]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
rt2x00: rt2800pci: use module_pci_driver macro
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
45                            struct i915_address_space *vm,
46                            unsigned alignment,
47                            bool map_and_fenceable,
48                            bool nonblocking);
49 static int i915_gem_phys_pwrite(struct drm_device *dev,
50                                 struct drm_i915_gem_object *obj,
51                                 struct drm_i915_gem_pwrite *args,
52                                 struct drm_file *file);
53
54 static void i915_gem_write_fence(struct drm_device *dev, int reg,
55                                  struct drm_i915_gem_object *obj);
56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57                                          struct drm_i915_fence_reg *fence,
58                                          bool enable);
59
60 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
61                                              struct shrink_control *sc);
62 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
63                                             struct shrink_control *sc);
64 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
65 static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
66 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
67
68 static bool cpu_cache_is_coherent(struct drm_device *dev,
69                                   enum i915_cache_level level)
70 {
71         return HAS_LLC(dev) || level != I915_CACHE_NONE;
72 }
73
74 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
75 {
76         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
77                 return true;
78
79         return obj->pin_display;
80 }
81
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84         if (obj->tiling_mode)
85                 i915_gem_release_mmap(obj);
86
87         /* As we do not have an associated fence register, we will force
88          * a tiling change if we ever need to acquire one.
89          */
90         obj->fence_dirty = false;
91         obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96                                   size_t size)
97 {
98         spin_lock(&dev_priv->mm.object_stat_lock);
99         dev_priv->mm.object_count++;
100         dev_priv->mm.object_memory += size;
101         spin_unlock(&dev_priv->mm.object_stat_lock);
102 }
103
104 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
105                                      size_t size)
106 {
107         spin_lock(&dev_priv->mm.object_stat_lock);
108         dev_priv->mm.object_count--;
109         dev_priv->mm.object_memory -= size;
110         spin_unlock(&dev_priv->mm.object_stat_lock);
111 }
112
113 static int
114 i915_gem_wait_for_error(struct i915_gpu_error *error)
115 {
116         int ret;
117
118 #define EXIT_COND (!i915_reset_in_progress(error) || \
119                    i915_terminally_wedged(error))
120         if (EXIT_COND)
121                 return 0;
122
123         /*
124          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
125          * userspace. If it takes that long something really bad is going on and
126          * we should simply try to bail out and fail as gracefully as possible.
127          */
128         ret = wait_event_interruptible_timeout(error->reset_queue,
129                                                EXIT_COND,
130                                                10*HZ);
131         if (ret == 0) {
132                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
133                 return -EIO;
134         } else if (ret < 0) {
135                 return ret;
136         }
137 #undef EXIT_COND
138
139         return 0;
140 }
141
142 int i915_mutex_lock_interruptible(struct drm_device *dev)
143 {
144         struct drm_i915_private *dev_priv = dev->dev_private;
145         int ret;
146
147         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
148         if (ret)
149                 return ret;
150
151         ret = mutex_lock_interruptible(&dev->struct_mutex);
152         if (ret)
153                 return ret;
154
155         WARN_ON(i915_verify_lists(dev));
156         return 0;
157 }
158
159 static inline bool
160 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
161 {
162         return i915_gem_obj_bound_any(obj) && !obj->active;
163 }
164
165 int
166 i915_gem_init_ioctl(struct drm_device *dev, void *data,
167                     struct drm_file *file)
168 {
169         struct drm_i915_private *dev_priv = dev->dev_private;
170         struct drm_i915_gem_init *args = data;
171
172         if (drm_core_check_feature(dev, DRIVER_MODESET))
173                 return -ENODEV;
174
175         if (args->gtt_start >= args->gtt_end ||
176             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
177                 return -EINVAL;
178
179         /* GEM with user mode setting was never supported on ilk and later. */
180         if (INTEL_INFO(dev)->gen >= 5)
181                 return -ENODEV;
182
183         mutex_lock(&dev->struct_mutex);
184         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
185                                   args->gtt_end);
186         dev_priv->gtt.mappable_end = args->gtt_end;
187         mutex_unlock(&dev->struct_mutex);
188
189         return 0;
190 }
191
192 int
193 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
194                             struct drm_file *file)
195 {
196         struct drm_i915_private *dev_priv = dev->dev_private;
197         struct drm_i915_gem_get_aperture *args = data;
198         struct drm_i915_gem_object *obj;
199         size_t pinned;
200
201         pinned = 0;
202         mutex_lock(&dev->struct_mutex);
203         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
204                 if (obj->pin_count)
205                         pinned += i915_gem_obj_ggtt_size(obj);
206         mutex_unlock(&dev->struct_mutex);
207
208         args->aper_size = dev_priv->gtt.base.total;
209         args->aper_available_size = args->aper_size - pinned;
210
211         return 0;
212 }
213
214 void *i915_gem_object_alloc(struct drm_device *dev)
215 {
216         struct drm_i915_private *dev_priv = dev->dev_private;
217         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
218 }
219
220 void i915_gem_object_free(struct drm_i915_gem_object *obj)
221 {
222         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
223         kmem_cache_free(dev_priv->slab, obj);
224 }
225
226 static int
227 i915_gem_create(struct drm_file *file,
228                 struct drm_device *dev,
229                 uint64_t size,
230                 uint32_t *handle_p)
231 {
232         struct drm_i915_gem_object *obj;
233         int ret;
234         u32 handle;
235
236         size = roundup(size, PAGE_SIZE);
237         if (size == 0)
238                 return -EINVAL;
239
240         /* Allocate the new object */
241         obj = i915_gem_alloc_object(dev, size);
242         if (obj == NULL)
243                 return -ENOMEM;
244
245         ret = drm_gem_handle_create(file, &obj->base, &handle);
246         /* drop reference from allocate - handle holds it now */
247         drm_gem_object_unreference_unlocked(&obj->base);
248         if (ret)
249                 return ret;
250
251         *handle_p = handle;
252         return 0;
253 }
254
255 int
256 i915_gem_dumb_create(struct drm_file *file,
257                      struct drm_device *dev,
258                      struct drm_mode_create_dumb *args)
259 {
260         /* have to work out size/pitch and return them */
261         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
262         args->size = args->pitch * args->height;
263         return i915_gem_create(file, dev,
264                                args->size, &args->handle);
265 }
266
267 /**
268  * Creates a new mm object and returns a handle to it.
269  */
270 int
271 i915_gem_create_ioctl(struct drm_device *dev, void *data,
272                       struct drm_file *file)
273 {
274         struct drm_i915_gem_create *args = data;
275
276         return i915_gem_create(file, dev,
277                                args->size, &args->handle);
278 }
279
280 static inline int
281 __copy_to_user_swizzled(char __user *cpu_vaddr,
282                         const char *gpu_vaddr, int gpu_offset,
283                         int length)
284 {
285         int ret, cpu_offset = 0;
286
287         while (length > 0) {
288                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
289                 int this_length = min(cacheline_end - gpu_offset, length);
290                 int swizzled_gpu_offset = gpu_offset ^ 64;
291
292                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
293                                      gpu_vaddr + swizzled_gpu_offset,
294                                      this_length);
295                 if (ret)
296                         return ret + length;
297
298                 cpu_offset += this_length;
299                 gpu_offset += this_length;
300                 length -= this_length;
301         }
302
303         return 0;
304 }
305
306 static inline int
307 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
308                           const char __user *cpu_vaddr,
309                           int length)
310 {
311         int ret, cpu_offset = 0;
312
313         while (length > 0) {
314                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
315                 int this_length = min(cacheline_end - gpu_offset, length);
316                 int swizzled_gpu_offset = gpu_offset ^ 64;
317
318                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
319                                        cpu_vaddr + cpu_offset,
320                                        this_length);
321                 if (ret)
322                         return ret + length;
323
324                 cpu_offset += this_length;
325                 gpu_offset += this_length;
326                 length -= this_length;
327         }
328
329         return 0;
330 }
331
332 /* Per-page copy function for the shmem pread fastpath.
333  * Flushes invalid cachelines before reading the target if
334  * needs_clflush is set. */
335 static int
336 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
337                  char __user *user_data,
338                  bool page_do_bit17_swizzling, bool needs_clflush)
339 {
340         char *vaddr;
341         int ret;
342
343         if (unlikely(page_do_bit17_swizzling))
344                 return -EINVAL;
345
346         vaddr = kmap_atomic(page);
347         if (needs_clflush)
348                 drm_clflush_virt_range(vaddr + shmem_page_offset,
349                                        page_length);
350         ret = __copy_to_user_inatomic(user_data,
351                                       vaddr + shmem_page_offset,
352                                       page_length);
353         kunmap_atomic(vaddr);
354
355         return ret ? -EFAULT : 0;
356 }
357
358 static void
359 shmem_clflush_swizzled_range(char *addr, unsigned long length,
360                              bool swizzled)
361 {
362         if (unlikely(swizzled)) {
363                 unsigned long start = (unsigned long) addr;
364                 unsigned long end = (unsigned long) addr + length;
365
366                 /* For swizzling simply ensure that we always flush both
367                  * channels. Lame, but simple and it works. Swizzled
368                  * pwrite/pread is far from a hotpath - current userspace
369                  * doesn't use it at all. */
370                 start = round_down(start, 128);
371                 end = round_up(end, 128);
372
373                 drm_clflush_virt_range((void *)start, end - start);
374         } else {
375                 drm_clflush_virt_range(addr, length);
376         }
377
378 }
379
380 /* Only difference to the fast-path function is that this can handle bit17
381  * and uses non-atomic copy and kmap functions. */
382 static int
383 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
384                  char __user *user_data,
385                  bool page_do_bit17_swizzling, bool needs_clflush)
386 {
387         char *vaddr;
388         int ret;
389
390         vaddr = kmap(page);
391         if (needs_clflush)
392                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
393                                              page_length,
394                                              page_do_bit17_swizzling);
395
396         if (page_do_bit17_swizzling)
397                 ret = __copy_to_user_swizzled(user_data,
398                                               vaddr, shmem_page_offset,
399                                               page_length);
400         else
401                 ret = __copy_to_user(user_data,
402                                      vaddr + shmem_page_offset,
403                                      page_length);
404         kunmap(page);
405
406         return ret ? - EFAULT : 0;
407 }
408
409 static int
410 i915_gem_shmem_pread(struct drm_device *dev,
411                      struct drm_i915_gem_object *obj,
412                      struct drm_i915_gem_pread *args,
413                      struct drm_file *file)
414 {
415         char __user *user_data;
416         ssize_t remain;
417         loff_t offset;
418         int shmem_page_offset, page_length, ret = 0;
419         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
420         int prefaulted = 0;
421         int needs_clflush = 0;
422         struct sg_page_iter sg_iter;
423
424         user_data = to_user_ptr(args->data_ptr);
425         remain = args->size;
426
427         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
428
429         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
430                 /* If we're not in the cpu read domain, set ourself into the gtt
431                  * read domain and manually flush cachelines (if required). This
432                  * optimizes for the case when the gpu will dirty the data
433                  * anyway again before the next pread happens. */
434                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
435                 if (i915_gem_obj_bound_any(obj)) {
436                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
437                         if (ret)
438                                 return ret;
439                 }
440         }
441
442         ret = i915_gem_object_get_pages(obj);
443         if (ret)
444                 return ret;
445
446         i915_gem_object_pin_pages(obj);
447
448         offset = args->offset;
449
450         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
451                          offset >> PAGE_SHIFT) {
452                 struct page *page = sg_page_iter_page(&sg_iter);
453
454                 if (remain <= 0)
455                         break;
456
457                 /* Operation in this page
458                  *
459                  * shmem_page_offset = offset within page in shmem file
460                  * page_length = bytes to copy for this page
461                  */
462                 shmem_page_offset = offset_in_page(offset);
463                 page_length = remain;
464                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
465                         page_length = PAGE_SIZE - shmem_page_offset;
466
467                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
468                         (page_to_phys(page) & (1 << 17)) != 0;
469
470                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
471                                        user_data, page_do_bit17_swizzling,
472                                        needs_clflush);
473                 if (ret == 0)
474                         goto next_page;
475
476                 mutex_unlock(&dev->struct_mutex);
477
478                 if (likely(!i915_prefault_disable) && !prefaulted) {
479                         ret = fault_in_multipages_writeable(user_data, remain);
480                         /* Userspace is tricking us, but we've already clobbered
481                          * its pages with the prefault and promised to write the
482                          * data up to the first fault. Hence ignore any errors
483                          * and just continue. */
484                         (void)ret;
485                         prefaulted = 1;
486                 }
487
488                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
489                                        user_data, page_do_bit17_swizzling,
490                                        needs_clflush);
491
492                 mutex_lock(&dev->struct_mutex);
493
494 next_page:
495                 mark_page_accessed(page);
496
497                 if (ret)
498                         goto out;
499
500                 remain -= page_length;
501                 user_data += page_length;
502                 offset += page_length;
503         }
504
505 out:
506         i915_gem_object_unpin_pages(obj);
507
508         return ret;
509 }
510
511 /**
512  * Reads data from the object referenced by handle.
513  *
514  * On error, the contents of *data are undefined.
515  */
516 int
517 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
518                      struct drm_file *file)
519 {
520         struct drm_i915_gem_pread *args = data;
521         struct drm_i915_gem_object *obj;
522         int ret = 0;
523
524         if (args->size == 0)
525                 return 0;
526
527         if (!access_ok(VERIFY_WRITE,
528                        to_user_ptr(args->data_ptr),
529                        args->size))
530                 return -EFAULT;
531
532         ret = i915_mutex_lock_interruptible(dev);
533         if (ret)
534                 return ret;
535
536         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
537         if (&obj->base == NULL) {
538                 ret = -ENOENT;
539                 goto unlock;
540         }
541
542         /* Bounds check source.  */
543         if (args->offset > obj->base.size ||
544             args->size > obj->base.size - args->offset) {
545                 ret = -EINVAL;
546                 goto out;
547         }
548
549         /* prime objects have no backing filp to GEM pread/pwrite
550          * pages from.
551          */
552         if (!obj->base.filp) {
553                 ret = -EINVAL;
554                 goto out;
555         }
556
557         trace_i915_gem_object_pread(obj, args->offset, args->size);
558
559         ret = i915_gem_shmem_pread(dev, obj, args, file);
560
561 out:
562         drm_gem_object_unreference(&obj->base);
563 unlock:
564         mutex_unlock(&dev->struct_mutex);
565         return ret;
566 }
567
568 /* This is the fast write path which cannot handle
569  * page faults in the source data
570  */
571
572 static inline int
573 fast_user_write(struct io_mapping *mapping,
574                 loff_t page_base, int page_offset,
575                 char __user *user_data,
576                 int length)
577 {
578         void __iomem *vaddr_atomic;
579         void *vaddr;
580         unsigned long unwritten;
581
582         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
583         /* We can use the cpu mem copy function because this is X86. */
584         vaddr = (void __force*)vaddr_atomic + page_offset;
585         unwritten = __copy_from_user_inatomic_nocache(vaddr,
586                                                       user_data, length);
587         io_mapping_unmap_atomic(vaddr_atomic);
588         return unwritten;
589 }
590
591 /**
592  * This is the fast pwrite path, where we copy the data directly from the
593  * user into the GTT, uncached.
594  */
595 static int
596 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
597                          struct drm_i915_gem_object *obj,
598                          struct drm_i915_gem_pwrite *args,
599                          struct drm_file *file)
600 {
601         drm_i915_private_t *dev_priv = dev->dev_private;
602         ssize_t remain;
603         loff_t offset, page_base;
604         char __user *user_data;
605         int page_offset, page_length, ret;
606
607         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
608         if (ret)
609                 goto out;
610
611         ret = i915_gem_object_set_to_gtt_domain(obj, true);
612         if (ret)
613                 goto out_unpin;
614
615         ret = i915_gem_object_put_fence(obj);
616         if (ret)
617                 goto out_unpin;
618
619         user_data = to_user_ptr(args->data_ptr);
620         remain = args->size;
621
622         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
623
624         while (remain > 0) {
625                 /* Operation in this page
626                  *
627                  * page_base = page offset within aperture
628                  * page_offset = offset within page
629                  * page_length = bytes to copy for this page
630                  */
631                 page_base = offset & PAGE_MASK;
632                 page_offset = offset_in_page(offset);
633                 page_length = remain;
634                 if ((page_offset + remain) > PAGE_SIZE)
635                         page_length = PAGE_SIZE - page_offset;
636
637                 /* If we get a fault while copying data, then (presumably) our
638                  * source page isn't available.  Return the error and we'll
639                  * retry in the slow path.
640                  */
641                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
642                                     page_offset, user_data, page_length)) {
643                         ret = -EFAULT;
644                         goto out_unpin;
645                 }
646
647                 remain -= page_length;
648                 user_data += page_length;
649                 offset += page_length;
650         }
651
652 out_unpin:
653         i915_gem_object_unpin(obj);
654 out:
655         return ret;
656 }
657
658 /* Per-page copy function for the shmem pwrite fastpath.
