]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Move vm page allocation in proper place
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50                                  struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52                                          struct drm_i915_fence_reg *fence,
53                                          bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56                                   enum i915_cache_level level)
57 {
58         return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64                 return true;
65
66         return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71         if (obj->tiling_mode)
72                 i915_gem_release_mmap(obj);
73
74         /* As we do not have an associated fence register, we will force
75          * a tiling change if we ever need to acquire one.
76          */
77         obj->fence_dirty = false;
78         obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83                                   size_t size)
84 {
85         spin_lock(&dev_priv->mm.object_stat_lock);
86         dev_priv->mm.object_count++;
87         dev_priv->mm.object_memory += size;
88         spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92                                      size_t size)
93 {
94         spin_lock(&dev_priv->mm.object_stat_lock);
95         dev_priv->mm.object_count--;
96         dev_priv->mm.object_memory -= size;
97         spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103         int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106                    i915_terminally_wedged(error))
107         if (EXIT_COND)
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                EXIT_COND,
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         }
124 #undef EXIT_COND
125
126         return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_i915_gem_get_aperture *args = data;
152         struct drm_i915_gem_object *obj;
153         size_t pinned;
154
155         pinned = 0;
156         mutex_lock(&dev->struct_mutex);
157         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158                 if (i915_gem_obj_is_pinned(obj))
159                         pinned += i915_gem_obj_ggtt_size(obj);
160         mutex_unlock(&dev->struct_mutex);
161
162         args->aper_size = dev_priv->gtt.base.total;
163         args->aper_available_size = args->aper_size - pinned;
164
165         return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172         char *vaddr = obj->phys_handle->vaddr;
173         struct sg_table *st;
174         struct scatterlist *sg;
175         int i;
176
177         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178                 return -EINVAL;
179
180         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181                 struct page *page;
182                 char *src;
183
184                 page = shmem_read_mapping_page(mapping, i);
185                 if (IS_ERR(page))
186                         return PTR_ERR(page);
187
188                 src = kmap_atomic(page);
189                 memcpy(vaddr, src, PAGE_SIZE);
190                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191                 kunmap_atomic(src);
192
193                 page_cache_release(page);
194                 vaddr += PAGE_SIZE;
195         }
196
197         i915_gem_chipset_flush(obj->base.dev);
198
199         st = kmalloc(sizeof(*st), GFP_KERNEL);
200         if (st == NULL)
201                 return -ENOMEM;
202
203         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204                 kfree(st);
205                 return -ENOMEM;
206         }
207
208         sg = st->sgl;
209         sg->offset = 0;
210         sg->length = obj->base.size;
211
212         sg_dma_address(sg) = obj->phys_handle->busaddr;
213         sg_dma_len(sg) = obj->base.size;
214
215         obj->pages = st;
216         obj->has_dma_mapping = true;
217         return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223         int ret;
224
225         BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227         ret = i915_gem_object_set_to_cpu_domain(obj, true);
228         if (ret) {
229                 /* In the event of a disaster, abandon all caches and
230                  * hope for the best.
231                  */
232                 WARN_ON(ret != -EIO);
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         page_cache_release(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268
269         obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275         drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279         .get_pages = i915_gem_object_get_pages_phys,
280         .put_pages = i915_gem_object_put_pages_phys,
281         .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287         struct i915_vma *vma, *next;
288         int ret;
289
290         drm_gem_object_reference(&obj->base);
291         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292                 if (i915_vma_unbind(vma))
293                         break;
294
295         ret = i915_gem_object_put_pages(obj);
296         drm_gem_object_unreference(&obj->base);
297
298         return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303                             int align)
304 {
305         drm_dma_handle_t *phys;
306         int ret;
307
308         if (obj->phys_handle) {
309                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310                         return -EBUSY;
311
312                 return 0;
313         }
314
315         if (obj->madv != I915_MADV_WILLNEED)
316                 return -EFAULT;
317
318         if (obj->base.filp == NULL)
319                 return -EINVAL;
320
321         ret = drop_pages(obj);
322         if (ret)
323                 return ret;
324
325         /* create a new object */
326         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327         if (!phys)
328                 return -ENOMEM;
329
330         obj->phys_handle = phys;
331         obj->ops = &i915_gem_phys_ops;
332
333         return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338                      struct drm_i915_gem_pwrite *args,
339                      struct drm_file *file_priv)
340 {
341         struct drm_device *dev = obj->base.dev;
342         void *vaddr = obj->phys_handle->vaddr + args->offset;
343         char __user *user_data = to_user_ptr(args->data_ptr);
344         int ret = 0;
345
346         /* We manually control the domain here and pretend that it
347          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348          */
349         ret = i915_gem_object_wait_rendering(obj, false);
350         if (ret)
351                 return ret;
352
353         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355                 unsigned long unwritten;
356
357                 /* The physical object once assigned is fixed for the lifetime
358                  * of the obj, so we can safely drop the lock and continue
359                  * to access vaddr.
360                  */
361                 mutex_unlock(&dev->struct_mutex);
362                 unwritten = copy_from_user(vaddr, user_data, args->size);
363                 mutex_lock(&dev->struct_mutex);
364                 if (unwritten) {
365                         ret = -EFAULT;
366                         goto out;
367                 }
368         }
369
370         drm_clflush_virt_range(vaddr, args->size);
371         i915_gem_chipset_flush(dev);
372
373 out:
374         intel_fb_obj_flush(obj, false);
375         return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380         struct drm_i915_private *dev_priv = dev->dev_private;
381         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387         kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392                 struct drm_device *dev,
393                 uint64_t size,
394                 uint32_t *handle_p)
395 {
396         struct drm_i915_gem_object *obj;
397         int ret;
398         u32 handle;
399
400         size = roundup(size, PAGE_SIZE);
401         if (size == 0)
402                 return -EINVAL;
403
404         /* Allocate the new object */
405         obj = i915_gem_alloc_object(dev, size);
406         if (obj == NULL)
407                 return -ENOMEM;
408
409         ret = drm_gem_handle_create(file, &obj->base, &handle);
410         /* drop reference from allocate - handle holds it now */
411         drm_gem_object_unreference_unlocked(&obj->base);
412         if (ret)
413                 return ret;
414
415         *handle_p = handle;
416         return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421                      struct drm_device *dev,
422                      struct drm_mode_create_dumb *args)
423 {
424         /* have to work out size/pitch and return them */
425         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426         args->size = args->pitch * args->height;
427         return i915_gem_create(file, dev,
428                                args->size, &args->handle);
429 }
430
431 /**
432  * Creates a new mm object and returns a handle to it.
433  */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436                       struct drm_file *file)
437 {
438         struct drm_i915_gem_create *args = data;
439
440         return i915_gem_create(file, dev,
441                                args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446                         const char *gpu_vaddr, int gpu_offset,
447                         int length)
448 {
449         int ret, cpu_offset = 0;
450
451         while (length > 0) {
452                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453                 int this_length = min(cacheline_end - gpu_offset, length);
454                 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457                                      gpu_vaddr + swizzled_gpu_offset,
458                                      this_length);
459                 if (ret)
460                         return ret + length;
461
462                 cpu_offset += this_length;
463                 gpu_offset += this_length;
464                 length -= this_length;
465         }
466
467         return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472                           const char __user *cpu_vaddr,
473                           int length)
474 {
475         int ret, cpu_offset = 0;
476
477         while (length > 0) {
478                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479                 int this_length = min(cacheline_end - gpu_offset, length);
480                 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483                                        cpu_vaddr + cpu_offset,
484                                        this_length);
485                 if (ret)
486                         return ret + length;
487
488                 cpu_offset += this_length;
489                 gpu_offset += this_length;
490                 length -= this_length;
491         }
492
493         return 0;
494 }
495
496 /*
497  * Pins the specified object's pages and synchronizes the object with
498  * GPU accesses. Sets needs_clflush to non-zero if the caller should
499  * flush the object from the CPU cache.
500  */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502                                     int *needs_clflush)
503 {
504         int ret;
505
506         *needs_clflush = 0;
507
508         if (!obj->base.filp)
509                 return -EINVAL;
510
511         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512                 /* If we're not in the cpu read domain, set ourself into the gtt
513                  * read domain and manually flush cachelines (if required). This
514                  * optimizes for the case when the gpu will dirty the data
515                  * anyway again before the next pread happens. */
516                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517                                                         obj->cache_level);
518                 ret = i915_gem_object_wait_rendering(obj, true);
519                 if (ret)
520                         return ret;
521
522                 i915_gem_object_retire(obj);
523         }
524
525         ret = i915_gem_object_get_pages(obj);
526         if (ret)
527                 return ret;
528
529         i915_gem_object_pin_pages(obj);
530
531         return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535  * Flushes invalid cachelines before reading the target if
536  * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539                  char __user *user_data,
540                  bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542         char *vaddr;
543         int ret;
544
545         if (unlikely(page_do_bit17_swizzling))
546                 return -EINVAL;
547
548         vaddr = kmap_atomic(page);
549         if (needs_clflush)
550                 drm_clflush_virt_range(vaddr + shmem_page_offset,
551                                        page_length);
552         ret = __copy_to_user_inatomic(user_data,
553                                       vaddr + shmem_page_offset,
554                                       page_length);
555         kunmap_atomic(vaddr);
556
557         return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562                              bool swizzled)
563 {
564         if (unlikely(swizzled)) {
565                 unsigned long start = (unsigned long) addr;
566                 unsigned long end = (unsigned long) addr + length;
567
568                 /* For swizzling simply ensure that we always flush both
569                  * channels. Lame, but simple and it works. Swizzled
570                  * pwrite/pread is far from a hotpath - current userspace
571                  * doesn't use it at all. */
572                 start = round_down(start, 128);
573                 end = round_up(end, 128);
574
575                 drm_clflush_virt_range((void *)start, end - start);
576         } else {
577                 drm_clflush_virt_range(addr, length);
578         }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583  * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586                  char __user *user_data,
587                  bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589         char *vaddr;
590         int ret;
591
592         vaddr = kmap(page);
593         if (needs_clflush)
594                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595                                              page_length,
596                                              page_do_bit17_swizzling);
597
598         if (page_do_bit17_swizzling)
599                 ret = __copy_to_user_swizzled(user_data,
600                                               vaddr, shmem_page_offset,
601                                               page_length);
602         else
603                 ret = __copy_to_user(user_data,
604                                      vaddr + shmem_page_offset,
605                                      page_length);
606         kunmap(page);
607
608         return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613                      struct drm_i915_gem_object *obj,
614                      struct drm_i915_gem_pread *args,
615                      struct drm_file *file)
616 {
617         char __user *user_data;
618         ssize_t remain;
619         loff_t offset;
620         int shmem_page_offset, page_length, ret = 0;
621         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622         int prefaulted = 0;
623         int needs_clflush = 0;
624         struct sg_page_iter sg_iter;
625
626         user_data = to_user_ptr(args->data_ptr);
627         remain = args->size;
628
629         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632         if (ret)
633                 return ret;
634
635         offset = args->offset;
636
637         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638                          offset >> PAGE_SHIFT) {
639                 struct page *page = sg_page_iter_page(&sg_iter);
640
641                 if (remain <= 0)
642                         break;
643
644                 /* Operation in this page
645                  *
646                  * shmem_page_offset = offset within page in shmem file
647                  * page_length = bytes to copy for this page
648                  */
649                 shmem_page_offset = offset_in_page(offset);
650                 page_length = remain;
651                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652                         page_length = PAGE_SIZE - shmem_page_offset;
653
654                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655                         (page_to_phys(page) & (1 << 17)) != 0;
656
657                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660                 if (ret == 0)
661                         goto next_page;
662
663                 mutex_unlock(&dev->struct_mutex);
664
665                 if (likely(!i915.prefault_disable) && !prefaulted) {
666                         ret = fault_in_multipages_writeable(user_data, remain);
667                         /* Userspace is tricking us, but we've already clobbered
668                          * its pages with the prefault and promised to write the
669                          * data up to the first fault. Hence ignore any errors
670                          * and just continue. */
671                         (void)ret;
672                         prefaulted = 1;
673                 }
674
675                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676                                        user_data, page_do_bit17_swizzling,
677                                        needs_clflush);
678
679                 mutex_lock(&dev->struct_mutex);
680
681                 if (ret)
682                         goto out;
683
684 next_page:
685                 remain -= page_length;
686                 user_data += page_length;
687                 offset += page_length;
688         }
689
690 out:
691         i915_gem_object_unpin_pages(obj);
692
693         return ret;
694 }
695
696 /**
697  * Reads data from the object referenced by handle.
698  *
699  * On error, the contents of *data are undefined.
700  */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703                      struct drm_file *file)
704 {
705         struct drm_i915_gem_pread *args = data;
706         struct drm_i915_gem_object *obj;
707         int ret = 0;
708
709         if (args->size == 0)
710                 return 0;
711
712         if (!access_ok(VERIFY_WRITE,
713                        to_user_ptr(args->data_ptr),
714                        args->size))
715                 return -EFAULT;
716
717         ret = i915_mutex_lock_interruptible(dev);
718         if (ret)
719                 return ret;
720
721         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722         if (&obj->base == NULL) {
723                 ret = -ENOENT;
724                 goto unlock;
725         }
726
727         /* Bounds check source.  */
728         if (args->offset > obj->base.size ||
729             args->size > obj->base.size - args->offset) {
730                 ret = -EINVAL;
731                 goto out;
732         }
733
734         /* prime objects have no backing filp to GEM pread/pwrite
735          * pages from.
736          */
737         if (!obj->base.filp) {
738                 ret = -EINVAL;
739                 goto out;
740         }
741
742         trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744         ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747         drm_gem_object_unreference(&obj->base);
748 unlock:
749         mutex_unlock(&dev->struct_mutex);
750         return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754  * page faults in the source data
755  */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759                 loff_t page_base, int page_offset,
760                 char __user *user_data,
761                 int length)
762 {
763         void __iomem *vaddr_atomic;
764         void *vaddr;
765         unsigned long unwritten;
766
767         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768         /* We can use the cpu mem copy function because this is X86. */
769         vaddr = (void __force*)vaddr_atomic + page_offset;
770         unwritten = __copy_from_user_inatomic_nocache(vaddr,
771                                                       user_data, length);
772         io_mapping_unmap_atomic(vaddr_atomic);
773         return unwritten;
774 }
775
776 /**
777  * This is the fast pwrite path, where we copy the data directly from the
778  * user into the GTT, uncached.
779  */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782                          struct drm_i915_gem_object *obj,
783                          struct drm_i915_gem_pwrite *args,
784                          struct drm_file *file)
785 {
786         struct drm_i915_private *dev_priv = dev->dev_private;
787         ssize_t remain;
788         loff_t offset, page_base;
789         char __user *user_data;
790         int page_offset, page_length, ret;
791
792         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793         if (ret)
794                 goto out;
795
796         ret = i915_gem_object_set_to_gtt_domain(obj, true);
797         if (ret)
798                 goto out_unpin;
799
800         ret = i915_gem_object_put_fence(obj);
801         if (ret)
802                 goto out_unpin;
803
804         user_data = to_user_ptr(args->data_ptr);
805         remain = args->size;
806
807         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809         intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811         while (remain > 0) {
812                 /* Operation in this page
813                  *
814                  * page_base = page offset within aperture
815                  * page_offset = offset within page
816                  * page_length = bytes to copy for this page
817                  */
818                 page_base = offset & PAGE_MASK;
819                 page_offset = offset_in_page(offset);
820                 page_length = remain;
821                 if ((page_offset + remain) > PAGE_SIZE)
822                         page_length = PAGE_SIZE - page_offset;
823
824                 /* If we get a fault while copying data, then (presumably) our
825                  * source page isn't available.  Return the error and we'll
826                  * retry in the slow path.
