]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
8e716b6b5d59a98cf3f6a9fe1e39f1d8a8cab792
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *ring)
1145 {
1146         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151         unsigned long t;
1152
1153         /* Cheaply and approximately convert from nanoseconds to microseconds.
1154          * The result and subsequent calculations are also defined in the same
1155          * approximate microseconds units. The principal source of timing
1156          * error here is from the simple truncation.
1157          *
1158          * Note that local_clock() is only defined wrt to the current CPU;
1159          * the comparisons are no longer valid if we switch CPUs. Instead of
1160          * blocking preemption for the entire busywait, we can detect the CPU
1161          * switch and use that as indicator of system load and a reason to
1162          * stop busywaiting, see busywait_stop().
1163          */
1164         *cpu = get_cpu();
1165         t = local_clock() >> 10;
1166         put_cpu();
1167
1168         return t;
1169 }
1170
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173         unsigned this_cpu;
1174
1175         if (time_after(local_clock_us(&this_cpu), timeout))
1176                 return true;
1177
1178         return this_cpu != cpu;
1179 }
1180
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183         unsigned long timeout;
1184         unsigned cpu;
1185
1186         /* When waiting for high frequency requests, e.g. during synchronous
1187          * rendering split between the CPU and GPU, the finite amount of time
1188          * required to set up the irq and wait upon it limits the response
1189          * rate. By busywaiting on the request completion for a short while we
1190          * can service the high frequency waits as quick as possible. However,
1191          * if it is a slow request, we want to sleep as quickly as possible.
1192          * The tradeoff between waiting and sleeping is roughly the time it
1193          * takes to sleep on a request, on the order of a microsecond.
1194          */
1195
1196         if (req->ring->irq_refcount)
1197                 return -EBUSY;
1198
1199         /* Only spin if we know the GPU is processing this request */
1200         if (!i915_gem_request_started(req, true))
1201                 return -EAGAIN;
1202
1203         timeout = local_clock_us(&cpu) + 5;
1204         while (!need_resched()) {
1205                 if (i915_gem_request_completed(req, true))
1206                         return 0;
1207
1208                 if (signal_pending_state(state, current))
1209                         break;
1210
1211                 if (busywait_stop(timeout, cpu))
1212                         break;
1213
1214                 cpu_relax_lowlatency();
1215         }
1216
1217         if (i915_gem_request_completed(req, false))
1218                 return 0;
1219
1220         return -EAGAIN;
1221 }
1222
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241                         unsigned reset_counter,
1242                         bool interruptible,
1243                         s64 *timeout,
1244                         struct intel_rps_client *rps)
1245 {
1246         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247         struct drm_device *dev = ring->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         const bool irq_test_in_progress =
1250                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252         DEFINE_WAIT(wait);
1253         unsigned long timeout_expire;
1254         s64 before = 0; /* Only to silence a compiler warning. */
1255         int ret;
1256
1257         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259         if (list_empty(&req->list))
1260                 return 0;
1261
1262         if (i915_gem_request_completed(req, true))
1263                 return 0;
1264
1265         timeout_expire = 0;
1266         if (timeout) {
1267                 if (WARN_ON(*timeout < 0))
1268                         return -EINVAL;
1269
1270                 if (*timeout == 0)
1271                         return -ETIME;
1272
1273                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275                 /*
1276                  * Record current time in case interrupted by signal, or wedged.
1277                  */
1278                 before = ktime_get_raw_ns();
1279         }
1280
1281         if (INTEL_INFO(dev_priv)->gen >= 6)
1282                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284         trace_i915_gem_request_wait_begin(req);
1285
1286         /* Optimistic spin for the next jiffie before touching IRQs */
1287         ret = __i915_spin_request(req, state);
1288         if (ret == 0)
1289                 goto out;
1290
1291         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292                 ret = -ENODEV;
1293                 goto out;
1294         }
1295
1296         for (;;) {
1297                 struct timer_list timer;
1298
1299                 prepare_to_wait(&ring->irq_queue, &wait, state);
1300
1301                 /* We need to check whether any gpu reset happened in between
1302                  * the caller grabbing the seqno and now ... */
1303                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305                          * is truely gone. */
1306                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307                         if (ret == 0)
1308                                 ret = -EAGAIN;
1309                         break;
1310                 }
1311
1312                 if (i915_gem_request_completed(req, false)) {
1313                         ret = 0;
1314                         break;
1315                 }
1316
1317                 if (signal_pending_state(state, current)) {
1318                         ret = -ERESTARTSYS;
1319                         break;
1320                 }
1321
1322                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323                         ret = -ETIME;
1324                         break;
1325                 }
1326
1327                 timer.function = NULL;
1328                 if (timeout || missed_irq(dev_priv, ring)) {
1329                         unsigned long expire;
1330
1331                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333                         mod_timer(&timer, expire);
1334                 }
1335
1336                 io_schedule();
1337
1338                 if (timer.function) {
1339                         del_singleshot_timer_sync(&timer);
1340                         destroy_timer_on_stack(&timer);
1341                 }
1342         }
1343         if (!irq_test_in_progress)
1344                 ring->irq_put(ring);
1345
1346         finish_wait(&ring->irq_queue, &wait);
1347
1348 out:
1349         trace_i915_gem_request_wait_end(req);
1350
1351         if (timeout) {
1352                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354                 *timeout = tres < 0 ? 0 : tres;
1355
1356                 /*
1357                  * Apparently ktime isn't accurate enough and occasionally has a
1358                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359                  * things up to make the test happy. We allow up to 1 jiffy.
1360                  *
1361                  * This is a regrssion from the timespec->ktime conversion.
1362                  */
1363                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364                         *timeout = 0;
1365         }
1366
1367         return ret;
1368 }
1369
1370 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371                                    struct drm_file *file)
1372 {
1373         struct drm_i915_private *dev_private;
1374         struct drm_i915_file_private *file_priv;
1375
1376         WARN_ON(!req || !file || req->file_priv);
1377
1378         if (!req || !file)
1379                 return -EINVAL;
1380
1381         if (req->file_priv)
1382                 return -EINVAL;
1383
1384         dev_private = req->ring->dev->dev_private;
1385         file_priv = file->driver_priv;
1386
1387         spin_lock(&file_priv->mm.lock);
1388         req->file_priv = file_priv;
1389         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390         spin_unlock(&file_priv->mm.lock);
1391
1392         req->pid = get_pid(task_pid(current));
1393
1394         return 0;
1395 }
1396
1397 static inline void
1398 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399 {
1400         struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402         if (!file_priv)
1403                 return;
1404
1405         spin_lock(&file_priv->mm.lock);
1406         list_del(&request->client_list);
1407         request->file_priv = NULL;
1408         spin_unlock(&file_priv->mm.lock);
1409
1410         put_pid(request->pid);
1411         request->pid = NULL;
1412 }
1413
1414 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415 {
1416         trace_i915_gem_request_retire(request);
1417
1418         /* We know the GPU must have read the request to have
1419          * sent us the seqno + interrupt, so use the position
1420          * of tail of the request to update the last known position
1421          * of the GPU head.
1422          *
1423          * Note this requires that we are always called in request
1424          * completion order.
1425          */
1426         request->ringbuf->last_retired_head = request->postfix;
1427
1428         list_del_init(&request->list);
1429         i915_gem_request_remove_from_client(request);
1430
1431         i915_gem_request_unreference(request);
1432 }
1433
1434 static void
1435 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436 {
1437         struct intel_engine_cs *engine = req->ring;
1438         struct drm_i915_gem_request *tmp;
1439
1440         lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442         if (list_empty(&req->list))
1443                 return;
1444
1445         do {
1446                 tmp = list_first_entry(&engine->request_list,
1447                                        typeof(*tmp), list);
1448
1449                 i915_gem_request_retire(tmp);
1450         } while (tmp != req);
1451
1452         WARN_ON(i915_verify_lists(engine->dev));
1453 }
1454
1455 /**
1456  * Waits for a request to be signaled, and cleans up the
1457  * request and object lists appropriately for that event.
1458  */
1459 int
1460 i915_wait_request(struct drm_i915_gem_request *req)
1461 {
1462         struct drm_device *dev;
1463         struct drm_i915_private *dev_priv;
1464         bool interruptible;
1465         int ret;
1466
1467         BUG_ON(req == NULL);
1468
1469         dev = req->ring->dev;
1470         dev_priv = dev->dev_private;
1471         interruptible = dev_priv->mm.interruptible;
1472
1473         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474
1475         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476         if (ret)
1477                 return ret;
1478
1479         ret = __i915_wait_request(req,
1480                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1481                                   interruptible, NULL, NULL);
1482         if (ret)
1483                 return ret;
1484
1485         __i915_gem_request_retire__upto(req);
1486         return 0;
1487 }
1488
1489 /**
1490  * Ensures that all rendering to the object has completed and the object is
1491  * safe to unbind from the GTT or access from the CPU.
1492  */
1493 int
1494 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495                                bool readonly)
1496 {
1497         int ret, i;
1498
1499         if (!obj->active)
1500                 return 0;
1501
1502         if (readonly) {
1503                 if (obj->last_write_req != NULL) {
1504                         ret = i915_wait_request(obj->last_write_req);
1505                         if (ret)
1506                                 return ret;
1507
1508                         i = obj->last_write_req->ring->id;
1509                         if (obj->last_read_req[i] == obj->last_write_req)
1510                                 i915_gem_object_retire__read(obj, i);
1511                         else
1512                                 i915_gem_object_retire__write(obj);
1513                 }
1514         } else {
1515                 for (i = 0; i < I915_NUM_RINGS; i++) {
1516                         if (obj->last_read_req[i] == NULL)
1517                                 continue;
1518
1519                         ret = i915_wait_request(obj->last_read_req[i]);
1520                         if (ret)
1521                                 return ret;
1522
1523                         i915_gem_object_retire__read(obj, i);
1524                 }
1525                 RQ_BUG_ON(obj->active);
1526         }
1527
1528         return 0;
1529 }
1530
1531 static void
1532 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533                                struct drm_i915_gem_request *req)
1534 {
1535         int ring = req->ring->id;
1536
1537         if (obj->last_read_req[ring] == req)
1538                 i915_gem_object_retire__read(obj, ring);
1539         else if (obj->last_write_req == req)
1540                 i915_gem_object_retire__write(obj);
1541
1542         __i915_gem_request_retire__upto(req);
1543 }
1544
1545 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1546  * as the object state may change during this call.
1547  */
1548 static __must_check int
1549 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550                                             struct intel_rps_client *rps,
1551                                             bool readonly)
1552 {
1553         struct drm_device *dev = obj->base.dev;
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556         unsigned reset_counter;
1557         int ret, i, n = 0;
1558
1559         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560         BUG_ON(!dev_priv->mm.interruptible);
1561
1562         if (!obj->active)
1563                 return 0;
1564
1565         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566         if (ret)
1567                 return ret;
1568
1569         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571         if (readonly) {
1572                 struct drm_i915_gem_request *req;
1573
1574                 req = obj->last_write_req;
1575                 if (req == NULL)
1576                         return 0;
1577
1578                 requests[n++] = i915_gem_request_reference(req);
1579         } else {
1580                 for (i = 0; i < I915_NUM_RINGS; i++) {
1581                         struct drm_i915_gem_request *req;
1582
1583                         req = obj->last_read_req[i];
1584                         if (req == NULL)
1585                                 continue;
1586
1587                         requests[n++] = i915_gem_request_reference(req);
1588                 }
1589         }
1590
1591         mutex_unlock(&dev->struct_mutex);
1592         for (i = 0; ret == 0 && i < n; i++)
1593                 ret = __i915_wait_request(requests[i], reset_counter, true,
1594                                           NULL, rps);
1595         mutex_lock(&dev->struct_mutex);
1596
1597         for (i = 0; i < n; i++) {
1598                 if (ret == 0)
1599                         i915_gem_object_retire_request(obj, requests[i]);
1600                 i915_gem_request_unreference(requests[i]);
1601         }
1602
1603         return ret;
1604 }
1605
1606 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607 {
1608         struct drm_i915_file_private *fpriv = file->driver_priv;
1609         return &fpriv->rps;
1610 }
1611
1612 /**
1613  * Called when user space prepares to use an object with the CPU, either
1614  * through the mmap ioctl's mapping or a GTT mapping.
1615  */
1616 int
1617 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618                           struct drm_file *file)
1619 {
1620         struct drm_i915_gem_set_domain *args = data;
1621         struct drm_i915_gem_object *obj;
1622         uint32_t read_domains = args->read_domains;
1623         uint32_t write_domain = args->write_domain;
1624         int ret;
1625
1626         /* Only handle setting domains to types used by the CPU. */
1627         if (write_domain & I915_GEM_GPU_DOMAINS)
1628                 return -EINVAL;
1629
1630         if (read_domains & I915_GEM_GPU_DOMAINS)
1631                 return -EINVAL;
1632
1633         /* Having something in the write domain implies it's in the read
1634          * domain, and only that read domain.  Enforce that in the request.
1635          */
1636         if (write_domain != 0 && read_domains != write_domain)
1637                 return -EINVAL;
1638
1639         ret = i915_mutex_lock_interruptible(dev);
1640         if (ret)
1641                 return ret;
1642
1643         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644         if (&obj->base == NULL) {
1645                 ret = -ENOENT;
1646                 goto unlock;
1647         }
1648
1649         /* Try to flush the object off the GPU without holding the lock.
1650          * We will repeat the flush holding the lock in the normal manner
1651          * to catch cases where we are gazumped.
1652          */
1653         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654                                                           to_rps_client(file),
1655                                                           !write_domain);
1656         if (ret)
1657                 goto unref;
1658
1659         if (read_domains & I915_GEM_DOMAIN_GTT)
1660                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661         else
1662                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663
1664         if (write_domain != 0)
1665                 intel_fb_obj_invalidate(obj,
1666                                         write_domain == I915_GEM_DOMAIN_GTT ?
1667                                         ORIGIN_GTT : ORIGIN_CPU);
1668
1669 unref:
1670         drm_gem_object_unreference(&obj->base);
1671 unlock:
1672         mutex_unlock(&dev->struct_mutex);
1673         return ret;
1674 }
1675
1676 /**
1677  * Called when user space has done writes to this buffer
1678  */
1679 int
1680 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681                          struct drm_file *file)
1682 {
1683         struct drm_i915_gem_sw_finish *args = data;
1684         struct drm_i915_gem_object *obj;
1685         int ret = 0;
1686
1687         ret = i915_mutex_lock_interruptible(dev);
1688         if (ret)
1689                 return ret;
1690
1691         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692         if (&obj->base == NULL) {
1693                 ret = -ENOENT;
1694                 goto unlock;
1695         }
1696
1697         /* Pinned buffers may be scanout, so flush the cache */
1698         if (obj->pin_display)
1699                 i915_gem_object_flush_cpu_write_domain(obj);
1700
1701         drm_gem_object_unreference(&obj->base);
1702 unlock:
1703         mutex_unlock(&dev->struct_mutex);
1704         return ret;
1705 }
1706
1707 /**
1708  * Maps the contents of an object, returning the address it is mapped
1709  * into.
1710  *
1711  * While the mapping holds a reference on the contents of the object, it doesn't
1712  * imply a ref on the object itself.
