]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Turn on PIN_GLOBAL in i915_gem_object_ggtt_pin
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/oom.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 int
157 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158                             struct drm_file *file)
159 {
160         struct drm_i915_private *dev_priv = dev->dev_private;
161         struct drm_i915_gem_get_aperture *args = data;
162         struct drm_i915_gem_object *obj;
163         size_t pinned;
164
165         pinned = 0;
166         mutex_lock(&dev->struct_mutex);
167         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
168                 if (i915_gem_obj_is_pinned(obj))
169                         pinned += i915_gem_obj_ggtt_size(obj);
170         mutex_unlock(&dev->struct_mutex);
171
172         args->aper_size = dev_priv->gtt.base.total;
173         args->aper_available_size = args->aper_size - pinned;
174
175         return 0;
176 }
177
178 static int
179 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
180 {
181         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182         char *vaddr = obj->phys_handle->vaddr;
183         struct sg_table *st;
184         struct scatterlist *sg;
185         int i;
186
187         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188                 return -EINVAL;
189
190         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191                 struct page *page;
192                 char *src;
193
194                 page = shmem_read_mapping_page(mapping, i);
195                 if (IS_ERR(page))
196                         return PTR_ERR(page);
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 page_cache_release(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(obj->base.dev);
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (st == NULL)
211                 return -ENOMEM;
212
213         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214                 kfree(st);
215                 return -ENOMEM;
216         }
217
218         sg = st->sgl;
219         sg->offset = 0;
220         sg->length = obj->base.size;
221
222         sg_dma_address(sg) = obj->phys_handle->busaddr;
223         sg_dma_len(sg) = obj->base.size;
224
225         obj->pages = st;
226         obj->has_dma_mapping = true;
227         return 0;
228 }
229
230 static void
231 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232 {
233         int ret;
234
235         BUG_ON(obj->madv == __I915_MADV_PURGED);
236
237         ret = i915_gem_object_set_to_cpu_domain(obj, true);
238         if (ret) {
239                 /* In the event of a disaster, abandon all caches and
240                  * hope for the best.
241                  */
242                 WARN_ON(ret != -EIO);
243                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244         }
245
246         if (obj->madv == I915_MADV_DONTNEED)
247                 obj->dirty = 0;
248
249         if (obj->dirty) {
250                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
251                 char *vaddr = obj->phys_handle->vaddr;
252                 int i;
253
254                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
255                         struct page *page;
256                         char *dst;
257
258                         page = shmem_read_mapping_page(mapping, i);
259                         if (IS_ERR(page))
260                                 continue;
261
262                         dst = kmap_atomic(page);
263                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
264                         memcpy(dst, vaddr, PAGE_SIZE);
265                         kunmap_atomic(dst);
266
267                         set_page_dirty(page);
268                         if (obj->madv == I915_MADV_WILLNEED)
269                                 mark_page_accessed(page);
270                         page_cache_release(page);
271                         vaddr += PAGE_SIZE;
272                 }
273                 obj->dirty = 0;
274         }
275
276         sg_free_table(obj->pages);
277         kfree(obj->pages);
278
279         obj->has_dma_mapping = false;
280 }
281
282 static void
283 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284 {
285         drm_pci_free(obj->base.dev, obj->phys_handle);
286 }
287
288 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289         .get_pages = i915_gem_object_get_pages_phys,
290         .put_pages = i915_gem_object_put_pages_phys,
291         .release = i915_gem_object_release_phys,
292 };
293
294 static int
295 drop_pages(struct drm_i915_gem_object *obj)
296 {
297         struct i915_vma *vma, *next;
298         int ret;
299
300         drm_gem_object_reference(&obj->base);
301         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302                 if (i915_vma_unbind(vma))
303                         break;
304
305         ret = i915_gem_object_put_pages(obj);
306         drm_gem_object_unreference(&obj->base);
307
308         return ret;
309 }
310
311 int
312 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313                             int align)
314 {
315         drm_dma_handle_t *phys;
316         int ret;
317
318         if (obj->phys_handle) {
319                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320                         return -EBUSY;
321
322                 return 0;
323         }
324
325         if (obj->madv != I915_MADV_WILLNEED)
326                 return -EFAULT;
327
328         if (obj->base.filp == NULL)
329                 return -EINVAL;
330
331         ret = drop_pages(obj);
332         if (ret)
333                 return ret;
334
335         /* create a new object */
336         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337         if (!phys)
338                 return -ENOMEM;
339
340         obj->phys_handle = phys;
341         obj->ops = &i915_gem_phys_ops;
342
343         return i915_gem_object_get_pages(obj);
344 }
345
346 static int
347 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348                      struct drm_i915_gem_pwrite *args,
349                      struct drm_file *file_priv)
350 {
351         struct drm_device *dev = obj->base.dev;
352         void *vaddr = obj->phys_handle->vaddr + args->offset;
353         char __user *user_data = to_user_ptr(args->data_ptr);
354         int ret = 0;
355
356         /* We manually control the domain here and pretend that it
357          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358          */
359         ret = i915_gem_object_wait_rendering(obj, false);
360         if (ret)
361                 return ret;
362
363         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
364         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
365                 unsigned long unwritten;
366
367                 /* The physical object once assigned is fixed for the lifetime
368                  * of the obj, so we can safely drop the lock and continue
369                  * to access vaddr.
370                  */
371                 mutex_unlock(&dev->struct_mutex);
372                 unwritten = copy_from_user(vaddr, user_data, args->size);
373                 mutex_lock(&dev->struct_mutex);
374                 if (unwritten) {
375                         ret = -EFAULT;
376                         goto out;
377                 }
378         }
379
380         drm_clflush_virt_range(vaddr, args->size);
381         i915_gem_chipset_flush(dev);
382
383 out:
384         intel_fb_obj_flush(obj, false);
385         return ret;
386 }
387
388 void *i915_gem_object_alloc(struct drm_device *dev)
389 {
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 }
393
394 void i915_gem_object_free(struct drm_i915_gem_object *obj)
395 {
396         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397         kmem_cache_free(dev_priv->slab, obj);
398 }
399
400 static int
401 i915_gem_create(struct drm_file *file,
402                 struct drm_device *dev,
403                 uint64_t size,
404                 uint32_t *handle_p)
405 {
406         struct drm_i915_gem_object *obj;
407         int ret;
408         u32 handle;
409
410         size = roundup(size, PAGE_SIZE);
411         if (size == 0)
412                 return -EINVAL;
413
414         /* Allocate the new object */
415         obj = i915_gem_alloc_object(dev, size);
416         if (obj == NULL)
417                 return -ENOMEM;
418
419         ret = drm_gem_handle_create(file, &obj->base, &handle);
420         /* drop reference from allocate - handle holds it now */
421         drm_gem_object_unreference_unlocked(&obj->base);
422         if (ret)
423                 return ret;
424
425         *handle_p = handle;
426         return 0;
427 }
428
429 int
430 i915_gem_dumb_create(struct drm_file *file,
431                      struct drm_device *dev,
432                      struct drm_mode_create_dumb *args)
433 {
434         /* have to work out size/pitch and return them */
435         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
436         args->size = args->pitch * args->height;
437         return i915_gem_create(file, dev,
438                                args->size, &args->handle);
439 }
440
441 /**
442  * Creates a new mm object and returns a handle to it.
443  */
444 int
445 i915_gem_create_ioctl(struct drm_device *dev, void *data,
446                       struct drm_file *file)
447 {
448         struct drm_i915_gem_create *args = data;
449
450         return i915_gem_create(file, dev,
451                                args->size, &args->handle);
452 }
453
454 static inline int
455 __copy_to_user_swizzled(char __user *cpu_vaddr,
456                         const char *gpu_vaddr, int gpu_offset,
457                         int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
467                                      gpu_vaddr + swizzled_gpu_offset,
468                                      this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 static inline int
481 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
482                           const char __user *cpu_vaddr,
483                           int length)
484 {
485         int ret, cpu_offset = 0;
486
487         while (length > 0) {
488                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
489                 int this_length = min(cacheline_end - gpu_offset, length);
490                 int swizzled_gpu_offset = gpu_offset ^ 64;
491
492                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
493                                        cpu_vaddr + cpu_offset,
494                                        this_length);
495                 if (ret)
496                         return ret + length;
497
498                 cpu_offset += this_length;
499                 gpu_offset += this_length;
500                 length -= this_length;
501         }
502
503         return 0;
504 }
505
506 /*
507  * Pins the specified object's pages and synchronizes the object with
508  * GPU accesses. Sets needs_clflush to non-zero if the caller should
509  * flush the object from the CPU cache.
510  */
511 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
512                                     int *needs_clflush)
513 {
514         int ret;
515
516         *needs_clflush = 0;
517
518         if (!obj->base.filp)
519                 return -EINVAL;
520
521         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
522                 /* If we're not in the cpu read domain, set ourself into the gtt
523                  * read domain and manually flush cachelines (if required). This
524                  * optimizes for the case when the gpu will dirty the data
525                  * anyway again before the next pread happens. */
526                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
527                                                         obj->cache_level);
528                 ret = i915_gem_object_wait_rendering(obj, true);
529                 if (ret)
530                         return ret;
531
532                 i915_gem_object_retire(obj);
533         }
534
535         ret = i915_gem_object_get_pages(obj);
536         if (ret)
537                 return ret;
538
539         i915_gem_object_pin_pages(obj);
540
541         return ret;
542 }
543
544 /* Per-page copy function for the shmem pread fastpath.
545  * Flushes invalid cachelines before reading the target if
546  * needs_clflush is set. */
547 static int
548 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
549                  char __user *user_data,
550                  bool page_do_bit17_swizzling, bool needs_clflush)
551 {
552         char *vaddr;
553         int ret;
554
555         if (unlikely(page_do_bit17_swizzling))
556                 return -EINVAL;
557
558         vaddr = kmap_atomic(page);
559         if (needs_clflush)
560                 drm_clflush_virt_range(vaddr + shmem_page_offset,
561                                        page_length);
562         ret = __copy_to_user_inatomic(user_data,
563                                       vaddr + shmem_page_offset,
564                                       page_length);
565         kunmap_atomic(vaddr);
566
567         return ret ? -EFAULT : 0;
568 }
569
570 static void
571 shmem_clflush_swizzled_range(char *addr, unsigned long length,
572                              bool swizzled)
573 {
574         if (unlikely(swizzled)) {
575                 unsigned long start = (unsigned long) addr;
576                 unsigned long end = (unsigned long) addr + length;
577
578                 /* For swizzling simply ensure that we always flush both
579                  * channels. Lame, but simple and it works. Swizzled
580                  * pwrite/pread is far from a hotpath - current userspace
581                  * doesn't use it at all. */
582                 start = round_down(start, 128);
583                 end = round_up(end, 128);
584
585                 drm_clflush_virt_range((void *)start, end - start);
586         } else {
587                 drm_clflush_virt_range(addr, length);
588         }
589
590 }
591
592 /* Only difference to the fast-path function is that this can handle bit17
593  * and uses non-atomic copy and kmap functions. */
594 static int
595 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
596                  char __user *user_data,
597                  bool page_do_bit17_swizzling, bool needs_clflush)
598 {
599         char *vaddr;
600         int ret;
601
602         vaddr = kmap(page);
603         if (needs_clflush)
604                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
605                                              page_length,
606                                              page_do_bit17_swizzling);
607
608         if (page_do_bit17_swizzling)
609                 ret = __copy_to_user_swizzled(user_data,
610                                               vaddr, shmem_page_offset,
611                                               page_length);
612         else
613                 ret = __copy_to_user(user_data,
614                                      vaddr + shmem_page_offset,
615                                      page_length);
616         kunmap(page);
617
618         return ret ? - EFAULT : 0;
619 }
620
621 static int
622 i915_gem_shmem_pread(struct drm_device *dev,
623                      struct drm_i915_gem_object *obj,
624                      struct drm_i915_gem_pread *args,
625                      struct drm_file *file)
626 {
627         char __user *user_data;
628         ssize_t remain;
629         loff_t offset;
630         int shmem_page_offset, page_length, ret = 0;
631         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
632         int prefaulted = 0;
633         int needs_clflush = 0;
634         struct sg_page_iter sg_iter;
635
636         user_data = to_user_ptr(args->data_ptr);
637         remain = args->size;
638
639         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
640
641         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
642         if (ret)
643                 return ret;
644
645         offset = args->offset;
646
647         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
648                          offset >> PAGE_SHIFT) {
649                 struct page *page = sg_page_iter_page(&sg_iter);
650
651                 if (remain <= 0)
652                         break;
653
654                 /* Operation in this page
655                  *
656                  * shmem_page_offset = offset within page in shmem file
657                  * page_length = bytes to copy for this page
658                  */
659                 shmem_page_offset = offset_in_page(offset);
660                 page_length = remain;
661                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
662                         page_length = PAGE_SIZE - shmem_page_offset;
663
664                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
665                         (page_to_phys(page) & (1 << 17)) != 0;
666
667                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
668                                        user_data, page_do_bit17_swizzling,
669                                        needs_clflush);
670                 if (ret == 0)
671                         goto next_page;
672
673                 mutex_unlock(&dev->struct_mutex);
674
675                 if (likely(!i915.prefault_disable) && !prefaulted) {
676                         ret = fault_in_multipages_writeable(user_data, remain);
677                         /* Userspace is tricking us, but we've already clobbered
678                          * its pages with the prefault and promised to write the
679                          * data up to the first fault. Hence ignore any errors
680                          * and just continue. */
681                         (void)ret;
682                         prefaulted = 1;
683                 }
684
685                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
686                                        user_data, page_do_bit17_swizzling,
687                                        needs_clflush);
688
689                 mutex_lock(&dev->struct_mutex);
690
691                 if (ret)
692                         goto out;
693
694 next_page:
695                 remain -= page_length;
696                 user_data += page_length;
697                 offset += page_length;
698         }
699
700 out:
701         i915_gem_object_unpin_pages(obj);
702
703         return ret;
704 }
705
706 /**
707  * Reads data from the object referenced by handle.
708  *
709  * On error, the contents of *data are undefined.
710  */
711 int
712 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
713                      struct drm_file *file)
714 {
715         struct drm_i915_gem_pread *args = data;
716         struct drm_i915_gem_object *obj;
717         int ret = 0;
718
719         if (args->size == 0)
720                 return 0;
721
722         if (!access_ok(VERIFY_WRITE,
723                        to_user_ptr(args->data_ptr),
724                        args->size))
725                 return -EFAULT;
726
727         ret = i915_mutex_lock_interruptible(dev);
728         if (ret)
729                 return ret;
730
731         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
732         if (&obj->base == NULL) {
733                 ret = -ENOENT;
734                 goto unlock;
735         }
736
737         /* Bounds check source.  */
738         if (args->offset > obj->base.size ||
739             args->size > obj->base.size - args->offset) {
740                 ret = -EINVAL;
741                 goto out;
742         }
743
744         /* prime objects have no backing filp to GEM pread/pwrite
745          * pages from.
746          */
747         if (!obj->base.filp) {
748                 ret = -EINVAL;
749                 goto out;
750         }
751
752         trace_i915_gem_object_pread(obj, args->offset, args->size);
753
754         ret = i915_gem_shmem_pread(dev, obj, args, file);
755
756 out:
757         drm_gem_object_unreference(&obj->base);
758 unlock:
759         mutex_unlock(&dev->struct_mutex);
760         return ret;
761 }
762
763 /* This is the fast write path which cannot handle
764  * page faults in the source data
765  */
766
767 static inline int
768 fast_user_write(struct io_mapping *mapping,
769                 loff_t page_base, int page_offset,
770                 char __user *user_data,
771                 int length)
772 {
773         void __iomem *vaddr_atomic;
774         void *vaddr;
775         unsigned long unwritten;
776
777         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
778         /* We can use the cpu mem copy function because this is X86. */
779         vaddr = (void __force*)vaddr_atomic + page_offset;
780         unwritten = __copy_from_user_inatomic_nocache(vaddr,
781                                                       user_data, length);
782         io_mapping_unmap_atomic(vaddr_atomic);
783         return unwritten;
784 }
785
786 /**
787  * This is the fast pwrite path, where we copy the data directly from the
788  * user into the GTT, uncached.
789  */
790 static int
791 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
792                          struct drm_i915_gem_object *obj,
793                          struct drm_i915_gem_pwrite *args,
794                          struct drm_file *file)
795 {
796         struct drm_i915_private *dev_priv = dev->dev_private;
797         ssize_t remain;
798         loff_t offset, page_base;
799         char __user *user_data;
800         int page_offset, page_length, ret;
801
802         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
803         if (ret)
804                 goto out;
805
806         ret = i915_gem_object_set_to_gtt_domain(obj, true);
807         if (ret)
808                 goto out_unpin;
809
810         ret = i915_gem_object_put_fence(obj);
811         if (ret)
812                 goto out_unpin;
813
814         user_data = to_user_ptr(args->data_ptr);
815         remain = args->size;
816
817         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
818
819         intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
820
821         while (remain > 0) {
822                 /* Operation in this page
823                  *
824                  * page_base = page offset within aperture
825                  * page_offset = offset within page
826                  * page_length = bytes to copy for this page
827                  */
828                 page_base = offset & PAGE_MASK;
829                 page_offset = offset_in_page(offset);
830                 page_length = remain;
831                 if ((page_offset + remain) > PAGE_SIZE)
832                         page_length = PAGE_SIZE - page_offset;
833
834                 /* If we get a fault while copying data, then (presumably) our
835                  * source page isn't available.  Return the error and we'll
836                  * retry in the slow path.
837                  */
838                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
839                                     page_offset, user_data, page_length)) {
840                         ret = -EFAULT;
841                         goto out_flush;
842                 }
843
844                 remain -= page_length;
845                 user_data += page_length;
846                 offset += page_length;
847         }
848
849 out_flush:
850         intel_fb_obj_flush(obj, false);
851 out_unpin:
852         i915_gem_object_ggtt_unpin(obj);
853 out:
854         return ret;
855 }
856
857 /* Per-page copy function for the shmem pwrite fastpath.