659  * Flushes invalid cachelines before writing to the target if
660  * needs_clflush_before is set and flushes out any written cachelines after
661  * writing if needs_clflush is set. */
662 static int
663 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
664                   char __user *user_data,
665                   bool page_do_bit17_swizzling,
666                   bool needs_clflush_before,
667                   bool needs_clflush_after)
668 {
669         char *vaddr;
670         int ret;
671
672         if (unlikely(page_do_bit17_swizzling))
673                 return -EINVAL;
674
675         vaddr = kmap_atomic(page);
676         if (needs_clflush_before)
677                 drm_clflush_virt_range(vaddr + shmem_page_offset,
678                                        page_length);
679         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
680                                                 user_data,
681                                                 page_length);
682         if (needs_clflush_after)
683                 drm_clflush_virt_range(vaddr + shmem_page_offset,
684                                        page_length);
685         kunmap_atomic(vaddr);
686
687         return ret ? -EFAULT : 0;
688 }
689
690 /* Only difference to the fast-path function is that this can handle bit17
691  * and uses non-atomic copy and kmap functions. */
692 static int
693 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
694                   char __user *user_data,
695                   bool page_do_bit17_swizzling,
696                   bool needs_clflush_before,
697                   bool needs_clflush_after)
698 {
699         char *vaddr;
700         int ret;
701
702         vaddr = kmap(page);
703         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
704                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
705                                              page_length,
706                                              page_do_bit17_swizzling);
707         if (page_do_bit17_swizzling)
708                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
709                                                 user_data,
710                                                 page_length);
711         else
712                 ret = __copy_from_user(vaddr + shmem_page_offset,
713                                        user_data,
714                                        page_length);
715         if (needs_clflush_after)
716                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
717                                              page_length,
718                                              page_do_bit17_swizzling);
719         kunmap(page);
720
721         return ret ? -EFAULT : 0;
722 }
723
724 static int
725 i915_gem_shmem_pwrite(struct drm_device *dev,
726                       struct drm_i915_gem_object *obj,
727                       struct drm_i915_gem_pwrite *args,
728                       struct drm_file *file)
729 {
730         ssize_t remain;
731         loff_t offset;
732         char __user *user_data;
733         int shmem_page_offset, page_length, ret = 0;
734         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
735         int hit_slowpath = 0;
736         int needs_clflush_after = 0;
737         int needs_clflush_before = 0;
738         struct sg_page_iter sg_iter;
739
740         user_data = to_user_ptr(args->data_ptr);
741         remain = args->size;
742
743         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
744
745         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746                 /* If we're not in the cpu write domain, set ourself into the gtt
747                  * write domain and manually flush cachelines (if required). This
748                  * optimizes for the case when the gpu will use the data
749                  * right away and we therefore have to clflush anyway. */
750                 needs_clflush_after = cpu_write_needs_clflush(obj);
751                 if (i915_gem_obj_bound_any(obj)) {
752                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
753                         if (ret)
754                                 return ret;
755                 }
756         }
757         /* Same trick applies to invalidate partially written cachelines read
758          * before writing. */
759         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
760                 needs_clflush_before =
761                         !cpu_cache_is_coherent(dev, obj->cache_level);
762
763         ret = i915_gem_object_get_pages(obj);
764         if (ret)
765                 return ret;
766
767         i915_gem_object_pin_pages(obj);
768
769         offset = args->offset;
770         obj->dirty = 1;
771
772         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
773                          offset >> PAGE_SHIFT) {
774                 struct page *page = sg_page_iter_page(&sg_iter);
775                 int partial_cacheline_write;
776
777                 if (remain <= 0)
778                         break;
779
780                 /* Operation in this page
781                  *
782                  * shmem_page_offset = offset within page in shmem file
783                  * page_length = bytes to copy for this page
784                  */
785                 shmem_page_offset = offset_in_page(offset);
786
787                 page_length = remain;
788                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
789                         page_length = PAGE_SIZE - shmem_page_offset;
790
791                 /* If we don't overwrite a cacheline completely we need to be
792                  * careful to have up-to-date data by first clflushing. Don't
793                  * overcomplicate things and flush the entire patch. */
794                 partial_cacheline_write = needs_clflush_before &&
795                         ((shmem_page_offset | page_length)
796                                 & (boot_cpu_data.x86_clflush_size - 1));
797
798                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
799                         (page_to_phys(page) & (1 << 17)) != 0;
800
801                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
802                                         user_data, page_do_bit17_swizzling,
803                                         partial_cacheline_write,
804                                         needs_clflush_after);
805                 if (ret == 0)
806                         goto next_page;
807
808                 hit_slowpath = 1;
809                 mutex_unlock(&dev->struct_mutex);
810                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
811                                         user_data, page_do_bit17_swizzling,
812                                         partial_cacheline_write,
813                                         needs_clflush_after);
814
815                 mutex_lock(&dev->struct_mutex);
816
817 next_page:
818                 set_page_dirty(page);
819                 mark_page_accessed(page);
820
821                 if (ret)
822                         goto out;
823
824                 remain -= page_length;
825                 user_data += page_length;
826                 offset += page_length;
827         }
828
829 out:
830         i915_gem_object_unpin_pages(obj);
831
832         if (hit_slowpath) {
833                 /*
834                  * Fixup: Flush cpu caches in case we didn't flush the dirty
835                  * cachelines in-line while writing and the object moved
836                  * out of the cpu write domain while we've dropped the lock.
837                  */
838                 if (!needs_clflush_after &&
839                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
840                         if (i915_gem_clflush_object(obj, obj->pin_display))
841                                 i915_gem_chipset_flush(dev);
842                 }
843         }
844
845         if (needs_clflush_after)
846                 i915_gem_chipset_flush(dev);
847
848         return ret;
849 }
850
851 /**
852  * Writes data to the object referenced by handle.
853  *
854  * On error, the contents of the buffer that were to be modified are undefined.
855  */
856 int
857 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
858                       struct drm_file *file)
859 {
860         struct drm_i915_gem_pwrite *args = data;
861         struct drm_i915_gem_object *obj;
862         int ret;
863
864         if (args->size == 0)
865                 return 0;
866
867         if (!access_ok(VERIFY_READ,
868                        to_user_ptr(args->data_ptr),
869                        args->size))
870                 return -EFAULT;
871
872         if (likely(!i915_prefault_disable)) {
873                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
874                                                    args->size);
875                 if (ret)
876                         return -EFAULT;
877         }
878
879         ret = i915_mutex_lock_interruptible(dev);
880         if (ret)
881                 return ret;
882
883         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
884         if (&obj->base == NULL) {
885                 ret = -ENOENT;
886                 goto unlock;
887         }
888
889         /* Bounds check destination. */
890         if (args->offset > obj->base.size ||
891             args->size > obj->base.size - args->offset) {
892                 ret = -EINVAL;
893                 goto out;
894         }
895
896         /* prime objects have no backing filp to GEM pread/pwrite
897          * pages from.
898          */
899         if (!obj->base.filp) {
900                 ret = -EINVAL;
901                 goto out;
902         }
903
904         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
905
906         ret = -EFAULT;
907         /* We can only do the GTT pwrite on untiled buffers, as otherwise
908          * it would end up going through the fenced access, and we'll get
909          * different detiling behavior between reading and writing.
910          * pread/pwrite currently are reading and writing from the CPU
911          * perspective, requiring manual detiling by the client.
912          */
913         if (obj->phys_obj) {
914                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
915                 goto out;
916         }
917
918         if (obj->tiling_mode == I915_TILING_NONE &&
919             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
920             cpu_write_needs_clflush(obj)) {
921                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
922                 /* Note that the gtt paths might fail with non-page-backed user
923                  * pointers (e.g. gtt mappings when moving data between
924                  * textures). Fallback to the shmem path in that case. */
925         }
926
927         if (ret == -EFAULT || ret == -ENOSPC)
928                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
929
930 out:
931         drm_gem_object_unreference(&obj->base);
932 unlock:
933         mutex_unlock(&dev->struct_mutex);
934         return ret;
935 }
936
937 int
938 i915_gem_check_wedge(struct i915_gpu_error *error,
939                      bool interruptible)
940 {
941         if (i915_reset_in_progress(error)) {
942                 /* Non-interruptible callers can't handle -EAGAIN, hence return
943                  * -EIO unconditionally for these. */
944                 if (!interruptible)
945                         return -EIO;
946
947                 /* Recovery complete, but the reset failed ... */
948                 if (i915_terminally_wedged(error))
949                         return -EIO;
950
951                 return -EAGAIN;
952         }
953
954         return 0;
955 }
956
957 /*
958  * Compare seqno against outstanding lazy request. Emit a request if they are
959  * equal.
960  */
961 static int
962 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
963 {
964         int ret;
965
966         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
967
968         ret = 0;
969         if (seqno == ring->outstanding_lazy_request)
970                 ret = i915_add_request(ring, NULL);
971
972         return ret;
973 }
974
975 /**
976  * __wait_seqno - wait until execution of seqno has finished
977  * @ring: the ring expected to report seqno
978  * @seqno: duh!
979  * @reset_counter: reset sequence associated with the given seqno
980  * @interruptible: do an interruptible wait (normally yes)
981  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
982  *
983  * Note: It is of utmost importance that the passed in seqno and reset_counter
984  * values have been read by the caller in an smp safe manner. Where read-side
985  * locks are involved, it is sufficient to read the reset_counter before
986  * unlocking the lock that protects the seqno. For lockless tricks, the
987  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
988  * inserted.
989  *
990  * Returns 0 if the seqno was found within the alloted time. Else returns the
991  * errno with remaining time filled in timeout argument.
992  */
993 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
994                         unsigned reset_counter,
995                         bool interruptible, struct timespec *timeout)
996 {
997         drm_i915_private_t *dev_priv = ring->dev->dev_private;
998         struct timespec before, now, wait_time={1,0};
999         unsigned long timeout_jiffies;
1000         long end;
1001         bool wait_forever = true;
1002         int ret;
1003
1004         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1005
1006         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007                 return 0;
1008
1009         trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011         if (timeout != NULL) {
1012                 wait_time = *timeout;
1013                 wait_forever = false;
1014         }
1015
1016         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1017
1018         if (WARN_ON(!ring->irq_get(ring)))
1019                 return -ENODEV;
1020
1021         /* Record current time in case interrupted by signal, or wedged * */
1022         getrawmonotonic(&before);
1023
1024 #define EXIT_COND \
1025         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026          i915_reset_in_progress(&dev_priv->gpu_error) || \
1027          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1028         do {
1029                 if (interruptible)
1030                         end = wait_event_interruptible_timeout(ring->irq_queue,
1031                                                                EXIT_COND,
1032                                                                timeout_jiffies);
1033                 else
1034                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1035                                                  timeout_jiffies);
1036
1037                 /* We need to check whether any gpu reset happened in between
1038                  * the caller grabbing the seqno and now ... */
1039                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1040                         end = -EAGAIN;
1041
1042                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1043                  * gone. */
1044                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1045                 if (ret)
1046                         end = ret;
1047         } while (end == 0 && wait_forever);
1048
1049         getrawmonotonic(&now);
1050
1051         ring->irq_put(ring);
1052         trace_i915_gem_request_wait_end(ring, seqno);
1053 #undef EXIT_COND
1054
1055         if (timeout) {
1056                 struct timespec sleep_time = timespec_sub(now, before);
1057                 *timeout = timespec_sub(*timeout, sleep_time);
1058                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1059                         set_normalized_timespec(timeout, 0, 0);
1060         }
1061
1062         switch (end) {
1063         case -EIO:
1064         case -EAGAIN: /* Wedged */
1065         case -ERESTARTSYS: /* Signal */
1066                 return (int)end;
1067         case 0: /* Timeout */
1068                 return -ETIME;
1069         default: /* Completed */
1070                 WARN_ON(end < 0); /* We're not aware of other errors */
1071                 return 0;
1072         }
1073 }
1074
1075 /**
1076  * Waits for a sequence number to be signaled, and cleans up the
1077  * request and object lists appropriately for that event.
1078  */
1079 int
1080 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1081 {
1082         struct drm_device *dev = ring->dev;
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         bool interruptible = dev_priv->mm.interruptible;
1085         int ret;
1086
1087         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1088         BUG_ON(seqno == 0);
1089
1090         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1091         if (ret)
1092                 return ret;
1093
1094         ret = i915_gem_check_olr(ring, seqno);
1095         if (ret)
1096                 return ret;
1097
1098         return __wait_seqno(ring, seqno,
1099                             atomic_read(&dev_priv->gpu_error.reset_counter),
1100                             interruptible, NULL);
1101 }
1102
1103 static int
1104 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1105                                      struct intel_ring_buffer *ring)
1106 {
1107         i915_gem_retire_requests_ring(ring);
1108
1109         /* Manually manage the write flush as we may have not yet
1110          * retired the buffer.
1111          *
1112          * Note that the last_write_seqno is always the earlier of
1113          * the two (read/write) seqno, so if we haved successfully waited,
1114          * we know we have passed the last write.
1115          */
1116         obj->last_write_seqno = 0;
1117         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1118
1119         return 0;
1120 }
1121
1122 /**
1123  * Ensures that all rendering to the object has completed and the object is
1124  * safe to unbind from the GTT or access from the CPU.
1125  */
1126 static __must_check int
1127 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1128                                bool readonly)
1129 {
1130         struct intel_ring_buffer *ring = obj->ring;
1131         u32 seqno;
1132         int ret;
1133
1134         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1135         if (seqno == 0)
1136                 return 0;
1137
1138         ret = i915_wait_seqno(ring, seqno);
1139         if (ret)
1140                 return ret;
1141
1142         return i915_gem_object_wait_rendering__tail(obj, ring);
1143 }
1144
1145 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1146  * as the object state may change during this call.
1147  */
1148 static __must_check int
1149 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1150                                             bool readonly)
1151 {
1152         struct drm_device *dev = obj->base.dev;
1153         struct drm_i915_private *dev_priv = dev->dev_private;
1154         struct intel_ring_buffer *ring = obj->ring;
1155         unsigned reset_counter;
1156         u32 seqno;
1157         int ret;
1158
1159         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1160         BUG_ON(!dev_priv->mm.interruptible);
1161
1162         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1163         if (seqno == 0)
1164                 return 0;
1165
1166         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1167         if (ret)
1168                 return ret;
1169
1170         ret = i915_gem_check_olr(ring, seqno);
1171         if (ret)
1172                 return ret;
1173
1174         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1175         mutex_unlock(&dev->struct_mutex);
1176         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1177         mutex_lock(&dev->struct_mutex);
1178         if (ret)
1179                 return ret;
1180
1181         return i915_gem_object_wait_rendering__tail(obj, ring);
1182 }
1183
1184 /**
1185  * Called when user space prepares to use an object with the CPU, either
1186  * through the mmap ioctl's mapping or a GTT mapping.
1187  */
1188 int
1189 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1190                           struct drm_file *file)
1191 {
1192         struct drm_i915_gem_set_domain *args = data;
1193         struct drm_i915_gem_object *obj;
1194         uint32_t read_domains = args->read_domains;
1195         uint32_t write_domain = args->write_domain;
1196         int ret;
1197
1198         /* Only handle setting domains to types used by the CPU. */
1199         if (write_domain & I915_GEM_GPU_DOMAINS)
1200                 return -EINVAL;
1201
1202         if (read_domains & I915_GEM_GPU_DOMAINS)
1203                 return -EINVAL;
1204
1205         /* Having something in the write domain implies it's in the read
1206          * domain, and only that read domain.  Enforce that in the request.
1207          */
1208         if (write_domain != 0 && read_domains != write_domain)
1209                 return -EINVAL;
1210
1211         ret = i915_mutex_lock_interruptible(dev);
1212         if (ret)
1213                 return ret;
1214
1215         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1216         if (&obj->base == NULL) {
1217                 ret = -ENOENT;
1218                 goto unlock;
1219         }
1220
1221         /* Try to flush the object off the GPU without holding the lock.
1222          * We will repeat the flush holding the lock in the normal manner
1223          * to catch cases where we are gazumped.
1224          */
1225         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1226         if (ret)
1227                 goto unref;
1228
1229         if (read_domains & I915_GEM_DOMAIN_GTT) {
1230                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1231
1232                 /* Silently promote "you're not bound, there was nothing to do"
1233                  * to success, since the client was just asking us to
1234                  * make sure everything was done.
1235                  */
1236                 if (ret == -EINVAL)
1237                         ret = 0;
1238         } else {
1239                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1240         }
1241
1242 unref:
1243         drm_gem_object_unreference(&obj->base);
1244 unlock:
1245         mutex_unlock(&dev->struct_mutex);
1246         return ret;
1247 }
1248
1249 /**
1250  * Called when user space has done writes to this buffer
1251  */
1252 int
1253 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1254                          struct drm_file *file)
1255 {
1256         struct drm_i915_gem_sw_finish *args = data;
1257         struct drm_i915_gem_object *obj;
1258         int ret = 0;
1259
1260         ret = i915_mutex_lock_interruptible(dev);
1261         if (ret)
1262                 return ret;
1263
1264         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1265         if (&obj->base == NULL) {
1266                 ret = -ENOENT;
1267                 goto unlock;
1268         }
1269
1270         /* Pinned buffers may be scanout, so flush the cache */
1271         if (obj->pin_display)
1272                 i915_gem_object_flush_cpu_write_domain(obj, true);
1273
1274         drm_gem_object_unreference(&obj->base);
1275 unlock:
1276         mutex_unlock(&dev->struct_mutex);
1277         return ret;
1278 }
1279
1280 /**
1281  * Maps the contents of an object, returning the address it is mapped
1282  * into.
1283  *
1284  * While the mapping holds a reference on the contents of the object, it doesn't
1285  * imply a ref on the object itself.
1286  */
1287 int
1288 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1289                     struct drm_file *file)
1290 {
1291         struct drm_i915_gem_mmap *args = data;
1292         struct drm_gem_object *obj;
1293         unsigned long addr;
1294
1295         obj = drm_gem_object_lookup(dev, file, args->handle);
1296         if (obj == NULL)
1297                 return -ENOENT;
1298
1299         /* prime objects have no backing filp to GEM mmap
1300          * pages from.