827                  */
828                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829                                     page_offset, user_data, page_length)) {
830                         ret = -EFAULT;
831                         goto out_flush;
832                 }
833
834                 remain -= page_length;
835                 user_data += page_length;
836                 offset += page_length;
837         }
838
839 out_flush:
840         intel_fb_obj_flush(obj, false);
841 out_unpin:
842         i915_gem_object_ggtt_unpin(obj);
843 out:
844         return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848  * Flushes invalid cachelines before writing to the target if
849  * needs_clflush_before is set and flushes out any written cachelines after
850  * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853                   char __user *user_data,
854                   bool page_do_bit17_swizzling,
855                   bool needs_clflush_before,
856                   bool needs_clflush_after)
857 {
858         char *vaddr;
859         int ret;
860
861         if (unlikely(page_do_bit17_swizzling))
862                 return -EINVAL;
863
864         vaddr = kmap_atomic(page);
865         if (needs_clflush_before)
866                 drm_clflush_virt_range(vaddr + shmem_page_offset,
867                                        page_length);
868         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869                                         user_data, page_length);
870         if (needs_clflush_after)
871                 drm_clflush_virt_range(vaddr + shmem_page_offset,
872                                        page_length);
873         kunmap_atomic(vaddr);
874
875         return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879  * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882                   char __user *user_data,
883                   bool page_do_bit17_swizzling,
884                   bool needs_clflush_before,
885                   bool needs_clflush_after)
886 {
887         char *vaddr;
888         int ret;
889
890         vaddr = kmap(page);
891         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893                                              page_length,
894                                              page_do_bit17_swizzling);
895         if (page_do_bit17_swizzling)
896                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897                                                 user_data,
898                                                 page_length);
899         else
900                 ret = __copy_from_user(vaddr + shmem_page_offset,
901                                        user_data,
902                                        page_length);
903         if (needs_clflush_after)
904                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905                                              page_length,
906                                              page_do_bit17_swizzling);
907         kunmap(page);
908
909         return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914                       struct drm_i915_gem_object *obj,
915                       struct drm_i915_gem_pwrite *args,
916                       struct drm_file *file)
917 {
918         ssize_t remain;
919         loff_t offset;
920         char __user *user_data;
921         int shmem_page_offset, page_length, ret = 0;
922         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923         int hit_slowpath = 0;
924         int needs_clflush_after = 0;
925         int needs_clflush_before = 0;
926         struct sg_page_iter sg_iter;
927
928         user_data = to_user_ptr(args->data_ptr);
929         remain = args->size;
930
931         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934                 /* If we're not in the cpu write domain, set ourself into the gtt
935                  * write domain and manually flush cachelines (if required). This
936                  * optimizes for the case when the gpu will use the data
937                  * right away and we therefore have to clflush anyway. */
938                 needs_clflush_after = cpu_write_needs_clflush(obj);
939                 ret = i915_gem_object_wait_rendering(obj, false);
940                 if (ret)
941                         return ret;
942
943                 i915_gem_object_retire(obj);
944         }
945         /* Same trick applies to invalidate partially written cachelines read
946          * before writing. */
947         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948                 needs_clflush_before =
949                         !cpu_cache_is_coherent(dev, obj->cache_level);
950
951         ret = i915_gem_object_get_pages(obj);
952         if (ret)
953                 return ret;
954
955         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957         i915_gem_object_pin_pages(obj);
958
959         offset = args->offset;
960         obj->dirty = 1;
961
962         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963                          offset >> PAGE_SHIFT) {
964                 struct page *page = sg_page_iter_page(&sg_iter);
965                 int partial_cacheline_write;
966
967                 if (remain <= 0)
968                         break;
969
970                 /* Operation in this page
971                  *
972                  * shmem_page_offset = offset within page in shmem file
973                  * page_length = bytes to copy for this page
974                  */
975                 shmem_page_offset = offset_in_page(offset);
976
977                 page_length = remain;
978                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979                         page_length = PAGE_SIZE - shmem_page_offset;
980
981                 /* If we don't overwrite a cacheline completely we need to be
982                  * careful to have up-to-date data by first clflushing. Don't
983                  * overcomplicate things and flush the entire patch. */
984                 partial_cacheline_write = needs_clflush_before &&
985                         ((shmem_page_offset | page_length)
986                                 & (boot_cpu_data.x86_clflush_size - 1));
987
988                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989                         (page_to_phys(page) & (1 << 17)) != 0;
990
991                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992                                         user_data, page_do_bit17_swizzling,
993                                         partial_cacheline_write,
994                                         needs_clflush_after);
995                 if (ret == 0)
996                         goto next_page;
997
998                 hit_slowpath = 1;
999                 mutex_unlock(&dev->struct_mutex);
1000                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001                                         user_data, page_do_bit17_swizzling,
1002                                         partial_cacheline_write,
1003                                         needs_clflush_after);
1004
1005                 mutex_lock(&dev->struct_mutex);
1006
1007                 if (ret)
1008                         goto out;
1009
1010 next_page:
1011                 remain -= page_length;
1012                 user_data += page_length;
1013                 offset += page_length;
1014         }
1015
1016 out:
1017         i915_gem_object_unpin_pages(obj);
1018
1019         if (hit_slowpath) {
1020                 /*
1021                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1022                  * cachelines in-line while writing and the object moved
1023                  * out of the cpu write domain while we've dropped the lock.
1024                  */
1025                 if (!needs_clflush_after &&
1026                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027                         if (i915_gem_clflush_object(obj, obj->pin_display))
1028                                 i915_gem_chipset_flush(dev);
1029                 }
1030         }
1031
1032         if (needs_clflush_after)
1033                 i915_gem_chipset_flush(dev);
1034
1035         intel_fb_obj_flush(obj, false);
1036         return ret;
1037 }
1038
1039 /**
1040  * Writes data to the object referenced by handle.
1041  *
1042  * On error, the contents of the buffer that were to be modified are undefined.
1043  */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046                       struct drm_file *file)
1047 {
1048         struct drm_i915_private *dev_priv = dev->dev_private;
1049         struct drm_i915_gem_pwrite *args = data;
1050         struct drm_i915_gem_object *obj;
1051         int ret;
1052
1053         if (args->size == 0)
1054                 return 0;
1055
1056         if (!access_ok(VERIFY_READ,
1057                        to_user_ptr(args->data_ptr),
1058                        args->size))
1059                 return -EFAULT;
1060
1061         if (likely(!i915.prefault_disable)) {
1062                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063                                                    args->size);
1064                 if (ret)
1065                         return -EFAULT;
1066         }
1067
1068         intel_runtime_pm_get(dev_priv);
1069
1070         ret = i915_mutex_lock_interruptible(dev);
1071         if (ret)
1072                 goto put_rpm;
1073
1074         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075         if (&obj->base == NULL) {
1076                 ret = -ENOENT;
1077                 goto unlock;
1078         }
1079
1080         /* Bounds check destination. */
1081         if (args->offset > obj->base.size ||
1082             args->size > obj->base.size - args->offset) {
1083                 ret = -EINVAL;
1084                 goto out;
1085         }
1086
1087         /* prime objects have no backing filp to GEM pread/pwrite
1088          * pages from.
1089          */
1090         if (!obj->base.filp) {
1091                 ret = -EINVAL;
1092                 goto out;
1093         }
1094
1095         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097         ret = -EFAULT;
1098         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099          * it would end up going through the fenced access, and we'll get
1100          * different detiling behavior between reading and writing.
1101          * pread/pwrite currently are reading and writing from the CPU
1102          * perspective, requiring manual detiling by the client.
1103          */
1104         if (obj->tiling_mode == I915_TILING_NONE &&
1105             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106             cpu_write_needs_clflush(obj)) {
1107                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108                 /* Note that the gtt paths might fail with non-page-backed user
1109                  * pointers (e.g. gtt mappings when moving data between
1110                  * textures). Fallback to the shmem path in that case. */
1111         }
1112
1113         if (ret == -EFAULT || ret == -ENOSPC) {
1114                 if (obj->phys_handle)
1115                         ret = i915_gem_phys_pwrite(obj, args, file);
1116                 else
1117                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118         }
1119
1120 out:
1121         drm_gem_object_unreference(&obj->base);
1122 unlock:
1123         mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125         intel_runtime_pm_put(dev_priv);
1126
1127         return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132                      bool interruptible)
1133 {
1134         if (i915_reset_in_progress(error)) {
1135                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136                  * -EIO unconditionally for these. */
1137                 if (!interruptible)
1138                         return -EIO;
1139
1140                 /* Recovery complete, but the reset failed ... */
1141                 if (i915_terminally_wedged(error))
1142                         return -EIO;
1143
1144                 /*
1145                  * Check if GPU Reset is in progress - we need intel_ring_begin
1146                  * to work properly to reinit the hw state while the gpu is
1147                  * still marked as reset-in-progress. Handle this with a flag.
1148                  */
1149                 if (!error->reload_in_reset)
1150                         return -EAGAIN;
1151         }
1152
1153         return 0;
1154 }
1155
1156 /*
1157  * Compare arbitrary request against outstanding lazy request. Emit on match.
1158  */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162         int ret;
1163
1164         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166         ret = 0;
1167         if (req == req->ring->outstanding_lazy_request)
1168                 ret = i915_add_request(req->ring);
1169
1170         return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175         wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179                        struct intel_engine_cs *ring)
1180 {
1181         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 /**
1185  * __i915_wait_request - wait until execution of request has finished
1186  * @req: duh!
1187  * @reset_counter: reset sequence associated with the given request
1188  * @interruptible: do an interruptible wait (normally yes)
1189  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1190  *
1191  * Note: It is of utmost importance that the passed in seqno and reset_counter
1192  * values have been read by the caller in an smp safe manner. Where read-side
1193  * locks are involved, it is sufficient to read the reset_counter before
1194  * unlocking the lock that protects the seqno. For lockless tricks, the
1195  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1196  * inserted.
1197  *
1198  * Returns 0 if the request was found within the alloted time. Else returns the
1199  * errno with remaining time filled in timeout argument.
1200  */
1201 int __i915_wait_request(struct drm_i915_gem_request *req,
1202                         unsigned reset_counter,
1203                         bool interruptible,
1204                         s64 *timeout,
1205                         struct drm_i915_file_private *file_priv)
1206 {
1207         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1208         struct drm_device *dev = ring->dev;
1209         struct drm_i915_private *dev_priv = dev->dev_private;
1210         const bool irq_test_in_progress =
1211                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1212         DEFINE_WAIT(wait);
1213         unsigned long timeout_expire;
1214         s64 before, now;
1215         int ret;
1216
1217         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1218
1219         if (i915_gem_request_completed(req, true))
1220                 return 0;
1221
1222         timeout_expire = timeout ?
1223                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1224
1225         if (INTEL_INFO(dev)->gen >= 6)
1226                 gen6_rps_boost(dev_priv, file_priv);
1227
1228         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1229                 return -ENODEV;
1230
1231         /* Record current time in case interrupted by signal, or wedged */
1232         trace_i915_gem_request_wait_begin(req);
1233         before = ktime_get_raw_ns();
1234         for (;;) {
1235                 struct timer_list timer;
1236
1237                 prepare_to_wait(&ring->irq_queue, &wait,
1238                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1239
1240                 /* We need to check whether any gpu reset happened in between
1241                  * the caller grabbing the seqno and now ... */
1242                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1243                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1244                          * is truely gone. */
1245                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1246                         if (ret == 0)
1247                                 ret = -EAGAIN;
1248                         break;
1249                 }
1250
1251                 if (i915_gem_request_completed(req, false)) {
1252                         ret = 0;
1253                         break;
1254                 }
1255
1256                 if (interruptible && signal_pending(current)) {
1257                         ret = -ERESTARTSYS;
1258                         break;
1259                 }
1260
1261                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1262                         ret = -ETIME;
1263                         break;
1264                 }
1265
1266                 timer.function = NULL;
1267                 if (timeout || missed_irq(dev_priv, ring)) {
1268                         unsigned long expire;
1269
1270                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1271                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1272                         mod_timer(&timer, expire);
1273                 }
1274
1275                 io_schedule();
1276
1277                 if (timer.function) {
1278                         del_singleshot_timer_sync(&timer);
1279                         destroy_timer_on_stack(&timer);
1280                 }
1281         }
1282         now = ktime_get_raw_ns();
1283         trace_i915_gem_request_wait_end(req);
1284
1285         if (!irq_test_in_progress)
1286                 ring->irq_put(ring);
1287
1288         finish_wait(&ring->irq_queue, &wait);
1289
1290         if (timeout) {
1291                 s64 tres = *timeout - (now - before);
1292
1293                 *timeout = tres < 0 ? 0 : tres;
1294
1295                 /*
1296                  * Apparently ktime isn't accurate enough and occasionally has a
1297                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298                  * things up to make the test happy. We allow up to 1 jiffy.
1299                  *
1300                  * This is a regrssion from the timespec->ktime conversion.
1301                  */
1302                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303                         *timeout = 0;
1304         }
1305
1306         return ret;
1307 }
1308
1309 /**
1310  * Waits for a request to be signaled, and cleans up the
1311  * request and object lists appropriately for that event.
1312  */
1313 int
1314 i915_wait_request(struct drm_i915_gem_request *req)
1315 {
1316         struct drm_device *dev;
1317         struct drm_i915_private *dev_priv;
1318         bool interruptible;
1319         unsigned reset_counter;
1320         int ret;
1321
1322         BUG_ON(req == NULL);
1323
1324         dev = req->ring->dev;
1325         dev_priv = dev->dev_private;
1326         interruptible = dev_priv->mm.interruptible;
1327
1328         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1329
1330         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1331         if (ret)
1332                 return ret;
1333
1334         ret = i915_gem_check_olr(req);
1335         if (ret)
1336                 return ret;
1337
1338         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1339         i915_gem_request_reference(req);
1340         ret = __i915_wait_request(req, reset_counter,
1341                                   interruptible, NULL, NULL);
1342         i915_gem_request_unreference(req);
1343         return ret;
1344 }
1345
1346 static int
1347 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1348 {
1349         if (!obj->active)
1350                 return 0;
1351
1352         /* Manually manage the write flush as we may have not yet
1353          * retired the buffer.
1354          *
1355          * Note that the last_write_req is always the earlier of
1356          * the two (read/write) requests, so if we haved successfully waited,
1357          * we know we have passed the last write.
1358          */
1359         i915_gem_request_assign(&obj->last_write_req, NULL);
1360
1361         return 0;
1362 }
1363
1364 /**
1365  * Ensures that all rendering to the object has completed and the object is
1366  * safe to unbind from the GTT or access from the CPU.
1367  */
1368 static __must_check int
1369 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1370                                bool readonly)
1371 {
1372         struct drm_i915_gem_request *req;
1373         int ret;
1374
1375         req = readonly ? obj->last_write_req : obj->last_read_req;
1376         if (!req)
1377                 return 0;
1378
1379         ret = i915_wait_request(req);
1380         if (ret)
1381                 return ret;
1382
1383         return i915_gem_object_wait_rendering__tail(obj);
1384 }
1385
1386 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1387  * as the object state may change during this call.
1388  */
1389 static __must_check int
1390 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1391                                             struct drm_i915_file_private *file_priv,
1392                                             bool readonly)
1393 {
1394         struct drm_i915_gem_request *req;
1395         struct drm_device *dev = obj->base.dev;
1396         struct drm_i915_private *dev_priv = dev->dev_private;
1397         unsigned reset_counter;
1398         int ret;
1399
1400         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1401         BUG_ON(!dev_priv->mm.interruptible);
1402
1403         req = readonly ? obj->last_write_req : obj->last_read_req;
1404         if (!req)
1405                 return 0;
1406
1407         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1408         if (ret)
1409                 return ret;
1410
1411         ret = i915_gem_check_olr(req);
1412         if (ret)
1413                 return ret;
1414
1415         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1416         i915_gem_request_reference(req);
1417         mutex_unlock(&dev->struct_mutex);
1418         ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1419         mutex_lock(&dev->struct_mutex);
1420         i915_gem_request_unreference(req);
1421         if (ret)
1422                 return ret;
1423
1424         return i915_gem_object_wait_rendering__tail(obj);
1425 }
1426
1427 /**
1428  * Called when user space prepares to use an object with the CPU, either
1429  * through the mmap ioctl's mapping or a GTT mapping.
1430  */
1431 int
1432 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1433                           struct drm_file *file)
1434 {
1435         struct drm_i915_gem_set_domain *args = data;
1436         struct drm_i915_gem_object *obj;
1437         uint32_t read_domains = args->read_domains;
1438         uint32_t write_domain = args->write_domain;
1439         int ret;
1440
1441         /* Only handle setting domains to types used by the CPU. */
1442         if (write_domain & I915_GEM_GPU_DOMAINS)
1443                 return -EINVAL;
1444
1445         if (read_domains & I915_GEM_GPU_DOMAINS)
1446                 return -EINVAL;
1447
1448         /* Having something in the write domain implies it's in the read
1449          * domain, and only that read domain.  Enforce that in the request.
1450          */
1451         if (write_domain != 0 && read_domains != write_domain)
1452                 return -EINVAL;
1453
1454         ret = i915_mutex_lock_interruptible(dev);
1455         if (ret)
1456                 return ret;
1457
1458         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1459         if (&obj->base == NULL) {
1460                 ret = -ENOENT;
1461                 goto unlock;
1462         }
1463
1464         /* Try to flush the object off the GPU without holding the lock.
1465          * We will repeat the flush holding the lock in the normal manner
1466          * to catch cases where we are gazumped.
1467          */
1468         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1469                                                           file->driver_priv,
1470                                                           !write_domain);
1471         if (ret)
1472                 goto unref;
1473
1474         if (read_domains & I915_GEM_DOMAIN_GTT)
1475                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1476         else
1477                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1478
1479 unref:
1480         drm_gem_object_unreference(&obj->base);
1481 unlock:
1482         mutex_unlock(&dev->struct_mutex);
1483         return ret;
1484 }
1485
1486 /**
1487  * Called when user space has done writes to this buffer
1488  */
1489 int
1490 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1491                          struct drm_file *file)
1492 {
1493         struct drm_i915_gem_sw_finish *args = data;
1494         struct drm_i915_gem_object *obj;
1495         int ret = 0;
1496
1497         ret = i915_mutex_lock_interruptible(dev);
1498         if (ret)
1499                 return ret;
1500
1501         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1502         if (&obj->base == NULL) {
1503                 ret = -ENOENT;
1504                 goto unlock;
1505         }
1506
1507         /* Pinned buffers may be scanout, so flush the cache */
1508         if (obj->pin_display)
1509                 i915_gem_object_flush_cpu_write_domain(obj);
1510
1511         drm_gem_object_unreference(&obj->base);
1512 unlock:
1513         mutex_unlock(&dev->struct_mutex);
1514         return ret;
1515 }
1516
1517 /**
1518  * Maps the contents of an object, returning the address it is mapped
1519  * into.
1520  *
1521  * While the mapping holds a reference on the contents of the object, it doesn't
1522  * imply a ref on the object itself.
1523  *
1524  * IMPORTANT:
1525  *
1526  * DRM driver writers who look a this function as an example for how to do GEM
1527  * mmap support, please don't implement mmap support like here. The modern way
1528  * to implement DRM mmap support is with an mmap offset ioctl (like
1529  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1530  * That way debug tooling like valgrind will understand what's going on, hiding
1531  * the mmap call in a driver private ioctl will break that. The i915 driver only
1532  * does cpu mmaps this way because we didn't know better.
1533  */
1534 int
1535 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1536                     struct drm_file *file)
1537 {
1538         struct drm_i915_gem_mmap *args = data;
1539         struct drm_gem_object *obj;
1540         unsigned long addr;
1541
1542         if (args->flags & ~(I915_MMAP_WC))
1543                 return -EINVAL;
1544
1545         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1546                 return -ENODEV;
1547
1548         obj = drm_gem_object_lookup(dev, file, args->handle);
1549         if (obj == NULL)
1550                 return -ENOENT;
1551
1552         /* prime objects have no backing filp to GEM mmap
1553          * pages from.