858  * Flushes invalid cachelines before writing to the target if
859  * needs_clflush_before is set and flushes out any written cachelines after
860  * writing if needs_clflush is set. */
861 static int
862 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
863                   char __user *user_data,
864                   bool page_do_bit17_swizzling,
865                   bool needs_clflush_before,
866                   bool needs_clflush_after)
867 {
868         char *vaddr;
869         int ret;
870
871         if (unlikely(page_do_bit17_swizzling))
872                 return -EINVAL;
873
874         vaddr = kmap_atomic(page);
875         if (needs_clflush_before)
876                 drm_clflush_virt_range(vaddr + shmem_page_offset,
877                                        page_length);
878         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
879                                         user_data, page_length);
880         if (needs_clflush_after)
881                 drm_clflush_virt_range(vaddr + shmem_page_offset,
882                                        page_length);
883         kunmap_atomic(vaddr);
884
885         return ret ? -EFAULT : 0;
886 }
887
888 /* Only difference to the fast-path function is that this can handle bit17
889  * and uses non-atomic copy and kmap functions. */
890 static int
891 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
892                   char __user *user_data,
893                   bool page_do_bit17_swizzling,
894                   bool needs_clflush_before,
895                   bool needs_clflush_after)
896 {
897         char *vaddr;
898         int ret;
899
900         vaddr = kmap(page);
901         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
902                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903                                              page_length,
904                                              page_do_bit17_swizzling);
905         if (page_do_bit17_swizzling)
906                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
907                                                 user_data,
908                                                 page_length);
909         else
910                 ret = __copy_from_user(vaddr + shmem_page_offset,
911                                        user_data,
912                                        page_length);
913         if (needs_clflush_after)
914                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
915                                              page_length,
916                                              page_do_bit17_swizzling);
917         kunmap(page);
918
919         return ret ? -EFAULT : 0;
920 }
921
922 static int
923 i915_gem_shmem_pwrite(struct drm_device *dev,
924                       struct drm_i915_gem_object *obj,
925                       struct drm_i915_gem_pwrite *args,
926                       struct drm_file *file)
927 {
928         ssize_t remain;
929         loff_t offset;
930         char __user *user_data;
931         int shmem_page_offset, page_length, ret = 0;
932         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
933         int hit_slowpath = 0;
934         int needs_clflush_after = 0;
935         int needs_clflush_before = 0;
936         struct sg_page_iter sg_iter;
937
938         user_data = to_user_ptr(args->data_ptr);
939         remain = args->size;
940
941         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
942
943         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
944                 /* If we're not in the cpu write domain, set ourself into the gtt
945                  * write domain and manually flush cachelines (if required). This
946                  * optimizes for the case when the gpu will use the data
947                  * right away and we therefore have to clflush anyway. */
948                 needs_clflush_after = cpu_write_needs_clflush(obj);
949                 ret = i915_gem_object_wait_rendering(obj, false);
950                 if (ret)
951                         return ret;
952
953                 i915_gem_object_retire(obj);
954         }
955         /* Same trick applies to invalidate partially written cachelines read
956          * before writing. */
957         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
958                 needs_clflush_before =
959                         !cpu_cache_is_coherent(dev, obj->cache_level);
960
961         ret = i915_gem_object_get_pages(obj);
962         if (ret)
963                 return ret;
964
965         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
966
967         i915_gem_object_pin_pages(obj);
968
969         offset = args->offset;
970         obj->dirty = 1;
971
972         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
973                          offset >> PAGE_SHIFT) {
974                 struct page *page = sg_page_iter_page(&sg_iter);
975                 int partial_cacheline_write;
976
977                 if (remain <= 0)
978                         break;
979
980                 /* Operation in this page
981                  *
982                  * shmem_page_offset = offset within page in shmem file
983                  * page_length = bytes to copy for this page
984                  */
985                 shmem_page_offset = offset_in_page(offset);
986
987                 page_length = remain;
988                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
989                         page_length = PAGE_SIZE - shmem_page_offset;
990
991                 /* If we don't overwrite a cacheline completely we need to be
992                  * careful to have up-to-date data by first clflushing. Don't
993                  * overcomplicate things and flush the entire patch. */
994                 partial_cacheline_write = needs_clflush_before &&
995                         ((shmem_page_offset | page_length)
996                                 & (boot_cpu_data.x86_clflush_size - 1));
997
998                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
999                         (page_to_phys(page) & (1 << 17)) != 0;
1000
1001                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1002                                         user_data, page_do_bit17_swizzling,
1003                                         partial_cacheline_write,
1004                                         needs_clflush_after);
1005                 if (ret == 0)
1006                         goto next_page;
1007
1008                 hit_slowpath = 1;
1009                 mutex_unlock(&dev->struct_mutex);
1010                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1011                                         user_data, page_do_bit17_swizzling,
1012                                         partial_cacheline_write,
1013                                         needs_clflush_after);
1014
1015                 mutex_lock(&dev->struct_mutex);
1016
1017                 if (ret)
1018                         goto out;
1019
1020 next_page:
1021                 remain -= page_length;
1022                 user_data += page_length;
1023                 offset += page_length;
1024         }
1025
1026 out:
1027         i915_gem_object_unpin_pages(obj);
1028
1029         if (hit_slowpath) {
1030                 /*
1031                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1032                  * cachelines in-line while writing and the object moved
1033                  * out of the cpu write domain while we've dropped the lock.
1034                  */
1035                 if (!needs_clflush_after &&
1036                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1037                         if (i915_gem_clflush_object(obj, obj->pin_display))
1038                                 i915_gem_chipset_flush(dev);
1039                 }
1040         }
1041
1042         if (needs_clflush_after)
1043                 i915_gem_chipset_flush(dev);
1044
1045         intel_fb_obj_flush(obj, false);
1046         return ret;
1047 }
1048
1049 /**
1050  * Writes data to the object referenced by handle.
1051  *
1052  * On error, the contents of the buffer that were to be modified are undefined.
1053  */
1054 int
1055 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1056                       struct drm_file *file)
1057 {
1058         struct drm_i915_private *dev_priv = dev->dev_private;
1059         struct drm_i915_gem_pwrite *args = data;
1060         struct drm_i915_gem_object *obj;
1061         int ret;
1062
1063         if (args->size == 0)
1064                 return 0;
1065
1066         if (!access_ok(VERIFY_READ,
1067                        to_user_ptr(args->data_ptr),
1068                        args->size))
1069                 return -EFAULT;
1070
1071         if (likely(!i915.prefault_disable)) {
1072                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1073                                                    args->size);
1074                 if (ret)
1075                         return -EFAULT;
1076         }
1077
1078         intel_runtime_pm_get(dev_priv);
1079
1080         ret = i915_mutex_lock_interruptible(dev);
1081         if (ret)
1082                 goto put_rpm;
1083
1084         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1085         if (&obj->base == NULL) {
1086                 ret = -ENOENT;
1087                 goto unlock;
1088         }
1089
1090         /* Bounds check destination. */
1091         if (args->offset > obj->base.size ||
1092             args->size > obj->base.size - args->offset) {
1093                 ret = -EINVAL;
1094                 goto out;
1095         }
1096
1097         /* prime objects have no backing filp to GEM pread/pwrite
1098          * pages from.
1099          */
1100         if (!obj->base.filp) {
1101                 ret = -EINVAL;
1102                 goto out;
1103         }
1104
1105         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1106
1107         ret = -EFAULT;
1108         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1109          * it would end up going through the fenced access, and we'll get
1110          * different detiling behavior between reading and writing.
1111          * pread/pwrite currently are reading and writing from the CPU
1112          * perspective, requiring manual detiling by the client.
1113          */
1114         if (obj->tiling_mode == I915_TILING_NONE &&
1115             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1116             cpu_write_needs_clflush(obj)) {
1117                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1118                 /* Note that the gtt paths might fail with non-page-backed user
1119                  * pointers (e.g. gtt mappings when moving data between
1120                  * textures). Fallback to the shmem path in that case. */
1121         }
1122
1123         if (ret == -EFAULT || ret == -ENOSPC) {
1124                 if (obj->phys_handle)
1125                         ret = i915_gem_phys_pwrite(obj, args, file);
1126                 else
1127                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1128         }
1129
1130 out:
1131         drm_gem_object_unreference(&obj->base);
1132 unlock:
1133         mutex_unlock(&dev->struct_mutex);
1134 put_rpm:
1135         intel_runtime_pm_put(dev_priv);
1136
1137         return ret;
1138 }
1139
1140 int
1141 i915_gem_check_wedge(struct i915_gpu_error *error,
1142                      bool interruptible)
1143 {
1144         if (i915_reset_in_progress(error)) {
1145                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1146                  * -EIO unconditionally for these. */
1147                 if (!interruptible)
1148                         return -EIO;
1149
1150                 /* Recovery complete, but the reset failed ... */
1151                 if (i915_terminally_wedged(error))
1152                         return -EIO;
1153
1154                 /*
1155                  * Check if GPU Reset is in progress - we need intel_ring_begin
1156                  * to work properly to reinit the hw state while the gpu is
1157                  * still marked as reset-in-progress. Handle this with a flag.
1158                  */
1159                 if (!error->reload_in_reset)
1160                         return -EAGAIN;
1161         }
1162
1163         return 0;
1164 }
1165
1166 /*
1167  * Compare arbitrary request against outstanding lazy request. Emit on match.
1168  */
1169 int
1170 i915_gem_check_olr(struct drm_i915_gem_request *req)
1171 {
1172         int ret;
1173
1174         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1175
1176         ret = 0;
1177         if (req == req->ring->outstanding_lazy_request)
1178                 ret = i915_add_request(req->ring);
1179
1180         return ret;
1181 }
1182
1183 static void fake_irq(unsigned long data)
1184 {
1185         wake_up_process((struct task_struct *)data);
1186 }
1187
1188 static bool missed_irq(struct drm_i915_private *dev_priv,
1189                        struct intel_engine_cs *ring)
1190 {
1191         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1192 }
1193
1194 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1195 {
1196         if (file_priv == NULL)
1197                 return true;
1198
1199         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1200 }
1201
1202 /**
1203  * __i915_wait_request - wait until execution of request has finished
1204  * @req: duh!
1205  * @reset_counter: reset sequence associated with the given request
1206  * @interruptible: do an interruptible wait (normally yes)
1207  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1208  *
1209  * Note: It is of utmost importance that the passed in seqno and reset_counter
1210  * values have been read by the caller in an smp safe manner. Where read-side
1211  * locks are involved, it is sufficient to read the reset_counter before
1212  * unlocking the lock that protects the seqno. For lockless tricks, the
1213  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1214  * inserted.
1215  *
1216  * Returns 0 if the request was found within the alloted time. Else returns the
1217  * errno with remaining time filled in timeout argument.
1218  */
1219 int __i915_wait_request(struct drm_i915_gem_request *req,
1220                         unsigned reset_counter,
1221                         bool interruptible,
1222                         s64 *timeout,
1223                         struct drm_i915_file_private *file_priv)
1224 {
1225         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1226         struct drm_device *dev = ring->dev;
1227         struct drm_i915_private *dev_priv = dev->dev_private;
1228         const bool irq_test_in_progress =
1229                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1230         DEFINE_WAIT(wait);
1231         unsigned long timeout_expire;
1232         s64 before, now;
1233         int ret;
1234
1235         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1236
1237         if (i915_gem_request_completed(req, true))
1238                 return 0;
1239
1240         timeout_expire = timeout ?
1241                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1242
1243         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1244                 gen6_rps_boost(dev_priv);
1245                 if (file_priv)
1246                         mod_delayed_work(dev_priv->wq,
1247                                          &file_priv->mm.idle_work,
1248                                          msecs_to_jiffies(100));
1249         }
1250
1251         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1252                 return -ENODEV;
1253
1254         /* Record current time in case interrupted by signal, or wedged */
1255         trace_i915_gem_request_wait_begin(req);
1256         before = ktime_get_raw_ns();
1257         for (;;) {
1258                 struct timer_list timer;
1259
1260                 prepare_to_wait(&ring->irq_queue, &wait,
1261                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1262
1263                 /* We need to check whether any gpu reset happened in between
1264                  * the caller grabbing the seqno and now ... */
1265                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1266                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1267                          * is truely gone. */
1268                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1269                         if (ret == 0)
1270                                 ret = -EAGAIN;
1271                         break;
1272                 }
1273
1274                 if (i915_gem_request_completed(req, false)) {
1275                         ret = 0;
1276                         break;
1277                 }
1278
1279                 if (interruptible && signal_pending(current)) {
1280                         ret = -ERESTARTSYS;
1281                         break;
1282                 }
1283
1284                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1285                         ret = -ETIME;
1286                         break;
1287                 }
1288
1289                 timer.function = NULL;
1290                 if (timeout || missed_irq(dev_priv, ring)) {
1291                         unsigned long expire;
1292
1293                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1294                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1295                         mod_timer(&timer, expire);
1296                 }
1297
1298                 io_schedule();
1299
1300                 if (timer.function) {
1301                         del_singleshot_timer_sync(&timer);
1302                         destroy_timer_on_stack(&timer);
1303                 }
1304         }
1305         now = ktime_get_raw_ns();
1306         trace_i915_gem_request_wait_end(req);
1307
1308         if (!irq_test_in_progress)
1309                 ring->irq_put(ring);
1310
1311         finish_wait(&ring->irq_queue, &wait);
1312
1313         if (timeout) {
1314                 s64 tres = *timeout - (now - before);
1315
1316                 *timeout = tres < 0 ? 0 : tres;
1317
1318                 /*
1319                  * Apparently ktime isn't accurate enough and occasionally has a
1320                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1321                  * things up to make the test happy. We allow up to 1 jiffy.
1322                  *
1323                  * This is a regrssion from the timespec->ktime conversion.
1324                  */
1325                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1326                         *timeout = 0;
1327         }
1328
1329         return ret;
1330 }
1331
1332 /**
1333  * Waits for a request to be signaled, and cleans up the
1334  * request and object lists appropriately for that event.
1335  */
1336 int
1337 i915_wait_request(struct drm_i915_gem_request *req)
1338 {
1339         struct drm_device *dev;
1340         struct drm_i915_private *dev_priv;
1341         bool interruptible;
1342         unsigned reset_counter;
1343         int ret;
1344
1345         BUG_ON(req == NULL);
1346
1347         dev = req->ring->dev;
1348         dev_priv = dev->dev_private;
1349         interruptible = dev_priv->mm.interruptible;
1350
1351         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1352
1353         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1354         if (ret)
1355                 return ret;
1356
1357         ret = i915_gem_check_olr(req);
1358         if (ret)
1359                 return ret;
1360
1361         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1362         i915_gem_request_reference(req);
1363         ret = __i915_wait_request(req, reset_counter,
1364                                   interruptible, NULL, NULL);
1365         i915_gem_request_unreference(req);
1366         return ret;
1367 }
1368
1369 static int
1370 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1371 {
1372         if (!obj->active)
1373                 return 0;
1374
1375         /* Manually manage the write flush as we may have not yet
1376          * retired the buffer.
1377          *
1378          * Note that the last_write_req is always the earlier of
1379          * the two (read/write) requests, so if we haved successfully waited,
1380          * we know we have passed the last write.
1381          */
1382         i915_gem_request_assign(&obj->last_write_req, NULL);
1383
1384         return 0;
1385 }
1386
1387 /**
1388  * Ensures that all rendering to the object has completed and the object is
1389  * safe to unbind from the GTT or access from the CPU.
1390  */
1391 static __must_check int
1392 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1393                                bool readonly)
1394 {
1395         struct drm_i915_gem_request *req;
1396         int ret;
1397
1398         req = readonly ? obj->last_write_req : obj->last_read_req;
1399         if (!req)
1400                 return 0;
1401
1402         ret = i915_wait_request(req);
1403         if (ret)
1404                 return ret;
1405
1406         return i915_gem_object_wait_rendering__tail(obj);
1407 }
1408
1409 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1410  * as the object state may change during this call.
1411  */
1412 static __must_check int
1413 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1414                                             struct drm_i915_file_private *file_priv,
1415                                             bool readonly)
1416 {
1417         struct drm_i915_gem_request *req;
1418         struct drm_device *dev = obj->base.dev;
1419         struct drm_i915_private *dev_priv = dev->dev_private;
1420         unsigned reset_counter;
1421         int ret;
1422
1423         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1424         BUG_ON(!dev_priv->mm.interruptible);
1425
1426         req = readonly ? obj->last_write_req : obj->last_read_req;
1427         if (!req)
1428                 return 0;
1429
1430         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1431         if (ret)
1432                 return ret;
1433
1434         ret = i915_gem_check_olr(req);
1435         if (ret)
1436                 return ret;
1437
1438         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1439         i915_gem_request_reference(req);
1440         mutex_unlock(&dev->struct_mutex);
1441         ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1442         mutex_lock(&dev->struct_mutex);
1443         i915_gem_request_unreference(req);
1444         if (ret)
1445                 return ret;
1446
1447         return i915_gem_object_wait_rendering__tail(obj);
1448 }
1449
1450 /**
1451  * Called when user space prepares to use an object with the CPU, either
1452  * through the mmap ioctl's mapping or a GTT mapping.
1453  */
1454 int
1455 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1456                           struct drm_file *file)
1457 {
1458         struct drm_i915_gem_set_domain *args = data;
1459         struct drm_i915_gem_object *obj;
1460         uint32_t read_domains = args->read_domains;
1461         uint32_t write_domain = args->write_domain;
1462         int ret;
1463
1464         /* Only handle setting domains to types used by the CPU. */
1465         if (write_domain & I915_GEM_GPU_DOMAINS)
1466                 return -EINVAL;
1467
1468         if (read_domains & I915_GEM_GPU_DOMAINS)
1469                 return -EINVAL;
1470
1471         /* Having something in the write domain implies it's in the read
1472          * domain, and only that read domain.  Enforce that in the request.
1473          */
1474         if (write_domain != 0 && read_domains != write_domain)
1475                 return -EINVAL;
1476
1477         ret = i915_mutex_lock_interruptible(dev);
1478         if (ret)
1479                 return ret;
1480
1481         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1482         if (&obj->base == NULL) {
1483                 ret = -ENOENT;
1484                 goto unlock;
1485         }
1486
1487         /* Try to flush the object off the GPU without holding the lock.
1488          * We will repeat the flush holding the lock in the normal manner
1489          * to catch cases where we are gazumped.
1490          */
1491         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1492                                                           file->driver_priv,
1493                                                           !write_domain);
1494         if (ret)
1495                 goto unref;
1496
1497         if (read_domains & I915_GEM_DOMAIN_GTT)
1498                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1499         else
1500                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1501
1502 unref:
1503         drm_gem_object_unreference(&obj->base);
1504 unlock:
1505         mutex_unlock(&dev->struct_mutex);
1506         return ret;
1507 }
1508
1509 /**
1510  * Called when user space has done writes to this buffer
1511  */
1512 int
1513 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1514                          struct drm_file *file)
1515 {
1516         struct drm_i915_gem_sw_finish *args = data;
1517         struct drm_i915_gem_object *obj;
1518         int ret = 0;
1519
1520         ret = i915_mutex_lock_interruptible(dev);
1521         if (ret)
1522                 return ret;
1523
1524         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1525         if (&obj->base == NULL) {
1526                 ret = -ENOENT;
1527                 goto unlock;
1528         }
1529
1530         /* Pinned buffers may be scanout, so flush the cache */
1531         if (obj->pin_display)
1532                 i915_gem_object_flush_cpu_write_domain(obj);
1533
1534         drm_gem_object_unreference(&obj->base);
1535 unlock:
1536         mutex_unlock(&dev->struct_mutex);
1537         return ret;
1538 }
1539
1540 /**
1541  * Maps the contents of an object, returning the address it is mapped
1542  * into.
1543  *
1544  * While the mapping holds a reference on the contents of the object, it doesn't
1545  * imply a ref on the object itself.
