]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
a531cb83295c13fd5e7852fc25a268774ec2c61b
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *ring)
1145 {
1146         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151         unsigned long timeout;
1152
1153         if (i915_gem_request_get_ring(req)->irq_refcount)
1154                 return -EBUSY;
1155
1156         timeout = jiffies + 1;
1157         while (!need_resched()) {
1158                 if (i915_gem_request_completed(req, true))
1159                         return 0;
1160
1161                 if (time_after_eq(jiffies, timeout))
1162                         break;
1163
1164                 cpu_relax_lowlatency();
1165         }
1166         if (i915_gem_request_completed(req, false))
1167                 return 0;
1168
1169         return -EAGAIN;
1170 }
1171
1172 /**
1173  * __i915_wait_request - wait until execution of request has finished
1174  * @req: duh!
1175  * @reset_counter: reset sequence associated with the given request
1176  * @interruptible: do an interruptible wait (normally yes)
1177  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178  *
1179  * Note: It is of utmost importance that the passed in seqno and reset_counter
1180  * values have been read by the caller in an smp safe manner. Where read-side
1181  * locks are involved, it is sufficient to read the reset_counter before
1182  * unlocking the lock that protects the seqno. For lockless tricks, the
1183  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184  * inserted.
1185  *
1186  * Returns 0 if the request was found within the alloted time. Else returns the
1187  * errno with remaining time filled in timeout argument.
1188  */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190                         unsigned reset_counter,
1191                         bool interruptible,
1192                         s64 *timeout,
1193                         struct intel_rps_client *rps)
1194 {
1195         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196         struct drm_device *dev = ring->dev;
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         const bool irq_test_in_progress =
1199                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200         DEFINE_WAIT(wait);
1201         unsigned long timeout_expire;
1202         s64 before, now;
1203         int ret;
1204
1205         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206
1207         if (list_empty(&req->list))
1208                 return 0;
1209
1210         if (i915_gem_request_completed(req, true))
1211                 return 0;
1212
1213         timeout_expire = timeout ?
1214                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1215
1216         if (INTEL_INFO(dev_priv)->gen >= 6)
1217                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1218
1219         /* Record current time in case interrupted by signal, or wedged */
1220         trace_i915_gem_request_wait_begin(req);
1221         before = ktime_get_raw_ns();
1222
1223         /* Optimistic spin for the next jiffie before touching IRQs */
1224         ret = __i915_spin_request(req);
1225         if (ret == 0)
1226                 goto out;
1227
1228         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229                 ret = -ENODEV;
1230                 goto out;
1231         }
1232
1233         for (;;) {
1234                 struct timer_list timer;
1235
1236                 prepare_to_wait(&ring->irq_queue, &wait,
1237                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1238
1239                 /* We need to check whether any gpu reset happened in between
1240                  * the caller grabbing the seqno and now ... */
1241                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243                          * is truely gone. */
1244                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245                         if (ret == 0)
1246                                 ret = -EAGAIN;
1247                         break;
1248                 }
1249
1250                 if (i915_gem_request_completed(req, false)) {
1251                         ret = 0;
1252                         break;
1253                 }
1254
1255                 if (interruptible && signal_pending(current)) {
1256                         ret = -ERESTARTSYS;
1257                         break;
1258                 }
1259
1260                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1261                         ret = -ETIME;
1262                         break;
1263                 }
1264
1265                 timer.function = NULL;
1266                 if (timeout || missed_irq(dev_priv, ring)) {
1267                         unsigned long expire;
1268
1269                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1270                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1271                         mod_timer(&timer, expire);
1272                 }
1273
1274                 io_schedule();
1275
1276                 if (timer.function) {
1277                         del_singleshot_timer_sync(&timer);
1278                         destroy_timer_on_stack(&timer);
1279                 }
1280         }
1281         if (!irq_test_in_progress)
1282                 ring->irq_put(ring);
1283
1284         finish_wait(&ring->irq_queue, &wait);
1285
1286 out:
1287         now = ktime_get_raw_ns();
1288         trace_i915_gem_request_wait_end(req);
1289
1290         if (timeout) {
1291                 s64 tres = *timeout - (now - before);
1292
1293                 *timeout = tres < 0 ? 0 : tres;
1294
1295                 /*
1296                  * Apparently ktime isn't accurate enough and occasionally has a
1297                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298                  * things up to make the test happy. We allow up to 1 jiffy.
1299                  *
1300                  * This is a regrssion from the timespec->ktime conversion.
1301                  */
1302                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303                         *timeout = 0;
1304         }
1305
1306         return ret;
1307 }
1308
1309 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310                                    struct drm_file *file)
1311 {
1312         struct drm_i915_private *dev_private;
1313         struct drm_i915_file_private *file_priv;
1314
1315         WARN_ON(!req || !file || req->file_priv);
1316
1317         if (!req || !file)
1318                 return -EINVAL;
1319
1320         if (req->file_priv)
1321                 return -EINVAL;
1322
1323         dev_private = req->ring->dev->dev_private;
1324         file_priv = file->driver_priv;
1325
1326         spin_lock(&file_priv->mm.lock);
1327         req->file_priv = file_priv;
1328         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329         spin_unlock(&file_priv->mm.lock);
1330
1331         req->pid = get_pid(task_pid(current));
1332
1333         return 0;
1334 }
1335
1336 static inline void
1337 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338 {
1339         struct drm_i915_file_private *file_priv = request->file_priv;
1340
1341         if (!file_priv)
1342                 return;
1343
1344         spin_lock(&file_priv->mm.lock);
1345         list_del(&request->client_list);
1346         request->file_priv = NULL;
1347         spin_unlock(&file_priv->mm.lock);
1348
1349         put_pid(request->pid);
1350         request->pid = NULL;
1351 }
1352
1353 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354 {
1355         trace_i915_gem_request_retire(request);
1356
1357         /* We know the GPU must have read the request to have
1358          * sent us the seqno + interrupt, so use the position
1359          * of tail of the request to update the last known position
1360          * of the GPU head.
1361          *
1362          * Note this requires that we are always called in request
1363          * completion order.
1364          */
1365         request->ringbuf->last_retired_head = request->postfix;
1366
1367         list_del_init(&request->list);
1368         i915_gem_request_remove_from_client(request);
1369
1370         i915_gem_request_unreference(request);
1371 }
1372
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376         struct intel_engine_cs *engine = req->ring;
1377         struct drm_i915_gem_request *tmp;
1378
1379         lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381         if (list_empty(&req->list))
1382                 return;
1383
1384         do {
1385                 tmp = list_first_entry(&engine->request_list,
1386                                        typeof(*tmp), list);
1387
1388                 i915_gem_request_retire(tmp);
1389         } while (tmp != req);
1390
1391         WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393
1394 /**
1395  * Waits for a request to be signaled, and cleans up the
1396  * request and object lists appropriately for that event.
1397  */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401         struct drm_device *dev;
1402         struct drm_i915_private *dev_priv;
1403         bool interruptible;
1404         int ret;
1405
1406         BUG_ON(req == NULL);
1407
1408         dev = req->ring->dev;
1409         dev_priv = dev->dev_private;
1410         interruptible = dev_priv->mm.interruptible;
1411
1412         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415         if (ret)
1416                 return ret;
1417
1418         ret = __i915_wait_request(req,
1419                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1420                                   interruptible, NULL, NULL);
1421         if (ret)
1422                 return ret;
1423
1424         __i915_gem_request_retire__upto(req);
1425         return 0;
1426 }
1427
1428 /**
1429  * Ensures that all rendering to the object has completed and the object is
1430  * safe to unbind from the GTT or access from the CPU.
1431  */
1432 int
1433 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1434                                bool readonly)
1435 {
1436         int ret, i;
1437
1438         if (!obj->active)
1439                 return 0;
1440
1441         if (readonly) {
1442                 if (obj->last_write_req != NULL) {
1443                         ret = i915_wait_request(obj->last_write_req);
1444                         if (ret)
1445                                 return ret;
1446
1447                         i = obj->last_write_req->ring->id;
1448                         if (obj->last_read_req[i] == obj->last_write_req)
1449                                 i915_gem_object_retire__read(obj, i);
1450                         else
1451                                 i915_gem_object_retire__write(obj);
1452                 }
1453         } else {
1454                 for (i = 0; i < I915_NUM_RINGS; i++) {
1455                         if (obj->last_read_req[i] == NULL)
1456                                 continue;
1457
1458                         ret = i915_wait_request(obj->last_read_req[i]);
1459                         if (ret)
1460                                 return ret;
1461
1462                         i915_gem_object_retire__read(obj, i);
1463                 }
1464                 RQ_BUG_ON(obj->active);
1465         }
1466
1467         return 0;
1468 }
1469
1470 static void
1471 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1472                                struct drm_i915_gem_request *req)
1473 {
1474         int ring = req->ring->id;
1475
1476         if (obj->last_read_req[ring] == req)
1477                 i915_gem_object_retire__read(obj, ring);
1478         else if (obj->last_write_req == req)
1479                 i915_gem_object_retire__write(obj);
1480
1481         __i915_gem_request_retire__upto(req);
1482 }
1483
1484 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1485  * as the object state may change during this call.
1486  */
1487 static __must_check int
1488 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1489                                             struct intel_rps_client *rps,
1490                                             bool readonly)
1491 {
1492         struct drm_device *dev = obj->base.dev;
1493         struct drm_i915_private *dev_priv = dev->dev_private;
1494         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1495         unsigned reset_counter;
1496         int ret, i, n = 0;
1497
1498         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1499         BUG_ON(!dev_priv->mm.interruptible);
1500
1501         if (!obj->active)
1502                 return 0;
1503
1504         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1505         if (ret)
1506                 return ret;
1507
1508         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1509
1510         if (readonly) {
1511                 struct drm_i915_gem_request *req;
1512
1513                 req = obj->last_write_req;
1514                 if (req == NULL)
1515                         return 0;
1516
1517                 requests[n++] = i915_gem_request_reference(req);
1518         } else {
1519                 for (i = 0; i < I915_NUM_RINGS; i++) {
1520                         struct drm_i915_gem_request *req;
1521
1522                         req = obj->last_read_req[i];
1523                         if (req == NULL)
1524                                 continue;
1525
1526                         requests[n++] = i915_gem_request_reference(req);
1527                 }
1528         }
1529
1530         mutex_unlock(&dev->struct_mutex);
1531         for (i = 0; ret == 0 && i < n; i++)
1532                 ret = __i915_wait_request(requests[i], reset_counter, true,
1533                                           NULL, rps);
1534         mutex_lock(&dev->struct_mutex);
1535
1536         for (i = 0; i < n; i++) {
1537                 if (ret == 0)
1538                         i915_gem_object_retire_request(obj, requests[i]);
1539                 i915_gem_request_unreference(requests[i]);
1540         }
1541
1542         return ret;
1543 }
1544
1545 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1546 {
1547         struct drm_i915_file_private *fpriv = file->driver_priv;
1548         return &fpriv->rps;
1549 }
1550
1551 /**
1552  * Called when user space prepares to use an object with the CPU, either
1553  * through the mmap ioctl's mapping or a GTT mapping.
1554  */
1555 int
1556 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557                           struct drm_file *file)
1558 {
1559         struct drm_i915_gem_set_domain *args = data;
1560         struct drm_i915_gem_object *obj;
1561         uint32_t read_domains = args->read_domains;
1562         uint32_t write_domain = args->write_domain;
1563         int ret;
1564
1565         /* Only handle setting domains to types used by the CPU. */
1566         if (write_domain & I915_GEM_GPU_DOMAINS)
1567                 return -EINVAL;
1568
1569         if (read_domains & I915_GEM_GPU_DOMAINS)
1570                 return -EINVAL;
1571
1572         /* Having something in the write domain implies it's in the read
1573          * domain, and only that read domain.  Enforce that in the request.
1574          */
1575         if (write_domain != 0 && read_domains != write_domain)
1576                 return -EINVAL;
1577
1578         ret = i915_mutex_lock_interruptible(dev);
1579         if (ret)
1580                 return ret;
1581
1582         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1583         if (&obj->base == NULL) {
1584                 ret = -ENOENT;
1585                 goto unlock;
1586         }
1587
1588         /* Try to flush the object off the GPU without holding the lock.
1589          * We will repeat the flush holding the lock in the normal manner
1590          * to catch cases where we are gazumped.
1591          */
1592         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1593                                                           to_rps_client(file),
1594                                                           !write_domain);
1595         if (ret)
1596                 goto unref;
1597
1598         if (read_domains & I915_GEM_DOMAIN_GTT)
1599                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1600         else
1601                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1602
1603         if (write_domain != 0)
1604                 intel_fb_obj_invalidate(obj,
1605                                         write_domain == I915_GEM_DOMAIN_GTT ?
1606                                         ORIGIN_GTT : ORIGIN_CPU);
1607
1608 unref:
1609         drm_gem_object_unreference(&obj->base);
1610 unlock:
1611         mutex_unlock(&dev->struct_mutex);
1612         return ret;
1613 }
1614
1615 /**
1616  * Called when user space has done writes to this buffer
1617  */
1618 int
1619 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620                          struct drm_file *file)
1621 {
1622         struct drm_i915_gem_sw_finish *args = data;
1623         struct drm_i915_gem_object *obj;
1624         int ret = 0;
1625
1626         ret = i915_mutex_lock_interruptible(dev);
1627         if (ret)
1628                 return ret;
1629
1630         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1631         if (&obj->base == NULL) {
1632                 ret = -ENOENT;
1633                 goto unlock;
1634         }
1635
1636         /* Pinned buffers may be scanout, so flush the cache */
1637         if (obj->pin_display)
1638                 i915_gem_object_flush_cpu_write_domain(obj);
1639
1640         drm_gem_object_unreference(&obj->base);
1641 unlock:
1642         mutex_unlock(&dev->struct_mutex);
1643         return ret;
1644 }
1645
1646 /**
1647  * Maps the contents of an object, returning the address it is mapped
1648  * into.
1649  *
1650  * While the mapping holds a reference on the contents of the object, it doesn't
1651  * imply a ref on the object itself.
1652  *
1653  * IMPORTANT:
1654  *
1655  * DRM driver writers who look a this function as an example for how to do GEM
1656  * mmap support, please don't implement mmap support like here. The modern way
1657  * to implement DRM mmap support is with an mmap offset ioctl (like
1658  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1659  * That way debug tooling like valgrind will understand what's going on, hiding
1660  * the mmap call in a driver private ioctl will break that. The i915 driver only
1661  * does cpu mmaps this way because we didn't know better.
1662  */
1663 int
1664 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1665                     struct drm_file *file)
1666 {
1667         struct drm_i915_gem_mmap *args = data;
1668         struct drm_gem_object *obj;
1669         unsigned long addr;
1670
1671         if (args->flags & ~(I915_MMAP_WC))
1672                 return -EINVAL;
1673
1674         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1675                 return -ENODEV;
1676
1677         obj = drm_gem_object_lookup(dev, file, args->handle);
1678         if (obj == NULL)
1679                 return -ENOENT;
1680
1681         /* prime objects have no backing filp to GEM mmap
1682          * pages from.
