]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
bc73f98c3631f54b2aa74d9787764148c3ea6429
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct completion *x = &dev_priv->error_completion;
94         unsigned long flags;
95         int ret;
96
97         if (!atomic_read(&dev_priv->mm.wedged))
98                 return 0;
99
100         /*
101          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102          * userspace. If it takes that long something really bad is going on and
103          * we should simply try to bail out and fail as gracefully as possible.
104          */
105         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106         if (ret == 0) {
107                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108                 return -EIO;
109         } else if (ret < 0) {
110                 return ret;
111         }
112
113         if (atomic_read(&dev_priv->mm.wedged)) {
114                 /* GPU is hung, bump the completion count to account for
115                  * the token we just consumed so that we never hit zero and
116                  * end up waiting upon a subsequent completion event that
117                  * will never happen.
118                  */
119                 spin_lock_irqsave(&x->wait.lock, flags);
120                 x->done++;
121                 spin_unlock_irqrestore(&x->wait.lock, flags);
122         }
123         return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128         int ret;
129
130         ret = i915_gem_wait_for_error(dev);
131         if (ret)
132                 return ret;
133
134         ret = mutex_lock_interruptible(&dev->struct_mutex);
135         if (ret)
136                 return ret;
137
138         WARN_ON(i915_verify_lists(dev));
139         return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145         return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150                     struct drm_file *file)
151 {
152         struct drm_i915_gem_init *args = data;
153
154         if (drm_core_check_feature(dev, DRIVER_MODESET))
155                 return -ENODEV;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         /* GEM with user mode setting was never supported on ilk and later. */
162         if (INTEL_INFO(dev)->gen >= 5)
163                 return -ENODEV;
164
165         mutex_lock(&dev->struct_mutex);
166         i915_gem_init_global_gtt(dev, args->gtt_start,
167                                  args->gtt_end, args->gtt_end);
168         mutex_unlock(&dev->struct_mutex);
169
170         return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175                             struct drm_file *file)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         struct drm_i915_gem_get_aperture *args = data;
179         struct drm_i915_gem_object *obj;
180         size_t pinned;
181
182         pinned = 0;
183         mutex_lock(&dev->struct_mutex);
184         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185                 if (obj->pin_count)
186                         pinned += obj->gtt_space->size;
187         mutex_unlock(&dev->struct_mutex);
188
189         args->aper_size = dev_priv->mm.gtt_total;
190         args->aper_available_size = args->aper_size - pinned;
191
192         return 0;
193 }
194
195 void *i915_gem_object_alloc(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
199 }
200
201 void i915_gem_object_free(struct drm_i915_gem_object *obj)
202 {
203         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
204         kmem_cache_free(dev_priv->slab, obj);
205 }
206
207 static int
208 i915_gem_create(struct drm_file *file,
209                 struct drm_device *dev,
210                 uint64_t size,
211                 uint32_t *handle_p)
212 {
213         struct drm_i915_gem_object *obj;
214         int ret;
215         u32 handle;
216
217         size = roundup(size, PAGE_SIZE);
218         if (size == 0)
219                 return -EINVAL;
220
221         /* Allocate the new object */
222         obj = i915_gem_alloc_object(dev, size);
223         if (obj == NULL)
224                 return -ENOMEM;
225
226         ret = drm_gem_handle_create(file, &obj->base, &handle);
227         if (ret) {
228                 drm_gem_object_release(&obj->base);
229                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
230                 i915_gem_object_free(obj);
231                 return ret;
232         }
233
234         /* drop reference from allocate - handle holds it now */
235         drm_gem_object_unreference(&obj->base);
236         trace_i915_gem_object_create(obj);
237
238         *handle_p = handle;
239         return 0;
240 }
241
242 int
243 i915_gem_dumb_create(struct drm_file *file,
244                      struct drm_device *dev,
245                      struct drm_mode_create_dumb *args)
246 {
247         /* have to work out size/pitch and return them */
248         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
249         args->size = args->pitch * args->height;
250         return i915_gem_create(file, dev,
251                                args->size, &args->handle);
252 }
253
254 int i915_gem_dumb_destroy(struct drm_file *file,
255                           struct drm_device *dev,
256                           uint32_t handle)
257 {
258         return drm_gem_handle_delete(file, handle);
259 }
260
261 /**
262  * Creates a new mm object and returns a handle to it.