1546  *
1547  * IMPORTANT:
1548  *
1549  * DRM driver writers who look a this function as an example for how to do GEM
1550  * mmap support, please don't implement mmap support like here. The modern way
1551  * to implement DRM mmap support is with an mmap offset ioctl (like
1552  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1553  * That way debug tooling like valgrind will understand what's going on, hiding
1554  * the mmap call in a driver private ioctl will break that. The i915 driver only
1555  * does cpu mmaps this way because we didn't know better.
1556  */
1557 int
1558 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1559                     struct drm_file *file)
1560 {
1561         struct drm_i915_gem_mmap *args = data;
1562         struct drm_gem_object *obj;
1563         unsigned long addr;
1564
1565         if (args->flags & ~(I915_MMAP_WC))
1566                 return -EINVAL;
1567
1568         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1569                 return -ENODEV;
1570
1571         obj = drm_gem_object_lookup(dev, file, args->handle);
1572         if (obj == NULL)
1573                 return -ENOENT;
1574
1575         /* prime objects have no backing filp to GEM mmap
1576          * pages from.
1577          */
1578         if (!obj->filp) {
1579                 drm_gem_object_unreference_unlocked(obj);
1580                 return -EINVAL;
1581         }
1582
1583         addr = vm_mmap(obj->filp, 0, args->size,
1584                        PROT_READ | PROT_WRITE, MAP_SHARED,
1585                        args->offset);
1586         if (args->flags & I915_MMAP_WC) {
1587                 struct mm_struct *mm = current->mm;
1588                 struct vm_area_struct *vma;
1589
1590                 down_write(&mm->mmap_sem);
1591                 vma = find_vma(mm, addr);
1592                 if (vma)
1593                         vma->vm_page_prot =
1594                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1595                 else
1596                         addr = -ENOMEM;
1597                 up_write(&mm->mmap_sem);
1598         }
1599         drm_gem_object_unreference_unlocked(obj);
1600         if (IS_ERR((void *)addr))
1601                 return addr;
1602
1603         args->addr_ptr = (uint64_t) addr;
1604
1605         return 0;
1606 }
1607
1608 /**
1609  * i915_gem_fault - fault a page into the GTT
1610  * vma: VMA in question
1611  * vmf: fault info
1612  *
1613  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1614  * from userspace.  The fault handler takes care of binding the object to
1615  * the GTT (if needed), allocating and programming a fence register (again,
1616  * only if needed based on whether the old reg is still valid or the object
1617  * is tiled) and inserting a new PTE into the faulting process.
1618  *
1619  * Note that the faulting process may involve evicting existing objects
1620  * from the GTT and/or fence registers to make room.  So performance may
1621  * suffer if the GTT working set is large or there are few fence registers
1622  * left.
1623  */
1624 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1625 {
1626         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1627         struct drm_device *dev = obj->base.dev;
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629         pgoff_t page_offset;
1630         unsigned long pfn;
1631         int ret = 0;
1632         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1633
1634         intel_runtime_pm_get(dev_priv);
1635
1636         /* We don't use vmf->pgoff since that has the fake offset */
1637         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1638                 PAGE_SHIFT;
1639
1640         ret = i915_mutex_lock_interruptible(dev);
1641         if (ret)
1642                 goto out;
1643
1644         trace_i915_gem_object_fault(obj, page_offset, true, write);
1645
1646         /* Try to flush the object off the GPU first without holding the lock.
1647          * Upon reacquiring the lock, we will perform our sanity checks and then
1648          * repeat the flush holding the lock in the normal manner to catch cases
1649          * where we are gazumped.
1650          */
1651         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1652         if (ret)
1653                 goto unlock;
1654
1655         /* Access to snoopable pages through the GTT is incoherent. */
1656         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1657                 ret = -EFAULT;
1658                 goto unlock;
1659         }
1660
1661         /* Now bind it into the GTT if needed */
1662         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1663         if (ret)
1664                 goto unlock;
1665
1666         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1667         if (ret)
1668                 goto unpin;
1669
1670         ret = i915_gem_object_get_fence(obj);
1671         if (ret)
1672                 goto unpin;
1673
1674         /* Finally, remap it using the new GTT offset */
1675         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1676         pfn >>= PAGE_SHIFT;
1677
1678         if (!obj->fault_mappable) {
1679                 unsigned long size = min_t(unsigned long,
1680                                            vma->vm_end - vma->vm_start,
1681                                            obj->base.size);
1682                 int i;
1683
1684                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1685                         ret = vm_insert_pfn(vma,
1686                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1687                                             pfn + i);
1688                         if (ret)
1689                                 break;
1690                 }
1691
1692                 obj->fault_mappable = true;
1693         } else
1694                 ret = vm_insert_pfn(vma,
1695                                     (unsigned long)vmf->virtual_address,
1696                                     pfn + page_offset);
1697 unpin:
1698         i915_gem_object_ggtt_unpin(obj);
1699 unlock:
1700         mutex_unlock(&dev->struct_mutex);
1701 out:
1702         switch (ret) {
1703         case -EIO:
1704                 /*
1705                  * We eat errors when the gpu is terminally wedged to avoid
1706                  * userspace unduly crashing (gl has no provisions for mmaps to
1707                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1708                  * and so needs to be reported.
1709                  */
1710                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1711                         ret = VM_FAULT_SIGBUS;
1712                         break;
1713                 }
1714         case -EAGAIN:
1715                 /*
1716                  * EAGAIN means the gpu is hung and we'll wait for the error
1717                  * handler to reset everything when re-faulting in
1718                  * i915_mutex_lock_interruptible.
1719                  */
1720         case 0:
1721         case -ERESTARTSYS:
1722         case -EINTR:
1723         case -EBUSY:
1724                 /*
1725                  * EBUSY is ok: this just means that another thread
1726                  * already did the job.
1727                  */
1728                 ret = VM_FAULT_NOPAGE;
1729                 break;
1730         case -ENOMEM:
1731                 ret = VM_FAULT_OOM;
1732                 break;
1733         case -ENOSPC:
1734         case -EFAULT:
1735                 ret = VM_FAULT_SIGBUS;
1736                 break;
1737         default:
1738                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1739                 ret = VM_FAULT_SIGBUS;
1740                 break;
1741         }
1742
1743         intel_runtime_pm_put(dev_priv);
1744         return ret;
1745 }
1746
1747 /**
1748  * i915_gem_release_mmap - remove physical page mappings
1749  * @obj: obj in question
1750  *
1751  * Preserve the reservation of the mmapping with the DRM core code, but
1752  * relinquish ownership of the pages back to the system.
1753  *
1754  * It is vital that we remove the page mapping if we have mapped a tiled
1755  * object through the GTT and then lose the fence register due to
1756  * resource pressure. Similarly if the object has been moved out of the
1757  * aperture, than pages mapped into userspace must be revoked. Removing the
1758  * mapping will then trigger a page fault on the next user access, allowing
1759  * fixup by i915_gem_fault().
1760  */
1761 void
1762 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1763 {
1764         if (!obj->fault_mappable)
1765                 return;
1766
1767         drm_vma_node_unmap(&obj->base.vma_node,
1768                            obj->base.dev->anon_inode->i_mapping);
1769         obj->fault_mappable = false;
1770 }
1771
1772 void
1773 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1774 {
1775         struct drm_i915_gem_object *obj;
1776
1777         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1778                 i915_gem_release_mmap(obj);
1779 }
1780
1781 uint32_t
1782 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1783 {
1784         uint32_t gtt_size;
1785
1786         if (INTEL_INFO(dev)->gen >= 4 ||
1787             tiling_mode == I915_TILING_NONE)
1788                 return size;
1789
1790         /* Previous chips need a power-of-two fence region when tiling */
1791         if (INTEL_INFO(dev)->gen == 3)
1792                 gtt_size = 1024*1024;
1793         else
1794                 gtt_size = 512*1024;
1795
1796         while (gtt_size < size)
1797                 gtt_size <<= 1;
1798
1799         return gtt_size;
1800 }
1801
1802 /**
1803  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1804  * @obj: object to check
1805  *
1806  * Return the required GTT alignment for an object, taking into account
1807  * potential fence register mapping.
1808  */
1809 uint32_t
1810 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1811                            int tiling_mode, bool fenced)
1812 {
1813         /*
1814          * Minimum alignment is 4k (GTT page size), but might be greater
1815          * if a fence register is needed for the object.
1816          */
1817         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1818             tiling_mode == I915_TILING_NONE)
1819                 return 4096;
1820
1821         /*
1822          * Previous chips need to be aligned to the size of the smallest
1823          * fence register that can contain the object.
1824          */
1825         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1826 }
1827
1828 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1829 {
1830         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1831         int ret;
1832
1833         if (drm_vma_node_has_offset(&obj->base.vma_node))
1834                 return 0;
1835
1836         dev_priv->mm.shrinker_no_lock_stealing = true;
1837
1838         ret = drm_gem_create_mmap_offset(&obj->base);
1839         if (ret != -ENOSPC)
1840                 goto out;
1841
1842         /* Badly fragmented mmap space? The only way we can recover
1843          * space is by destroying unwanted objects. We can't randomly release
1844          * mmap_offsets as userspace expects them to be persistent for the
1845          * lifetime of the objects. The closest we can is to release the
1846          * offsets on purgeable objects by truncating it and marking it purged,
1847          * which prevents userspace from ever using that object again.
1848          */
1849         i915_gem_shrink(dev_priv,
1850                         obj->base.size >> PAGE_SHIFT,
1851                         I915_SHRINK_BOUND |
1852                         I915_SHRINK_UNBOUND |
1853                         I915_SHRINK_PURGEABLE);
1854         ret = drm_gem_create_mmap_offset(&obj->base);
1855         if (ret != -ENOSPC)
1856                 goto out;
1857
1858         i915_gem_shrink_all(dev_priv);
1859         ret = drm_gem_create_mmap_offset(&obj->base);
1860 out:
1861         dev_priv->mm.shrinker_no_lock_stealing = false;
1862
1863         return ret;
1864 }
1865
1866 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1867 {
1868         drm_gem_free_mmap_offset(&obj->base);
1869 }
1870
1871 int
1872 i915_gem_mmap_gtt(struct drm_file *file,
1873                   struct drm_device *dev,
1874                   uint32_t handle,
1875                   uint64_t *offset)
1876 {
1877         struct drm_i915_private *dev_priv = dev->dev_private;
1878         struct drm_i915_gem_object *obj;
1879         int ret;
1880
1881         ret = i915_mutex_lock_interruptible(dev);
1882         if (ret)
1883                 return ret;
1884
1885         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1886         if (&obj->base == NULL) {
1887                 ret = -ENOENT;
1888                 goto unlock;
1889         }
1890
1891         if (obj->base.size > dev_priv->gtt.mappable_end) {
1892                 ret = -E2BIG;
1893                 goto out;
1894         }
1895
1896         if (obj->madv != I915_MADV_WILLNEED) {
1897                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1898                 ret = -EFAULT;
1899                 goto out;
1900         }
1901
1902         ret = i915_gem_object_create_mmap_offset(obj);
1903         if (ret)
1904                 goto out;
1905
1906         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1907
1908 out:
1909         drm_gem_object_unreference(&obj->base);
1910 unlock:
1911         mutex_unlock(&dev->struct_mutex);
1912         return ret;
1913 }
1914
1915 /**
1916  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1917  * @dev: DRM device
1918  * @data: GTT mapping ioctl data
1919  * @file: GEM object info
1920  *
1921  * Simply returns the fake offset to userspace so it can mmap it.
1922  * The mmap call will end up in drm_gem_mmap(), which will set things
1923  * up so we can get faults in the handler above.
1924  *
1925  * The fault handler will take care of binding the object into the GTT
1926  * (since it may have been evicted to make room for something), allocating
1927  * a fence register, and mapping the appropriate aperture address into
1928  * userspace.
1929  */
1930 int
1931 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1932                         struct drm_file *file)
1933 {
1934         struct drm_i915_gem_mmap_gtt *args = data;
1935
1936         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1937 }
1938
1939 static inline int
1940 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1941 {
1942         return obj->madv == I915_MADV_DONTNEED;
1943 }
1944
1945 /* Immediately discard the backing storage */
1946 static void
1947 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1948 {
1949         i915_gem_object_free_mmap_offset(obj);
1950
1951         if (obj->base.filp == NULL)
1952                 return;
1953
1954         /* Our goal here is to return as much of the memory as
1955          * is possible back to the system as we are called from OOM.
1956          * To do this we must instruct the shmfs to drop all of its
1957          * backing pages, *now*.
1958          */
1959         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1960         obj->madv = __I915_MADV_PURGED;
1961 }
1962
1963 /* Try to discard unwanted pages */
1964 static void
1965 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1966 {
1967         struct address_space *mapping;
1968
1969         switch (obj->madv) {
1970         case I915_MADV_DONTNEED:
1971                 i915_gem_object_truncate(obj);
1972         case __I915_MADV_PURGED:
1973                 return;
1974         }
1975
1976         if (obj->base.filp == NULL)
1977                 return;
1978
1979         mapping = file_inode(obj->base.filp)->i_mapping,
1980         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1981 }
1982
1983 static void
1984 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1985 {
1986         struct sg_page_iter sg_iter;
1987         int ret;
1988
1989         BUG_ON(obj->madv == __I915_MADV_PURGED);
1990
1991         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1992         if (ret) {
1993                 /* In the event of a disaster, abandon all caches and
1994                  * hope for the best.
1995                  */
1996                 WARN_ON(ret != -EIO);
1997                 i915_gem_clflush_object(obj, true);
1998                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1999         }
2000
2001         if (i915_gem_object_needs_bit17_swizzle(obj))
2002                 i915_gem_object_save_bit_17_swizzle(obj);
2003
2004         if (obj->madv == I915_MADV_DONTNEED)
2005                 obj->dirty = 0;
2006
2007         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2008                 struct page *page = sg_page_iter_page(&sg_iter);
2009
2010                 if (obj->dirty)
2011                         set_page_dirty(page);
2012
2013                 if (obj->madv == I915_MADV_WILLNEED)
2014                         mark_page_accessed(page);
2015
2016                 page_cache_release(page);
2017         }
2018         obj->dirty = 0;
2019
2020         sg_free_table(obj->pages);
2021         kfree(obj->pages);
2022 }
2023
2024 int
2025 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2026 {
2027         const struct drm_i915_gem_object_ops *ops = obj->ops;
2028
2029         if (obj->pages == NULL)
2030                 return 0;
2031
2032         if (obj->pages_pin_count)
2033                 return -EBUSY;
2034
2035         BUG_ON(i915_gem_obj_bound_any(obj));
2036
2037         /* ->put_pages might need to allocate memory for the bit17 swizzle
2038          * array, hence protect them from being reaped by removing them from gtt
2039          * lists early. */
2040         list_del(&obj->global_list);
2041
2042         ops->put_pages(obj);
2043         obj->pages = NULL;
2044
2045         i915_gem_object_invalidate(obj);
2046
2047         return 0;
2048 }
2049
2050 unsigned long
2051 i915_gem_shrink(struct drm_i915_private *dev_priv,
2052                 long target, unsigned flags)
2053 {
2054         const struct {
2055                 struct list_head *list;
2056                 unsigned int bit;
2057         } phases[] = {
2058                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2059                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2060                 { NULL, 0 },
2061         }, *phase;
2062         unsigned long count = 0;
2063
2064         /*
2065          * As we may completely rewrite the (un)bound list whilst unbinding
2066          * (due to retiring requests) we have to strictly process only
2067          * one element of the list at the time, and recheck the list
2068          * on every iteration.
2069          *
2070          * In particular, we must hold a reference whilst removing the
2071          * object as we may end up waiting for and/or retiring the objects.
2072          * This might release the final reference (held by the active list)
2073          * and result in the object being freed from under us. This is
2074          * similar to the precautions the eviction code must take whilst
2075          * removing objects.
2076          *
2077          * Also note that although these lists do not hold a reference to
2078          * the object we can safely grab one here: The final object
2079          * unreferencing and the bound_list are both protected by the
2080          * dev->struct_mutex and so we won't ever be able to observe an
2081          * object on the bound_list with a reference count equals 0.
2082          */
2083         for (phase = phases; phase->list; phase++) {
2084                 struct list_head still_in_list;
2085
2086                 if ((flags & phase->bit) == 0)
2087                         continue;
2088
2089                 INIT_LIST_HEAD(&still_in_list);
2090                 while (count < target && !list_empty(phase->list)) {
2091                         struct drm_i915_gem_object *obj;
2092                         struct i915_vma *vma, *v;
2093
2094                         obj = list_first_entry(phase->list,
2095                                                typeof(*obj), global_list);
2096                         list_move_tail(&obj->global_list, &still_in_list);
2097
2098                         if (flags & I915_SHRINK_PURGEABLE &&
2099                             !i915_gem_object_is_purgeable(obj))
2100                                 continue;
2101
2102                         drm_gem_object_reference(&obj->base);
2103
2104                         /* For the unbound phase, this should be a no-op! */
2105                         list_for_each_entry_safe(vma, v,
2106                                                  &obj->vma_list, vma_link)
2107                                 if (i915_vma_unbind(vma))
2108                                         break;
2109
2110                         if (i915_gem_object_put_pages(obj) == 0)
2111                                 count += obj->base.size >> PAGE_SHIFT;
2112
2113                         drm_gem_object_unreference(&obj->base);
2114                 }
2115                 list_splice(&still_in_list, phase->list);
2116         }
2117
2118         return count;
2119 }
2120
2121 static unsigned long
2122 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2123 {
2124         i915_gem_evict_everything(dev_priv->dev);
2125         return i915_gem_shrink(dev_priv, LONG_MAX,
2126                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2127 }
2128
2129 static int
2130 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2131 {
2132         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2133         int page_count, i;
2134         struct address_space *mapping;
2135         struct sg_table *st;
2136         struct scatterlist *sg;
2137         struct sg_page_iter sg_iter;
2138         struct page *page;
2139         unsigned long last_pfn = 0;     /* suppress gcc warning */
2140         gfp_t gfp;
2141
2142         /* Assert that the object is not currently in any GPU domain. As it
2143          * wasn't in the GTT, there shouldn't be any way it could have been in
2144          * a GPU cache
2145          */
2146         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2147         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2148
2149         st = kmalloc(sizeof(*st), GFP_KERNEL);
2150         if (st == NULL)
2151                 return -ENOMEM;
2152
2153         page_count = obj->base.size / PAGE_SIZE;
2154         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2155                 kfree(st);
2156                 return -ENOMEM;
2157         }
2158
2159         /* Get the list of pages out of our struct file.  They'll be pinned
2160          * at this point until we release them.
2161          *
2162          * Fail silently without starting the shrinker
2163          */
2164         mapping = file_inode(obj->base.filp)->i_mapping;
2165         gfp = mapping_gfp_mask(mapping);
2166         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2167         gfp &= ~(__GFP_IO | __GFP_WAIT);
2168         sg = st->sgl;
2169         st->nents = 0;
2170         for (i = 0; i < page_count; i++) {
2171                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2172                 if (IS_ERR(page)) {
2173                         i915_gem_shrink(dev_priv,
2174                                         page_count,
2175                                         I915_SHRINK_BOUND |
2176                                         I915_SHRINK_UNBOUND |
2177                                         I915_SHRINK_PURGEABLE);
2178                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2179                 }
2180                 if (IS_ERR(page)) {
2181                         /* We've tried hard to allocate the memory by reaping
2182                          * our own buffer, now let the real VM do its job and
2183                          * go down in flames if truly OOM.