1683          */
1684         if (!obj->filp) {
1685                 drm_gem_object_unreference_unlocked(obj);
1686                 return -EINVAL;
1687         }
1688
1689         addr = vm_mmap(obj->filp, 0, args->size,
1690                        PROT_READ | PROT_WRITE, MAP_SHARED,
1691                        args->offset);
1692         if (args->flags & I915_MMAP_WC) {
1693                 struct mm_struct *mm = current->mm;
1694                 struct vm_area_struct *vma;
1695
1696                 down_write(&mm->mmap_sem);
1697                 vma = find_vma(mm, addr);
1698                 if (vma)
1699                         vma->vm_page_prot =
1700                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1701                 else
1702                         addr = -ENOMEM;
1703                 up_write(&mm->mmap_sem);
1704         }
1705         drm_gem_object_unreference_unlocked(obj);
1706         if (IS_ERR((void *)addr))
1707                 return addr;
1708
1709         args->addr_ptr = (uint64_t) addr;
1710
1711         return 0;
1712 }
1713
1714 /**
1715  * i915_gem_fault - fault a page into the GTT
1716  * @vma: VMA in question
1717  * @vmf: fault info
1718  *
1719  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1720  * from userspace.  The fault handler takes care of binding the object to
1721  * the GTT (if needed), allocating and programming a fence register (again,
1722  * only if needed based on whether the old reg is still valid or the object
1723  * is tiled) and inserting a new PTE into the faulting process.
1724  *
1725  * Note that the faulting process may involve evicting existing objects
1726  * from the GTT and/or fence registers to make room.  So performance may
1727  * suffer if the GTT working set is large or there are few fence registers
1728  * left.
1729  */
1730 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731 {
1732         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1733         struct drm_device *dev = obj->base.dev;
1734         struct drm_i915_private *dev_priv = dev->dev_private;
1735         struct i915_ggtt_view view = i915_ggtt_view_normal;
1736         pgoff_t page_offset;
1737         unsigned long pfn;
1738         int ret = 0;
1739         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1740
1741         intel_runtime_pm_get(dev_priv);
1742
1743         /* We don't use vmf->pgoff since that has the fake offset */
1744         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1745                 PAGE_SHIFT;
1746
1747         ret = i915_mutex_lock_interruptible(dev);
1748         if (ret)
1749                 goto out;
1750
1751         trace_i915_gem_object_fault(obj, page_offset, true, write);
1752
1753         /* Try to flush the object off the GPU first without holding the lock.
1754          * Upon reacquiring the lock, we will perform our sanity checks and then
1755          * repeat the flush holding the lock in the normal manner to catch cases
1756          * where we are gazumped.
1757          */
1758         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1759         if (ret)
1760                 goto unlock;
1761
1762         /* Access to snoopable pages through the GTT is incoherent. */
1763         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1764                 ret = -EFAULT;
1765                 goto unlock;
1766         }
1767
1768         /* Use a partial view if the object is bigger than the aperture. */
1769         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1770             obj->tiling_mode == I915_TILING_NONE) {
1771                 static const unsigned int chunk_size = 256; // 1 MiB
1772
1773                 memset(&view, 0, sizeof(view));
1774                 view.type = I915_GGTT_VIEW_PARTIAL;
1775                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1776                 view.params.partial.size =
1777                         min_t(unsigned int,
1778                               chunk_size,
1779                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1780                               view.params.partial.offset);
1781         }
1782
1783         /* Now pin it into the GTT if needed */
1784         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1785         if (ret)
1786                 goto unlock;
1787
1788         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1789         if (ret)
1790                 goto unpin;
1791
1792         ret = i915_gem_object_get_fence(obj);
1793         if (ret)
1794                 goto unpin;
1795
1796         /* Finally, remap it using the new GTT offset */
1797         pfn = dev_priv->gtt.mappable_base +
1798                 i915_gem_obj_ggtt_offset_view(obj, &view);
1799         pfn >>= PAGE_SHIFT;
1800
1801         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1802                 /* Overriding existing pages in partial view does not cause
1803                  * us any trouble as TLBs are still valid because the fault
1804                  * is due to userspace losing part of the mapping or never
1805                  * having accessed it before (at this partials' range).
1806                  */
1807                 unsigned long base = vma->vm_start +
1808                                      (view.params.partial.offset << PAGE_SHIFT);
1809                 unsigned int i;
1810
1811                 for (i = 0; i < view.params.partial.size; i++) {
1812                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1813                         if (ret)
1814                                 break;
1815                 }
1816
1817                 obj->fault_mappable = true;
1818         } else {
1819                 if (!obj->fault_mappable) {
1820                         unsigned long size = min_t(unsigned long,
1821                                                    vma->vm_end - vma->vm_start,
1822                                                    obj->base.size);
1823                         int i;
1824
1825                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1826                                 ret = vm_insert_pfn(vma,
1827                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1828                                                     pfn + i);
1829                                 if (ret)
1830                                         break;
1831                         }
1832
1833                         obj->fault_mappable = true;
1834                 } else
1835                         ret = vm_insert_pfn(vma,
1836                                             (unsigned long)vmf->virtual_address,
1837                                             pfn + page_offset);
1838         }
1839 unpin:
1840         i915_gem_object_ggtt_unpin_view(obj, &view);
1841 unlock:
1842         mutex_unlock(&dev->struct_mutex);
1843 out:
1844         switch (ret) {
1845         case -EIO:
1846                 /*
1847                  * We eat errors when the gpu is terminally wedged to avoid
1848                  * userspace unduly crashing (gl has no provisions for mmaps to
1849                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850                  * and so needs to be reported.
1851                  */
1852                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1853                         ret = VM_FAULT_SIGBUS;
1854                         break;
1855                 }
1856         case -EAGAIN:
1857                 /*
1858                  * EAGAIN means the gpu is hung and we'll wait for the error
1859                  * handler to reset everything when re-faulting in
1860                  * i915_mutex_lock_interruptible.
1861                  */
1862         case 0:
1863         case -ERESTARTSYS:
1864         case -EINTR:
1865         case -EBUSY:
1866                 /*
1867                  * EBUSY is ok: this just means that another thread
1868                  * already did the job.
1869                  */
1870                 ret = VM_FAULT_NOPAGE;
1871                 break;
1872         case -ENOMEM:
1873                 ret = VM_FAULT_OOM;
1874                 break;
1875         case -ENOSPC:
1876         case -EFAULT:
1877                 ret = VM_FAULT_SIGBUS;
1878                 break;
1879         default:
1880                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1881                 ret = VM_FAULT_SIGBUS;
1882                 break;
1883         }
1884
1885         intel_runtime_pm_put(dev_priv);
1886         return ret;
1887 }
1888
1889 /**
1890  * i915_gem_release_mmap - remove physical page mappings
1891  * @obj: obj in question
1892  *
1893  * Preserve the reservation of the mmapping with the DRM core code, but
1894  * relinquish ownership of the pages back to the system.
1895  *
1896  * It is vital that we remove the page mapping if we have mapped a tiled
1897  * object through the GTT and then lose the fence register due to
1898  * resource pressure. Similarly if the object has been moved out of the
1899  * aperture, than pages mapped into userspace must be revoked. Removing the
1900  * mapping will then trigger a page fault on the next user access, allowing
1901  * fixup by i915_gem_fault().
1902  */
1903 void
1904 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1905 {
1906         if (!obj->fault_mappable)
1907                 return;
1908
1909         drm_vma_node_unmap(&obj->base.vma_node,
1910                            obj->base.dev->anon_inode->i_mapping);
1911         obj->fault_mappable = false;
1912 }
1913
1914 void
1915 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1916 {
1917         struct drm_i915_gem_object *obj;
1918
1919         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1920                 i915_gem_release_mmap(obj);
1921 }
1922
1923 uint32_t
1924 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1925 {
1926         uint32_t gtt_size;
1927
1928         if (INTEL_INFO(dev)->gen >= 4 ||
1929             tiling_mode == I915_TILING_NONE)
1930                 return size;
1931
1932         /* Previous chips need a power-of-two fence region when tiling */
1933         if (INTEL_INFO(dev)->gen == 3)
1934                 gtt_size = 1024*1024;
1935         else
1936                 gtt_size = 512*1024;
1937
1938         while (gtt_size < size)
1939                 gtt_size <<= 1;
1940
1941         return gtt_size;
1942 }
1943
1944 /**
1945  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1946  * @obj: object to check
1947  *
1948  * Return the required GTT alignment for an object, taking into account
1949  * potential fence register mapping.
1950  */
1951 uint32_t
1952 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1953                            int tiling_mode, bool fenced)
1954 {
1955         /*
1956          * Minimum alignment is 4k (GTT page size), but might be greater
1957          * if a fence register is needed for the object.
1958          */
1959         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1960             tiling_mode == I915_TILING_NONE)
1961                 return 4096;
1962
1963         /*
1964          * Previous chips need to be aligned to the size of the smallest
1965          * fence register that can contain the object.
1966          */
1967         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1968 }
1969
1970 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1971 {
1972         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1973         int ret;
1974
1975         if (drm_vma_node_has_offset(&obj->base.vma_node))
1976                 return 0;
1977
1978         dev_priv->mm.shrinker_no_lock_stealing = true;
1979
1980         ret = drm_gem_create_mmap_offset(&obj->base);
1981         if (ret != -ENOSPC)
1982                 goto out;
1983
1984         /* Badly fragmented mmap space? The only way we can recover
1985          * space is by destroying unwanted objects. We can't randomly release
1986          * mmap_offsets as userspace expects them to be persistent for the
1987          * lifetime of the objects. The closest we can is to release the
1988          * offsets on purgeable objects by truncating it and marking it purged,
1989          * which prevents userspace from ever using that object again.
1990          */
1991         i915_gem_shrink(dev_priv,
1992                         obj->base.size >> PAGE_SHIFT,
1993                         I915_SHRINK_BOUND |
1994                         I915_SHRINK_UNBOUND |
1995                         I915_SHRINK_PURGEABLE);
1996         ret = drm_gem_create_mmap_offset(&obj->base);
1997         if (ret != -ENOSPC)
1998                 goto out;
1999
2000         i915_gem_shrink_all(dev_priv);
2001         ret = drm_gem_create_mmap_offset(&obj->base);
2002 out:
2003         dev_priv->mm.shrinker_no_lock_stealing = false;
2004
2005         return ret;
2006 }
2007
2008 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2009 {
2010         drm_gem_free_mmap_offset(&obj->base);
2011 }
2012
2013 int
2014 i915_gem_mmap_gtt(struct drm_file *file,
2015                   struct drm_device *dev,
2016                   uint32_t handle,
2017                   uint64_t *offset)
2018 {
2019         struct drm_i915_gem_object *obj;
2020         int ret;
2021
2022         ret = i915_mutex_lock_interruptible(dev);
2023         if (ret)
2024                 return ret;
2025
2026         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2027         if (&obj->base == NULL) {
2028                 ret = -ENOENT;
2029                 goto unlock;
2030         }
2031
2032         if (obj->madv != I915_MADV_WILLNEED) {
2033                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2034                 ret = -EFAULT;
2035                 goto out;
2036         }
2037
2038         ret = i915_gem_object_create_mmap_offset(obj);
2039         if (ret)
2040                 goto out;
2041
2042         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2043
2044 out:
2045         drm_gem_object_unreference(&obj->base);
2046 unlock:
2047         mutex_unlock(&dev->struct_mutex);
2048         return ret;
2049 }
2050
2051 /**
2052  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2053  * @dev: DRM device
2054  * @data: GTT mapping ioctl data
2055  * @file: GEM object info
2056  *
2057  * Simply returns the fake offset to userspace so it can mmap it.
2058  * The mmap call will end up in drm_gem_mmap(), which will set things
2059  * up so we can get faults in the handler above.
2060  *
2061  * The fault handler will take care of binding the object into the GTT
2062  * (since it may have been evicted to make room for something), allocating
2063  * a fence register, and mapping the appropriate aperture address into
2064  * userspace.
2065  */
2066 int
2067 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2068                         struct drm_file *file)
2069 {
2070         struct drm_i915_gem_mmap_gtt *args = data;
2071
2072         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2073 }
2074
2075 /* Immediately discard the backing storage */
2076 static void
2077 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2078 {
2079         i915_gem_object_free_mmap_offset(obj);
2080
2081         if (obj->base.filp == NULL)
2082                 return;
2083
2084         /* Our goal here is to return as much of the memory as
2085          * is possible back to the system as we are called from OOM.
2086          * To do this we must instruct the shmfs to drop all of its
2087          * backing pages, *now*.
2088          */
2089         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2090         obj->madv = __I915_MADV_PURGED;
2091 }
2092
2093 /* Try to discard unwanted pages */
2094 static void
2095 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2096 {
2097         struct address_space *mapping;
2098
2099         switch (obj->madv) {
2100         case I915_MADV_DONTNEED:
2101                 i915_gem_object_truncate(obj);
2102         case __I915_MADV_PURGED:
2103                 return;
2104         }
2105
2106         if (obj->base.filp == NULL)
2107                 return;
2108
2109         mapping = file_inode(obj->base.filp)->i_mapping,
2110         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2111 }
2112
2113 static void
2114 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2115 {
2116         struct sg_page_iter sg_iter;
2117         int ret;
2118
2119         BUG_ON(obj->madv == __I915_MADV_PURGED);
2120
2121         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2122         if (ret) {
2123                 /* In the event of a disaster, abandon all caches and
2124                  * hope for the best.
2125                  */
2126                 WARN_ON(ret != -EIO);
2127                 i915_gem_clflush_object(obj, true);
2128                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2129         }
2130
2131         i915_gem_gtt_finish_object(obj);
2132
2133         if (i915_gem_object_needs_bit17_swizzle(obj))
2134                 i915_gem_object_save_bit_17_swizzle(obj);
2135
2136         if (obj->madv == I915_MADV_DONTNEED)
2137                 obj->dirty = 0;
2138
2139         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2140                 struct page *page = sg_page_iter_page(&sg_iter);
2141
2142                 if (obj->dirty)
2143                         set_page_dirty(page);
2144
2145                 if (obj->madv == I915_MADV_WILLNEED)
2146                         mark_page_accessed(page);
2147
2148                 page_cache_release(page);
2149         }
2150         obj->dirty = 0;
2151
2152         sg_free_table(obj->pages);
2153         kfree(obj->pages);
2154 }
2155
2156 int
2157 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2158 {
2159         const struct drm_i915_gem_object_ops *ops = obj->ops;
2160
2161         if (obj->pages == NULL)
2162                 return 0;
2163
2164         if (obj->pages_pin_count)
2165                 return -EBUSY;
2166
2167         BUG_ON(i915_gem_obj_bound_any(obj));
2168
2169         /* ->put_pages might need to allocate memory for the bit17 swizzle
2170          * array, hence protect them from being reaped by removing them from gtt
2171          * lists early. */
2172         list_del(&obj->global_list);
2173
2174         ops->put_pages(obj);
2175         obj->pages = NULL;
2176
2177         i915_gem_object_invalidate(obj);
2178
2179         return 0;
2180 }
2181
2182 static int
2183 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2184 {
2185         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2186         int page_count, i;
2187         struct address_space *mapping;
2188         struct sg_table *st;
2189         struct scatterlist *sg;
2190         struct sg_page_iter sg_iter;
2191         struct page *page;
2192         unsigned long last_pfn = 0;     /* suppress gcc warning */
2193         int ret;
2194         gfp_t gfp;
2195
2196         /* Assert that the object is not currently in any GPU domain. As it
2197          * wasn't in the GTT, there shouldn't be any way it could have been in
2198          * a GPU cache
2199          */
2200         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2201         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2202
2203         st = kmalloc(sizeof(*st), GFP_KERNEL);
2204         if (st == NULL)
2205                 return -ENOMEM;
2206
2207         page_count = obj->base.size / PAGE_SIZE;
2208         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2209                 kfree(st);
2210                 return -ENOMEM;
2211         }
2212
2213         /* Get the list of pages out of our struct file.  They'll be pinned
2214          * at this point until we release them.