1301          */
1302         if (!obj->filp) {
1303                 drm_gem_object_unreference_unlocked(obj);
1304                 return -EINVAL;
1305         }
1306
1307         addr = vm_mmap(obj->filp, 0, args->size,
1308                        PROT_READ | PROT_WRITE, MAP_SHARED,
1309                        args->offset);
1310         drm_gem_object_unreference_unlocked(obj);
1311         if (IS_ERR((void *)addr))
1312                 return addr;
1313
1314         args->addr_ptr = (uint64_t) addr;
1315
1316         return 0;
1317 }
1318
1319 /**
1320  * i915_gem_fault - fault a page into the GTT
1321  * vma: VMA in question
1322  * vmf: fault info
1323  *
1324  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1325  * from userspace.  The fault handler takes care of binding the object to
1326  * the GTT (if needed), allocating and programming a fence register (again,
1327  * only if needed based on whether the old reg is still valid or the object
1328  * is tiled) and inserting a new PTE into the faulting process.
1329  *
1330  * Note that the faulting process may involve evicting existing objects
1331  * from the GTT and/or fence registers to make room.  So performance may
1332  * suffer if the GTT working set is large or there are few fence registers
1333  * left.
1334  */
1335 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1336 {
1337         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1338         struct drm_device *dev = obj->base.dev;
1339         drm_i915_private_t *dev_priv = dev->dev_private;
1340         pgoff_t page_offset;
1341         unsigned long pfn;
1342         int ret = 0;
1343         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1344
1345         /* We don't use vmf->pgoff since that has the fake offset */
1346         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1347                 PAGE_SHIFT;
1348
1349         ret = i915_mutex_lock_interruptible(dev);
1350         if (ret)
1351                 goto out;
1352
1353         trace_i915_gem_object_fault(obj, page_offset, true, write);
1354
1355         /* Access to snoopable pages through the GTT is incoherent. */
1356         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1357                 ret = -EINVAL;
1358                 goto unlock;
1359         }
1360
1361         /* Now bind it into the GTT if needed */
1362         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1363         if (ret)
1364                 goto unlock;
1365
1366         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1367         if (ret)
1368                 goto unpin;
1369
1370         ret = i915_gem_object_get_fence(obj);
1371         if (ret)
1372                 goto unpin;
1373
1374         obj->fault_mappable = true;
1375
1376         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1377         pfn >>= PAGE_SHIFT;
1378         pfn += page_offset;
1379
1380         /* Finally, remap it using the new GTT offset */
1381         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1382 unpin:
1383         i915_gem_object_unpin(obj);
1384 unlock:
1385         mutex_unlock(&dev->struct_mutex);
1386 out:
1387         switch (ret) {
1388         case -EIO:
1389                 /* If this -EIO is due to a gpu hang, give the reset code a
1390                  * chance to clean up the mess. Otherwise return the proper
1391                  * SIGBUS. */
1392                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1393                         return VM_FAULT_SIGBUS;
1394         case -EAGAIN:
1395                 /* Give the error handler a chance to run and move the
1396                  * objects off the GPU active list. Next time we service the
1397                  * fault, we should be able to transition the page into the
1398                  * GTT without touching the GPU (and so avoid further
1399                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1400                  * with coherency, just lost writes.
1401                  */
1402                 set_need_resched();
1403         case 0:
1404         case -ERESTARTSYS:
1405         case -EINTR:
1406         case -EBUSY:
1407                 /*
1408                  * EBUSY is ok: this just means that another thread
1409                  * already did the job.
1410                  */
1411                 return VM_FAULT_NOPAGE;
1412         case -ENOMEM:
1413                 return VM_FAULT_OOM;
1414         case -ENOSPC:
1415                 return VM_FAULT_SIGBUS;
1416         default:
1417                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1418                 return VM_FAULT_SIGBUS;
1419         }
1420 }
1421
1422 /**
1423  * i915_gem_release_mmap - remove physical page mappings
1424  * @obj: obj in question
1425  *
1426  * Preserve the reservation of the mmapping with the DRM core code, but
1427  * relinquish ownership of the pages back to the system.
1428  *
1429  * It is vital that we remove the page mapping if we have mapped a tiled
1430  * object through the GTT and then lose the fence register due to
1431  * resource pressure. Similarly if the object has been moved out of the
1432  * aperture, than pages mapped into userspace must be revoked. Removing the
1433  * mapping will then trigger a page fault on the next user access, allowing
1434  * fixup by i915_gem_fault().
1435  */
1436 void
1437 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1438 {
1439         if (!obj->fault_mappable)
1440                 return;
1441
1442         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1443         obj->fault_mappable = false;
1444 }
1445
1446 uint32_t
1447 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1448 {
1449         uint32_t gtt_size;
1450
1451         if (INTEL_INFO(dev)->gen >= 4 ||
1452             tiling_mode == I915_TILING_NONE)
1453                 return size;
1454
1455         /* Previous chips need a power-of-two fence region when tiling */
1456         if (INTEL_INFO(dev)->gen == 3)
1457                 gtt_size = 1024*1024;
1458         else
1459                 gtt_size = 512*1024;
1460
1461         while (gtt_size < size)
1462                 gtt_size <<= 1;
1463
1464         return gtt_size;
1465 }
1466
1467 /**
1468  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1469  * @obj: object to check
1470  *
1471  * Return the required GTT alignment for an object, taking into account
1472  * potential fence register mapping.
1473  */
1474 uint32_t
1475 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1476                            int tiling_mode, bool fenced)
1477 {
1478         /*
1479          * Minimum alignment is 4k (GTT page size), but might be greater
1480          * if a fence register is needed for the object.
1481          */
1482         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1483             tiling_mode == I915_TILING_NONE)
1484                 return 4096;
1485
1486         /*
1487          * Previous chips need to be aligned to the size of the smallest
1488          * fence register that can contain the object.
1489          */
1490         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1491 }
1492
1493 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1494 {
1495         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1496         int ret;
1497
1498         if (drm_vma_node_has_offset(&obj->base.vma_node))
1499                 return 0;
1500
1501         dev_priv->mm.shrinker_no_lock_stealing = true;
1502
1503         ret = drm_gem_create_mmap_offset(&obj->base);
1504         if (ret != -ENOSPC)
1505                 goto out;
1506
1507         /* Badly fragmented mmap space? The only way we can recover
1508          * space is by destroying unwanted objects. We can't randomly release
1509          * mmap_offsets as userspace expects them to be persistent for the
1510          * lifetime of the objects. The closest we can is to release the
1511          * offsets on purgeable objects by truncating it and marking it purged,
1512          * which prevents userspace from ever using that object again.
1513          */
1514         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1515         ret = drm_gem_create_mmap_offset(&obj->base);
1516         if (ret != -ENOSPC)
1517                 goto out;
1518
1519         i915_gem_shrink_all(dev_priv);
1520         ret = drm_gem_create_mmap_offset(&obj->base);
1521 out:
1522         dev_priv->mm.shrinker_no_lock_stealing = false;
1523
1524         return ret;
1525 }
1526
1527 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1528 {
1529         drm_gem_free_mmap_offset(&obj->base);
1530 }
1531
1532 int
1533 i915_gem_mmap_gtt(struct drm_file *file,
1534                   struct drm_device *dev,
1535                   uint32_t handle,
1536                   uint64_t *offset)
1537 {
1538         struct drm_i915_private *dev_priv = dev->dev_private;
1539         struct drm_i915_gem_object *obj;
1540         int ret;
1541
1542         ret = i915_mutex_lock_interruptible(dev);
1543         if (ret)
1544                 return ret;
1545
1546         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1547         if (&obj->base == NULL) {
1548                 ret = -ENOENT;
1549                 goto unlock;
1550         }
1551
1552         if (obj->base.size > dev_priv->gtt.mappable_end) {
1553                 ret = -E2BIG;
1554                 goto out;
1555         }
1556
1557         if (obj->madv != I915_MADV_WILLNEED) {
1558                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1559                 ret = -EINVAL;
1560                 goto out;
1561         }
1562
1563         ret = i915_gem_object_create_mmap_offset(obj);
1564         if (ret)
1565                 goto out;
1566
1567         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1568
1569 out:
1570         drm_gem_object_unreference(&obj->base);
1571 unlock:
1572         mutex_unlock(&dev->struct_mutex);
1573         return ret;
1574 }
1575
1576 /**
1577  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1578  * @dev: DRM device
1579  * @data: GTT mapping ioctl data
1580  * @file: GEM object info
1581  *
1582  * Simply returns the fake offset to userspace so it can mmap it.
1583  * The mmap call will end up in drm_gem_mmap(), which will set things
1584  * up so we can get faults in the handler above.
1585  *
1586  * The fault handler will take care of binding the object into the GTT
1587  * (since it may have been evicted to make room for something), allocating
1588  * a fence register, and mapping the appropriate aperture address into
1589  * userspace.
1590  */
1591 int
1592 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1593                         struct drm_file *file)
1594 {
1595         struct drm_i915_gem_mmap_gtt *args = data;
1596
1597         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1598 }
1599
1600 /* Immediately discard the backing storage */
1601 static void
1602 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1603 {
1604         struct inode *inode;
1605
1606         i915_gem_object_free_mmap_offset(obj);
1607
1608         if (obj->base.filp == NULL)
1609                 return;
1610
1611         /* Our goal here is to return as much of the memory as
1612          * is possible back to the system as we are called from OOM.
1613          * To do this we must instruct the shmfs to drop all of its
1614          * backing pages, *now*.
1615          */
1616         inode = file_inode(obj->base.filp);
1617         shmem_truncate_range(inode, 0, (loff_t)-1);
1618
1619         obj->madv = __I915_MADV_PURGED;
1620 }
1621
1622 static inline int
1623 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1624 {
1625         return obj->madv == I915_MADV_DONTNEED;
1626 }
1627
1628 static void
1629 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1630 {
1631         struct sg_page_iter sg_iter;
1632         int ret;
1633
1634         BUG_ON(obj->madv == __I915_MADV_PURGED);
1635
1636         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1637         if (ret) {
1638                 /* In the event of a disaster, abandon all caches and
1639                  * hope for the best.
1640                  */
1641                 WARN_ON(ret != -EIO);
1642                 i915_gem_clflush_object(obj, true);
1643                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1644         }
1645
1646         if (i915_gem_object_needs_bit17_swizzle(obj))
1647                 i915_gem_object_save_bit_17_swizzle(obj);
1648
1649         if (obj->madv == I915_MADV_DONTNEED)
1650                 obj->dirty = 0;
1651
1652         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1653                 struct page *page = sg_page_iter_page(&sg_iter);
1654
1655                 if (obj->dirty)
1656                         set_page_dirty(page);
1657
1658                 if (obj->madv == I915_MADV_WILLNEED)
1659                         mark_page_accessed(page);
1660
1661                 page_cache_release(page);
1662         }
1663         obj->dirty = 0;
1664
1665         sg_free_table(obj->pages);
1666         kfree(obj->pages);
1667 }
1668
1669 int
1670 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1671 {
1672         const struct drm_i915_gem_object_ops *ops = obj->ops;
1673
1674         if (obj->pages == NULL)
1675                 return 0;
1676
1677         if (obj->pages_pin_count)
1678                 return -EBUSY;
1679
1680         BUG_ON(i915_gem_obj_bound_any(obj));
1681
1682         /* ->put_pages might need to allocate memory for the bit17 swizzle
1683          * array, hence protect them from being reaped by removing them from gtt
1684          * lists early. */
1685         list_del(&obj->global_list);
1686
1687         ops->put_pages(obj);
1688         obj->pages = NULL;
1689
1690         if (i915_gem_object_is_purgeable(obj))
1691                 i915_gem_object_truncate(obj);
1692
1693         return 0;
1694 }
1695
1696 static long
1697 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1698                   bool purgeable_only)
1699 {
1700         struct list_head still_bound_list;
1701         struct drm_i915_gem_object *obj, *next;
1702         long count = 0;
1703
1704         list_for_each_entry_safe(obj, next,
1705                                  &dev_priv->mm.unbound_list,
1706                                  global_list) {
1707                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1708                     i915_gem_object_put_pages(obj) == 0) {
1709                         count += obj->base.size >> PAGE_SHIFT;
1710                         if (count >= target)
1711                                 return count;
1712                 }
1713         }
1714
1715         /*
1716          * As we may completely rewrite the bound list whilst unbinding
1717          * (due to retiring requests) we have to strictly process only
1718          * one element of the list at the time, and recheck the list
1719          * on every iteration.
1720          */
1721         INIT_LIST_HEAD(&still_bound_list);
1722         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1723                 struct i915_vma *vma, *v;
1724
1725                 obj = list_first_entry(&dev_priv->mm.bound_list,
1726                                        typeof(*obj), global_list);
1727                 list_move_tail(&obj->global_list, &still_bound_list);
1728
1729                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1730                         continue;
1731
1732                 /*
1733                  * Hold a reference whilst we unbind this object, as we may
1734                  * end up waiting for and retiring requests. This might
1735                  * release the final reference (held by the active list)
1736                  * and result in the object being freed from under us.
1737                  * in this object being freed.
1738                  *
1739                  * Note 1: Shrinking the bound list is special since only active
1740                  * (and hence bound objects) can contain such limbo objects, so
1741                  * we don't need special tricks for shrinking the unbound list.
1742                  * The only other place where we have to be careful with active
1743                  * objects suddenly disappearing due to retiring requests is the
1744                  * eviction code.
1745                  *
1746                  * Note 2: Even though the bound list doesn't hold a reference
1747                  * to the object we can safely grab one here: The final object
1748                  * unreferencing and the bound_list are both protected by the
1749                  * dev->struct_mutex and so we won't ever be able to observe an
1750                  * object on the bound_list with a reference count equals 0.
1751                  */
1752                 drm_gem_object_reference(&obj->base);
1753
1754                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1755                         if (i915_vma_unbind(vma))
1756                                 break;
1757
1758                 if (i915_gem_object_put_pages(obj) == 0)
1759                         count += obj->base.size >> PAGE_SHIFT;
1760
1761                 drm_gem_object_unreference(&obj->base);
1762         }
1763         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1764
1765         return count;
1766 }
1767
1768 static long
1769 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1770 {
1771         return __i915_gem_shrink(dev_priv, target, true);
1772 }
1773
1774 static long
1775 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1776 {
1777         struct drm_i915_gem_object *obj, *next;
1778         long freed = 0;
1779
1780         i915_gem_evict_everything(dev_priv->dev);
1781
1782         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1783                                  global_list) {
1784                 if (obj->pages_pin_count == 0)
1785                         freed += obj->base.size >> PAGE_SHIFT;
1786                 i915_gem_object_put_pages(obj);
1787         }
1788         return freed;
1789 }
1790
1791 static int
1792 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1793 {
1794         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1795         int page_count, i;
1796         struct address_space *mapping;
1797         struct sg_table *st;
1798         struct scatterlist *sg;
1799         struct sg_page_iter sg_iter;
1800         struct page *page;
1801         unsigned long last_pfn = 0;     /* suppress gcc warning */
1802         gfp_t gfp;
1803
1804         /* Assert that the object is not currently in any GPU domain. As it
1805          * wasn't in the GTT, there shouldn't be any way it could have been in
1806          * a GPU cache
1807          */
1808         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1809         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1810
1811         st = kmalloc(sizeof(*st), GFP_KERNEL);
1812         if (st == NULL)
1813                 return -ENOMEM;
1814
1815         page_count = obj->base.size / PAGE_SIZE;
1816         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1817                 kfree(st);
1818                 return -ENOMEM;
1819         }
1820
1821         /* Get the list of pages out of our struct file.  They'll be pinned
1822          * at this point until we release them.
1823          *
1824          * Fail silently without starting the shrinker
1825          */
1826         mapping = file_inode(obj->base.filp)->i_mapping;
1827         gfp = mapping_gfp_mask(mapping);
1828         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1829         gfp &= ~(__GFP_IO | __GFP_WAIT);
1830         sg = st->sgl;
1831         st->nents = 0;
1832         for (i = 0; i < page_count; i++) {
1833                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1834                 if (IS_ERR(page)) {
1835                         i915_gem_purge(dev_priv, page_count);
1836                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1837                 }
1838                 if (IS_ERR(page)) {
1839                         /* We've tried hard to allocate the memory by reaping
1840                          * our own buffer, now let the real VM do its job and
1841                          * go down in flames if truly OOM.
1842                          */
1843                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1844                         gfp |= __GFP_IO | __GFP_WAIT;
1845
1846                         i915_gem_shrink_all(dev_priv);
1847                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1848                         if (IS_ERR(page))
1849                                 goto err_pages;
1850
1851                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1852                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1853                 }
1854 #ifdef CONFIG_SWIOTLB
1855                 if (swiotlb_nr_tbl()) {
1856                         st->nents++;
1857                         sg_set_page(sg, page, PAGE_SIZE, 0);
1858                         sg = sg_next(sg);
1859                         continue;
1860                 }
1861 #endif
1862                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1863                         if (i)
1864                                 sg = sg_next(sg);
1865                         st->nents++;
1866                         sg_set_page(sg, page, PAGE_SIZE, 0);
1867                 } else {
1868                         sg->length += PAGE_SIZE;
1869                 }
1870                 last_pfn = page_to_pfn(page);
1871         }
1872 #ifdef CONFIG_SWIOTLB
1873         if (!swiotlb_nr_tbl())
1874 #endif
1875                 sg_mark_end(sg);
1876         obj->pages = st;
1877
1878         if (i915_gem_object_needs_bit17_swizzle(obj))
1879                 i915_gem_object_do_bit_17_swizzle(obj);
1880
1881         return 0;
1882
1883 err_pages:
1884         sg_mark_end(sg);
1885         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1886                 page_cache_release(sg_page_iter_page(&sg_iter));
1887         sg_free_table(st);
1888         kfree(st);
1889         return PTR_ERR(page);
1890 }
1891
1892 /* Ensure that the associated pages are gathered from the backing storage
1893  * and pinned into our object. i915_gem_object_get_pages() may be called
1894  * multiple times before they are released by a single call to
1895  * i915_gem_object_put_pages() - once the pages are no longer referenced
1896  * either as a result of memory pressure (reaping pages under the shrinker)
1897  * or as the object is itself released.