2184                          */
2185                         i915_gem_shrink_all(dev_priv);
2186                         page = shmem_read_mapping_page(mapping, i);
2187                         if (IS_ERR(page))
2188                                 goto err_pages;
2189                 }
2190 #ifdef CONFIG_SWIOTLB
2191                 if (swiotlb_nr_tbl()) {
2192                         st->nents++;
2193                         sg_set_page(sg, page, PAGE_SIZE, 0);
2194                         sg = sg_next(sg);
2195                         continue;
2196                 }
2197 #endif
2198                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2199                         if (i)
2200                                 sg = sg_next(sg);
2201                         st->nents++;
2202                         sg_set_page(sg, page, PAGE_SIZE, 0);
2203                 } else {
2204                         sg->length += PAGE_SIZE;
2205                 }
2206                 last_pfn = page_to_pfn(page);
2207
2208                 /* Check that the i965g/gm workaround works. */
2209                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2210         }
2211 #ifdef CONFIG_SWIOTLB
2212         if (!swiotlb_nr_tbl())
2213 #endif
2214                 sg_mark_end(sg);
2215         obj->pages = st;
2216
2217         if (i915_gem_object_needs_bit17_swizzle(obj))
2218                 i915_gem_object_do_bit_17_swizzle(obj);
2219
2220         if (obj->tiling_mode != I915_TILING_NONE &&
2221             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2222                 i915_gem_object_pin_pages(obj);
2223
2224         return 0;
2225
2226 err_pages:
2227         sg_mark_end(sg);
2228         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2229                 page_cache_release(sg_page_iter_page(&sg_iter));
2230         sg_free_table(st);
2231         kfree(st);
2232
2233         /* shmemfs first checks if there is enough memory to allocate the page
2234          * and reports ENOSPC should there be insufficient, along with the usual
2235          * ENOMEM for a genuine allocation failure.
2236          *
2237          * We use ENOSPC in our driver to mean that we have run out of aperture
2238          * space and so want to translate the error from shmemfs back to our
2239          * usual understanding of ENOMEM.
2240          */
2241         if (PTR_ERR(page) == -ENOSPC)
2242                 return -ENOMEM;
2243         else
2244                 return PTR_ERR(page);
2245 }
2246
2247 /* Ensure that the associated pages are gathered from the backing storage
2248  * and pinned into our object. i915_gem_object_get_pages() may be called
2249  * multiple times before they are released by a single call to
2250  * i915_gem_object_put_pages() - once the pages are no longer referenced
2251  * either as a result of memory pressure (reaping pages under the shrinker)
2252  * or as the object is itself released.
2253  */
2254 int
2255 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2256 {
2257         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2258         const struct drm_i915_gem_object_ops *ops = obj->ops;
2259         int ret;
2260
2261         if (obj->pages)
2262                 return 0;
2263
2264         if (obj->madv != I915_MADV_WILLNEED) {
2265                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2266                 return -EFAULT;
2267         }
2268
2269         BUG_ON(obj->pages_pin_count);
2270
2271         ret = ops->get_pages(obj);
2272         if (ret)
2273                 return ret;
2274
2275         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2276         return 0;
2277 }
2278
2279 static void
2280 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2281                                struct intel_engine_cs *ring)
2282 {
2283         struct drm_i915_gem_request *req;
2284         struct intel_engine_cs *old_ring;
2285
2286         BUG_ON(ring == NULL);
2287
2288         req = intel_ring_get_request(ring);
2289         old_ring = i915_gem_request_get_ring(obj->last_read_req);
2290
2291         if (old_ring != ring && obj->last_write_req) {
2292                 /* Keep the request relative to the current ring */
2293                 i915_gem_request_assign(&obj->last_write_req, req);
2294         }
2295
2296         /* Add a reference if we're newly entering the active list. */
2297         if (!obj->active) {
2298                 drm_gem_object_reference(&obj->base);
2299                 obj->active = 1;
2300         }
2301
2302         list_move_tail(&obj->ring_list, &ring->active_list);
2303
2304         i915_gem_request_assign(&obj->last_read_req, req);
2305 }
2306
2307 void i915_vma_move_to_active(struct i915_vma *vma,
2308                              struct intel_engine_cs *ring)
2309 {
2310         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2311         return i915_gem_object_move_to_active(vma->obj, ring);
2312 }
2313
2314 static void
2315 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2316 {
2317         struct i915_vma *vma;
2318
2319         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2320         BUG_ON(!obj->active);
2321
2322         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2323                 if (!list_empty(&vma->mm_list))
2324                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2325         }
2326
2327         intel_fb_obj_flush(obj, true);
2328
2329         list_del_init(&obj->ring_list);
2330
2331         i915_gem_request_assign(&obj->last_read_req, NULL);
2332         i915_gem_request_assign(&obj->last_write_req, NULL);
2333         obj->base.write_domain = 0;
2334
2335         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2336
2337         obj->active = 0;
2338         drm_gem_object_unreference(&obj->base);
2339
2340         WARN_ON(i915_verify_lists(dev));
2341 }
2342
2343 static void
2344 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2345 {
2346         if (obj->last_read_req == NULL)
2347                 return;
2348
2349         if (i915_gem_request_completed(obj->last_read_req, true))
2350                 i915_gem_object_move_to_inactive(obj);
2351 }
2352
2353 static int
2354 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2355 {
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357         struct intel_engine_cs *ring;
2358         int ret, i, j;
2359
2360         /* Carefully retire all requests without writing to the rings */
2361         for_each_ring(ring, dev_priv, i) {
2362                 ret = intel_ring_idle(ring);
2363                 if (ret)
2364                         return ret;
2365         }
2366         i915_gem_retire_requests(dev);
2367
2368         /* Finally reset hw state */
2369         for_each_ring(ring, dev_priv, i) {
2370                 intel_ring_init_seqno(ring, seqno);
2371
2372                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2373                         ring->semaphore.sync_seqno[j] = 0;
2374         }
2375
2376         return 0;
2377 }
2378
2379 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2380 {
2381         struct drm_i915_private *dev_priv = dev->dev_private;
2382         int ret;
2383
2384         if (seqno == 0)
2385                 return -EINVAL;
2386
2387         /* HWS page needs to be set less than what we
2388          * will inject to ring
2389          */
2390         ret = i915_gem_init_seqno(dev, seqno - 1);
2391         if (ret)
2392                 return ret;
2393
2394         /* Carefully set the last_seqno value so that wrap
2395          * detection still works
2396          */
2397         dev_priv->next_seqno = seqno;
2398         dev_priv->last_seqno = seqno - 1;
2399         if (dev_priv->last_seqno == 0)
2400                 dev_priv->last_seqno--;
2401
2402         return 0;
2403 }
2404
2405 int
2406 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2407 {
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409
2410         /* reserve 0 for non-seqno */
2411         if (dev_priv->next_seqno == 0) {
2412                 int ret = i915_gem_init_seqno(dev, 0);
2413                 if (ret)
2414                         return ret;
2415
2416                 dev_priv->next_seqno = 1;
2417         }
2418
2419         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2420         return 0;
2421 }
2422
2423 int __i915_add_request(struct intel_engine_cs *ring,
2424                        struct drm_file *file,
2425                        struct drm_i915_gem_object *obj)
2426 {
2427         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2428         struct drm_i915_gem_request *request;
2429         struct intel_ringbuffer *ringbuf;
2430         u32 request_start;
2431         int ret;
2432
2433         request = ring->outstanding_lazy_request;
2434         if (WARN_ON(request == NULL))
2435                 return -ENOMEM;
2436
2437         if (i915.enable_execlists) {
2438                 ringbuf = request->ctx->engine[ring->id].ringbuf;
2439         } else
2440                 ringbuf = ring->buffer;
2441
2442         request_start = intel_ring_get_tail(ringbuf);
2443         /*
2444          * Emit any outstanding flushes - execbuf can fail to emit the flush
2445          * after having emitted the batchbuffer command. Hence we need to fix
2446          * things up similar to emitting the lazy request. The difference here
2447          * is that the flush _must_ happen before the next request, no matter
2448          * what.
2449          */
2450         if (i915.enable_execlists) {
2451                 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2452                 if (ret)
2453                         return ret;
2454         } else {
2455                 ret = intel_ring_flush_all_caches(ring);
2456                 if (ret)
2457                         return ret;
2458         }
2459
2460         /* Record the position of the start of the request so that
2461          * should we detect the updated seqno part-way through the
2462          * GPU processing the request, we never over-estimate the
2463          * position of the head.
2464          */
2465         request->postfix = intel_ring_get_tail(ringbuf);
2466
2467         if (i915.enable_execlists) {
2468                 ret = ring->emit_request(ringbuf, request);
2469                 if (ret)
2470                         return ret;
2471         } else {
2472                 ret = ring->add_request(ring);
2473                 if (ret)
2474                         return ret;
2475         }
2476
2477         request->head = request_start;
2478         request->tail = intel_ring_get_tail(ringbuf);
2479
2480         /* Whilst this request exists, batch_obj will be on the
2481          * active_list, and so will hold the active reference. Only when this
2482          * request is retired will the the batch_obj be moved onto the
2483          * inactive_list and lose its active reference. Hence we do not need
2484          * to explicitly hold another reference here.
2485          */
2486         request->batch_obj = obj;
2487
2488         if (!i915.enable_execlists) {
2489                 /* Hold a reference to the current context so that we can inspect
2490                  * it later in case a hangcheck error event fires.
2491                  */
2492                 request->ctx = ring->last_context;
2493                 if (request->ctx)
2494                         i915_gem_context_reference(request->ctx);
2495         }
2496
2497         request->emitted_jiffies = jiffies;
2498         list_add_tail(&request->list, &ring->request_list);
2499         request->file_priv = NULL;
2500
2501         if (file) {
2502                 struct drm_i915_file_private *file_priv = file->driver_priv;
2503
2504                 spin_lock(&file_priv->mm.lock);
2505                 request->file_priv = file_priv;
2506                 list_add_tail(&request->client_list,
2507                               &file_priv->mm.request_list);
2508                 spin_unlock(&file_priv->mm.lock);
2509
2510                 request->pid = get_pid(task_pid(current));
2511         }
2512
2513         trace_i915_gem_request_add(request);
2514         ring->outstanding_lazy_request = NULL;
2515
2516         i915_queue_hangcheck(ring->dev);
2517
2518         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2519         queue_delayed_work(dev_priv->wq,
2520                            &dev_priv->mm.retire_work,
2521                            round_jiffies_up_relative(HZ));
2522         intel_mark_busy(dev_priv->dev);
2523
2524         return 0;
2525 }
2526
2527 static inline void
2528 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2529 {
2530         struct drm_i915_file_private *file_priv = request->file_priv;
2531
2532         if (!file_priv)
2533                 return;
2534
2535         spin_lock(&file_priv->mm.lock);
2536         list_del(&request->client_list);
2537         request->file_priv = NULL;
2538         spin_unlock(&file_priv->mm.lock);
2539 }
2540
2541 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2542                                    const struct intel_context *ctx)
2543 {
2544         unsigned long elapsed;
2545
2546         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2547
2548         if (ctx->hang_stats.banned)
2549                 return true;
2550
2551         if (ctx->hang_stats.ban_period_seconds &&
2552             elapsed <= ctx->hang_stats.ban_period_seconds) {
2553                 if (!i915_gem_context_is_default(ctx)) {
2554                         DRM_DEBUG("context hanging too fast, banning!\n");
2555                         return true;
2556                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2557                         if (i915_stop_ring_allow_warn(dev_priv))
2558                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2559                         return true;
2560                 }
2561         }
2562
2563         return false;
2564 }
2565
2566 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2567                                   struct intel_context *ctx,
2568                                   const bool guilty)
2569 {
2570         struct i915_ctx_hang_stats *hs;
2571
2572         if (WARN_ON(!ctx))
2573                 return;
2574
2575         hs = &ctx->hang_stats;
2576
2577         if (guilty) {
2578                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2579                 hs->batch_active++;
2580                 hs->guilty_ts = get_seconds();
2581         } else {
2582                 hs->batch_pending++;
2583         }
2584 }
2585
2586 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2587 {
2588         list_del(&request->list);
2589         i915_gem_request_remove_from_client(request);
2590
2591         put_pid(request->pid);
2592
2593         i915_gem_request_unreference(request);
2594 }
2595
2596 void i915_gem_request_free(struct kref *req_ref)
2597 {
2598         struct drm_i915_gem_request *req = container_of(req_ref,
2599                                                  typeof(*req), ref);
2600         struct intel_context *ctx = req->ctx;
2601
2602         if (ctx) {
2603                 if (i915.enable_execlists) {
2604                         struct intel_engine_cs *ring = req->ring;
2605
2606                         if (ctx != ring->default_context)
2607                                 intel_lr_context_unpin(ring, ctx);
2608                 }
2609
2610                 i915_gem_context_unreference(ctx);
2611         }
2612
2613         kfree(req);
2614 }
2615
2616 struct drm_i915_gem_request *
2617 i915_gem_find_active_request(struct intel_engine_cs *ring)
2618 {
2619         struct drm_i915_gem_request *request;
2620
2621         list_for_each_entry(request, &ring->request_list, list) {
2622                 if (i915_gem_request_completed(request, false))
2623                         continue;
2624
2625                 return request;
2626         }
2627
2628         return NULL;
2629 }
2630
2631 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2632                                        struct intel_engine_cs *ring)
2633 {
2634         struct drm_i915_gem_request *request;
2635         bool ring_hung;
2636
2637         request = i915_gem_find_active_request(ring);
2638
2639         if (request == NULL)
2640                 return;
2641
2642         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2643
2644         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2645
2646         list_for_each_entry_continue(request, &ring->request_list, list)
2647                 i915_set_reset_status(dev_priv, request->ctx, false);
2648 }
2649
2650 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2651                                         struct intel_engine_cs *ring)
2652 {
2653         while (!list_empty(&ring->active_list)) {
2654                 struct drm_i915_gem_object *obj;
2655
2656                 obj = list_first_entry(&ring->active_list,
2657                                        struct drm_i915_gem_object,
2658                                        ring_list);
2659
2660                 i915_gem_object_move_to_inactive(obj);
2661         }
2662
2663         /*
2664          * Clear the execlists queue up before freeing the requests, as those
2665          * are the ones that keep the context and ringbuffer backing objects
2666          * pinned in place.
2667          */
2668         while (!list_empty(&ring->execlist_queue)) {
2669                 struct drm_i915_gem_request *submit_req;
2670
2671                 submit_req = list_first_entry(&ring->execlist_queue,
2672                                 struct drm_i915_gem_request,
2673                                 execlist_link);
2674                 list_del(&submit_req->execlist_link);
2675                 intel_runtime_pm_put(dev_priv);
2676
2677                 if (submit_req->ctx != ring->default_context)
2678                         intel_lr_context_unpin(ring, submit_req->ctx);
2679
2680                 i915_gem_request_unreference(submit_req);
2681         }
2682
2683         /*
2684          * We must free the requests after all the corresponding objects have
2685          * been moved off active lists. Which is the same order as the normal
2686          * retire_requests function does. This is important if object hold
2687          * implicit references on things like e.g. ppgtt address spaces through
2688          * the request.
2689          */
2690         while (!list_empty(&ring->request_list)) {
2691                 struct drm_i915_gem_request *request;
2692
2693                 request = list_first_entry(&ring->request_list,
2694                                            struct drm_i915_gem_request,
2695                                            list);
2696
2697                 i915_gem_free_request(request);
2698         }
2699
2700         /* This may not have been flushed before the reset, so clean it now */
2701         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2702 }
2703
2704 void i915_gem_restore_fences(struct drm_device *dev)
2705 {
2706         struct drm_i915_private *dev_priv = dev->dev_private;
2707         int i;
2708
2709         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2710                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2711
2712                 /*
2713                  * Commit delayed tiling changes if we have an object still
2714                  * attached to the fence, otherwise just clear the fence.
2715                  */
2716                 if (reg->obj) {
2717                         i915_gem_object_update_fence(reg->obj, reg,
2718                                                      reg->obj->tiling_mode);
2719                 } else {
2720                         i915_gem_write_fence(dev, i, NULL);
2721                 }
2722         }
2723 }
2724
2725 void i915_gem_reset(struct drm_device *dev)
2726 {
2727         struct drm_i915_private *dev_priv = dev->dev_private;
2728         struct intel_engine_cs *ring;
2729         int i;
2730
2731         /*
2732          * Before we free the objects from the requests, we need to inspect
2733          * them for finding the guilty party. As the requests only borrow
2734          * their reference to the objects, the inspection must be done first.
2735          */
2736         for_each_ring(ring, dev_priv, i)
2737                 i915_gem_reset_ring_status(dev_priv, ring);
2738
2739         for_each_ring(ring, dev_priv, i)
2740                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2741
2742         i915_gem_context_reset(dev);
2743
2744         i915_gem_restore_fences(dev);
2745 }
2746
2747 /**
2748  * This function clears the request list as sequence numbers are passed.
2749  */
2750 void
2751 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2752 {
2753         if (list_empty(&ring->request_list))
2754                 return;
2755
2756         WARN_ON(i915_verify_lists(ring->dev));
2757
2758         /* Move any buffers on the active list that are no longer referenced
2759          * by the ringbuffer to the flushing/inactive lists as appropriate,
2760          * before we free the context associated with the requests.
2761          */
2762         while (!list_empty(&ring->active_list)) {
2763                 struct drm_i915_gem_object *obj;
2764
2765                 obj = list_first_entry(&ring->active_list,
2766                                       struct drm_i915_gem_object,
2767                                       ring_list);
2768
2769                 if (!i915_gem_request_completed(obj->last_read_req, true))
2770                         break;
2771
2772                 i915_gem_object_move_to_inactive(obj);
2773         }
2774
2775
2776         while (!list_empty(&ring->request_list)) {
2777                 struct drm_i915_gem_request *request;
2778
2779                 request = list_first_entry(&ring->request_list,
2780                                            struct drm_i915_gem_request,
2781                                            list);
2782
2783                 if (!i915_gem_request_completed(request, true))
2784                         break;
2785
2786                 trace_i915_gem_request_retire(request);
2787
2788                 /* We know the GPU must have read the request to have
2789                  * sent us the seqno + interrupt, so use the position
2790                  * of tail of the request to update the last known position
2791                  * of the GPU head.