263  */
264 int
265 i915_gem_create_ioctl(struct drm_device *dev, void *data,
266                       struct drm_file *file)
267 {
268         struct drm_i915_gem_create *args = data;
269
270         return i915_gem_create(file, dev,
271                                args->size, &args->handle);
272 }
273
274 static inline int
275 __copy_to_user_swizzled(char __user *cpu_vaddr,
276                         const char *gpu_vaddr, int gpu_offset,
277                         int length)
278 {
279         int ret, cpu_offset = 0;
280
281         while (length > 0) {
282                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
283                 int this_length = min(cacheline_end - gpu_offset, length);
284                 int swizzled_gpu_offset = gpu_offset ^ 64;
285
286                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
287                                      gpu_vaddr + swizzled_gpu_offset,
288                                      this_length);
289                 if (ret)
290                         return ret + length;
291
292                 cpu_offset += this_length;
293                 gpu_offset += this_length;
294                 length -= this_length;
295         }
296
297         return 0;
298 }
299
300 static inline int
301 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
302                           const char __user *cpu_vaddr,
303                           int length)
304 {
305         int ret, cpu_offset = 0;
306
307         while (length > 0) {
308                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
309                 int this_length = min(cacheline_end - gpu_offset, length);
310                 int swizzled_gpu_offset = gpu_offset ^ 64;
311
312                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
313                                        cpu_vaddr + cpu_offset,
314                                        this_length);
315                 if (ret)
316                         return ret + length;
317
318                 cpu_offset += this_length;
319                 gpu_offset += this_length;
320                 length -= this_length;
321         }
322
323         return 0;
324 }
325
326 /* Per-page copy function for the shmem pread fastpath.
327  * Flushes invalid cachelines before reading the target if
328  * needs_clflush is set. */
329 static int
330 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
331                  char __user *user_data,
332                  bool page_do_bit17_swizzling, bool needs_clflush)
333 {
334         char *vaddr;
335         int ret;
336
337         if (unlikely(page_do_bit17_swizzling))
338                 return -EINVAL;
339
340         vaddr = kmap_atomic(page);
341         if (needs_clflush)
342                 drm_clflush_virt_range(vaddr + shmem_page_offset,
343                                        page_length);
344         ret = __copy_to_user_inatomic(user_data,
345                                       vaddr + shmem_page_offset,
346                                       page_length);
347         kunmap_atomic(vaddr);
348
349         return ret ? -EFAULT : 0;
350 }
351
352 static void
353 shmem_clflush_swizzled_range(char *addr, unsigned long length,
354                              bool swizzled)
355 {
356         if (unlikely(swizzled)) {
357                 unsigned long start = (unsigned long) addr;
358                 unsigned long end = (unsigned long) addr + length;
359
360                 /* For swizzling simply ensure that we always flush both
361                  * channels. Lame, but simple and it works. Swizzled
362                  * pwrite/pread is far from a hotpath - current userspace
363                  * doesn't use it at all. */
364                 start = round_down(start, 128);
365                 end = round_up(end, 128);
366
367                 drm_clflush_virt_range((void *)start, end - start);
368         } else {
369                 drm_clflush_virt_range(addr, length);
370         }
371
372 }
373
374 /* Only difference to the fast-path function is that this can handle bit17
375  * and uses non-atomic copy and kmap functions. */
376 static int
377 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
378                  char __user *user_data,
379                  bool page_do_bit17_swizzling, bool needs_clflush)
380 {
381         char *vaddr;
382         int ret;
383
384         vaddr = kmap(page);
385         if (needs_clflush)
386                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
387                                              page_length,
388                                              page_do_bit17_swizzling);
389
390         if (page_do_bit17_swizzling)
391                 ret = __copy_to_user_swizzled(user_data,
392                                               vaddr, shmem_page_offset,
393                                               page_length);
394         else
395                 ret = __copy_to_user(user_data,
396                                      vaddr + shmem_page_offset,
397                                      page_length);
398         kunmap(page);
399
400         return ret ? - EFAULT : 0;
401 }
402
403 static int
404 i915_gem_shmem_pread(struct drm_device *dev,
405                      struct drm_i915_gem_object *obj,