1554          */
1555         if (!obj->filp) {
1556                 drm_gem_object_unreference_unlocked(obj);
1557                 return -EINVAL;
1558         }
1559
1560         addr = vm_mmap(obj->filp, 0, args->size,
1561                        PROT_READ | PROT_WRITE, MAP_SHARED,
1562                        args->offset);
1563         if (args->flags & I915_MMAP_WC) {
1564                 struct mm_struct *mm = current->mm;
1565                 struct vm_area_struct *vma;
1566
1567                 down_write(&mm->mmap_sem);
1568                 vma = find_vma(mm, addr);
1569                 if (vma)
1570                         vma->vm_page_prot =
1571                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1572                 else
1573                         addr = -ENOMEM;
1574                 up_write(&mm->mmap_sem);
1575         }
1576         drm_gem_object_unreference_unlocked(obj);
1577         if (IS_ERR((void *)addr))
1578                 return addr;
1579
1580         args->addr_ptr = (uint64_t) addr;
1581
1582         return 0;
1583 }
1584
1585 /**
1586  * i915_gem_fault - fault a page into the GTT
1587  * vma: VMA in question
1588  * vmf: fault info
1589  *
1590  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1591  * from userspace.  The fault handler takes care of binding the object to
1592  * the GTT (if needed), allocating and programming a fence register (again,
1593  * only if needed based on whether the old reg is still valid or the object
1594  * is tiled) and inserting a new PTE into the faulting process.
1595  *
1596  * Note that the faulting process may involve evicting existing objects
1597  * from the GTT and/or fence registers to make room.  So performance may
1598  * suffer if the GTT working set is large or there are few fence registers
1599  * left.
1600  */
1601 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1602 {
1603         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1604         struct drm_device *dev = obj->base.dev;
1605         struct drm_i915_private *dev_priv = dev->dev_private;
1606         pgoff_t page_offset;
1607         unsigned long pfn;
1608         int ret = 0;
1609         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1610
1611         intel_runtime_pm_get(dev_priv);
1612
1613         /* We don't use vmf->pgoff since that has the fake offset */
1614         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1615                 PAGE_SHIFT;
1616
1617         ret = i915_mutex_lock_interruptible(dev);
1618         if (ret)
1619                 goto out;
1620
1621         trace_i915_gem_object_fault(obj, page_offset, true, write);
1622
1623         /* Try to flush the object off the GPU first without holding the lock.
1624          * Upon reacquiring the lock, we will perform our sanity checks and then
1625          * repeat the flush holding the lock in the normal manner to catch cases
1626          * where we are gazumped.
1627          */
1628         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1629         if (ret)
1630                 goto unlock;
1631
1632         /* Access to snoopable pages through the GTT is incoherent. */
1633         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1634                 ret = -EFAULT;
1635                 goto unlock;
1636         }
1637
1638         /* Now bind it into the GTT if needed */
1639         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1640         if (ret)
1641                 goto unlock;
1642
1643         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1644         if (ret)
1645                 goto unpin;
1646
1647         ret = i915_gem_object_get_fence(obj);
1648         if (ret)
1649                 goto unpin;
1650
1651         /* Finally, remap it using the new GTT offset */
1652         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1653         pfn >>= PAGE_SHIFT;
1654
1655         if (!obj->fault_mappable) {
1656                 unsigned long size = min_t(unsigned long,
1657                                            vma->vm_end - vma->vm_start,
1658                                            obj->base.size);
1659                 int i;
1660
1661                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1662                         ret = vm_insert_pfn(vma,
1663                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1664                                             pfn + i);
1665                         if (ret)
1666                                 break;
1667                 }
1668
1669                 obj->fault_mappable = true;
1670         } else
1671                 ret = vm_insert_pfn(vma,
1672                                     (unsigned long)vmf->virtual_address,
1673                                     pfn + page_offset);
1674 unpin:
1675         i915_gem_object_ggtt_unpin(obj);
1676 unlock:
1677         mutex_unlock(&dev->struct_mutex);
1678 out:
1679         switch (ret) {
1680         case -EIO:
1681                 /*
1682                  * We eat errors when the gpu is terminally wedged to avoid
1683                  * userspace unduly crashing (gl has no provisions for mmaps to
1684                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1685                  * and so needs to be reported.
1686                  */
1687                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1688                         ret = VM_FAULT_SIGBUS;
1689                         break;
1690                 }
1691         case -EAGAIN:
1692                 /*
1693                  * EAGAIN means the gpu is hung and we'll wait for the error
1694                  * handler to reset everything when re-faulting in
1695                  * i915_mutex_lock_interruptible.
1696                  */
1697         case 0:
1698         case -ERESTARTSYS:
1699         case -EINTR:
1700         case -EBUSY:
1701                 /*
1702                  * EBUSY is ok: this just means that another thread
1703                  * already did the job.
1704                  */
1705                 ret = VM_FAULT_NOPAGE;
1706                 break;
1707         case -ENOMEM:
1708                 ret = VM_FAULT_OOM;
1709                 break;
1710         case -ENOSPC:
1711         case -EFAULT:
1712                 ret = VM_FAULT_SIGBUS;
1713                 break;
1714         default:
1715                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1716                 ret = VM_FAULT_SIGBUS;
1717                 break;
1718         }
1719
1720         intel_runtime_pm_put(dev_priv);
1721         return ret;
1722 }
1723
1724 /**
1725  * i915_gem_release_mmap - remove physical page mappings
1726  * @obj: obj in question
1727  *
1728  * Preserve the reservation of the mmapping with the DRM core code, but
1729  * relinquish ownership of the pages back to the system.
1730  *
1731  * It is vital that we remove the page mapping if we have mapped a tiled
1732  * object through the GTT and then lose the fence register due to
1733  * resource pressure. Similarly if the object has been moved out of the
1734  * aperture, than pages mapped into userspace must be revoked. Removing the
1735  * mapping will then trigger a page fault on the next user access, allowing
1736  * fixup by i915_gem_fault().
1737  */
1738 void
1739 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1740 {
1741         if (!obj->fault_mappable)
1742                 return;
1743
1744         drm_vma_node_unmap(&obj->base.vma_node,
1745                            obj->base.dev->anon_inode->i_mapping);
1746         obj->fault_mappable = false;
1747 }
1748
1749 void
1750 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1751 {
1752         struct drm_i915_gem_object *obj;
1753
1754         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1755                 i915_gem_release_mmap(obj);
1756 }
1757
1758 uint32_t
1759 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1760 {
1761         uint32_t gtt_size;
1762
1763         if (INTEL_INFO(dev)->gen >= 4 ||
1764             tiling_mode == I915_TILING_NONE)
1765                 return size;
1766
1767         /* Previous chips need a power-of-two fence region when tiling */
1768         if (INTEL_INFO(dev)->gen == 3)
1769                 gtt_size = 1024*1024;
1770         else
1771                 gtt_size = 512*1024;
1772
1773         while (gtt_size < size)
1774                 gtt_size <<= 1;
1775
1776         return gtt_size;
1777 }
1778
1779 /**
1780  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1781  * @obj: object to check
1782  *
1783  * Return the required GTT alignment for an object, taking into account
1784  * potential fence register mapping.
1785  */
1786 uint32_t
1787 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1788                            int tiling_mode, bool fenced)
1789 {
1790         /*
1791          * Minimum alignment is 4k (GTT page size), but might be greater
1792          * if a fence register is needed for the object.
1793          */
1794         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1795             tiling_mode == I915_TILING_NONE)
1796                 return 4096;
1797
1798         /*
1799          * Previous chips need to be aligned to the size of the smallest
1800          * fence register that can contain the object.
1801          */
1802         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1803 }
1804
1805 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1806 {
1807         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1808         int ret;
1809
1810         if (drm_vma_node_has_offset(&obj->base.vma_node))
1811                 return 0;
1812
1813         dev_priv->mm.shrinker_no_lock_stealing = true;
1814
1815         ret = drm_gem_create_mmap_offset(&obj->base);
1816         if (ret != -ENOSPC)
1817                 goto out;
1818
1819         /* Badly fragmented mmap space? The only way we can recover
1820          * space is by destroying unwanted objects. We can't randomly release
1821          * mmap_offsets as userspace expects them to be persistent for the
1822          * lifetime of the objects. The closest we can is to release the
1823          * offsets on purgeable objects by truncating it and marking it purged,
1824          * which prevents userspace from ever using that object again.
1825          */
1826         i915_gem_shrink(dev_priv,
1827                         obj->base.size >> PAGE_SHIFT,
1828                         I915_SHRINK_BOUND |
1829                         I915_SHRINK_UNBOUND |
1830                         I915_SHRINK_PURGEABLE);
1831         ret = drm_gem_create_mmap_offset(&obj->base);
1832         if (ret != -ENOSPC)
1833                 goto out;
1834
1835         i915_gem_shrink_all(dev_priv);
1836         ret = drm_gem_create_mmap_offset(&obj->base);
1837 out:
1838         dev_priv->mm.shrinker_no_lock_stealing = false;
1839
1840         return ret;
1841 }
1842
1843 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1844 {
1845         drm_gem_free_mmap_offset(&obj->base);
1846 }
1847
1848 int
1849 i915_gem_mmap_gtt(struct drm_file *file,
1850                   struct drm_device *dev,
1851                   uint32_t handle,
1852                   uint64_t *offset)
1853 {
1854         struct drm_i915_private *dev_priv = dev->dev_private;
1855         struct drm_i915_gem_object *obj;
1856         int ret;
1857
1858         ret = i915_mutex_lock_interruptible(dev);
1859         if (ret)
1860                 return ret;
1861
1862         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1863         if (&obj->base == NULL) {
1864                 ret = -ENOENT;
1865                 goto unlock;
1866         }
1867
1868         if (obj->base.size > dev_priv->gtt.mappable_end) {
1869                 ret = -E2BIG;
1870                 goto out;
1871         }
1872
1873         if (obj->madv != I915_MADV_WILLNEED) {
1874                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1875                 ret = -EFAULT;
1876                 goto out;
1877         }
1878
1879         ret = i915_gem_object_create_mmap_offset(obj);
1880         if (ret)
1881                 goto out;
1882
1883         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1884
1885 out:
1886         drm_gem_object_unreference(&obj->base);
1887 unlock:
1888         mutex_unlock(&dev->struct_mutex);
1889         return ret;
1890 }
1891
1892 /**
1893  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1894  * @dev: DRM device
1895  * @data: GTT mapping ioctl data
1896  * @file: GEM object info
1897  *
1898  * Simply returns the fake offset to userspace so it can mmap it.
1899  * The mmap call will end up in drm_gem_mmap(), which will set things
1900  * up so we can get faults in the handler above.
1901  *
1902  * The fault handler will take care of binding the object into the GTT
1903  * (since it may have been evicted to make room for something), allocating
1904  * a fence register, and mapping the appropriate aperture address into
1905  * userspace.
1906  */
1907 int
1908 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1909                         struct drm_file *file)
1910 {
1911         struct drm_i915_gem_mmap_gtt *args = data;
1912
1913         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1914 }
1915
1916 /* Immediately discard the backing storage */
1917 static void
1918 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1919 {
1920         i915_gem_object_free_mmap_offset(obj);
1921
1922         if (obj->base.filp == NULL)
1923                 return;
1924
1925         /* Our goal here is to return as much of the memory as
1926          * is possible back to the system as we are called from OOM.
1927          * To do this we must instruct the shmfs to drop all of its
1928          * backing pages, *now*.
1929          */
1930         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1931         obj->madv = __I915_MADV_PURGED;
1932 }
1933
1934 /* Try to discard unwanted pages */
1935 static void
1936 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1937 {
1938         struct address_space *mapping;
1939
1940         switch (obj->madv) {
1941         case I915_MADV_DONTNEED:
1942                 i915_gem_object_truncate(obj);
1943         case __I915_MADV_PURGED:
1944                 return;
1945         }
1946
1947         if (obj->base.filp == NULL)
1948                 return;
1949
1950         mapping = file_inode(obj->base.filp)->i_mapping,
1951         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1952 }
1953
1954 static void
1955 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1956 {
1957         struct sg_page_iter sg_iter;
1958         int ret;
1959
1960         BUG_ON(obj->madv == __I915_MADV_PURGED);
1961
1962         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1963         if (ret) {
1964                 /* In the event of a disaster, abandon all caches and
1965                  * hope for the best.
1966                  */
1967                 WARN_ON(ret != -EIO);
1968                 i915_gem_clflush_object(obj, true);
1969                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1970         }
1971
1972         if (i915_gem_object_needs_bit17_swizzle(obj))
1973                 i915_gem_object_save_bit_17_swizzle(obj);
1974
1975         if (obj->madv == I915_MADV_DONTNEED)
1976                 obj->dirty = 0;
1977
1978         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1979                 struct page *page = sg_page_iter_page(&sg_iter);
1980
1981                 if (obj->dirty)
1982                         set_page_dirty(page);
1983
1984                 if (obj->madv == I915_MADV_WILLNEED)
1985                         mark_page_accessed(page);
1986
1987                 page_cache_release(page);
1988         }
1989         obj->dirty = 0;
1990
1991         sg_free_table(obj->pages);
1992         kfree(obj->pages);
1993 }
1994
1995 int
1996 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1997 {
1998         const struct drm_i915_gem_object_ops *ops = obj->ops;
1999
2000         if (obj->pages == NULL)
2001                 return 0;
2002
2003         if (obj->pages_pin_count)
2004                 return -EBUSY;
2005
2006         BUG_ON(i915_gem_obj_bound_any(obj));
2007
2008         /* ->put_pages might need to allocate memory for the bit17 swizzle
2009          * array, hence protect them from being reaped by removing them from gtt
2010          * lists early. */
2011         list_del(&obj->global_list);
2012
2013         ops->put_pages(obj);
2014         obj->pages = NULL;
2015
2016         i915_gem_object_invalidate(obj);
2017
2018         return 0;
2019 }
2020
2021 static int
2022 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2023 {
2024         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025         int page_count, i;
2026         struct address_space *mapping;
2027         struct sg_table *st;
2028         struct scatterlist *sg;
2029         struct sg_page_iter sg_iter;
2030         struct page *page;
2031         unsigned long last_pfn = 0;     /* suppress gcc warning */
2032         gfp_t gfp;
2033
2034         /* Assert that the object is not currently in any GPU domain. As it
2035          * wasn't in the GTT, there shouldn't be any way it could have been in
2036          * a GPU cache
2037          */
2038         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2039         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2040
2041         st = kmalloc(sizeof(*st), GFP_KERNEL);
2042         if (st == NULL)
2043                 return -ENOMEM;
2044
2045         page_count = obj->base.size / PAGE_SIZE;
2046         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2047                 kfree(st);
2048                 return -ENOMEM;
2049         }
2050
2051         /* Get the list of pages out of our struct file.  They'll be pinned
2052          * at this point until we release them.
2053          *
2054          * Fail silently without starting the shrinker
2055          */
2056         mapping = file_inode(obj->base.filp)->i_mapping;
2057         gfp = mapping_gfp_mask(mapping);
2058         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2059         gfp &= ~(__GFP_IO | __GFP_WAIT);
2060         sg = st->sgl;
2061         st->nents = 0;
2062         for (i = 0; i < page_count; i++) {
2063                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2064                 if (IS_ERR(page)) {
2065                         i915_gem_shrink(dev_priv,
2066                                         page_count,
2067                                         I915_SHRINK_BOUND |
2068                                         I915_SHRINK_UNBOUND |
2069                                         I915_SHRINK_PURGEABLE);
2070                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2071                 }
2072                 if (IS_ERR(page)) {
2073                         /* We've tried hard to allocate the memory by reaping
2074                          * our own buffer, now let the real VM do its job and
2075                          * go down in flames if truly OOM.
2076                          */
2077                         i915_gem_shrink_all(dev_priv);
2078                         page = shmem_read_mapping_page(mapping, i);
2079                         if (IS_ERR(page))
2080                                 goto err_pages;
2081                 }
2082 #ifdef CONFIG_SWIOTLB
2083                 if (swiotlb_nr_tbl()) {
2084                         st->nents++;
2085                         sg_set_page(sg, page, PAGE_SIZE, 0);
2086                         sg = sg_next(sg);
2087                         continue;
2088                 }
2089 #endif
2090                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2091                         if (i)
2092                                 sg = sg_next(sg);
2093                         st->nents++;
2094                         sg_set_page(sg, page, PAGE_SIZE, 0);
2095                 } else {
2096                         sg->length += PAGE_SIZE;
2097                 }
2098                 last_pfn = page_to_pfn(page);
2099
2100                 /* Check that the i965g/gm workaround works. */
2101                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2102         }
2103 #ifdef CONFIG_SWIOTLB
2104         if (!swiotlb_nr_tbl())
2105 #endif
2106                 sg_mark_end(sg);
2107         obj->pages = st;
2108
2109         if (i915_gem_object_needs_bit17_swizzle(obj))
2110                 i915_gem_object_do_bit_17_swizzle(obj);
2111
2112         if (obj->tiling_mode != I915_TILING_NONE &&
2113             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2114                 i915_gem_object_pin_pages(obj);
2115
2116         return 0;
2117
2118 err_pages:
2119         sg_mark_end(sg);
2120         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2121                 page_cache_release(sg_page_iter_page(&sg_iter));
2122         sg_free_table(st);
2123         kfree(st);
2124
2125         /* shmemfs first checks if there is enough memory to allocate the page
2126          * and reports ENOSPC should there be insufficient, along with the usual
2127          * ENOMEM for a genuine allocation failure.
2128          *
2129          * We use ENOSPC in our driver to mean that we have run out of aperture
2130          * space and so want to translate the error from shmemfs back to our
2131          * usual understanding of ENOMEM.
2132          */
2133         if (PTR_ERR(page) == -ENOSPC)
2134                 return -ENOMEM;
2135         else
2136                 return PTR_ERR(page);
2137 }
2138
2139 /* Ensure that the associated pages are gathered from the backing storage
2140  * and pinned into our object. i915_gem_object_get_pages() may be called
2141  * multiple times before they are released by a single call to
2142  * i915_gem_object_put_pages() - once the pages are no longer referenced
2143  * either as a result of memory pressure (reaping pages under the shrinker)
2144  * or as the object is itself released.