1898  */
1899 int
1900 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1901 {
1902         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1903         const struct drm_i915_gem_object_ops *ops = obj->ops;
1904         int ret;
1905
1906         if (obj->pages)
1907                 return 0;
1908
1909         if (obj->madv != I915_MADV_WILLNEED) {
1910                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1911                 return -EINVAL;
1912         }
1913
1914         BUG_ON(obj->pages_pin_count);
1915
1916         ret = ops->get_pages(obj);
1917         if (ret)
1918                 return ret;
1919
1920         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1921         return 0;
1922 }
1923
1924 void
1925 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1926                                struct intel_ring_buffer *ring)
1927 {
1928         struct drm_device *dev = obj->base.dev;
1929         struct drm_i915_private *dev_priv = dev->dev_private;
1930         u32 seqno = intel_ring_get_seqno(ring);
1931
1932         BUG_ON(ring == NULL);
1933         if (obj->ring != ring && obj->last_write_seqno) {
1934                 /* Keep the seqno relative to the current ring */
1935                 obj->last_write_seqno = seqno;
1936         }
1937         obj->ring = ring;
1938
1939         /* Add a reference if we're newly entering the active list. */
1940         if (!obj->active) {
1941                 drm_gem_object_reference(&obj->base);
1942                 obj->active = 1;
1943         }
1944
1945         list_move_tail(&obj->ring_list, &ring->active_list);
1946
1947         obj->last_read_seqno = seqno;
1948
1949         if (obj->fenced_gpu_access) {
1950                 obj->last_fenced_seqno = seqno;
1951
1952                 /* Bump MRU to take account of the delayed flush */
1953                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1954                         struct drm_i915_fence_reg *reg;
1955
1956                         reg = &dev_priv->fence_regs[obj->fence_reg];
1957                         list_move_tail(&reg->lru_list,
1958                                        &dev_priv->mm.fence_list);
1959                 }
1960         }
1961 }
1962
1963 static void
1964 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1965 {
1966         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1967         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1968         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1969
1970         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1971         BUG_ON(!obj->active);
1972
1973         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1974
1975         list_del_init(&obj->ring_list);
1976         obj->ring = NULL;
1977
1978         obj->last_read_seqno = 0;
1979         obj->last_write_seqno = 0;
1980         obj->base.write_domain = 0;
1981
1982         obj->last_fenced_seqno = 0;
1983         obj->fenced_gpu_access = false;
1984
1985         obj->active = 0;
1986         drm_gem_object_unreference(&obj->base);
1987
1988         WARN_ON(i915_verify_lists(dev));
1989 }
1990
1991 static int
1992 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1993 {
1994         struct drm_i915_private *dev_priv = dev->dev_private;
1995         struct intel_ring_buffer *ring;
1996         int ret, i, j;
1997
1998         /* Carefully retire all requests without writing to the rings */
1999         for_each_ring(ring, dev_priv, i) {
2000                 ret = intel_ring_idle(ring);
2001                 if (ret)
2002                         return ret;
2003         }
2004         i915_gem_retire_requests(dev);
2005
2006         /* Finally reset hw state */
2007         for_each_ring(ring, dev_priv, i) {
2008                 intel_ring_init_seqno(ring, seqno);
2009
2010                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2011                         ring->sync_seqno[j] = 0;
2012         }
2013
2014         return 0;
2015 }
2016
2017 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2018 {
2019         struct drm_i915_private *dev_priv = dev->dev_private;
2020         int ret;
2021
2022         if (seqno == 0)
2023                 return -EINVAL;
2024
2025         /* HWS page needs to be set less than what we
2026          * will inject to ring
2027          */
2028         ret = i915_gem_init_seqno(dev, seqno - 1);
2029         if (ret)
2030                 return ret;
2031
2032         /* Carefully set the last_seqno value so that wrap
2033          * detection still works
2034          */
2035         dev_priv->next_seqno = seqno;
2036         dev_priv->last_seqno = seqno - 1;
2037         if (dev_priv->last_seqno == 0)
2038                 dev_priv->last_seqno--;
2039
2040         return 0;
2041 }
2042
2043 int
2044 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2045 {
2046         struct drm_i915_private *dev_priv = dev->dev_private;
2047
2048         /* reserve 0 for non-seqno */
2049         if (dev_priv->next_seqno == 0) {
2050                 int ret = i915_gem_init_seqno(dev, 0);
2051                 if (ret)
2052                         return ret;
2053
2054                 dev_priv->next_seqno = 1;
2055         }
2056
2057         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2058         return 0;
2059 }
2060
2061 int __i915_add_request(struct intel_ring_buffer *ring,
2062                        struct drm_file *file,
2063                        struct drm_i915_gem_object *obj,
2064                        u32 *out_seqno)
2065 {
2066         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2067         struct drm_i915_gem_request *request;
2068         u32 request_ring_position, request_start;
2069         int was_empty;
2070         int ret;
2071
2072         request_start = intel_ring_get_tail(ring);
2073         /*
2074          * Emit any outstanding flushes - execbuf can fail to emit the flush
2075          * after having emitted the batchbuffer command. Hence we need to fix
2076          * things up similar to emitting the lazy request. The difference here
2077          * is that the flush _must_ happen before the next request, no matter
2078          * what.
2079          */
2080         ret = intel_ring_flush_all_caches(ring);
2081         if (ret)
2082                 return ret;
2083
2084         request = kmalloc(sizeof(*request), GFP_KERNEL);
2085         if (request == NULL)
2086                 return -ENOMEM;
2087
2088
2089         /* Record the position of the start of the request so that
2090          * should we detect the updated seqno part-way through the
2091          * GPU processing the request, we never over-estimate the
2092          * position of the head.
2093          */
2094         request_ring_position = intel_ring_get_tail(ring);
2095
2096         ret = ring->add_request(ring);
2097         if (ret) {
2098                 kfree(request);
2099                 return ret;
2100         }
2101
2102         request->seqno = intel_ring_get_seqno(ring);
2103         request->ring = ring;
2104         request->head = request_start;
2105         request->tail = request_ring_position;
2106         request->ctx = ring->last_context;
2107         request->batch_obj = obj;
2108
2109         /* Whilst this request exists, batch_obj will be on the
2110          * active_list, and so will hold the active reference. Only when this
2111          * request is retired will the the batch_obj be moved onto the
2112          * inactive_list and lose its active reference. Hence we do not need
2113          * to explicitly hold another reference here.
2114          */
2115
2116         if (request->ctx)
2117                 i915_gem_context_reference(request->ctx);
2118
2119         request->emitted_jiffies = jiffies;
2120         was_empty = list_empty(&ring->request_list);
2121         list_add_tail(&request->list, &ring->request_list);
2122         request->file_priv = NULL;
2123
2124         if (file) {
2125                 struct drm_i915_file_private *file_priv = file->driver_priv;
2126
2127                 spin_lock(&file_priv->mm.lock);
2128                 request->file_priv = file_priv;
2129                 list_add_tail(&request->client_list,
2130                               &file_priv->mm.request_list);
2131                 spin_unlock(&file_priv->mm.lock);
2132         }
2133
2134         trace_i915_gem_request_add(ring, request->seqno);
2135         ring->outstanding_lazy_request = 0;
2136
2137         if (!dev_priv->ums.mm_suspended) {
2138                 i915_queue_hangcheck(ring->dev);
2139
2140                 if (was_empty) {
2141                         queue_delayed_work(dev_priv->wq,
2142                                            &dev_priv->mm.retire_work,
2143                                            round_jiffies_up_relative(HZ));
2144                         intel_mark_busy(dev_priv->dev);
2145                 }
2146         }
2147
2148         if (out_seqno)
2149                 *out_seqno = request->seqno;
2150         return 0;
2151 }
2152
2153 static inline void
2154 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2155 {
2156         struct drm_i915_file_private *file_priv = request->file_priv;
2157
2158         if (!file_priv)
2159                 return;
2160
2161         spin_lock(&file_priv->mm.lock);
2162         if (request->file_priv) {
2163                 list_del(&request->client_list);
2164                 request->file_priv = NULL;
2165         }
2166         spin_unlock(&file_priv->mm.lock);
2167 }
2168
2169 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2170                                     struct i915_address_space *vm)
2171 {
2172         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2173             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2174                 return true;
2175
2176         return false;
2177 }
2178
2179 static bool i915_head_inside_request(const u32 acthd_unmasked,
2180                                      const u32 request_start,
2181                                      const u32 request_end)
2182 {
2183         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2184
2185         if (request_start < request_end) {
2186                 if (acthd >= request_start && acthd < request_end)
2187                         return true;
2188         } else if (request_start > request_end) {
2189                 if (acthd >= request_start || acthd < request_end)
2190                         return true;
2191         }
2192
2193         return false;
2194 }
2195
2196 static struct i915_address_space *
2197 request_to_vm(struct drm_i915_gem_request *request)
2198 {
2199         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2200         struct i915_address_space *vm;
2201
2202         vm = &dev_priv->gtt.base;
2203
2204         return vm;
2205 }
2206
2207 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2208                                 const u32 acthd, bool *inside)
2209 {
2210         /* There is a possibility that unmasked head address
2211          * pointing inside the ring, matches the batch_obj address range.
2212          * However this is extremely unlikely.
2213          */
2214         if (request->batch_obj) {
2215                 if (i915_head_inside_object(acthd, request->batch_obj,
2216                                             request_to_vm(request))) {
2217                         *inside = true;
2218                         return true;
2219                 }
2220         }
2221
2222         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2223                 *inside = false;
2224                 return true;
2225         }
2226
2227         return false;
2228 }
2229
2230 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2231                                   struct drm_i915_gem_request *request,
2232                                   u32 acthd)
2233 {
2234         struct i915_ctx_hang_stats *hs = NULL;
2235         bool inside, guilty;
2236         unsigned long offset = 0;
2237
2238         /* Innocent until proven guilty */
2239         guilty = false;
2240
2241         if (request->batch_obj)
2242                 offset = i915_gem_obj_offset(request->batch_obj,
2243                                              request_to_vm(request));
2244
2245         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2246             i915_request_guilty(request, acthd, &inside)) {
2247                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2248                           ring->name,
2249                           inside ? "inside" : "flushing",
2250                           offset,
2251                           request->ctx ? request->ctx->id : 0,
2252                           acthd);
2253
2254                 guilty = true;
2255         }
2256
2257         /* If contexts are disabled or this is the default context, use
2258          * file_priv->reset_state
2259          */
2260         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2261                 hs = &request->ctx->hang_stats;
2262         else if (request->file_priv)
2263                 hs = &request->file_priv->hang_stats;
2264
2265         if (hs) {
2266                 if (guilty)
2267                         hs->batch_active++;
2268                 else
2269                         hs->batch_pending++;
2270         }
2271 }
2272
2273 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2274 {
2275         list_del(&request->list);
2276         i915_gem_request_remove_from_client(request);
2277
2278         if (request->ctx)
2279                 i915_gem_context_unreference(request->ctx);
2280
2281         kfree(request);
2282 }
2283
2284 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2285                                       struct intel_ring_buffer *ring)
2286 {
2287         u32 completed_seqno;
2288         u32 acthd;
2289
2290         acthd = intel_ring_get_active_head(ring);
2291         completed_seqno = ring->get_seqno(ring, false);
2292
2293         while (!list_empty(&ring->request_list)) {
2294                 struct drm_i915_gem_request *request;
2295
2296                 request = list_first_entry(&ring->request_list,
2297                                            struct drm_i915_gem_request,
2298                                            list);
2299
2300                 if (request->seqno > completed_seqno)
2301                         i915_set_reset_status(ring, request, acthd);
2302
2303                 i915_gem_free_request(request);
2304         }
2305
2306         while (!list_empty(&ring->active_list)) {
2307                 struct drm_i915_gem_object *obj;
2308
2309                 obj = list_first_entry(&ring->active_list,
2310                                        struct drm_i915_gem_object,
2311                                        ring_list);
2312
2313                 i915_gem_object_move_to_inactive(obj);
2314         }
2315 }
2316
2317 void i915_gem_restore_fences(struct drm_device *dev)
2318 {
2319         struct drm_i915_private *dev_priv = dev->dev_private;
2320         int i;
2321
2322         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2323                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2324
2325                 /*
2326                  * Commit delayed tiling changes if we have an object still
2327                  * attached to the fence, otherwise just clear the fence.
2328                  */
2329                 if (reg->obj) {
2330                         i915_gem_object_update_fence(reg->obj, reg,
2331                                                      reg->obj->tiling_mode);
2332                 } else {
2333                         i915_gem_write_fence(dev, i, NULL);
2334                 }
2335         }
2336 }
2337
2338 void i915_gem_reset(struct drm_device *dev)
2339 {
2340         struct drm_i915_private *dev_priv = dev->dev_private;
2341         struct intel_ring_buffer *ring;
2342         int i;
2343
2344         for_each_ring(ring, dev_priv, i)
2345                 i915_gem_reset_ring_lists(dev_priv, ring);
2346
2347         i915_gem_restore_fences(dev);
2348 }
2349
2350 /**
2351  * This function clears the request list as sequence numbers are passed.
2352  */
2353 void
2354 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2355 {
2356         uint32_t seqno;
2357
2358         if (list_empty(&ring->request_list))
2359                 return;
2360
2361         WARN_ON(i915_verify_lists(ring->dev));
2362
2363         seqno = ring->get_seqno(ring, true);
2364
2365         while (!list_empty(&ring->request_list)) {
2366                 struct drm_i915_gem_request *request;
2367
2368                 request = list_first_entry(&ring->request_list,
2369                                            struct drm_i915_gem_request,
2370                                            list);
2371
2372                 if (!i915_seqno_passed(seqno, request->seqno))
2373                         break;
2374
2375                 trace_i915_gem_request_retire(ring, request->seqno);
2376                 /* We know the GPU must have read the request to have
2377                  * sent us the seqno + interrupt, so use the position
2378                  * of tail of the request to update the last known position
2379                  * of the GPU head.
2380                  */
2381                 ring->last_retired_head = request->tail;
2382
2383                 i915_gem_free_request(request);
2384         }
2385
2386         /* Move any buffers on the active list that are no longer referenced
2387          * by the ringbuffer to the flushing/inactive lists as appropriate.
2388          */
2389         while (!list_empty(&ring->active_list)) {
2390                 struct drm_i915_gem_object *obj;
2391
2392                 obj = list_first_entry(&ring->active_list,
2393                                       struct drm_i915_gem_object,
2394                                       ring_list);
2395
2396                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2397                         break;
2398
2399                 i915_gem_object_move_to_inactive(obj);
2400         }
2401
2402         if (unlikely(ring->trace_irq_seqno &&
2403                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2404                 ring->irq_put(ring);
2405                 ring->trace_irq_seqno = 0;
2406         }
2407
2408         WARN_ON(i915_verify_lists(ring->dev));
2409 }
2410
2411 void
2412 i915_gem_retire_requests(struct drm_device *dev)
2413 {
2414         drm_i915_private_t *dev_priv = dev->dev_private;
2415         struct intel_ring_buffer *ring;
2416         int i;
2417
2418         for_each_ring(ring, dev_priv, i)
2419                 i915_gem_retire_requests_ring(ring);
2420 }
2421
2422 static void
2423 i915_gem_retire_work_handler(struct work_struct *work)
2424 {
2425         drm_i915_private_t *dev_priv;
2426         struct drm_device *dev;
2427         struct intel_ring_buffer *ring;
2428         bool idle;
2429         int i;
2430
2431         dev_priv = container_of(work, drm_i915_private_t,
2432                                 mm.retire_work.work);
2433         dev = dev_priv->dev;
2434
2435         /* Come back later if the device is busy... */
2436         if (!mutex_trylock(&dev->struct_mutex)) {
2437                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2438                                    round_jiffies_up_relative(HZ));
2439                 return;
2440         }
2441
2442         i915_gem_retire_requests(dev);
2443
2444         /* Send a periodic flush down the ring so we don't hold onto GEM
2445          * objects indefinitely.
2446          */
2447         idle = true;
2448         for_each_ring(ring, dev_priv, i) {
2449                 if (ring->gpu_caches_dirty)
2450                         i915_add_request(ring, NULL);
2451
2452                 idle &= list_empty(&ring->request_list);
2453         }
2454
2455         if (!dev_priv->ums.mm_suspended && !idle)
2456                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2457                                    round_jiffies_up_relative(HZ));
2458         if (idle)
2459                 intel_mark_idle(dev);
2460
2461         mutex_unlock(&dev->struct_mutex);
2462 }
2463
2464 /**
2465  * Ensures that an object will eventually get non-busy by flushing any required
2466  * write domains, emitting any outstanding lazy request and retiring and
2467  * completed requests.
2468  */
2469 static int
2470 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2471 {
2472         int ret;
2473
2474         if (obj->active) {
2475                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2476                 if (ret)
2477                         return ret;
2478
2479                 i915_gem_retire_requests_ring(obj->ring);
2480         }
2481
2482         return 0;
2483 }
2484
2485 /**
2486  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2487  * @DRM_IOCTL_ARGS: standard ioctl arguments
2488  *
2489  * Returns 0 if successful, else an error is returned with the remaining time in
2490  * the timeout parameter.