406                      struct drm_i915_gem_pread *args,
407                      struct drm_file *file)
408 {
409         char __user *user_data;
410         ssize_t remain;
411         loff_t offset;
412         int shmem_page_offset, page_length, ret = 0;
413         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
414         int prefaulted = 0;
415         int needs_clflush = 0;
416         struct scatterlist *sg;
417         int i;
418
419         user_data = (char __user *) (uintptr_t) args->data_ptr;
420         remain = args->size;
421
422         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
423
424         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
425                 /* If we're not in the cpu read domain, set ourself into the gtt
426                  * read domain and manually flush cachelines (if required). This
427                  * optimizes for the case when the gpu will dirty the data
428                  * anyway again before the next pread happens. */
429                 if (obj->cache_level == I915_CACHE_NONE)
430                         needs_clflush = 1;
431                 if (obj->gtt_space) {
432                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
433                         if (ret)
434                                 return ret;
435                 }
436         }
437
438         ret = i915_gem_object_get_pages(obj);
439         if (ret)
440                 return ret;
441
442         i915_gem_object_pin_pages(obj);
443
444         offset = args->offset;
445
446         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
447                 struct page *page;
448
449                 if (i < offset >> PAGE_SHIFT)
450                         continue;
451
452                 if (remain <= 0)
453                         break;
454
455                 /* Operation in this page
456                  *
457                  * shmem_page_offset = offset within page in shmem file
458                  * page_length = bytes to copy for this page
459                  */
460                 shmem_page_offset = offset_in_page(offset);
461                 page_length = remain;
462                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463                         page_length = PAGE_SIZE - shmem_page_offset;
464
465                 page = sg_page(sg);
466                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
467                         (page_to_phys(page) & (1 << 17)) != 0;
468
469                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
470                                        user_data, page_do_bit17_swizzling,
471                                        needs_clflush);
472                 if (ret == 0)
473                         goto next_page;
474
475                 mutex_unlock(&dev->struct_mutex);
476
477                 if (!prefaulted) {
478                         ret = fault_in_multipages_writeable(user_data, remain);
479                         /* Userspace is tricking us, but we've already clobbered
480                          * its pages with the prefault and promised to write the
481                          * data up to the first fault. Hence ignore any errors
482                          * and just continue. */
483                         (void)ret;
484                         prefaulted = 1;
485                 }
486
487                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
488                                        user_data, page_do_bit17_swizzling,
489                                        needs_clflush);
490
491                 mutex_lock(&dev->struct_mutex);
492
493 next_page:
494                 mark_page_accessed(page);
495
496                 if (ret)
497                         goto out;
498
499                 remain -= page_length;
500                 user_data += page_length;
501                 offset += page_length;
502         }
503
504 out:
505         i915_gem_object_unpin_pages(obj);
506
507         return ret;
508 }
509
510 /**
511  * Reads data from the object referenced by handle.
512  *
513  * On error, the contents of *data are undefined.
514  */
515 int
516 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
517                      struct drm_file *file)
518 {
519         struct drm_i915_gem_pread *args = data;
520         struct drm_i915_gem_object *obj;
521         int ret = 0;
522
523         if (args->size == 0)
524                 return 0;
525
526         if (!access_ok(VERIFY_WRITE,
527                        (char __user *)(uintptr_t)args->data_ptr,
528                        args->size))
529                 return -EFAULT;
530
531         ret = i915_mutex_lock_interruptible(dev);
532         if (ret)
533                 return ret;
534
535         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
536         if (&obj->base == NULL) {
537                 ret = -ENOENT;
538                 goto unlock;
539         }
540
541         /* Bounds check source.  */
542         if (args->offset > obj->base.size ||
543             args->size > obj->base.size - args->offset) {
544                 ret = -EINVAL;
545                 goto out;
546         }
547
548         /* prime objects have no backing filp to GEM pread/pwrite
549          * pages from.