2215          *
2216          * Fail silently without starting the shrinker
2217          */
2218         mapping = file_inode(obj->base.filp)->i_mapping;
2219         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2220         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2221         sg = st->sgl;
2222         st->nents = 0;
2223         for (i = 0; i < page_count; i++) {
2224                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2225                 if (IS_ERR(page)) {
2226                         i915_gem_shrink(dev_priv,
2227                                         page_count,
2228                                         I915_SHRINK_BOUND |
2229                                         I915_SHRINK_UNBOUND |
2230                                         I915_SHRINK_PURGEABLE);
2231                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2232                 }
2233                 if (IS_ERR(page)) {
2234                         /* We've tried hard to allocate the memory by reaping
2235                          * our own buffer, now let the real VM do its job and
2236                          * go down in flames if truly OOM.
2237                          */
2238                         i915_gem_shrink_all(dev_priv);
2239                         page = shmem_read_mapping_page(mapping, i);
2240                         if (IS_ERR(page)) {
2241                                 ret = PTR_ERR(page);
2242                                 goto err_pages;
2243                         }
2244                 }
2245 #ifdef CONFIG_SWIOTLB
2246                 if (swiotlb_nr_tbl()) {
2247                         st->nents++;
2248                         sg_set_page(sg, page, PAGE_SIZE, 0);
2249                         sg = sg_next(sg);
2250                         continue;
2251                 }
2252 #endif
2253                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2254                         if (i)
2255                                 sg = sg_next(sg);
2256                         st->nents++;
2257                         sg_set_page(sg, page, PAGE_SIZE, 0);
2258                 } else {
2259                         sg->length += PAGE_SIZE;
2260                 }
2261                 last_pfn = page_to_pfn(page);
2262
2263                 /* Check that the i965g/gm workaround works. */
2264                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2265         }
2266 #ifdef CONFIG_SWIOTLB
2267         if (!swiotlb_nr_tbl())
2268 #endif
2269                 sg_mark_end(sg);
2270         obj->pages = st;
2271
2272         ret = i915_gem_gtt_prepare_object(obj);
2273         if (ret)
2274                 goto err_pages;
2275
2276         if (i915_gem_object_needs_bit17_swizzle(obj))
2277                 i915_gem_object_do_bit_17_swizzle(obj);
2278
2279         if (obj->tiling_mode != I915_TILING_NONE &&
2280             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281                 i915_gem_object_pin_pages(obj);
2282
2283         return 0;
2284
2285 err_pages:
2286         sg_mark_end(sg);
2287         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2288                 page_cache_release(sg_page_iter_page(&sg_iter));
2289         sg_free_table(st);
2290         kfree(st);
2291
2292         /* shmemfs first checks if there is enough memory to allocate the page
2293          * and reports ENOSPC should there be insufficient, along with the usual
2294          * ENOMEM for a genuine allocation failure.
2295          *
2296          * We use ENOSPC in our driver to mean that we have run out of aperture
2297          * space and so want to translate the error from shmemfs back to our
2298          * usual understanding of ENOMEM.
2299          */
2300         if (ret == -ENOSPC)
2301                 ret = -ENOMEM;
2302
2303         return ret;
2304 }
2305
2306 /* Ensure that the associated pages are gathered from the backing storage
2307  * and pinned into our object. i915_gem_object_get_pages() may be called
2308  * multiple times before they are released by a single call to
2309  * i915_gem_object_put_pages() - once the pages are no longer referenced
2310  * either as a result of memory pressure (reaping pages under the shrinker)
2311  * or as the object is itself released.
2312  */
2313 int
2314 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315 {
2316         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317         const struct drm_i915_gem_object_ops *ops = obj->ops;
2318         int ret;
2319
2320         if (obj->pages)
2321                 return 0;
2322
2323         if (obj->madv != I915_MADV_WILLNEED) {
2324                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2325                 return -EFAULT;
2326         }
2327
2328         BUG_ON(obj->pages_pin_count);
2329
2330         ret = ops->get_pages(obj);
2331         if (ret)
2332                 return ret;
2333
2334         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2335
2336         obj->get_page.sg = obj->pages->sgl;
2337         obj->get_page.last = 0;
2338
2339         return 0;
2340 }
2341
2342 void i915_vma_move_to_active(struct i915_vma *vma,
2343                              struct drm_i915_gem_request *req)
2344 {
2345         struct drm_i915_gem_object *obj = vma->obj;
2346         struct intel_engine_cs *ring;
2347
2348         ring = i915_gem_request_get_ring(req);
2349
2350         /* Add a reference if we're newly entering the active list. */
2351         if (obj->active == 0)
2352                 drm_gem_object_reference(&obj->base);
2353         obj->active |= intel_ring_flag(ring);
2354
2355         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2357
2358         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2359 }
2360
2361 static void
2362 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2363 {
2364         RQ_BUG_ON(obj->last_write_req == NULL);
2365         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2366
2367         i915_gem_request_assign(&obj->last_write_req, NULL);
2368         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2369 }
2370
2371 static void
2372 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2373 {
2374         struct i915_vma *vma;
2375
2376         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2377         RQ_BUG_ON(!(obj->active & (1 << ring)));
2378
2379         list_del_init(&obj->ring_list[ring]);
2380         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2381
2382         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2383                 i915_gem_object_retire__write(obj);
2384
2385         obj->active &= ~(1 << ring);
2386         if (obj->active)
2387                 return;
2388
2389         /* Bump our place on the bound list to keep it roughly in LRU order
2390          * so that we don't steal from recently used but inactive objects
2391          * (unless we are forced to ofc!)
2392          */
2393         list_move_tail(&obj->global_list,
2394                        &to_i915(obj->base.dev)->mm.bound_list);
2395
2396         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2397                 if (!list_empty(&vma->mm_list))
2398                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2399         }
2400
2401         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2402         drm_gem_object_unreference(&obj->base);
2403 }
2404
2405 static int
2406 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2407 {
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         struct intel_engine_cs *ring;
2410         int ret, i, j;
2411
2412         /* Carefully retire all requests without writing to the rings */
2413         for_each_ring(ring, dev_priv, i) {
2414                 ret = intel_ring_idle(ring);
2415                 if (ret)
2416                         return ret;
2417         }
2418         i915_gem_retire_requests(dev);
2419
2420         /* Finally reset hw state */
2421         for_each_ring(ring, dev_priv, i) {
2422                 intel_ring_init_seqno(ring, seqno);
2423
2424                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2425                         ring->semaphore.sync_seqno[j] = 0;
2426         }
2427
2428         return 0;
2429 }
2430
2431 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2432 {
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         int ret;
2435
2436         if (seqno == 0)
2437                 return -EINVAL;
2438
2439         /* HWS page needs to be set less than what we
2440          * will inject to ring
2441          */
2442         ret = i915_gem_init_seqno(dev, seqno - 1);
2443         if (ret)
2444                 return ret;
2445
2446         /* Carefully set the last_seqno value so that wrap
2447          * detection still works
2448          */
2449         dev_priv->next_seqno = seqno;
2450         dev_priv->last_seqno = seqno - 1;
2451         if (dev_priv->last_seqno == 0)
2452                 dev_priv->last_seqno--;
2453
2454         return 0;
2455 }
2456
2457 int
2458 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2459 {
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461
2462         /* reserve 0 for non-seqno */
2463         if (dev_priv->next_seqno == 0) {
2464                 int ret = i915_gem_init_seqno(dev, 0);
2465                 if (ret)
2466                         return ret;
2467
2468                 dev_priv->next_seqno = 1;
2469         }
2470
2471         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2472         return 0;
2473 }
2474
2475 /*
2476  * NB: This function is not allowed to fail. Doing so would mean the the
2477  * request is not being tracked for completion but the work itself is
2478  * going to happen on the hardware. This would be a Bad Thing(tm).
2479  */
2480 void __i915_add_request(struct drm_i915_gem_request *request,
2481                         struct drm_i915_gem_object *obj,
2482                         bool flush_caches)
2483 {
2484         struct intel_engine_cs *ring;
2485         struct drm_i915_private *dev_priv;
2486         struct intel_ringbuffer *ringbuf;
2487         u32 request_start;
2488         int ret;
2489
2490         if (WARN_ON(request == NULL))
2491                 return;
2492
2493         ring = request->ring;
2494         dev_priv = ring->dev->dev_private;
2495         ringbuf = request->ringbuf;
2496
2497         /*
2498          * To ensure that this call will not fail, space for its emissions
2499          * should already have been reserved in the ring buffer. Let the ring
2500          * know that it is time to use that space up.
2501          */
2502         intel_ring_reserved_space_use(ringbuf);
2503
2504         request_start = intel_ring_get_tail(ringbuf);
2505         /*
2506          * Emit any outstanding flushes - execbuf can fail to emit the flush
2507          * after having emitted the batchbuffer command. Hence we need to fix
2508          * things up similar to emitting the lazy request. The difference here
2509          * is that the flush _must_ happen before the next request, no matter
2510          * what.
2511          */
2512         if (flush_caches) {
2513                 if (i915.enable_execlists)
2514                         ret = logical_ring_flush_all_caches(request);
2515                 else
2516                         ret = intel_ring_flush_all_caches(request);
2517                 /* Not allowed to fail! */
2518                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2519         }
2520
2521         /* Record the position of the start of the request so that
2522          * should we detect the updated seqno part-way through the
2523          * GPU processing the request, we never over-estimate the
2524          * position of the head.
2525          */
2526         request->postfix = intel_ring_get_tail(ringbuf);
2527
2528         if (i915.enable_execlists)
2529                 ret = ring->emit_request(request);
2530         else {
2531                 ret = ring->add_request(request);
2532
2533                 request->tail = intel_ring_get_tail(ringbuf);
2534         }
2535         /* Not allowed to fail! */
2536         WARN(ret, "emit|add_request failed: %d!\n", ret);
2537
2538         request->head = request_start;
2539
2540         /* Whilst this request exists, batch_obj will be on the
2541          * active_list, and so will hold the active reference. Only when this
2542          * request is retired will the the batch_obj be moved onto the
2543          * inactive_list and lose its active reference. Hence we do not need
2544          * to explicitly hold another reference here.
2545          */
2546         request->batch_obj = obj;
2547
2548         request->emitted_jiffies = jiffies;
2549         ring->last_submitted_seqno = request->seqno;
2550         list_add_tail(&request->list, &ring->request_list);
2551
2552         trace_i915_gem_request_add(request);
2553
2554         i915_queue_hangcheck(ring->dev);
2555
2556         queue_delayed_work(dev_priv->wq,
2557                            &dev_priv->mm.retire_work,
2558                            round_jiffies_up_relative(HZ));
2559         intel_mark_busy(dev_priv->dev);
2560
2561         /* Sanity check that the reserved size was large enough. */
2562         intel_ring_reserved_space_end(ringbuf);
2563 }
2564
2565 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2566                                    const struct intel_context *ctx)
2567 {
2568         unsigned long elapsed;
2569
2570         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2571
2572         if (ctx->hang_stats.banned)
2573                 return true;
2574
2575         if (ctx->hang_stats.ban_period_seconds &&
2576             elapsed <= ctx->hang_stats.ban_period_seconds) {
2577                 if (!i915_gem_context_is_default(ctx)) {
2578                         DRM_DEBUG("context hanging too fast, banning!\n");
2579                         return true;
2580                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2581                         if (i915_stop_ring_allow_warn(dev_priv))
2582                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2583                         return true;
2584                 }
2585         }
2586
2587         return false;
2588 }
2589
2590 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2591                                   struct intel_context *ctx,
2592                                   const bool guilty)
2593 {
2594         struct i915_ctx_hang_stats *hs;
2595
2596         if (WARN_ON(!ctx))
2597                 return;
2598
2599         hs = &ctx->hang_stats;
2600
2601         if (guilty) {
2602                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2603                 hs->batch_active++;
2604                 hs->guilty_ts = get_seconds();
2605         } else {
2606                 hs->batch_pending++;
2607         }
2608 }
2609
2610 void i915_gem_request_free(struct kref *req_ref)
2611 {
2612         struct drm_i915_gem_request *req = container_of(req_ref,
2613                                                  typeof(*req), ref);
2614         struct intel_context *ctx = req->ctx;
2615
2616         if (req->file_priv)
2617                 i915_gem_request_remove_from_client(req);
2618
2619         if (ctx) {
2620                 if (i915.enable_execlists) {
2621                         if (ctx != req->ring->default_context)
2622                                 intel_lr_context_unpin(req);
2623                 }
2624
2625                 i915_gem_context_unreference(ctx);
2626         }
2627
2628         kmem_cache_free(req->i915->requests, req);
2629 }
2630
2631 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2632                            struct intel_context *ctx,
2633                            struct drm_i915_gem_request **req_out)
2634 {
2635         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2636         struct drm_i915_gem_request *req;
2637         int ret;
2638
2639         if (!req_out)
2640                 return -EINVAL;
2641
2642         *req_out = NULL;
2643
2644         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2645         if (req == NULL)
2646                 return -ENOMEM;
2647
2648         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2649         if (ret)
2650                 goto err;
2651
2652         kref_init(&req->ref);
2653         req->i915 = dev_priv;
2654         req->ring = ring;
2655         req->ctx  = ctx;
2656         i915_gem_context_reference(req->ctx);
2657
2658         if (i915.enable_execlists)
2659                 ret = intel_logical_ring_alloc_request_extras(req);
2660         else
2661                 ret = intel_ring_alloc_request_extras(req);
2662         if (ret) {
2663                 i915_gem_context_unreference(req->ctx);
2664                 goto err;
2665         }
2666
2667         /*
2668          * Reserve space in the ring buffer for all the commands required to
2669          * eventually emit this request. This is to guarantee that the
2670          * i915_add_request() call can't fail. Note that the reserve may need
2671          * to be redone if the request is not actually submitted straight
2672          * away, e.g. because a GPU scheduler has deferred it.
2673          */
2674         if (i915.enable_execlists)
2675                 ret = intel_logical_ring_reserve_space(req);
2676         else
2677                 ret = intel_ring_reserve_space(req);
2678         if (ret) {
2679                 /*
2680                  * At this point, the request is fully allocated even if not
2681                  * fully prepared. Thus it can be cleaned up using the proper
2682                  * free code.
