see concurrent
4949          * manipulation of individual bits. But since the bitfield as a whole
4950          * is updated using RMW, we need to use atomics in order to update
4951          * the bits.
4952          */
4953         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4954                      sizeof(atomic_t) * BITS_PER_BYTE);
4955
4956         if (old) {
4957                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4958                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4959         }
4960
4961         if (new) {
4962                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4963                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4964         }
4965 }
4966
4967 /* Allocate a new GEM object and fill it with the supplied data */
4968 struct drm_i915_gem_object *
4969 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4970                                  const void *data, size_t size)
4971 {
4972         struct drm_i915_gem_object *obj;
4973         struct file *file;
4974         size_t offset;
4975         int err;
4976
4977         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4978         if (IS_ERR(obj))
4979                 return obj;
4980
4981         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
4982
4983         file = obj->base.filp;
4984         offset = 0;
4985         do {
4986                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
4987                 struct page *page;
4988                 void *pgdata, *vaddr;
4989
4990                 err = pagecache_write_begin(file, file->f_mapping,
4991                                             offset, len, 0,
4992                                             &page, &pgdata);
4993                 if (err < 0)
4994                         goto fail;
4995
4996                 vaddr = kmap(page);
4997                 memcpy(vaddr, data, len);
4998                 kunmap(page);
4999
5000                 err = pagecache_write_end(file, file->f_mapping,
5001                                           offset, len, len,
5002                                           page, pgdata);
5003                 if (err < 0)
5004                         goto fail;
5005
5006                 size -= len;
5007                 data += len;
5008                 offset += len;
5009         } while (size);
5010
5011         return obj;
5012
5013 fail:
5014         i915_gem_object_put(obj);
5015         return ERR_PTR(err);
5016 }
5017
5018 struct scatterlist *
5019 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5020                        unsigned int n,
5021                        unsigned int *offset)
5022 {
5023         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5024         struct scatterlist *sg;
5025         unsigned int idx, count;
5026
5027         might_sleep();
5028         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5029         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5030
5031         /* As we iterate forward through the sg, we record each entry in a
5032          * radixtree for quick repeated (backwards) lookups. If we have seen
5033          * this index previously, we will have an entry for it.
5034          *
5035          * Initial lookup is O(N), but this is amortized to O(1) for
5036          * sequential page access (where each new request is consecutive
5037          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5038          * i.e. O(1) with a large constant!
5039          */
5040         if (n < READ_ONCE(iter->sg_idx))
5041                 goto lookup;
5042
5043         mutex_lock(&iter->lock);
5044
5045         /* We prefer to reuse the last sg so that repeated lookup of this
5046          * (or the subsequent) sg are fast - comparing against the last
5047          * sg is faster than going through the radixtree.
5048          */
5049
5050         sg = iter->sg_pos;
5051         idx = iter->sg_idx;
5052         count = __sg_page_count(sg);
5053
5054         while (idx + count <= n) {
5055                 unsigned long exception, i;
5056                 int ret;
5057
5058                 /* If we cannot allocate and insert this entry, or the
5059                  * individual pages from this range, cancel updating the
5060                  * sg_idx so that on this lookup we are forced to linearly
5061                  * scan onwards, but on future lookups we will try the
5062                  * insertion again (in which case we need to be careful of
5063                  * the error return reporting that we have already inserted
5064                  * this index).
5065                  */
5066                 ret = radix_tree_insert(&iter->radix, idx, sg);
5067                 if (ret && ret != -EEXIST)
5068                         goto scan;
5069
5070                 exception =
5071                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5072                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5073                 for (i = 1; i < count; i++) {
5074                         ret = radix_tree_insert(&iter->radix, idx + i,
5075                                                 (void *)exception);
5076                         if (ret && ret != -EEXIST)
5077                                 goto scan;
5078                 }
5079
5080                 idx += count;
5081                 sg = ____sg_next(sg);
5082                 count = __sg_page_count(sg);
5083         }
5084
5085 scan:
5086         iter->sg_pos = sg;
5087         iter->sg_idx = idx;
5088
5089         mutex_unlock(&iter->lock);
5090
5091         if (unlikely(n < idx)) /* insertion completed by another thread */
5092                 goto lookup;
5093
5094         /* In case we failed to insert the entry into the radixtree, we need
5095          * to look beyond the current sg.
5096          */
5097         while (idx + count <= n) {
5098                 idx += count;
5099                 sg = ____sg_next(sg);
5100                 count = __sg_page_count(sg);
5101         }
5102
5103         *offset = n - idx;
5104         return sg;
5105
5106 lookup:
5107         rcu_read_lock();
5108
5109         sg = radix_tree_lookup(&iter->radix, n);
5110         GEM_BUG_ON(!sg);
5111
5112         /* If this index is in the middle of multi-page sg entry,
5113          * the radixtree will contain an exceptional entry that points
5114          * to the start of that range. We will return the pointer to
5115          * the base page and the offset of this page within the
5116          * sg entry's range.
5117          */
5118         *offset = 0;
5119         if (unlikely(radix_tree_exception(sg))) {
5120                 unsigned long base =
5121                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5122
5123                 sg = radix_tree_lookup(&iter->radix, base);
5124                 GEM_BUG_ON(!sg);
5125
5126                 *offset = n - base;
5127         }
5128
5129         rcu_read_unlock();
5130
5131         return sg;
5132 }
5133
5134 struct page *
5135 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5136 {
5137         struct scatterlist *sg;
5138         unsigned int offset;
5139
5140         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5141
5142         sg = i915_gem_object_get_sg(obj, n, &offset);
5143         return nth_page(sg_page(sg), offset);
5144 }
5145
5146 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5147 struct page *
5148 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5149                                unsigned int n)
5150 {
5151         struct page *page;
5152
5153         page = i915_gem_object_get_page(obj, n);
5154         if (!obj->mm.dirty)
5155                 set_page_dirty(page);
5156
5157         return page;
5158 }
5159
5160 dma_addr_t
5161 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5162                                 unsigned long n)
5163 {
5164         struct scatterlist *sg;
5165         unsigned int offset;
5166
5167         sg = i915_gem_object_get_sg(obj, n, &offset);
5168         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5169 }
5170
5171 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5172 #include "selftests/scatterlist.c"
5173 #include "selftests/mock_gem_device.c"
5174 #include "selftests/huge_gem_object.c"
5175 #include "selftests/i915_gem_object.c"
5176 #include "selftests/i915_gem_coherency.c"
5177 #endif