2491  *  -ETIME: object is still busy after timeout
2492  *  -ERESTARTSYS: signal interrupted the wait
2493  *  -ENONENT: object doesn't exist
2494  * Also possible, but rare:
2495  *  -EAGAIN: GPU wedged
2496  *  -ENOMEM: damn
2497  *  -ENODEV: Internal IRQ fail
2498  *  -E?: The add request failed
2499  *
2500  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2501  * non-zero timeout parameter the wait ioctl will wait for the given number of
2502  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2503  * without holding struct_mutex the object may become re-busied before this
2504  * function completes. A similar but shorter * race condition exists in the busy
2505  * ioctl
2506  */
2507 int
2508 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2509 {
2510         drm_i915_private_t *dev_priv = dev->dev_private;
2511         struct drm_i915_gem_wait *args = data;
2512         struct drm_i915_gem_object *obj;
2513         struct intel_ring_buffer *ring = NULL;
2514         struct timespec timeout_stack, *timeout = NULL;
2515         unsigned reset_counter;
2516         u32 seqno = 0;
2517         int ret = 0;
2518
2519         if (args->timeout_ns >= 0) {
2520                 timeout_stack = ns_to_timespec(args->timeout_ns);
2521                 timeout = &timeout_stack;
2522         }
2523
2524         ret = i915_mutex_lock_interruptible(dev);
2525         if (ret)
2526                 return ret;
2527
2528         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2529         if (&obj->base == NULL) {
2530                 mutex_unlock(&dev->struct_mutex);
2531                 return -ENOENT;
2532         }
2533
2534         /* Need to make sure the object gets inactive eventually. */
2535         ret = i915_gem_object_flush_active(obj);
2536         if (ret)
2537                 goto out;
2538
2539         if (obj->active) {
2540                 seqno = obj->last_read_seqno;
2541                 ring = obj->ring;
2542         }
2543
2544         if (seqno == 0)
2545                  goto out;
2546
2547         /* Do this after OLR check to make sure we make forward progress polling
2548          * on this IOCTL with a 0 timeout (like busy ioctl)
2549          */
2550         if (!args->timeout_ns) {
2551                 ret = -ETIME;
2552                 goto out;
2553         }
2554
2555         drm_gem_object_unreference(&obj->base);
2556         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2557         mutex_unlock(&dev->struct_mutex);
2558
2559         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2560         if (timeout)
2561                 args->timeout_ns = timespec_to_ns(timeout);
2562         return ret;
2563
2564 out:
2565         drm_gem_object_unreference(&obj->base);
2566         mutex_unlock(&dev->struct_mutex);
2567         return ret;
2568 }
2569
2570 /**
2571  * i915_gem_object_sync - sync an object to a ring.
2572  *
2573  * @obj: object which may be in use on another ring.
2574  * @to: ring we wish to use the object on. May be NULL.
2575  *
2576  * This code is meant to abstract object synchronization with the GPU.
2577  * Calling with NULL implies synchronizing the object with the CPU
2578  * rather than a particular GPU ring.
2579  *
2580  * Returns 0 if successful, else propagates up the lower layer error.
2581  */
2582 int
2583 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2584                      struct intel_ring_buffer *to)
2585 {
2586         struct intel_ring_buffer *from = obj->ring;
2587         u32 seqno;
2588         int ret, idx;
2589
2590         if (from == NULL || to == from)
2591                 return 0;
2592
2593         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2594                 return i915_gem_object_wait_rendering(obj, false);
2595
2596         idx = intel_ring_sync_index(from, to);
2597
2598         seqno = obj->last_read_seqno;
2599         if (seqno <= from->sync_seqno[idx])
2600                 return 0;
2601
2602         ret = i915_gem_check_olr(obj->ring, seqno);
2603         if (ret)
2604                 return ret;
2605
2606         ret = to->sync_to(to, from, seqno);
2607         if (!ret)
2608                 /* We use last_read_seqno because sync_to()
2609                  * might have just caused seqno wrap under
2610                  * the radar.
2611                  */
2612                 from->sync_seqno[idx] = obj->last_read_seqno;
2613
2614         return ret;
2615 }
2616
2617 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2618 {
2619         u32 old_write_domain, old_read_domains;
2620
2621         /* Force a pagefault for domain tracking on next user access */
2622         i915_gem_release_mmap(obj);
2623
2624         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2625                 return;
2626
2627         /* Wait for any direct GTT access to complete */
2628         mb();
2629
2630         old_read_domains = obj->base.read_domains;
2631         old_write_domain = obj->base.write_domain;
2632
2633         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2634         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2635
2636         trace_i915_gem_object_change_domain(obj,
2637                                             old_read_domains,
2638                                             old_write_domain);
2639 }
2640
2641 int i915_vma_unbind(struct i915_vma *vma)
2642 {
2643         struct drm_i915_gem_object *obj = vma->obj;
2644         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2645         int ret;
2646
2647         if (list_empty(&vma->vma_link))
2648                 return 0;
2649
2650         if (!drm_mm_node_allocated(&vma->node))
2651                 goto destroy;
2652
2653         if (obj->pin_count)
2654                 return -EBUSY;
2655
2656         BUG_ON(obj->pages == NULL);
2657
2658         ret = i915_gem_object_finish_gpu(obj);
2659         if (ret)
2660                 return ret;
2661         /* Continue on if we fail due to EIO, the GPU is hung so we
2662          * should be safe and we need to cleanup or else we might
2663          * cause memory corruption through use-after-free.
2664          */
2665
2666         i915_gem_object_finish_gtt(obj);
2667
2668         /* release the fence reg _after_ flushing */
2669         ret = i915_gem_object_put_fence(obj);
2670         if (ret)
2671                 return ret;
2672
2673         trace_i915_vma_unbind(vma);
2674
2675         if (obj->has_global_gtt_mapping)
2676                 i915_gem_gtt_unbind_object(obj);
2677         if (obj->has_aliasing_ppgtt_mapping) {
2678                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2679                 obj->has_aliasing_ppgtt_mapping = 0;
2680         }
2681         i915_gem_gtt_finish_object(obj);
2682         i915_gem_object_unpin_pages(obj);
2683
2684         list_del(&vma->mm_list);
2685         /* Avoid an unnecessary call to unbind on rebind. */
2686         if (i915_is_ggtt(vma->vm))
2687                 obj->map_and_fenceable = true;
2688
2689         drm_mm_remove_node(&vma->node);
2690
2691 destroy:
2692         i915_gem_vma_destroy(vma);
2693
2694         /* Since the unbound list is global, only move to that list if
2695          * no more VMAs exist.
2696          * NB: Until we have real VMAs there will only ever be one */
2697         WARN_ON(!list_empty(&obj->vma_list));
2698         if (list_empty(&obj->vma_list))
2699                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2700
2701         return 0;
2702 }
2703
2704 /**
2705  * Unbinds an object from the global GTT aperture.
2706  */
2707 int
2708 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2709 {
2710         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2711         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2712
2713         if (!i915_gem_obj_ggtt_bound(obj))
2714                 return 0;
2715
2716         if (obj->pin_count)
2717                 return -EBUSY;
2718
2719         BUG_ON(obj->pages == NULL);
2720
2721         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2722 }
2723
2724 int i915_gpu_idle(struct drm_device *dev)
2725 {
2726         drm_i915_private_t *dev_priv = dev->dev_private;
2727         struct intel_ring_buffer *ring;
2728         int ret, i;
2729
2730         /* Flush everything onto the inactive list. */
2731         for_each_ring(ring, dev_priv, i) {
2732                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2733                 if (ret)
2734                         return ret;
2735
2736                 ret = intel_ring_idle(ring);
2737                 if (ret)
2738                         return ret;
2739         }
2740
2741         return 0;
2742 }
2743
2744 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2745                                  struct drm_i915_gem_object *obj)
2746 {
2747         drm_i915_private_t *dev_priv = dev->dev_private;
2748         int fence_reg;
2749         int fence_pitch_shift;
2750
2751         if (INTEL_INFO(dev)->gen >= 6) {
2752                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2753                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2754         } else {
2755                 fence_reg = FENCE_REG_965_0;
2756                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2757         }
2758
2759         fence_reg += reg * 8;
2760
2761         /* To w/a incoherency with non-atomic 64-bit register updates,
2762          * we split the 64-bit update into two 32-bit writes. In order
2763          * for a partial fence not to be evaluated between writes, we
2764          * precede the update with write to turn off the fence register,
2765          * and only enable the fence as the last step.
2766          *
2767          * For extra levels of paranoia, we make sure each step lands
2768          * before applying the next step.
2769          */
2770         I915_WRITE(fence_reg, 0);
2771         POSTING_READ(fence_reg);
2772
2773         if (obj) {
2774                 u32 size = i915_gem_obj_ggtt_size(obj);
2775                 uint64_t val;
2776
2777                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2778                                  0xfffff000) << 32;
2779                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2780                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2781                 if (obj->tiling_mode == I915_TILING_Y)
2782                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2783                 val |= I965_FENCE_REG_VALID;
2784
2785                 I915_WRITE(fence_reg + 4, val >> 32);
2786                 POSTING_READ(fence_reg + 4);
2787
2788                 I915_WRITE(fence_reg + 0, val);
2789                 POSTING_READ(fence_reg);
2790         } else {
2791                 I915_WRITE(fence_reg + 4, 0);
2792                 POSTING_READ(fence_reg + 4);
2793         }
2794 }
2795
2796 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2797                                  struct drm_i915_gem_object *obj)
2798 {
2799         drm_i915_private_t *dev_priv = dev->dev_private;
2800         u32 val;
2801
2802         if (obj) {
2803                 u32 size = i915_gem_obj_ggtt_size(obj);
2804                 int pitch_val;
2805                 int tile_width;
2806
2807                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2808                      (size & -size) != size ||
2809                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2810                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2811                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2812
2813                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2814                         tile_width = 128;
2815                 else
2816                         tile_width = 512;
2817
2818                 /* Note: pitch better be a power of two tile widths */
2819                 pitch_val = obj->stride / tile_width;
2820                 pitch_val = ffs(pitch_val) - 1;
2821
2822                 val = i915_gem_obj_ggtt_offset(obj);
2823                 if (obj->tiling_mode == I915_TILING_Y)
2824                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2825                 val |= I915_FENCE_SIZE_BITS(size);
2826                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2827                 val |= I830_FENCE_REG_VALID;
2828         } else
2829                 val = 0;
2830
2831         if (reg < 8)
2832                 reg = FENCE_REG_830_0 + reg * 4;
2833         else
2834                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2835
2836         I915_WRITE(reg, val);
2837         POSTING_READ(reg);
2838 }
2839
2840 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2841                                 struct drm_i915_gem_object *obj)
2842 {
2843         drm_i915_private_t *dev_priv = dev->dev_private;
2844         uint32_t val;
2845
2846         if (obj) {
2847                 u32 size = i915_gem_obj_ggtt_size(obj);
2848                 uint32_t pitch_val;
2849
2850                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2851                      (size & -size) != size ||
2852                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2853                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2854                      i915_gem_obj_ggtt_offset(obj), size);
2855
2856                 pitch_val = obj->stride / 128;
2857                 pitch_val = ffs(pitch_val) - 1;
2858
2859                 val = i915_gem_obj_ggtt_offset(obj);
2860                 if (obj->tiling_mode == I915_TILING_Y)
2861                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2862                 val |= I830_FENCE_SIZE_BITS(size);
2863                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2864                 val |= I830_FENCE_REG_VALID;
2865         } else
2866                 val = 0;
2867
2868         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2869         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2870 }
2871
2872 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2873 {
2874         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2875 }
2876
2877 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2878                                  struct drm_i915_gem_object *obj)
2879 {
2880         struct drm_i915_private *dev_priv = dev->dev_private;
2881
2882         /* Ensure that all CPU reads are completed before installing a fence
2883          * and all writes before removing the fence.
2884          */
2885         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2886                 mb();
2887
2888         WARN(obj && (!obj->stride || !obj->tiling_mode),
2889              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2890              obj->stride, obj->tiling_mode);
2891
2892         switch (INTEL_INFO(dev)->gen) {
2893         case 7:
2894         case 6:
2895         case 5:
2896         case 4: i965_write_fence_reg(dev, reg, obj); break;
2897         case 3: i915_write_fence_reg(dev, reg, obj); break;
2898         case 2: i830_write_fence_reg(dev, reg, obj); break;
2899         default: BUG();
2900         }
2901
2902         /* And similarly be paranoid that no direct access to this region
2903          * is reordered to before the fence is installed.
2904          */
2905         if (i915_gem_object_needs_mb(obj))
2906                 mb();
2907 }
2908
2909 static inline int fence_number(struct drm_i915_private *dev_priv,
2910                                struct drm_i915_fence_reg *fence)
2911 {
2912         return fence - dev_priv->fence_regs;
2913 }
2914
2915 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2916                                          struct drm_i915_fence_reg *fence,
2917                                          bool enable)
2918 {
2919         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2920         int reg = fence_number(dev_priv, fence);
2921
2922         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2923
2924         if (enable) {
2925                 obj->fence_reg = reg;
2926                 fence->obj = obj;
2927                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2928         } else {
2929                 obj->fence_reg = I915_FENCE_REG_NONE;
2930                 fence->obj = NULL;
2931                 list_del_init(&fence->lru_list);
2932         }
2933         obj->fence_dirty = false;
2934 }
2935
2936 static int
2937 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2938 {
2939         if (obj->last_fenced_seqno) {
2940                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2941                 if (ret)
2942                         return ret;
2943
2944                 obj->last_fenced_seqno = 0;
2945         }
2946
2947         obj->fenced_gpu_access = false;
2948         return 0;
2949 }
2950
2951 int
2952 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2953 {
2954         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2955         struct drm_i915_fence_reg *fence;
2956         int ret;
2957
2958         ret = i915_gem_object_wait_fence(obj);
2959         if (ret)
2960                 return ret;
2961
2962         if (obj->fence_reg == I915_FENCE_REG_NONE)
2963                 return 0;
2964
2965         fence = &dev_priv->fence_regs[obj->fence_reg];
2966
2967         i915_gem_object_fence_lost(obj);
2968         i915_gem_object_update_fence(obj, fence, false);
2969
2970         return 0;
2971 }
2972
2973 static struct drm_i915_fence_reg *
2974 i915_find_fence_reg(struct drm_device *dev)
2975 {
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977         struct drm_i915_fence_reg *reg, *avail;
2978         int i;
2979
2980         /* First try to find a free reg */
2981         avail = NULL;
2982         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2983                 reg = &dev_priv->fence_regs[i];
2984                 if (!reg->obj)
2985                         return reg;
2986
2987                 if (!reg->pin_count)
2988                         avail = reg;
2989         }
2990
2991         if (avail == NULL)
2992                 return NULL;
2993
2994         /* None available, try to steal one or wait for a user to finish */
2995         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2996                 if (reg->pin_count)
2997                         continue;
2998
2999                 return reg;
3000         }
3001
3002         return NULL;
3003 }
3004
3005 /**
3006  * i915_gem_object_get_fence - set up fencing for an object
3007  * @obj: object to map through a fence reg
3008  *
3009  * When mapping objects through the GTT, userspace wants to be able to write
3010  * to them without having to worry about swizzling if the object is tiled.
3011  * This function walks the fence regs looking for a free one for @obj,
3012  * stealing one if it can't find any.
3013  *
3014  * It then sets up the reg based on the object's properties: address, pitch
3015  * and tiling format.
3016  *
3017  * For an untiled surface, this removes any existing fence.
3018  */
3019 int
3020 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3021 {
3022         struct drm_device *dev = obj->base.dev;
3023         struct drm_i915_private *dev_priv = dev->dev_private;
3024         bool enable = obj->tiling_mode != I915_TILING_NONE;
3025         struct drm_i915_fence_reg *reg;
3026         int ret;
3027
3028         /* Have we updated the tiling parameters upon the object and so
3029          * will need to serialise the write to the associated fence register?
3030          */
3031         if (obj->fence_dirty) {
3032                 ret = i915_gem_object_wait_fence(obj);
3033                 if (ret)
3034                         return ret;
3035         }
3036
3037         /* Just update our place in the LRU if our fence is getting reused. */
3038         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3039                 reg = &dev_priv->fence_regs[obj->fence_reg];
3040                 if (!obj->fence_dirty) {
3041                         list_move_tail(&reg->lru_list,
3042                                        &dev_priv->mm.fence_list);
3043                         return 0;
3044                 }
3045         } else if (enable) {
3046                 reg = i915_find_fence_reg(dev);
3047                 if (reg == NULL)
3048                         return -EDEADLK;
3049
3050                 if (reg->obj) {
3051                         struct drm_i915_gem_object *old = reg->obj;
3052
3053                         ret = i915_gem_object_wait_fence(old);
3054                         if (ret)
3055                                 return ret;
3056
3057                         i915_gem_object_fence_lost(old);
3058                 }
3059         } else
3060                 return 0;
3061
3062         i915_gem_object_update_fence(obj, reg, enable);
3063
3064         return 0;
3065 }
3066
3067 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3068                                      struct drm_mm_node *gtt_space,
3069                                      unsigned long cache_level)
3070 {
3071         struct drm_mm_node *other;
3072
3073         /* On non-LLC machines we have to be careful when putting differing
3074          * types of snoopable memory together to avoid the prefetcher
3075          * crossing memory domains and dying.