2683                  */
2684                 i915_gem_request_cancel(req);
2685                 return ret;
2686         }
2687
2688         *req_out = req;
2689         return 0;
2690
2691 err:
2692         kmem_cache_free(dev_priv->requests, req);
2693         return ret;
2694 }
2695
2696 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2697 {
2698         intel_ring_reserved_space_cancel(req->ringbuf);
2699
2700         i915_gem_request_unreference(req);
2701 }
2702
2703 struct drm_i915_gem_request *
2704 i915_gem_find_active_request(struct intel_engine_cs *ring)
2705 {
2706         struct drm_i915_gem_request *request;
2707
2708         list_for_each_entry(request, &ring->request_list, list) {
2709                 if (i915_gem_request_completed(request, false))
2710                         continue;
2711
2712                 return request;
2713         }
2714
2715         return NULL;
2716 }
2717
2718 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2719                                        struct intel_engine_cs *ring)
2720 {
2721         struct drm_i915_gem_request *request;
2722         bool ring_hung;
2723
2724         request = i915_gem_find_active_request(ring);
2725
2726         if (request == NULL)
2727                 return;
2728
2729         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2730
2731         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2732
2733         list_for_each_entry_continue(request, &ring->request_list, list)
2734                 i915_set_reset_status(dev_priv, request->ctx, false);
2735 }
2736
2737 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2738                                         struct intel_engine_cs *ring)
2739 {
2740         struct intel_ringbuffer *buffer;
2741
2742         while (!list_empty(&ring->active_list)) {
2743                 struct drm_i915_gem_object *obj;
2744
2745                 obj = list_first_entry(&ring->active_list,
2746                                        struct drm_i915_gem_object,
2747                                        ring_list[ring->id]);
2748
2749                 i915_gem_object_retire__read(obj, ring->id);
2750         }
2751
2752         /*
2753          * Clear the execlists queue up before freeing the requests, as those
2754          * are the ones that keep the context and ringbuffer backing objects
2755          * pinned in place.
2756          */
2757
2758         if (i915.enable_execlists) {
2759                 spin_lock_irq(&ring->execlist_lock);
2760                 while (!list_empty(&ring->execlist_queue)) {
2761                         struct drm_i915_gem_request *submit_req;
2762
2763                         submit_req = list_first_entry(&ring->execlist_queue,
2764                                         struct drm_i915_gem_request,
2765                                         execlist_link);
2766                         list_del(&submit_req->execlist_link);
2767
2768                         if (submit_req->ctx != ring->default_context)
2769                                 intel_lr_context_unpin(submit_req);
2770
2771                         i915_gem_request_unreference(submit_req);
2772                 }
2773                 spin_unlock_irq(&ring->execlist_lock);
2774         }
2775
2776         /*
2777          * We must free the requests after all the corresponding objects have
2778          * been moved off active lists. Which is the same order as the normal
2779          * retire_requests function does. This is important if object hold
2780          * implicit references on things like e.g. ppgtt address spaces through
2781          * the request.
2782          */
2783         while (!list_empty(&ring->request_list)) {
2784                 struct drm_i915_gem_request *request;
2785
2786                 request = list_first_entry(&ring->request_list,
2787                                            struct drm_i915_gem_request,
2788                                            list);
2789
2790                 i915_gem_request_retire(request);
2791         }
2792
2793         /* Having flushed all requests from all queues, we know that all
2794          * ringbuffers must now be empty. However, since we do not reclaim
2795          * all space when retiring the request (to prevent HEADs colliding
2796          * with rapid ringbuffer wraparound) the amount of available space
2797          * upon reset is less than when we start. Do one more pass over
2798          * all the ringbuffers to reset last_retired_head.
2799          */
2800         list_for_each_entry(buffer, &ring->buffers, link) {
2801                 buffer->last_retired_head = buffer->tail;
2802                 intel_ring_update_space(buffer);
2803         }
2804 }
2805
2806 void i915_gem_reset(struct drm_device *dev)
2807 {
2808         struct drm_i915_private *dev_priv = dev->dev_private;
2809         struct intel_engine_cs *ring;
2810         int i;
2811
2812         /*
2813          * Before we free the objects from the requests, we need to inspect
2814          * them for finding the guilty party. As the requests only borrow
2815          * their reference to the objects, the inspection must be done first.
2816          */
2817         for_each_ring(ring, dev_priv, i)
2818                 i915_gem_reset_ring_status(dev_priv, ring);
2819
2820         for_each_ring(ring, dev_priv, i)
2821                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2822
2823         i915_gem_context_reset(dev);
2824
2825         i915_gem_restore_fences(dev);
2826
2827         WARN_ON(i915_verify_lists(dev));
2828 }
2829
2830 /**
2831  * This function clears the request list as sequence numbers are passed.
2832  */
2833 void
2834 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2835 {
2836         WARN_ON(i915_verify_lists(ring->dev));
2837
2838         /* Retire requests first as we use it above for the early return.
2839          * If we retire requests last, we may use a later seqno and so clear
2840          * the requests lists without clearing the active list, leading to
2841          * confusion.
2842          */
2843         while (!list_empty(&ring->request_list)) {
2844                 struct drm_i915_gem_request *request;
2845
2846                 request = list_first_entry(&ring->request_list,
2847                                            struct drm_i915_gem_request,
2848                                            list);
2849
2850                 if (!i915_gem_request_completed(request, true))
2851                         break;
2852
2853                 i915_gem_request_retire(request);
2854         }
2855
2856         /* Move any buffers on the active list that are no longer referenced
2857          * by the ringbuffer to the flushing/inactive lists as appropriate,
2858          * before we free the context associated with the requests.
2859          */
2860         while (!list_empty(&ring->active_list)) {
2861                 struct drm_i915_gem_object *obj;
2862
2863                 obj = list_first_entry(&ring->active_list,
2864                                       struct drm_i915_gem_object,
2865                                       ring_list[ring->id]);
2866
2867                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2868                         break;
2869
2870                 i915_gem_object_retire__read(obj, ring->id);
2871         }
2872
2873         if (unlikely(ring->trace_irq_req &&
2874                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2875                 ring->irq_put(ring);
2876                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2877         }
2878
2879         WARN_ON(i915_verify_lists(ring->dev));
2880 }
2881
2882 bool
2883 i915_gem_retire_requests(struct drm_device *dev)
2884 {
2885         struct drm_i915_private *dev_priv = dev->dev_private;
2886         struct intel_engine_cs *ring;
2887         bool idle = true;
2888         int i;
2889
2890         for_each_ring(ring, dev_priv, i) {
2891                 i915_gem_retire_requests_ring(ring);
2892                 idle &= list_empty(&ring->request_list);
2893                 if (i915.enable_execlists) {
2894                         unsigned long flags;
2895
2896                         spin_lock_irqsave(&ring->execlist_lock, flags);
2897                         idle &= list_empty(&ring->execlist_queue);
2898                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2899
2900                         intel_execlists_retire_requests(ring);
2901                 }
2902         }
2903
2904         if (idle)
2905                 mod_delayed_work(dev_priv->wq,
2906                                    &dev_priv->mm.idle_work,
2907                                    msecs_to_jiffies(100));
2908
2909         return idle;
2910 }
2911
2912 static void
2913 i915_gem_retire_work_handler(struct work_struct *work)
2914 {
2915         struct drm_i915_private *dev_priv =
2916                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2917         struct drm_device *dev = dev_priv->dev;
2918         bool idle;
2919
2920         /* Come back later if the device is busy... */
2921         idle = false;
2922         if (mutex_trylock(&dev->struct_mutex)) {
2923                 idle = i915_gem_retire_requests(dev);
2924                 mutex_unlock(&dev->struct_mutex);
2925         }
2926         if (!idle)
2927                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2928                                    round_jiffies_up_relative(HZ));
2929 }
2930
2931 static void
2932 i915_gem_idle_work_handler(struct work_struct *work)
2933 {
2934         struct drm_i915_private *dev_priv =
2935                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2936         struct drm_device *dev = dev_priv->dev;
2937         struct intel_engine_cs *ring;
2938         int i;
2939
2940         for_each_ring(ring, dev_priv, i)
2941                 if (!list_empty(&ring->request_list))
2942                         return;
2943
2944         intel_mark_idle(dev);
2945
2946         if (mutex_trylock(&dev->struct_mutex)) {
2947                 struct intel_engine_cs *ring;
2948                 int i;
2949
2950                 for_each_ring(ring, dev_priv, i)
2951                         i915_gem_batch_pool_fini(&ring->batch_pool);
2952
2953                 mutex_unlock(&dev->struct_mutex);
2954         }
2955 }
2956
2957 /**
2958  * Ensures that an object will eventually get non-busy by flushing any required
2959  * write domains, emitting any outstanding lazy request and retiring and
2960  * completed requests.
2961  */
2962 static int
2963 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2964 {
2965         int i;
2966
2967         if (!obj->active)
2968                 return 0;
2969
2970         for (i = 0; i < I915_NUM_RINGS; i++) {
2971                 struct drm_i915_gem_request *req;
2972
2973                 req = obj->last_read_req[i];
2974                 if (req == NULL)
2975                         continue;
2976
2977                 if (list_empty(&req->list))
2978                         goto retire;
2979
2980                 if (i915_gem_request_completed(req, true)) {
2981                         __i915_gem_request_retire__upto(req);
2982 retire:
2983                         i915_gem_object_retire__read(obj, i);
2984                 }
2985         }
2986
2987         return 0;
2988 }
2989
2990 /**
2991  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2992  * @DRM_IOCTL_ARGS: standard ioctl arguments
2993  *
2994  * Returns 0 if successful, else an error is returned with the remaining time in
2995  * the timeout parameter.
2996  *  -ETIME: object is still busy after timeout
2997  *  -ERESTARTSYS: signal interrupted the wait
2998  *  -ENONENT: object doesn't exist
2999  * Also possible, but rare:
3000  *  -EAGAIN: GPU wedged
3001  *  -ENOMEM: damn
3002  *  -ENODEV: Internal IRQ fail
3003  *  -E?: The add request failed
3004  *
3005  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3006  * non-zero timeout parameter the wait ioctl will wait for the given number of
3007  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3008  * without holding struct_mutex the object may become re-busied before this
3009  * function completes. A similar but shorter * race condition exists in the busy
3010  * ioctl
3011  */
3012 int
3013 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3014 {
3015         struct drm_i915_private *dev_priv = dev->dev_private;
3016         struct drm_i915_gem_wait *args = data;
3017         struct drm_i915_gem_object *obj;
3018         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3019         unsigned reset_counter;
3020         int i, n = 0;
3021         int ret;
3022
3023         if (args->flags != 0)
3024                 return -EINVAL;
3025
3026         ret = i915_mutex_lock_interruptible(dev);
3027         if (ret)
3028                 return ret;
3029
3030         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3031         if (&obj->base == NULL) {
3032                 mutex_unlock(&dev->struct_mutex);
3033                 return -ENOENT;
3034         }
3035
3036         /* Need to make sure the object gets inactive eventually. */
3037         ret = i915_gem_object_flush_active(obj);
3038         if (ret)
3039                 goto out;
3040
3041         if (!obj->active)
3042                 goto out;
3043
3044         /* Do this after OLR check to make sure we make forward progress polling
3045          * on this IOCTL with a timeout == 0 (like busy ioctl)
3046          */
3047         if (args->timeout_ns == 0) {
3048                 ret = -ETIME;
3049                 goto out;
3050         }
3051
3052         drm_gem_object_unreference(&obj->base);
3053         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3054
3055         for (i = 0; i < I915_NUM_RINGS; i++) {
3056                 if (obj->last_read_req[i] == NULL)
3057                         continue;
3058
3059                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3060         }
3061
3062         mutex_unlock(&dev->struct_mutex);
3063
3064         for (i = 0; i < n; i++) {
3065                 if (ret == 0)
3066                         ret = __i915_wait_request(req[i], reset_counter, true,
3067                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3068                                                   to_rps_client(file));
3069                 i915_gem_request_unreference__unlocked(req[i]);
3070         }
3071         return ret;
3072
3073 out:
3074         drm_gem_object_unreference(&obj->base);
3075         mutex_unlock(&dev->struct_mutex);
3076         return ret;
3077 }
3078
3079 static int
3080 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3081                        struct intel_engine_cs *to,
3082                        struct drm_i915_gem_request *from_req,
3083                        struct drm_i915_gem_request **to_req)
3084 {
3085         struct intel_engine_cs *from;
3086         int ret;
3087
3088         from = i915_gem_request_get_ring(from_req);
3089         if (to == from)
3090                 return 0;
3091
3092         if (i915_gem_request_completed(from_req, true))
3093                 return 0;
3094
3095         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3096                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3097                 ret = __i915_wait_request(from_req,
3098                                           atomic_read(&i915->gpu_error.reset_counter),
3099                                           i915->mm.interruptible,
3100                                           NULL,
3101                                           &i915->rps.semaphores);
3102                 if (ret)
3103                         return ret;
3104
3105                 i915_gem_object_retire_request(obj, from_req);
3106         } else {
3107                 int idx = intel_ring_sync_index(from, to);
3108                 u32 seqno = i915_gem_request_get_seqno(from_req);
3109
3110                 WARN_ON(!to_req);
3111
3112                 if (seqno <= from->semaphore.sync_seqno[idx])
3113                         return 0;
3114
3115                 if (*to_req == NULL) {
3116                         ret = i915_gem_request_alloc(to, to->default_context, to_req);
3117                         if (ret)
3118                                 return ret;
3119                 }
3120
3121                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3122                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3123                 if (ret)
3124                         return ret;
3125
3126                 /* We use last_read_req because sync_to()
3127                  * might have just caused seqno wrap under
3128                  * the radar.
3129                  */
3130                 from->semaphore.sync_seqno[idx] =
3131                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3132         }
3133
3134         return 0;
3135 }
3136
3137 /**
3138  * i915_gem_object_sync - sync an object to a ring.
3139  *
3140  * @obj: object which may be in use on another ring.
3141  * @to: ring we wish to use the object on. May be NULL.
3142  * @to_req: request we wish to use the object for. See below.
3143  *          This will be allocated and returned if a request is
3144  *          required but not passed in.
3145  *
3146  * This code is meant to abstract object synchronization with the GPU.
3147  * Calling with NULL implies synchronizing the object with the CPU
3148  * rather than a particular GPU ring. Conceptually we serialise writes
3149  * between engines inside the GPU. We only allow one engine to write
3150  * into a buffer at any time, but multiple readers. To ensure each has
3151  * a coherent view of memory, we must:
3152  *
3153  * - If there is an outstanding write request to the object, the new
3154  *   request must wait for it to complete (either CPU or in hw, requests
3155  *   on the same ring will be naturally ordered).
3156  *
3157  * - If we are a write request (pending_write_domain is set), the new
3158  *   request must wait for outstanding read requests to complete.