1713  *
1714  * IMPORTANT:
1715  *
1716  * DRM driver writers who look a this function as an example for how to do GEM
1717  * mmap support, please don't implement mmap support like here. The modern way
1718  * to implement DRM mmap support is with an mmap offset ioctl (like
1719  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720  * That way debug tooling like valgrind will understand what's going on, hiding
1721  * the mmap call in a driver private ioctl will break that. The i915 driver only
1722  * does cpu mmaps this way because we didn't know better.
1723  */
1724 int
1725 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726                     struct drm_file *file)
1727 {
1728         struct drm_i915_gem_mmap *args = data;
1729         struct drm_gem_object *obj;
1730         unsigned long addr;
1731
1732         if (args->flags & ~(I915_MMAP_WC))
1733                 return -EINVAL;
1734
1735         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736                 return -ENODEV;
1737
1738         obj = drm_gem_object_lookup(dev, file, args->handle);
1739         if (obj == NULL)
1740                 return -ENOENT;
1741
1742         /* prime objects have no backing filp to GEM mmap
1743          * pages from.
1744          */
1745         if (!obj->filp) {
1746                 drm_gem_object_unreference_unlocked(obj);
1747                 return -EINVAL;
1748         }
1749
1750         addr = vm_mmap(obj->filp, 0, args->size,
1751                        PROT_READ | PROT_WRITE, MAP_SHARED,
1752                        args->offset);
1753         if (args->flags & I915_MMAP_WC) {
1754                 struct mm_struct *mm = current->mm;
1755                 struct vm_area_struct *vma;
1756
1757                 down_write(&mm->mmap_sem);
1758                 vma = find_vma(mm, addr);
1759                 if (vma)
1760                         vma->vm_page_prot =
1761                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762                 else
1763                         addr = -ENOMEM;
1764                 up_write(&mm->mmap_sem);
1765         }
1766         drm_gem_object_unreference_unlocked(obj);
1767         if (IS_ERR((void *)addr))
1768                 return addr;
1769
1770         args->addr_ptr = (uint64_t) addr;
1771
1772         return 0;
1773 }
1774
1775 /**
1776  * i915_gem_fault - fault a page into the GTT
1777  * @vma: VMA in question
1778  * @vmf: fault info
1779  *
1780  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781  * from userspace.  The fault handler takes care of binding the object to
1782  * the GTT (if needed), allocating and programming a fence register (again,
1783  * only if needed based on whether the old reg is still valid or the object
1784  * is tiled) and inserting a new PTE into the faulting process.
1785  *
1786  * Note that the faulting process may involve evicting existing objects
1787  * from the GTT and/or fence registers to make room.  So performance may
1788  * suffer if the GTT working set is large or there are few fence registers
1789  * left.
1790  */
1791 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792 {
1793         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794         struct drm_device *dev = obj->base.dev;
1795         struct drm_i915_private *dev_priv = dev->dev_private;
1796         struct i915_ggtt_view view = i915_ggtt_view_normal;
1797         pgoff_t page_offset;
1798         unsigned long pfn;
1799         int ret = 0;
1800         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802         intel_runtime_pm_get(dev_priv);
1803
1804         /* We don't use vmf->pgoff since that has the fake offset */
1805         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806                 PAGE_SHIFT;
1807
1808         ret = i915_mutex_lock_interruptible(dev);
1809         if (ret)
1810                 goto out;
1811
1812         trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814         /* Try to flush the object off the GPU first without holding the lock.
1815          * Upon reacquiring the lock, we will perform our sanity checks and then
1816          * repeat the flush holding the lock in the normal manner to catch cases
1817          * where we are gazumped.
1818          */
1819         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820         if (ret)
1821                 goto unlock;
1822
1823         /* Access to snoopable pages through the GTT is incoherent. */
1824         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825                 ret = -EFAULT;
1826                 goto unlock;
1827         }
1828
1829         /* Use a partial view if the object is bigger than the aperture. */
1830         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831             obj->tiling_mode == I915_TILING_NONE) {
1832                 static const unsigned int chunk_size = 256; // 1 MiB
1833
1834                 memset(&view, 0, sizeof(view));
1835                 view.type = I915_GGTT_VIEW_PARTIAL;
1836                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837                 view.params.partial.size =
1838                         min_t(unsigned int,
1839                               chunk_size,
1840                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841                               view.params.partial.offset);
1842         }
1843
1844         /* Now pin it into the GTT if needed */
1845         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846         if (ret)
1847                 goto unlock;
1848
1849         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850         if (ret)
1851                 goto unpin;
1852
1853         ret = i915_gem_object_get_fence(obj);
1854         if (ret)
1855                 goto unpin;
1856
1857         /* Finally, remap it using the new GTT offset */
1858         pfn = dev_priv->gtt.mappable_base +
1859                 i915_gem_obj_ggtt_offset_view(obj, &view);
1860         pfn >>= PAGE_SHIFT;
1861
1862         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863                 /* Overriding existing pages in partial view does not cause
1864                  * us any trouble as TLBs are still valid because the fault
1865                  * is due to userspace losing part of the mapping or never
1866                  * having accessed it before (at this partials' range).
1867                  */
1868                 unsigned long base = vma->vm_start +
1869                                      (view.params.partial.offset << PAGE_SHIFT);
1870                 unsigned int i;
1871
1872                 for (i = 0; i < view.params.partial.size; i++) {
1873                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874                         if (ret)
1875                                 break;
1876                 }
1877
1878                 obj->fault_mappable = true;
1879         } else {
1880                 if (!obj->fault_mappable) {
1881                         unsigned long size = min_t(unsigned long,
1882                                                    vma->vm_end - vma->vm_start,
1883                                                    obj->base.size);
1884                         int i;
1885
1886                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887                                 ret = vm_insert_pfn(vma,
1888                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889                                                     pfn + i);
1890                                 if (ret)
1891                                         break;
1892                         }
1893
1894                         obj->fault_mappable = true;
1895                 } else
1896                         ret = vm_insert_pfn(vma,
1897                                             (unsigned long)vmf->virtual_address,
1898                                             pfn + page_offset);
1899         }
1900 unpin:
1901         i915_gem_object_ggtt_unpin_view(obj, &view);
1902 unlock:
1903         mutex_unlock(&dev->struct_mutex);
1904 out:
1905         switch (ret) {
1906         case -EIO:
1907                 /*
1908                  * We eat errors when the gpu is terminally wedged to avoid
1909                  * userspace unduly crashing (gl has no provisions for mmaps to
1910                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911                  * and so needs to be reported.
1912                  */
1913                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914                         ret = VM_FAULT_SIGBUS;
1915                         break;
1916                 }
1917         case -EAGAIN:
1918                 /*
1919                  * EAGAIN means the gpu is hung and we'll wait for the error
1920                  * handler to reset everything when re-faulting in
1921                  * i915_mutex_lock_interruptible.
1922                  */
1923         case 0:
1924         case -ERESTARTSYS:
1925         case -EINTR:
1926         case -EBUSY:
1927                 /*
1928                  * EBUSY is ok: this just means that another thread
1929                  * already did the job.
1930                  */
1931                 ret = VM_FAULT_NOPAGE;
1932                 break;
1933         case -ENOMEM:
1934                 ret = VM_FAULT_OOM;
1935                 break;
1936         case -ENOSPC:
1937         case -EFAULT:
1938                 ret = VM_FAULT_SIGBUS;
1939                 break;
1940         default:
1941                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942                 ret = VM_FAULT_SIGBUS;
1943                 break;
1944         }
1945
1946         intel_runtime_pm_put(dev_priv);
1947         return ret;
1948 }
1949
1950 /**
1951  * i915_gem_release_mmap - remove physical page mappings
1952  * @obj: obj in question
1953  *
1954  * Preserve the reservation of the mmapping with the DRM core code, but
1955  * relinquish ownership of the pages back to the system.
1956  *
1957  * It is vital that we remove the page mapping if we have mapped a tiled
1958  * object through the GTT and then lose the fence register due to
1959  * resource pressure. Similarly if the object has been moved out of the
1960  * aperture, than pages mapped into userspace must be revoked. Removing the
1961  * mapping will then trigger a page fault on the next user access, allowing
1962  * fixup by i915_gem_fault().
1963  */
1964 void
1965 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966 {
1967         if (!obj->fault_mappable)
1968                 return;
1969
1970         drm_vma_node_unmap(&obj->base.vma_node,
1971                            obj->base.dev->anon_inode->i_mapping);
1972         obj->fault_mappable = false;
1973 }
1974
1975 void
1976 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977 {
1978         struct drm_i915_gem_object *obj;
1979
1980         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981                 i915_gem_release_mmap(obj);
1982 }
1983
1984 uint32_t
1985 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986 {
1987         uint32_t gtt_size;
1988
1989         if (INTEL_INFO(dev)->gen >= 4 ||
1990             tiling_mode == I915_TILING_NONE)
1991                 return size;
1992
1993         /* Previous chips need a power-of-two fence region when tiling */
1994         if (INTEL_INFO(dev)->gen == 3)
1995                 gtt_size = 1024*1024;
1996         else
1997                 gtt_size = 512*1024;
1998
1999         while (gtt_size < size)
2000                 gtt_size <<= 1;
2001
2002         return gtt_size;
2003 }
2004
2005 /**
2006  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007  * @obj: object to check
2008  *
2009  * Return the required GTT alignment for an object, taking into account
2010  * potential fence register mapping.
2011  */
2012 uint32_t
2013 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014                            int tiling_mode, bool fenced)
2015 {
2016         /*
2017          * Minimum alignment is 4k (GTT page size), but might be greater
2018          * if a fence register is needed for the object.
2019          */
2020         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021             tiling_mode == I915_TILING_NONE)
2022                 return 4096;
2023
2024         /*
2025          * Previous chips need to be aligned to the size of the smallest
2026          * fence register that can contain the object.
2027          */
2028         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 }
2030
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034         int ret;
2035
2036         if (drm_vma_node_has_offset(&obj->base.vma_node))
2037                 return 0;
2038
2039         dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041         ret = drm_gem_create_mmap_offset(&obj->base);
2042         if (ret != -ENOSPC)
2043                 goto out;
2044
2045         /* Badly fragmented mmap space? The only way we can recover
2046          * space is by destroying unwanted objects. We can't randomly release
2047          * mmap_offsets as userspace expects them to be persistent for the
2048          * lifetime of the objects. The closest we can is to release the
2049          * offsets on purgeable objects by truncating it and marking it purged,
2050          * which prevents userspace from ever using that object again.
2051          */
2052         i915_gem_shrink(dev_priv,
2053                         obj->base.size >> PAGE_SHIFT,
2054                         I915_SHRINK_BOUND |
2055                         I915_SHRINK_UNBOUND |
2056                         I915_SHRINK_PURGEABLE);
2057         ret = drm_gem_create_mmap_offset(&obj->base);
2058         if (ret != -ENOSPC)
2059                 goto out;
2060
2061         i915_gem_shrink_all(dev_priv);
2062         ret = drm_gem_create_mmap_offset(&obj->base);
2063 out:
2064         dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066         return ret;
2067 }
2068
2069 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070 {
2071         drm_gem_free_mmap_offset(&obj->base);
2072 }
2073
2074 int
2075 i915_gem_mmap_gtt(struct drm_file *file,
2076                   struct drm_device *dev,
2077                   uint32_t handle,
2078                   uint64_t *offset)
2079 {
2080         struct drm_i915_gem_object *obj;
2081         int ret;
2082
2083         ret = i915_mutex_lock_interruptible(dev);
2084         if (ret)
2085                 return ret;
2086
2087         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088         if (&obj->base == NULL) {
2089                 ret = -ENOENT;
2090                 goto unlock;
2091         }
2092
2093         if (obj->madv != I915_MADV_WILLNEED) {
2094                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095                 ret = -EFAULT;
2096                 goto out;
2097         }
2098
2099         ret = i915_gem_object_create_mmap_offset(obj);
2100         if (ret)
2101                 goto out;
2102
2103         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105 out:
2106         drm_gem_object_unreference(&obj->base);
2107 unlock:
2108         mutex_unlock(&dev->struct_mutex);
2109         return ret;
2110 }
2111
2112 /**
2113  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114  * @dev: DRM device
2115  * @data: GTT mapping ioctl data
2116  * @file: GEM object info
2117  *
2118  * Simply returns the fake offset to userspace so it can mmap it.
2119  * The mmap call will end up in drm_gem_mmap(), which will set things
2120  * up so we can get faults in the handler above.
2121  *
2122  * The fault handler will take care of binding the object into the GTT
2123  * (since it may have been evicted to make room for something), allocating
2124  * a fence register, and mapping the appropriate aperture address into
2125  * userspace.
2126  */
2127 int
2128 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129                         struct drm_file *file)
2130 {
2131         struct drm_i915_gem_mmap_gtt *args = data;
2132
2133         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 }
2135
2136 /* Immediately discard the backing storage */
2137 static void
2138 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139 {
2140         i915_gem_object_free_mmap_offset(obj);
2141
2142         if (obj->base.filp == NULL)
2143                 return;
2144
2145         /* Our goal here is to return as much of the memory as
2146          * is possible back to the system as we are called from OOM.
2147          * To do this we must instruct the shmfs to drop all of its
2148          * backing pages, *now*.
2149          */
2150         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151         obj->madv = __I915_MADV_PURGED;
2152 }
2153
2154 /* Try to discard unwanted pages */
2155 static void
2156 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157 {
2158         struct address_space *mapping;
2159
2160         switch (obj->madv) {
2161         case I915_MADV_DONTNEED:
2162                 i915_gem_object_truncate(obj);
2163         case __I915_MADV_PURGED:
2164                 return;
2165         }
2166
2167         if (obj->base.filp == NULL)
2168                 return;
2169
2170         mapping = file_inode(obj->base.filp)->i_mapping,
2171         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172 }
2173
2174 static void
2175 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176 {
2177         struct sg_page_iter sg_iter;
2178         int ret;
2179
2180         BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183         if (ret) {
2184                 /* In the event of a disaster, abandon all caches and
2185                  * hope for the best.
2186                  */
2187                 WARN_ON(ret != -EIO);
2188                 i915_gem_clflush_object(obj, true);
2189                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190         }
2191
2192         i915_gem_gtt_finish_object(obj);
2193
2194         if (i915_gem_object_needs_bit17_swizzle(obj))
2195                 i915_gem_object_save_bit_17_swizzle(obj);
2196
2197         if (obj->madv == I915_MADV_DONTNEED)
2198                 obj->dirty = 0;
2199
2200         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201                 struct page *page = sg_page_iter_page(&sg_iter);
2202
2203                 if (obj->dirty)
2204                         set_page_dirty(page);
2205
2206                 if (obj->madv == I915_MADV_WILLNEED)
2207                         mark_page_accessed(page);
2208
2209                 page_cache_release(page);
2210         }
2211         obj->dirty = 0;
2212
2213         sg_free_table(obj->pages);
2214         kfree(obj->pages);
2215 }
2216
2217 int
2218 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219 {
2220         const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222         if (obj->pages == NULL)
2223                 return 0;
2224
2225         if (obj->pages_pin_count)
2226                 return -EBUSY;
2227
2228         BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230         /* ->put_pages might need to allocate memory for the bit17 swizzle
2231          * array, hence protect them from being reaped by removing them from gtt
2232          * lists early. */
2233         list_del(&obj->global_list);
2234
2235         ops->put_pages(obj);
2236         obj->pages = NULL;
2237
2238         i915_gem_object_invalidate(obj);
2239
2240         return 0;
2241 }
2242
2243 static int
2244 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245 {
2246         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247         int page_count, i;
2248         struct address_space *mapping;
2249         struct sg_table *st;
2250         struct scatterlist *sg;
2251         struct sg_page_iter sg_iter;
2252         struct page *page;
2253         unsigned long last_pfn = 0;     /* suppress gcc warning */
2254         int ret;
2255         gfp_t gfp;
2256
2257         /* Assert that the object is not currently in any GPU domain. As it
2258          * wasn't in the GTT, there shouldn't be any way it could have been in
2259          * a GPU cache
2260          */
2261         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264         st = kmalloc(sizeof(*st), GFP_KERNEL);
2265         if (st == NULL)
2266                 return -ENOMEM;
2267
2268         page_count = obj->base.size / PAGE_SIZE;
2269         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270                 kfree(st);
2271                 return -ENOMEM;
2272         }
2273
2274         /* Get the list of pages out of our struct file.  They'll be pinned
2275          * at this point until we release them.