3076          */
3077         if (HAS_LLC(dev))
3078                 return true;
3079
3080         if (!drm_mm_node_allocated(gtt_space))
3081                 return true;
3082
3083         if (list_empty(&gtt_space->node_list))
3084                 return true;
3085
3086         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3087         if (other->allocated && !other->hole_follows && other->color != cache_level)
3088                 return false;
3089
3090         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3091         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3092                 return false;
3093
3094         return true;
3095 }
3096
3097 static void i915_gem_verify_gtt(struct drm_device *dev)
3098 {
3099 #if WATCH_GTT
3100         struct drm_i915_private *dev_priv = dev->dev_private;
3101         struct drm_i915_gem_object *obj;
3102         int err = 0;
3103
3104         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3105                 if (obj->gtt_space == NULL) {
3106                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3107                         err++;
3108                         continue;
3109                 }
3110
3111                 if (obj->cache_level != obj->gtt_space->color) {
3112                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3113                                i915_gem_obj_ggtt_offset(obj),
3114                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3115                                obj->cache_level,
3116                                obj->gtt_space->color);
3117                         err++;
3118                         continue;
3119                 }
3120
3121                 if (!i915_gem_valid_gtt_space(dev,
3122                                               obj->gtt_space,
3123                                               obj->cache_level)) {
3124                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3125                                i915_gem_obj_ggtt_offset(obj),
3126                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3127                                obj->cache_level);
3128                         err++;
3129                         continue;
3130                 }
3131         }
3132
3133         WARN_ON(err);
3134 #endif
3135 }
3136
3137 /**
3138  * Finds free space in the GTT aperture and binds the object there.
3139  */
3140 static int
3141 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3142                            struct i915_address_space *vm,
3143                            unsigned alignment,
3144                            bool map_and_fenceable,
3145                            bool nonblocking)
3146 {
3147         struct drm_device *dev = obj->base.dev;
3148         drm_i915_private_t *dev_priv = dev->dev_private;
3149         u32 size, fence_size, fence_alignment, unfenced_alignment;
3150         size_t gtt_max =
3151                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3152         struct i915_vma *vma;
3153         int ret;
3154
3155         fence_size = i915_gem_get_gtt_size(dev,
3156                                            obj->base.size,
3157                                            obj->tiling_mode);
3158         fence_alignment = i915_gem_get_gtt_alignment(dev,
3159                                                      obj->base.size,
3160                                                      obj->tiling_mode, true);
3161         unfenced_alignment =
3162                 i915_gem_get_gtt_alignment(dev,
3163                                                     obj->base.size,
3164                                                     obj->tiling_mode, false);
3165
3166         if (alignment == 0)
3167                 alignment = map_and_fenceable ? fence_alignment :
3168                                                 unfenced_alignment;
3169         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3170                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3171                 return -EINVAL;
3172         }
3173
3174         size = map_and_fenceable ? fence_size : obj->base.size;
3175
3176         /* If the object is bigger than the entire aperture, reject it early
3177          * before evicting everything in a vain attempt to find space.
3178          */
3179         if (obj->base.size > gtt_max) {
3180                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3181                           obj->base.size,
3182                           map_and_fenceable ? "mappable" : "total",
3183                           gtt_max);
3184                 return -E2BIG;
3185         }
3186
3187         ret = i915_gem_object_get_pages(obj);
3188         if (ret)
3189                 return ret;
3190
3191         i915_gem_object_pin_pages(obj);
3192
3193         BUG_ON(!i915_is_ggtt(vm));
3194
3195         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3196         if (IS_ERR(vma)) {
3197                 ret = PTR_ERR(vma);
3198                 goto err_unpin;
3199         }
3200
3201         /* For now we only ever use 1 vma per object */
3202         WARN_ON(!list_is_singular(&obj->vma_list));
3203
3204 search_free:
3205         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3206                                                   size, alignment,
3207                                                   obj->cache_level, 0, gtt_max,
3208                                                   DRM_MM_SEARCH_DEFAULT);
3209         if (ret) {
3210                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3211                                                obj->cache_level,
3212                                                map_and_fenceable,
3213                                                nonblocking);
3214                 if (ret == 0)
3215                         goto search_free;
3216
3217                 goto err_free_vma;
3218         }
3219         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3220                                               obj->cache_level))) {
3221                 ret = -EINVAL;
3222                 goto err_remove_node;
3223         }
3224
3225         ret = i915_gem_gtt_prepare_object(obj);
3226         if (ret)
3227                 goto err_remove_node;
3228
3229         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3230         list_add_tail(&vma->mm_list, &vm->inactive_list);
3231
3232         if (i915_is_ggtt(vm)) {
3233                 bool mappable, fenceable;
3234
3235                 fenceable = (vma->node.size == fence_size &&
3236                              (vma->node.start & (fence_alignment - 1)) == 0);
3237
3238                 mappable = (vma->node.start + obj->base.size <=
3239                             dev_priv->gtt.mappable_end);
3240
3241                 obj->map_and_fenceable = mappable && fenceable;
3242         }
3243
3244         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3245
3246         trace_i915_vma_bind(vma, map_and_fenceable);
3247         i915_gem_verify_gtt(dev);
3248         return 0;
3249
3250 err_remove_node:
3251         drm_mm_remove_node(&vma->node);
3252 err_free_vma:
3253         i915_gem_vma_destroy(vma);
3254 err_unpin:
3255         i915_gem_object_unpin_pages(obj);
3256         return ret;
3257 }
3258
3259 bool
3260 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3261                         bool force)
3262 {
3263         /* If we don't have a page list set up, then we're not pinned
3264          * to GPU, and we can ignore the cache flush because it'll happen
3265          * again at bind time.
3266          */
3267         if (obj->pages == NULL)
3268                 return false;
3269
3270         /*
3271          * Stolen memory is always coherent with the GPU as it is explicitly
3272          * marked as wc by the system, or the system is cache-coherent.
3273          */
3274         if (obj->stolen)
3275                 return false;
3276
3277         /* If the GPU is snooping the contents of the CPU cache,
3278          * we do not need to manually clear the CPU cache lines.  However,
3279          * the caches are only snooped when the render cache is
3280          * flushed/invalidated.  As we always have to emit invalidations
3281          * and flushes when moving into and out of the RENDER domain, correct
3282          * snooping behaviour occurs naturally as the result of our domain
3283          * tracking.
3284          */
3285         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3286                 return false;
3287
3288         trace_i915_gem_object_clflush(obj);
3289         drm_clflush_sg(obj->pages);
3290
3291         return true;
3292 }
3293
3294 /** Flushes the GTT write domain for the object if it's dirty. */
3295 static void
3296 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3297 {
3298         uint32_t old_write_domain;
3299
3300         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3301                 return;
3302
3303         /* No actual flushing is required for the GTT write domain.  Writes
3304          * to it immediately go to main memory as far as we know, so there's
3305          * no chipset flush.  It also doesn't land in render cache.
3306          *
3307          * However, we do have to enforce the order so that all writes through
3308          * the GTT land before any writes to the device, such as updates to
3309          * the GATT itself.
3310          */
3311         wmb();
3312
3313         old_write_domain = obj->base.write_domain;
3314         obj->base.write_domain = 0;
3315
3316         trace_i915_gem_object_change_domain(obj,
3317                                             obj->base.read_domains,
3318                                             old_write_domain);
3319 }
3320
3321 /** Flushes the CPU write domain for the object if it's dirty. */
3322 static void
3323 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3324                                        bool force)
3325 {
3326         uint32_t old_write_domain;
3327
3328         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3329                 return;
3330
3331         if (i915_gem_clflush_object(obj, force))
3332                 i915_gem_chipset_flush(obj->base.dev);
3333
3334         old_write_domain = obj->base.write_domain;
3335         obj->base.write_domain = 0;
3336
3337         trace_i915_gem_object_change_domain(obj,
3338                                             obj->base.read_domains,
3339                                             old_write_domain);
3340 }
3341
3342 /**
3343  * Moves a single object to the GTT read, and possibly write domain.
3344  *
3345  * This function returns when the move is complete, including waiting on
3346  * flushes to occur.
3347  */
3348 int
3349 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3350 {
3351         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3352         uint32_t old_write_domain, old_read_domains;
3353         int ret;
3354
3355         /* Not valid to be called on unbound objects. */
3356         if (!i915_gem_obj_bound_any(obj))
3357                 return -EINVAL;
3358
3359         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3360                 return 0;
3361
3362         ret = i915_gem_object_wait_rendering(obj, !write);
3363         if (ret)
3364                 return ret;
3365
3366         i915_gem_object_flush_cpu_write_domain(obj, false);
3367
3368         /* Serialise direct access to this object with the barriers for
3369          * coherent writes from the GPU, by effectively invalidating the
3370          * GTT domain upon first access.
3371          */
3372         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3373                 mb();
3374
3375         old_write_domain = obj->base.write_domain;
3376         old_read_domains = obj->base.read_domains;
3377
3378         /* It should now be out of any other write domains, and we can update
3379          * the domain values for our changes.
3380          */
3381         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3382         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3383         if (write) {
3384                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3385                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3386                 obj->dirty = 1;
3387         }
3388
3389         trace_i915_gem_object_change_domain(obj,
3390                                             old_read_domains,
3391                                             old_write_domain);
3392
3393         /* And bump the LRU for this access */
3394         if (i915_gem_object_is_inactive(obj)) {
3395                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3396                                                            &dev_priv->gtt.base);
3397                 if (vma)
3398                         list_move_tail(&vma->mm_list,
3399                                        &dev_priv->gtt.base.inactive_list);
3400
3401         }
3402
3403         return 0;
3404 }
3405
3406 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3407                                     enum i915_cache_level cache_level)
3408 {
3409         struct drm_device *dev = obj->base.dev;
3410         drm_i915_private_t *dev_priv = dev->dev_private;
3411         struct i915_vma *vma;
3412         int ret;
3413
3414         if (obj->cache_level == cache_level)
3415                 return 0;
3416
3417         if (obj->pin_count) {
3418                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3419                 return -EBUSY;
3420         }
3421
3422         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3423                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3424                         ret = i915_vma_unbind(vma);
3425                         if (ret)
3426                                 return ret;
3427
3428                         break;
3429                 }
3430         }
3431
3432         if (i915_gem_obj_bound_any(obj)) {
3433                 ret = i915_gem_object_finish_gpu(obj);
3434                 if (ret)
3435                         return ret;
3436
3437                 i915_gem_object_finish_gtt(obj);
3438
3439                 /* Before SandyBridge, you could not use tiling or fence
3440                  * registers with snooped memory, so relinquish any fences
3441                  * currently pointing to our region in the aperture.
3442                  */
3443                 if (INTEL_INFO(dev)->gen < 6) {
3444                         ret = i915_gem_object_put_fence(obj);
3445                         if (ret)
3446                                 return ret;
3447                 }
3448
3449                 if (obj->has_global_gtt_mapping)
3450                         i915_gem_gtt_bind_object(obj, cache_level);
3451                 if (obj->has_aliasing_ppgtt_mapping)
3452                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3453                                                obj, cache_level);
3454         }
3455
3456         list_for_each_entry(vma, &obj->vma_list, vma_link)
3457                 vma->node.color = cache_level;
3458         obj->cache_level = cache_level;
3459
3460         if (cpu_write_needs_clflush(obj)) {
3461                 u32 old_read_domains, old_write_domain;
3462
3463                 /* If we're coming from LLC cached, then we haven't
3464                  * actually been tracking whether the data is in the
3465                  * CPU cache or not, since we only allow one bit set
3466                  * in obj->write_domain and have been skipping the clflushes.
3467                  * Just set it to the CPU cache for now.
3468                  */
3469                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3470
3471                 old_read_domains = obj->base.read_domains;
3472                 old_write_domain = obj->base.write_domain;
3473
3474                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3475                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3476
3477                 trace_i915_gem_object_change_domain(obj,
3478                                                     old_read_domains,
3479                                                     old_write_domain);
3480         }
3481
3482         i915_gem_verify_gtt(dev);
3483         return 0;
3484 }
3485
3486 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3487                                struct drm_file *file)
3488 {
3489         struct drm_i915_gem_caching *args = data;
3490         struct drm_i915_gem_object *obj;
3491         int ret;
3492
3493         ret = i915_mutex_lock_interruptible(dev);
3494         if (ret)
3495                 return ret;
3496
3497         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3498         if (&obj->base == NULL) {
3499                 ret = -ENOENT;
3500                 goto unlock;
3501         }
3502
3503         switch (obj->cache_level) {
3504         case I915_CACHE_LLC:
3505         case I915_CACHE_L3_LLC:
3506                 args->caching = I915_CACHING_CACHED;
3507                 break;
3508
3509         case I915_CACHE_WT:
3510                 args->caching = I915_CACHING_DISPLAY;
3511                 break;
3512
3513         default:
3514                 args->caching = I915_CACHING_NONE;
3515                 break;
3516         }
3517
3518         drm_gem_object_unreference(&obj->base);
3519 unlock:
3520         mutex_unlock(&dev->struct_mutex);
3521         return ret;
3522 }
3523
3524 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3525                                struct drm_file *file)
3526 {
3527         struct drm_i915_gem_caching *args = data;
3528         struct drm_i915_gem_object *obj;
3529         enum i915_cache_level level;
3530         int ret;
3531
3532         switch (args->caching) {
3533         case I915_CACHING_NONE:
3534                 level = I915_CACHE_NONE;
3535                 break;
3536         case I915_CACHING_CACHED:
3537                 level = I915_CACHE_LLC;
3538                 break;
3539         case I915_CACHING_DISPLAY:
3540                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3541                 break;
3542         default:
3543                 return -EINVAL;
3544         }
3545
3546         ret = i915_mutex_lock_interruptible(dev);
3547         if (ret)
3548                 return ret;
3549
3550         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3551         if (&obj->base == NULL) {
3552                 ret = -ENOENT;
3553                 goto unlock;
3554         }
3555
3556         ret = i915_gem_object_set_cache_level(obj, level);
3557
3558         drm_gem_object_unreference(&obj->base);
3559 unlock:
3560         mutex_unlock(&dev->struct_mutex);
3561         return ret;
3562 }
3563
3564 static bool is_pin_display(struct drm_i915_gem_object *obj)
3565 {
3566         /* There are 3 sources that pin objects:
3567          *   1. The display engine (scanouts, sprites, cursors);
3568          *   2. Reservations for execbuffer;
3569          *   3. The user.
3570          *
3571          * We can ignore reservations as we hold the struct_mutex and
3572          * are only called outside of the reservation path.  The user
3573          * can only increment pin_count once, and so if after
3574          * subtracting the potential reference by the user, any pin_count
3575          * remains, it must be due to another use by the display engine.
3576          */
3577         return obj->pin_count - !!obj->user_pin_count;
3578 }
3579
3580 /*
3581  * Prepare buffer for display plane (scanout, cursors, etc).
3582  * Can be called from an uninterruptible phase (modesetting) and allows
3583  * any flushes to be pipelined (for pageflips).
3584  */
3585 int
3586 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3587                                      u32 alignment,
3588                                      struct intel_ring_buffer *pipelined)
3589 {
3590         u32 old_read_domains, old_write_domain;
3591         int ret;
3592
3593         if (pipelined != obj->ring) {
3594                 ret = i915_gem_object_sync(obj, pipelined);
3595                 if (ret)
3596                         return ret;
3597         }
3598
3599         /* Mark the pin_display early so that we account for the
3600          * display coherency whilst setting up the cache domains.
3601          */
3602         obj->pin_display = true;
3603
3604         /* The display engine is not coherent with the LLC cache on gen6.  As
3605          * a result, we make sure that the pinning that is about to occur is
3606          * done with uncached PTEs. This is lowest common denominator for all
3607          * chipsets.
3608          *
3609          * However for gen6+, we could do better by using the GFDT bit instead
3610          * of uncaching, which would allow us to flush all the LLC-cached data
3611          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3612          */
3613         ret = i915_gem_object_set_cache_level(obj,
3614                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3615         if (ret)
3616                 goto err_unpin_display;
3617
3618         /* As the user may map the buffer once pinned in the display plane
3619          * (e.g. libkms for the bootup splash), we have to ensure that we
3620          * always use map_and_fenceable for all scanout buffers.
3621          */
3622         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3623         if (ret)
3624                 goto err_unpin_display;
3625
3626         i915_gem_object_flush_cpu_write_domain(obj, true);
3627
3628         old_write_domain = obj->base.write_domain;
3629         old_read_domains = obj->base.read_domains;
3630
3631         /* It should now be out of any other write domains, and we can update
3632          * the domain values for our changes.
3633          */
3634         obj->base.write_domain = 0;
3635         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3636
3637         trace_i915_gem_object_change_domain(obj,
3638                                             old_read_domains,
3639                                             old_write_domain);
3640
3641         return 0;
3642
3643 err_unpin_display:
3644         obj->pin_display = is_pin_display(obj);
3645         return ret;
3646 }
3647
3648 void
3649 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3650 {
3651         i915_gem_object_unpin(obj);
3652         obj->pin_display = is_pin_display(obj);
3653 }
3654
3655 int
3656 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3657 {
3658         int ret;
3659
3660         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3661                 return 0;
3662
3663         ret = i915_gem_object_wait_rendering(obj, false);
3664         if (ret)
3665                 return ret;
3666
3667         /* Ensure that we invalidate the GPU's caches and TLBs. */
3668         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3669         return 0;
3670 }
3671
3672 /**
3673  * Moves a single object to the CPU read, and possibly write domain.
3674  *
3675  * This function returns when the move is complete, including waiting on
3676  * flushes to occur.
3677  */
3678 int
3679 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3680 {
3681         uint32_t old_write_domain, old_read_domains;
3682         int ret;
3683
3684         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3685                 return 0;
3686
3687         ret = i915_gem_object_wait_rendering(obj, !write);
3688         if (ret)
3689                 return ret;
3690
3691         i915_gem_object_flush_gtt_write_domain(obj);
3692
3693         old_write_domain = obj->base.write_domain;
3694         old_read_domains = obj->base.read_domains;
3695
3696         /* Flush the CPU cache if it's still invalid. */
3697         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3698                 i915_gem_clflush_object(obj, false);
3699
3700                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3701         }
3702
3703         /* It should now be out of any other write domains, and we can update
3704          * the domain values for our changes.