3159  *
3160  * For CPU synchronisation (NULL to) no request is required. For syncing with
3161  * rings to_req must be non-NULL. However, a request does not have to be
3162  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3163  * request will be allocated automatically and returned through *to_req. Note
3164  * that it is not guaranteed that commands will be emitted (because the system
3165  * might already be idle). Hence there is no need to create a request that
3166  * might never have any work submitted. Note further that if a request is
3167  * returned in *to_req, it is the responsibility of the caller to submit
3168  * that request (after potentially adding more work to it).
3169  *
3170  * Returns 0 if successful, else propagates up the lower layer error.
3171  */
3172 int
3173 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3174                      struct intel_engine_cs *to,
3175                      struct drm_i915_gem_request **to_req)
3176 {
3177         const bool readonly = obj->base.pending_write_domain == 0;
3178         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3179         int ret, i, n;
3180
3181         if (!obj->active)
3182                 return 0;
3183
3184         if (to == NULL)
3185                 return i915_gem_object_wait_rendering(obj, readonly);
3186
3187         n = 0;
3188         if (readonly) {
3189                 if (obj->last_write_req)
3190                         req[n++] = obj->last_write_req;
3191         } else {
3192                 for (i = 0; i < I915_NUM_RINGS; i++)
3193                         if (obj->last_read_req[i])
3194                                 req[n++] = obj->last_read_req[i];
3195         }
3196         for (i = 0; i < n; i++) {
3197                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3198                 if (ret)
3199                         return ret;
3200         }
3201
3202         return 0;
3203 }
3204
3205 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3206 {
3207         u32 old_write_domain, old_read_domains;
3208
3209         /* Force a pagefault for domain tracking on next user access */
3210         i915_gem_release_mmap(obj);
3211
3212         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3213                 return;
3214
3215         /* Wait for any direct GTT access to complete */
3216         mb();
3217
3218         old_read_domains = obj->base.read_domains;
3219         old_write_domain = obj->base.write_domain;
3220
3221         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3222         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3223
3224         trace_i915_gem_object_change_domain(obj,
3225                                             old_read_domains,
3226                                             old_write_domain);
3227 }
3228
3229 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3230 {
3231         struct drm_i915_gem_object *obj = vma->obj;
3232         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3233         int ret;
3234
3235         if (list_empty(&vma->vma_link))
3236                 return 0;
3237
3238         if (!drm_mm_node_allocated(&vma->node)) {
3239                 i915_gem_vma_destroy(vma);
3240                 return 0;
3241         }
3242
3243         if (vma->pin_count)
3244                 return -EBUSY;
3245
3246         BUG_ON(obj->pages == NULL);
3247
3248         if (wait) {
3249                 ret = i915_gem_object_wait_rendering(obj, false);
3250                 if (ret)
3251                         return ret;
3252         }
3253
3254         if (i915_is_ggtt(vma->vm) &&
3255             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3256                 i915_gem_object_finish_gtt(obj);
3257
3258                 /* release the fence reg _after_ flushing */
3259                 ret = i915_gem_object_put_fence(obj);
3260                 if (ret)
3261                         return ret;
3262         }
3263
3264         trace_i915_vma_unbind(vma);
3265
3266         vma->vm->unbind_vma(vma);
3267         vma->bound = 0;
3268
3269         list_del_init(&vma->mm_list);
3270         if (i915_is_ggtt(vma->vm)) {
3271                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3272                         obj->map_and_fenceable = false;
3273                 } else if (vma->ggtt_view.pages) {
3274                         sg_free_table(vma->ggtt_view.pages);
3275                         kfree(vma->ggtt_view.pages);
3276                 }
3277                 vma->ggtt_view.pages = NULL;
3278         }
3279
3280         drm_mm_remove_node(&vma->node);
3281         i915_gem_vma_destroy(vma);
3282
3283         /* Since the unbound list is global, only move to that list if
3284          * no more VMAs exist. */
3285         if (list_empty(&obj->vma_list))
3286                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3287
3288         /* And finally now the object is completely decoupled from this vma,
3289          * we can drop its hold on the backing storage and allow it to be
3290          * reaped by the shrinker.
3291          */
3292         i915_gem_object_unpin_pages(obj);
3293
3294         return 0;
3295 }
3296
3297 int i915_vma_unbind(struct i915_vma *vma)
3298 {
3299         return __i915_vma_unbind(vma, true);
3300 }
3301
3302 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3303 {
3304         return __i915_vma_unbind(vma, false);
3305 }
3306
3307 int i915_gpu_idle(struct drm_device *dev)
3308 {
3309         struct drm_i915_private *dev_priv = dev->dev_private;
3310         struct intel_engine_cs *ring;
3311         int ret, i;
3312
3313         /* Flush everything onto the inactive list. */
3314         for_each_ring(ring, dev_priv, i) {
3315                 if (!i915.enable_execlists) {
3316                         struct drm_i915_gem_request *req;
3317
3318                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3319                         if (ret)
3320                                 return ret;
3321
3322                         ret = i915_switch_context(req);
3323                         if (ret) {
3324                                 i915_gem_request_cancel(req);
3325                                 return ret;
3326                         }
3327
3328                         i915_add_request_no_flush(req);
3329                 }
3330
3331                 ret = intel_ring_idle(ring);
3332                 if (ret)
3333                         return ret;
3334         }
3335
3336         WARN_ON(i915_verify_lists(dev));
3337         return 0;
3338 }
3339
3340 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3341                                      unsigned long cache_level)
3342 {
3343         struct drm_mm_node *gtt_space = &vma->node;
3344         struct drm_mm_node *other;
3345
3346         /*
3347          * On some machines we have to be careful when putting differing types
3348          * of snoopable memory together to avoid the prefetcher crossing memory
3349          * domains and dying. During vm initialisation, we decide whether or not
3350          * these constraints apply and set the drm_mm.color_adjust
3351          * appropriately.
3352          */
3353         if (vma->vm->mm.color_adjust == NULL)
3354                 return true;
3355
3356         if (!drm_mm_node_allocated(gtt_space))
3357                 return true;
3358
3359         if (list_empty(&gtt_space->node_list))
3360                 return true;
3361
3362         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3363         if (other->allocated && !other->hole_follows && other->color != cache_level)
3364                 return false;
3365
3366         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3367         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3368                 return false;
3369
3370         return true;
3371 }
3372
3373 /**
3374  * Finds free space in the GTT aperture and binds the object or a view of it
3375  * there.
3376  */
3377 static struct i915_vma *
3378 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3379                            struct i915_address_space *vm,
3380                            const struct i915_ggtt_view *ggtt_view,
3381                            unsigned alignment,
3382                            uint64_t flags)
3383 {
3384         struct drm_device *dev = obj->base.dev;
3385         struct drm_i915_private *dev_priv = dev->dev_private;
3386         u32 fence_alignment, unfenced_alignment;
3387         u32 search_flag, alloc_flag;
3388         u64 start, end;
3389         u64 size, fence_size;
3390         struct i915_vma *vma;
3391         int ret;
3392
3393         if (i915_is_ggtt(vm)) {
3394                 u32 view_size;
3395
3396                 if (WARN_ON(!ggtt_view))
3397                         return ERR_PTR(-EINVAL);
3398
3399                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3400
3401                 fence_size = i915_gem_get_gtt_size(dev,
3402                                                    view_size,
3403                                                    obj->tiling_mode);
3404                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3405                                                              view_size,
3406                                                              obj->tiling_mode,
3407                                                              true);
3408                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3409                                                                 view_size,
3410                                                                 obj->tiling_mode,
3411                                                                 false);
3412                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3413         } else {
3414                 fence_size = i915_gem_get_gtt_size(dev,
3415                                                    obj->base.size,
3416                                                    obj->tiling_mode);
3417                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3418                                                              obj->base.size,
3419                                                              obj->tiling_mode,
3420                                                              true);
3421                 unfenced_alignment =
3422                         i915_gem_get_gtt_alignment(dev,
3423                                                    obj->base.size,
3424                                                    obj->tiling_mode,
3425                                                    false);
3426                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3427         }
3428
3429         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3430         end = vm->total;
3431         if (flags & PIN_MAPPABLE)
3432                 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3433         if (flags & PIN_ZONE_4G)
3434                 end = min_t(u64, end, (1ULL << 32));
3435
3436         if (alignment == 0)
3437                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3438                                                 unfenced_alignment;
3439         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3440                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3441                           ggtt_view ? ggtt_view->type : 0,
3442                           alignment);
3443                 return ERR_PTR(-EINVAL);
3444         }
3445
3446         /* If binding the object/GGTT view requires more space than the entire
3447          * aperture has, reject it early before evicting everything in a vain
3448          * attempt to find space.
3449          */
3450         if (size > end) {
3451                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3452                           ggtt_view ? ggtt_view->type : 0,
3453                           size,
3454                           flags & PIN_MAPPABLE ? "mappable" : "total",
3455                           end);
3456                 return ERR_PTR(-E2BIG);
3457         }
3458
3459         ret = i915_gem_object_get_pages(obj);
3460         if (ret)
3461                 return ERR_PTR(ret);
3462
3463         i915_gem_object_pin_pages(obj);
3464
3465         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3466                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3467
3468         if (IS_ERR(vma))
3469                 goto err_unpin;
3470
3471         if (flags & PIN_HIGH) {
3472                 search_flag = DRM_MM_SEARCH_BELOW;
3473                 alloc_flag = DRM_MM_CREATE_TOP;
3474         } else {
3475                 search_flag = DRM_MM_SEARCH_DEFAULT;
3476                 alloc_flag = DRM_MM_CREATE_DEFAULT;
3477         }
3478
3479 search_free:
3480         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3481                                                   size, alignment,
3482                                                   obj->cache_level,
3483                                                   start, end,
3484                                                   search_flag,
3485                                                   alloc_flag);
3486         if (ret) {
3487                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3488                                                obj->cache_level,
3489                                                start, end,
3490                                                flags);
3491                 if (ret == 0)
3492                         goto search_free;
3493
3494                 goto err_free_vma;
3495         }
3496         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3497                 ret = -EINVAL;
3498                 goto err_remove_node;
3499         }
3500
3501         trace_i915_vma_bind(vma, flags);
3502         ret = i915_vma_bind(vma, obj->cache_level, flags);
3503         if (ret)
3504                 goto err_remove_node;
3505
3506         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3507         list_add_tail(&vma->mm_list, &vm->inactive_list);
3508
3509         return vma;
3510
3511 err_remove_node:
3512         drm_mm_remove_node(&vma->node);
3513 err_free_vma:
3514         i915_gem_vma_destroy(vma);
3515         vma = ERR_PTR(ret);
3516 err_unpin:
3517         i915_gem_object_unpin_pages(obj);
3518         return vma;
3519 }
3520
3521 bool
3522 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3523                         bool force)
3524 {
3525         /* If we don't have a page list set up, then we're not pinned
3526          * to GPU, and we can ignore the cache flush because it'll happen
3527          * again at bind time.
3528          */
3529         if (obj->pages == NULL)
3530                 return false;
3531
3532         /*
3533          * Stolen memory is always coherent with the GPU as it is explicitly
3534          * marked as wc by the system, or the system is cache-coherent.
3535          */
3536         if (obj->stolen || obj->phys_handle)
3537                 return false;
3538
3539         /* If the GPU is snooping the contents of the CPU cache,
3540          * we do not need to manually clear the CPU cache lines.  However,
3541          * the caches are only snooped when the render cache is
3542          * flushed/invalidated.  As we always have to emit invalidations
3543          * and flushes when moving into and out of the RENDER domain, correct
3544          * snooping behaviour occurs naturally as the result of our domain
3545          * tracking.
3546          */
3547         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3548                 obj->cache_dirty = true;
3549                 return false;
3550         }
3551
3552         trace_i915_gem_object_clflush(obj);
3553         drm_clflush_sg(obj->pages);
3554         obj->cache_dirty = false;
3555
3556         return true;
3557 }
3558
3559 /** Flushes the GTT write domain for the object if it's dirty. */
3560 static void
3561 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3562 {
3563         uint32_t old_write_domain;
3564
3565         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3566                 return;
3567
3568         /* No actual flushing is required for the GTT write domain.  Writes
3569          * to it immediately go to main memory as far as we know, so there's
3570          * no chipset flush.  It also doesn't land in render cache.
3571          *
3572          * However, we do have to enforce the order so that all writes through
3573          * the GTT land before any writes to the device, such as updates to
3574          * the GATT itself.
3575          */
3576         wmb();
3577
3578         old_write_domain = obj->base.write_domain;
3579         obj->base.write_domain = 0;
3580
3581         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3582
3583         trace_i915_gem_object_change_domain(obj,
3584                                             obj->base.read_domains,
3585                                             old_write_domain);
3586 }
3587
3588 /** Flushes the CPU write domain for the object if it's dirty. */
3589 static void
3590 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3591 {
3592         uint32_t old_write_domain;
3593
3594         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3595                 return;
3596
3597         if (i915_gem_clflush_object(obj, obj->pin_display))
3598                 i915_gem_chipset_flush(obj->base.dev);
3599
3600         old_write_domain = obj->base.write_domain;
3601         obj->base.write_domain = 0;
3602
3603         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3604
3605         trace_i915_gem_object_change_domain(obj,
3606                                             obj->base.read_domains,
3607                                             old_write_domain);
3608 }
3609
3610 /**
3611  * Moves a single object to the GTT read, and possibly write domain.
3612  *
3613  * This function returns when the move is complete, including waiting on
3614  * flushes to occur.
3615  */
3616 int
3617 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3618 {
3619         uint32_t old_write_domain, old_read_domains;
3620         struct i915_vma *vma;
3621         int ret;
3622
3623         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3624                 return 0;
3625
3626         ret = i915_gem_object_wait_rendering(obj, !write);
3627         if (ret)
3628                 return ret;
3629
3630         /* Flush and acquire obj->pages so that we are coherent through
3631          * direct access in memory with previous cached writes through
3632          * shmemfs and that our cache domain tracking remains valid.
3633          * For example, if the obj->filp was moved to swap without us
3634          * being notified and releasing the pages, we would mistakenly
3635          * continue to assume that the obj remained out of the CPU cached
3636          * domain.
3637          */
3638         ret = i915_gem_object_get_pages(obj);
3639         if (ret)
3640                 return ret;
3641
3642         i915_gem_object_flush_cpu_write_domain(obj);
3643
3644         /* Serialise direct access to this object with the barriers for
3645          * coherent writes from the GPU, by effectively invalidating the
3646          * GTT domain upon first access.
3647          */
3648         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3649                 mb();
3650
3651         old_write_domain = obj->base.write_domain;
3652         old_read_domains = obj->base.read_domains;
3653
3654         /* It should now be out of any other write domains, and we can update
3655          * the domain values for our changes.
3656          */
3657         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3658         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3659         if (write) {
3660                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3661                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3662                 obj->dirty = 1;
3663         }
3664
3665         trace_i915_gem_object_change_domain(obj,
3666                                             old_read_domains,
3667                                             old_write_domain);
3668
3669         /* And bump the LRU for this access */
3670         vma = i915_gem_obj_to_ggtt(obj);
3671         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3672                 list_move_tail(&vma->mm_list,
3673                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3674
3675         return 0;
3676 }
3677
3678 /**
3679  * Changes the cache-level of an object across all VMA.