2145  */
2146 int
2147 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2148 {
2149         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2150         const struct drm_i915_gem_object_ops *ops = obj->ops;
2151         int ret;
2152
2153         if (obj->pages)
2154                 return 0;
2155
2156         if (obj->madv != I915_MADV_WILLNEED) {
2157                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2158                 return -EFAULT;
2159         }
2160
2161         BUG_ON(obj->pages_pin_count);
2162
2163         ret = ops->get_pages(obj);
2164         if (ret)
2165                 return ret;
2166
2167         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2168
2169         obj->get_page.sg = obj->pages->sgl;
2170         obj->get_page.last = 0;
2171
2172         return 0;
2173 }
2174
2175 static void
2176 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2177                                struct intel_engine_cs *ring)
2178 {
2179         struct drm_i915_gem_request *req;
2180         struct intel_engine_cs *old_ring;
2181
2182         BUG_ON(ring == NULL);
2183
2184         req = intel_ring_get_request(ring);
2185         old_ring = i915_gem_request_get_ring(obj->last_read_req);
2186
2187         if (old_ring != ring && obj->last_write_req) {
2188                 /* Keep the request relative to the current ring */
2189                 i915_gem_request_assign(&obj->last_write_req, req);
2190         }
2191
2192         /* Add a reference if we're newly entering the active list. */
2193         if (!obj->active) {
2194                 drm_gem_object_reference(&obj->base);
2195                 obj->active = 1;
2196         }
2197
2198         list_move_tail(&obj->ring_list, &ring->active_list);
2199
2200         i915_gem_request_assign(&obj->last_read_req, req);
2201 }
2202
2203 void i915_vma_move_to_active(struct i915_vma *vma,
2204                              struct intel_engine_cs *ring)
2205 {
2206         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2207         return i915_gem_object_move_to_active(vma->obj, ring);
2208 }
2209
2210 static void
2211 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2212 {
2213         struct i915_vma *vma;
2214
2215         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2216         BUG_ON(!obj->active);
2217
2218         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2219                 if (!list_empty(&vma->mm_list))
2220                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2221         }
2222
2223         intel_fb_obj_flush(obj, true);
2224
2225         list_del_init(&obj->ring_list);
2226
2227         i915_gem_request_assign(&obj->last_read_req, NULL);
2228         i915_gem_request_assign(&obj->last_write_req, NULL);
2229         obj->base.write_domain = 0;
2230
2231         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2232
2233         obj->active = 0;
2234         drm_gem_object_unreference(&obj->base);
2235
2236         WARN_ON(i915_verify_lists(dev));
2237 }
2238
2239 static void
2240 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2241 {
2242         if (obj->last_read_req == NULL)
2243                 return;
2244
2245         if (i915_gem_request_completed(obj->last_read_req, true))
2246                 i915_gem_object_move_to_inactive(obj);
2247 }
2248
2249 static int
2250 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2251 {
2252         struct drm_i915_private *dev_priv = dev->dev_private;
2253         struct intel_engine_cs *ring;
2254         int ret, i, j;
2255
2256         /* Carefully retire all requests without writing to the rings */
2257         for_each_ring(ring, dev_priv, i) {
2258                 ret = intel_ring_idle(ring);
2259                 if (ret)
2260                         return ret;
2261         }
2262         i915_gem_retire_requests(dev);
2263
2264         /* Finally reset hw state */
2265         for_each_ring(ring, dev_priv, i) {
2266                 intel_ring_init_seqno(ring, seqno);
2267
2268                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2269                         ring->semaphore.sync_seqno[j] = 0;
2270         }
2271
2272         return 0;
2273 }
2274
2275 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2276 {
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278         int ret;
2279
2280         if (seqno == 0)
2281                 return -EINVAL;
2282
2283         /* HWS page needs to be set less than what we
2284          * will inject to ring
2285          */
2286         ret = i915_gem_init_seqno(dev, seqno - 1);
2287         if (ret)
2288                 return ret;
2289
2290         /* Carefully set the last_seqno value so that wrap
2291          * detection still works
2292          */
2293         dev_priv->next_seqno = seqno;
2294         dev_priv->last_seqno = seqno - 1;
2295         if (dev_priv->last_seqno == 0)
2296                 dev_priv->last_seqno--;
2297
2298         return 0;
2299 }
2300
2301 int
2302 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2303 {
2304         struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306         /* reserve 0 for non-seqno */
2307         if (dev_priv->next_seqno == 0) {
2308                 int ret = i915_gem_init_seqno(dev, 0);
2309                 if (ret)
2310                         return ret;
2311
2312                 dev_priv->next_seqno = 1;
2313         }
2314
2315         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2316         return 0;
2317 }
2318
2319 int __i915_add_request(struct intel_engine_cs *ring,
2320                        struct drm_file *file,
2321                        struct drm_i915_gem_object *obj)
2322 {
2323         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2324         struct drm_i915_gem_request *request;
2325         struct intel_ringbuffer *ringbuf;
2326         u32 request_start;
2327         int ret;
2328
2329         request = ring->outstanding_lazy_request;
2330         if (WARN_ON(request == NULL))
2331                 return -ENOMEM;
2332
2333         if (i915.enable_execlists) {
2334                 ringbuf = request->ctx->engine[ring->id].ringbuf;
2335         } else
2336                 ringbuf = ring->buffer;
2337
2338         request_start = intel_ring_get_tail(ringbuf);
2339         /*
2340          * Emit any outstanding flushes - execbuf can fail to emit the flush
2341          * after having emitted the batchbuffer command. Hence we need to fix
2342          * things up similar to emitting the lazy request. The difference here
2343          * is that the flush _must_ happen before the next request, no matter
2344          * what.
2345          */
2346         if (i915.enable_execlists) {
2347                 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2348                 if (ret)
2349                         return ret;
2350         } else {
2351                 ret = intel_ring_flush_all_caches(ring);
2352                 if (ret)
2353                         return ret;
2354         }
2355
2356         /* Record the position of the start of the request so that
2357          * should we detect the updated seqno part-way through the
2358          * GPU processing the request, we never over-estimate the
2359          * position of the head.
2360          */
2361         request->postfix = intel_ring_get_tail(ringbuf);
2362
2363         if (i915.enable_execlists) {
2364                 ret = ring->emit_request(ringbuf, request);
2365                 if (ret)
2366                         return ret;
2367         } else {
2368                 ret = ring->add_request(ring);
2369                 if (ret)
2370                         return ret;
2371         }
2372
2373         request->head = request_start;
2374         request->tail = intel_ring_get_tail(ringbuf);
2375
2376         /* Whilst this request exists, batch_obj will be on the
2377          * active_list, and so will hold the active reference. Only when this
2378          * request is retired will the the batch_obj be moved onto the
2379          * inactive_list and lose its active reference. Hence we do not need
2380          * to explicitly hold another reference here.
2381          */
2382         request->batch_obj = obj;
2383
2384         if (!i915.enable_execlists) {
2385                 /* Hold a reference to the current context so that we can inspect
2386                  * it later in case a hangcheck error event fires.
2387                  */
2388                 request->ctx = ring->last_context;
2389                 if (request->ctx)
2390                         i915_gem_context_reference(request->ctx);
2391         }
2392
2393         request->emitted_jiffies = jiffies;
2394         list_add_tail(&request->list, &ring->request_list);
2395         request->file_priv = NULL;
2396
2397         if (file) {
2398                 struct drm_i915_file_private *file_priv = file->driver_priv;
2399
2400                 spin_lock(&file_priv->mm.lock);
2401                 request->file_priv = file_priv;
2402                 list_add_tail(&request->client_list,
2403                               &file_priv->mm.request_list);
2404                 spin_unlock(&file_priv->mm.lock);
2405
2406                 request->pid = get_pid(task_pid(current));
2407         }
2408
2409         trace_i915_gem_request_add(request);
2410         ring->outstanding_lazy_request = NULL;
2411
2412         i915_queue_hangcheck(ring->dev);
2413
2414         queue_delayed_work(dev_priv->wq,
2415                            &dev_priv->mm.retire_work,
2416                            round_jiffies_up_relative(HZ));
2417         intel_mark_busy(dev_priv->dev);
2418
2419         return 0;
2420 }
2421
2422 static inline void
2423 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2424 {
2425         struct drm_i915_file_private *file_priv = request->file_priv;
2426
2427         if (!file_priv)
2428                 return;
2429
2430         spin_lock(&file_priv->mm.lock);
2431         list_del(&request->client_list);
2432         request->file_priv = NULL;
2433         spin_unlock(&file_priv->mm.lock);
2434 }
2435
2436 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2437                                    const struct intel_context *ctx)
2438 {
2439         unsigned long elapsed;
2440
2441         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2442
2443         if (ctx->hang_stats.banned)
2444                 return true;
2445
2446         if (ctx->hang_stats.ban_period_seconds &&
2447             elapsed <= ctx->hang_stats.ban_period_seconds) {
2448                 if (!i915_gem_context_is_default(ctx)) {
2449                         DRM_DEBUG("context hanging too fast, banning!\n");
2450                         return true;
2451                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2452                         if (i915_stop_ring_allow_warn(dev_priv))
2453                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2454                         return true;
2455                 }
2456         }
2457
2458         return false;
2459 }
2460
2461 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2462                                   struct intel_context *ctx,
2463                                   const bool guilty)
2464 {
2465         struct i915_ctx_hang_stats *hs;
2466
2467         if (WARN_ON(!ctx))
2468                 return;
2469
2470         hs = &ctx->hang_stats;
2471
2472         if (guilty) {
2473                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2474                 hs->batch_active++;
2475                 hs->guilty_ts = get_seconds();
2476         } else {
2477                 hs->batch_pending++;
2478         }
2479 }
2480
2481 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2482 {
2483         list_del(&request->list);
2484         i915_gem_request_remove_from_client(request);
2485
2486         put_pid(request->pid);
2487
2488         i915_gem_request_unreference(request);
2489 }
2490
2491 void i915_gem_request_free(struct kref *req_ref)
2492 {
2493         struct drm_i915_gem_request *req = container_of(req_ref,
2494                                                  typeof(*req), ref);
2495         struct intel_context *ctx = req->ctx;
2496
2497         if (ctx) {
2498                 if (i915.enable_execlists) {
2499                         struct intel_engine_cs *ring = req->ring;
2500
2501                         if (ctx != ring->default_context)
2502                                 intel_lr_context_unpin(ring, ctx);
2503                 }
2504
2505                 i915_gem_context_unreference(ctx);
2506         }
2507
2508         kmem_cache_free(req->i915->requests, req);
2509 }
2510
2511 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2512                            struct intel_context *ctx)
2513 {
2514         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2515         struct drm_i915_gem_request *rq;
2516         int ret;
2517
2518         if (ring->outstanding_lazy_request)
2519                 return 0;
2520
2521         rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2522         if (rq == NULL)
2523                 return -ENOMEM;
2524
2525         kref_init(&rq->ref);
2526         rq->i915 = dev_priv;
2527
2528         ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2529         if (ret) {
2530                 kfree(rq);
2531                 return ret;
2532         }
2533
2534         rq->ring = ring;
2535
2536         if (i915.enable_execlists)
2537                 ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2538         else
2539                 ret = intel_ring_alloc_request_extras(rq);
2540         if (ret) {
2541                 kfree(rq);
2542                 return ret;
2543         }
2544
2545         ring->outstanding_lazy_request = rq;
2546         return 0;
2547 }
2548
2549 struct drm_i915_gem_request *
2550 i915_gem_find_active_request(struct intel_engine_cs *ring)
2551 {
2552         struct drm_i915_gem_request *request;
2553
2554         list_for_each_entry(request, &ring->request_list, list) {
2555                 if (i915_gem_request_completed(request, false))
2556                         continue;
2557
2558                 return request;
2559         }
2560
2561         return NULL;
2562 }
2563
2564 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2565                                        struct intel_engine_cs *ring)
2566 {
2567         struct drm_i915_gem_request *request;
2568         bool ring_hung;
2569
2570         request = i915_gem_find_active_request(ring);
2571
2572         if (request == NULL)
2573                 return;
2574
2575         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2576
2577         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2578
2579         list_for_each_entry_continue(request, &ring->request_list, list)
2580                 i915_set_reset_status(dev_priv, request->ctx, false);
2581 }
2582
2583 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2584                                         struct intel_engine_cs *ring)
2585 {
2586         while (!list_empty(&ring->active_list)) {
2587                 struct drm_i915_gem_object *obj;
2588
2589                 obj = list_first_entry(&ring->active_list,
2590                                        struct drm_i915_gem_object,
2591                                        ring_list);
2592
2593                 i915_gem_object_move_to_inactive(obj);
2594         }
2595
2596         /*
2597          * Clear the execlists queue up before freeing the requests, as those
2598          * are the ones that keep the context and ringbuffer backing objects
2599          * pinned in place.
2600          */
2601         while (!list_empty(&ring->execlist_queue)) {
2602                 struct drm_i915_gem_request *submit_req;
2603
2604                 submit_req = list_first_entry(&ring->execlist_queue,
2605                                 struct drm_i915_gem_request,
2606                                 execlist_link);
2607                 list_del(&submit_req->execlist_link);
2608
2609                 if (submit_req->ctx != ring->default_context)
2610                         intel_lr_context_unpin(ring, submit_req->ctx);
2611
2612                 i915_gem_request_unreference(submit_req);
2613         }
2614
2615         /*
2616          * We must free the requests after all the corresponding objects have
2617          * been moved off active lists. Which is the same order as the normal
2618          * retire_requests function does. This is important if object hold
2619          * implicit references on things like e.g. ppgtt address spaces through
2620          * the request.
2621          */
2622         while (!list_empty(&ring->request_list)) {
2623                 struct drm_i915_gem_request *request;
2624
2625                 request = list_first_entry(&ring->request_list,
2626                                            struct drm_i915_gem_request,
2627                                            list);
2628
2629                 i915_gem_free_request(request);
2630         }
2631
2632         /* This may not have been flushed before the reset, so clean it now */
2633         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2634 }
2635
2636 void i915_gem_restore_fences(struct drm_device *dev)
2637 {
2638         struct drm_i915_private *dev_priv = dev->dev_private;
2639         int i;
2640
2641         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2642                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2643
2644                 /*
2645                  * Commit delayed tiling changes if we have an object still
2646                  * attached to the fence, otherwise just clear the fence.
2647                  */
2648                 if (reg->obj) {
2649                         i915_gem_object_update_fence(reg->obj, reg,
2650                                                      reg->obj->tiling_mode);
2651                 } else {
2652                         i915_gem_write_fence(dev, i, NULL);
2653                 }
2654         }
2655 }
2656
2657 void i915_gem_reset(struct drm_device *dev)
2658 {
2659         struct drm_i915_private *dev_priv = dev->dev_private;
2660         struct intel_engine_cs *ring;
2661         int i;
2662
2663         /*
2664          * Before we free the objects from the requests, we need to inspect
2665          * them for finding the guilty party. As the requests only borrow
2666          * their reference to the objects, the inspection must be done first.
2667          */
2668         for_each_ring(ring, dev_priv, i)
2669                 i915_gem_reset_ring_status(dev_priv, ring);
2670
2671         for_each_ring(ring, dev_priv, i)
2672                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2673
2674         i915_gem_context_reset(dev);
2675
2676         i915_gem_restore_fences(dev);
2677 }
2678
2679 /**
2680  * This function clears the request list as sequence numbers are passed.
2681  */
2682 void
2683 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2684 {
2685         if (list_empty(&ring->request_list))
2686                 return;
2687
2688         WARN_ON(i915_verify_lists(ring->dev));
2689
2690         /* Retire requests first as we use it above for the early return.
2691          * If we retire requests last, we may use a later seqno and so clear
2692          * the requests lists without clearing the active list, leading to
2693          * confusion.
2694          */
2695         while (!list_empty(&ring->request_list)) {
2696                 struct drm_i915_gem_request *request;
2697
2698                 request = list_first_entry(&ring->request_list,
2699                                            struct drm_i915_gem_request,
2700                                            list);
2701
2702                 if (!i915_gem_request_completed(request, true))
2703                         break;
2704
2705                 trace_i915_gem_request_retire(request);
2706
2707                 /* We know the GPU must have read the request to have
2708                  * sent us the seqno + interrupt, so use the position
2709                  * of tail of the request to update the last known position
2710                  * of the GPU head.
2711                  */
2712                 request->ringbuf->last_retired_head = request->postfix;
2713
2714                 i915_gem_free_request(request);
2715         }
2716
2717         /* Move any buffers on the active list that are no longer referenced
2718          * by the ringbuffer to the flushing/inactive lists as appropriate,
2719          * before we free the context associated with the requests.