2276          *
2277          * Fail silently without starting the shrinker
2278          */
2279         mapping = file_inode(obj->base.filp)->i_mapping;
2280         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282         sg = st->sgl;
2283         st->nents = 0;
2284         for (i = 0; i < page_count; i++) {
2285                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286                 if (IS_ERR(page)) {
2287                         i915_gem_shrink(dev_priv,
2288                                         page_count,
2289                                         I915_SHRINK_BOUND |
2290                                         I915_SHRINK_UNBOUND |
2291                                         I915_SHRINK_PURGEABLE);
2292                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293                 }
2294                 if (IS_ERR(page)) {
2295                         /* We've tried hard to allocate the memory by reaping
2296                          * our own buffer, now let the real VM do its job and
2297                          * go down in flames if truly OOM.
2298                          */
2299                         i915_gem_shrink_all(dev_priv);
2300                         page = shmem_read_mapping_page(mapping, i);
2301                         if (IS_ERR(page)) {
2302                                 ret = PTR_ERR(page);
2303                                 goto err_pages;
2304                         }
2305                 }
2306 #ifdef CONFIG_SWIOTLB
2307                 if (swiotlb_nr_tbl()) {
2308                         st->nents++;
2309                         sg_set_page(sg, page, PAGE_SIZE, 0);
2310                         sg = sg_next(sg);
2311                         continue;
2312                 }
2313 #endif
2314                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315                         if (i)
2316                                 sg = sg_next(sg);
2317                         st->nents++;
2318                         sg_set_page(sg, page, PAGE_SIZE, 0);
2319                 } else {
2320                         sg->length += PAGE_SIZE;
2321                 }
2322                 last_pfn = page_to_pfn(page);
2323
2324                 /* Check that the i965g/gm workaround works. */
2325                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326         }
2327 #ifdef CONFIG_SWIOTLB
2328         if (!swiotlb_nr_tbl())
2329 #endif
2330                 sg_mark_end(sg);
2331         obj->pages = st;
2332
2333         ret = i915_gem_gtt_prepare_object(obj);
2334         if (ret)
2335                 goto err_pages;
2336
2337         if (i915_gem_object_needs_bit17_swizzle(obj))
2338                 i915_gem_object_do_bit_17_swizzle(obj);
2339
2340         if (obj->tiling_mode != I915_TILING_NONE &&
2341             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342                 i915_gem_object_pin_pages(obj);
2343
2344         return 0;
2345
2346 err_pages:
2347         sg_mark_end(sg);
2348         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349                 page_cache_release(sg_page_iter_page(&sg_iter));
2350         sg_free_table(st);
2351         kfree(st);
2352
2353         /* shmemfs first checks if there is enough memory to allocate the page
2354          * and reports ENOSPC should there be insufficient, along with the usual
2355          * ENOMEM for a genuine allocation failure.
2356          *
2357          * We use ENOSPC in our driver to mean that we have run out of aperture
2358          * space and so want to translate the error from shmemfs back to our
2359          * usual understanding of ENOMEM.
2360          */
2361         if (ret == -ENOSPC)
2362                 ret = -ENOMEM;
2363
2364         return ret;
2365 }
2366
2367 /* Ensure that the associated pages are gathered from the backing storage
2368  * and pinned into our object. i915_gem_object_get_pages() may be called
2369  * multiple times before they are released by a single call to
2370  * i915_gem_object_put_pages() - once the pages are no longer referenced
2371  * either as a result of memory pressure (reaping pages under the shrinker)
2372  * or as the object is itself released.
2373  */
2374 int
2375 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376 {
2377         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378         const struct drm_i915_gem_object_ops *ops = obj->ops;
2379         int ret;
2380
2381         if (obj->pages)
2382                 return 0;
2383
2384         if (obj->madv != I915_MADV_WILLNEED) {
2385                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386                 return -EFAULT;
2387         }
2388
2389         BUG_ON(obj->pages_pin_count);
2390
2391         ret = ops->get_pages(obj);
2392         if (ret)
2393                 return ret;
2394
2395         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397         obj->get_page.sg = obj->pages->sgl;
2398         obj->get_page.last = 0;
2399
2400         return 0;
2401 }
2402
2403 void i915_vma_move_to_active(struct i915_vma *vma,
2404                              struct drm_i915_gem_request *req)
2405 {
2406         struct drm_i915_gem_object *obj = vma->obj;
2407         struct intel_engine_cs *ring;
2408
2409         ring = i915_gem_request_get_ring(req);
2410
2411         /* Add a reference if we're newly entering the active list. */
2412         if (obj->active == 0)
2413                 drm_gem_object_reference(&obj->base);
2414         obj->active |= intel_ring_flag(ring);
2415
2416         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418
2419         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2420 }
2421
2422 static void
2423 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424 {
2425         RQ_BUG_ON(obj->last_write_req == NULL);
2426         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428         i915_gem_request_assign(&obj->last_write_req, NULL);
2429         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430 }
2431
2432 static void
2433 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434 {
2435         struct i915_vma *vma;
2436
2437         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438         RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440         list_del_init(&obj->ring_list[ring]);
2441         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444                 i915_gem_object_retire__write(obj);
2445
2446         obj->active &= ~(1 << ring);
2447         if (obj->active)
2448                 return;
2449
2450         /* Bump our place on the bound list to keep it roughly in LRU order
2451          * so that we don't steal from recently used but inactive objects
2452          * (unless we are forced to ofc!)
2453          */
2454         list_move_tail(&obj->global_list,
2455                        &to_i915(obj->base.dev)->mm.bound_list);
2456
2457         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2458                 if (!list_empty(&vma->mm_list))
2459                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2460         }
2461
2462         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463         drm_gem_object_unreference(&obj->base);
2464 }
2465
2466 static int
2467 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468 {
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470         struct intel_engine_cs *ring;
2471         int ret, i, j;
2472
2473         /* Carefully retire all requests without writing to the rings */
2474         for_each_ring(ring, dev_priv, i) {
2475                 ret = intel_ring_idle(ring);
2476                 if (ret)
2477                         return ret;
2478         }
2479         i915_gem_retire_requests(dev);
2480
2481         /* Finally reset hw state */
2482         for_each_ring(ring, dev_priv, i) {
2483                 intel_ring_init_seqno(ring, seqno);
2484
2485                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486                         ring->semaphore.sync_seqno[j] = 0;
2487         }
2488
2489         return 0;
2490 }
2491
2492 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493 {
2494         struct drm_i915_private *dev_priv = dev->dev_private;
2495         int ret;
2496
2497         if (seqno == 0)
2498                 return -EINVAL;
2499
2500         /* HWS page needs to be set less than what we
2501          * will inject to ring
2502          */
2503         ret = i915_gem_init_seqno(dev, seqno - 1);
2504         if (ret)
2505                 return ret;
2506
2507         /* Carefully set the last_seqno value so that wrap
2508          * detection still works
2509          */
2510         dev_priv->next_seqno = seqno;
2511         dev_priv->last_seqno = seqno - 1;
2512         if (dev_priv->last_seqno == 0)
2513                 dev_priv->last_seqno--;
2514
2515         return 0;
2516 }
2517
2518 int
2519 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520 {
2521         struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523         /* reserve 0 for non-seqno */
2524         if (dev_priv->next_seqno == 0) {
2525                 int ret = i915_gem_init_seqno(dev, 0);
2526                 if (ret)
2527                         return ret;
2528
2529                 dev_priv->next_seqno = 1;
2530         }
2531
2532         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533         return 0;
2534 }
2535
2536 /*
2537  * NB: This function is not allowed to fail. Doing so would mean the the
2538  * request is not being tracked for completion but the work itself is
2539  * going to happen on the hardware. This would be a Bad Thing(tm).
2540  */
2541 void __i915_add_request(struct drm_i915_gem_request *request,
2542                         struct drm_i915_gem_object *obj,
2543                         bool flush_caches)
2544 {
2545         struct intel_engine_cs *ring;
2546         struct drm_i915_private *dev_priv;
2547         struct intel_ringbuffer *ringbuf;
2548         u32 request_start;
2549         int ret;
2550
2551         if (WARN_ON(request == NULL))
2552                 return;
2553
2554         ring = request->ring;
2555         dev_priv = ring->dev->dev_private;
2556         ringbuf = request->ringbuf;
2557
2558         /*
2559          * To ensure that this call will not fail, space for its emissions
2560          * should already have been reserved in the ring buffer. Let the ring
2561          * know that it is time to use that space up.
2562          */
2563         intel_ring_reserved_space_use(ringbuf);
2564
2565         request_start = intel_ring_get_tail(ringbuf);
2566         /*
2567          * Emit any outstanding flushes - execbuf can fail to emit the flush
2568          * after having emitted the batchbuffer command. Hence we need to fix
2569          * things up similar to emitting the lazy request. The difference here
2570          * is that the flush _must_ happen before the next request, no matter
2571          * what.
2572          */
2573         if (flush_caches) {
2574                 if (i915.enable_execlists)
2575                         ret = logical_ring_flush_all_caches(request);
2576                 else
2577                         ret = intel_ring_flush_all_caches(request);
2578                 /* Not allowed to fail! */
2579                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580         }
2581
2582         /* Record the position of the start of the request so that
2583          * should we detect the updated seqno part-way through the
2584          * GPU processing the request, we never over-estimate the
2585          * position of the head.
2586          */
2587         request->postfix = intel_ring_get_tail(ringbuf);
2588
2589         if (i915.enable_execlists)
2590                 ret = ring->emit_request(request);
2591         else {
2592                 ret = ring->add_request(request);
2593
2594                 request->tail = intel_ring_get_tail(ringbuf);
2595         }
2596         /* Not allowed to fail! */
2597         WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
2599         request->head = request_start;
2600
2601         /* Whilst this request exists, batch_obj will be on the
2602          * active_list, and so will hold the active reference. Only when this
2603          * request is retired will the the batch_obj be moved onto the
2604          * inactive_list and lose its active reference. Hence we do not need
2605          * to explicitly hold another reference here.
2606          */
2607         request->batch_obj = obj;
2608
2609         request->emitted_jiffies = jiffies;
2610         request->previous_seqno = ring->last_submitted_seqno;
2611         ring->last_submitted_seqno = request->seqno;
2612         list_add_tail(&request->list, &ring->request_list);
2613
2614         trace_i915_gem_request_add(request);
2615
2616         i915_queue_hangcheck(ring->dev);
2617
2618         queue_delayed_work(dev_priv->wq,
2619                            &dev_priv->mm.retire_work,
2620                            round_jiffies_up_relative(HZ));
2621         intel_mark_busy(dev_priv->dev);
2622
2623         /* Sanity check that the reserved size was large enough. */
2624         intel_ring_reserved_space_end(ringbuf);
2625 }
2626
2627 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628                                    const struct intel_context *ctx)
2629 {
2630         unsigned long elapsed;
2631
2632         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634         if (ctx->hang_stats.banned)
2635                 return true;
2636
2637         if (ctx->hang_stats.ban_period_seconds &&
2638             elapsed <= ctx->hang_stats.ban_period_seconds) {
2639                 if (!i915_gem_context_is_default(ctx)) {
2640                         DRM_DEBUG("context hanging too fast, banning!\n");
2641                         return true;
2642                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2643                         if (i915_stop_ring_allow_warn(dev_priv))
2644                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2645                         return true;
2646                 }
2647         }
2648
2649         return false;
2650 }
2651
2652 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653                                   struct intel_context *ctx,
2654                                   const bool guilty)
2655 {
2656         struct i915_ctx_hang_stats *hs;
2657
2658         if (WARN_ON(!ctx))
2659                 return;
2660
2661         hs = &ctx->hang_stats;
2662
2663         if (guilty) {
2664                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2665                 hs->batch_active++;
2666                 hs->guilty_ts = get_seconds();
2667         } else {
2668                 hs->batch_pending++;
2669         }
2670 }
2671
2672 void i915_gem_request_free(struct kref *req_ref)
2673 {
2674         struct drm_i915_gem_request *req = container_of(req_ref,
2675                                                  typeof(*req), ref);
2676         struct intel_context *ctx = req->ctx;
2677
2678         if (req->file_priv)
2679                 i915_gem_request_remove_from_client(req);
2680
2681         if (ctx) {
2682                 if (i915.enable_execlists) {
2683                         if (ctx != req->ring->default_context)
2684                                 intel_lr_context_unpin(req);
2685                 }
2686
2687                 i915_gem_context_unreference(ctx);
2688         }
2689
2690         kmem_cache_free(req->i915->requests, req);
2691 }
2692
2693 static inline int
2694 __i915_gem_request_alloc(struct intel_engine_cs *ring,
2695                          struct intel_context *ctx,
2696                          struct drm_i915_gem_request **req_out)
2697 {
2698         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2699         struct drm_i915_gem_request *req;
2700         int ret;
2701
2702         if (!req_out)
2703                 return -EINVAL;
2704
2705         *req_out = NULL;
2706
2707         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2708         if (req == NULL)
2709                 return -ENOMEM;
2710
2711         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2712         if (ret)
2713                 goto err;
2714
2715         kref_init(&req->ref);
2716         req->i915 = dev_priv;
2717         req->ring = ring;
2718         req->ctx  = ctx;
2719         i915_gem_context_reference(req->ctx);
2720
2721         if (i915.enable_execlists)
2722                 ret = intel_logical_ring_alloc_request_extras(req);
2723         else
2724                 ret = intel_ring_alloc_request_extras(req);
2725         if (ret) {
2726                 i915_gem_context_unreference(req->ctx);
2727                 goto err;
2728         }
2729
2730         /*
2731          * Reserve space in the ring buffer for all the commands required to
2732          * eventually emit this request. This is to guarantee that the
2733          * i915_add_request() call can't fail. Note that the reserve may need
2734          * to be redone if the request is not actually submitted straight
2735          * away, e.g. because a GPU scheduler has deferred it.
2736          */
2737         if (i915.enable_execlists)
2738                 ret = intel_logical_ring_reserve_space(req);
2739         else
2740                 ret = intel_ring_reserve_space(req);
2741         if (ret) {
2742                 /*
2743                  * At this point, the request is fully allocated even if not
2744                  * fully prepared. Thus it can be cleaned up using the proper
2745                  * free code.
2746                  */
2747                 i915_gem_request_cancel(req);
2748                 return ret;
2749         }
2750
2751         *req_out = req;
2752         return 0;
2753
2754 err:
2755         kmem_cache_free(dev_priv->requests, req);
2756         return ret;
2757 }
2758
2759 /**
2760  * i915_gem_request_alloc - allocate a request structure
2761  *
2762  * @engine: engine that we wish to issue the request on.