3680  *
3681  * After this function returns, the object will be in the new cache-level
3682  * across all GTT and the contents of the backing storage will be coherent,
3683  * with respect to the new cache-level. In order to keep the backing storage
3684  * coherent for all users, we only allow a single cache level to be set
3685  * globally on the object and prevent it from being changed whilst the
3686  * hardware is reading from the object. That is if the object is currently
3687  * on the scanout it will be set to uncached (or equivalent display
3688  * cache coherency) and all non-MOCS GPU access will also be uncached so
3689  * that all direct access to the scanout remains coherent.
3690  */
3691 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3692                                     enum i915_cache_level cache_level)
3693 {
3694         struct drm_device *dev = obj->base.dev;
3695         struct i915_vma *vma, *next;
3696         bool bound = false;
3697         int ret = 0;
3698
3699         if (obj->cache_level == cache_level)
3700                 goto out;
3701
3702         /* Inspect the list of currently bound VMA and unbind any that would
3703          * be invalid given the new cache-level. This is principally to
3704          * catch the issue of the CS prefetch crossing page boundaries and
3705          * reading an invalid PTE on older architectures.
3706          */
3707         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3708                 if (!drm_mm_node_allocated(&vma->node))
3709                         continue;
3710
3711                 if (vma->pin_count) {
3712                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3713                         return -EBUSY;
3714                 }
3715
3716                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3717                         ret = i915_vma_unbind(vma);
3718                         if (ret)
3719                                 return ret;
3720                 } else
3721                         bound = true;
3722         }
3723
3724         /* We can reuse the existing drm_mm nodes but need to change the
3725          * cache-level on the PTE. We could simply unbind them all and
3726          * rebind with the correct cache-level on next use. However since
3727          * we already have a valid slot, dma mapping, pages etc, we may as
3728          * rewrite the PTE in the belief that doing so tramples upon less
3729          * state and so involves less work.
3730          */
3731         if (bound) {
3732                 /* Before we change the PTE, the GPU must not be accessing it.
3733                  * If we wait upon the object, we know that all the bound
3734                  * VMA are no longer active.
3735                  */
3736                 ret = i915_gem_object_wait_rendering(obj, false);
3737                 if (ret)
3738                         return ret;
3739
3740                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3741                         /* Access to snoopable pages through the GTT is
3742                          * incoherent and on some machines causes a hard
3743                          * lockup. Relinquish the CPU mmaping to force
3744                          * userspace to refault in the pages and we can
3745                          * then double check if the GTT mapping is still
3746                          * valid for that pointer access.
3747                          */
3748                         i915_gem_release_mmap(obj);
3749
3750                         /* As we no longer need a fence for GTT access,
3751                          * we can relinquish it now (and so prevent having
3752                          * to steal a fence from someone else on the next
3753                          * fence request). Note GPU activity would have
3754                          * dropped the fence as all snoopable access is
3755                          * supposed to be linear.
3756                          */
3757                         ret = i915_gem_object_put_fence(obj);
3758                         if (ret)
3759                                 return ret;
3760                 } else {
3761                         /* We either have incoherent backing store and
3762                          * so no GTT access or the architecture is fully
3763                          * coherent. In such cases, existing GTT mmaps
3764                          * ignore the cache bit in the PTE and we can
3765                          * rewrite it without confusing the GPU or having
3766                          * to force userspace to fault back in its mmaps.
3767                          */
3768                 }
3769
3770                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3771                         if (!drm_mm_node_allocated(&vma->node))
3772                                 continue;
3773
3774                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3775                         if (ret)
3776                                 return ret;
3777                 }
3778         }
3779
3780         list_for_each_entry(vma, &obj->vma_list, vma_link)
3781                 vma->node.color = cache_level;
3782         obj->cache_level = cache_level;
3783
3784 out:
3785         /* Flush the dirty CPU caches to the backing storage so that the
3786          * object is now coherent at its new cache level (with respect
3787          * to the access domain).
3788          */
3789         if (obj->cache_dirty &&
3790             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3791             cpu_write_needs_clflush(obj)) {
3792                 if (i915_gem_clflush_object(obj, true))
3793                         i915_gem_chipset_flush(obj->base.dev);
3794         }
3795
3796         return 0;
3797 }
3798
3799 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3800                                struct drm_file *file)
3801 {
3802         struct drm_i915_gem_caching *args = data;
3803         struct drm_i915_gem_object *obj;
3804
3805         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3806         if (&obj->base == NULL)
3807                 return -ENOENT;
3808
3809         switch (obj->cache_level) {
3810         case I915_CACHE_LLC:
3811         case I915_CACHE_L3_LLC:
3812                 args->caching = I915_CACHING_CACHED;
3813                 break;
3814
3815         case I915_CACHE_WT:
3816                 args->caching = I915_CACHING_DISPLAY;
3817                 break;
3818
3819         default:
3820                 args->caching = I915_CACHING_NONE;
3821                 break;
3822         }
3823
3824         drm_gem_object_unreference_unlocked(&obj->base);
3825         return 0;
3826 }
3827
3828 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3829                                struct drm_file *file)
3830 {
3831         struct drm_i915_private *dev_priv = dev->dev_private;
3832         struct drm_i915_gem_caching *args = data;
3833         struct drm_i915_gem_object *obj;
3834         enum i915_cache_level level;
3835         int ret;
3836
3837         switch (args->caching) {
3838         case I915_CACHING_NONE:
3839                 level = I915_CACHE_NONE;
3840                 break;
3841         case I915_CACHING_CACHED:
3842                 /*
3843                  * Due to a HW issue on BXT A stepping, GPU stores via a
3844                  * snooped mapping may leave stale data in a corresponding CPU
3845                  * cacheline, whereas normally such cachelines would get
3846                  * invalidated.
3847                  */
3848                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3849                         return -ENODEV;
3850
3851                 level = I915_CACHE_LLC;
3852                 break;
3853         case I915_CACHING_DISPLAY:
3854                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3855                 break;
3856         default:
3857                 return -EINVAL;
3858         }
3859
3860         intel_runtime_pm_get(dev_priv);
3861
3862         ret = i915_mutex_lock_interruptible(dev);
3863         if (ret)
3864                 goto rpm_put;
3865
3866         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3867         if (&obj->base == NULL) {
3868                 ret = -ENOENT;
3869                 goto unlock;
3870         }
3871
3872         ret = i915_gem_object_set_cache_level(obj, level);
3873
3874         drm_gem_object_unreference(&obj->base);
3875 unlock:
3876         mutex_unlock(&dev->struct_mutex);
3877 rpm_put:
3878         intel_runtime_pm_put(dev_priv);
3879
3880         return ret;
3881 }
3882
3883 /*
3884  * Prepare buffer for display plane (scanout, cursors, etc).
3885  * Can be called from an uninterruptible phase (modesetting) and allows
3886  * any flushes to be pipelined (for pageflips).
3887  */
3888 int
3889 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3890                                      u32 alignment,
3891                                      const struct i915_ggtt_view *view)
3892 {
3893         u32 old_read_domains, old_write_domain;
3894         int ret;
3895
3896         /* Mark the pin_display early so that we account for the
3897          * display coherency whilst setting up the cache domains.
3898          */
3899         obj->pin_display++;
3900
3901         /* The display engine is not coherent with the LLC cache on gen6.  As
3902          * a result, we make sure that the pinning that is about to occur is
3903          * done with uncached PTEs. This is lowest common denominator for all
3904          * chipsets.
3905          *
3906          * However for gen6+, we could do better by using the GFDT bit instead
3907          * of uncaching, which would allow us to flush all the LLC-cached data
3908          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3909          */
3910         ret = i915_gem_object_set_cache_level(obj,
3911                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3912         if (ret)
3913                 goto err_unpin_display;
3914
3915         /* As the user may map the buffer once pinned in the display plane
3916          * (e.g. libkms for the bootup splash), we have to ensure that we
3917          * always use map_and_fenceable for all scanout buffers.
3918          */
3919         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3920                                        view->type == I915_GGTT_VIEW_NORMAL ?
3921                                        PIN_MAPPABLE : 0);
3922         if (ret)
3923                 goto err_unpin_display;
3924
3925         i915_gem_object_flush_cpu_write_domain(obj);
3926
3927         old_write_domain = obj->base.write_domain;
3928         old_read_domains = obj->base.read_domains;
3929
3930         /* It should now be out of any other write domains, and we can update
3931          * the domain values for our changes.
3932          */
3933         obj->base.write_domain = 0;
3934         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3935
3936         trace_i915_gem_object_change_domain(obj,
3937                                             old_read_domains,
3938                                             old_write_domain);
3939
3940         return 0;
3941
3942 err_unpin_display:
3943         obj->pin_display--;
3944         return ret;
3945 }
3946
3947 void
3948 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3949                                          const struct i915_ggtt_view *view)
3950 {
3951         if (WARN_ON(obj->pin_display == 0))
3952                 return;
3953
3954         i915_gem_object_ggtt_unpin_view(obj, view);
3955
3956         obj->pin_display--;
3957 }
3958
3959 /**
3960  * Moves a single object to the CPU read, and possibly write domain.
3961  *
3962  * This function returns when the move is complete, including waiting on
3963  * flushes to occur.
3964  */
3965 int
3966 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3967 {
3968         uint32_t old_write_domain, old_read_domains;
3969         int ret;
3970
3971         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3972                 return 0;
3973
3974         ret = i915_gem_object_wait_rendering(obj, !write);
3975         if (ret)
3976                 return ret;
3977
3978         i915_gem_object_flush_gtt_write_domain(obj);
3979
3980         old_write_domain = obj->base.write_domain;
3981         old_read_domains = obj->base.read_domains;
3982
3983         /* Flush the CPU cache if it's still invalid. */
3984         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3985                 i915_gem_clflush_object(obj, false);
3986
3987                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3988         }
3989
3990         /* It should now be out of any other write domains, and we can update
3991          * the domain values for our changes.
3992          */
3993         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3994
3995         /* If we're writing through the CPU, then the GPU read domains will
3996          * need to be invalidated at next use.
3997          */
3998         if (write) {
3999                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4000                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4001         }
4002
4003         trace_i915_gem_object_change_domain(obj,
4004                                             old_read_domains,
4005                                             old_write_domain);
4006
4007         return 0;
4008 }
4009
4010 /* Throttle our rendering by waiting until the ring has completed our requests
4011  * emitted over 20 msec ago.
4012  *
4013  * Note that if we were to use the current jiffies each time around the loop,
4014  * we wouldn't escape the function with any frames outstanding if the time to
4015  * render a frame was over 20ms.
4016  *
4017  * This should get us reasonable parallelism between CPU and GPU but also
4018  * relatively low latency when blocking on a particular request to finish.
4019  */
4020 static int
4021 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4022 {
4023         struct drm_i915_private *dev_priv = dev->dev_private;
4024         struct drm_i915_file_private *file_priv = file->driver_priv;
4025         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4026         struct drm_i915_gem_request *request, *target = NULL;
4027         unsigned reset_counter;
4028         int ret;
4029
4030         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4031         if (ret)
4032                 return ret;
4033
4034         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4035         if (ret)
4036                 return ret;
4037
4038         spin_lock(&file_priv->mm.lock);
4039         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4040                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4041                         break;
4042
4043                 /*
4044                  * Note that the request might not have been submitted yet.
4045                  * In which case emitted_jiffies will be zero.
4046                  */
4047                 if (!request->emitted_jiffies)
4048                         continue;
4049
4050                 target = request;
4051         }
4052         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4053         if (target)
4054                 i915_gem_request_reference(target);
4055         spin_unlock(&file_priv->mm.lock);
4056
4057         if (target == NULL)
4058                 return 0;
4059
4060         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4061         if (ret == 0)
4062                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4063
4064         i915_gem_request_unreference__unlocked(target);
4065
4066         return ret;
4067 }
4068
4069 static bool
4070 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4071 {
4072         struct drm_i915_gem_object *obj = vma->obj;
4073
4074         if (alignment &&
4075             vma->node.start & (alignment - 1))
4076                 return true;
4077
4078         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4079                 return true;
4080
4081         if (flags & PIN_OFFSET_BIAS &&
4082             vma->node.start < (flags & PIN_OFFSET_MASK))
4083                 return true;
4084
4085         return false;
4086 }
4087
4088 static int
4089 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4090                        struct i915_address_space *vm,
4091                        const struct i915_ggtt_view *ggtt_view,
4092                        uint32_t alignment,
4093                        uint64_t flags)
4094 {
4095         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4096         struct i915_vma *vma;
4097         unsigned bound;
4098         int ret;
4099
4100         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4101                 return -ENODEV;
4102
4103         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4104                 return -EINVAL;
4105
4106         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4107                 return -EINVAL;
4108
4109         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4110                 return -EINVAL;
4111
4112         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4113                           i915_gem_obj_to_vma(obj, vm);
4114
4115         if (IS_ERR(vma))
4116                 return PTR_ERR(vma);
4117
4118         if (vma) {
4119                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4120                         return -EBUSY;
4121
4122                 if (i915_vma_misplaced(vma, alignment, flags)) {
4123                         WARN(vma->pin_count,
4124                              "bo is already pinned in %s with incorrect alignment:"
4125                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4126                              " obj->map_and_fenceable=%d\n",
4127                              ggtt_view ? "ggtt" : "ppgtt",
4128                              upper_32_bits(vma->node.start),
4129                              lower_32_bits(vma->node.start),
4130                              alignment,
4131                              !!(flags & PIN_MAPPABLE),
4132                              obj->map_and_fenceable);
4133                         ret = i915_vma_unbind(vma);
4134                         if (ret)
4135                                 return ret;
4136
4137                         vma = NULL;
4138                 }
4139         }
4140
4141         bound = vma ? vma->bound : 0;
4142         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4143                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4144                                                  flags);
4145                 if (IS_ERR(vma))
4146                         return PTR_ERR(vma);
4147         } else {
4148                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4149                 if (ret)
4150                         return ret;
4151         }
4152
4153         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4154             (bound ^ vma->bound) & GLOBAL_BIND) {
4155                 bool mappable, fenceable;
4156                 u32 fence_size, fence_alignment;
4157
4158                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4159                                                    obj->base.size,
4160                                                    obj->tiling_mode);
4161                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4162                                                              obj->base.size,
4163                                                              obj->tiling_mode,
4164                                                              true);
4165
4166                 fenceable = (vma->node.size == fence_size &&
4167                              (vma->node.start & (fence_alignment - 1)) == 0);
4168
4169                 mappable = (vma->node.start + fence_size <=
4170                             dev_priv->gtt.mappable_end);
4171
4172                 obj->map_and_fenceable = mappable && fenceable;
4173
4174                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4175         }
4176
4177         vma->pin_count++;
4178         return 0;
4179 }
4180
4181 int
4182 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4183                     struct i915_address_space *vm,
4184                     uint32_t alignment,
4185                     uint64_t flags)
4186 {
4187         return i915_gem_object_do_pin(obj, vm,
4188                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4189                                       alignment, flags);
4190 }
4191
4192 int
4193 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4194                          const struct i915_ggtt_view *view,
4195                          uint32_t alignment,
4196                          uint64_t flags)
4197 {
4198         if (WARN_ONCE(!view, "no view specified"))
4199                 return -EINVAL;
4200
4201         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4202                                       alignment, flags | PIN_GLOBAL);
4203 }
4204
4205 void
4206 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4207                                 const struct i915_ggtt_view *view)
4208 {
4209         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4210
4211         BUG_ON(!vma);
4212         WARN_ON(vma->pin_count == 0);
4213         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4214
4215         --vma->pin_count;
4216 }
4217
4218 int
4219 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4220                     struct drm_file *file)
4221 {
4222         struct drm_i915_gem_busy *args = data;
4223         struct drm_i915_gem_object *obj;
4224         int ret;
4225
4226         ret = i915_mutex_lock_interruptible(dev);
4227         if (ret)
4228                 return ret;
4229
4230         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4231         if (&obj->base == NULL) {
4232                 ret = -ENOENT;
4233                 goto unlock;
4234         }
4235
4236         /* Count all active objects as busy, even if they are currently not used
4237          * by the gpu. Users of this interface expect objects to eventually
4238          * become non-busy without any further actions, therefore emit any
4239          * necessary flushes here.