550          */
551         if (!obj->base.filp) {
552                 ret = -EINVAL;
553                 goto out;
554         }
555
556         trace_i915_gem_object_pread(obj, args->offset, args->size);
557
558         ret = i915_gem_shmem_pread(dev, obj, args, file);
559
560 out:
561         drm_gem_object_unreference(&obj->base);
562 unlock:
563         mutex_unlock(&dev->struct_mutex);
564         return ret;
565 }
566
567 /* This is the fast write path which cannot handle
568  * page faults in the source data
569  */
570
571 static inline int
572 fast_user_write(struct io_mapping *mapping,
573                 loff_t page_base, int page_offset,
574                 char __user *user_data,
575                 int length)
576 {
577         void __iomem *vaddr_atomic;
578         void *vaddr;
579         unsigned long unwritten;
580
581         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
582         /* We can use the cpu mem copy function because this is X86. */
583         vaddr = (void __force*)vaddr_atomic + page_offset;
584         unwritten = __copy_from_user_inatomic_nocache(vaddr,
585                                                       user_data, length);
586         io_mapping_unmap_atomic(vaddr_atomic);
587         return unwritten;
588 }
589
590 /**
591  * This is the fast pwrite path, where we copy the data directly from the
592  * user into the GTT, uncached.
593  */
594 static int
595 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
596                          struct drm_i915_gem_object *obj,
597                          struct drm_i915_gem_pwrite *args,
598                          struct drm_file *file)
599 {
600         drm_i915_private_t *dev_priv = dev->dev_private;
601         ssize_t remain;
602         loff_t offset, page_base;
603         char __user *user_data;
604         int page_offset, page_length, ret;
605
606         ret = i915_gem_object_pin(obj, 0, true, true);
607         if (ret)
608                 goto out;
609
610         ret = i915_gem_object_set_to_gtt_domain(obj, true);
611         if (ret)
612                 goto out_unpin;
613
614         ret = i915_gem_object_put_fence(obj);
615         if (ret)
616                 goto out_unpin;
617
618         user_data = (char __user *) (uintptr_t) args->data_ptr;
619         remain = args->size;
620
621         offset = obj->gtt_offset + args->offset;
622
623         while (remain > 0) {
624                 /* Operation in this page
625                  *
626                  * page_base = page offset within aperture
627                  * page_offset = offset within page
628                  * page_length = bytes to copy for this page
629                  */
630                 page_base = offset & PAGE_MASK;
631                 page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((page_offset + remain) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - page_offset;
635
636                 /* If we get a fault while copying data, then (presumably) our
637                  * source page isn't available.  Return the error and we'll
638                  * retry in the slow path.
639                  */
640                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
641                                     page_offset, user_data, page_length)) {
642                         ret = -EFAULT;
643                         goto out_unpin;
644                 }
645
646                 remain -= page_length;
647                 user_data += page_length;
648                 offset += page_length;
649         }
650
651 out_unpin:
652         i915_gem_object_unpin(obj);
653 out:
654         return ret;
655 }
656
657 /* Per-page copy function for the shmem pwrite fastpath.
658  * Flushes invalid cachelines before writing to the target if
659  * needs_clflush_before is set and flushes out any written cachelines after
660  * writing if needs_clflush is set. */
661 static int
662 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
663                   char __user *user_data,
664                   bool page_do_bit17_swizzling,
665                   bool needs_clflush_before,
666                   bool needs_clflush_after)
667 {
668         char *vaddr;
669         int ret;
670
671         if (unlikely(page_do_bit17_swizzling))
672                 return -EINVAL;
673
674         vaddr = kmap_atomic(page);
675         if (needs_clflush_before)
676                 drm_clflush_virt_range(vaddr + shmem_page_offset,
677                                        page_length);
678         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
679                                                 user_data,
680                                                 page_length);
681         if (needs_clflush_after)
682                 drm_clflush_virt_range(vaddr + shmem_page_offset,
683                                        page_length);
684         kunmap_atomic(vaddr);
685
686         return ret ? -EFAULT : 0;
687 }
688
689 /* Only difference to the fast-path function is that this can handle bit17
690  * and uses non-atomic copy and kmap functions. */
691 static int
692 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
693                   char __user *user_data,
694                   bool page_do_bit17_swizzling,
695                   bool needs_clflush_before,
696                   bool needs_clflush_after)
697 {
698         char *vaddr;
699         int ret;
700
701         vaddr = kmap(page);
702         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
703                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
704                                              page_length,
705                                              page_do_bit17_swizzling);