2763  * @ctx: context that the request will be associated with.
2764  *       This can be NULL if the request is not directly related to
2765  *       any specific user context, in which case this function will
2766  *       choose an appropriate context to use.
2767  *
2768  * Returns a pointer to the allocated request if successful,
2769  * or an error code if not.
2770  */
2771 struct drm_i915_gem_request *
2772 i915_gem_request_alloc(struct intel_engine_cs *engine,
2773                        struct intel_context *ctx)
2774 {
2775         struct drm_i915_gem_request *req;
2776         int err;
2777
2778         if (ctx == NULL)
2779                 ctx = engine->default_context;
2780         err = __i915_gem_request_alloc(engine, ctx, &req);
2781         return err ? ERR_PTR(err) : req;
2782 }
2783
2784 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2785 {
2786         intel_ring_reserved_space_cancel(req->ringbuf);
2787
2788         i915_gem_request_unreference(req);
2789 }
2790
2791 struct drm_i915_gem_request *
2792 i915_gem_find_active_request(struct intel_engine_cs *ring)
2793 {
2794         struct drm_i915_gem_request *request;
2795
2796         list_for_each_entry(request, &ring->request_list, list) {
2797                 if (i915_gem_request_completed(request, false))
2798                         continue;
2799
2800                 return request;
2801         }
2802
2803         return NULL;
2804 }
2805
2806 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2807                                        struct intel_engine_cs *ring)
2808 {
2809         struct drm_i915_gem_request *request;
2810         bool ring_hung;
2811
2812         request = i915_gem_find_active_request(ring);
2813
2814         if (request == NULL)
2815                 return;
2816
2817         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2818
2819         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2820
2821         list_for_each_entry_continue(request, &ring->request_list, list)
2822                 i915_set_reset_status(dev_priv, request->ctx, false);
2823 }
2824
2825 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2826                                         struct intel_engine_cs *ring)
2827 {
2828         struct intel_ringbuffer *buffer;
2829
2830         while (!list_empty(&ring->active_list)) {
2831                 struct drm_i915_gem_object *obj;
2832
2833                 obj = list_first_entry(&ring->active_list,
2834                                        struct drm_i915_gem_object,
2835                                        ring_list[ring->id]);
2836
2837                 i915_gem_object_retire__read(obj, ring->id);
2838         }
2839
2840         /*
2841          * Clear the execlists queue up before freeing the requests, as those
2842          * are the ones that keep the context and ringbuffer backing objects
2843          * pinned in place.
2844          */
2845
2846         if (i915.enable_execlists) {
2847                 spin_lock_irq(&ring->execlist_lock);
2848
2849                 /* list_splice_tail_init checks for empty lists */
2850                 list_splice_tail_init(&ring->execlist_queue,
2851                                       &ring->execlist_retired_req_list);
2852
2853                 spin_unlock_irq(&ring->execlist_lock);
2854                 intel_execlists_retire_requests(ring);
2855         }
2856
2857         /*
2858          * We must free the requests after all the corresponding objects have
2859          * been moved off active lists. Which is the same order as the normal
2860          * retire_requests function does. This is important if object hold
2861          * implicit references on things like e.g. ppgtt address spaces through
2862          * the request.
2863          */
2864         while (!list_empty(&ring->request_list)) {
2865                 struct drm_i915_gem_request *request;
2866
2867                 request = list_first_entry(&ring->request_list,
2868                                            struct drm_i915_gem_request,
2869                                            list);
2870
2871                 i915_gem_request_retire(request);
2872         }
2873
2874         /* Having flushed all requests from all queues, we know that all
2875          * ringbuffers must now be empty. However, since we do not reclaim
2876          * all space when retiring the request (to prevent HEADs colliding
2877          * with rapid ringbuffer wraparound) the amount of available space
2878          * upon reset is less than when we start. Do one more pass over
2879          * all the ringbuffers to reset last_retired_head.
2880          */
2881         list_for_each_entry(buffer, &ring->buffers, link) {
2882                 buffer->last_retired_head = buffer->tail;
2883                 intel_ring_update_space(buffer);
2884         }
2885 }
2886
2887 void i915_gem_reset(struct drm_device *dev)
2888 {
2889         struct drm_i915_private *dev_priv = dev->dev_private;
2890         struct intel_engine_cs *ring;
2891         int i;
2892
2893         /*
2894          * Before we free the objects from the requests, we need to inspect
2895          * them for finding the guilty party. As the requests only borrow
2896          * their reference to the objects, the inspection must be done first.
2897          */
2898         for_each_ring(ring, dev_priv, i)
2899                 i915_gem_reset_ring_status(dev_priv, ring);
2900
2901         for_each_ring(ring, dev_priv, i)
2902                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2903
2904         i915_gem_context_reset(dev);
2905
2906         i915_gem_restore_fences(dev);
2907
2908         WARN_ON(i915_verify_lists(dev));
2909 }
2910
2911 /**
2912  * This function clears the request list as sequence numbers are passed.
2913  */
2914 void
2915 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2916 {
2917         WARN_ON(i915_verify_lists(ring->dev));
2918
2919         /* Retire requests first as we use it above for the early return.
2920          * If we retire requests last, we may use a later seqno and so clear
2921          * the requests lists without clearing the active list, leading to
2922          * confusion.
2923          */
2924         while (!list_empty(&ring->request_list)) {
2925                 struct drm_i915_gem_request *request;
2926
2927                 request = list_first_entry(&ring->request_list,
2928                                            struct drm_i915_gem_request,
2929                                            list);
2930
2931                 if (!i915_gem_request_completed(request, true))
2932                         break;
2933
2934                 i915_gem_request_retire(request);
2935         }
2936
2937         /* Move any buffers on the active list that are no longer referenced
2938          * by the ringbuffer to the flushing/inactive lists as appropriate,
2939          * before we free the context associated with the requests.
2940          */
2941         while (!list_empty(&ring->active_list)) {
2942                 struct drm_i915_gem_object *obj;
2943
2944                 obj = list_first_entry(&ring->active_list,
2945                                       struct drm_i915_gem_object,
2946                                       ring_list[ring->id]);
2947
2948                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2949                         break;
2950
2951                 i915_gem_object_retire__read(obj, ring->id);
2952         }
2953
2954         if (unlikely(ring->trace_irq_req &&
2955                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2956                 ring->irq_put(ring);
2957                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2958         }
2959
2960         WARN_ON(i915_verify_lists(ring->dev));
2961 }
2962
2963 bool
2964 i915_gem_retire_requests(struct drm_device *dev)
2965 {
2966         struct drm_i915_private *dev_priv = dev->dev_private;
2967         struct intel_engine_cs *ring;
2968         bool idle = true;
2969         int i;
2970
2971         for_each_ring(ring, dev_priv, i) {
2972                 i915_gem_retire_requests_ring(ring);
2973                 idle &= list_empty(&ring->request_list);
2974                 if (i915.enable_execlists) {
2975                         unsigned long flags;
2976
2977                         spin_lock_irqsave(&ring->execlist_lock, flags);
2978                         idle &= list_empty(&ring->execlist_queue);
2979                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2980
2981                         intel_execlists_retire_requests(ring);
2982                 }
2983         }
2984
2985         if (idle)
2986                 mod_delayed_work(dev_priv->wq,
2987                                    &dev_priv->mm.idle_work,
2988                                    msecs_to_jiffies(100));
2989
2990         return idle;
2991 }
2992
2993 static void
2994 i915_gem_retire_work_handler(struct work_struct *work)
2995 {
2996         struct drm_i915_private *dev_priv =
2997                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2998         struct drm_device *dev = dev_priv->dev;
2999         bool idle;
3000
3001         /* Come back later if the device is busy... */
3002         idle = false;
3003         if (mutex_trylock(&dev->struct_mutex)) {
3004                 idle = i915_gem_retire_requests(dev);
3005                 mutex_unlock(&dev->struct_mutex);
3006         }
3007         if (!idle)
3008                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3009                                    round_jiffies_up_relative(HZ));
3010 }
3011
3012 static void
3013 i915_gem_idle_work_handler(struct work_struct *work)
3014 {
3015         struct drm_i915_private *dev_priv =
3016                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3017         struct drm_device *dev = dev_priv->dev;
3018         struct intel_engine_cs *ring;
3019         int i;
3020
3021         for_each_ring(ring, dev_priv, i)
3022                 if (!list_empty(&ring->request_list))
3023                         return;
3024
3025         /* we probably should sync with hangcheck here, using cancel_work_sync.
3026          * Also locking seems to be fubar here, ring->request_list is protected
3027          * by dev->struct_mutex. */
3028
3029         intel_mark_idle(dev);
3030
3031         if (mutex_trylock(&dev->struct_mutex)) {
3032                 struct intel_engine_cs *ring;
3033                 int i;
3034
3035                 for_each_ring(ring, dev_priv, i)
3036                         i915_gem_batch_pool_fini(&ring->batch_pool);
3037
3038                 mutex_unlock(&dev->struct_mutex);
3039         }
3040 }
3041
3042 /**
3043  * Ensures that an object will eventually get non-busy by flushing any required
3044  * write domains, emitting any outstanding lazy request and retiring and
3045  * completed requests.
3046  */
3047 static int
3048 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3049 {
3050         int i;
3051
3052         if (!obj->active)
3053                 return 0;
3054
3055         for (i = 0; i < I915_NUM_RINGS; i++) {
3056                 struct drm_i915_gem_request *req;
3057
3058                 req = obj->last_read_req[i];
3059                 if (req == NULL)
3060                         continue;
3061
3062                 if (list_empty(&req->list))
3063                         goto retire;
3064
3065                 if (i915_gem_request_completed(req, true)) {
3066                         __i915_gem_request_retire__upto(req);
3067 retire:
3068                         i915_gem_object_retire__read(obj, i);
3069                 }
3070         }
3071
3072         return 0;
3073 }
3074
3075 /**
3076  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3077  * @DRM_IOCTL_ARGS: standard ioctl arguments
3078  *
3079  * Returns 0 if successful, else an error is returned with the remaining time in
3080  * the timeout parameter.
3081  *  -ETIME: object is still busy after timeout
3082  *  -ERESTARTSYS: signal interrupted the wait
3083  *  -ENONENT: object doesn't exist
3084  * Also possible, but rare:
3085  *  -EAGAIN: GPU wedged
3086  *  -ENOMEM: damn
3087  *  -ENODEV: Internal IRQ fail
3088  *  -E?: The add request failed
3089  *
3090  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3091  * non-zero timeout parameter the wait ioctl will wait for the given number of
3092  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3093  * without holding struct_mutex the object may become re-busied before this
3094  * function completes. A similar but shorter * race condition exists in the busy
3095  * ioctl
3096  */
3097 int
3098 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3099 {
3100         struct drm_i915_private *dev_priv = dev->dev_private;
3101         struct drm_i915_gem_wait *args = data;
3102         struct drm_i915_gem_object *obj;
3103         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3104         unsigned reset_counter;
3105         int i, n = 0;
3106         int ret;
3107
3108         if (args->flags != 0)
3109                 return -EINVAL;
3110
3111         ret = i915_mutex_lock_interruptible(dev);
3112         if (ret)
3113                 return ret;
3114
3115         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3116         if (&obj->base == NULL) {
3117                 mutex_unlock(&dev->struct_mutex);
3118                 return -ENOENT;
3119         }
3120
3121         /* Need to make sure the object gets inactive eventually. */
3122         ret = i915_gem_object_flush_active(obj);
3123         if (ret)
3124                 goto out;
3125
3126         if (!obj->active)
3127                 goto out;
3128
3129         /* Do this after OLR check to make sure we make forward progress polling
3130          * on this IOCTL with a timeout == 0 (like busy ioctl)
3131          */
3132         if (args->timeout_ns == 0) {
3133                 ret = -ETIME;
3134                 goto out;
3135         }
3136
3137         drm_gem_object_unreference(&obj->base);
3138         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3139
3140         for (i = 0; i < I915_NUM_RINGS; i++) {
3141                 if (obj->last_read_req[i] == NULL)
3142                         continue;
3143
3144                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3145         }
3146
3147         mutex_unlock(&dev->struct_mutex);
3148
3149         for (i = 0; i < n; i++) {
3150                 if (ret == 0)
3151                         ret = __i915_wait_request(req[i], reset_counter, true,
3152                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3153                                                   to_rps_client(file));
3154                 i915_gem_request_unreference__unlocked(req[i]);
3155         }
3156         return ret;
3157
3158 out:
3159         drm_gem_object_unreference(&obj->base);
3160         mutex_unlock(&dev->struct_mutex);
3161         return ret;
3162 }
3163
3164 static int
3165 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3166                        struct intel_engine_cs *to,
3167                        struct drm_i915_gem_request *from_req,
3168                        struct drm_i915_gem_request **to_req)
3169 {
3170         struct intel_engine_cs *from;
3171         int ret;
3172
3173         from = i915_gem_request_get_ring(from_req);
3174         if (to == from)
3175                 return 0;
3176
3177         if (i915_gem_request_completed(from_req, true))
3178                 return 0;
3179
3180         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3181                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3182                 ret = __i915_wait_request(from_req,
3183                                           atomic_read(&i915->gpu_error.reset_counter),
3184                                           i915->mm.interruptible,
3185                                           NULL,
3186                                           &i915->rps.semaphores);
3187                 if (ret)
3188                         return ret;
3189
3190                 i915_gem_object_retire_request(obj, from_req);
3191         } else {
3192                 int idx = intel_ring_sync_index(from, to);
3193                 u32 seqno = i915_gem_request_get_seqno(from_req);
3194
3195                 WARN_ON(!to_req);
3196
3197                 if (seqno <= from->semaphore.sync_seqno[idx])
3198                         return 0;
3199
3200                 if (*to_req == NULL) {
3201                         struct drm_i915_gem_request *req;
3202
3203                         req = i915_gem_request_alloc(to, NULL);
3204                         if (IS_ERR(req))
3205                                 return PTR_ERR(req);
3206
3207                         *to_req = req;
3208                 }
3209
3210                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3211                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3212                 if (ret)
3213                         return ret;
3214
3215                 /* We use last_read_req because sync_to()
3216                  * might have just caused seqno wrap under
3217                  * the radar.
3218                  */
3219                 from->semaphore.sync_seqno[idx] =
3220                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3221         }
3222
3223         return 0;
3224 }
3225
3226 /**
3227  * i915_gem_object_sync - sync an object to a ring.
3228  *
3229  * @obj: object which may be in use on another ring.
3230  * @to: ring we wish to use the object on. May be NULL.
3231  * @to_req: request we wish to use the object for. See below.
3232  *          This will be allocated and returned if a request is
3233  *          required but not passed in.
3234  *
3235  * This code is meant to abstract object synchronization with the GPU.
3236  * Calling with NULL implies synchronizing the object with the CPU
3237  * rather than a particular GPU ring. Conceptually we serialise writes
3238  * between engines inside the GPU. We only allow one engine to write
3239  * into a buffer at any time, but multiple readers. To ensure each has
3240  * a coherent view of memory, we must:
3241  *
3242  * - If there is an outstanding write request to the object, the new
3243  *   request must wait for it to complete (either CPU or in hw, requests
3244  *   on the same ring will be naturally ordered).
3245  *
3246  * - If we are a write request (pending_write_domain is set), the new
3247  *   request must wait for outstanding read requests to complete.