4240          */
4241         ret = i915_gem_object_flush_active(obj);
4242         if (ret)
4243                 goto unref;
4244
4245         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4246         args->busy = obj->active << 16;
4247         if (obj->last_write_req)
4248                 args->busy |= obj->last_write_req->ring->id;
4249
4250 unref:
4251         drm_gem_object_unreference(&obj->base);
4252 unlock:
4253         mutex_unlock(&dev->struct_mutex);
4254         return ret;
4255 }
4256
4257 int
4258 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4259                         struct drm_file *file_priv)
4260 {
4261         return i915_gem_ring_throttle(dev, file_priv);
4262 }
4263
4264 int
4265 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4266                        struct drm_file *file_priv)
4267 {
4268         struct drm_i915_private *dev_priv = dev->dev_private;
4269         struct drm_i915_gem_madvise *args = data;
4270         struct drm_i915_gem_object *obj;
4271         int ret;
4272
4273         switch (args->madv) {
4274         case I915_MADV_DONTNEED:
4275         case I915_MADV_WILLNEED:
4276             break;
4277         default:
4278             return -EINVAL;
4279         }
4280
4281         ret = i915_mutex_lock_interruptible(dev);
4282         if (ret)
4283                 return ret;
4284
4285         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4286         if (&obj->base == NULL) {
4287                 ret = -ENOENT;
4288                 goto unlock;
4289         }
4290
4291         if (i915_gem_obj_is_pinned(obj)) {
4292                 ret = -EINVAL;
4293                 goto out;
4294         }
4295
4296         if (obj->pages &&
4297             obj->tiling_mode != I915_TILING_NONE &&
4298             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4299                 if (obj->madv == I915_MADV_WILLNEED)
4300                         i915_gem_object_unpin_pages(obj);
4301                 if (args->madv == I915_MADV_WILLNEED)
4302                         i915_gem_object_pin_pages(obj);
4303         }
4304
4305         if (obj->madv != __I915_MADV_PURGED)
4306                 obj->madv = args->madv;
4307
4308         /* if the object is no longer attached, discard its backing storage */
4309         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4310                 i915_gem_object_truncate(obj);
4311
4312         args->retained = obj->madv != __I915_MADV_PURGED;
4313
4314 out:
4315         drm_gem_object_unreference(&obj->base);
4316 unlock:
4317         mutex_unlock(&dev->struct_mutex);
4318         return ret;
4319 }
4320
4321 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4322                           const struct drm_i915_gem_object_ops *ops)
4323 {
4324         int i;
4325
4326         INIT_LIST_HEAD(&obj->global_list);
4327         for (i = 0; i < I915_NUM_RINGS; i++)
4328                 INIT_LIST_HEAD(&obj->ring_list[i]);
4329         INIT_LIST_HEAD(&obj->obj_exec_link);
4330         INIT_LIST_HEAD(&obj->vma_list);
4331         INIT_LIST_HEAD(&obj->batch_pool_link);
4332
4333         obj->ops = ops;
4334
4335         obj->fence_reg = I915_FENCE_REG_NONE;
4336         obj->madv = I915_MADV_WILLNEED;
4337
4338         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4339 }
4340
4341 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4342         .get_pages = i915_gem_object_get_pages_gtt,
4343         .put_pages = i915_gem_object_put_pages_gtt,
4344 };
4345
4346 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4347                                                   size_t size)
4348 {
4349         struct drm_i915_gem_object *obj;
4350         struct address_space *mapping;
4351         gfp_t mask;
4352
4353         obj = i915_gem_object_alloc(dev);
4354         if (obj == NULL)
4355                 return NULL;
4356
4357         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4358                 i915_gem_object_free(obj);
4359                 return NULL;
4360         }
4361
4362         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4363         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4364                 /* 965gm cannot relocate objects above 4GiB. */
4365                 mask &= ~__GFP_HIGHMEM;
4366                 mask |= __GFP_DMA32;
4367         }
4368
4369         mapping = file_inode(obj->base.filp)->i_mapping;
4370         mapping_set_gfp_mask(mapping, mask);
4371
4372         i915_gem_object_init(obj, &i915_gem_object_ops);
4373
4374         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4375         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4376
4377         if (HAS_LLC(dev)) {
4378                 /* On some devices, we can have the GPU use the LLC (the CPU
4379                  * cache) for about a 10% performance improvement
4380                  * compared to uncached.  Graphics requests other than
4381                  * display scanout are coherent with the CPU in
4382                  * accessing this cache.  This means in this mode we
4383                  * don't need to clflush on the CPU side, and on the
4384                  * GPU side we only need to flush internal caches to
4385                  * get data visible to the CPU.
4386                  *
4387                  * However, we maintain the display planes as UC, and so
4388                  * need to rebind when first used as such.
4389                  */
4390                 obj->cache_level = I915_CACHE_LLC;
4391         } else
4392                 obj->cache_level = I915_CACHE_NONE;
4393
4394         trace_i915_gem_object_create(obj);
4395
4396         return obj;
4397 }
4398
4399 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4400 {
4401         /* If we are the last user of the backing storage (be it shmemfs
4402          * pages or stolen etc), we know that the pages are going to be
4403          * immediately released. In this case, we can then skip copying
4404          * back the contents from the GPU.
4405          */
4406
4407         if (obj->madv != I915_MADV_WILLNEED)
4408                 return false;
4409
4410         if (obj->base.filp == NULL)
4411                 return true;
4412
4413         /* At first glance, this looks racy, but then again so would be
4414          * userspace racing mmap against close. However, the first external
4415          * reference to the filp can only be obtained through the
4416          * i915_gem_mmap_ioctl() which safeguards us against the user
4417          * acquiring such a reference whilst we are in the middle of
4418          * freeing the object.
4419          */
4420         return atomic_long_read(&obj->base.filp->f_count) == 1;
4421 }
4422
4423 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4424 {
4425         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4426         struct drm_device *dev = obj->base.dev;
4427         struct drm_i915_private *dev_priv = dev->dev_private;
4428         struct i915_vma *vma, *next;
4429
4430         intel_runtime_pm_get(dev_priv);
4431
4432         trace_i915_gem_object_destroy(obj);
4433
4434         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4435                 int ret;
4436
4437                 vma->pin_count = 0;
4438                 ret = i915_vma_unbind(vma);
4439                 if (WARN_ON(ret == -ERESTARTSYS)) {
4440                         bool was_interruptible;
4441
4442                         was_interruptible = dev_priv->mm.interruptible;
4443                         dev_priv->mm.interruptible = false;
4444
4445                         WARN_ON(i915_vma_unbind(vma));
4446
4447                         dev_priv->mm.interruptible = was_interruptible;
4448                 }
4449         }
4450
4451         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4452          * before progressing. */
4453         if (obj->stolen)
4454                 i915_gem_object_unpin_pages(obj);
4455
4456         WARN_ON(obj->frontbuffer_bits);
4457
4458         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4459             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4460             obj->tiling_mode != I915_TILING_NONE)
4461                 i915_gem_object_unpin_pages(obj);
4462
4463         if (WARN_ON(obj->pages_pin_count))
4464                 obj->pages_pin_count = 0;
4465         if (discard_backing_storage(obj))
4466                 obj->madv = I915_MADV_DONTNEED;
4467         i915_gem_object_put_pages(obj);
4468         i915_gem_object_free_mmap_offset(obj);
4469
4470         BUG_ON(obj->pages);
4471
4472         if (obj->base.import_attach)
4473                 drm_prime_gem_destroy(&obj->base, NULL);
4474
4475         if (obj->ops->release)
4476                 obj->ops->release(obj);
4477
4478         drm_gem_object_release(&obj->base);
4479         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4480
4481         kfree(obj->bit_17);
4482         i915_gem_object_free(obj);
4483
4484         intel_runtime_pm_put(dev_priv);
4485 }
4486
4487 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4488                                      struct i915_address_space *vm)
4489 {
4490         struct i915_vma *vma;
4491         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4492                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4493                     vma->vm == vm)
4494                         return vma;
4495         }
4496         return NULL;
4497 }
4498
4499 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4500                                            const struct i915_ggtt_view *view)
4501 {
4502         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4503         struct i915_vma *vma;
4504
4505         if (WARN_ONCE(!view, "no view specified"))
4506                 return ERR_PTR(-EINVAL);
4507
4508         list_for_each_entry(vma, &obj->vma_list, vma_link)
4509                 if (vma->vm == ggtt &&
4510                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4511                         return vma;
4512         return NULL;
4513 }
4514
4515 void i915_gem_vma_destroy(struct i915_vma *vma)
4516 {
4517         struct i915_address_space *vm = NULL;
4518         WARN_ON(vma->node.allocated);
4519
4520         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4521         if (!list_empty(&vma->exec_list))
4522                 return;
4523
4524         vm = vma->vm;
4525
4526         if (!i915_is_ggtt(vm))
4527                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4528
4529         list_del(&vma->vma_link);
4530
4531         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4532 }
4533
4534 static void
4535 i915_gem_stop_ringbuffers(struct drm_device *dev)
4536 {
4537         struct drm_i915_private *dev_priv = dev->dev_private;
4538         struct intel_engine_cs *ring;
4539         int i;
4540
4541         for_each_ring(ring, dev_priv, i)
4542                 dev_priv->gt.stop_ring(ring);
4543 }
4544
4545 int
4546 i915_gem_suspend(struct drm_device *dev)
4547 {
4548         struct drm_i915_private *dev_priv = dev->dev_private;
4549         int ret = 0;
4550
4551         mutex_lock(&dev->struct_mutex);
4552         ret = i915_gpu_idle(dev);
4553         if (ret)
4554                 goto err;
4555
4556         i915_gem_retire_requests(dev);
4557
4558         i915_gem_stop_ringbuffers(dev);
4559         mutex_unlock(&dev->struct_mutex);
4560
4561         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4562         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4563         flush_delayed_work(&dev_priv->mm.idle_work);
4564
4565         /* Assert that we sucessfully flushed all the work and
4566          * reset the GPU back to its idle, low power state.
4567          */
4568         WARN_ON(dev_priv->mm.busy);
4569
4570         return 0;
4571
4572 err:
4573         mutex_unlock(&dev->struct_mutex);
4574         return ret;
4575 }
4576
4577 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4578 {
4579         struct intel_engine_cs *ring = req->ring;
4580         struct drm_device *dev = ring->dev;
4581         struct drm_i915_private *dev_priv = dev->dev_private;
4582         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4583         int i, ret;
4584
4585         if (!HAS_L3_DPF(dev) || !remap_info)
4586                 return 0;
4587
4588         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4589         if (ret)
4590                 return ret;
4591
4592         /*
4593          * Note: We do not worry about the concurrent register cacheline hang
4594          * here because no other code should access these registers other than
4595          * at initialization time.
4596          */
4597         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4598                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4599                 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4600                 intel_ring_emit(ring, remap_info[i]);
4601         }
4602
4603         intel_ring_advance(ring);
4604
4605         return ret;
4606 }
4607
4608 void i915_gem_init_swizzling(struct drm_device *dev)
4609 {
4610         struct drm_i915_private *dev_priv = dev->dev_private;
4611
4612         if (INTEL_INFO(dev)->gen < 5 ||
4613             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4614                 return;
4615
4616         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4617                                  DISP_TILE_SURFACE_SWIZZLING);
4618
4619         if (IS_GEN5(dev))
4620                 return;
4621
4622         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4623         if (IS_GEN6(dev))
4624                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4625         else if (IS_GEN7(dev))
4626                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4627         else if (IS_GEN8(dev))
4628                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4629         else
4630                 BUG();
4631 }
4632
4633 static void init_unused_ring(struct drm_device *dev, u32 base)
4634 {
4635         struct drm_i915_private *dev_priv = dev->dev_private;
4636
4637         I915_WRITE(RING_CTL(base), 0);
4638         I915_WRITE(RING_HEAD(base), 0);
4639         I915_WRITE(RING_TAIL(base), 0);
4640         I915_WRITE(RING_START(base), 0);
4641 }
4642
4643 static void init_unused_rings(struct drm_device *dev)
4644 {
4645         if (IS_I830(dev)) {
4646                 init_unused_ring(dev, PRB1_BASE);
4647                 init_unused_ring(dev, SRB0_BASE);
4648                 init_unused_ring(dev, SRB1_BASE);
4649                 init_unused_ring(dev, SRB2_BASE);
4650                 init_unused_ring(dev, SRB3_BASE);
4651         } else if (IS_GEN2(dev)) {
4652                 init_unused_ring(dev, SRB0_BASE);
4653                 init_unused_ring(dev, SRB1_BASE);
4654         } else if (IS_GEN3(dev)) {
4655                 init_unused_ring(dev, PRB1_BASE);
4656                 init_unused_ring(dev, PRB2_BASE);
4657         }
4658 }
4659
4660 int i915_gem_init_rings(struct drm_device *dev)
4661 {
4662         struct drm_i915_private *dev_priv = dev->dev_private;
4663         int ret;
4664
4665         ret = intel_init_render_ring_buffer(dev);
4666         if (ret)
4667                 return ret;
4668
4669         if (HAS_BSD(dev)) {
4670                 ret = intel_init_bsd_ring_buffer(dev);
4671                 if (ret)
4672                         goto cleanup_render_ring;
4673         }
4674
4675         if (HAS_BLT(dev)) {
4676                 ret = intel_init_blt_ring_buffer(dev);
4677                 if (ret)
4678                         goto cleanup_bsd_ring;
4679         }
4680
4681         if (HAS_VEBOX(dev)) {
4682                 ret = intel_init_vebox_ring_buffer(dev);
4683                 if (ret)
4684                         goto cleanup_blt_ring;
4685         }
4686
4687         if (HAS_BSD2(dev)) {
4688                 ret = intel_init_bsd2_ring_buffer(dev);
4689                 if (ret)
4690                         goto cleanup_vebox_ring;
4691         }
4692
4693         return 0;
4694
4695 cleanup_vebox_ring:
4696         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4697 cleanup_blt_ring:
4698         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4699 cleanup_bsd_ring:
4700         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4701 cleanup_render_ring:
4702         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4703
4704         return ret;
4705 }
4706
4707 int
4708 i915_gem_init_hw(struct drm_device *dev)
4709 {
4710         struct drm_i915_private *dev_priv = dev->dev_private;
4711         struct intel_engine_cs *ring;
4712         int ret, i, j;
4713
4714         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4715                 return -EIO;
4716
4717         /* Double layer security blanket, see i915_gem_init() */
4718         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4719
4720         if (dev_priv->ellc_size)
4721                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4722
4723         if (IS_HASWELL(dev))
4724                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4725                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4726
4727         if (HAS_PCH_NOP(dev)) {
4728                 if (IS_IVYBRIDGE(dev)) {
4729                         u32 temp = I915_READ(GEN7_MSG_CTL);
4730                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4731                         I915_WRITE(GEN7_MSG_CTL, temp);
4732                 } else if (INTEL_INFO(dev)->gen >= 7) {
4733                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4734                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4735                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4736                 }
4737         }
4738
4739         i915_gem_init_swizzling(dev);
4740
4741         /*
4742          * At least 830 can leave some of the unused rings
4743          * "active" (ie. head != tail) after resume which
4744          * will prevent c3 entry. Makes sure all unused rings
4745          * are totally idle.