2720          */
2721         while (!list_empty(&ring->active_list)) {
2722                 struct drm_i915_gem_object *obj;
2723
2724                 obj = list_first_entry(&ring->active_list,
2725                                       struct drm_i915_gem_object,
2726                                       ring_list);
2727
2728                 if (!i915_gem_request_completed(obj->last_read_req, true))
2729                         break;
2730
2731                 i915_gem_object_move_to_inactive(obj);
2732         }
2733
2734         if (unlikely(ring->trace_irq_req &&
2735                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2736                 ring->irq_put(ring);
2737                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2738         }
2739
2740         WARN_ON(i915_verify_lists(ring->dev));
2741 }
2742
2743 bool
2744 i915_gem_retire_requests(struct drm_device *dev)
2745 {
2746         struct drm_i915_private *dev_priv = dev->dev_private;
2747         struct intel_engine_cs *ring;
2748         bool idle = true;
2749         int i;
2750
2751         for_each_ring(ring, dev_priv, i) {
2752                 i915_gem_retire_requests_ring(ring);
2753                 idle &= list_empty(&ring->request_list);
2754                 if (i915.enable_execlists) {
2755                         unsigned long flags;
2756
2757                         spin_lock_irqsave(&ring->execlist_lock, flags);
2758                         idle &= list_empty(&ring->execlist_queue);
2759                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2760
2761                         intel_execlists_retire_requests(ring);
2762                 }
2763         }
2764
2765         if (idle)
2766                 mod_delayed_work(dev_priv->wq,
2767                                    &dev_priv->mm.idle_work,
2768                                    msecs_to_jiffies(100));
2769
2770         return idle;
2771 }
2772
2773 static void
2774 i915_gem_retire_work_handler(struct work_struct *work)
2775 {
2776         struct drm_i915_private *dev_priv =
2777                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2778         struct drm_device *dev = dev_priv->dev;
2779         bool idle;
2780
2781         /* Come back later if the device is busy... */
2782         idle = false;
2783         if (mutex_trylock(&dev->struct_mutex)) {
2784                 idle = i915_gem_retire_requests(dev);
2785                 mutex_unlock(&dev->struct_mutex);
2786         }
2787         if (!idle)
2788                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2789                                    round_jiffies_up_relative(HZ));
2790 }
2791
2792 static void
2793 i915_gem_idle_work_handler(struct work_struct *work)
2794 {
2795         struct drm_i915_private *dev_priv =
2796                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2797         struct drm_device *dev = dev_priv->dev;
2798         struct intel_engine_cs *ring;
2799         int i;
2800
2801         for_each_ring(ring, dev_priv, i)
2802                 if (!list_empty(&ring->request_list))
2803                         return;
2804
2805         intel_mark_idle(dev);
2806
2807         if (mutex_trylock(&dev->struct_mutex)) {
2808                 struct intel_engine_cs *ring;
2809                 int i;
2810
2811                 for_each_ring(ring, dev_priv, i)
2812                         i915_gem_batch_pool_fini(&ring->batch_pool);
2813
2814                 mutex_unlock(&dev->struct_mutex);
2815         }
2816 }
2817
2818 /**
2819  * Ensures that an object will eventually get non-busy by flushing any required
2820  * write domains, emitting any outstanding lazy request and retiring and
2821  * completed requests.
2822  */
2823 static int
2824 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2825 {
2826         struct intel_engine_cs *ring;
2827         int ret;
2828
2829         if (obj->active) {
2830                 ring = i915_gem_request_get_ring(obj->last_read_req);
2831
2832                 ret = i915_gem_check_olr(obj->last_read_req);
2833                 if (ret)
2834                         return ret;
2835
2836                 i915_gem_retire_requests_ring(ring);
2837         }
2838
2839         return 0;
2840 }
2841
2842 /**
2843  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2844  * @DRM_IOCTL_ARGS: standard ioctl arguments
2845  *
2846  * Returns 0 if successful, else an error is returned with the remaining time in
2847  * the timeout parameter.
2848  *  -ETIME: object is still busy after timeout
2849  *  -ERESTARTSYS: signal interrupted the wait
2850  *  -ENONENT: object doesn't exist
2851  * Also possible, but rare:
2852  *  -EAGAIN: GPU wedged
2853  *  -ENOMEM: damn
2854  *  -ENODEV: Internal IRQ fail
2855  *  -E?: The add request failed
2856  *
2857  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2858  * non-zero timeout parameter the wait ioctl will wait for the given number of
2859  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2860  * without holding struct_mutex the object may become re-busied before this
2861  * function completes. A similar but shorter * race condition exists in the busy
2862  * ioctl
2863  */
2864 int
2865 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2866 {
2867         struct drm_i915_private *dev_priv = dev->dev_private;
2868         struct drm_i915_gem_wait *args = data;
2869         struct drm_i915_gem_object *obj;
2870         struct drm_i915_gem_request *req;
2871         unsigned reset_counter;
2872         int ret = 0;
2873
2874         if (args->flags != 0)
2875                 return -EINVAL;
2876
2877         ret = i915_mutex_lock_interruptible(dev);
2878         if (ret)
2879                 return ret;
2880
2881         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2882         if (&obj->base == NULL) {
2883                 mutex_unlock(&dev->struct_mutex);
2884                 return -ENOENT;
2885         }
2886
2887         /* Need to make sure the object gets inactive eventually. */
2888         ret = i915_gem_object_flush_active(obj);
2889         if (ret)
2890                 goto out;
2891
2892         if (!obj->active || !obj->last_read_req)
2893                 goto out;
2894
2895         req = obj->last_read_req;
2896
2897         /* Do this after OLR check to make sure we make forward progress polling
2898          * on this IOCTL with a timeout == 0 (like busy ioctl)
2899          */
2900         if (args->timeout_ns == 0) {
2901                 ret = -ETIME;
2902                 goto out;
2903         }
2904
2905         drm_gem_object_unreference(&obj->base);
2906         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2907         i915_gem_request_reference(req);
2908         mutex_unlock(&dev->struct_mutex);
2909
2910         ret = __i915_wait_request(req, reset_counter, true,
2911                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2912                                   file->driver_priv);
2913         i915_gem_request_unreference__unlocked(req);
2914         return ret;
2915
2916 out:
2917         drm_gem_object_unreference(&obj->base);
2918         mutex_unlock(&dev->struct_mutex);
2919         return ret;
2920 }
2921
2922 /**
2923  * i915_gem_object_sync - sync an object to a ring.
2924  *
2925  * @obj: object which may be in use on another ring.
2926  * @to: ring we wish to use the object on. May be NULL.
2927  *
2928  * This code is meant to abstract object synchronization with the GPU.
2929  * Calling with NULL implies synchronizing the object with the CPU
2930  * rather than a particular GPU ring.
2931  *
2932  * Returns 0 if successful, else propagates up the lower layer error.
2933  */
2934 int
2935 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2936                      struct intel_engine_cs *to)
2937 {
2938         struct intel_engine_cs *from;
2939         u32 seqno;
2940         int ret, idx;
2941
2942         from = i915_gem_request_get_ring(obj->last_read_req);
2943
2944         if (from == NULL || to == from)
2945                 return 0;
2946
2947         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2948                 return i915_gem_object_wait_rendering(obj, false);
2949
2950         idx = intel_ring_sync_index(from, to);
2951
2952         seqno = i915_gem_request_get_seqno(obj->last_read_req);
2953         /* Optimization: Avoid semaphore sync when we are sure we already
2954          * waited for an object with higher seqno */
2955         if (seqno <= from->semaphore.sync_seqno[idx])
2956                 return 0;
2957
2958         ret = i915_gem_check_olr(obj->last_read_req);
2959         if (ret)
2960                 return ret;
2961
2962         trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2963         ret = to->semaphore.sync_to(to, from, seqno);
2964         if (!ret)
2965                 /* We use last_read_req because sync_to()
2966                  * might have just caused seqno wrap under
2967                  * the radar.
2968                  */
2969                 from->semaphore.sync_seqno[idx] =
2970                                 i915_gem_request_get_seqno(obj->last_read_req);
2971
2972         return ret;
2973 }
2974
2975 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2976 {
2977         u32 old_write_domain, old_read_domains;
2978
2979         /* Force a pagefault for domain tracking on next user access */
2980         i915_gem_release_mmap(obj);
2981
2982         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2983                 return;
2984
2985         /* Wait for any direct GTT access to complete */
2986         mb();
2987
2988         old_read_domains = obj->base.read_domains;
2989         old_write_domain = obj->base.write_domain;
2990
2991         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2992         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2993
2994         trace_i915_gem_object_change_domain(obj,
2995                                             old_read_domains,
2996                                             old_write_domain);
2997 }
2998
2999 int i915_vma_unbind(struct i915_vma *vma)
3000 {
3001         struct drm_i915_gem_object *obj = vma->obj;
3002         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3003         int ret;
3004
3005         if (list_empty(&vma->vma_link))
3006                 return 0;
3007
3008         if (!drm_mm_node_allocated(&vma->node)) {
3009                 i915_gem_vma_destroy(vma);
3010                 return 0;
3011         }
3012
3013         if (vma->pin_count)
3014                 return -EBUSY;
3015
3016         BUG_ON(obj->pages == NULL);
3017
3018         ret = i915_gem_object_finish_gpu(obj);
3019         if (ret)
3020                 return ret;
3021         /* Continue on if we fail due to EIO, the GPU is hung so we
3022          * should be safe and we need to cleanup or else we might
3023          * cause memory corruption through use-after-free.
3024          */
3025
3026         if (i915_is_ggtt(vma->vm) &&
3027             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3028                 i915_gem_object_finish_gtt(obj);
3029
3030                 /* release the fence reg _after_ flushing */
3031                 ret = i915_gem_object_put_fence(obj);
3032                 if (ret)
3033                         return ret;
3034         }
3035
3036         trace_i915_vma_unbind(vma);
3037
3038         vma->unbind_vma(vma);
3039
3040         list_del_init(&vma->mm_list);
3041         if (i915_is_ggtt(vma->vm)) {
3042                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3043                         obj->map_and_fenceable = false;
3044                 } else if (vma->ggtt_view.pages) {
3045                         sg_free_table(vma->ggtt_view.pages);
3046                         kfree(vma->ggtt_view.pages);
3047                         vma->ggtt_view.pages = NULL;
3048                 }
3049         }
3050
3051         drm_mm_remove_node(&vma->node);
3052         i915_gem_vma_destroy(vma);
3053
3054         /* Since the unbound list is global, only move to that list if
3055          * no more VMAs exist. */
3056         if (list_empty(&obj->vma_list)) {
3057                 /* Throw away the active reference before
3058                  * moving to the unbound list. */
3059                 i915_gem_object_retire(obj);
3060
3061                 i915_gem_gtt_finish_object(obj);
3062                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3063         }
3064
3065         /* And finally now the object is completely decoupled from this vma,
3066          * we can drop its hold on the backing storage and allow it to be
3067          * reaped by the shrinker.
3068          */
3069         i915_gem_object_unpin_pages(obj);
3070
3071         return 0;
3072 }
3073
3074 int i915_gpu_idle(struct drm_device *dev)
3075 {
3076         struct drm_i915_private *dev_priv = dev->dev_private;
3077         struct intel_engine_cs *ring;
3078         int ret, i;
3079
3080         /* Flush everything onto the inactive list. */
3081         for_each_ring(ring, dev_priv, i) {
3082                 if (!i915.enable_execlists) {
3083                         ret = i915_switch_context(ring, ring->default_context);
3084                         if (ret)
3085                                 return ret;
3086                 }
3087
3088                 ret = intel_ring_idle(ring);
3089                 if (ret)
3090                         return ret;
3091         }
3092
3093         return 0;
3094 }
3095
3096 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3097                                  struct drm_i915_gem_object *obj)
3098 {
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         int fence_reg;
3101         int fence_pitch_shift;
3102
3103         if (INTEL_INFO(dev)->gen >= 6) {
3104                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3105                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3106         } else {
3107                 fence_reg = FENCE_REG_965_0;
3108                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3109         }
3110
3111         fence_reg += reg * 8;
3112
3113         /* To w/a incoherency with non-atomic 64-bit register updates,
3114          * we split the 64-bit update into two 32-bit writes. In order
3115          * for a partial fence not to be evaluated between writes, we
3116          * precede the update with write to turn off the fence register,
3117          * and only enable the fence as the last step.
3118          *
3119          * For extra levels of paranoia, we make sure each step lands
3120          * before applying the next step.
3121          */
3122         I915_WRITE(fence_reg, 0);
3123         POSTING_READ(fence_reg);
3124
3125         if (obj) {
3126                 u32 size = i915_gem_obj_ggtt_size(obj);
3127                 uint64_t val;
3128
3129                 /* Adjust fence size to match tiled area */
3130                 if (obj->tiling_mode != I915_TILING_NONE) {
3131                         uint32_t row_size = obj->stride *
3132                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3133                         size = (size / row_size) * row_size;
3134                 }
3135
3136                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3137                                  0xfffff000) << 32;
3138                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3139                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3140                 if (obj->tiling_mode == I915_TILING_Y)
3141                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3142                 val |= I965_FENCE_REG_VALID;
3143
3144                 I915_WRITE(fence_reg + 4, val >> 32);
3145                 POSTING_READ(fence_reg + 4);
3146
3147                 I915_WRITE(fence_reg + 0, val);
3148                 POSTING_READ(fence_reg);
3149         } else {
3150                 I915_WRITE(fence_reg + 4, 0);
3151                 POSTING_READ(fence_reg + 4);
3152         }
3153 }
3154
3155 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3156                                  struct drm_i915_gem_object *obj)
3157 {
3158         struct drm_i915_private *dev_priv = dev->dev_private;
3159         u32 val;
3160
3161         if (obj) {
3162                 u32 size = i915_gem_obj_ggtt_size(obj);
3163                 int pitch_val;
3164                 int tile_width;
3165
3166                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3167                      (size & -size) != size ||
3168                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3169                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3170                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3171
3172                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3173                         tile_width = 128;
3174                 else
3175                         tile_width = 512;
3176
3177                 /* Note: pitch better be a power of two tile widths */
3178                 pitch_val = obj->stride / tile_width;
3179                 pitch_val = ffs(pitch_val) - 1;
3180
3181                 val = i915_gem_obj_ggtt_offset(obj);
3182                 if (obj->tiling_mode == I915_TILING_Y)
3183                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3184                 val |= I915_FENCE_SIZE_BITS(size);
3185                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3186                 val |= I830_FENCE_REG_VALID;
3187         } else
3188                 val = 0;
3189
3190         if (reg < 8)
3191                 reg = FENCE_REG_830_0 + reg * 4;
3192         else
3193                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3194
3195         I915_WRITE(reg, val);
3196         POSTING_READ(reg);
3197 }
3198
3199 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3200                                 struct drm_i915_gem_object *obj)
3201 {
3202         struct drm_i915_private *dev_priv = dev->dev_private;
3203         uint32_t val;
3204
3205         if (obj) {
3206                 u32 size = i915_gem_obj_ggtt_size(obj);
3207                 uint32_t pitch_val;
3208
3209                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3210                      (size & -size) != size ||
3211                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3212                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3213                      i915_gem_obj_ggtt_offset(obj), size);
3214
3215                 pitch_val = obj->stride / 128;
3216                 pitch_val = ffs(pitch_val) - 1;
3217
3218                 val = i915_gem_obj_ggtt_offset(obj);
3219                 if (obj->tiling_mode == I915_TILING_Y)
3220                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3221                 val |= I830_FENCE_SIZE_BITS(size);
3222                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3223                 val |= I830_FENCE_REG_VALID;
3224         } else
3225                 val = 0;
3226
3227         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3228         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3229 }
3230
3231 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3232 {
3233         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3234 }
3235
3236 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3237                                  struct drm_i915_gem_object *obj)
3238 {
3239         struct drm_i915_private *dev_priv = dev->dev_private;
3240
3241         /* Ensure that all CPU reads are completed before installing a fence
3242          * and all writes before removing the fence.
3243          */
3244         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3245                 mb();
3246
3247         WARN(obj && (!obj->stride || !obj->tiling_mode),
3248              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3249              obj->stride, obj->tiling_mode);
3250
3251         if (IS_GEN2(dev))
3252                 i830_write_fence_reg(dev, reg, obj);
3253         else if (IS_GEN3(dev))
3254                 i915_write_fence_reg(dev, reg, obj);
3255         else if (INTEL_INFO(dev)->gen >= 4)
3256                 i965_write_fence_reg(dev, reg, obj);
3257
3258         /* And similarly be paranoid that no direct access to this region
3259          * is reordered to before the fence is installed.
3260          */
3261         if (i915_gem_object_needs_mb(obj))
3262                 mb();
3263 }
3264
3265 static inline int fence_number(struct drm_i915_private *dev_priv,
3266                                struct drm_i915_fence_reg *fence)
3267 {
3268         return fence - dev_priv->fence_regs;
3269 }
3270
3271 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3272                                          struct drm_i915_fence_reg *fence,
3273                                          bool enable)
3274 {
3275         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3276         int reg = fence_number(dev_priv, fence);
3277
3278         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3279
3280         if (enable) {
3281                 obj->fence_reg = reg;
3282                 fence->obj = obj;
3283                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3284         } else {
3285                 obj->fence_reg = I915_FENCE_REG_NONE;
3286                 fence->obj = NULL;
3287                 list_del_init(&fence->lru_list);
3288         }
3289         obj->fence_dirty = false;
3290 }
3291
3292 static int
3293 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3294 {
3295         if (obj->last_fenced_req) {
3296                 int ret = i915_wait_request(obj->last_fenced_req);
3297                 if (ret)
3298                         return ret;
3299
3300                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3301         }
3302
3303         return 0;
3304 }
3305
3306 int
3307 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3308 {
3309         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310         struct drm_i915_fence_reg *fence;
3311         int ret;
3312
3313         ret = i915_gem_object_wait_fence(obj);
3314         if (ret)
3315                 return ret;
3316
3317         if (obj->fence_reg == I915_FENCE_REG_NONE)
3318                 return 0;
3319
3320         fence = &dev_priv->fence_regs[obj->fence_reg];
3321
3322         if (WARN_ON(fence->pin_count))
3323                 return -EBUSY;
3324
3325         i915_gem_object_fence_lost(obj);
3326         i915_gem_object_update_fence(obj, fence, false);
3327
3328         return 0;
3329 }
3330
3331 static struct drm_i915_fence_reg *
3332 i915_find_fence_reg(struct drm_device *dev)
3333 {
3334         struct drm_i915_private *dev_priv = dev->dev_private;
3335         struct drm_i915_fence_reg *reg, *avail;
3336         int i;
3337
3338         /* First try to find a free reg */
3339         avail = NULL;
3340         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3341                 reg = &dev_priv->fence_regs[i];
3342                 if (!reg->obj)
3343                         return reg;
3344
3345                 if (!reg->pin_count)
3346                         avail = reg;
3347         }
3348
3349         if (avail == NULL)
3350                 goto deadlock;
3351
3352         /* None available, try to steal one or wait for a user to finish */
3353         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3354                 if (reg->pin_count)
3355                         continue;
3356
3357                 return reg;
3358         }
3359
3360 deadlock:
3361         /* Wait for completion of pending flips which consume fences */
3362         if (intel_has_pending_fb_unpin(dev))
3363                 return ERR_PTR(-EAGAIN);
3364
3365         return ERR_PTR(-EDEADLK);
3366 }
3367
3368 /**
3369  * i915_gem_object_get_fence - set up fencing for an object
3370  * @obj: object to map through a fence reg
3371  *
3372  * When mapping objects through the GTT, userspace wants to be able to write
3373  * to them without having to worry about swizzling if the object is tiled.