3248  *
3249  * For CPU synchronisation (NULL to) no request is required. For syncing with
3250  * rings to_req must be non-NULL. However, a request does not have to be
3251  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3252  * request will be allocated automatically and returned through *to_req. Note
3253  * that it is not guaranteed that commands will be emitted (because the system
3254  * might already be idle). Hence there is no need to create a request that
3255  * might never have any work submitted. Note further that if a request is
3256  * returned in *to_req, it is the responsibility of the caller to submit
3257  * that request (after potentially adding more work to it).
3258  *
3259  * Returns 0 if successful, else propagates up the lower layer error.
3260  */
3261 int
3262 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3263                      struct intel_engine_cs *to,
3264                      struct drm_i915_gem_request **to_req)
3265 {
3266         const bool readonly = obj->base.pending_write_domain == 0;
3267         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3268         int ret, i, n;
3269
3270         if (!obj->active)
3271                 return 0;
3272
3273         if (to == NULL)
3274                 return i915_gem_object_wait_rendering(obj, readonly);
3275
3276         n = 0;
3277         if (readonly) {
3278                 if (obj->last_write_req)
3279                         req[n++] = obj->last_write_req;
3280         } else {
3281                 for (i = 0; i < I915_NUM_RINGS; i++)
3282                         if (obj->last_read_req[i])
3283                                 req[n++] = obj->last_read_req[i];
3284         }
3285         for (i = 0; i < n; i++) {
3286                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3287                 if (ret)
3288                         return ret;
3289         }
3290
3291         return 0;
3292 }
3293
3294 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3295 {
3296         u32 old_write_domain, old_read_domains;
3297
3298         /* Force a pagefault for domain tracking on next user access */
3299         i915_gem_release_mmap(obj);
3300
3301         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3302                 return;
3303
3304         /* Wait for any direct GTT access to complete */
3305         mb();
3306
3307         old_read_domains = obj->base.read_domains;
3308         old_write_domain = obj->base.write_domain;
3309
3310         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3311         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3312
3313         trace_i915_gem_object_change_domain(obj,
3314                                             old_read_domains,
3315                                             old_write_domain);
3316 }
3317
3318 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3319 {
3320         struct drm_i915_gem_object *obj = vma->obj;
3321         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3322         int ret;
3323
3324         if (list_empty(&vma->vma_link))
3325                 return 0;
3326
3327         if (!drm_mm_node_allocated(&vma->node)) {
3328                 i915_gem_vma_destroy(vma);
3329                 return 0;
3330         }
3331
3332         if (vma->pin_count)
3333                 return -EBUSY;
3334
3335         BUG_ON(obj->pages == NULL);
3336
3337         if (wait) {
3338                 ret = i915_gem_object_wait_rendering(obj, false);
3339                 if (ret)
3340                         return ret;
3341         }
3342
3343         if (i915_is_ggtt(vma->vm) &&
3344             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3345                 i915_gem_object_finish_gtt(obj);
3346
3347                 /* release the fence reg _after_ flushing */
3348                 ret = i915_gem_object_put_fence(obj);
3349                 if (ret)
3350                         return ret;
3351         }
3352
3353         trace_i915_vma_unbind(vma);
3354
3355         vma->vm->unbind_vma(vma);
3356         vma->bound = 0;
3357
3358         list_del_init(&vma->mm_list);
3359         if (i915_is_ggtt(vma->vm)) {
3360                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3361                         obj->map_and_fenceable = false;
3362                 } else if (vma->ggtt_view.pages) {
3363                         sg_free_table(vma->ggtt_view.pages);
3364                         kfree(vma->ggtt_view.pages);
3365                 }
3366                 vma->ggtt_view.pages = NULL;
3367         }
3368
3369         drm_mm_remove_node(&vma->node);
3370         i915_gem_vma_destroy(vma);
3371
3372         /* Since the unbound list is global, only move to that list if
3373          * no more VMAs exist. */
3374         if (list_empty(&obj->vma_list))
3375                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3376
3377         /* And finally now the object is completely decoupled from this vma,
3378          * we can drop its hold on the backing storage and allow it to be
3379          * reaped by the shrinker.
3380          */
3381         i915_gem_object_unpin_pages(obj);
3382
3383         return 0;
3384 }
3385
3386 int i915_vma_unbind(struct i915_vma *vma)
3387 {
3388         return __i915_vma_unbind(vma, true);
3389 }
3390
3391 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3392 {
3393         return __i915_vma_unbind(vma, false);
3394 }
3395
3396 int i915_gpu_idle(struct drm_device *dev)
3397 {
3398         struct drm_i915_private *dev_priv = dev->dev_private;
3399         struct intel_engine_cs *ring;
3400         int ret, i;
3401
3402         /* Flush everything onto the inactive list. */
3403         for_each_ring(ring, dev_priv, i) {
3404                 if (!i915.enable_execlists) {
3405                         struct drm_i915_gem_request *req;
3406
3407                         req = i915_gem_request_alloc(ring, NULL);
3408                         if (IS_ERR(req))
3409                                 return PTR_ERR(req);
3410
3411                         ret = i915_switch_context(req);
3412                         if (ret) {
3413                                 i915_gem_request_cancel(req);
3414                                 return ret;
3415                         }
3416
3417                         i915_add_request_no_flush(req);
3418                 }
3419
3420                 ret = intel_ring_idle(ring);
3421                 if (ret)
3422                         return ret;
3423         }
3424
3425         WARN_ON(i915_verify_lists(dev));
3426         return 0;
3427 }
3428
3429 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3430                                      unsigned long cache_level)
3431 {
3432         struct drm_mm_node *gtt_space = &vma->node;
3433         struct drm_mm_node *other;
3434
3435         /*
3436          * On some machines we have to be careful when putting differing types
3437          * of snoopable memory together to avoid the prefetcher crossing memory
3438          * domains and dying. During vm initialisation, we decide whether or not
3439          * these constraints apply and set the drm_mm.color_adjust
3440          * appropriately.
3441          */
3442         if (vma->vm->mm.color_adjust == NULL)
3443                 return true;
3444
3445         if (!drm_mm_node_allocated(gtt_space))
3446                 return true;
3447
3448         if (list_empty(&gtt_space->node_list))
3449                 return true;
3450
3451         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3452         if (other->allocated && !other->hole_follows && other->color != cache_level)
3453                 return false;
3454
3455         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3456         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3457                 return false;
3458
3459         return true;
3460 }
3461
3462 /**
3463  * Finds free space in the GTT aperture and binds the object or a view of it
3464  * there.
3465  */
3466 static struct i915_vma *
3467 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3468                            struct i915_address_space *vm,
3469                            const struct i915_ggtt_view *ggtt_view,
3470                            unsigned alignment,
3471                            uint64_t flags)
3472 {
3473         struct drm_device *dev = obj->base.dev;
3474         struct drm_i915_private *dev_priv = dev->dev_private;
3475         u32 fence_alignment, unfenced_alignment;
3476         u32 search_flag, alloc_flag;
3477         u64 start, end;
3478         u64 size, fence_size;
3479         struct i915_vma *vma;
3480         int ret;
3481
3482         if (i915_is_ggtt(vm)) {
3483                 u32 view_size;
3484
3485                 if (WARN_ON(!ggtt_view))
3486                         return ERR_PTR(-EINVAL);
3487
3488                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3489
3490                 fence_size = i915_gem_get_gtt_size(dev,
3491                                                    view_size,
3492                                                    obj->tiling_mode);
3493                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3494                                                              view_size,
3495                                                              obj->tiling_mode,
3496                                                              true);
3497                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3498                                                                 view_size,
3499                                                                 obj->tiling_mode,
3500                                                                 false);
3501                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3502         } else {
3503                 fence_size = i915_gem_get_gtt_size(dev,
3504                                                    obj->base.size,
3505                                                    obj->tiling_mode);
3506                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3507                                                              obj->base.size,
3508                                                              obj->tiling_mode,
3509                                                              true);
3510                 unfenced_alignment =
3511                         i915_gem_get_gtt_alignment(dev,
3512                                                    obj->base.size,
3513                                                    obj->tiling_mode,
3514                                                    false);
3515                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3516         }
3517
3518         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3519         end = vm->total;
3520         if (flags & PIN_MAPPABLE)
3521                 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3522         if (flags & PIN_ZONE_4G)
3523                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3524
3525         if (alignment == 0)
3526                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3527                                                 unfenced_alignment;
3528         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3529                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3530                           ggtt_view ? ggtt_view->type : 0,
3531                           alignment);
3532                 return ERR_PTR(-EINVAL);
3533         }
3534
3535         /* If binding the object/GGTT view requires more space than the entire
3536          * aperture has, reject it early before evicting everything in a vain
3537          * attempt to find space.
3538          */
3539         if (size > end) {
3540                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3541                           ggtt_view ? ggtt_view->type : 0,
3542                           size,
3543                           flags & PIN_MAPPABLE ? "mappable" : "total",
3544                           end);
3545                 return ERR_PTR(-E2BIG);
3546         }
3547
3548         ret = i915_gem_object_get_pages(obj);
3549         if (ret)
3550                 return ERR_PTR(ret);
3551
3552         i915_gem_object_pin_pages(obj);
3553
3554         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3555                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3556
3557         if (IS_ERR(vma))
3558                 goto err_unpin;
3559
3560         if (flags & PIN_OFFSET_FIXED) {
3561                 uint64_t offset = flags & PIN_OFFSET_MASK;
3562
3563                 if (offset & (alignment - 1) || offset + size > end) {
3564                         ret = -EINVAL;
3565                         goto err_free_vma;
3566                 }
3567                 vma->node.start = offset;
3568                 vma->node.size = size;
3569                 vma->node.color = obj->cache_level;
3570                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3571                 if (ret) {
3572                         ret = i915_gem_evict_for_vma(vma);
3573                         if (ret == 0)
3574                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3575                 }
3576                 if (ret)
3577                         goto err_free_vma;
3578         } else {
3579                 if (flags & PIN_HIGH) {
3580                         search_flag = DRM_MM_SEARCH_BELOW;
3581                         alloc_flag = DRM_MM_CREATE_TOP;
3582                 } else {
3583                         search_flag = DRM_MM_SEARCH_DEFAULT;
3584                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3585                 }
3586
3587 search_free:
3588                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3589                                                           size, alignment,
3590                                                           obj->cache_level,
3591                                                           start, end,
3592                                                           search_flag,
3593                                                           alloc_flag);
3594                 if (ret) {
3595                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3596                                                        obj->cache_level,
3597                                                        start, end,
3598                                                        flags);
3599                         if (ret == 0)
3600                                 goto search_free;
3601
3602                         goto err_free_vma;
3603                 }
3604         }
3605         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3606                 ret = -EINVAL;
3607                 goto err_remove_node;
3608         }
3609
3610         trace_i915_vma_bind(vma, flags);
3611         ret = i915_vma_bind(vma, obj->cache_level, flags);
3612         if (ret)
3613                 goto err_remove_node;
3614
3615         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3616         list_add_tail(&vma->mm_list, &vm->inactive_list);
3617
3618         return vma;
3619
3620 err_remove_node:
3621         drm_mm_remove_node(&vma->node);
3622 err_free_vma:
3623         i915_gem_vma_destroy(vma);
3624         vma = ERR_PTR(ret);
3625 err_unpin:
3626         i915_gem_object_unpin_pages(obj);
3627         return vma;
3628 }
3629
3630 bool
3631 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3632                         bool force)
3633 {
3634         /* If we don't have a page list set up, then we're not pinned
3635          * to GPU, and we can ignore the cache flush because it'll happen
3636          * again at bind time.
3637          */
3638         if (obj->pages == NULL)
3639                 return false;
3640
3641         /*
3642          * Stolen memory is always coherent with the GPU as it is explicitly
3643          * marked as wc by the system, or the system is cache-coherent.
3644          */
3645         if (obj->stolen || obj->phys_handle)
3646                 return false;
3647
3648         /* If the GPU is snooping the contents of the CPU cache,
3649          * we do not need to manually clear the CPU cache lines.  However,
3650          * the caches are only snooped when the render cache is
3651          * flushed/invalidated.  As we always have to emit invalidations
3652          * and flushes when moving into and out of the RENDER domain, correct
3653          * snooping behaviour occurs naturally as the result of our domain
3654          * tracking.
3655          */
3656         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3657                 obj->cache_dirty = true;
3658                 return false;
3659         }
3660
3661         trace_i915_gem_object_clflush(obj);
3662         drm_clflush_sg(obj->pages);
3663         obj->cache_dirty = false;
3664
3665         return true;
3666 }
3667
3668 /** Flushes the GTT write domain for the object if it's dirty. */
3669 static void
3670 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3671 {
3672         uint32_t old_write_domain;
3673
3674         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3675                 return;
3676
3677         /* No actual flushing is required for the GTT write domain.  Writes
3678          * to it immediately go to main memory as far as we know, so there's
3679          * no chipset flush.  It also doesn't land in render cache.
3680          *
3681          * However, we do have to enforce the order so that all writes through
3682          * the GTT land before any writes to the device, such as updates to
3683          * the GATT itself.
3684          */
3685         wmb();
3686
3687         old_write_domain = obj->base.write_domain;
3688         obj->base.write_domain = 0;
3689
3690         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3691
3692         trace_i915_gem_object_change_domain(obj,
3693                                             obj->base.read_domains,
3694                                             old_write_domain);
3695 }
3696
3697 /** Flushes the CPU write domain for the object if it's dirty. */
3698 static void
3699 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3700 {
3701         uint32_t old_write_domain;
3702
3703         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3704                 return;
3705
3706         if (i915_gem_clflush_object(obj, obj->pin_display))
3707                 i915_gem_chipset_flush(obj->base.dev);
3708
3709         old_write_domain = obj->base.write_domain;
3710         obj->base.write_domain = 0;
3711
3712         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3713
3714         trace_i915_gem_object_change_domain(obj,
3715                                             obj->base.read_domains,
3716                                             old_write_domain);
3717 }
3718
3719 /**
3720  * Moves a single object to the GTT read, and possibly write domain.
3721  *
3722  * This function returns when the move is complete, including waiting on
3723  * flushes to occur.
3724  */
3725 int
3726 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3727 {
3728         uint32_t old_write_domain, old_read_domains;
3729         struct i915_vma *vma;
3730         int ret;
3731
3732         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3733                 return 0;
3734
3735         ret = i915_gem_object_wait_rendering(obj, !write);
3736         if (ret)
3737                 return ret;
3738
3739         /* Flush and acquire obj->pages so that we are coherent through
3740          * direct access in memory with previous cached writes through
3741          * shmemfs and that our cache domain tracking remains valid.
3742          * For example, if the obj->filp was moved to swap without us
3743          * being notified and releasing the pages, we would mistakenly
3744          * continue to assume that the obj remained out of the CPU cached
3745          * domain.
3746          */
3747         ret = i915_gem_object_get_pages(obj);
3748         if (ret)
3749                 return ret;
3750
3751         i915_gem_object_flush_cpu_write_domain(obj);
3752
3753         /* Serialise direct access to this object with the barriers for
3754          * coherent writes from the GPU, by effectively invalidating the
3755          * GTT domain upon first access.
3756          */
3757         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3758                 mb();
3759
3760         old_write_domain = obj->base.write_domain;
3761         old_read_domains = obj->base.read_domains;
3762
3763         /* It should now be out of any other write domains, and we can update
3764          * the domain values for our changes.