3705          */
3706         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3707
3708         /* If we're writing through the CPU, then the GPU read domains will
3709          * need to be invalidated at next use.
3710          */
3711         if (write) {
3712                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3713                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3714         }
3715
3716         trace_i915_gem_object_change_domain(obj,
3717                                             old_read_domains,
3718                                             old_write_domain);
3719
3720         return 0;
3721 }
3722
3723 /* Throttle our rendering by waiting until the ring has completed our requests
3724  * emitted over 20 msec ago.
3725  *
3726  * Note that if we were to use the current jiffies each time around the loop,
3727  * we wouldn't escape the function with any frames outstanding if the time to
3728  * render a frame was over 20ms.
3729  *
3730  * This should get us reasonable parallelism between CPU and GPU but also
3731  * relatively low latency when blocking on a particular request to finish.
3732  */
3733 static int
3734 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3735 {
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737         struct drm_i915_file_private *file_priv = file->driver_priv;
3738         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3739         struct drm_i915_gem_request *request;
3740         struct intel_ring_buffer *ring = NULL;
3741         unsigned reset_counter;
3742         u32 seqno = 0;
3743         int ret;
3744
3745         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3746         if (ret)
3747                 return ret;
3748
3749         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3750         if (ret)
3751                 return ret;
3752
3753         spin_lock(&file_priv->mm.lock);
3754         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3755                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3756                         break;
3757
3758                 ring = request->ring;
3759                 seqno = request->seqno;
3760         }
3761         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3762         spin_unlock(&file_priv->mm.lock);
3763
3764         if (seqno == 0)
3765                 return 0;
3766
3767         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3768         if (ret == 0)
3769                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3770
3771         return ret;
3772 }
3773
3774 int
3775 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3776                     struct i915_address_space *vm,
3777                     uint32_t alignment,
3778                     bool map_and_fenceable,
3779                     bool nonblocking)
3780 {
3781         struct i915_vma *vma;
3782         int ret;
3783
3784         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3785                 return -EBUSY;
3786
3787         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3788
3789         vma = i915_gem_obj_to_vma(obj, vm);
3790
3791         if (vma) {
3792                 if ((alignment &&
3793                      vma->node.start & (alignment - 1)) ||
3794                     (map_and_fenceable && !obj->map_and_fenceable)) {
3795                         WARN(obj->pin_count,
3796                              "bo is already pinned with incorrect alignment:"
3797                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3798                              " obj->map_and_fenceable=%d\n",
3799                              i915_gem_obj_offset(obj, vm), alignment,
3800                              map_and_fenceable,
3801                              obj->map_and_fenceable);
3802                         ret = i915_vma_unbind(vma);
3803                         if (ret)
3804                                 return ret;
3805                 }
3806         }
3807
3808         if (!i915_gem_obj_bound(obj, vm)) {
3809                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3810
3811                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3812                                                  map_and_fenceable,
3813                                                  nonblocking);
3814                 if (ret)
3815                         return ret;
3816
3817                 if (!dev_priv->mm.aliasing_ppgtt)
3818                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3819         }
3820
3821         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3822                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3823
3824         obj->pin_count++;
3825         obj->pin_mappable |= map_and_fenceable;
3826
3827         return 0;
3828 }
3829
3830 void
3831 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3832 {
3833         BUG_ON(obj->pin_count == 0);
3834         BUG_ON(!i915_gem_obj_bound_any(obj));
3835
3836         if (--obj->pin_count == 0)
3837                 obj->pin_mappable = false;
3838 }
3839
3840 int
3841 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3842                    struct drm_file *file)
3843 {
3844         struct drm_i915_gem_pin *args = data;
3845         struct drm_i915_gem_object *obj;
3846         int ret;
3847
3848         ret = i915_mutex_lock_interruptible(dev);
3849         if (ret)
3850                 return ret;
3851
3852         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3853         if (&obj->base == NULL) {
3854                 ret = -ENOENT;
3855                 goto unlock;
3856         }
3857
3858         if (obj->madv != I915_MADV_WILLNEED) {
3859                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3860                 ret = -EINVAL;
3861                 goto out;
3862         }
3863
3864         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3865                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3866                           args->handle);
3867                 ret = -EINVAL;
3868                 goto out;
3869         }
3870
3871         if (obj->user_pin_count == 0) {
3872                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3873                 if (ret)
3874                         goto out;
3875         }
3876
3877         obj->user_pin_count++;
3878         obj->pin_filp = file;
3879
3880         args->offset = i915_gem_obj_ggtt_offset(obj);
3881 out:
3882         drm_gem_object_unreference(&obj->base);
3883 unlock:
3884         mutex_unlock(&dev->struct_mutex);
3885         return ret;
3886 }
3887
3888 int
3889 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3890                      struct drm_file *file)
3891 {
3892         struct drm_i915_gem_pin *args = data;
3893         struct drm_i915_gem_object *obj;
3894         int ret;
3895
3896         ret = i915_mutex_lock_interruptible(dev);
3897         if (ret)
3898                 return ret;
3899
3900         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3901         if (&obj->base == NULL) {
3902                 ret = -ENOENT;
3903                 goto unlock;
3904         }
3905
3906         if (obj->pin_filp != file) {
3907                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3908                           args->handle);
3909                 ret = -EINVAL;
3910                 goto out;
3911         }
3912         obj->user_pin_count--;
3913         if (obj->user_pin_count == 0) {
3914                 obj->pin_filp = NULL;
3915                 i915_gem_object_unpin(obj);
3916         }
3917
3918 out:
3919         drm_gem_object_unreference(&obj->base);
3920 unlock:
3921         mutex_unlock(&dev->struct_mutex);
3922         return ret;
3923 }
3924
3925 int
3926 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3927                     struct drm_file *file)
3928 {
3929         struct drm_i915_gem_busy *args = data;
3930         struct drm_i915_gem_object *obj;
3931         int ret;
3932
3933         ret = i915_mutex_lock_interruptible(dev);
3934         if (ret)
3935                 return ret;
3936
3937         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3938         if (&obj->base == NULL) {
3939                 ret = -ENOENT;
3940                 goto unlock;
3941         }
3942
3943         /* Count all active objects as busy, even if they are currently not used
3944          * by the gpu. Users of this interface expect objects to eventually
3945          * become non-busy without any further actions, therefore emit any
3946          * necessary flushes here.
3947          */
3948         ret = i915_gem_object_flush_active(obj);
3949
3950         args->busy = obj->active;
3951         if (obj->ring) {
3952                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3953                 args->busy |= intel_ring_flag(obj->ring) << 16;
3954         }
3955
3956         drm_gem_object_unreference(&obj->base);
3957 unlock:
3958         mutex_unlock(&dev->struct_mutex);
3959         return ret;
3960 }
3961
3962 int
3963 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3964                         struct drm_file *file_priv)
3965 {
3966         return i915_gem_ring_throttle(dev, file_priv);
3967 }
3968
3969 int
3970 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3971                        struct drm_file *file_priv)
3972 {
3973         struct drm_i915_gem_madvise *args = data;
3974         struct drm_i915_gem_object *obj;
3975         int ret;
3976
3977         switch (args->madv) {
3978         case I915_MADV_DONTNEED:
3979         case I915_MADV_WILLNEED:
3980             break;
3981         default:
3982             return -EINVAL;
3983         }
3984
3985         ret = i915_mutex_lock_interruptible(dev);
3986         if (ret)
3987                 return ret;
3988
3989         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3990         if (&obj->base == NULL) {
3991                 ret = -ENOENT;
3992                 goto unlock;
3993         }
3994
3995         if (obj->pin_count) {
3996                 ret = -EINVAL;
3997                 goto out;
3998         }
3999
4000         if (obj->madv != __I915_MADV_PURGED)
4001                 obj->madv = args->madv;
4002
4003         /* if the object is no longer attached, discard its backing storage */
4004         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4005                 i915_gem_object_truncate(obj);
4006
4007         args->retained = obj->madv != __I915_MADV_PURGED;
4008
4009 out:
4010         drm_gem_object_unreference(&obj->base);
4011 unlock:
4012         mutex_unlock(&dev->struct_mutex);
4013         return ret;
4014 }
4015
4016 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4017                           const struct drm_i915_gem_object_ops *ops)
4018 {
4019         INIT_LIST_HEAD(&obj->global_list);
4020         INIT_LIST_HEAD(&obj->ring_list);
4021         INIT_LIST_HEAD(&obj->exec_list);
4022         INIT_LIST_HEAD(&obj->obj_exec_link);
4023         INIT_LIST_HEAD(&obj->vma_list);
4024
4025         obj->ops = ops;
4026
4027         obj->fence_reg = I915_FENCE_REG_NONE;
4028         obj->madv = I915_MADV_WILLNEED;
4029         /* Avoid an unnecessary call to unbind on the first bind. */
4030         obj->map_and_fenceable = true;
4031
4032         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4033 }
4034
4035 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4036         .get_pages = i915_gem_object_get_pages_gtt,
4037         .put_pages = i915_gem_object_put_pages_gtt,
4038 };
4039
4040 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4041                                                   size_t size)
4042 {
4043         struct drm_i915_gem_object *obj;
4044         struct address_space *mapping;
4045         gfp_t mask;
4046
4047         obj = i915_gem_object_alloc(dev);
4048         if (obj == NULL)
4049                 return NULL;
4050
4051         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4052                 i915_gem_object_free(obj);
4053                 return NULL;
4054         }
4055
4056         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4057         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4058                 /* 965gm cannot relocate objects above 4GiB. */
4059                 mask &= ~__GFP_HIGHMEM;
4060                 mask |= __GFP_DMA32;
4061         }
4062
4063         mapping = file_inode(obj->base.filp)->i_mapping;
4064         mapping_set_gfp_mask(mapping, mask);
4065
4066         i915_gem_object_init(obj, &i915_gem_object_ops);
4067
4068         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4069         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4070
4071         if (HAS_LLC(dev)) {
4072                 /* On some devices, we can have the GPU use the LLC (the CPU
4073                  * cache) for about a 10% performance improvement
4074                  * compared to uncached.  Graphics requests other than
4075                  * display scanout are coherent with the CPU in
4076                  * accessing this cache.  This means in this mode we
4077                  * don't need to clflush on the CPU side, and on the
4078                  * GPU side we only need to flush internal caches to
4079                  * get data visible to the CPU.
4080                  *
4081                  * However, we maintain the display planes as UC, and so
4082                  * need to rebind when first used as such.
4083                  */
4084                 obj->cache_level = I915_CACHE_LLC;
4085         } else
4086                 obj->cache_level = I915_CACHE_NONE;
4087
4088         trace_i915_gem_object_create(obj);
4089
4090         return obj;
4091 }
4092
4093 int i915_gem_init_object(struct drm_gem_object *obj)
4094 {
4095         BUG();
4096
4097         return 0;
4098 }
4099
4100 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4101 {
4102         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4103         struct drm_device *dev = obj->base.dev;
4104         drm_i915_private_t *dev_priv = dev->dev_private;
4105         struct i915_vma *vma, *next;
4106
4107         trace_i915_gem_object_destroy(obj);
4108
4109         if (obj->phys_obj)
4110                 i915_gem_detach_phys_object(dev, obj);
4111
4112         obj->pin_count = 0;
4113         /* NB: 0 or 1 elements */
4114         WARN_ON(!list_empty(&obj->vma_list) &&
4115                 !list_is_singular(&obj->vma_list));
4116         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4117                 int ret = i915_vma_unbind(vma);
4118                 if (WARN_ON(ret == -ERESTARTSYS)) {
4119                         bool was_interruptible;
4120
4121                         was_interruptible = dev_priv->mm.interruptible;
4122                         dev_priv->mm.interruptible = false;
4123
4124                         WARN_ON(i915_vma_unbind(vma));
4125
4126                         dev_priv->mm.interruptible = was_interruptible;
4127                 }
4128         }
4129
4130         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4131          * before progressing. */
4132         if (obj->stolen)
4133                 i915_gem_object_unpin_pages(obj);
4134
4135         if (WARN_ON(obj->pages_pin_count))
4136                 obj->pages_pin_count = 0;
4137         i915_gem_object_put_pages(obj);
4138         i915_gem_object_free_mmap_offset(obj);
4139         i915_gem_object_release_stolen(obj);
4140
4141         BUG_ON(obj->pages);
4142
4143         if (obj->base.import_attach)
4144                 drm_prime_gem_destroy(&obj->base, NULL);
4145
4146         drm_gem_object_release(&obj->base);
4147         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4148
4149         kfree(obj->bit_17);
4150         i915_gem_object_free(obj);
4151 }
4152
4153 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4154                                      struct i915_address_space *vm)
4155 {
4156         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4157         if (vma == NULL)
4158                 return ERR_PTR(-ENOMEM);
4159
4160         INIT_LIST_HEAD(&vma->vma_link);
4161         INIT_LIST_HEAD(&vma->mm_list);
4162         INIT_LIST_HEAD(&vma->exec_list);
4163         vma->vm = vm;
4164         vma->obj = obj;
4165
4166         /* Keep GGTT vmas first to make debug easier */
4167         if (i915_is_ggtt(vm))
4168                 list_add(&vma->vma_link, &obj->vma_list);
4169         else
4170                 list_add_tail(&vma->vma_link, &obj->vma_list);
4171
4172         return vma;
4173 }
4174
4175 void i915_gem_vma_destroy(struct i915_vma *vma)
4176 {
4177         WARN_ON(vma->node.allocated);
4178         list_del(&vma->vma_link);
4179         kfree(vma);
4180 }
4181
4182 int
4183 i915_gem_idle(struct drm_device *dev)
4184 {
4185         drm_i915_private_t *dev_priv = dev->dev_private;
4186         int ret;
4187
4188         if (dev_priv->ums.mm_suspended) {
4189                 mutex_unlock(&dev->struct_mutex);
4190                 return 0;
4191         }
4192
4193         ret = i915_gpu_idle(dev);
4194         if (ret) {
4195                 mutex_unlock(&dev->struct_mutex);
4196                 return ret;
4197         }
4198         i915_gem_retire_requests(dev);
4199
4200         /* Under UMS, be paranoid and evict. */
4201         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4202                 i915_gem_evict_everything(dev);
4203
4204         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4205
4206         i915_kernel_lost_context(dev);
4207         i915_gem_cleanup_ringbuffer(dev);
4208
4209         /* Cancel the retire work handler, which should be idle now. */
4210         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4211
4212         return 0;
4213 }
4214
4215 void i915_gem_l3_remap(struct drm_device *dev)
4216 {
4217         drm_i915_private_t *dev_priv = dev->dev_private;
4218         u32 misccpctl;
4219         int i;
4220
4221         if (!HAS_L3_GPU_CACHE(dev))
4222                 return;
4223
4224         if (!dev_priv->l3_parity.remap_info)
4225                 return;
4226
4227         misccpctl = I915_READ(GEN7_MISCCPCTL);
4228         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4229         POSTING_READ(GEN7_MISCCPCTL);
4230
4231         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4232                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4233                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4234                         DRM_DEBUG("0x%x was already programmed to %x\n",
4235                                   GEN7_L3LOG_BASE + i, remap);
4236                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4237                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4238                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4239         }
4240
4241         /* Make sure all the writes land before disabling dop clock gating */
4242         POSTING_READ(GEN7_L3LOG_BASE);
4243
4244         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4245 }
4246
4247 void i915_gem_init_swizzling(struct drm_device *dev)
4248 {
4249         drm_i915_private_t *dev_priv = dev->dev_private;
4250
4251         if (INTEL_INFO(dev)->gen < 5 ||
4252             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4253                 return;
4254
4255         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4256                                  DISP_TILE_SURFACE_SWIZZLING);
4257
4258         if (IS_GEN5(dev))
4259                 return;
4260
4261         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4262         if (IS_GEN6(dev))
4263                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4264         else if (IS_GEN7(dev))
4265                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4266         else
4267                 BUG();
4268 }
4269
4270 static bool
4271 intel_enable_blt(struct drm_device *dev)
4272 {
4273         if (!HAS_BLT(dev))
4274                 return false;
4275
4276         /* The blitter was dysfunctional on early prototypes */
4277         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4278                 DRM_INFO("BLT not supported on this pre-production hardware;"
4279                          " graphics performance will be degraded.\n");
4280                 return false;
4281         }
4282
4283         return true;
4284 }
4285
4286 static int i915_gem_init_rings(struct drm_device *dev)
4287 {
4288         struct drm_i915_private *dev_priv = dev->dev_private;
4289         int ret;
4290
4291         ret = intel_init_render_ring_buffer(dev);
4292         if (ret)
4293                 return ret;
4294
4295         if (HAS_BSD(dev)) {
4296                 ret = intel_init_bsd_ring_buffer(dev);
4297                 if (ret)
4298                         goto cleanup_render_ring;
4299         }
4300
4301         if (intel_enable_blt(dev)) {
4302                 ret = intel_init_blt_ring_buffer(dev);
4303                 if (ret)
4304                         goto cleanup_bsd_ring;
4305         }
4306
4307         if (HAS_VEBOX(dev)) {
4308                 ret = intel_init_vebox_ring_buffer(dev);
4309                 if (ret)
4310                         goto cleanup_blt_ring;
4311         }
4312
4313
4314         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4315         if (ret)
4316                 goto cleanup_vebox_ring;
4317
4318         return 0;
4319
4320 cleanup_vebox_ring:
4321         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4322 cleanup_blt_ring:
4323         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4324 cleanup_bsd_ring:
4325         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4326 cleanup_render_ring:
4327         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4328
4329         return ret;
4330 }
4331
4332 int
4333 i915_gem_init_hw(struct drm_device *dev)
4334 {
4335         drm_i915_private_t *dev_priv = dev->dev_private;
4336         int ret;
4337
4338         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4339                 return -EIO;
4340
4341         if (dev_priv->ellc_size)
4342                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4343
4344         if (HAS_PCH_NOP(dev)) {
4345                 u32 temp = I915_READ(GEN7_MSG_CTL);
4346                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4347                 I915_WRITE(GEN7_MSG_CTL, temp);
4348         }
4349
4350         i915_gem_l3_remap(dev);
4351
4352         i915_gem_init_swizzling(dev);
4353
4354         ret = i915_gem_init_rings(dev);
4355         if (ret)
4356                 return ret;
4357
4358         /*
4359          * XXX: There was some w/a described somewhere suggesting loading
4360          * contexts before PPGTT.