2792                  */
2793                 request->ringbuf->last_retired_head = request->postfix;
2794
2795                 i915_gem_free_request(request);
2796         }
2797
2798         if (unlikely(ring->trace_irq_req &&
2799                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2800                 ring->irq_put(ring);
2801                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2802         }
2803
2804         WARN_ON(i915_verify_lists(ring->dev));
2805 }
2806
2807 bool
2808 i915_gem_retire_requests(struct drm_device *dev)
2809 {
2810         struct drm_i915_private *dev_priv = dev->dev_private;
2811         struct intel_engine_cs *ring;
2812         bool idle = true;
2813         int i;
2814
2815         for_each_ring(ring, dev_priv, i) {
2816                 i915_gem_retire_requests_ring(ring);
2817                 idle &= list_empty(&ring->request_list);
2818                 if (i915.enable_execlists) {
2819                         unsigned long flags;
2820
2821                         spin_lock_irqsave(&ring->execlist_lock, flags);
2822                         idle &= list_empty(&ring->execlist_queue);
2823                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2824
2825                         intel_execlists_retire_requests(ring);
2826                 }
2827         }
2828
2829         if (idle)
2830                 mod_delayed_work(dev_priv->wq,
2831                                    &dev_priv->mm.idle_work,
2832                                    msecs_to_jiffies(100));
2833
2834         return idle;
2835 }
2836
2837 static void
2838 i915_gem_retire_work_handler(struct work_struct *work)
2839 {
2840         struct drm_i915_private *dev_priv =
2841                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2842         struct drm_device *dev = dev_priv->dev;
2843         bool idle;
2844
2845         /* Come back later if the device is busy... */
2846         idle = false;
2847         if (mutex_trylock(&dev->struct_mutex)) {
2848                 idle = i915_gem_retire_requests(dev);
2849                 mutex_unlock(&dev->struct_mutex);
2850         }
2851         if (!idle)
2852                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2853                                    round_jiffies_up_relative(HZ));
2854 }
2855
2856 static void
2857 i915_gem_idle_work_handler(struct work_struct *work)
2858 {
2859         struct drm_i915_private *dev_priv =
2860                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2861
2862         intel_mark_idle(dev_priv->dev);
2863 }
2864
2865 /**
2866  * Ensures that an object will eventually get non-busy by flushing any required
2867  * write domains, emitting any outstanding lazy request and retiring and
2868  * completed requests.
2869  */
2870 static int
2871 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2872 {
2873         struct intel_engine_cs *ring;
2874         int ret;
2875
2876         if (obj->active) {
2877                 ring = i915_gem_request_get_ring(obj->last_read_req);
2878
2879                 ret = i915_gem_check_olr(obj->last_read_req);
2880                 if (ret)
2881                         return ret;
2882
2883                 i915_gem_retire_requests_ring(ring);
2884         }
2885
2886         return 0;
2887 }
2888
2889 /**
2890  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2891  * @DRM_IOCTL_ARGS: standard ioctl arguments
2892  *
2893  * Returns 0 if successful, else an error is returned with the remaining time in
2894  * the timeout parameter.
2895  *  -ETIME: object is still busy after timeout
2896  *  -ERESTARTSYS: signal interrupted the wait
2897  *  -ENONENT: object doesn't exist
2898  * Also possible, but rare:
2899  *  -EAGAIN: GPU wedged
2900  *  -ENOMEM: damn
2901  *  -ENODEV: Internal IRQ fail
2902  *  -E?: The add request failed
2903  *
2904  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2905  * non-zero timeout parameter the wait ioctl will wait for the given number of
2906  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2907  * without holding struct_mutex the object may become re-busied before this
2908  * function completes. A similar but shorter * race condition exists in the busy
2909  * ioctl
2910  */
2911 int
2912 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2913 {
2914         struct drm_i915_private *dev_priv = dev->dev_private;
2915         struct drm_i915_gem_wait *args = data;
2916         struct drm_i915_gem_object *obj;
2917         struct drm_i915_gem_request *req;
2918         unsigned reset_counter;
2919         int ret = 0;
2920
2921         if (args->flags != 0)
2922                 return -EINVAL;
2923
2924         ret = i915_mutex_lock_interruptible(dev);
2925         if (ret)
2926                 return ret;
2927
2928         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2929         if (&obj->base == NULL) {
2930                 mutex_unlock(&dev->struct_mutex);
2931                 return -ENOENT;
2932         }
2933
2934         /* Need to make sure the object gets inactive eventually. */
2935         ret = i915_gem_object_flush_active(obj);
2936         if (ret)
2937                 goto out;
2938
2939         if (!obj->active || !obj->last_read_req)
2940                 goto out;
2941
2942         req = obj->last_read_req;
2943
2944         /* Do this after OLR check to make sure we make forward progress polling
2945          * on this IOCTL with a timeout == 0 (like busy ioctl)
2946          */
2947         if (args->timeout_ns == 0) {
2948                 ret = -ETIME;
2949                 goto out;
2950         }
2951
2952         drm_gem_object_unreference(&obj->base);
2953         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2954         i915_gem_request_reference(req);
2955         mutex_unlock(&dev->struct_mutex);
2956
2957         ret = __i915_wait_request(req, reset_counter, true,
2958                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2959                                   file->driver_priv);
2960         mutex_lock(&dev->struct_mutex);
2961         i915_gem_request_unreference(req);
2962         mutex_unlock(&dev->struct_mutex);
2963         return ret;
2964
2965 out:
2966         drm_gem_object_unreference(&obj->base);
2967         mutex_unlock(&dev->struct_mutex);
2968         return ret;
2969 }
2970
2971 /**
2972  * i915_gem_object_sync - sync an object to a ring.
2973  *
2974  * @obj: object which may be in use on another ring.
2975  * @to: ring we wish to use the object on. May be NULL.
2976  *
2977  * This code is meant to abstract object synchronization with the GPU.
2978  * Calling with NULL implies synchronizing the object with the CPU
2979  * rather than a particular GPU ring.
2980  *
2981  * Returns 0 if successful, else propagates up the lower layer error.
2982  */
2983 int
2984 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2985                      struct intel_engine_cs *to)
2986 {
2987         struct intel_engine_cs *from;
2988         u32 seqno;
2989         int ret, idx;
2990
2991         from = i915_gem_request_get_ring(obj->last_read_req);
2992
2993         if (from == NULL || to == from)
2994                 return 0;
2995
2996         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2997                 return i915_gem_object_wait_rendering(obj, false);
2998
2999         idx = intel_ring_sync_index(from, to);
3000
3001         seqno = i915_gem_request_get_seqno(obj->last_read_req);
3002         /* Optimization: Avoid semaphore sync when we are sure we already
3003          * waited for an object with higher seqno */
3004         if (seqno <= from->semaphore.sync_seqno[idx])
3005                 return 0;
3006
3007         ret = i915_gem_check_olr(obj->last_read_req);
3008         if (ret)
3009                 return ret;
3010
3011         trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3012         ret = to->semaphore.sync_to(to, from, seqno);
3013         if (!ret)
3014                 /* We use last_read_req because sync_to()
3015                  * might have just caused seqno wrap under
3016                  * the radar.
3017                  */
3018                 from->semaphore.sync_seqno[idx] =
3019                                 i915_gem_request_get_seqno(obj->last_read_req);
3020
3021         return ret;
3022 }
3023
3024 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3025 {
3026         u32 old_write_domain, old_read_domains;
3027
3028         /* Force a pagefault for domain tracking on next user access */
3029         i915_gem_release_mmap(obj);
3030
3031         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3032                 return;
3033
3034         /* Wait for any direct GTT access to complete */
3035         mb();
3036
3037         old_read_domains = obj->base.read_domains;
3038         old_write_domain = obj->base.write_domain;
3039
3040         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3041         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3042
3043         trace_i915_gem_object_change_domain(obj,
3044                                             old_read_domains,
3045                                             old_write_domain);
3046 }
3047
3048 int i915_vma_unbind(struct i915_vma *vma)
3049 {
3050         struct drm_i915_gem_object *obj = vma->obj;
3051         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3052         int ret;
3053
3054         if (list_empty(&vma->vma_link))
3055                 return 0;
3056
3057         if (!drm_mm_node_allocated(&vma->node)) {
3058                 i915_gem_vma_destroy(vma);
3059                 return 0;
3060         }
3061
3062         if (vma->pin_count)
3063                 return -EBUSY;
3064
3065         BUG_ON(obj->pages == NULL);
3066
3067         ret = i915_gem_object_finish_gpu(obj);
3068         if (ret)
3069                 return ret;
3070         /* Continue on if we fail due to EIO, the GPU is hung so we
3071          * should be safe and we need to cleanup or else we might
3072          * cause memory corruption through use-after-free.
3073          */
3074
3075         if (i915_is_ggtt(vma->vm) &&
3076             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3077                 i915_gem_object_finish_gtt(obj);
3078
3079                 /* release the fence reg _after_ flushing */
3080                 ret = i915_gem_object_put_fence(obj);
3081                 if (ret)
3082                         return ret;
3083         }
3084
3085         trace_i915_vma_unbind(vma);
3086
3087         vma->unbind_vma(vma);
3088
3089         list_del_init(&vma->mm_list);
3090         if (i915_is_ggtt(vma->vm)) {
3091                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3092                         obj->map_and_fenceable = false;
3093                 } else if (vma->ggtt_view.pages) {
3094                         sg_free_table(vma->ggtt_view.pages);
3095                         kfree(vma->ggtt_view.pages);
3096                         vma->ggtt_view.pages = NULL;
3097                 }
3098         }
3099
3100         drm_mm_remove_node(&vma->node);
3101         i915_gem_vma_destroy(vma);
3102
3103         /* Since the unbound list is global, only move to that list if
3104          * no more VMAs exist. */
3105         if (list_empty(&obj->vma_list)) {
3106                 /* Throw away the active reference before
3107                  * moving to the unbound list. */
3108                 i915_gem_object_retire(obj);
3109
3110                 i915_gem_gtt_finish_object(obj);
3111                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3112         }
3113
3114         /* And finally now the object is completely decoupled from this vma,
3115          * we can drop its hold on the backing storage and allow it to be
3116          * reaped by the shrinker.
3117          */
3118         i915_gem_object_unpin_pages(obj);
3119
3120         return 0;
3121 }
3122
3123 int i915_gpu_idle(struct drm_device *dev)
3124 {
3125         struct drm_i915_private *dev_priv = dev->dev_private;
3126         struct intel_engine_cs *ring;
3127         int ret, i;
3128
3129         /* Flush everything onto the inactive list. */
3130         for_each_ring(ring, dev_priv, i) {
3131                 if (!i915.enable_execlists) {
3132                         ret = i915_switch_context(ring, ring->default_context);
3133                         if (ret)
3134                                 return ret;
3135                 }
3136
3137                 ret = intel_ring_idle(ring);
3138                 if (ret)
3139                         return ret;
3140         }
3141
3142         return 0;
3143 }
3144
3145 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3146                                  struct drm_i915_gem_object *obj)
3147 {
3148         struct drm_i915_private *dev_priv = dev->dev_private;
3149         int fence_reg;
3150         int fence_pitch_shift;
3151
3152         if (INTEL_INFO(dev)->gen >= 6) {
3153                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3154                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3155         } else {
3156                 fence_reg = FENCE_REG_965_0;
3157                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3158         }
3159
3160         fence_reg += reg * 8;
3161
3162         /* To w/a incoherency with non-atomic 64-bit register updates,
3163          * we split the 64-bit update into two 32-bit writes. In order
3164          * for a partial fence not to be evaluated between writes, we
3165          * precede the update with write to turn off the fence register,
3166          * and only enable the fence as the last step.
3167          *
3168          * For extra levels of paranoia, we make sure each step lands
3169          * before applying the next step.
3170          */
3171         I915_WRITE(fence_reg, 0);
3172         POSTING_READ(fence_reg);
3173
3174         if (obj) {
3175                 u32 size = i915_gem_obj_ggtt_size(obj);
3176                 uint64_t val;
3177
3178                 /* Adjust fence size to match tiled area */
3179                 if (obj->tiling_mode != I915_TILING_NONE) {
3180                         uint32_t row_size = obj->stride *
3181                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3182                         size = (size / row_size) * row_size;
3183                 }
3184
3185                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3186                                  0xfffff000) << 32;
3187                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3188                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3189                 if (obj->tiling_mode == I915_TILING_Y)
3190                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3191                 val |= I965_FENCE_REG_VALID;
3192
3193                 I915_WRITE(fence_reg + 4, val >> 32);
3194                 POSTING_READ(fence_reg + 4);
3195
3196                 I915_WRITE(fence_reg + 0, val);
3197                 POSTING_READ(fence_reg);
3198         } else {
3199                 I915_WRITE(fence_reg + 4, 0);
3200                 POSTING_READ(fence_reg + 4);
3201         }
3202 }
3203
3204 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3205                                  struct drm_i915_gem_object *obj)
3206 {
3207         struct drm_i915_private *dev_priv = dev->dev_private;
3208         u32 val;
3209
3210         if (obj) {
3211                 u32 size = i915_gem_obj_ggtt_size(obj);
3212                 int pitch_val;
3213                 int tile_width;
3214
3215                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3216                      (size & -size) != size ||
3217                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3218                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3219                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3220
3221                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3222                         tile_width = 128;
3223                 else
3224                         tile_width = 512;
3225
3226                 /* Note: pitch better be a power of two tile widths */
3227                 pitch_val = obj->stride / tile_width;
3228                 pitch_val = ffs(pitch_val) - 1;
3229
3230                 val = i915_gem_obj_ggtt_offset(obj);
3231                 if (obj->tiling_mode == I915_TILING_Y)
3232                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3233                 val |= I915_FENCE_SIZE_BITS(size);
3234                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3235                 val |= I830_FENCE_REG_VALID;
3236         } else
3237                 val = 0;
3238
3239         if (reg < 8)
3240                 reg = FENCE_REG_830_0 + reg * 4;
3241         else
3242                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3243
3244         I915_WRITE(reg, val);
3245         POSTING_READ(reg);
3246 }
3247
3248 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3249                                 struct drm_i915_gem_object *obj)
3250 {
3251         struct drm_i915_private *dev_priv = dev->dev_private;
3252         uint32_t val;
3253
3254         if (obj) {
3255                 u32 size = i915_gem_obj_ggtt_size(obj);
3256                 uint32_t pitch_val;
3257
3258                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3259                      (size & -size) != size ||
3260                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3261                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3262                      i915_gem_obj_ggtt_offset(obj), size);
3263
3264                 pitch_val = obj->stride / 128;
3265                 pitch_val = ffs(pitch_val) - 1;
3266
3267                 val = i915_gem_obj_ggtt_offset(obj);
3268                 if (obj->tiling_mode == I915_TILING_Y)
3269                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3270                 val |= I830_FENCE_SIZE_BITS(size);
3271                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3272                 val |= I830_FENCE_REG_VALID;
3273         } else
3274                 val = 0;
3275
3276         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3277         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3278 }
3279
3280 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3281 {
3282         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3283 }
3284
3285 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3286                                  struct drm_i915_gem_object *obj)
3287 {
3288         struct drm_i915_private *dev_priv = dev->dev_private;
3289
3290         /* Ensure that all CPU reads are completed before installing a fence
3291          * and all writes before removing the fence.
3292          */
3293         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3294                 mb();
3295
3296         WARN(obj && (!obj->stride || !obj->tiling_mode),
3297              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3298              obj->stride, obj->tiling_mode);
3299
3300         if (IS_GEN2(dev))
3301                 i830_write_fence_reg(dev, reg, obj);
3302         else if (IS_GEN3(dev))
3303                 i915_write_fence_reg(dev, reg, obj);
3304         else if (INTEL_INFO(dev)->gen >= 4)
3305                 i965_write_fence_reg(dev, reg, obj);
3306
3307         /* And similarly be paranoid that no direct access to this region
3308          * is reordered to before the fence is installed.
3309          */
3310         if (i915_gem_object_needs_mb(obj))
3311                 mb();
3312 }
3313
3314 static inline int fence_number(struct drm_i915_private *dev_priv,
3315                                struct drm_i915_fence_reg *fence)
3316 {
3317         return fence - dev_priv->fence_regs;
3318 }
3319
3320 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3321                                          struct drm_i915_fence_reg *fence,
3322                                          bool enable)
3323 {
3324         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3325         int reg = fence_number(dev_priv, fence);
3326
3327         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3328
3329         if (enable) {
3330                 obj->fence_reg = reg;
3331                 fence->obj = obj;
3332                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3333         } else {
3334                 obj->fence_reg = I915_FENCE_REG_NONE;
3335                 fence->obj = NULL;
3336                 list_del_init(&fence->lru_list);
3337         }
3338         obj->fence_dirty = false;
3339 }
3340
3341 static int
3342 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3343 {
3344         if (obj->last_fenced_req) {
3345                 int ret = i915_wait_request(obj->last_fenced_req);
3346                 if (ret)
3347                         return ret;
3348
3349                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3350         }
3351
3352         return 0;
3353 }
3354
3355 int
3356 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3357 {
3358         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3359         struct drm_i915_fence_reg *fence;
3360         int ret;
3361
3362         ret = i915_gem_object_wait_fence(obj);
3363         if (ret)
3364                 return ret;
3365
3366         if (obj->fence_reg == I915_FENCE_REG_NONE)
3367                 return 0;
3368
3369         fence = &dev_priv->fence_regs[obj->fence_reg];
3370
3371         if (WARN_ON(fence->pin_count))
3372                 return -EBUSY;
3373
3374         i915_gem_object_fence_lost(obj);
3375         i915_gem_object_update_fence(obj, fence, false);
3376
3377         return 0;
3378 }
3379
3380 static struct drm_i915_fence_reg *
3381 i915_find_fence_reg(struct drm_device *dev)
3382 {
3383         struct drm_i915_private *dev_priv = dev->dev_private;
3384         struct drm_i915_fence_reg *reg, *avail;
3385         int i;
3386
3387         /* First try to find a free reg */
3388         avail = NULL;
3389         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3390                 reg = &dev_priv->fence_regs[i];
3391                 if (!reg->obj)
3392                         return reg;
3393
3394                 if (!reg->pin_count)
3395                         avail = reg;
3396         }
3397
3398         if (avail == NULL)
3399                 goto deadlock;
3400
3401         /* None available, try to steal one or wait for a user to finish */
3402         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3403                 if (reg->pin_count)
3404                         continue;
3405
3406                 return reg;
3407         }
3408
3409 deadlock:
3410         /* Wait for completion of pending flips which consume fences */
3411         if (intel_has_pending_fb_unpin(dev))
3412                 return ERR_PTR(-EAGAIN);
3413
3414         return ERR_PTR(-EDEADLK);
3415 }
3416
3417 /**
3418  * i915_gem_object_get_fence - set up fencing for an object
3419  * @obj: object to map through a fence reg
3420  *
3421  * When mapping objects through the GTT, userspace wants to be able to write
3422  * to them without having to worry about swizzling if the object is tiled.
3423  * This function walks the fence regs looking for a free one for @obj,
3424  * stealing one if it can't find any.
3425  *
3426  * It then sets up the reg based on the object's properties: address, pitch
3427  * and tiling format.
3428  *
3429  * For an untiled surface, this removes any existing fence.
3430  */
3431 int
3432 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3433 {
3434         struct drm_device *dev = obj->base.dev;
3435         struct drm_i915_private *dev_priv = dev->dev_private;
3436         bool enable = obj->tiling_mode != I915_TILING_NONE;
3437         struct drm_i915_fence_reg *reg;
3438         int ret;
3439
3440         /* Have we updated the tiling parameters upon the object and so
3441          * will need to serialise the write to the associated fence register?