3374  * This function walks the fence regs looking for a free one for @obj,
3375  * stealing one if it can't find any.
3376  *
3377  * It then sets up the reg based on the object's properties: address, pitch
3378  * and tiling format.
3379  *
3380  * For an untiled surface, this removes any existing fence.
3381  */
3382 int
3383 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3384 {
3385         struct drm_device *dev = obj->base.dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         bool enable = obj->tiling_mode != I915_TILING_NONE;
3388         struct drm_i915_fence_reg *reg;
3389         int ret;
3390
3391         /* Have we updated the tiling parameters upon the object and so
3392          * will need to serialise the write to the associated fence register?
3393          */
3394         if (obj->fence_dirty) {
3395                 ret = i915_gem_object_wait_fence(obj);
3396                 if (ret)
3397                         return ret;
3398         }
3399
3400         /* Just update our place in the LRU if our fence is getting reused. */
3401         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3402                 reg = &dev_priv->fence_regs[obj->fence_reg];
3403                 if (!obj->fence_dirty) {
3404                         list_move_tail(&reg->lru_list,
3405                                        &dev_priv->mm.fence_list);
3406                         return 0;
3407                 }
3408         } else if (enable) {
3409                 if (WARN_ON(!obj->map_and_fenceable))
3410                         return -EINVAL;
3411
3412                 reg = i915_find_fence_reg(dev);
3413                 if (IS_ERR(reg))
3414                         return PTR_ERR(reg);
3415
3416                 if (reg->obj) {
3417                         struct drm_i915_gem_object *old = reg->obj;
3418
3419                         ret = i915_gem_object_wait_fence(old);
3420                         if (ret)
3421                                 return ret;
3422
3423                         i915_gem_object_fence_lost(old);
3424                 }
3425         } else
3426                 return 0;
3427
3428         i915_gem_object_update_fence(obj, reg, enable);
3429
3430         return 0;
3431 }
3432
3433 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3434                                      unsigned long cache_level)
3435 {
3436         struct drm_mm_node *gtt_space = &vma->node;
3437         struct drm_mm_node *other;
3438
3439         /*
3440          * On some machines we have to be careful when putting differing types
3441          * of snoopable memory together to avoid the prefetcher crossing memory
3442          * domains and dying. During vm initialisation, we decide whether or not
3443          * these constraints apply and set the drm_mm.color_adjust
3444          * appropriately.
3445          */
3446         if (vma->vm->mm.color_adjust == NULL)
3447                 return true;
3448
3449         if (!drm_mm_node_allocated(gtt_space))
3450                 return true;
3451
3452         if (list_empty(&gtt_space->node_list))
3453                 return true;
3454
3455         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3456         if (other->allocated && !other->hole_follows && other->color != cache_level)
3457                 return false;
3458
3459         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3460         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3461                 return false;
3462
3463         return true;
3464 }
3465
3466 /**
3467  * Finds free space in the GTT aperture and binds the object there.
3468  */
3469 static struct i915_vma *
3470 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3471                            struct i915_address_space *vm,
3472                            const struct i915_ggtt_view *ggtt_view,
3473                            unsigned alignment,
3474                            uint64_t flags)
3475 {
3476         struct drm_device *dev = obj->base.dev;
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478         u32 size, fence_size, fence_alignment, unfenced_alignment;
3479         unsigned long start =
3480                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3481         unsigned long end =
3482                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3483         struct i915_vma *vma;
3484         int ret;
3485
3486         if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3487                 return ERR_PTR(-EINVAL);
3488
3489         fence_size = i915_gem_get_gtt_size(dev,
3490                                            obj->base.size,
3491                                            obj->tiling_mode);
3492         fence_alignment = i915_gem_get_gtt_alignment(dev,
3493                                                      obj->base.size,
3494                                                      obj->tiling_mode, true);
3495         unfenced_alignment =
3496                 i915_gem_get_gtt_alignment(dev,
3497                                            obj->base.size,
3498                                            obj->tiling_mode, false);
3499
3500         if (alignment == 0)
3501                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3502                                                 unfenced_alignment;
3503         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3504                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3505                 return ERR_PTR(-EINVAL);
3506         }
3507
3508         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3509
3510         /* If the object is bigger than the entire aperture, reject it early
3511          * before evicting everything in a vain attempt to find space.
3512          */
3513         if (obj->base.size > end) {
3514                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3515                           obj->base.size,
3516                           flags & PIN_MAPPABLE ? "mappable" : "total",
3517                           end);
3518                 return ERR_PTR(-E2BIG);
3519         }
3520
3521         ret = i915_gem_object_get_pages(obj);
3522         if (ret)
3523                 return ERR_PTR(ret);
3524
3525         i915_gem_object_pin_pages(obj);
3526
3527         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3528                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3529
3530         if (IS_ERR(vma))
3531                 goto err_unpin;
3532
3533 search_free:
3534         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3535                                                   size, alignment,
3536                                                   obj->cache_level,
3537                                                   start, end,
3538                                                   DRM_MM_SEARCH_DEFAULT,
3539                                                   DRM_MM_CREATE_DEFAULT);
3540         if (ret) {
3541                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3542                                                obj->cache_level,
3543                                                start, end,
3544                                                flags);
3545                 if (ret == 0)
3546                         goto search_free;
3547
3548                 goto err_free_vma;
3549         }
3550         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3551                 ret = -EINVAL;
3552                 goto err_remove_node;
3553         }
3554
3555         ret = i915_gem_gtt_prepare_object(obj);
3556         if (ret)
3557                 goto err_remove_node;
3558
3559         trace_i915_vma_bind(vma, flags);
3560         ret = i915_vma_bind(vma, obj->cache_level,
3561                             flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3562         if (ret)
3563                 goto err_finish_gtt;
3564
3565         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3566         list_add_tail(&vma->mm_list, &vm->inactive_list);
3567
3568         return vma;
3569
3570 err_finish_gtt:
3571         i915_gem_gtt_finish_object(obj);
3572 err_remove_node:
3573         drm_mm_remove_node(&vma->node);
3574 err_free_vma:
3575         i915_gem_vma_destroy(vma);
3576         vma = ERR_PTR(ret);
3577 err_unpin:
3578         i915_gem_object_unpin_pages(obj);
3579         return vma;
3580 }
3581
3582 bool
3583 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3584                         bool force)
3585 {
3586         /* If we don't have a page list set up, then we're not pinned
3587          * to GPU, and we can ignore the cache flush because it'll happen
3588          * again at bind time.
3589          */
3590         if (obj->pages == NULL)
3591                 return false;
3592
3593         /*
3594          * Stolen memory is always coherent with the GPU as it is explicitly
3595          * marked as wc by the system, or the system is cache-coherent.
3596          */
3597         if (obj->stolen || obj->phys_handle)
3598                 return false;
3599
3600         /* If the GPU is snooping the contents of the CPU cache,
3601          * we do not need to manually clear the CPU cache lines.  However,
3602          * the caches are only snooped when the render cache is
3603          * flushed/invalidated.  As we always have to emit invalidations
3604          * and flushes when moving into and out of the RENDER domain, correct
3605          * snooping behaviour occurs naturally as the result of our domain
3606          * tracking.
3607          */
3608         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3609                 obj->cache_dirty = true;
3610                 return false;
3611         }
3612
3613         trace_i915_gem_object_clflush(obj);
3614         drm_clflush_sg(obj->pages);
3615         obj->cache_dirty = false;
3616
3617         return true;
3618 }
3619
3620 /** Flushes the GTT write domain for the object if it's dirty. */
3621 static void
3622 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3623 {
3624         uint32_t old_write_domain;
3625
3626         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3627                 return;
3628
3629         /* No actual flushing is required for the GTT write domain.  Writes
3630          * to it immediately go to main memory as far as we know, so there's
3631          * no chipset flush.  It also doesn't land in render cache.
3632          *
3633          * However, we do have to enforce the order so that all writes through
3634          * the GTT land before any writes to the device, such as updates to
3635          * the GATT itself.
3636          */
3637         wmb();
3638
3639         old_write_domain = obj->base.write_domain;
3640         obj->base.write_domain = 0;
3641
3642         intel_fb_obj_flush(obj, false);
3643
3644         trace_i915_gem_object_change_domain(obj,
3645                                             obj->base.read_domains,
3646                                             old_write_domain);
3647 }
3648
3649 /** Flushes the CPU write domain for the object if it's dirty. */
3650 static void
3651 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3652 {
3653         uint32_t old_write_domain;
3654
3655         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3656                 return;
3657
3658         if (i915_gem_clflush_object(obj, obj->pin_display))
3659                 i915_gem_chipset_flush(obj->base.dev);
3660
3661         old_write_domain = obj->base.write_domain;
3662         obj->base.write_domain = 0;
3663
3664         intel_fb_obj_flush(obj, false);
3665
3666         trace_i915_gem_object_change_domain(obj,
3667                                             obj->base.read_domains,
3668                                             old_write_domain);
3669 }
3670
3671 /**
3672  * Moves a single object to the GTT read, and possibly write domain.
3673  *
3674  * This function returns when the move is complete, including waiting on
3675  * flushes to occur.
3676  */
3677 int
3678 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3679 {
3680         uint32_t old_write_domain, old_read_domains;
3681         struct i915_vma *vma;
3682         int ret;
3683
3684         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3685                 return 0;
3686
3687         ret = i915_gem_object_wait_rendering(obj, !write);
3688         if (ret)
3689                 return ret;
3690
3691         i915_gem_object_retire(obj);
3692
3693         /* Flush and acquire obj->pages so that we are coherent through
3694          * direct access in memory with previous cached writes through
3695          * shmemfs and that our cache domain tracking remains valid.
3696          * For example, if the obj->filp was moved to swap without us
3697          * being notified and releasing the pages, we would mistakenly
3698          * continue to assume that the obj remained out of the CPU cached
3699          * domain.
3700          */
3701         ret = i915_gem_object_get_pages(obj);
3702         if (ret)
3703                 return ret;
3704
3705         i915_gem_object_flush_cpu_write_domain(obj);
3706
3707         /* Serialise direct access to this object with the barriers for
3708          * coherent writes from the GPU, by effectively invalidating the
3709          * GTT domain upon first access.
3710          */
3711         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3712                 mb();
3713
3714         old_write_domain = obj->base.write_domain;
3715         old_read_domains = obj->base.read_domains;
3716
3717         /* It should now be out of any other write domains, and we can update
3718          * the domain values for our changes.
3719          */
3720         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3721         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3722         if (write) {
3723                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3724                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3725                 obj->dirty = 1;
3726         }
3727
3728         if (write)
3729                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3730
3731         trace_i915_gem_object_change_domain(obj,
3732                                             old_read_domains,
3733                                             old_write_domain);
3734
3735         /* And bump the LRU for this access */
3736         vma = i915_gem_obj_to_ggtt(obj);
3737         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3738                 list_move_tail(&vma->mm_list,
3739                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3740
3741         return 0;
3742 }
3743
3744 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3745                                     enum i915_cache_level cache_level)
3746 {
3747         struct drm_device *dev = obj->base.dev;
3748         struct i915_vma *vma, *next;
3749         int ret;
3750
3751         if (obj->cache_level == cache_level)
3752                 return 0;
3753
3754         if (i915_gem_obj_is_pinned(obj)) {
3755                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3756                 return -EBUSY;
3757         }
3758
3759         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3760                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3761                         ret = i915_vma_unbind(vma);
3762                         if (ret)
3763                                 return ret;
3764                 }
3765         }
3766
3767         if (i915_gem_obj_bound_any(obj)) {
3768                 ret = i915_gem_object_finish_gpu(obj);
3769                 if (ret)
3770                         return ret;
3771
3772                 i915_gem_object_finish_gtt(obj);
3773
3774                 /* Before SandyBridge, you could not use tiling or fence
3775                  * registers with snooped memory, so relinquish any fences
3776                  * currently pointing to our region in the aperture.
3777                  */
3778                 if (INTEL_INFO(dev)->gen < 6) {
3779                         ret = i915_gem_object_put_fence(obj);
3780                         if (ret)
3781                                 return ret;
3782                 }
3783
3784                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3785                         if (drm_mm_node_allocated(&vma->node)) {
3786                                 ret = i915_vma_bind(vma, cache_level,
3787                                                     vma->bound & GLOBAL_BIND);
3788                                 if (ret)
3789                                         return ret;
3790                         }
3791         }
3792
3793         list_for_each_entry(vma, &obj->vma_list, vma_link)
3794                 vma->node.color = cache_level;
3795         obj->cache_level = cache_level;
3796
3797         if (obj->cache_dirty &&
3798             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3799             cpu_write_needs_clflush(obj)) {
3800                 if (i915_gem_clflush_object(obj, true))
3801                         i915_gem_chipset_flush(obj->base.dev);
3802         }
3803
3804         return 0;
3805 }
3806
3807 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3808                                struct drm_file *file)
3809 {
3810         struct drm_i915_gem_caching *args = data;
3811         struct drm_i915_gem_object *obj;
3812         int ret;
3813
3814         ret = i915_mutex_lock_interruptible(dev);
3815         if (ret)
3816                 return ret;
3817
3818         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3819         if (&obj->base == NULL) {
3820                 ret = -ENOENT;
3821                 goto unlock;
3822         }
3823
3824         switch (obj->cache_level) {
3825         case I915_CACHE_LLC:
3826         case I915_CACHE_L3_LLC:
3827                 args->caching = I915_CACHING_CACHED;
3828                 break;
3829
3830         case I915_CACHE_WT:
3831                 args->caching = I915_CACHING_DISPLAY;
3832                 break;
3833
3834         default:
3835                 args->caching = I915_CACHING_NONE;
3836                 break;
3837         }
3838
3839         drm_gem_object_unreference(&obj->base);
3840 unlock:
3841         mutex_unlock(&dev->struct_mutex);
3842         return ret;
3843 }
3844
3845 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3846                                struct drm_file *file)
3847 {
3848         struct drm_i915_gem_caching *args = data;
3849         struct drm_i915_gem_object *obj;
3850         enum i915_cache_level level;
3851         int ret;
3852
3853         switch (args->caching) {
3854         case I915_CACHING_NONE:
3855                 level = I915_CACHE_NONE;
3856                 break;
3857         case I915_CACHING_CACHED:
3858                 level = I915_CACHE_LLC;
3859                 break;
3860         case I915_CACHING_DISPLAY:
3861                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3862                 break;
3863         default:
3864                 return -EINVAL;
3865         }
3866
3867         ret = i915_mutex_lock_interruptible(dev);
3868         if (ret)
3869                 return ret;
3870
3871         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3872         if (&obj->base == NULL) {
3873                 ret = -ENOENT;
3874                 goto unlock;
3875         }
3876
3877         ret = i915_gem_object_set_cache_level(obj, level);
3878
3879         drm_gem_object_unreference(&obj->base);
3880 unlock:
3881         mutex_unlock(&dev->struct_mutex);
3882         return ret;
3883 }
3884
3885 static bool is_pin_display(struct drm_i915_gem_object *obj)
3886 {
3887         struct i915_vma *vma;
3888
3889         vma = i915_gem_obj_to_ggtt(obj);
3890         if (!vma)
3891                 return false;
3892
3893         /* There are 2 sources that pin objects:
3894          *   1. The display engine (scanouts, sprites, cursors);
3895          *   2. Reservations for execbuffer;
3896          *
3897          * We can ignore reservations as we hold the struct_mutex and
3898          * are only called outside of the reservation path.
3899          */
3900         return vma->pin_count;
3901 }
3902
3903 /*
3904  * Prepare buffer for display plane (scanout, cursors, etc).
3905  * Can be called from an uninterruptible phase (modesetting) and allows
3906  * any flushes to be pipelined (for pageflips).
3907  */
3908 int
3909 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3910                                      u32 alignment,
3911                                      struct intel_engine_cs *pipelined,
3912                                      const struct i915_ggtt_view *view)
3913 {
3914         u32 old_read_domains, old_write_domain;
3915         bool was_pin_display;
3916         int ret;
3917
3918         if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3919                 ret = i915_gem_object_sync(obj, pipelined);
3920                 if (ret)
3921                         return ret;
3922         }
3923
3924         /* Mark the pin_display early so that we account for the
3925          * display coherency whilst setting up the cache domains.
3926          */
3927         was_pin_display = obj->pin_display;
3928         obj->pin_display = true;
3929
3930         /* The display engine is not coherent with the LLC cache on gen6.  As
3931          * a result, we make sure that the pinning that is about to occur is
3932          * done with uncached PTEs. This is lowest common denominator for all
3933          * chipsets.
3934          *
3935          * However for gen6+, we could do better by using the GFDT bit instead
3936          * of uncaching, which would allow us to flush all the LLC-cached data
3937          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3938          */
3939         ret = i915_gem_object_set_cache_level(obj,
3940                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3941         if (ret)
3942                 goto err_unpin_display;
3943
3944         /* As the user may map the buffer once pinned in the display plane
3945          * (e.g. libkms for the bootup splash), we have to ensure that we
3946          * always use map_and_fenceable for all scanout buffers.
3947          */
3948         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3949                                        view->type == I915_GGTT_VIEW_NORMAL ?
3950                                        PIN_MAPPABLE : 0);
3951         if (ret)
3952                 goto err_unpin_display;
3953
3954         i915_gem_object_flush_cpu_write_domain(obj);
3955
3956         old_write_domain = obj->base.write_domain;
3957         old_read_domains = obj->base.read_domains;
3958
3959         /* It should now be out of any other write domains, and we can update
3960          * the domain values for our changes.