4361          */
4362         i915_gem_context_init(dev);
4363         if (dev_priv->mm.aliasing_ppgtt) {
4364                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4365                 if (ret) {
4366                         i915_gem_cleanup_aliasing_ppgtt(dev);
4367                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4368                 }
4369         }
4370
4371         return 0;
4372 }
4373
4374 int i915_gem_init(struct drm_device *dev)
4375 {
4376         struct drm_i915_private *dev_priv = dev->dev_private;
4377         int ret;
4378
4379         mutex_lock(&dev->struct_mutex);
4380
4381         if (IS_VALLEYVIEW(dev)) {
4382                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4383                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4384                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4385                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4386         }
4387
4388         i915_gem_init_global_gtt(dev);
4389
4390         ret = i915_gem_init_hw(dev);
4391         mutex_unlock(&dev->struct_mutex);
4392         if (ret) {
4393                 i915_gem_cleanup_aliasing_ppgtt(dev);
4394                 return ret;
4395         }
4396
4397         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4398         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4399                 dev_priv->dri1.allow_batchbuffer = 1;
4400         return 0;
4401 }
4402
4403 void
4404 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4405 {
4406         drm_i915_private_t *dev_priv = dev->dev_private;
4407         struct intel_ring_buffer *ring;
4408         int i;
4409
4410         for_each_ring(ring, dev_priv, i)
4411                 intel_cleanup_ring_buffer(ring);
4412 }
4413
4414 int
4415 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4416                        struct drm_file *file_priv)
4417 {
4418         struct drm_i915_private *dev_priv = dev->dev_private;
4419         int ret;
4420
4421         if (drm_core_check_feature(dev, DRIVER_MODESET))
4422                 return 0;
4423
4424         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4425                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4426                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4427         }
4428
4429         mutex_lock(&dev->struct_mutex);
4430         dev_priv->ums.mm_suspended = 0;
4431
4432         ret = i915_gem_init_hw(dev);
4433         if (ret != 0) {
4434                 mutex_unlock(&dev->struct_mutex);
4435                 return ret;
4436         }
4437
4438         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4439         mutex_unlock(&dev->struct_mutex);
4440
4441         ret = drm_irq_install(dev);
4442         if (ret)
4443                 goto cleanup_ringbuffer;
4444
4445         return 0;
4446
4447 cleanup_ringbuffer:
4448         mutex_lock(&dev->struct_mutex);
4449         i915_gem_cleanup_ringbuffer(dev);
4450         dev_priv->ums.mm_suspended = 1;
4451         mutex_unlock(&dev->struct_mutex);
4452
4453         return ret;
4454 }
4455
4456 int
4457 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4458                        struct drm_file *file_priv)
4459 {
4460         struct drm_i915_private *dev_priv = dev->dev_private;
4461         int ret;
4462
4463         if (drm_core_check_feature(dev, DRIVER_MODESET))
4464                 return 0;
4465
4466         drm_irq_uninstall(dev);
4467
4468         mutex_lock(&dev->struct_mutex);
4469         ret =  i915_gem_idle(dev);
4470
4471         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4472          * We need to replace this with a semaphore, or something.
4473          * And not confound ums.mm_suspended!
4474          */
4475         if (ret != 0)
4476                 dev_priv->ums.mm_suspended = 1;
4477         mutex_unlock(&dev->struct_mutex);
4478
4479         return ret;
4480 }
4481
4482 void
4483 i915_gem_lastclose(struct drm_device *dev)
4484 {
4485         int ret;
4486
4487         if (drm_core_check_feature(dev, DRIVER_MODESET))
4488                 return;
4489
4490         mutex_lock(&dev->struct_mutex);
4491         ret = i915_gem_idle(dev);
4492         if (ret)
4493                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4494         mutex_unlock(&dev->struct_mutex);
4495 }
4496
4497 static void
4498 init_ring_lists(struct intel_ring_buffer *ring)
4499 {
4500         INIT_LIST_HEAD(&ring->active_list);
4501         INIT_LIST_HEAD(&ring->request_list);
4502 }
4503
4504 static void i915_init_vm(struct drm_i915_private *dev_priv,
4505                          struct i915_address_space *vm)
4506 {
4507         vm->dev = dev_priv->dev;
4508         INIT_LIST_HEAD(&vm->active_list);
4509         INIT_LIST_HEAD(&vm->inactive_list);
4510         INIT_LIST_HEAD(&vm->global_link);
4511         list_add(&vm->global_link, &dev_priv->vm_list);
4512 }
4513
4514 void
4515 i915_gem_load(struct drm_device *dev)
4516 {
4517         drm_i915_private_t *dev_priv = dev->dev_private;
4518         int i;
4519
4520         dev_priv->slab =
4521                 kmem_cache_create("i915_gem_object",
4522                                   sizeof(struct drm_i915_gem_object), 0,
4523                                   SLAB_HWCACHE_ALIGN,
4524                                   NULL);
4525
4526         INIT_LIST_HEAD(&dev_priv->vm_list);
4527         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4528
4529         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4530         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4531         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4532         for (i = 0; i < I915_NUM_RINGS; i++)
4533                 init_ring_lists(&dev_priv->ring[i]);
4534         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4535                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4536         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4537                           i915_gem_retire_work_handler);
4538         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4539
4540         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4541         if (IS_GEN3(dev)) {
4542                 I915_WRITE(MI_ARB_STATE,
4543                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4544         }
4545
4546         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4547
4548         /* Old X drivers will take 0-2 for front, back, depth buffers */
4549         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4550                 dev_priv->fence_reg_start = 3;
4551
4552         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4553                 dev_priv->num_fence_regs = 32;
4554         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4555                 dev_priv->num_fence_regs = 16;
4556         else
4557                 dev_priv->num_fence_regs = 8;
4558
4559         /* Initialize fence registers to zero */
4560         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4561         i915_gem_restore_fences(dev);
4562
4563         i915_gem_detect_bit_6_swizzle(dev);
4564         init_waitqueue_head(&dev_priv->pending_flip_queue);
4565
4566         dev_priv->mm.interruptible = true;
4567
4568         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4569         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4570         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4571         register_shrinker(&dev_priv->mm.inactive_shrinker);
4572 }
4573
4574 /*
4575  * Create a physically contiguous memory object for this object
4576  * e.g. for cursor + overlay regs
4577  */
4578 static int i915_gem_init_phys_object(struct drm_device *dev,
4579                                      int id, int size, int align)
4580 {
4581         drm_i915_private_t *dev_priv = dev->dev_private;
4582         struct drm_i915_gem_phys_object *phys_obj;
4583         int ret;
4584
4585         if (dev_priv->mm.phys_objs[id - 1] || !size)
4586                 return 0;
4587
4588         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4589         if (!phys_obj)
4590                 return -ENOMEM;
4591
4592         phys_obj->id = id;
4593
4594         phys_obj->handle = drm_pci_alloc(dev, size, align);
4595         if (!phys_obj->handle) {
4596                 ret = -ENOMEM;
4597                 goto kfree_obj;
4598         }
4599 #ifdef CONFIG_X86
4600         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4601 #endif
4602
4603         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4604
4605         return 0;
4606 kfree_obj:
4607         kfree(phys_obj);
4608         return ret;
4609 }
4610
4611 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4612 {
4613         drm_i915_private_t *dev_priv = dev->dev_private;
4614         struct drm_i915_gem_phys_object *phys_obj;
4615
4616         if (!dev_priv->mm.phys_objs[id - 1])
4617                 return;
4618
4619         phys_obj = dev_priv->mm.phys_objs[id - 1];
4620         if (phys_obj->cur_obj) {
4621                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4622         }
4623
4624 #ifdef CONFIG_X86
4625         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4626 #endif
4627         drm_pci_free(dev, phys_obj->handle);
4628         kfree(phys_obj);
4629         dev_priv->mm.phys_objs[id - 1] = NULL;
4630 }
4631
4632 void i915_gem_free_all_phys_object(struct drm_device *dev)
4633 {
4634         int i;
4635
4636         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4637                 i915_gem_free_phys_object(dev, i);
4638 }
4639
4640 void i915_gem_detach_phys_object(struct drm_device *dev,
4641                                  struct drm_i915_gem_object *obj)
4642 {
4643         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4644         char *vaddr;
4645         int i;
4646         int page_count;
4647
4648         if (!obj->phys_obj)
4649                 return;
4650         vaddr = obj->phys_obj->handle->vaddr;
4651
4652         page_count = obj->base.size / PAGE_SIZE;
4653         for (i = 0; i < page_count; i++) {
4654                 struct page *page = shmem_read_mapping_page(mapping, i);
4655                 if (!IS_ERR(page)) {
4656                         char *dst = kmap_atomic(page);
4657                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4658                         kunmap_atomic(dst);
4659
4660                         drm_clflush_pages(&page, 1);
4661
4662                         set_page_dirty(page);
4663                         mark_page_accessed(page);
4664                         page_cache_release(page);
4665                 }
4666         }
4667         i915_gem_chipset_flush(dev);
4668
4669         obj->phys_obj->cur_obj = NULL;
4670         obj->phys_obj = NULL;
4671 }
4672
4673 int
4674 i915_gem_attach_phys_object(struct drm_device *dev,
4675                             struct drm_i915_gem_object *obj,
4676                             int id,
4677                             int align)
4678 {
4679         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4680         drm_i915_private_t *dev_priv = dev->dev_private;
4681         int ret = 0;
4682         int page_count;
4683         int i;
4684
4685         if (id > I915_MAX_PHYS_OBJECT)
4686                 return -EINVAL;
4687
4688         if (obj->phys_obj) {
4689                 if (obj->phys_obj->id == id)
4690                         return 0;
4691                 i915_gem_detach_phys_object(dev, obj);
4692         }
4693
4694         /* create a new object */
4695         if (!dev_priv->mm.phys_objs[id - 1]) {
4696                 ret = i915_gem_init_phys_object(dev, id,
4697                                                 obj->base.size, align);
4698                 if (ret) {
4699                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4700                                   id, obj->base.size);
4701                         return ret;
4702                 }
4703         }
4704
4705         /* bind to the object */
4706         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4707         obj->phys_obj->cur_obj = obj;
4708
4709         page_count = obj->base.size / PAGE_SIZE;
4710
4711         for (i = 0; i < page_count; i++) {
4712                 struct page *page;
4713                 char *dst, *src;
4714
4715                 page = shmem_read_mapping_page(mapping, i);
4716                 if (IS_ERR(page))
4717                         return PTR_ERR(page);
4718
4719                 src = kmap_atomic(page);
4720                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4721                 memcpy(dst, src, PAGE_SIZE);
4722                 kunmap_atomic(src);
4723
4724                 mark_page_accessed(page);
4725                 page_cache_release(page);
4726         }
4727
4728         return 0;
4729 }
4730
4731 static int
4732 i915_gem_phys_pwrite(struct drm_device *dev,
4733                      struct drm_i915_gem_object *obj,
4734                      struct drm_i915_gem_pwrite *args,
4735                      struct drm_file *file_priv)
4736 {
4737         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4738         char __user *user_data = to_user_ptr(args->data_ptr);
4739
4740         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4741                 unsigned long unwritten;
4742
4743                 /* The physical object once assigned is fixed for the lifetime
4744                  * of the obj, so we can safely drop the lock and continue
4745                  * to access vaddr.
4746                  */
4747                 mutex_unlock(&dev->struct_mutex);
4748                 unwritten = copy_from_user(vaddr, user_data, args->size);
4749                 mutex_lock(&dev->struct_mutex);
4750                 if (unwritten)
4751                         return -EFAULT;
4752         }
4753
4754         i915_gem_chipset_flush(dev);
4755         return 0;
4756 }
4757
4758 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4759 {
4760         struct drm_i915_file_private *file_priv = file->driver_priv;
4761
4762         /* Clean up our request list when the client is going away, so that
4763          * later retire_requests won't dereference our soon-to-be-gone
4764          * file_priv.
4765          */
4766         spin_lock(&file_priv->mm.lock);
4767         while (!list_empty(&file_priv->mm.request_list)) {
4768                 struct drm_i915_gem_request *request;
4769
4770                 request = list_first_entry(&file_priv->mm.request_list,
4771                                            struct drm_i915_gem_request,
4772                                            client_list);
4773                 list_del(&request->client_list);
4774                 request->file_priv = NULL;
4775         }
4776         spin_unlock(&file_priv->mm.lock);
4777 }
4778
4779 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4780 {
4781         if (!mutex_is_locked(mutex))
4782                 return false;
4783
4784 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4785         return mutex->owner == task;
4786 #else
4787         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4788         return false;
4789 #endif
4790 }
4791
4792 static unsigned long
4793 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4794 {
4795         struct drm_i915_private *dev_priv =
4796                 container_of(shrinker,
4797                              struct drm_i915_private,
4798                              mm.inactive_shrinker);
4799         struct drm_device *dev = dev_priv->dev;
4800         struct drm_i915_gem_object *obj;
4801         bool unlock = true;
4802         unsigned long count;
4803
4804         if (!mutex_trylock(&dev->struct_mutex)) {
4805                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4806                         return SHRINK_STOP;
4807
4808                 if (dev_priv->mm.shrinker_no_lock_stealing)
4809                         return SHRINK_STOP;
4810
4811                 unlock = false;
4812         }
4813
4814         count = 0;
4815         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4816                 if (obj->pages_pin_count == 0)
4817                         count += obj->base.size >> PAGE_SHIFT;
4818
4819         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4820                 if (obj->active)
4821                         continue;
4822
4823                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4824                         count += obj->base.size >> PAGE_SHIFT;
4825         }
4826
4827         if (unlock)
4828                 mutex_unlock(&dev->struct_mutex);
4829         return count;
4830 }
4831
4832 /* All the new VM stuff */
4833 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4834                                   struct i915_address_space *vm)
4835 {
4836         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4837         struct i915_vma *vma;
4838
4839         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4840                 vm = &dev_priv->gtt.base;
4841
4842         BUG_ON(list_empty(&o->vma_list));
4843         list_for_each_entry(vma, &o->vma_list, vma_link) {
4844                 if (vma->vm == vm)
4845                         return vma->node.start;
4846
4847         }
4848         return -1;
4849 }
4850
4851 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4852                         struct i915_address_space *vm)
4853 {
4854         struct i915_vma *vma;
4855
4856         list_for_each_entry(vma, &o->vma_list, vma_link)
4857                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4858                         return true;
4859
4860         return false;
4861 }
4862
4863 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4864 {
4865         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4866         struct i915_address_space *vm;
4867
4868         list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4869                 if (i915_gem_obj_bound(o, vm))
4870                         return true;
4871
4872         return false;
4873 }
4874
4875 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4876                                 struct i915_address_space *vm)
4877 {
4878         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4879         struct i915_vma *vma;
4880
4881         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4882                 vm = &dev_priv->gtt.base;
4883
4884         BUG_ON(list_empty(&o->vma_list));
4885
4886         list_for_each_entry(vma, &o->vma_list, vma_link)
4887                 if (vma->vm == vm)
4888                         return vma->node.size;
4889
4890         return 0;
4891 }
4892
4893 static unsigned long
4894 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4895 {
4896         struct drm_i915_private *dev_priv =
4897                 container_of(shrinker,
4898                              struct drm_i915_private,
4899                              mm.inactive_shrinker);
4900         struct drm_device *dev = dev_priv->dev;
4901         int nr_to_scan = sc->nr_to_scan;
4902         unsigned long freed;
4903         bool unlock = true;
4904
4905         if (!mutex_trylock(&dev->struct_mutex)) {
4906                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4907                         return 0;
4908
4909                 if (dev_priv->mm.shrinker_no_lock_stealing)
4910                         return 0;
4911
4912                 unlock = false;
4913         }
4914
4915         freed = i915_gem_purge(dev_priv, nr_to_scan);
4916         if (freed < nr_to_scan)
4917                 freed += __i915_gem_shrink(dev_priv, nr_to_scan,
4918                                                         false);
4919         if (freed < nr_to_scan)
4920                 freed += i915_gem_shrink_all(dev_priv);
4921
4922         if (unlock)
4923                 mutex_unlock(&dev->struct_mutex);
4924         return freed;
4925 }
4926
4927 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4928                                      struct i915_address_space *vm)
4929 {
4930         struct i915_vma *vma;
4931         list_for_each_entry(vma, &obj->vma_list, vma_link)
4932                 if (vma->vm == vm)
4933                         return vma;
4934
4935         return NULL;
4936 }
4937
4938 struct i915_vma *
4939 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4940                                   struct i915_address_space *vm)
4941 {
4942         struct i915_vma *vma;
4943
4944         vma = i915_gem_obj_to_vma(obj, vm);
4945         if (!vma)
4946                 vma = i915_gem_vma_create(obj, vm);
4947
4948         return vma;
4949 }