3765          */
3766         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3767         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3768         if (write) {
3769                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3770                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3771                 obj->dirty = 1;
3772         }
3773
3774         trace_i915_gem_object_change_domain(obj,
3775                                             old_read_domains,
3776                                             old_write_domain);
3777
3778         /* And bump the LRU for this access */
3779         vma = i915_gem_obj_to_ggtt(obj);
3780         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3781                 list_move_tail(&vma->mm_list,
3782                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3783
3784         return 0;
3785 }
3786
3787 /**
3788  * Changes the cache-level of an object across all VMA.
3789  *
3790  * After this function returns, the object will be in the new cache-level
3791  * across all GTT and the contents of the backing storage will be coherent,
3792  * with respect to the new cache-level. In order to keep the backing storage
3793  * coherent for all users, we only allow a single cache level to be set
3794  * globally on the object and prevent it from being changed whilst the
3795  * hardware is reading from the object. That is if the object is currently
3796  * on the scanout it will be set to uncached (or equivalent display
3797  * cache coherency) and all non-MOCS GPU access will also be uncached so
3798  * that all direct access to the scanout remains coherent.
3799  */
3800 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3801                                     enum i915_cache_level cache_level)
3802 {
3803         struct drm_device *dev = obj->base.dev;
3804         struct i915_vma *vma, *next;
3805         bool bound = false;
3806         int ret = 0;
3807
3808         if (obj->cache_level == cache_level)
3809                 goto out;
3810
3811         /* Inspect the list of currently bound VMA and unbind any that would
3812          * be invalid given the new cache-level. This is principally to
3813          * catch the issue of the CS prefetch crossing page boundaries and
3814          * reading an invalid PTE on older architectures.
3815          */
3816         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3817                 if (!drm_mm_node_allocated(&vma->node))
3818                         continue;
3819
3820                 if (vma->pin_count) {
3821                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3822                         return -EBUSY;
3823                 }
3824
3825                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3826                         ret = i915_vma_unbind(vma);
3827                         if (ret)
3828                                 return ret;
3829                 } else
3830                         bound = true;
3831         }
3832
3833         /* We can reuse the existing drm_mm nodes but need to change the
3834          * cache-level on the PTE. We could simply unbind them all and
3835          * rebind with the correct cache-level on next use. However since
3836          * we already have a valid slot, dma mapping, pages etc, we may as
3837          * rewrite the PTE in the belief that doing so tramples upon less
3838          * state and so involves less work.
3839          */
3840         if (bound) {
3841                 /* Before we change the PTE, the GPU must not be accessing it.
3842                  * If we wait upon the object, we know that all the bound
3843                  * VMA are no longer active.
3844                  */
3845                 ret = i915_gem_object_wait_rendering(obj, false);
3846                 if (ret)
3847                         return ret;
3848
3849                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3850                         /* Access to snoopable pages through the GTT is
3851                          * incoherent and on some machines causes a hard
3852                          * lockup. Relinquish the CPU mmaping to force
3853                          * userspace to refault in the pages and we can
3854                          * then double check if the GTT mapping is still
3855                          * valid for that pointer access.
3856                          */
3857                         i915_gem_release_mmap(obj);
3858
3859                         /* As we no longer need a fence for GTT access,
3860                          * we can relinquish it now (and so prevent having
3861                          * to steal a fence from someone else on the next
3862                          * fence request). Note GPU activity would have
3863                          * dropped the fence as all snoopable access is
3864                          * supposed to be linear.
3865                          */
3866                         ret = i915_gem_object_put_fence(obj);
3867                         if (ret)
3868                                 return ret;
3869                 } else {
3870                         /* We either have incoherent backing store and
3871                          * so no GTT access or the architecture is fully
3872                          * coherent. In such cases, existing GTT mmaps
3873                          * ignore the cache bit in the PTE and we can
3874                          * rewrite it without confusing the GPU or having
3875                          * to force userspace to fault back in its mmaps.
3876                          */
3877                 }
3878
3879                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3880                         if (!drm_mm_node_allocated(&vma->node))
3881                                 continue;
3882
3883                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3884                         if (ret)
3885                                 return ret;
3886                 }
3887         }
3888
3889         list_for_each_entry(vma, &obj->vma_list, vma_link)
3890                 vma->node.color = cache_level;
3891         obj->cache_level = cache_level;
3892
3893 out:
3894         /* Flush the dirty CPU caches to the backing storage so that the
3895          * object is now coherent at its new cache level (with respect
3896          * to the access domain).
3897          */
3898         if (obj->cache_dirty &&
3899             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3900             cpu_write_needs_clflush(obj)) {
3901                 if (i915_gem_clflush_object(obj, true))
3902                         i915_gem_chipset_flush(obj->base.dev);
3903         }
3904
3905         return 0;
3906 }
3907
3908 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3909                                struct drm_file *file)
3910 {
3911         struct drm_i915_gem_caching *args = data;
3912         struct drm_i915_gem_object *obj;
3913
3914         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3915         if (&obj->base == NULL)
3916                 return -ENOENT;
3917
3918         switch (obj->cache_level) {
3919         case I915_CACHE_LLC:
3920         case I915_CACHE_L3_LLC:
3921                 args->caching = I915_CACHING_CACHED;
3922                 break;
3923
3924         case I915_CACHE_WT:
3925                 args->caching = I915_CACHING_DISPLAY;
3926                 break;
3927
3928         default:
3929                 args->caching = I915_CACHING_NONE;
3930                 break;
3931         }
3932
3933         drm_gem_object_unreference_unlocked(&obj->base);
3934         return 0;
3935 }
3936
3937 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3938                                struct drm_file *file)
3939 {
3940         struct drm_i915_private *dev_priv = dev->dev_private;
3941         struct drm_i915_gem_caching *args = data;
3942         struct drm_i915_gem_object *obj;
3943         enum i915_cache_level level;
3944         int ret;
3945
3946         switch (args->caching) {
3947         case I915_CACHING_NONE:
3948                 level = I915_CACHE_NONE;
3949                 break;
3950         case I915_CACHING_CACHED:
3951                 /*
3952                  * Due to a HW issue on BXT A stepping, GPU stores via a
3953                  * snooped mapping may leave stale data in a corresponding CPU
3954                  * cacheline, whereas normally such cachelines would get
3955                  * invalidated.
3956                  */
3957                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3958                         return -ENODEV;
3959
3960                 level = I915_CACHE_LLC;
3961                 break;
3962         case I915_CACHING_DISPLAY:
3963                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3964                 break;
3965         default:
3966                 return -EINVAL;
3967         }
3968
3969         intel_runtime_pm_get(dev_priv);
3970
3971         ret = i915_mutex_lock_interruptible(dev);
3972         if (ret)
3973                 goto rpm_put;
3974
3975         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3976         if (&obj->base == NULL) {
3977                 ret = -ENOENT;
3978                 goto unlock;
3979         }
3980
3981         ret = i915_gem_object_set_cache_level(obj, level);
3982
3983         drm_gem_object_unreference(&obj->base);
3984 unlock:
3985         mutex_unlock(&dev->struct_mutex);
3986 rpm_put:
3987         intel_runtime_pm_put(dev_priv);
3988
3989         return ret;
3990 }
3991
3992 /*
3993  * Prepare buffer for display plane (scanout, cursors, etc).
3994  * Can be called from an uninterruptible phase (modesetting) and allows
3995  * any flushes to be pipelined (for pageflips).
3996  */
3997 int
3998 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3999                                      u32 alignment,
4000                                      const struct i915_ggtt_view *view)
4001 {
4002         u32 old_read_domains, old_write_domain;
4003         int ret;
4004
4005         /* Mark the pin_display early so that we account for the
4006          * display coherency whilst setting up the cache domains.
4007          */
4008         obj->pin_display++;
4009
4010         /* The display engine is not coherent with the LLC cache on gen6.  As
4011          * a result, we make sure that the pinning that is about to occur is
4012          * done with uncached PTEs. This is lowest common denominator for all
4013          * chipsets.
4014          *
4015          * However for gen6+, we could do better by using the GFDT bit instead
4016          * of uncaching, which would allow us to flush all the LLC-cached data
4017          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4018          */
4019         ret = i915_gem_object_set_cache_level(obj,
4020                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4021         if (ret)
4022                 goto err_unpin_display;
4023
4024         /* As the user may map the buffer once pinned in the display plane
4025          * (e.g. libkms for the bootup splash), we have to ensure that we
4026          * always use map_and_fenceable for all scanout buffers.
4027          */
4028         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4029                                        view->type == I915_GGTT_VIEW_NORMAL ?
4030                                        PIN_MAPPABLE : 0);
4031         if (ret)
4032                 goto err_unpin_display;
4033
4034         i915_gem_object_flush_cpu_write_domain(obj);
4035
4036         old_write_domain = obj->base.write_domain;
4037         old_read_domains = obj->base.read_domains;
4038
4039         /* It should now be out of any other write domains, and we can update
4040          * the domain values for our changes.
4041          */
4042         obj->base.write_domain = 0;
4043         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4044
4045         trace_i915_gem_object_change_domain(obj,
4046                                             old_read_domains,
4047                                             old_write_domain);
4048
4049         return 0;
4050
4051 err_unpin_display:
4052         obj->pin_display--;
4053         return ret;
4054 }
4055
4056 void
4057 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4058                                          const struct i915_ggtt_view *view)
4059 {
4060         if (WARN_ON(obj->pin_display == 0))
4061                 return;
4062
4063         i915_gem_object_ggtt_unpin_view(obj, view);
4064
4065         obj->pin_display--;
4066 }
4067
4068 /**
4069  * Moves a single object to the CPU read, and possibly write domain.
4070  *
4071  * This function returns when the move is complete, including waiting on
4072  * flushes to occur.
4073  */
4074 int
4075 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4076 {
4077         uint32_t old_write_domain, old_read_domains;
4078         int ret;
4079
4080         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4081                 return 0;
4082
4083         ret = i915_gem_object_wait_rendering(obj, !write);
4084         if (ret)
4085                 return ret;
4086
4087         i915_gem_object_flush_gtt_write_domain(obj);
4088
4089         old_write_domain = obj->base.write_domain;
4090         old_read_domains = obj->base.read_domains;
4091
4092         /* Flush the CPU cache if it's still invalid. */
4093         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4094                 i915_gem_clflush_object(obj, false);
4095
4096                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4097         }
4098
4099         /* It should now be out of any other write domains, and we can update
4100          * the domain values for our changes.
4101          */
4102         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4103
4104         /* If we're writing through the CPU, then the GPU read domains will
4105          * need to be invalidated at next use.
4106          */
4107         if (write) {
4108                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4109                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4110         }
4111
4112         trace_i915_gem_object_change_domain(obj,
4113                                             old_read_domains,
4114                                             old_write_domain);
4115
4116         return 0;
4117 }
4118
4119 /* Throttle our rendering by waiting until the ring has completed our requests
4120  * emitted over 20 msec ago.
4121  *
4122  * Note that if we were to use the current jiffies each time around the loop,
4123  * we wouldn't escape the function with any frames outstanding if the time to
4124  * render a frame was over 20ms.
4125  *
4126  * This should get us reasonable parallelism between CPU and GPU but also
4127  * relatively low latency when blocking on a particular request to finish.
4128  */
4129 static int
4130 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4131 {
4132         struct drm_i915_private *dev_priv = dev->dev_private;
4133         struct drm_i915_file_private *file_priv = file->driver_priv;
4134         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4135         struct drm_i915_gem_request *request, *target = NULL;
4136         unsigned reset_counter;
4137         int ret;
4138
4139         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4140         if (ret)
4141                 return ret;
4142
4143         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4144         if (ret)
4145                 return ret;
4146
4147         spin_lock(&file_priv->mm.lock);
4148         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4149                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4150                         break;
4151
4152                 /*
4153                  * Note that the request might not have been submitted yet.
4154                  * In which case emitted_jiffies will be zero.
4155                  */
4156                 if (!request->emitted_jiffies)
4157                         continue;
4158
4159                 target = request;
4160         }
4161         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4162         if (target)
4163                 i915_gem_request_reference(target);
4164         spin_unlock(&file_priv->mm.lock);
4165
4166         if (target == NULL)
4167                 return 0;
4168
4169         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4170         if (ret == 0)
4171                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4172
4173         i915_gem_request_unreference__unlocked(target);
4174
4175         return ret;
4176 }
4177
4178 static bool
4179 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4180 {
4181         struct drm_i915_gem_object *obj = vma->obj;
4182
4183         if (alignment &&
4184             vma->node.start & (alignment - 1))
4185                 return true;
4186
4187         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4188                 return true;
4189
4190         if (flags & PIN_OFFSET_BIAS &&
4191             vma->node.start < (flags & PIN_OFFSET_MASK))
4192                 return true;
4193
4194         if (flags & PIN_OFFSET_FIXED &&
4195             vma->node.start != (flags & PIN_OFFSET_MASK))
4196                 return true;
4197
4198         return false;
4199 }
4200
4201 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4202 {
4203         struct drm_i915_gem_object *obj = vma->obj;
4204         bool mappable, fenceable;
4205         u32 fence_size, fence_alignment;
4206
4207         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4208                                            obj->base.size,
4209                                            obj->tiling_mode);
4210         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4211                                                      obj->base.size,
4212                                                      obj->tiling_mode,
4213                                                      true);
4214
4215         fenceable = (vma->node.size == fence_size &&
4216                      (vma->node.start & (fence_alignment - 1)) == 0);
4217
4218         mappable = (vma->node.start + fence_size <=
4219                     to_i915(obj->base.dev)->gtt.mappable_end);
4220
4221         obj->map_and_fenceable = mappable && fenceable;
4222 }
4223
4224 static int
4225 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4226                        struct i915_address_space *vm,
4227                        const struct i915_ggtt_view *ggtt_view,
4228                        uint32_t alignment,
4229                        uint64_t flags)
4230 {
4231         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4232         struct i915_vma *vma;
4233         unsigned bound;
4234         int ret;
4235
4236         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4237                 return -ENODEV;
4238
4239         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4240                 return -EINVAL;
4241
4242         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4243                 return -EINVAL;
4244
4245         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4246                 return -EINVAL;
4247
4248         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4249                           i915_gem_obj_to_vma(obj, vm);
4250
4251         if (IS_ERR(vma))
4252                 return PTR_ERR(vma);
4253
4254         if (vma) {
4255                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4256                         return -EBUSY;
4257
4258                 if (i915_vma_misplaced(vma, alignment, flags)) {
4259                         WARN(vma->pin_count,
4260                              "bo is already pinned in %s with incorrect alignment:"
4261                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4262                              " obj->map_and_fenceable=%d\n",
4263                              ggtt_view ? "ggtt" : "ppgtt",
4264                              upper_32_bits(vma->node.start),
4265                              lower_32_bits(vma->node.start),
4266                              alignment,
4267                              !!(flags & PIN_MAPPABLE),
4268                              obj->map_and_fenceable);
4269                         ret = i915_vma_unbind(vma);
4270                         if (ret)
4271                                 return ret;
4272
4273                         vma = NULL;
4274                 }
4275         }
4276
4277         bound = vma ? vma->bound : 0;
4278         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4279                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4280                                                  flags);
4281                 if (IS_ERR(vma))
4282                         return PTR_ERR(vma);
4283         } else {
4284                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4285                 if (ret)
4286                         return ret;
4287         }
4288
4289         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4290             (bound ^ vma->bound) & GLOBAL_BIND) {
4291                 __i915_vma_set_map_and_fenceable(vma);
4292                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4293         }
4294
4295         vma->pin_count++;
4296         return 0;
4297 }
4298
4299 int
4300 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4301                     struct i915_address_space *vm,
4302                     uint32_t alignment,
4303                     uint64_t flags)
4304 {
4305         return i915_gem_object_do_pin(obj, vm,
4306                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4307                                       alignment, flags);
4308 }
4309
4310 int
4311 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4312                          const struct i915_ggtt_view *view,
4313                          uint32_t alignment,
4314                          uint64_t flags)
4315 {
4316         if (WARN_ONCE(!view, "no view specified"))
4317                 return -EINVAL;
4318
4319         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4320                                       alignment, flags | PIN_GLOBAL);
4321 }
4322
4323 void
4324 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4325                                 const struct i915_ggtt_view *view)
4326 {
4327         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4328
4329         BUG_ON(!vma);
4330         WARN_ON(vma->pin_count == 0);
4331         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4332
4333         --vma->pin_count;
4334 }
4335
4336 int
4337 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4338                     struct drm_file *file)
4339 {
4340         struct drm_i915_gem_busy *args = data;
4341         struct drm_i915_gem_object *obj;
4342         int ret;
4343
4344         ret = i915_mutex_lock_interruptible(dev);
4345         if (ret)
4346                 return ret;
4347
4348         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4349         if (&obj->base == NULL) {
4350                 ret = -ENOENT;
4351                 goto unlock;
4352         }
4353
4354         /* Count all active objects as busy, even if they are currently not used
4355          * by the gpu. Users of this interface expect objects to eventually
4356          * become non-busy without any further actions, therefore emit any
4357          * necessary flushes here.