706         if (page_do_bit17_swizzling)
707                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
708                                                 user_data,
709                                                 page_length);
710         else
711                 ret = __copy_from_user(vaddr + shmem_page_offset,
712                                        user_data,
713                                        page_length);
714         if (needs_clflush_after)
715                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
716                                              page_length,
717                                              page_do_bit17_swizzling);
718         kunmap(page);
719
720         return ret ? -EFAULT : 0;
721 }
722
723 static int
724 i915_gem_shmem_pwrite(struct drm_device *dev,
725                       struct drm_i915_gem_object *obj,
726                       struct drm_i915_gem_pwrite *args,
727                       struct drm_file *file)
728 {
729         ssize_t remain;
730         loff_t offset;
731         char __user *user_data;
732         int shmem_page_offset, page_length, ret = 0;
733         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
734         int hit_slowpath = 0;
735         int needs_clflush_after = 0;
736         int needs_clflush_before = 0;
737         int i;
738         struct scatterlist *sg;
739
740         user_data = (char __user *) (uintptr_t) args->data_ptr;
741         remain = args->size;
742
743         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
744
745         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746                 /* If we're not in the cpu write domain, set ourself into the gtt
747                  * write domain and manually flush cachelines (if required). This
748                  * optimizes for the case when the gpu will use the data
749                  * right away and we therefore have to clflush anyway. */
750                 if (obj->cache_level == I915_CACHE_NONE)
751                         needs_clflush_after = 1;
752                 if (obj->gtt_space) {
753                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
754                         if (ret)
755                                 return ret;
756                 }
757         }
758         /* Same trick applies for invalidate partially written cachelines before
759          * writing.  */
760         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761             && obj->cache_level == I915_CACHE_NONE)
762                 needs_clflush_before = 1;
763
764         ret = i915_gem_object_get_pages(obj);
765         if (ret)
766                 return ret;
767
768         i915_gem_object_pin_pages(obj);
769
770         offset = args->offset;
771         obj->dirty = 1;
772
773         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
774                 struct page *page;
775                 int partial_cacheline_write;
776
777                 if (i < offset >> PAGE_SHIFT)
778                         continue;
779
780                 if (remain <= 0)
781                         break;
782
783                 /* Operation in this page
784                  *
785                  * shmem_page_offset = offset within page in shmem file
786                  * page_length = bytes to copy for this page
787                  */
788                 shmem_page_offset = offset_in_page(offset);
789
790                 page_length = remain;
791                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792                         page_length = PAGE_SIZE - shmem_page_offset;
793
794                 /* If we don't overwrite a cacheline completely we need to be
795                  * careful to have up-to-date data by first clflushing. Don't
796                  * overcomplicate things and flush the entire patch. */
797                 partial_cacheline_write = needs_clflush_before &&
798                         ((shmem_page_offset | page_length)
799                                 & (boot_cpu_data.x86_clflush_size - 1));
800
801                 page = sg_page(sg);
802                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803                         (page_to_phys(page) & (1 << 17)) != 0;
804
805                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806                                         user_data, page_do_bit17_swizzling,
807                                         partial_cacheline_write,
808                                         needs_clflush_after);
809                 if (ret == 0)
810                         goto next_page;
811
812                 hit_slowpath = 1;
813                 mutex_unlock(&dev->struct_mutex);
814                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815                                         user_data, page_do_bit17_swizzling,
816                                         partial_cacheline_write,
817                                         needs_clflush_after);
818
819                 mutex_lock(&dev->struct_mutex);
820
821 next_page:
822                 set_page_dirty(page);
823                 mark_page_accessed(page);
824
825                 if (ret)
826                         goto out;
827
828                 remain -= page_length;
829                 user_data += page_length;
830                 offset += page_length;
831         }
832
833 out:
834         i915_gem_object_unpin_pages(obj);
835
836         if (hit_slowpath) {
837                 /*
838                  * Fixup: Flush cpu caches in case we didn't flush the dirty
839                  * cachelines in-line while writing and the object moved
840                  * out of the cpu write domain while we've dropped the lock.