3442          */
3443         if (obj->fence_dirty) {
3444                 ret = i915_gem_object_wait_fence(obj);
3445                 if (ret)
3446                         return ret;
3447         }
3448
3449         /* Just update our place in the LRU if our fence is getting reused. */
3450         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3451                 reg = &dev_priv->fence_regs[obj->fence_reg];
3452                 if (!obj->fence_dirty) {
3453                         list_move_tail(&reg->lru_list,
3454                                        &dev_priv->mm.fence_list);
3455                         return 0;
3456                 }
3457         } else if (enable) {
3458                 if (WARN_ON(!obj->map_and_fenceable))
3459                         return -EINVAL;
3460
3461                 reg = i915_find_fence_reg(dev);
3462                 if (IS_ERR(reg))
3463                         return PTR_ERR(reg);
3464
3465                 if (reg->obj) {
3466                         struct drm_i915_gem_object *old = reg->obj;
3467
3468                         ret = i915_gem_object_wait_fence(old);
3469                         if (ret)
3470                                 return ret;
3471
3472                         i915_gem_object_fence_lost(old);
3473                 }
3474         } else
3475                 return 0;
3476
3477         i915_gem_object_update_fence(obj, reg, enable);
3478
3479         return 0;
3480 }
3481
3482 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3483                                      unsigned long cache_level)
3484 {
3485         struct drm_mm_node *gtt_space = &vma->node;
3486         struct drm_mm_node *other;
3487
3488         /*
3489          * On some machines we have to be careful when putting differing types
3490          * of snoopable memory together to avoid the prefetcher crossing memory
3491          * domains and dying. During vm initialisation, we decide whether or not
3492          * these constraints apply and set the drm_mm.color_adjust
3493          * appropriately.
3494          */
3495         if (vma->vm->mm.color_adjust == NULL)
3496                 return true;
3497
3498         if (!drm_mm_node_allocated(gtt_space))
3499                 return true;
3500
3501         if (list_empty(&gtt_space->node_list))
3502                 return true;
3503
3504         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3505         if (other->allocated && !other->hole_follows && other->color != cache_level)
3506                 return false;
3507
3508         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3509         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3510                 return false;
3511
3512         return true;
3513 }
3514
3515 /**
3516  * Finds free space in the GTT aperture and binds the object there.
3517  */
3518 static struct i915_vma *
3519 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3520                            struct i915_address_space *vm,
3521                            const struct i915_ggtt_view *ggtt_view,
3522                            unsigned alignment,
3523                            uint64_t flags)
3524 {
3525         struct drm_device *dev = obj->base.dev;
3526         struct drm_i915_private *dev_priv = dev->dev_private;
3527         u32 size, fence_size, fence_alignment, unfenced_alignment;
3528         unsigned long start =
3529                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3530         unsigned long end =
3531                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3532         struct i915_vma *vma;
3533         int ret;
3534
3535         if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3536                 return ERR_PTR(-EINVAL);
3537
3538         fence_size = i915_gem_get_gtt_size(dev,
3539                                            obj->base.size,
3540                                            obj->tiling_mode);
3541         fence_alignment = i915_gem_get_gtt_alignment(dev,
3542                                                      obj->base.size,
3543                                                      obj->tiling_mode, true);
3544         unfenced_alignment =
3545                 i915_gem_get_gtt_alignment(dev,
3546                                            obj->base.size,
3547                                            obj->tiling_mode, false);
3548
3549         if (alignment == 0)
3550                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3551                                                 unfenced_alignment;
3552         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3553                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3554                 return ERR_PTR(-EINVAL);
3555         }
3556
3557         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3558
3559         /* If the object is bigger than the entire aperture, reject it early
3560          * before evicting everything in a vain attempt to find space.
3561          */
3562         if (obj->base.size > end) {
3563                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3564                           obj->base.size,
3565                           flags & PIN_MAPPABLE ? "mappable" : "total",
3566                           end);
3567                 return ERR_PTR(-E2BIG);
3568         }
3569
3570         ret = i915_gem_object_get_pages(obj);
3571         if (ret)
3572                 return ERR_PTR(ret);
3573
3574         i915_gem_object_pin_pages(obj);
3575
3576         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3577                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3578
3579         if (IS_ERR(vma))
3580                 goto err_unpin;
3581
3582 search_free:
3583         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3584                                                   size, alignment,
3585                                                   obj->cache_level,
3586                                                   start, end,
3587                                                   DRM_MM_SEARCH_DEFAULT,
3588                                                   DRM_MM_CREATE_DEFAULT);
3589         if (ret) {
3590                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3591                                                obj->cache_level,
3592                                                start, end,
3593                                                flags);
3594                 if (ret == 0)
3595                         goto search_free;
3596
3597                 goto err_free_vma;
3598         }
3599         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3600                 ret = -EINVAL;
3601                 goto err_remove_node;
3602         }
3603
3604         ret = i915_gem_gtt_prepare_object(obj);
3605         if (ret)
3606                 goto err_remove_node;
3607
3608         trace_i915_vma_bind(vma, flags);
3609         ret = i915_vma_bind(vma, obj->cache_level,
3610                             flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3611         if (ret)
3612                 goto err_finish_gtt;
3613
3614         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3615         list_add_tail(&vma->mm_list, &vm->inactive_list);
3616
3617         return vma;
3618
3619 err_finish_gtt:
3620         i915_gem_gtt_finish_object(obj);
3621 err_remove_node:
3622         drm_mm_remove_node(&vma->node);
3623 err_free_vma:
3624         i915_gem_vma_destroy(vma);
3625         vma = ERR_PTR(ret);
3626 err_unpin:
3627         i915_gem_object_unpin_pages(obj);
3628         return vma;
3629 }
3630
3631 bool
3632 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3633                         bool force)
3634 {
3635         /* If we don't have a page list set up, then we're not pinned
3636          * to GPU, and we can ignore the cache flush because it'll happen
3637          * again at bind time.
3638          */
3639         if (obj->pages == NULL)
3640                 return false;
3641
3642         /*
3643          * Stolen memory is always coherent with the GPU as it is explicitly
3644          * marked as wc by the system, or the system is cache-coherent.
3645          */
3646         if (obj->stolen || obj->phys_handle)
3647                 return false;
3648
3649         /* If the GPU is snooping the contents of the CPU cache,
3650          * we do not need to manually clear the CPU cache lines.  However,
3651          * the caches are only snooped when the render cache is
3652          * flushed/invalidated.  As we always have to emit invalidations
3653          * and flushes when moving into and out of the RENDER domain, correct
3654          * snooping behaviour occurs naturally as the result of our domain
3655          * tracking.
3656          */
3657         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3658                 obj->cache_dirty = true;
3659                 return false;
3660         }
3661
3662         trace_i915_gem_object_clflush(obj);
3663         drm_clflush_sg(obj->pages);
3664         obj->cache_dirty = false;
3665
3666         return true;
3667 }
3668
3669 /** Flushes the GTT write domain for the object if it's dirty. */
3670 static void
3671 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3672 {
3673         uint32_t old_write_domain;
3674
3675         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3676                 return;
3677
3678         /* No actual flushing is required for the GTT write domain.  Writes
3679          * to it immediately go to main memory as far as we know, so there's
3680          * no chipset flush.  It also doesn't land in render cache.
3681          *
3682          * However, we do have to enforce the order so that all writes through
3683          * the GTT land before any writes to the device, such as updates to
3684          * the GATT itself.
3685          */
3686         wmb();
3687
3688         old_write_domain = obj->base.write_domain;
3689         obj->base.write_domain = 0;
3690
3691         intel_fb_obj_flush(obj, false);
3692
3693         trace_i915_gem_object_change_domain(obj,
3694                                             obj->base.read_domains,
3695                                             old_write_domain);
3696 }
3697
3698 /** Flushes the CPU write domain for the object if it's dirty. */
3699 static void
3700 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3701 {
3702         uint32_t old_write_domain;
3703
3704         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3705                 return;
3706
3707         if (i915_gem_clflush_object(obj, obj->pin_display))
3708                 i915_gem_chipset_flush(obj->base.dev);
3709
3710         old_write_domain = obj->base.write_domain;
3711         obj->base.write_domain = 0;
3712
3713         intel_fb_obj_flush(obj, false);
3714
3715         trace_i915_gem_object_change_domain(obj,
3716                                             obj->base.read_domains,
3717                                             old_write_domain);
3718 }
3719
3720 /**
3721  * Moves a single object to the GTT read, and possibly write domain.
3722  *
3723  * This function returns when the move is complete, including waiting on
3724  * flushes to occur.
3725  */
3726 int
3727 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3728 {
3729         uint32_t old_write_domain, old_read_domains;
3730         struct i915_vma *vma;
3731         int ret;
3732
3733         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3734                 return 0;
3735
3736         ret = i915_gem_object_wait_rendering(obj, !write);
3737         if (ret)
3738                 return ret;
3739
3740         i915_gem_object_retire(obj);
3741
3742         /* Flush and acquire obj->pages so that we are coherent through
3743          * direct access in memory with previous cached writes through
3744          * shmemfs and that our cache domain tracking remains valid.
3745          * For example, if the obj->filp was moved to swap without us
3746          * being notified and releasing the pages, we would mistakenly
3747          * continue to assume that the obj remained out of the CPU cached
3748          * domain.
3749          */
3750         ret = i915_gem_object_get_pages(obj);
3751         if (ret)
3752                 return ret;
3753
3754         i915_gem_object_flush_cpu_write_domain(obj);
3755
3756         /* Serialise direct access to this object with the barriers for
3757          * coherent writes from the GPU, by effectively invalidating the
3758          * GTT domain upon first access.
3759          */
3760         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3761                 mb();
3762
3763         old_write_domain = obj->base.write_domain;
3764         old_read_domains = obj->base.read_domains;
3765
3766         /* It should now be out of any other write domains, and we can update
3767          * the domain values for our changes.
3768          */
3769         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3770         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3771         if (write) {
3772                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3773                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3774                 obj->dirty = 1;
3775         }
3776
3777         if (write)
3778                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3779
3780         trace_i915_gem_object_change_domain(obj,
3781                                             old_read_domains,
3782                                             old_write_domain);
3783
3784         /* And bump the LRU for this access */
3785         vma = i915_gem_obj_to_ggtt(obj);
3786         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3787                 list_move_tail(&vma->mm_list,
3788                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3789
3790         return 0;
3791 }
3792
3793 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3794                                     enum i915_cache_level cache_level)
3795 {
3796         struct drm_device *dev = obj->base.dev;
3797         struct i915_vma *vma, *next;
3798         int ret;
3799
3800         if (obj->cache_level == cache_level)
3801                 return 0;
3802
3803         if (i915_gem_obj_is_pinned(obj)) {
3804                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3805                 return -EBUSY;
3806         }
3807
3808         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3809                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3810                         ret = i915_vma_unbind(vma);
3811                         if (ret)
3812                                 return ret;
3813                 }
3814         }
3815
3816         if (i915_gem_obj_bound_any(obj)) {
3817                 ret = i915_gem_object_finish_gpu(obj);
3818                 if (ret)
3819                         return ret;
3820
3821                 i915_gem_object_finish_gtt(obj);
3822
3823                 /* Before SandyBridge, you could not use tiling or fence
3824                  * registers with snooped memory, so relinquish any fences
3825                  * currently pointing to our region in the aperture.
3826                  */
3827                 if (INTEL_INFO(dev)->gen < 6) {
3828                         ret = i915_gem_object_put_fence(obj);
3829                         if (ret)
3830                                 return ret;
3831                 }
3832
3833                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3834                         if (drm_mm_node_allocated(&vma->node)) {
3835                                 ret = i915_vma_bind(vma, cache_level,
3836                                                     vma->bound & GLOBAL_BIND);
3837                                 if (ret)
3838                                         return ret;
3839                         }
3840         }
3841
3842         list_for_each_entry(vma, &obj->vma_list, vma_link)
3843                 vma->node.color = cache_level;
3844         obj->cache_level = cache_level;
3845
3846         if (obj->cache_dirty &&
3847             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3848             cpu_write_needs_clflush(obj)) {
3849                 if (i915_gem_clflush_object(obj, true))
3850                         i915_gem_chipset_flush(obj->base.dev);
3851         }
3852
3853         return 0;
3854 }
3855
3856 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3857                                struct drm_file *file)
3858 {
3859         struct drm_i915_gem_caching *args = data;
3860         struct drm_i915_gem_object *obj;
3861         int ret;
3862
3863         ret = i915_mutex_lock_interruptible(dev);
3864         if (ret)
3865                 return ret;
3866
3867         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3868         if (&obj->base == NULL) {
3869                 ret = -ENOENT;
3870                 goto unlock;
3871         }
3872
3873         switch (obj->cache_level) {
3874         case I915_CACHE_LLC:
3875         case I915_CACHE_L3_LLC:
3876                 args->caching = I915_CACHING_CACHED;
3877                 break;
3878
3879         case I915_CACHE_WT:
3880                 args->caching = I915_CACHING_DISPLAY;
3881                 break;
3882
3883         default:
3884                 args->caching = I915_CACHING_NONE;
3885                 break;
3886         }
3887
3888         drm_gem_object_unreference(&obj->base);
3889 unlock:
3890         mutex_unlock(&dev->struct_mutex);
3891         return ret;
3892 }
3893
3894 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3895                                struct drm_file *file)
3896 {
3897         struct drm_i915_gem_caching *args = data;
3898         struct drm_i915_gem_object *obj;
3899         enum i915_cache_level level;
3900         int ret;
3901
3902         switch (args->caching) {
3903         case I915_CACHING_NONE:
3904                 level = I915_CACHE_NONE;
3905                 break;
3906         case I915_CACHING_CACHED:
3907                 level = I915_CACHE_LLC;
3908                 break;
3909         case I915_CACHING_DISPLAY:
3910                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3911                 break;
3912         default:
3913                 return -EINVAL;
3914         }
3915
3916         ret = i915_mutex_lock_interruptible(dev);
3917         if (ret)
3918                 return ret;
3919
3920         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3921         if (&obj->base == NULL) {
3922                 ret = -ENOENT;
3923                 goto unlock;
3924         }
3925
3926         ret = i915_gem_object_set_cache_level(obj, level);
3927
3928         drm_gem_object_unreference(&obj->base);
3929 unlock:
3930         mutex_unlock(&dev->struct_mutex);
3931         return ret;
3932 }
3933
3934 static bool is_pin_display(struct drm_i915_gem_object *obj)
3935 {
3936         struct i915_vma *vma;
3937
3938         vma = i915_gem_obj_to_ggtt(obj);
3939         if (!vma)
3940                 return false;
3941
3942         /* There are 2 sources that pin objects:
3943          *   1. The display engine (scanouts, sprites, cursors);
3944          *   2. Reservations for execbuffer;
3945          *
3946          * We can ignore reservations as we hold the struct_mutex and
3947          * are only called outside of the reservation path.
3948          */
3949         return vma->pin_count;
3950 }
3951
3952 /*
3953  * Prepare buffer for display plane (scanout, cursors, etc).
3954  * Can be called from an uninterruptible phase (modesetting) and allows
3955  * any flushes to be pipelined (for pageflips).
3956  */
3957 int
3958 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3959                                      u32 alignment,
3960                                      struct intel_engine_cs *pipelined)
3961 {
3962         u32 old_read_domains, old_write_domain;
3963         bool was_pin_display;
3964         int ret;
3965
3966         if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3967                 ret = i915_gem_object_sync(obj, pipelined);
3968                 if (ret)
3969                         return ret;
3970         }
3971
3972         /* Mark the pin_display early so that we account for the
3973          * display coherency whilst setting up the cache domains.
3974          */
3975         was_pin_display = obj->pin_display;
3976         obj->pin_display = true;
3977
3978         /* The display engine is not coherent with the LLC cache on gen6.  As
3979          * a result, we make sure that the pinning that is about to occur is
3980          * done with uncached PTEs. This is lowest common denominator for all
3981          * chipsets.
3982          *
3983          * However for gen6+, we could do better by using the GFDT bit instead
3984          * of uncaching, which would allow us to flush all the LLC-cached data
3985          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3986          */
3987         ret = i915_gem_object_set_cache_level(obj,
3988                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3989         if (ret)
3990                 goto err_unpin_display;
3991
3992         /* As the user may map the buffer once pinned in the display plane
3993          * (e.g. libkms for the bootup splash), we have to ensure that we
3994          * always use map_and_fenceable for all scanout buffers.
3995          */
3996         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3997         if (ret)
3998                 goto err_unpin_display;
3999
4000         i915_gem_object_flush_cpu_write_domain(obj);
4001
4002         old_write_domain = obj->base.write_domain;
4003         old_read_domains = obj->base.read_domains;
4004
4005         /* It should now be out of any other write domains, and we can update
4006          * the domain values for our changes.
4007          */
4008         obj->base.write_domain = 0;
4009         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4010
4011         trace_i915_gem_object_change_domain(obj,
4012                                             old_read_domains,
4013                                             old_write_domain);
4014
4015         return 0;
4016
4017 err_unpin_display:
4018         WARN_ON(was_pin_display != is_pin_display(obj));
4019         obj->pin_display = was_pin_display;
4020         return ret;
4021 }
4022
4023 void
4024 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4025 {
4026         i915_gem_object_ggtt_unpin(obj);
4027         obj->pin_display = is_pin_display(obj);
4028 }
4029
4030 int
4031 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4032 {
4033         int ret;
4034
4035         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4036                 return 0;
4037
4038         ret = i915_gem_object_wait_rendering(obj, false);
4039         if (ret)
4040                 return ret;
4041
4042         /* Ensure that we invalidate the GPU's caches and TLBs. */
4043         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4044         return 0;
4045 }
4046
4047 /**
4048  * Moves a single object to the CPU read, and possibly write domain.
4049  *
4050  * This function returns when the move is complete, including waiting on
4051  * flushes to occur.
4052  */
4053 int
4054 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4055 {
4056         uint32_t old_write_domain, old_read_domains;
4057         int ret;
4058
4059         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4060                 return 0;
4061
4062         ret = i915_gem_object_wait_rendering(obj, !write);
4063         if (ret)
4064                 return ret;
4065
4066         i915_gem_object_retire(obj);
4067         i915_gem_object_flush_gtt_write_domain(obj);
4068
4069         old_write_domain = obj->base.write_domain;
4070         old_read_domains = obj->base.read_domains;
4071
4072         /* Flush the CPU cache if it's still invalid. */
4073         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4074                 i915_gem_clflush_object(obj, false);
4075
4076                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4077         }
4078
4079         /* It should now be out of any other write domains, and we can update
4080          * the domain values for our changes.
4081          */
4082         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4083
4084         /* If we're writing through the CPU, then the GPU read domains will
4085          * need to be invalidated at next use.