4358          */
4359         ret = i915_gem_object_flush_active(obj);
4360         if (ret)
4361                 goto unref;
4362
4363         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4364         args->busy = obj->active << 16;
4365         if (obj->last_write_req)
4366                 args->busy |= obj->last_write_req->ring->id;
4367
4368 unref:
4369         drm_gem_object_unreference(&obj->base);
4370 unlock:
4371         mutex_unlock(&dev->struct_mutex);
4372         return ret;
4373 }
4374
4375 int
4376 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4377                         struct drm_file *file_priv)
4378 {
4379         return i915_gem_ring_throttle(dev, file_priv);
4380 }
4381
4382 int
4383 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4384                        struct drm_file *file_priv)
4385 {
4386         struct drm_i915_private *dev_priv = dev->dev_private;
4387         struct drm_i915_gem_madvise *args = data;
4388         struct drm_i915_gem_object *obj;
4389         int ret;
4390
4391         switch (args->madv) {
4392         case I915_MADV_DONTNEED:
4393         case I915_MADV_WILLNEED:
4394             break;
4395         default:
4396             return -EINVAL;
4397         }
4398
4399         ret = i915_mutex_lock_interruptible(dev);
4400         if (ret)
4401                 return ret;
4402
4403         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4404         if (&obj->base == NULL) {
4405                 ret = -ENOENT;
4406                 goto unlock;
4407         }
4408
4409         if (i915_gem_obj_is_pinned(obj)) {
4410                 ret = -EINVAL;
4411                 goto out;
4412         }
4413
4414         if (obj->pages &&
4415             obj->tiling_mode != I915_TILING_NONE &&
4416             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4417                 if (obj->madv == I915_MADV_WILLNEED)
4418                         i915_gem_object_unpin_pages(obj);
4419                 if (args->madv == I915_MADV_WILLNEED)
4420                         i915_gem_object_pin_pages(obj);
4421         }
4422
4423         if (obj->madv != __I915_MADV_PURGED)
4424                 obj->madv = args->madv;
4425
4426         /* if the object is no longer attached, discard its backing storage */
4427         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4428                 i915_gem_object_truncate(obj);
4429
4430         args->retained = obj->madv != __I915_MADV_PURGED;
4431
4432 out:
4433         drm_gem_object_unreference(&obj->base);
4434 unlock:
4435         mutex_unlock(&dev->struct_mutex);
4436         return ret;
4437 }
4438
4439 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4440                           const struct drm_i915_gem_object_ops *ops)
4441 {
4442         int i;
4443
4444         INIT_LIST_HEAD(&obj->global_list);
4445         for (i = 0; i < I915_NUM_RINGS; i++)
4446                 INIT_LIST_HEAD(&obj->ring_list[i]);
4447         INIT_LIST_HEAD(&obj->obj_exec_link);
4448         INIT_LIST_HEAD(&obj->vma_list);
4449         INIT_LIST_HEAD(&obj->batch_pool_link);
4450
4451         obj->ops = ops;
4452
4453         obj->fence_reg = I915_FENCE_REG_NONE;
4454         obj->madv = I915_MADV_WILLNEED;
4455
4456         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4457 }
4458
4459 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4460         .get_pages = i915_gem_object_get_pages_gtt,
4461         .put_pages = i915_gem_object_put_pages_gtt,
4462 };
4463
4464 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4465                                                   size_t size)
4466 {
4467         struct drm_i915_gem_object *obj;
4468         struct address_space *mapping;
4469         gfp_t mask;
4470
4471         obj = i915_gem_object_alloc(dev);
4472         if (obj == NULL)
4473                 return NULL;
4474
4475         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4476                 i915_gem_object_free(obj);
4477                 return NULL;
4478         }
4479
4480         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4481         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4482                 /* 965gm cannot relocate objects above 4GiB. */
4483                 mask &= ~__GFP_HIGHMEM;
4484                 mask |= __GFP_DMA32;
4485         }
4486
4487         mapping = file_inode(obj->base.filp)->i_mapping;
4488         mapping_set_gfp_mask(mapping, mask);
4489
4490         i915_gem_object_init(obj, &i915_gem_object_ops);
4491
4492         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4493         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4494
4495         if (HAS_LLC(dev)) {
4496                 /* On some devices, we can have the GPU use the LLC (the CPU
4497                  * cache) for about a 10% performance improvement
4498                  * compared to uncached.  Graphics requests other than
4499                  * display scanout are coherent with the CPU in
4500                  * accessing this cache.  This means in this mode we
4501                  * don't need to clflush on the CPU side, and on the
4502                  * GPU side we only need to flush internal caches to
4503                  * get data visible to the CPU.
4504                  *
4505                  * However, we maintain the display planes as UC, and so
4506                  * need to rebind when first used as such.
4507                  */
4508                 obj->cache_level = I915_CACHE_LLC;
4509         } else
4510                 obj->cache_level = I915_CACHE_NONE;
4511
4512         trace_i915_gem_object_create(obj);
4513
4514         return obj;
4515 }
4516
4517 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4518 {
4519         /* If we are the last user of the backing storage (be it shmemfs
4520          * pages or stolen etc), we know that the pages are going to be
4521          * immediately released. In this case, we can then skip copying
4522          * back the contents from the GPU.
4523          */
4524
4525         if (obj->madv != I915_MADV_WILLNEED)
4526                 return false;
4527
4528         if (obj->base.filp == NULL)
4529                 return true;
4530
4531         /* At first glance, this looks racy, but then again so would be
4532          * userspace racing mmap against close. However, the first external
4533          * reference to the filp can only be obtained through the
4534          * i915_gem_mmap_ioctl() which safeguards us against the user
4535          * acquiring such a reference whilst we are in the middle of
4536          * freeing the object.
4537          */
4538         return atomic_long_read(&obj->base.filp->f_count) == 1;
4539 }
4540
4541 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4542 {
4543         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4544         struct drm_device *dev = obj->base.dev;
4545         struct drm_i915_private *dev_priv = dev->dev_private;
4546         struct i915_vma *vma, *next;
4547
4548         intel_runtime_pm_get(dev_priv);
4549
4550         trace_i915_gem_object_destroy(obj);
4551
4552         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4553                 int ret;
4554
4555                 vma->pin_count = 0;
4556                 ret = i915_vma_unbind(vma);
4557                 if (WARN_ON(ret == -ERESTARTSYS)) {
4558                         bool was_interruptible;
4559
4560                         was_interruptible = dev_priv->mm.interruptible;
4561                         dev_priv->mm.interruptible = false;
4562
4563                         WARN_ON(i915_vma_unbind(vma));
4564
4565                         dev_priv->mm.interruptible = was_interruptible;
4566                 }
4567         }
4568
4569         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4570          * before progressing. */
4571         if (obj->stolen)
4572                 i915_gem_object_unpin_pages(obj);
4573
4574         WARN_ON(obj->frontbuffer_bits);
4575
4576         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4577             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4578             obj->tiling_mode != I915_TILING_NONE)
4579                 i915_gem_object_unpin_pages(obj);
4580
4581         if (WARN_ON(obj->pages_pin_count))
4582                 obj->pages_pin_count = 0;
4583         if (discard_backing_storage(obj))
4584                 obj->madv = I915_MADV_DONTNEED;
4585         i915_gem_object_put_pages(obj);
4586         i915_gem_object_free_mmap_offset(obj);
4587
4588         BUG_ON(obj->pages);
4589
4590         if (obj->base.import_attach)
4591                 drm_prime_gem_destroy(&obj->base, NULL);
4592
4593         if (obj->ops->release)
4594                 obj->ops->release(obj);
4595
4596         drm_gem_object_release(&obj->base);
4597         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4598
4599         kfree(obj->bit_17);
4600         i915_gem_object_free(obj);
4601
4602         intel_runtime_pm_put(dev_priv);
4603 }
4604
4605 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4606                                      struct i915_address_space *vm)
4607 {
4608         struct i915_vma *vma;
4609         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4610                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4611                     vma->vm == vm)
4612                         return vma;
4613         }
4614         return NULL;
4615 }
4616
4617 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4618                                            const struct i915_ggtt_view *view)
4619 {
4620         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4621         struct i915_vma *vma;
4622
4623         if (WARN_ONCE(!view, "no view specified"))
4624                 return ERR_PTR(-EINVAL);
4625
4626         list_for_each_entry(vma, &obj->vma_list, vma_link)
4627                 if (vma->vm == ggtt &&
4628                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4629                         return vma;
4630         return NULL;
4631 }
4632
4633 void i915_gem_vma_destroy(struct i915_vma *vma)
4634 {
4635         struct i915_address_space *vm = NULL;
4636         WARN_ON(vma->node.allocated);
4637
4638         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4639         if (!list_empty(&vma->exec_list))
4640                 return;
4641
4642         vm = vma->vm;
4643
4644         if (!i915_is_ggtt(vm))
4645                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4646
4647         list_del(&vma->vma_link);
4648
4649         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4650 }
4651
4652 static void
4653 i915_gem_stop_ringbuffers(struct drm_device *dev)
4654 {
4655         struct drm_i915_private *dev_priv = dev->dev_private;
4656         struct intel_engine_cs *ring;
4657         int i;
4658
4659         for_each_ring(ring, dev_priv, i)
4660                 dev_priv->gt.stop_ring(ring);
4661 }
4662
4663 int
4664 i915_gem_suspend(struct drm_device *dev)
4665 {
4666         struct drm_i915_private *dev_priv = dev->dev_private;
4667         int ret = 0;
4668
4669         mutex_lock(&dev->struct_mutex);
4670         ret = i915_gpu_idle(dev);
4671         if (ret)
4672                 goto err;
4673
4674         i915_gem_retire_requests(dev);
4675
4676         i915_gem_stop_ringbuffers(dev);
4677         mutex_unlock(&dev->struct_mutex);
4678
4679         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4680         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4681         flush_delayed_work(&dev_priv->mm.idle_work);
4682
4683         /* Assert that we sucessfully flushed all the work and
4684          * reset the GPU back to its idle, low power state.
4685          */
4686         WARN_ON(dev_priv->mm.busy);
4687
4688         return 0;
4689
4690 err:
4691         mutex_unlock(&dev->struct_mutex);
4692         return ret;
4693 }
4694
4695 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4696 {
4697         struct intel_engine_cs *ring = req->ring;
4698         struct drm_device *dev = ring->dev;
4699         struct drm_i915_private *dev_priv = dev->dev_private;
4700         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4701         int i, ret;
4702
4703         if (!HAS_L3_DPF(dev) || !remap_info)
4704                 return 0;
4705
4706         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4707         if (ret)
4708                 return ret;
4709
4710         /*
4711          * Note: We do not worry about the concurrent register cacheline hang
4712          * here because no other code should access these registers other than
4713          * at initialization time.
4714          */
4715         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4716                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4717                 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4718                 intel_ring_emit(ring, remap_info[i]);
4719         }
4720
4721         intel_ring_advance(ring);
4722
4723         return ret;
4724 }
4725
4726 void i915_gem_init_swizzling(struct drm_device *dev)
4727 {
4728         struct drm_i915_private *dev_priv = dev->dev_private;
4729
4730         if (INTEL_INFO(dev)->gen < 5 ||
4731             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4732                 return;
4733
4734         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4735                                  DISP_TILE_SURFACE_SWIZZLING);
4736
4737         if (IS_GEN5(dev))
4738                 return;
4739
4740         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4741         if (IS_GEN6(dev))
4742                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4743         else if (IS_GEN7(dev))
4744                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4745         else if (IS_GEN8(dev))
4746                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4747         else
4748                 BUG();
4749 }
4750
4751 static void init_unused_ring(struct drm_device *dev, u32 base)
4752 {
4753         struct drm_i915_private *dev_priv = dev->dev_private;
4754
4755         I915_WRITE(RING_CTL(base), 0);
4756         I915_WRITE(RING_HEAD(base), 0);
4757         I915_WRITE(RING_TAIL(base), 0);
4758         I915_WRITE(RING_START(base), 0);
4759 }
4760
4761 static void init_unused_rings(struct drm_device *dev)
4762 {
4763         if (IS_I830(dev)) {
4764                 init_unused_ring(dev, PRB1_BASE);
4765                 init_unused_ring(dev, SRB0_BASE);
4766                 init_unused_ring(dev, SRB1_BASE);
4767                 init_unused_ring(dev, SRB2_BASE);
4768                 init_unused_ring(dev, SRB3_BASE);
4769         } else if (IS_GEN2(dev)) {
4770                 init_unused_ring(dev, SRB0_BASE);
4771                 init_unused_ring(dev, SRB1_BASE);
4772         } else if (IS_GEN3(dev)) {
4773                 init_unused_ring(dev, PRB1_BASE);
4774                 init_unused_ring(dev, PRB2_BASE);
4775         }
4776 }
4777
4778 int i915_gem_init_rings(struct drm_device *dev)
4779 {
4780         struct drm_i915_private *dev_priv = dev->dev_private;
4781         int ret;
4782
4783         ret = intel_init_render_ring_buffer(dev);
4784         if (ret)
4785                 return ret;
4786
4787         if (HAS_BSD(dev)) {
4788                 ret = intel_init_bsd_ring_buffer(dev);
4789                 if (ret)
4790                         goto cleanup_render_ring;
4791         }
4792
4793         if (HAS_BLT(dev)) {
4794                 ret = intel_init_blt_ring_buffer(dev);
4795                 if (ret)
4796                         goto cleanup_bsd_ring;
4797         }
4798
4799         if (HAS_VEBOX(dev)) {
4800                 ret = intel_init_vebox_ring_buffer(dev);
4801                 if (ret)
4802                         goto cleanup_blt_ring;
4803         }
4804
4805         if (HAS_BSD2(dev)) {
4806                 ret = intel_init_bsd2_ring_buffer(dev);
4807                 if (ret)
4808                         goto cleanup_vebox_ring;
4809         }
4810
4811         return 0;
4812
4813 cleanup_vebox_ring:
4814         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4815 cleanup_blt_ring:
4816         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4817 cleanup_bsd_ring:
4818         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4819 cleanup_render_ring:
4820         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4821
4822         return ret;
4823 }
4824
4825 int
4826 i915_gem_init_hw(struct drm_device *dev)
4827 {
4828         struct drm_i915_private *dev_priv = dev->dev_private;
4829         struct intel_engine_cs *ring;
4830         int ret, i, j;
4831
4832         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4833                 return -EIO;
4834
4835         /* Double layer security blanket, see i915_gem_init() */
4836         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4837
4838         if (dev_priv->ellc_size)
4839                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4840
4841         if (IS_HASWELL(dev))
4842                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4843                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4844
4845         if (HAS_PCH_NOP(dev)) {
4846                 if (IS_IVYBRIDGE(dev)) {
4847                         u32 temp = I915_READ(GEN7_MSG_CTL);
4848                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4849                         I915_WRITE(GEN7_MSG_CTL, temp);
4850                 } else if (INTEL_INFO(dev)->gen >= 7) {
4851                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4852                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4853                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4854                 }
4855         }
4856
4857         i915_gem_init_swizzling(dev);
4858
4859         /*
4860          * At least 830 can leave some of the unused rings
4861          * "active" (ie. head != tail) after resume which
4862          * will prevent c3 entry. Makes sure all unused rings
4863          * are totally idle.