841                  */
842                 if (!needs_clflush_after &&
843                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
844                         i915_gem_clflush_object(obj);
845                         i915_gem_chipset_flush(dev);
846                 }
847         }
848
849         if (needs_clflush_after)
850                 i915_gem_chipset_flush(dev);
851
852         return ret;
853 }
854
855 /**
856  * Writes data to the object referenced by handle.
857  *
858  * On error, the contents of the buffer that were to be modified are undefined.
859  */
860 int
861 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
862                       struct drm_file *file)
863 {
864         struct drm_i915_gem_pwrite *args = data;
865         struct drm_i915_gem_object *obj;
866         int ret;
867
868         if (args->size == 0)
869                 return 0;
870
871         if (!access_ok(VERIFY_READ,
872                        (char __user *)(uintptr_t)args->data_ptr,
873                        args->size))
874                 return -EFAULT;
875
876         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
877                                            args->size);
878         if (ret)
879                 return -EFAULT;
880
881         ret = i915_mutex_lock_interruptible(dev);
882         if (ret)
883                 return ret;
884
885         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
886         if (&obj->base == NULL) {
887                 ret = -ENOENT;
888                 goto unlock;
889         }
890
891         /* Bounds check destination. */
892         if (args->offset > obj->base.size ||
893             args->size > obj->base.size - args->offset) {
894                 ret = -EINVAL;
895                 goto out;
896         }
897
898         /* prime objects have no backing filp to GEM pread/pwrite
899          * pages from.
900          */
901         if (!obj->base.filp) {
902                 ret = -EINVAL;
903                 goto out;
904         }
905
906         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
907
908         ret = -EFAULT;
909         /* We can only do the GTT pwrite on untiled buffers, as otherwise
910          * it would end up going through the fenced access, and we'll get
911          * different detiling behavior between reading and writing.
912          * pread/pwrite currently are reading and writing from the CPU
913          * perspective, requiring manual detiling by the client.
914          */
915         if (obj->phys_obj) {
916                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
917                 goto out;
918         }
919
920         if (obj->cache_level == I915_CACHE_NONE &&
921             obj->tiling_mode == I915_TILING_NONE &&
922             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
923                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
924                 /* Note that the gtt paths might fail with non-page-backed user
925                  * pointers (e.g. gtt mappings when moving data between
926                  * textures). Fallback to the shmem path in that case. */
927         }
928
929         if (ret == -EFAULT || ret == -ENOSPC)
930                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
931
932 out:
933         drm_gem_object_unreference(&obj->base);
934 unlock:
935         mutex_unlock(&dev->struct_mutex);
936         return ret;
937 }
938
939 int
940 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
941                      bool interruptible)
942 {
943         if (atomic_read(&dev_priv->mm.wedged)) {
944                 struct completion *x = &dev_priv->error_completion;
945                 bool recovery_complete;
946                 unsigned long flags;
947
948                 /* Give the error handler a chance to run. */
949                 spin_lock_irqsave(&x->wait.lock, flags);
950                 recovery_complete = x->done > 0;
951                 spin_unlock_irqrestore(&x->wait.lock, flags);
952
953                 /* Non-interruptible callers can't handle -EAGAIN, hence return
954                  * -EIO unconditionally for these. */
955                 if (!interruptible)
956                         return -EIO;
957
958                 /* Recovery complete, but still wedged means reset failure. */
959                 if (recovery_complete)
960                         return -EIO;
961
962                 return -EAGAIN;
963         }
964
965         return 0;
966 }
967
968 /*
969  * Compare seqno against outstanding lazy request. Emit a request if they are
970  * equal.
971  */
972 static int
973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974 {
975         int ret;
976
977         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979         ret = 0;
980         if (seqno == ring->outstanding_lazy_request)
981                 ret = i915_add_request(ring, NULL, NULL);
982
983         return ret;
984 }
985
986 /**
987  * __wait_seqno - wait until execution of seqno has finished
988  * @ring: the ring expected to report seqno
989  * @seqno: duh!
990  * @interruptible: do an interruptible wait (normally yes)
991  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
992  *
993  * Returns 0 if the seqno was found within the alloted time. Else returns the
994  * errno with remaining time filled in timeout argument.