4086          */
4087         if (write) {
4088                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4089                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4090         }
4091
4092         if (write)
4093                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4094
4095         trace_i915_gem_object_change_domain(obj,
4096                                             old_read_domains,
4097                                             old_write_domain);
4098
4099         return 0;
4100 }
4101
4102 /* Throttle our rendering by waiting until the ring has completed our requests
4103  * emitted over 20 msec ago.
4104  *
4105  * Note that if we were to use the current jiffies each time around the loop,
4106  * we wouldn't escape the function with any frames outstanding if the time to
4107  * render a frame was over 20ms.
4108  *
4109  * This should get us reasonable parallelism between CPU and GPU but also
4110  * relatively low latency when blocking on a particular request to finish.
4111  */
4112 static int
4113 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4114 {
4115         struct drm_i915_private *dev_priv = dev->dev_private;
4116         struct drm_i915_file_private *file_priv = file->driver_priv;
4117         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4118         struct drm_i915_gem_request *request, *target = NULL;
4119         unsigned reset_counter;
4120         int ret;
4121
4122         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4123         if (ret)
4124                 return ret;
4125
4126         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4127         if (ret)
4128                 return ret;
4129
4130         spin_lock(&file_priv->mm.lock);
4131         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4132                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4133                         break;
4134
4135                 target = request;
4136         }
4137         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4138         if (target)
4139                 i915_gem_request_reference(target);
4140         spin_unlock(&file_priv->mm.lock);
4141
4142         if (target == NULL)
4143                 return 0;
4144
4145         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4146         if (ret == 0)
4147                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4148
4149         mutex_lock(&dev->struct_mutex);
4150         i915_gem_request_unreference(target);
4151         mutex_unlock(&dev->struct_mutex);
4152
4153         return ret;
4154 }
4155
4156 static bool
4157 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4158 {
4159         struct drm_i915_gem_object *obj = vma->obj;
4160
4161         if (alignment &&
4162             vma->node.start & (alignment - 1))
4163                 return true;
4164
4165         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4166                 return true;
4167
4168         if (flags & PIN_OFFSET_BIAS &&
4169             vma->node.start < (flags & PIN_OFFSET_MASK))
4170                 return true;
4171
4172         return false;
4173 }
4174
4175 static int
4176 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4177                        struct i915_address_space *vm,
4178                        const struct i915_ggtt_view *ggtt_view,
4179                        uint32_t alignment,
4180                        uint64_t flags)
4181 {
4182         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4183         struct i915_vma *vma;
4184         unsigned bound;
4185         int ret;
4186
4187         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4188                 return -ENODEV;
4189
4190         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4191                 return -EINVAL;
4192
4193         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4194                 return -EINVAL;
4195
4196         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4197                 return -EINVAL;
4198
4199         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4200                           i915_gem_obj_to_vma(obj, vm);
4201
4202         if (IS_ERR(vma))
4203                 return PTR_ERR(vma);
4204
4205         if (vma) {
4206                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4207                         return -EBUSY;
4208
4209                 if (i915_vma_misplaced(vma, alignment, flags)) {
4210                         unsigned long offset;
4211                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view->type) :
4212                                              i915_gem_obj_offset(obj, vm);
4213                         WARN(vma->pin_count,
4214                              "bo is already pinned in %s with incorrect alignment:"
4215                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4216                              " obj->map_and_fenceable=%d\n",
4217                              ggtt_view ? "ggtt" : "ppgtt",
4218                              offset,
4219                              alignment,
4220                              !!(flags & PIN_MAPPABLE),
4221                              obj->map_and_fenceable);
4222                         ret = i915_vma_unbind(vma);
4223                         if (ret)
4224                                 return ret;
4225
4226                         vma = NULL;
4227                 }
4228         }
4229
4230         bound = vma ? vma->bound : 0;
4231         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4232                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4233                                                  flags);
4234                 if (IS_ERR(vma))
4235                         return PTR_ERR(vma);
4236         }
4237
4238         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4239                 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4240                 if (ret)
4241                         return ret;
4242         }
4243
4244         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4245                 bool mappable, fenceable;
4246                 u32 fence_size, fence_alignment;
4247
4248                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4249                                                    obj->base.size,
4250                                                    obj->tiling_mode);
4251                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4252                                                              obj->base.size,
4253                                                              obj->tiling_mode,
4254                                                              true);
4255
4256                 fenceable = (vma->node.size == fence_size &&
4257                              (vma->node.start & (fence_alignment - 1)) == 0);
4258
4259                 mappable = (vma->node.start + fence_size <=
4260                             dev_priv->gtt.mappable_end);
4261
4262                 obj->map_and_fenceable = mappable && fenceable;
4263         }
4264
4265         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4266
4267         vma->pin_count++;
4268         if (flags & PIN_MAPPABLE)
4269                 obj->pin_mappable |= true;
4270
4271         return 0;
4272 }
4273
4274 int
4275 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4276                     struct i915_address_space *vm,
4277                     uint32_t alignment,
4278                     uint64_t flags)
4279 {
4280         return i915_gem_object_do_pin(obj, vm,
4281                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4282                                       alignment, flags);
4283 }
4284
4285 int
4286 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4287                          const struct i915_ggtt_view *view,
4288                          uint32_t alignment,
4289                          uint64_t flags)
4290 {
4291         if (WARN_ONCE(!view, "no view specified"))
4292                 return -EINVAL;
4293
4294         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4295                                       alignment, flags | PIN_GLOBAL);
4296 }
4297
4298 void
4299 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4300 {
4301         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4302
4303         BUG_ON(!vma);
4304         BUG_ON(vma->pin_count == 0);
4305         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4306
4307         if (--vma->pin_count == 0)
4308                 obj->pin_mappable = false;
4309 }
4310
4311 bool
4312 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4313 {
4314         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4315                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4316                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4317
4318                 WARN_ON(!ggtt_vma ||
4319                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4320                         ggtt_vma->pin_count);
4321                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4322                 return true;
4323         } else
4324                 return false;
4325 }
4326
4327 void
4328 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4329 {
4330         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4331                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4332                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4333                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4334         }
4335 }
4336
4337 int
4338 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4339                     struct drm_file *file)
4340 {
4341         struct drm_i915_gem_busy *args = data;
4342         struct drm_i915_gem_object *obj;
4343         int ret;
4344
4345         ret = i915_mutex_lock_interruptible(dev);
4346         if (ret)
4347                 return ret;
4348
4349         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4350         if (&obj->base == NULL) {
4351                 ret = -ENOENT;
4352                 goto unlock;
4353         }
4354
4355         /* Count all active objects as busy, even if they are currently not used
4356          * by the gpu. Users of this interface expect objects to eventually
4357          * become non-busy without any further actions, therefore emit any
4358          * necessary flushes here.
4359          */
4360         ret = i915_gem_object_flush_active(obj);
4361
4362         args->busy = obj->active;
4363         if (obj->last_read_req) {
4364                 struct intel_engine_cs *ring;
4365                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4366                 ring = i915_gem_request_get_ring(obj->last_read_req);
4367                 args->busy |= intel_ring_flag(ring) << 16;
4368         }
4369
4370         drm_gem_object_unreference(&obj->base);
4371 unlock:
4372         mutex_unlock(&dev->struct_mutex);
4373         return ret;
4374 }
4375
4376 int
4377 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4378                         struct drm_file *file_priv)
4379 {
4380         return i915_gem_ring_throttle(dev, file_priv);
4381 }
4382
4383 int
4384 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4385                        struct drm_file *file_priv)
4386 {
4387         struct drm_i915_private *dev_priv = dev->dev_private;
4388         struct drm_i915_gem_madvise *args = data;
4389         struct drm_i915_gem_object *obj;
4390         int ret;
4391
4392         switch (args->madv) {
4393         case I915_MADV_DONTNEED:
4394         case I915_MADV_WILLNEED:
4395             break;
4396         default:
4397             return -EINVAL;
4398         }
4399
4400         ret = i915_mutex_lock_interruptible(dev);
4401         if (ret)
4402                 return ret;
4403
4404         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4405         if (&obj->base == NULL) {
4406                 ret = -ENOENT;
4407                 goto unlock;
4408         }
4409
4410         if (i915_gem_obj_is_pinned(obj)) {
4411                 ret = -EINVAL;
4412                 goto out;
4413         }
4414
4415         if (obj->pages &&
4416             obj->tiling_mode != I915_TILING_NONE &&
4417             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4418                 if (obj->madv == I915_MADV_WILLNEED)
4419                         i915_gem_object_unpin_pages(obj);
4420                 if (args->madv == I915_MADV_WILLNEED)
4421                         i915_gem_object_pin_pages(obj);
4422         }
4423
4424         if (obj->madv != __I915_MADV_PURGED)
4425                 obj->madv = args->madv;
4426
4427         /* if the object is no longer attached, discard its backing storage */
4428         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4429                 i915_gem_object_truncate(obj);
4430
4431         args->retained = obj->madv != __I915_MADV_PURGED;
4432
4433 out:
4434         drm_gem_object_unreference(&obj->base);
4435 unlock:
4436         mutex_unlock(&dev->struct_mutex);
4437         return ret;
4438 }
4439
4440 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4441                           const struct drm_i915_gem_object_ops *ops)
4442 {
4443         INIT_LIST_HEAD(&obj->global_list);
4444         INIT_LIST_HEAD(&obj->ring_list);
4445         INIT_LIST_HEAD(&obj->obj_exec_link);
4446         INIT_LIST_HEAD(&obj->vma_list);
4447         INIT_LIST_HEAD(&obj->batch_pool_list);
4448
4449         obj->ops = ops;
4450
4451         obj->fence_reg = I915_FENCE_REG_NONE;
4452         obj->madv = I915_MADV_WILLNEED;
4453
4454         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4455 }
4456
4457 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4458         .get_pages = i915_gem_object_get_pages_gtt,
4459         .put_pages = i915_gem_object_put_pages_gtt,
4460 };
4461
4462 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4463                                                   size_t size)
4464 {
4465         struct drm_i915_gem_object *obj;
4466         struct address_space *mapping;
4467         gfp_t mask;
4468
4469         obj = i915_gem_object_alloc(dev);
4470         if (obj == NULL)
4471                 return NULL;
4472
4473         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4474                 i915_gem_object_free(obj);
4475                 return NULL;
4476         }
4477
4478         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4479         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4480                 /* 965gm cannot relocate objects above 4GiB. */
4481                 mask &= ~__GFP_HIGHMEM;
4482                 mask |= __GFP_DMA32;
4483         }
4484
4485         mapping = file_inode(obj->base.filp)->i_mapping;
4486         mapping_set_gfp_mask(mapping, mask);
4487
4488         i915_gem_object_init(obj, &i915_gem_object_ops);
4489
4490         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4491         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4492
4493         if (HAS_LLC(dev)) {
4494                 /* On some devices, we can have the GPU use the LLC (the CPU
4495                  * cache) for about a 10% performance improvement
4496                  * compared to uncached.  Graphics requests other than
4497                  * display scanout are coherent with the CPU in
4498                  * accessing this cache.  This means in this mode we
4499                  * don't need to clflush on the CPU side, and on the
4500                  * GPU side we only need to flush internal caches to
4501                  * get data visible to the CPU.
4502                  *
4503                  * However, we maintain the display planes as UC, and so
4504                  * need to rebind when first used as such.
4505                  */
4506                 obj->cache_level = I915_CACHE_LLC;
4507         } else
4508                 obj->cache_level = I915_CACHE_NONE;
4509
4510         trace_i915_gem_object_create(obj);
4511
4512         return obj;
4513 }
4514
4515 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4516 {
4517         /* If we are the last user of the backing storage (be it shmemfs
4518          * pages or stolen etc), we know that the pages are going to be
4519          * immediately released. In this case, we can then skip copying
4520          * back the contents from the GPU.
4521          */
4522
4523         if (obj->madv != I915_MADV_WILLNEED)
4524                 return false;
4525
4526         if (obj->base.filp == NULL)
4527                 return true;
4528
4529         /* At first glance, this looks racy, but then again so would be
4530          * userspace racing mmap against close. However, the first external
4531          * reference to the filp can only be obtained through the
4532          * i915_gem_mmap_ioctl() which safeguards us against the user
4533          * acquiring such a reference whilst we are in the middle of
4534          * freeing the object.
4535          */
4536         return atomic_long_read(&obj->base.filp->f_count) == 1;
4537 }
4538
4539 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4540 {
4541         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4542         struct drm_device *dev = obj->base.dev;
4543         struct drm_i915_private *dev_priv = dev->dev_private;
4544         struct i915_vma *vma, *next;
4545
4546         intel_runtime_pm_get(dev_priv);
4547
4548         trace_i915_gem_object_destroy(obj);
4549
4550         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4551                 int ret;
4552
4553                 vma->pin_count = 0;
4554                 ret = i915_vma_unbind(vma);
4555                 if (WARN_ON(ret == -ERESTARTSYS)) {
4556                         bool was_interruptible;
4557
4558                         was_interruptible = dev_priv->mm.interruptible;
4559                         dev_priv->mm.interruptible = false;
4560
4561                         WARN_ON(i915_vma_unbind(vma));
4562
4563                         dev_priv->mm.interruptible = was_interruptible;
4564                 }
4565         }
4566
4567         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4568          * before progressing. */
4569         if (obj->stolen)
4570                 i915_gem_object_unpin_pages(obj);
4571
4572         WARN_ON(obj->frontbuffer_bits);
4573
4574         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4575             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4576             obj->tiling_mode != I915_TILING_NONE)
4577                 i915_gem_object_unpin_pages(obj);
4578
4579         if (WARN_ON(obj->pages_pin_count))
4580                 obj->pages_pin_count = 0;
4581         if (discard_backing_storage(obj))
4582                 obj->madv = I915_MADV_DONTNEED;
4583         i915_gem_object_put_pages(obj);
4584         i915_gem_object_free_mmap_offset(obj);
4585
4586         BUG_ON(obj->pages);
4587
4588         if (obj->base.import_attach)
4589                 drm_prime_gem_destroy(&obj->base, NULL);
4590
4591         if (obj->ops->release)
4592                 obj->ops->release(obj);
4593
4594         drm_gem_object_release(&obj->base);
4595         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4596
4597         kfree(obj->bit_17);
4598         i915_gem_object_free(obj);
4599
4600         intel_runtime_pm_put(dev_priv);
4601 }
4602
4603 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4604                                      struct i915_address_space *vm)
4605 {
4606         struct i915_vma *vma;
4607         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4608                 if (i915_is_ggtt(vma->vm) &&
4609                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4610                         continue;
4611                 if (vma->vm == vm)
4612                         return vma;
4613         }
4614         return NULL;
4615 }
4616
4617 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4618                                            const struct i915_ggtt_view *view)
4619 {
4620         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4621         struct i915_vma *vma;
4622
4623         if (WARN_ONCE(!view, "no view specified"))
4624                 return ERR_PTR(-EINVAL);
4625
4626         list_for_each_entry(vma, &obj->vma_list, vma_link)
4627                 if (vma->vm == ggtt && vma->ggtt_view.type == view->type)
4628                         return vma;
4629         return NULL;
4630 }
4631
4632 void i915_gem_vma_destroy(struct i915_vma *vma)
4633 {
4634         struct i915_address_space *vm = NULL;
4635         WARN_ON(vma->node.allocated);
4636
4637         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4638         if (!list_empty(&vma->exec_list))
4639                 return;
4640
4641         vm = vma->vm;
4642
4643         if (!i915_is_ggtt(vm))
4644                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4645
4646         list_del(&vma->vma_link);
4647
4648         kfree(vma);
4649 }
4650
4651 static void
4652 i915_gem_stop_ringbuffers(struct drm_device *dev)
4653 {
4654         struct drm_i915_private *dev_priv = dev->dev_private;
4655         struct intel_engine_cs *ring;
4656         int i;
4657
4658         for_each_ring(ring, dev_priv, i)
4659                 dev_priv->gt.stop_ring(ring);
4660 }
4661
4662 int
4663 i915_gem_suspend(struct drm_device *dev)
4664 {
4665         struct drm_i915_private *dev_priv = dev->dev_private;
4666         int ret = 0;
4667
4668         mutex_lock(&dev->struct_mutex);
4669         ret = i915_gpu_idle(dev);
4670         if (ret)
4671                 goto err;
4672
4673         i915_gem_retire_requests(dev);
4674
4675         i915_gem_stop_ringbuffers(dev);
4676         mutex_unlock(&dev->struct_mutex);
4677
4678         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4679         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4680         flush_delayed_work(&dev_priv->mm.idle_work);
4681
4682         /* Assert that we sucessfully flushed all the work and
4683          * reset the GPU back to its idle, low power state.
4684          */
4685         WARN_ON(dev_priv->mm.busy);
4686
4687         return 0;
4688
4689 err:
4690         mutex_unlock(&dev->struct_mutex);
4691         return ret;
4692 }
4693
4694 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4695 {
4696         struct drm_device *dev = ring->dev;
4697         struct drm_i915_private *dev_priv = dev->dev_private;
4698         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4699         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4700         int i, ret;
4701
4702         if (!HAS_L3_DPF(dev) || !remap_info)
4703                 return 0;
4704
4705         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4706         if (ret)
4707                 return ret;
4708
4709         /*
4710          * Note: We do not worry about the concurrent register cacheline hang
4711          * here because no other code should access these registers other than
4712          * at initialization time.