4864          */
4865         init_unused_rings(dev);
4866
4867         BUG_ON(!dev_priv->ring[RCS].default_context);
4868
4869         ret = i915_ppgtt_init_hw(dev);
4870         if (ret) {
4871                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4872                 goto out;
4873         }
4874
4875         /* Need to do basic initialisation of all rings first: */
4876         for_each_ring(ring, dev_priv, i) {
4877                 ret = ring->init_hw(ring);
4878                 if (ret)
4879                         goto out;
4880         }
4881
4882         /* We can't enable contexts until all firmware is loaded */
4883         if (HAS_GUC_UCODE(dev)) {
4884                 ret = intel_guc_ucode_load(dev);
4885                 if (ret) {
4886                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4887                         ret = -EIO;
4888                         goto out;
4889                 }
4890         }
4891
4892         /*
4893          * Increment the next seqno by 0x100 so we have a visible break
4894          * on re-initialisation
4895          */
4896         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4897         if (ret)
4898                 goto out;
4899
4900         /* Now it is safe to go back round and do everything else: */
4901         for_each_ring(ring, dev_priv, i) {
4902                 struct drm_i915_gem_request *req;
4903
4904                 req = i915_gem_request_alloc(ring, NULL);
4905                 if (IS_ERR(req)) {
4906                         ret = PTR_ERR(req);
4907                         i915_gem_cleanup_ringbuffer(dev);
4908                         goto out;
4909                 }
4910
4911                 if (ring->id == RCS) {
4912                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4913                                 i915_gem_l3_remap(req, j);
4914                 }
4915
4916                 ret = i915_ppgtt_init_ring(req);
4917                 if (ret && ret != -EIO) {
4918                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4919                         i915_gem_request_cancel(req);
4920                         i915_gem_cleanup_ringbuffer(dev);
4921                         goto out;
4922                 }
4923
4924                 ret = i915_gem_context_enable(req);
4925                 if (ret && ret != -EIO) {
4926                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4927                         i915_gem_request_cancel(req);
4928                         i915_gem_cleanup_ringbuffer(dev);
4929                         goto out;
4930                 }
4931
4932                 i915_add_request_no_flush(req);
4933         }
4934
4935 out:
4936         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4937         return ret;
4938 }
4939
4940 int i915_gem_init(struct drm_device *dev)
4941 {
4942         struct drm_i915_private *dev_priv = dev->dev_private;
4943         int ret;
4944
4945         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4946                         i915.enable_execlists);
4947
4948         mutex_lock(&dev->struct_mutex);
4949
4950         if (!i915.enable_execlists) {
4951                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4952                 dev_priv->gt.init_rings = i915_gem_init_rings;
4953                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4954                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4955         } else {
4956                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4957                 dev_priv->gt.init_rings = intel_logical_rings_init;
4958                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4959                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4960         }
4961
4962         /* This is just a security blanket to placate dragons.
4963          * On some systems, we very sporadically observe that the first TLBs
4964          * used by the CS may be stale, despite us poking the TLB reset. If
4965          * we hold the forcewake during initialisation these problems
4966          * just magically go away.
4967          */
4968         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4969
4970         ret = i915_gem_init_userptr(dev);
4971         if (ret)
4972                 goto out_unlock;
4973
4974         i915_gem_init_global_gtt(dev);
4975
4976         ret = i915_gem_context_init(dev);
4977         if (ret)
4978                 goto out_unlock;
4979
4980         ret = dev_priv->gt.init_rings(dev);
4981         if (ret)
4982                 goto out_unlock;
4983
4984         ret = i915_gem_init_hw(dev);
4985         if (ret == -EIO) {
4986                 /* Allow ring initialisation to fail by marking the GPU as
4987                  * wedged. But we only want to do this where the GPU is angry,
4988                  * for all other failure, such as an allocation failure, bail.
4989                  */
4990                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4991                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4992                 ret = 0;
4993         }
4994
4995 out_unlock:
4996         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4997         mutex_unlock(&dev->struct_mutex);
4998
4999         return ret;
5000 }
5001
5002 void
5003 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5004 {
5005         struct drm_i915_private *dev_priv = dev->dev_private;
5006         struct intel_engine_cs *ring;
5007         int i;
5008
5009         for_each_ring(ring, dev_priv, i)
5010                 dev_priv->gt.cleanup_ring(ring);
5011
5012     if (i915.enable_execlists)
5013             /*
5014              * Neither the BIOS, ourselves or any other kernel
5015              * expects the system to be in execlists mode on startup,
5016              * so we need to reset the GPU back to legacy mode.
5017              */
5018             intel_gpu_reset(dev);
5019 }
5020
5021 static void
5022 init_ring_lists(struct intel_engine_cs *ring)
5023 {
5024         INIT_LIST_HEAD(&ring->active_list);
5025         INIT_LIST_HEAD(&ring->request_list);
5026 }
5027
5028 void
5029 i915_gem_load(struct drm_device *dev)
5030 {
5031         struct drm_i915_private *dev_priv = dev->dev_private;
5032         int i;
5033
5034         dev_priv->objects =
5035                 kmem_cache_create("i915_gem_object",
5036                                   sizeof(struct drm_i915_gem_object), 0,
5037                                   SLAB_HWCACHE_ALIGN,
5038                                   NULL);
5039         dev_priv->vmas =
5040                 kmem_cache_create("i915_gem_vma",
5041                                   sizeof(struct i915_vma), 0,
5042                                   SLAB_HWCACHE_ALIGN,
5043                                   NULL);
5044         dev_priv->requests =
5045                 kmem_cache_create("i915_gem_request",
5046                                   sizeof(struct drm_i915_gem_request), 0,
5047                                   SLAB_HWCACHE_ALIGN,
5048                                   NULL);
5049
5050         INIT_LIST_HEAD(&dev_priv->vm_list);
5051         INIT_LIST_HEAD(&dev_priv->context_list);
5052         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5053         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5054         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5055         for (i = 0; i < I915_NUM_RINGS; i++)
5056                 init_ring_lists(&dev_priv->ring[i]);
5057         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5058                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5059         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5060                           i915_gem_retire_work_handler);
5061         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5062                           i915_gem_idle_work_handler);
5063         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5064
5065         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5066
5067         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5068                 dev_priv->num_fence_regs = 32;
5069         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5070                 dev_priv->num_fence_regs = 16;
5071         else
5072                 dev_priv->num_fence_regs = 8;
5073
5074         if (intel_vgpu_active(dev))
5075                 dev_priv->num_fence_regs =
5076                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5077
5078         /*
5079          * Set initial sequence number for requests.
5080          * Using this number allows the wraparound to happen early,
5081          * catching any obvious problems.
5082          */
5083         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5084         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5085
5086         /* Initialize fence registers to zero */
5087         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5088         i915_gem_restore_fences(dev);
5089
5090         i915_gem_detect_bit_6_swizzle(dev);
5091         init_waitqueue_head(&dev_priv->pending_flip_queue);
5092
5093         dev_priv->mm.interruptible = true;
5094
5095         i915_gem_shrinker_init(dev_priv);
5096
5097         mutex_init(&dev_priv->fb_tracking.lock);
5098 }
5099
5100 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5101 {
5102         struct drm_i915_file_private *file_priv = file->driver_priv;
5103
5104         /* Clean up our request list when the client is going away, so that
5105          * later retire_requests won't dereference our soon-to-be-gone
5106          * file_priv.
5107          */
5108         spin_lock(&file_priv->mm.lock);
5109         while (!list_empty(&file_priv->mm.request_list)) {
5110                 struct drm_i915_gem_request *request;
5111
5112                 request = list_first_entry(&file_priv->mm.request_list,
5113                                            struct drm_i915_gem_request,
5114                                            client_list);
5115                 list_del(&request->client_list);
5116                 request->file_priv = NULL;
5117         }
5118         spin_unlock(&file_priv->mm.lock);
5119
5120         if (!list_empty(&file_priv->rps.link)) {
5121                 spin_lock(&to_i915(dev)->rps.client_lock);
5122                 list_del(&file_priv->rps.link);
5123                 spin_unlock(&to_i915(dev)->rps.client_lock);
5124         }
5125 }
5126
5127 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5128 {
5129         struct drm_i915_file_private *file_priv;
5130         int ret;
5131
5132         DRM_DEBUG_DRIVER("\n");
5133
5134         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5135         if (!file_priv)
5136                 return -ENOMEM;
5137
5138         file->driver_priv = file_priv;
5139         file_priv->dev_priv = dev->dev_private;
5140         file_priv->file = file;
5141         INIT_LIST_HEAD(&file_priv->rps.link);
5142
5143         spin_lock_init(&file_priv->mm.lock);
5144         INIT_LIST_HEAD(&file_priv->mm.request_list);
5145
5146         ret = i915_gem_context_open(dev, file);
5147         if (ret)
5148                 kfree(file_priv);
5149
5150         return ret;
5151 }
5152
5153 /**
5154  * i915_gem_track_fb - update frontbuffer tracking
5155  * @old: current GEM buffer for the frontbuffer slots
5156  * @new: new GEM buffer for the frontbuffer slots
5157  * @frontbuffer_bits: bitmask of frontbuffer slots
5158  *
5159  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5160  * from @old and setting them in @new. Both @old and @new can be NULL.
5161  */
5162 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5163                        struct drm_i915_gem_object *new,
5164                        unsigned frontbuffer_bits)
5165 {
5166         if (old) {
5167                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5168                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5169                 old->frontbuffer_bits &= ~frontbuffer_bits;
5170         }
5171
5172         if (new) {
5173                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5174                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5175                 new->frontbuffer_bits |= frontbuffer_bits;
5176         }
5177 }
5178
5179 /* All the new VM stuff */
5180 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5181                         struct i915_address_space *vm)
5182 {
5183         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5184         struct i915_vma *vma;
5185
5186         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5187
5188         list_for_each_entry(vma, &o->vma_list, vma_link) {
5189                 if (i915_is_ggtt(vma->vm) &&
5190                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5191                         continue;
5192                 if (vma->vm == vm)
5193                         return vma->node.start;
5194         }
5195
5196         WARN(1, "%s vma for this object not found.\n",
5197              i915_is_ggtt(vm) ? "global" : "ppgtt");
5198         return -1;
5199 }
5200
5201 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5202                                   const struct i915_ggtt_view *view)
5203 {
5204         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5205         struct i915_vma *vma;
5206
5207         list_for_each_entry(vma, &o->vma_list, vma_link)
5208                 if (vma->vm == ggtt &&
5209                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5210                         return vma->node.start;
5211
5212         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5213         return -1;
5214 }
5215
5216 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5217                         struct i915_address_space *vm)
5218 {
5219         struct i915_vma *vma;
5220
5221         list_for_each_entry(vma, &o->vma_list, vma_link) {
5222                 if (i915_is_ggtt(vma->vm) &&
5223                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5224                         continue;
5225                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5226                         return true;
5227         }
5228
5229         return false;
5230 }
5231
5232 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5233                                   const struct i915_ggtt_view *view)
5234 {
5235         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5236         struct i915_vma *vma;
5237
5238         list_for_each_entry(vma, &o->vma_list, vma_link)
5239                 if (vma->vm == ggtt &&
5240                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5241                     drm_mm_node_allocated(&vma->node))
5242                         return true;
5243
5244         return false;
5245 }
5246
5247 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5248 {
5249         struct i915_vma *vma;
5250
5251         list_for_each_entry(vma, &o->vma_list, vma_link)
5252                 if (drm_mm_node_allocated(&vma->node))
5253                         return true;
5254
5255         return false;
5256 }
5257
5258 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5259                                 struct i915_address_space *vm)
5260 {
5261         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5262         struct i915_vma *vma;
5263
5264         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5265
5266         BUG_ON(list_empty(&o->vma_list));
5267
5268         list_for_each_entry(vma, &o->vma_list, vma_link) {
5269                 if (i915_is_ggtt(vma->vm) &&
5270                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5271                         continue;
5272                 if (vma->vm == vm)
5273                         return vma->node.size;
5274         }
5275         return 0;
5276 }
5277
5278 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5279 {
5280         struct i915_vma *vma;
5281         list_for_each_entry(vma, &obj->vma_list, vma_link)
5282                 if (vma->pin_count > 0)
5283                         return true;
5284
5285         return false;
5286 }
5287
5288 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5289 struct page *
5290 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5291 {
5292         struct page *page;
5293
5294         /* Only default objects have per-page dirty tracking */
5295         if (WARN_ON(obj->ops != &i915_gem_object_ops))
5296                 return NULL;
5297
5298         page = i915_gem_object_get_page(obj, n);
5299         set_page_dirty(page);
5300         return page;
5301 }
5302
5303 /* Allocate a new GEM object and fill it with the supplied data */
5304 struct drm_i915_gem_object *
5305 i915_gem_object_create_from_data(struct drm_device *dev,
5306                                  const void *data, size_t size)
5307 {
5308         struct drm_i915_gem_object *obj;
5309         struct sg_table *sg;
5310         size_t bytes;
5311         int ret;
5312
5313         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5314         if (IS_ERR_OR_NULL(obj))
5315                 return obj;
5316
5317         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5318         if (ret)
5319                 goto fail;
5320
5321         ret = i915_gem_object_get_pages(obj);
5322         if (ret)
5323                 goto fail;
5324
5325         i915_gem_object_pin_pages(obj);
5326         sg = obj->pages;
5327         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5328         obj->dirty = 1;         /* Backing store is now out of date */
5329         i915_gem_object_unpin_pages(obj);
5330
5331         if (WARN_ON(bytes != size)) {
5332                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5333                 ret = -EFAULT;
5334                 goto fail;
5335         }
5336
5337         return obj;
5338
5339 fail:
5340         drm_gem_object_unreference(&obj->base);
5341         return ERR_PTR(ret);
5342 }