3961          */
3962         obj->base.write_domain = 0;
3963         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3964
3965         trace_i915_gem_object_change_domain(obj,
3966                                             old_read_domains,
3967                                             old_write_domain);
3968
3969         return 0;
3970
3971 err_unpin_display:
3972         WARN_ON(was_pin_display != is_pin_display(obj));
3973         obj->pin_display = was_pin_display;
3974         return ret;
3975 }
3976
3977 void
3978 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3979                                          const struct i915_ggtt_view *view)
3980 {
3981         i915_gem_object_ggtt_unpin_view(obj, view);
3982
3983         obj->pin_display = is_pin_display(obj);
3984 }
3985
3986 int
3987 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3988 {
3989         int ret;
3990
3991         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3992                 return 0;
3993
3994         ret = i915_gem_object_wait_rendering(obj, false);
3995         if (ret)
3996                 return ret;
3997
3998         /* Ensure that we invalidate the GPU's caches and TLBs. */
3999         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4000         return 0;
4001 }
4002
4003 /**
4004  * Moves a single object to the CPU read, and possibly write domain.
4005  *
4006  * This function returns when the move is complete, including waiting on
4007  * flushes to occur.
4008  */
4009 int
4010 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4011 {
4012         uint32_t old_write_domain, old_read_domains;
4013         int ret;
4014
4015         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4016                 return 0;
4017
4018         ret = i915_gem_object_wait_rendering(obj, !write);
4019         if (ret)
4020                 return ret;
4021
4022         i915_gem_object_retire(obj);
4023         i915_gem_object_flush_gtt_write_domain(obj);
4024
4025         old_write_domain = obj->base.write_domain;
4026         old_read_domains = obj->base.read_domains;
4027
4028         /* Flush the CPU cache if it's still invalid. */
4029         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4030                 i915_gem_clflush_object(obj, false);
4031
4032                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4033         }
4034
4035         /* It should now be out of any other write domains, and we can update
4036          * the domain values for our changes.
4037          */
4038         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4039
4040         /* If we're writing through the CPU, then the GPU read domains will
4041          * need to be invalidated at next use.
4042          */
4043         if (write) {
4044                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4045                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4046         }
4047
4048         if (write)
4049                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4050
4051         trace_i915_gem_object_change_domain(obj,
4052                                             old_read_domains,
4053                                             old_write_domain);
4054
4055         return 0;
4056 }
4057
4058 /* Throttle our rendering by waiting until the ring has completed our requests
4059  * emitted over 20 msec ago.
4060  *
4061  * Note that if we were to use the current jiffies each time around the loop,
4062  * we wouldn't escape the function with any frames outstanding if the time to
4063  * render a frame was over 20ms.
4064  *
4065  * This should get us reasonable parallelism between CPU and GPU but also
4066  * relatively low latency when blocking on a particular request to finish.
4067  */
4068 static int
4069 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4070 {
4071         struct drm_i915_private *dev_priv = dev->dev_private;
4072         struct drm_i915_file_private *file_priv = file->driver_priv;
4073         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4074         struct drm_i915_gem_request *request, *target = NULL;
4075         unsigned reset_counter;
4076         int ret;
4077
4078         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4079         if (ret)
4080                 return ret;
4081
4082         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4083         if (ret)
4084                 return ret;
4085
4086         spin_lock(&file_priv->mm.lock);
4087         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4088                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4089                         break;
4090
4091                 target = request;
4092         }
4093         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4094         if (target)
4095                 i915_gem_request_reference(target);
4096         spin_unlock(&file_priv->mm.lock);
4097
4098         if (target == NULL)
4099                 return 0;
4100
4101         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4102         if (ret == 0)
4103                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4104
4105         i915_gem_request_unreference__unlocked(target);
4106
4107         return ret;
4108 }
4109
4110 static bool
4111 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4112 {
4113         struct drm_i915_gem_object *obj = vma->obj;
4114
4115         if (alignment &&
4116             vma->node.start & (alignment - 1))
4117                 return true;
4118
4119         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4120                 return true;
4121
4122         if (flags & PIN_OFFSET_BIAS &&
4123             vma->node.start < (flags & PIN_OFFSET_MASK))
4124                 return true;
4125
4126         return false;
4127 }
4128
4129 static int
4130 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4131                        struct i915_address_space *vm,
4132                        const struct i915_ggtt_view *ggtt_view,
4133                        uint32_t alignment,
4134                        uint64_t flags)
4135 {
4136         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4137         struct i915_vma *vma;
4138         unsigned bound;
4139         int ret;
4140
4141         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4142                 return -ENODEV;
4143
4144         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4145                 return -EINVAL;
4146
4147         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4148                 return -EINVAL;
4149
4150         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4151                 return -EINVAL;
4152
4153         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4154                           i915_gem_obj_to_vma(obj, vm);
4155
4156         if (IS_ERR(vma))
4157                 return PTR_ERR(vma);
4158
4159         if (vma) {
4160                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4161                         return -EBUSY;
4162
4163                 if (i915_vma_misplaced(vma, alignment, flags)) {
4164                         unsigned long offset;
4165                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4166                                              i915_gem_obj_offset(obj, vm);
4167                         WARN(vma->pin_count,
4168                              "bo is already pinned in %s with incorrect alignment:"
4169                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4170                              " obj->map_and_fenceable=%d\n",
4171                              ggtt_view ? "ggtt" : "ppgtt",
4172                              offset,
4173                              alignment,
4174                              !!(flags & PIN_MAPPABLE),
4175                              obj->map_and_fenceable);
4176                         ret = i915_vma_unbind(vma);
4177                         if (ret)
4178                                 return ret;
4179
4180                         vma = NULL;
4181                 }
4182         }
4183
4184         bound = vma ? vma->bound : 0;
4185         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4186                 /* In true PPGTT, bind has possibly changed PDEs, which
4187                  * means we must do a context switch before the GPU can
4188                  * accurately read some of the VMAs.
4189                  */
4190                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4191                                                  flags);
4192                 if (IS_ERR(vma))
4193                         return PTR_ERR(vma);
4194         }
4195
4196         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4197                 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4198                 if (ret)
4199                         return ret;
4200         }
4201
4202         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4203                 bool mappable, fenceable;
4204                 u32 fence_size, fence_alignment;
4205
4206                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4207                                                    obj->base.size,
4208                                                    obj->tiling_mode);
4209                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4210                                                              obj->base.size,
4211                                                              obj->tiling_mode,
4212                                                              true);
4213
4214                 fenceable = (vma->node.size == fence_size &&
4215                              (vma->node.start & (fence_alignment - 1)) == 0);
4216
4217                 mappable = (vma->node.start + fence_size <=
4218                             dev_priv->gtt.mappable_end);
4219
4220                 obj->map_and_fenceable = mappable && fenceable;
4221         }
4222
4223         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4224
4225         vma->pin_count++;
4226         if (flags & PIN_MAPPABLE)
4227                 obj->pin_mappable |= true;
4228
4229         return 0;
4230 }
4231
4232 int
4233 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4234                     struct i915_address_space *vm,
4235                     uint32_t alignment,
4236                     uint64_t flags)
4237 {
4238         return i915_gem_object_do_pin(obj, vm,
4239                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4240                                       alignment, flags);
4241 }
4242
4243 int
4244 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4245                          const struct i915_ggtt_view *view,
4246                          uint32_t alignment,
4247                          uint64_t flags)
4248 {
4249         if (WARN_ONCE(!view, "no view specified"))
4250                 return -EINVAL;
4251
4252         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4253                                       alignment, flags | PIN_GLOBAL);
4254 }
4255
4256 void
4257 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4258                                 const struct i915_ggtt_view *view)
4259 {
4260         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4261
4262         BUG_ON(!vma);
4263         WARN_ON(vma->pin_count == 0);
4264         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4265
4266         if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4267                 obj->pin_mappable = false;
4268 }
4269
4270 bool
4271 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4272 {
4273         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4274                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4275                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4276
4277                 WARN_ON(!ggtt_vma ||
4278                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4279                         ggtt_vma->pin_count);
4280                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4281                 return true;
4282         } else
4283                 return false;
4284 }
4285
4286 void
4287 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4288 {
4289         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4290                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4291                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4292                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4293         }
4294 }
4295
4296 int
4297 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4298                     struct drm_file *file)
4299 {
4300         struct drm_i915_gem_busy *args = data;
4301         struct drm_i915_gem_object *obj;
4302         int ret;
4303
4304         ret = i915_mutex_lock_interruptible(dev);
4305         if (ret)
4306                 return ret;
4307
4308         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4309         if (&obj->base == NULL) {
4310                 ret = -ENOENT;
4311                 goto unlock;
4312         }
4313
4314         /* Count all active objects as busy, even if they are currently not used
4315          * by the gpu. Users of this interface expect objects to eventually
4316          * become non-busy without any further actions, therefore emit any
4317          * necessary flushes here.
4318          */
4319         ret = i915_gem_object_flush_active(obj);
4320
4321         args->busy = obj->active;
4322         if (obj->last_read_req) {
4323                 struct intel_engine_cs *ring;
4324                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4325                 ring = i915_gem_request_get_ring(obj->last_read_req);
4326                 args->busy |= intel_ring_flag(ring) << 16;
4327         }
4328
4329         drm_gem_object_unreference(&obj->base);
4330 unlock:
4331         mutex_unlock(&dev->struct_mutex);
4332         return ret;
4333 }
4334
4335 int
4336 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4337                         struct drm_file *file_priv)
4338 {
4339         return i915_gem_ring_throttle(dev, file_priv);
4340 }
4341
4342 int
4343 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4344                        struct drm_file *file_priv)
4345 {
4346         struct drm_i915_private *dev_priv = dev->dev_private;
4347         struct drm_i915_gem_madvise *args = data;
4348         struct drm_i915_gem_object *obj;
4349         int ret;
4350
4351         switch (args->madv) {
4352         case I915_MADV_DONTNEED:
4353         case I915_MADV_WILLNEED:
4354             break;
4355         default:
4356             return -EINVAL;
4357         }
4358
4359         ret = i915_mutex_lock_interruptible(dev);
4360         if (ret)
4361                 return ret;
4362
4363         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4364         if (&obj->base == NULL) {
4365                 ret = -ENOENT;
4366                 goto unlock;
4367         }
4368
4369         if (i915_gem_obj_is_pinned(obj)) {
4370                 ret = -EINVAL;
4371                 goto out;
4372         }
4373
4374         if (obj->pages &&
4375             obj->tiling_mode != I915_TILING_NONE &&
4376             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4377                 if (obj->madv == I915_MADV_WILLNEED)
4378                         i915_gem_object_unpin_pages(obj);
4379                 if (args->madv == I915_MADV_WILLNEED)
4380                         i915_gem_object_pin_pages(obj);
4381         }
4382
4383         if (obj->madv != __I915_MADV_PURGED)
4384                 obj->madv = args->madv;
4385
4386         /* if the object is no longer attached, discard its backing storage */
4387         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4388                 i915_gem_object_truncate(obj);
4389
4390         args->retained = obj->madv != __I915_MADV_PURGED;
4391
4392 out:
4393         drm_gem_object_unreference(&obj->base);
4394 unlock:
4395         mutex_unlock(&dev->struct_mutex);
4396         return ret;
4397 }
4398
4399 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4400                           const struct drm_i915_gem_object_ops *ops)
4401 {
4402         INIT_LIST_HEAD(&obj->global_list);
4403         INIT_LIST_HEAD(&obj->ring_list);
4404         INIT_LIST_HEAD(&obj->obj_exec_link);
4405         INIT_LIST_HEAD(&obj->vma_list);
4406         INIT_LIST_HEAD(&obj->batch_pool_link);
4407
4408         obj->ops = ops;
4409
4410         obj->fence_reg = I915_FENCE_REG_NONE;
4411         obj->madv = I915_MADV_WILLNEED;
4412
4413         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4414 }
4415
4416 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4417         .get_pages = i915_gem_object_get_pages_gtt,
4418         .put_pages = i915_gem_object_put_pages_gtt,
4419 };
4420
4421 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4422                                                   size_t size)
4423 {
4424         struct drm_i915_gem_object *obj;
4425         struct address_space *mapping;
4426         gfp_t mask;
4427
4428         obj = i915_gem_object_alloc(dev);
4429         if (obj == NULL)
4430                 return NULL;
4431
4432         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4433                 i915_gem_object_free(obj);
4434                 return NULL;
4435         }
4436
4437         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4438         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4439                 /* 965gm cannot relocate objects above 4GiB. */
4440                 mask &= ~__GFP_HIGHMEM;
4441                 mask |= __GFP_DMA32;
4442         }
4443
4444         mapping = file_inode(obj->base.filp)->i_mapping;
4445         mapping_set_gfp_mask(mapping, mask);
4446
4447         i915_gem_object_init(obj, &i915_gem_object_ops);
4448
4449         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4450         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4451
4452         if (HAS_LLC(dev)) {
4453                 /* On some devices, we can have the GPU use the LLC (the CPU
4454                  * cache) for about a 10% performance improvement
4455                  * compared to uncached.  Graphics requests other than
4456                  * display scanout are coherent with the CPU in
4457                  * accessing this cache.  This means in this mode we
4458                  * don't need to clflush on the CPU side, and on the
4459                  * GPU side we only need to flush internal caches to
4460                  * get data visible to the CPU.
4461                  *
4462                  * However, we maintain the display planes as UC, and so
4463                  * need to rebind when first used as such.
4464                  */
4465                 obj->cache_level = I915_CACHE_LLC;
4466         } else
4467                 obj->cache_level = I915_CACHE_NONE;
4468
4469         trace_i915_gem_object_create(obj);
4470
4471         return obj;
4472 }
4473
4474 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4475 {
4476         /* If we are the last user of the backing storage (be it shmemfs
4477          * pages or stolen etc), we know that the pages are going to be
4478          * immediately released. In this case, we can then skip copying
4479          * back the contents from the GPU.
4480          */
4481
4482         if (obj->madv != I915_MADV_WILLNEED)
4483                 return false;
4484
4485         if (obj->base.filp == NULL)
4486                 return true;
4487
4488         /* At first glance, this looks racy, but then again so would be
4489          * userspace racing mmap against close. However, the first external
4490          * reference to the filp can only be obtained through the
4491          * i915_gem_mmap_ioctl() which safeguards us against the user
4492          * acquiring such a reference whilst we are in the middle of
4493          * freeing the object.
4494          */
4495         return atomic_long_read(&obj->base.filp->f_count) == 1;
4496 }
4497
4498 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4499 {
4500         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4501         struct drm_device *dev = obj->base.dev;
4502         struct drm_i915_private *dev_priv = dev->dev_private;
4503         struct i915_vma *vma, *next;
4504
4505         intel_runtime_pm_get(dev_priv);
4506
4507         trace_i915_gem_object_destroy(obj);
4508
4509         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4510                 int ret;
4511
4512                 vma->pin_count = 0;
4513                 ret = i915_vma_unbind(vma);
4514                 if (WARN_ON(ret == -ERESTARTSYS)) {
4515                         bool was_interruptible;
4516
4517                         was_interruptible = dev_priv->mm.interruptible;
4518                         dev_priv->mm.interruptible = false;
4519
4520                         WARN_ON(i915_vma_unbind(vma));
4521
4522                         dev_priv->mm.interruptible = was_interruptible;
4523                 }
4524         }
4525
4526         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4527          * before progressing. */
4528         if (obj->stolen)
4529                 i915_gem_object_unpin_pages(obj);
4530
4531         WARN_ON(obj->frontbuffer_bits);
4532
4533         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4534             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4535             obj->tiling_mode != I915_TILING_NONE)
4536                 i915_gem_object_unpin_pages(obj);
4537
4538         if (WARN_ON(obj->pages_pin_count))
4539                 obj->pages_pin_count = 0;
4540         if (discard_backing_storage(obj))
4541                 obj->madv = I915_MADV_DONTNEED;
4542         i915_gem_object_put_pages(obj);
4543         i915_gem_object_free_mmap_offset(obj);
4544
4545         BUG_ON(obj->pages);
4546
4547         if (obj->base.import_attach)
4548                 drm_prime_gem_destroy(&obj->base, NULL);
4549
4550         if (obj->ops->release)
4551                 obj->ops->release(obj);
4552
4553         drm_gem_object_release(&obj->base);
4554         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4555
4556         kfree(obj->bit_17);
4557         i915_gem_object_free(obj);
4558
4559         intel_runtime_pm_put(dev_priv);
4560 }
4561
4562 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4563                                      struct i915_address_space *vm)
4564 {
4565         struct i915_vma *vma;
4566         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4567                 if (i915_is_ggtt(vma->vm) &&
4568                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4569                         continue;
4570                 if (vma->vm == vm)
4571                         return vma;
4572         }
4573         return NULL;
4574 }
4575
4576 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4577                                            const struct i915_ggtt_view *view)
4578 {
4579         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4580         struct i915_vma *vma;
4581
4582         if (WARN_ONCE(!view, "no view specified"))
4583                 return ERR_PTR(-EINVAL);
4584
4585         list_for_each_entry(vma, &obj->vma_list, vma_link)
4586                 if (vma->vm == ggtt &&
4587                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4588                         return vma;
4589         return NULL;
4590 }
4591
4592 void i915_gem_vma_destroy(struct i915_vma *vma)
4593 {
4594         struct i915_address_space *vm = NULL;
4595         WARN_ON(vma->node.allocated);
4596
4597         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4598         if (!list_empty(&vma->exec_list))
4599                 return;
4600
4601         vm = vma->vm;
4602
4603         if (!i915_is_ggtt(vm))
4604                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4605
4606         list_del(&vma->vma_link);
4607
4608         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4609 }
4610
4611 static void
4612 i915_gem_stop_ringbuffers(struct drm_device *dev)
4613 {
4614         struct drm_i915_private *dev_priv = dev->dev_private;
4615         struct intel_engine_cs *ring;
4616         int i;
4617
4618         for_each_ring(ring, dev_priv, i)
4619                 dev_priv->gt.stop_ring(ring);
4620 }
4621
4622 int
4623 i915_gem_suspend(struct drm_device *dev)
4624 {
4625         struct drm_i915_private *dev_priv = dev->dev_private;
4626         int ret = 0;
4627
4628         mutex_lock(&dev->struct_mutex);
4629         ret = i915_gpu_idle(dev);
4630         if (ret)
4631                 goto err;
4632
4633         i915_gem_retire_requests(dev);
4634
4635         i915_gem_stop_ringbuffers(dev);
4636         mutex_unlock(&dev->struct_mutex);
4637
4638         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4639         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4640         flush_delayed_work(&dev_priv->mm.idle_work);
4641
4642         /* Assert that we sucessfully flushed all the work and
4643          * reset the GPU back to its idle, low power state.