4746          */
4747         init_unused_rings(dev);
4748
4749         BUG_ON(!dev_priv->ring[RCS].default_context);
4750
4751         ret = i915_ppgtt_init_hw(dev);
4752         if (ret) {
4753                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4754                 goto out;
4755         }
4756
4757         /* Need to do basic initialisation of all rings first: */
4758         for_each_ring(ring, dev_priv, i) {
4759                 ret = ring->init_hw(ring);
4760                 if (ret)
4761                         goto out;
4762         }
4763
4764         /* We can't enable contexts until all firmware is loaded */
4765         if (HAS_GUC_UCODE(dev)) {
4766                 ret = intel_guc_ucode_load(dev);
4767                 if (ret) {
4768                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4769                         ret = -EIO;
4770                         goto out;
4771                 }
4772         }
4773
4774         /*
4775          * Increment the next seqno by 0x100 so we have a visible break
4776          * on re-initialisation
4777          */
4778         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4779         if (ret)
4780                 goto out;
4781
4782         /* Now it is safe to go back round and do everything else: */
4783         for_each_ring(ring, dev_priv, i) {
4784                 struct drm_i915_gem_request *req;
4785
4786                 WARN_ON(!ring->default_context);
4787
4788                 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4789                 if (ret) {
4790                         i915_gem_cleanup_ringbuffer(dev);
4791                         goto out;
4792                 }
4793
4794                 if (ring->id == RCS) {
4795                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4796                                 i915_gem_l3_remap(req, j);
4797                 }
4798
4799                 ret = i915_ppgtt_init_ring(req);
4800                 if (ret && ret != -EIO) {
4801                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4802                         i915_gem_request_cancel(req);
4803                         i915_gem_cleanup_ringbuffer(dev);
4804                         goto out;
4805                 }
4806
4807                 ret = i915_gem_context_enable(req);
4808                 if (ret && ret != -EIO) {
4809                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4810                         i915_gem_request_cancel(req);
4811                         i915_gem_cleanup_ringbuffer(dev);
4812                         goto out;
4813                 }
4814
4815                 i915_add_request_no_flush(req);
4816         }
4817
4818 out:
4819         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4820         return ret;
4821 }
4822
4823 int i915_gem_init(struct drm_device *dev)
4824 {
4825         struct drm_i915_private *dev_priv = dev->dev_private;
4826         int ret;
4827
4828         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4829                         i915.enable_execlists);
4830
4831         mutex_lock(&dev->struct_mutex);
4832
4833         if (IS_VALLEYVIEW(dev)) {
4834                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4835                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4836                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4837                               VLV_GTLC_ALLOWWAKEACK), 10))
4838                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4839         }
4840
4841         if (!i915.enable_execlists) {
4842                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4843                 dev_priv->gt.init_rings = i915_gem_init_rings;
4844                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4845                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4846         } else {
4847                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4848                 dev_priv->gt.init_rings = intel_logical_rings_init;
4849                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4850                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4851         }
4852
4853         /* This is just a security blanket to placate dragons.
4854          * On some systems, we very sporadically observe that the first TLBs
4855          * used by the CS may be stale, despite us poking the TLB reset. If
4856          * we hold the forcewake during initialisation these problems
4857          * just magically go away.
4858          */
4859         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4860
4861         ret = i915_gem_init_userptr(dev);
4862         if (ret)
4863                 goto out_unlock;
4864
4865         i915_gem_init_global_gtt(dev);
4866
4867         ret = i915_gem_context_init(dev);
4868         if (ret)
4869                 goto out_unlock;
4870
4871         ret = dev_priv->gt.init_rings(dev);
4872         if (ret)
4873                 goto out_unlock;
4874
4875         ret = i915_gem_init_hw(dev);
4876         if (ret == -EIO) {
4877                 /* Allow ring initialisation to fail by marking the GPU as
4878                  * wedged. But we only want to do this where the GPU is angry,
4879                  * for all other failure, such as an allocation failure, bail.
4880                  */
4881                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4882                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4883                 ret = 0;
4884         }
4885
4886 out_unlock:
4887         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4888         mutex_unlock(&dev->struct_mutex);
4889
4890         return ret;
4891 }
4892
4893 void
4894 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4895 {
4896         struct drm_i915_private *dev_priv = dev->dev_private;
4897         struct intel_engine_cs *ring;
4898         int i;
4899
4900         for_each_ring(ring, dev_priv, i)
4901                 dev_priv->gt.cleanup_ring(ring);
4902
4903     if (i915.enable_execlists)
4904             /*
4905              * Neither the BIOS, ourselves or any other kernel
4906              * expects the system to be in execlists mode on startup,
4907              * so we need to reset the GPU back to legacy mode.
4908              */
4909             intel_gpu_reset(dev);
4910 }
4911
4912 static void
4913 init_ring_lists(struct intel_engine_cs *ring)
4914 {
4915         INIT_LIST_HEAD(&ring->active_list);
4916         INIT_LIST_HEAD(&ring->request_list);
4917 }
4918
4919 void
4920 i915_gem_load(struct drm_device *dev)
4921 {
4922         struct drm_i915_private *dev_priv = dev->dev_private;
4923         int i;
4924
4925         dev_priv->objects =
4926                 kmem_cache_create("i915_gem_object",
4927                                   sizeof(struct drm_i915_gem_object), 0,
4928                                   SLAB_HWCACHE_ALIGN,
4929                                   NULL);
4930         dev_priv->vmas =
4931                 kmem_cache_create("i915_gem_vma",
4932                                   sizeof(struct i915_vma), 0,
4933                                   SLAB_HWCACHE_ALIGN,
4934                                   NULL);
4935         dev_priv->requests =
4936                 kmem_cache_create("i915_gem_request",
4937                                   sizeof(struct drm_i915_gem_request), 0,
4938                                   SLAB_HWCACHE_ALIGN,
4939                                   NULL);
4940
4941         INIT_LIST_HEAD(&dev_priv->vm_list);
4942         INIT_LIST_HEAD(&dev_priv->context_list);
4943         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4944         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4945         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4946         for (i = 0; i < I915_NUM_RINGS; i++)
4947                 init_ring_lists(&dev_priv->ring[i]);
4948         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4949                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4950         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4951                           i915_gem_retire_work_handler);
4952         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4953                           i915_gem_idle_work_handler);
4954         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4955
4956         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4957
4958         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4959                 dev_priv->num_fence_regs = 32;
4960         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4961                 dev_priv->num_fence_regs = 16;
4962         else
4963                 dev_priv->num_fence_regs = 8;
4964
4965         if (intel_vgpu_active(dev))
4966                 dev_priv->num_fence_regs =
4967                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4968
4969         /*
4970          * Set initial sequence number for requests.
4971          * Using this number allows the wraparound to happen early,
4972          * catching any obvious problems.
4973          */
4974         dev_priv->next_seqno = ((u32)~0 - 0x1100);
4975         dev_priv->last_seqno = ((u32)~0 - 0x1101);
4976
4977         /* Initialize fence registers to zero */
4978         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4979         i915_gem_restore_fences(dev);
4980
4981         i915_gem_detect_bit_6_swizzle(dev);
4982         init_waitqueue_head(&dev_priv->pending_flip_queue);
4983
4984         dev_priv->mm.interruptible = true;
4985
4986         i915_gem_shrinker_init(dev_priv);
4987
4988         mutex_init(&dev_priv->fb_tracking.lock);
4989 }
4990
4991 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4992 {
4993         struct drm_i915_file_private *file_priv = file->driver_priv;
4994
4995         /* Clean up our request list when the client is going away, so that
4996          * later retire_requests won't dereference our soon-to-be-gone
4997          * file_priv.
4998          */
4999         spin_lock(&file_priv->mm.lock);
5000         while (!list_empty(&file_priv->mm.request_list)) {
5001                 struct drm_i915_gem_request *request;
5002
5003                 request = list_first_entry(&file_priv->mm.request_list,
5004                                            struct drm_i915_gem_request,
5005                                            client_list);
5006                 list_del(&request->client_list);
5007                 request->file_priv = NULL;
5008         }
5009         spin_unlock(&file_priv->mm.lock);
5010
5011         if (!list_empty(&file_priv->rps.link)) {
5012                 spin_lock(&to_i915(dev)->rps.client_lock);
5013                 list_del(&file_priv->rps.link);
5014                 spin_unlock(&to_i915(dev)->rps.client_lock);
5015         }
5016 }
5017
5018 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5019 {
5020         struct drm_i915_file_private *file_priv;
5021         int ret;
5022
5023         DRM_DEBUG_DRIVER("\n");
5024
5025         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5026         if (!file_priv)
5027                 return -ENOMEM;
5028
5029         file->driver_priv = file_priv;
5030         file_priv->dev_priv = dev->dev_private;
5031         file_priv->file = file;
5032         INIT_LIST_HEAD(&file_priv->rps.link);
5033
5034         spin_lock_init(&file_priv->mm.lock);
5035         INIT_LIST_HEAD(&file_priv->mm.request_list);
5036
5037         ret = i915_gem_context_open(dev, file);
5038         if (ret)
5039                 kfree(file_priv);
5040
5041         return ret;
5042 }
5043
5044 /**
5045  * i915_gem_track_fb - update frontbuffer tracking
5046  * @old: current GEM buffer for the frontbuffer slots
5047  * @new: new GEM buffer for the frontbuffer slots
5048  * @frontbuffer_bits: bitmask of frontbuffer slots
5049  *
5050  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5051  * from @old and setting them in @new. Both @old and @new can be NULL.
5052  */
5053 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5054                        struct drm_i915_gem_object *new,
5055                        unsigned frontbuffer_bits)
5056 {
5057         if (old) {
5058                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5059                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5060                 old->frontbuffer_bits &= ~frontbuffer_bits;
5061         }
5062
5063         if (new) {
5064                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5065                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5066                 new->frontbuffer_bits |= frontbuffer_bits;
5067         }
5068 }
5069
5070 /* All the new VM stuff */
5071 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5072                         struct i915_address_space *vm)
5073 {
5074         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5075         struct i915_vma *vma;
5076
5077         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5078
5079         list_for_each_entry(vma, &o->vma_list, vma_link) {
5080                 if (i915_is_ggtt(vma->vm) &&
5081                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5082                         continue;
5083                 if (vma->vm == vm)
5084                         return vma->node.start;
5085         }
5086
5087         WARN(1, "%s vma for this object not found.\n",
5088              i915_is_ggtt(vm) ? "global" : "ppgtt");
5089         return -1;
5090 }
5091
5092 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5093                                   const struct i915_ggtt_view *view)
5094 {
5095         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5096         struct i915_vma *vma;
5097
5098         list_for_each_entry(vma, &o->vma_list, vma_link)
5099                 if (vma->vm == ggtt &&
5100                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5101                         return vma->node.start;
5102
5103         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5104         return -1;
5105 }
5106
5107 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5108                         struct i915_address_space *vm)
5109 {
5110         struct i915_vma *vma;
5111
5112         list_for_each_entry(vma, &o->vma_list, vma_link) {
5113                 if (i915_is_ggtt(vma->vm) &&
5114                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5115                         continue;
5116                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5117                         return true;
5118         }
5119
5120         return false;
5121 }
5122
5123 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5124                                   const struct i915_ggtt_view *view)
5125 {
5126         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5127         struct i915_vma *vma;
5128
5129         list_for_each_entry(vma, &o->vma_list, vma_link)
5130                 if (vma->vm == ggtt &&
5131                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5132                     drm_mm_node_allocated(&vma->node))
5133                         return true;
5134
5135         return false;
5136 }
5137
5138 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5139 {
5140         struct i915_vma *vma;
5141
5142         list_for_each_entry(vma, &o->vma_list, vma_link)
5143                 if (drm_mm_node_allocated(&vma->node))
5144                         return true;
5145
5146         return false;
5147 }
5148
5149 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5150                                 struct i915_address_space *vm)
5151 {
5152         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5153         struct i915_vma *vma;
5154
5155         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5156
5157         BUG_ON(list_empty(&o->vma_list));
5158
5159         list_for_each_entry(vma, &o->vma_list, vma_link) {
5160                 if (i915_is_ggtt(vma->vm) &&
5161                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5162                         continue;
5163                 if (vma->vm == vm)
5164                         return vma->node.size;
5165         }
5166         return 0;
5167 }
5168
5169 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5170 {
5171         struct i915_vma *vma;
5172         list_for_each_entry(vma, &obj->vma_list, vma_link)
5173                 if (vma->pin_count > 0)
5174                         return true;
5175
5176         return false;
5177 }
5178
5179 /* Allocate a new GEM object and fill it with the supplied data */
5180 struct drm_i915_gem_object *
5181 i915_gem_object_create_from_data(struct drm_device *dev,
5182                                  const void *data, size_t size)
5183 {
5184         struct drm_i915_gem_object *obj;
5185         struct sg_table *sg;
5186         size_t bytes;
5187         int ret;
5188
5189         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5190         if (IS_ERR_OR_NULL(obj))
5191                 return obj;
5192
5193         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5194         if (ret)
5195                 goto fail;
5196
5197         ret = i915_gem_object_get_pages(obj);
5198         if (ret)
5199                 goto fail;
5200
5201         i915_gem_object_pin_pages(obj);
5202         sg = obj->pages;
5203         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5204         i915_gem_object_unpin_pages(obj);
5205
5206         if (WARN_ON(bytes != size)) {
5207                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5208                 ret = -EFAULT;
5209                 goto fail;
5210         }
5211
5212         return obj;
5213
5214 fail:
5215         drm_gem_object_unreference(&obj->base);
5216         return ERR_PTR(ret);
5217 }