4713          */
4714         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4715                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4716                 intel_ring_emit(ring, reg_base + i);
4717                 intel_ring_emit(ring, remap_info[i/4]);
4718         }
4719
4720         intel_ring_advance(ring);
4721
4722         return ret;
4723 }
4724
4725 void i915_gem_init_swizzling(struct drm_device *dev)
4726 {
4727         struct drm_i915_private *dev_priv = dev->dev_private;
4728
4729         if (INTEL_INFO(dev)->gen < 5 ||
4730             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4731                 return;
4732
4733         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4734                                  DISP_TILE_SURFACE_SWIZZLING);
4735
4736         if (IS_GEN5(dev))
4737                 return;
4738
4739         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4740         if (IS_GEN6(dev))
4741                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4742         else if (IS_GEN7(dev))
4743                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4744         else if (IS_GEN8(dev))
4745                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4746         else
4747                 BUG();
4748 }
4749
4750 static bool
4751 intel_enable_blt(struct drm_device *dev)
4752 {
4753         if (!HAS_BLT(dev))
4754                 return false;
4755
4756         /* The blitter was dysfunctional on early prototypes */
4757         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4758                 DRM_INFO("BLT not supported on this pre-production hardware;"
4759                          " graphics performance will be degraded.\n");
4760                 return false;
4761         }
4762
4763         return true;
4764 }
4765
4766 static void init_unused_ring(struct drm_device *dev, u32 base)
4767 {
4768         struct drm_i915_private *dev_priv = dev->dev_private;
4769
4770         I915_WRITE(RING_CTL(base), 0);
4771         I915_WRITE(RING_HEAD(base), 0);
4772         I915_WRITE(RING_TAIL(base), 0);
4773         I915_WRITE(RING_START(base), 0);
4774 }
4775
4776 static void init_unused_rings(struct drm_device *dev)
4777 {
4778         if (IS_I830(dev)) {
4779                 init_unused_ring(dev, PRB1_BASE);
4780                 init_unused_ring(dev, SRB0_BASE);
4781                 init_unused_ring(dev, SRB1_BASE);
4782                 init_unused_ring(dev, SRB2_BASE);
4783                 init_unused_ring(dev, SRB3_BASE);
4784         } else if (IS_GEN2(dev)) {
4785                 init_unused_ring(dev, SRB0_BASE);
4786                 init_unused_ring(dev, SRB1_BASE);
4787         } else if (IS_GEN3(dev)) {
4788                 init_unused_ring(dev, PRB1_BASE);
4789                 init_unused_ring(dev, PRB2_BASE);
4790         }
4791 }
4792
4793 int i915_gem_init_rings(struct drm_device *dev)
4794 {
4795         struct drm_i915_private *dev_priv = dev->dev_private;
4796         int ret;
4797
4798         ret = intel_init_render_ring_buffer(dev);
4799         if (ret)
4800                 return ret;
4801
4802         if (HAS_BSD(dev)) {
4803                 ret = intel_init_bsd_ring_buffer(dev);
4804                 if (ret)
4805                         goto cleanup_render_ring;
4806         }
4807
4808         if (intel_enable_blt(dev)) {
4809                 ret = intel_init_blt_ring_buffer(dev);
4810                 if (ret)
4811                         goto cleanup_bsd_ring;
4812         }
4813
4814         if (HAS_VEBOX(dev)) {
4815                 ret = intel_init_vebox_ring_buffer(dev);
4816                 if (ret)
4817                         goto cleanup_blt_ring;
4818         }
4819
4820         if (HAS_BSD2(dev)) {
4821                 ret = intel_init_bsd2_ring_buffer(dev);
4822                 if (ret)
4823                         goto cleanup_vebox_ring;
4824         }
4825
4826         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4827         if (ret)
4828                 goto cleanup_bsd2_ring;
4829
4830         return 0;
4831
4832 cleanup_bsd2_ring:
4833         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4834 cleanup_vebox_ring:
4835         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4836 cleanup_blt_ring:
4837         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4838 cleanup_bsd_ring:
4839         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4840 cleanup_render_ring:
4841         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4842
4843         return ret;
4844 }
4845
4846 int
4847 i915_gem_init_hw(struct drm_device *dev)
4848 {
4849         struct drm_i915_private *dev_priv = dev->dev_private;
4850         struct intel_engine_cs *ring;
4851         int ret, i;
4852
4853         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4854                 return -EIO;
4855
4856         /* Double layer security blanket, see i915_gem_init() */
4857         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4858
4859         if (dev_priv->ellc_size)
4860                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4861
4862         if (IS_HASWELL(dev))
4863                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4864                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4865
4866         if (HAS_PCH_NOP(dev)) {
4867                 if (IS_IVYBRIDGE(dev)) {
4868                         u32 temp = I915_READ(GEN7_MSG_CTL);
4869                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4870                         I915_WRITE(GEN7_MSG_CTL, temp);
4871                 } else if (INTEL_INFO(dev)->gen >= 7) {
4872                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4873                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4874                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4875                 }
4876         }
4877
4878         i915_gem_init_swizzling(dev);
4879
4880         /*
4881          * At least 830 can leave some of the unused rings
4882          * "active" (ie. head != tail) after resume which
4883          * will prevent c3 entry. Makes sure all unused rings
4884          * are totally idle.
4885          */
4886         init_unused_rings(dev);
4887
4888         for_each_ring(ring, dev_priv, i) {
4889                 ret = ring->init_hw(ring);
4890                 if (ret)
4891                         goto out;
4892         }
4893
4894         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4895                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4896
4897         ret = i915_ppgtt_init_hw(dev);
4898         if (ret && ret != -EIO) {
4899                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4900                 i915_gem_cleanup_ringbuffer(dev);
4901         }
4902
4903         ret = i915_gem_context_enable(dev_priv);
4904         if (ret && ret != -EIO) {
4905                 DRM_ERROR("Context enable failed %d\n", ret);
4906                 i915_gem_cleanup_ringbuffer(dev);
4907
4908                 goto out;
4909         }
4910
4911 out:
4912         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4913         return ret;
4914 }
4915
4916 int i915_gem_init(struct drm_device *dev)
4917 {
4918         struct drm_i915_private *dev_priv = dev->dev_private;
4919         int ret;
4920
4921         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4922                         i915.enable_execlists);
4923
4924         mutex_lock(&dev->struct_mutex);
4925
4926         if (IS_VALLEYVIEW(dev)) {
4927                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4928                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4929                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4930                               VLV_GTLC_ALLOWWAKEACK), 10))
4931                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4932         }
4933
4934         if (!i915.enable_execlists) {
4935                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4936                 dev_priv->gt.init_rings = i915_gem_init_rings;
4937                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4938                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4939         } else {
4940                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4941                 dev_priv->gt.init_rings = intel_logical_rings_init;
4942                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4943                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4944         }
4945
4946         /* This is just a security blanket to placate dragons.
4947          * On some systems, we very sporadically observe that the first TLBs
4948          * used by the CS may be stale, despite us poking the TLB reset. If
4949          * we hold the forcewake during initialisation these problems
4950          * just magically go away.
4951          */
4952         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4953
4954         ret = i915_gem_init_userptr(dev);
4955         if (ret)
4956                 goto out_unlock;
4957
4958         i915_gem_init_global_gtt(dev);
4959
4960         ret = i915_gem_context_init(dev);
4961         if (ret)
4962                 goto out_unlock;
4963
4964         ret = dev_priv->gt.init_rings(dev);
4965         if (ret)
4966                 goto out_unlock;
4967
4968         ret = i915_gem_init_hw(dev);
4969         if (ret == -EIO) {
4970                 /* Allow ring initialisation to fail by marking the GPU as
4971                  * wedged. But we only want to do this where the GPU is angry,
4972                  * for all other failure, such as an allocation failure, bail.
4973                  */
4974                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4975                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4976                 ret = 0;
4977         }
4978
4979 out_unlock:
4980         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4981         mutex_unlock(&dev->struct_mutex);
4982
4983         return ret;
4984 }
4985
4986 void
4987 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4988 {
4989         struct drm_i915_private *dev_priv = dev->dev_private;
4990         struct intel_engine_cs *ring;
4991         int i;
4992
4993         for_each_ring(ring, dev_priv, i)
4994                 dev_priv->gt.cleanup_ring(ring);
4995 }
4996
4997 static void
4998 init_ring_lists(struct intel_engine_cs *ring)
4999 {
5000         INIT_LIST_HEAD(&ring->active_list);
5001         INIT_LIST_HEAD(&ring->request_list);
5002 }
5003
5004 void i915_init_vm(struct drm_i915_private *dev_priv,
5005                   struct i915_address_space *vm)
5006 {
5007         if (!i915_is_ggtt(vm))
5008                 drm_mm_init(&vm->mm, vm->start, vm->total);
5009         vm->dev = dev_priv->dev;
5010         INIT_LIST_HEAD(&vm->active_list);
5011         INIT_LIST_HEAD(&vm->inactive_list);
5012         INIT_LIST_HEAD(&vm->global_link);
5013         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5014 }
5015
5016 void
5017 i915_gem_load(struct drm_device *dev)
5018 {
5019         struct drm_i915_private *dev_priv = dev->dev_private;
5020         int i;
5021
5022         dev_priv->slab =
5023                 kmem_cache_create("i915_gem_object",
5024                                   sizeof(struct drm_i915_gem_object), 0,
5025                                   SLAB_HWCACHE_ALIGN,
5026                                   NULL);
5027
5028         INIT_LIST_HEAD(&dev_priv->vm_list);
5029         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5030
5031         INIT_LIST_HEAD(&dev_priv->context_list);
5032         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5033         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5034         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5035         for (i = 0; i < I915_NUM_RINGS; i++)
5036                 init_ring_lists(&dev_priv->ring[i]);
5037         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5038                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5039         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5040                           i915_gem_retire_work_handler);
5041         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5042                           i915_gem_idle_work_handler);
5043         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5044
5045         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5046
5047         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5048                 dev_priv->num_fence_regs = 32;
5049         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5050                 dev_priv->num_fence_regs = 16;
5051         else
5052                 dev_priv->num_fence_regs = 8;
5053
5054         if (intel_vgpu_active(dev))
5055                 dev_priv->num_fence_regs =
5056                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5057
5058         /* Initialize fence registers to zero */
5059         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5060         i915_gem_restore_fences(dev);
5061
5062         i915_gem_detect_bit_6_swizzle(dev);
5063         init_waitqueue_head(&dev_priv->pending_flip_queue);
5064
5065         dev_priv->mm.interruptible = true;
5066
5067         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5068         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5069         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5070         register_shrinker(&dev_priv->mm.shrinker);
5071
5072         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5073         register_oom_notifier(&dev_priv->mm.oom_notifier);
5074
5075         i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5076
5077         mutex_init(&dev_priv->fb_tracking.lock);
5078 }
5079
5080 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5081 {
5082         struct drm_i915_file_private *file_priv = file->driver_priv;
5083
5084         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5085
5086         /* Clean up our request list when the client is going away, so that
5087          * later retire_requests won't dereference our soon-to-be-gone
5088          * file_priv.
5089          */
5090         spin_lock(&file_priv->mm.lock);
5091         while (!list_empty(&file_priv->mm.request_list)) {
5092                 struct drm_i915_gem_request *request;
5093
5094                 request = list_first_entry(&file_priv->mm.request_list,
5095                                            struct drm_i915_gem_request,
5096                                            client_list);
5097                 list_del(&request->client_list);
5098                 request->file_priv = NULL;
5099         }
5100         spin_unlock(&file_priv->mm.lock);
5101 }
5102
5103 static void
5104 i915_gem_file_idle_work_handler(struct work_struct *work)
5105 {
5106         struct drm_i915_file_private *file_priv =
5107                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5108
5109         atomic_set(&file_priv->rps_wait_boost, false);
5110 }
5111
5112 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5113 {
5114         struct drm_i915_file_private *file_priv;
5115         int ret;
5116
5117         DRM_DEBUG_DRIVER("\n");
5118
5119         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5120         if (!file_priv)
5121                 return -ENOMEM;
5122
5123         file->driver_priv = file_priv;
5124         file_priv->dev_priv = dev->dev_private;
5125         file_priv->file = file;
5126
5127         spin_lock_init(&file_priv->mm.lock);
5128         INIT_LIST_HEAD(&file_priv->mm.request_list);
5129         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5130                           i915_gem_file_idle_work_handler);
5131
5132         ret = i915_gem_context_open(dev, file);
5133         if (ret)
5134                 kfree(file_priv);
5135
5136         return ret;
5137 }
5138
5139 /**
5140  * i915_gem_track_fb - update frontbuffer tracking
5141  * old: current GEM buffer for the frontbuffer slots
5142  * new: new GEM buffer for the frontbuffer slots
5143  * frontbuffer_bits: bitmask of frontbuffer slots
5144  *
5145  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5146  * from @old and setting them in @new. Both @old and @new can be NULL.
5147  */
5148 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5149                        struct drm_i915_gem_object *new,
5150                        unsigned frontbuffer_bits)
5151 {
5152         if (old) {
5153                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5154                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5155                 old->frontbuffer_bits &= ~frontbuffer_bits;
5156         }
5157
5158         if (new) {
5159                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5160                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5161                 new->frontbuffer_bits |= frontbuffer_bits;
5162         }
5163 }
5164
5165 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5166 {
5167         if (!mutex_is_locked(mutex))
5168                 return false;
5169
5170 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5171         return mutex->owner == task;
5172 #else
5173         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5174         return false;
5175 #endif
5176 }
5177
5178 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5179 {
5180         if (!mutex_trylock(&dev->struct_mutex)) {
5181                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5182                         return false;
5183
5184                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5185                         return false;
5186
5187                 *unlock = false;
5188         } else
5189                 *unlock = true;
5190
5191         return true;
5192 }
5193
5194 static int num_vma_bound(struct drm_i915_gem_object *obj)
5195 {
5196         struct i915_vma *vma;
5197         int count = 0;
5198
5199         list_for_each_entry(vma, &obj->vma_list, vma_link)
5200                 if (drm_mm_node_allocated(&vma->node))
5201                         count++;
5202
5203         return count;
5204 }
5205
5206 static unsigned long
5207 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5208 {
5209         struct drm_i915_private *dev_priv =
5210                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5211         struct drm_device *dev = dev_priv->dev;
5212         struct drm_i915_gem_object *obj;
5213         unsigned long count;
5214         bool unlock;
5215
5216         if (!i915_gem_shrinker_lock(dev, &unlock))
5217                 return 0;
5218
5219         count = 0;
5220         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5221                 if (obj->pages_pin_count == 0)
5222                         count += obj->base.size >> PAGE_SHIFT;
5223
5224         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5225                 if (!i915_gem_obj_is_pinned(obj) &&
5226                     obj->pages_pin_count == num_vma_bound(obj))
5227                         count += obj->base.size >> PAGE_SHIFT;
5228         }
5229
5230         if (unlock)
5231                 mutex_unlock(&dev->struct_mutex);
5232
5233         return count;
5234 }
5235
5236 /* All the new VM stuff */
5237 unsigned long
5238 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5239                     struct i915_address_space *vm)
5240 {
5241         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5242         struct i915_vma *vma;
5243
5244         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5245
5246         list_for_each_entry(vma, &o->vma_list, vma_link) {
5247                 if (i915_is_ggtt(vma->vm) &&
5248                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5249                         continue;
5250                 if (vma->vm == vm)
5251                         return vma->node.start;
5252         }
5253
5254         WARN(1, "%s vma for this object not found.\n",
5255              i915_is_ggtt(vm) ? "global" : "ppgtt");
5256         return -1;
5257 }
5258
5259 unsigned long
5260 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5261                               enum i915_ggtt_view_type view)
5262 {
5263         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5264         struct i915_vma *vma;
5265
5266         list_for_each_entry(vma, &o->vma_list, vma_link)
5267                 if (vma->vm == ggtt && vma->ggtt_view.type == view)
5268                         return vma->node.start;
5269
5270         WARN(1, "global vma for this object not found.\n");
5271         return -1;
5272 }
5273
5274 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5275                         struct i915_address_space *vm)
5276 {
5277         struct i915_vma *vma;
5278
5279         list_for_each_entry(vma, &o->vma_list, vma_link) {
5280                 if (i915_is_ggtt(vma->vm) &&
5281                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5282                         continue;
5283                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5284                         return true;
5285         }
5286
5287         return false;
5288 }
5289
5290 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5291                                   enum i915_ggtt_view_type view)
5292 {
5293         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5294         struct i915_vma *vma;
5295
5296         list_for_each_entry(vma, &o->vma_list, vma_link)
5297                 if (vma->vm == ggtt &&
5298                     vma->ggtt_view.type == view &&
5299                     drm_mm_node_allocated(&vma->node))
5300                         return true;
5301
5302         return false;
5303 }
5304
5305 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5306 {
5307         struct i915_vma *vma;
5308
5309         list_for_each_entry(vma, &o->vma_list, vma_link)
5310                 if (drm_mm_node_allocated(&vma->node))
5311                         return true;
5312
5313         return false;
5314 }
5315
5316 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5317                                 struct i915_address_space *vm)
5318 {
5319         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5320         struct i915_vma *vma;
5321
5322         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5323
5324         BUG_ON(list_empty(&o->vma_list));
5325
5326         list_for_each_entry(vma, &o->vma_list, vma_link) {
5327                 if (i915_is_ggtt(vma->vm) &&
5328                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5329                         continue;
5330                 if (vma->vm == vm)
5331                         return vma->node.size;
5332         }
5333         return 0;
5334 }
5335
5336 static unsigned long
5337 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5338 {
5339         struct drm_i915_private *dev_priv =
5340                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5341         struct drm_device *dev = dev_priv->dev;
5342         unsigned long freed;
5343         bool unlock;
5344
5345         if (!i915_gem_shrinker_lock(dev, &unlock))
5346                 return SHRINK_STOP;
5347
5348         freed = i915_gem_shrink(dev_priv,
5349                                 sc->nr_to_scan,
5350                                 I915_SHRINK_BOUND |
5351                                 I915_SHRINK_UNBOUND |
5352                                 I915_SHRINK_PURGEABLE);
5353         if (freed < sc->nr_to_scan)
5354                 freed += i915_gem_shrink(dev_priv,
5355                                          sc->nr_to_scan - freed,
5356                                          I915_SHRINK_BOUND |
5357                                          I915_SHRINK_UNBOUND);
5358         if (unlock)
5359                 mutex_unlock(&dev->struct_mutex);
5360
5361         return freed;
5362 }
5363
5364 static int
5365 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5366 {
5367         struct drm_i915_private *dev_priv =
5368                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5369         struct drm_device *dev = dev_priv->dev;
5370         struct drm_i915_gem_object *obj;
5371         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5372         unsigned long pinned, bound, unbound, freed_pages;
5373         bool was_interruptible;
5374         bool unlock;
5375
5376         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5377                 schedule_timeout_killable(1);
5378                 if (fatal_signal_pending(current))
5379                         return NOTIFY_DONE;
5380         }
5381         if (timeout == 0) {
5382                 pr_err("Unable to purge GPU memory due lock contention.\n");
5383                 return NOTIFY_DONE;
5384         }
5385
5386         was_interruptible = dev_priv->mm.interruptible;
5387         dev_priv->mm.interruptible = false;
5388
5389         freed_pages = i915_gem_shrink_all(dev_priv);
5390
5391         dev_priv->mm.interruptible = was_interruptible;
5392
5393         /* Because we may be allocating inside our own driver, we cannot
5394          * assert that there are no objects with pinned pages that are not
5395          * being pointed to by hardware.
5396          */
5397         unbound = bound = pinned = 0;
5398         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5399                 if (!obj->base.filp) /* not backed by a freeable object */
5400                         continue;
5401
5402                 if (obj->pages_pin_count)
5403                         pinned += obj->base.size;
5404                 else
5405                         unbound += obj->base.size;
5406         }
5407         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5408                 if (!obj->base.filp)
5409                         continue;
5410
5411                 if (obj->pages_pin_count)
5412                         pinned += obj->base.size;
5413                 else
5414                         bound += obj->base.size;
5415         }
5416
5417         if (unlock)
5418                 mutex_unlock(&dev->struct_mutex);
5419
5420         if (freed_pages || unbound || bound)
5421                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5422                         freed_pages << PAGE_SHIFT, pinned);
5423         if (unbound || bound)
5424                 pr_err("%lu and %lu bytes still available in the "
5425                        "bound and unbound GPU page lists.\n",
5426                        bound, unbound);
5427
5428         *(unsigned long *)ptr += freed_pages;
5429         return NOTIFY_DONE;
5430 }
5431
5432 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5433 {
5434         struct i915_vma *vma;
5435         list_for_each_entry(vma, &obj->vma_list, vma_link) {
5436                 if (i915_is_ggtt(vma->vm) &&
5437                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5438                         continue;
5439                 if (vma->pin_count > 0)
5440                         return true;
5441         }
5442         return false;
5443 }
5444