4644          */
4645         WARN_ON(dev_priv->mm.busy);
4646
4647         return 0;
4648
4649 err:
4650         mutex_unlock(&dev->struct_mutex);
4651         return ret;
4652 }
4653
4654 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4655 {
4656         struct drm_device *dev = ring->dev;
4657         struct drm_i915_private *dev_priv = dev->dev_private;
4658         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4659         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4660         int i, ret;
4661
4662         if (!HAS_L3_DPF(dev) || !remap_info)
4663                 return 0;
4664
4665         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4666         if (ret)
4667                 return ret;
4668
4669         /*
4670          * Note: We do not worry about the concurrent register cacheline hang
4671          * here because no other code should access these registers other than
4672          * at initialization time.
4673          */
4674         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4675                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4676                 intel_ring_emit(ring, reg_base + i);
4677                 intel_ring_emit(ring, remap_info[i/4]);
4678         }
4679
4680         intel_ring_advance(ring);
4681
4682         return ret;
4683 }
4684
4685 void i915_gem_init_swizzling(struct drm_device *dev)
4686 {
4687         struct drm_i915_private *dev_priv = dev->dev_private;
4688
4689         if (INTEL_INFO(dev)->gen < 5 ||
4690             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4691                 return;
4692
4693         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4694                                  DISP_TILE_SURFACE_SWIZZLING);
4695
4696         if (IS_GEN5(dev))
4697                 return;
4698
4699         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4700         if (IS_GEN6(dev))
4701                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4702         else if (IS_GEN7(dev))
4703                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4704         else if (IS_GEN8(dev))
4705                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4706         else
4707                 BUG();
4708 }
4709
4710 static bool
4711 intel_enable_blt(struct drm_device *dev)
4712 {
4713         if (!HAS_BLT(dev))
4714                 return false;
4715
4716         /* The blitter was dysfunctional on early prototypes */
4717         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4718                 DRM_INFO("BLT not supported on this pre-production hardware;"
4719                          " graphics performance will be degraded.\n");
4720                 return false;
4721         }
4722
4723         return true;
4724 }
4725
4726 static void init_unused_ring(struct drm_device *dev, u32 base)
4727 {
4728         struct drm_i915_private *dev_priv = dev->dev_private;
4729
4730         I915_WRITE(RING_CTL(base), 0);
4731         I915_WRITE(RING_HEAD(base), 0);
4732         I915_WRITE(RING_TAIL(base), 0);
4733         I915_WRITE(RING_START(base), 0);
4734 }
4735
4736 static void init_unused_rings(struct drm_device *dev)
4737 {
4738         if (IS_I830(dev)) {
4739                 init_unused_ring(dev, PRB1_BASE);
4740                 init_unused_ring(dev, SRB0_BASE);
4741                 init_unused_ring(dev, SRB1_BASE);
4742                 init_unused_ring(dev, SRB2_BASE);
4743                 init_unused_ring(dev, SRB3_BASE);
4744         } else if (IS_GEN2(dev)) {
4745                 init_unused_ring(dev, SRB0_BASE);
4746                 init_unused_ring(dev, SRB1_BASE);
4747         } else if (IS_GEN3(dev)) {
4748                 init_unused_ring(dev, PRB1_BASE);
4749                 init_unused_ring(dev, PRB2_BASE);
4750         }
4751 }
4752
4753 int i915_gem_init_rings(struct drm_device *dev)
4754 {
4755         struct drm_i915_private *dev_priv = dev->dev_private;
4756         int ret;
4757
4758         ret = intel_init_render_ring_buffer(dev);
4759         if (ret)
4760                 return ret;
4761
4762         if (HAS_BSD(dev)) {
4763                 ret = intel_init_bsd_ring_buffer(dev);
4764                 if (ret)
4765                         goto cleanup_render_ring;
4766         }
4767
4768         if (intel_enable_blt(dev)) {
4769                 ret = intel_init_blt_ring_buffer(dev);
4770                 if (ret)
4771                         goto cleanup_bsd_ring;
4772         }
4773
4774         if (HAS_VEBOX(dev)) {
4775                 ret = intel_init_vebox_ring_buffer(dev);
4776                 if (ret)
4777                         goto cleanup_blt_ring;
4778         }
4779
4780         if (HAS_BSD2(dev)) {
4781                 ret = intel_init_bsd2_ring_buffer(dev);
4782                 if (ret)
4783                         goto cleanup_vebox_ring;
4784         }
4785
4786         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4787         if (ret)
4788                 goto cleanup_bsd2_ring;
4789
4790         return 0;
4791
4792 cleanup_bsd2_ring:
4793         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4794 cleanup_vebox_ring:
4795         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4796 cleanup_blt_ring:
4797         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4798 cleanup_bsd_ring:
4799         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4800 cleanup_render_ring:
4801         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4802
4803         return ret;
4804 }
4805
4806 int
4807 i915_gem_init_hw(struct drm_device *dev)
4808 {
4809         struct drm_i915_private *dev_priv = dev->dev_private;
4810         struct intel_engine_cs *ring;
4811         int ret, i;
4812
4813         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4814                 return -EIO;
4815
4816         /* Double layer security blanket, see i915_gem_init() */
4817         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4818
4819         if (dev_priv->ellc_size)
4820                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4821
4822         if (IS_HASWELL(dev))
4823                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4824                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4825
4826         if (HAS_PCH_NOP(dev)) {
4827                 if (IS_IVYBRIDGE(dev)) {
4828                         u32 temp = I915_READ(GEN7_MSG_CTL);
4829                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4830                         I915_WRITE(GEN7_MSG_CTL, temp);
4831                 } else if (INTEL_INFO(dev)->gen >= 7) {
4832                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4833                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4834                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4835                 }
4836         }
4837
4838         i915_gem_init_swizzling(dev);
4839
4840         /*
4841          * At least 830 can leave some of the unused rings
4842          * "active" (ie. head != tail) after resume which
4843          * will prevent c3 entry. Makes sure all unused rings
4844          * are totally idle.
4845          */
4846         init_unused_rings(dev);
4847
4848         for_each_ring(ring, dev_priv, i) {
4849                 ret = ring->init_hw(ring);
4850                 if (ret)
4851                         goto out;
4852         }
4853
4854         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4855                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4856
4857         ret = i915_ppgtt_init_hw(dev);
4858         if (ret && ret != -EIO) {
4859                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4860                 i915_gem_cleanup_ringbuffer(dev);
4861         }
4862
4863         ret = i915_gem_context_enable(dev_priv);
4864         if (ret && ret != -EIO) {
4865                 DRM_ERROR("Context enable failed %d\n", ret);
4866                 i915_gem_cleanup_ringbuffer(dev);
4867
4868                 goto out;
4869         }
4870
4871 out:
4872         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4873         return ret;
4874 }
4875
4876 int i915_gem_init(struct drm_device *dev)
4877 {
4878         struct drm_i915_private *dev_priv = dev->dev_private;
4879         int ret;
4880
4881         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4882                         i915.enable_execlists);
4883
4884         mutex_lock(&dev->struct_mutex);
4885
4886         if (IS_VALLEYVIEW(dev)) {
4887                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4888                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4889                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4890                               VLV_GTLC_ALLOWWAKEACK), 10))
4891                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4892         }
4893
4894         if (!i915.enable_execlists) {
4895                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4896                 dev_priv->gt.init_rings = i915_gem_init_rings;
4897                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4898                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4899         } else {
4900                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4901                 dev_priv->gt.init_rings = intel_logical_rings_init;
4902                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4903                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4904         }
4905
4906         /* This is just a security blanket to placate dragons.
4907          * On some systems, we very sporadically observe that the first TLBs
4908          * used by the CS may be stale, despite us poking the TLB reset. If
4909          * we hold the forcewake during initialisation these problems
4910          * just magically go away.
4911          */
4912         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4913
4914         ret = i915_gem_init_userptr(dev);
4915         if (ret)
4916                 goto out_unlock;
4917
4918         i915_gem_init_global_gtt(dev);
4919
4920         ret = i915_gem_context_init(dev);
4921         if (ret)
4922                 goto out_unlock;
4923
4924         ret = dev_priv->gt.init_rings(dev);
4925         if (ret)
4926                 goto out_unlock;
4927
4928         ret = i915_gem_init_hw(dev);
4929         if (ret == -EIO) {
4930                 /* Allow ring initialisation to fail by marking the GPU as
4931                  * wedged. But we only want to do this where the GPU is angry,
4932                  * for all other failure, such as an allocation failure, bail.
4933                  */
4934                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4935                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4936                 ret = 0;
4937         }
4938
4939 out_unlock:
4940         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4941         mutex_unlock(&dev->struct_mutex);
4942
4943         return ret;
4944 }
4945
4946 void
4947 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4948 {
4949         struct drm_i915_private *dev_priv = dev->dev_private;
4950         struct intel_engine_cs *ring;
4951         int i;
4952
4953         for_each_ring(ring, dev_priv, i)
4954                 dev_priv->gt.cleanup_ring(ring);
4955 }
4956
4957 static void
4958 init_ring_lists(struct intel_engine_cs *ring)
4959 {
4960         INIT_LIST_HEAD(&ring->active_list);
4961         INIT_LIST_HEAD(&ring->request_list);
4962 }
4963
4964 void i915_init_vm(struct drm_i915_private *dev_priv,
4965                   struct i915_address_space *vm)
4966 {
4967         if (!i915_is_ggtt(vm))
4968                 drm_mm_init(&vm->mm, vm->start, vm->total);
4969         vm->dev = dev_priv->dev;
4970         INIT_LIST_HEAD(&vm->active_list);
4971         INIT_LIST_HEAD(&vm->inactive_list);
4972         INIT_LIST_HEAD(&vm->global_link);
4973         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4974 }
4975
4976 void
4977 i915_gem_load(struct drm_device *dev)
4978 {
4979         struct drm_i915_private *dev_priv = dev->dev_private;
4980         int i;
4981
4982         dev_priv->objects =
4983                 kmem_cache_create("i915_gem_object",
4984                                   sizeof(struct drm_i915_gem_object), 0,
4985                                   SLAB_HWCACHE_ALIGN,
4986                                   NULL);
4987         dev_priv->vmas =
4988                 kmem_cache_create("i915_gem_vma",
4989                                   sizeof(struct i915_vma), 0,
4990                                   SLAB_HWCACHE_ALIGN,
4991                                   NULL);
4992         dev_priv->requests =
4993                 kmem_cache_create("i915_gem_request",
4994                                   sizeof(struct drm_i915_gem_request), 0,
4995                                   SLAB_HWCACHE_ALIGN,
4996                                   NULL);
4997
4998         INIT_LIST_HEAD(&dev_priv->vm_list);
4999         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5000
5001         INIT_LIST_HEAD(&dev_priv->context_list);
5002         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5003         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5004         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5005         for (i = 0; i < I915_NUM_RINGS; i++)
5006                 init_ring_lists(&dev_priv->ring[i]);
5007         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5008                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5009         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5010                           i915_gem_retire_work_handler);
5011         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5012                           i915_gem_idle_work_handler);
5013         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5014
5015         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5016
5017         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5018                 dev_priv->num_fence_regs = 32;
5019         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5020                 dev_priv->num_fence_regs = 16;
5021         else
5022                 dev_priv->num_fence_regs = 8;
5023
5024         if (intel_vgpu_active(dev))
5025                 dev_priv->num_fence_regs =
5026                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5027
5028         /* Initialize fence registers to zero */
5029         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5030         i915_gem_restore_fences(dev);
5031
5032         i915_gem_detect_bit_6_swizzle(dev);
5033         init_waitqueue_head(&dev_priv->pending_flip_queue);
5034
5035         dev_priv->mm.interruptible = true;
5036
5037         i915_gem_shrinker_init(dev_priv);
5038
5039         mutex_init(&dev_priv->fb_tracking.lock);
5040 }
5041
5042 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5043 {
5044         struct drm_i915_file_private *file_priv = file->driver_priv;
5045
5046         /* Clean up our request list when the client is going away, so that
5047          * later retire_requests won't dereference our soon-to-be-gone
5048          * file_priv.
5049          */
5050         spin_lock(&file_priv->mm.lock);
5051         while (!list_empty(&file_priv->mm.request_list)) {
5052                 struct drm_i915_gem_request *request;
5053
5054                 request = list_first_entry(&file_priv->mm.request_list,
5055                                            struct drm_i915_gem_request,
5056                                            client_list);
5057                 list_del(&request->client_list);
5058                 request->file_priv = NULL;
5059         }
5060         spin_unlock(&file_priv->mm.lock);
5061
5062         if (!list_empty(&file_priv->rps_boost)) {
5063                 mutex_lock(&to_i915(dev)->rps.hw_lock);
5064                 list_del(&file_priv->rps_boost);
5065                 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5066         }
5067 }
5068
5069 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5070 {
5071         struct drm_i915_file_private *file_priv;
5072         int ret;
5073
5074         DRM_DEBUG_DRIVER("\n");
5075
5076         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5077         if (!file_priv)
5078                 return -ENOMEM;
5079
5080         file->driver_priv = file_priv;
5081         file_priv->dev_priv = dev->dev_private;
5082         file_priv->file = file;
5083         INIT_LIST_HEAD(&file_priv->rps_boost);
5084
5085         spin_lock_init(&file_priv->mm.lock);
5086         INIT_LIST_HEAD(&file_priv->mm.request_list);
5087
5088         ret = i915_gem_context_open(dev, file);
5089         if (ret)
5090                 kfree(file_priv);
5091
5092         return ret;
5093 }
5094
5095 /**
5096  * i915_gem_track_fb - update frontbuffer tracking
5097  * old: current GEM buffer for the frontbuffer slots
5098  * new: new GEM buffer for the frontbuffer slots
5099  * frontbuffer_bits: bitmask of frontbuffer slots
5100  *
5101  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5102  * from @old and setting them in @new. Both @old and @new can be NULL.
5103  */
5104 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5105                        struct drm_i915_gem_object *new,
5106                        unsigned frontbuffer_bits)
5107 {
5108         if (old) {
5109                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5110                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5111                 old->frontbuffer_bits &= ~frontbuffer_bits;
5112         }
5113
5114         if (new) {
5115                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5116                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5117                 new->frontbuffer_bits |= frontbuffer_bits;
5118         }
5119 }
5120
5121 /* All the new VM stuff */
5122 unsigned long
5123 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5124                     struct i915_address_space *vm)
5125 {
5126         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5127         struct i915_vma *vma;
5128
5129         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5130
5131         list_for_each_entry(vma, &o->vma_list, vma_link) {
5132                 if (i915_is_ggtt(vma->vm) &&
5133                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5134                         continue;
5135                 if (vma->vm == vm)
5136                         return vma->node.start;
5137         }
5138
5139         WARN(1, "%s vma for this object not found.\n",
5140              i915_is_ggtt(vm) ? "global" : "ppgtt");
5141         return -1;
5142 }
5143
5144 unsigned long
5145 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5146                               const struct i915_ggtt_view *view)
5147 {
5148         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5149         struct i915_vma *vma;
5150
5151         list_for_each_entry(vma, &o->vma_list, vma_link)
5152                 if (vma->vm == ggtt &&
5153                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5154                         return vma->node.start;
5155
5156         WARN(1, "global vma for this object not found.\n");
5157         return -1;
5158 }
5159
5160 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5161                         struct i915_address_space *vm)
5162 {
5163         struct i915_vma *vma;
5164
5165         list_for_each_entry(vma, &o->vma_list, vma_link) {
5166                 if (i915_is_ggtt(vma->vm) &&
5167                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5168                         continue;
5169                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5170                         return true;
5171         }
5172
5173         return false;
5174 }
5175
5176 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5177                                   const struct i915_ggtt_view *view)
5178 {
5179         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5180         struct i915_vma *vma;
5181
5182         list_for_each_entry(vma, &o->vma_list, vma_link)
5183                 if (vma->vm == ggtt &&
5184                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5185                     drm_mm_node_allocated(&vma->node))
5186                         return true;
5187
5188         return false;
5189 }
5190
5191 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5192 {
5193         struct i915_vma *vma;
5194
5195         list_for_each_entry(vma, &o->vma_list, vma_link)
5196                 if (drm_mm_node_allocated(&vma->node))
5197                         return true;
5198
5199         return false;
5200 }
5201
5202 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5203                                 struct i915_address_space *vm)
5204 {
5205         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5206         struct i915_vma *vma;
5207
5208         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5209
5210         BUG_ON(list_empty(&o->vma_list));
5211
5212         list_for_each_entry(vma, &o->vma_list, vma_link) {
5213                 if (i915_is_ggtt(vma->vm) &&
5214                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5215                         continue;
5216                 if (vma->vm == vm)
5217                         return vma->node.size;
5218         }
5219         return 0;
5220 }
5221
5222 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5223 {
5224         struct i915_vma *vma;
5225         list_for_each_entry(vma, &obj->vma_list, vma_link) {
5226                 if (i915_is_ggtt(vma->vm) &&
5227                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5228                         continue;
5229                 if (vma->pin_count > 0)
5230                         return true;
5231         }
5232         return false;
5233 }
5234