995  */
996 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
997                         bool interruptible, struct timespec *timeout)
998 {
999         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1000         struct timespec before, now, wait_time={1,0};
1001         unsigned long timeout_jiffies;
1002         long end;
1003         bool wait_forever = true;
1004         int ret;
1005
1006         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007                 return 0;
1008
1009         trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011         if (timeout != NULL) {
1012                 wait_time = *timeout;
1013                 wait_forever = false;
1014         }
1015
1016         timeout_jiffies = timespec_to_jiffies(&wait_time);
1017
1018         if (WARN_ON(!ring->irq_get(ring)))
1019                 return -ENODEV;
1020
1021         /* Record current time in case interrupted by signal, or wedged * */
1022         getrawmonotonic(&before);
1023
1024 #define EXIT_COND \
1025         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026         atomic_read(&dev_priv->mm.wedged))
1027         do {
1028                 if (interruptible)
1029                         end = wait_event_interruptible_timeout(ring->irq_queue,
1030                                                                EXIT_COND,
1031                                                                timeout_jiffies);
1032                 else
1033                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034                                                  timeout_jiffies);
1035
1036                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1037                 if (ret)
1038                         end = ret;
1039         } while (end == 0 && wait_forever);
1040
1041         getrawmonotonic(&now);
1042
1043         ring->irq_put(ring);
1044         trace_i915_gem_request_wait_end(ring, seqno);
1045 #undef EXIT_COND
1046
1047         if (timeout) {
1048                 struct timespec sleep_time = timespec_sub(now, before);
1049                 *timeout = timespec_sub(*timeout, sleep_time);
1050         }
1051
1052         switch (end) {
1053         case -EIO:
1054         case -EAGAIN: /* Wedged */
1055         case -ERESTARTSYS: /* Signal */
1056                 return (int)end;
1057         case 0: /* Timeout */
1058                 if (timeout)
1059                         set_normalized_timespec(timeout, 0, 0);
1060                 return -ETIME;
1061         default: /* Completed */
1062                 WARN_ON(end < 0); /* We're not aware of other errors */
1063                 return 0;
1064         }
1065 }
1066
1067 /**
1068  * Waits for a sequence number to be signaled, and cleans up the
1069  * request and object lists appropriately for that event.
1070  */
1071 int
1072 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1073 {
1074         struct drm_device *dev = ring->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076         bool interruptible = dev_priv->mm.interruptible;
1077         int ret;
1078
1079         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1080         BUG_ON(seqno == 0);
1081
1082         ret = i915_gem_check_wedge(dev_priv, interruptible);
1083         if (ret)
1084                 return ret;
1085
1086         ret = i915_gem_check_olr(ring, seqno);
1087         if (ret)
1088                 return ret;
1089
1090         return __wait_seqno(ring, seqno, interruptible, NULL);
1091 }
1092
1093 /**
1094  * Ensures that all rendering to the object has completed and the object is
1095  * safe to unbind from the GTT or access from the CPU.
1096  */
1097 static __must_check int
1098 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099                                bool readonly)
1100 {
1101         struct intel_ring_buffer *ring = obj->ring;
1102         u32 seqno;
1103         int ret;
1104
1105         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106         if (seqno == 0)
1107                 return 0;
1108
1109         ret = i915_wait_seqno(ring, seqno);
1110         if (ret)
1111                 return ret;
1112
1113         i915_gem_retire_requests_ring(ring);
1114
1115         /* Manually manage the write flush as we may have not yet
1116          * retired the buffer.
1117          */
1118         if (obj->last_write_seqno &&
1119             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120                 obj->last_write_seqno = 0;
1121                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122         }
1123
1124         return 0;
1125 }
1126
1127 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1128  * as the object state may change during this call.
1129  */
1130 static __must_check int
1131 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132                                             bool readonly)
1133 {
1134         struct drm_device *dev = obj->base.dev;
1135         struct drm_i915_private *dev_priv = dev->dev_private;
1136         struct intel_ring_buffer *ring = obj->ring;
1137         u32 seqno;
1138         int ret;
1139
1140         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1141         BUG_ON(!dev_priv->mm.interruptible);
1142
1143         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1144         if (seqno == 0)
1145                 return 0;
1146
1147         ret = i915_gem_check_wedge(dev_priv, true);
1148         if (ret)
1149                 return ret;
1150
1151         ret = i915_gem_check_olr(ring, seqno);
1152         if (ret)
1153                 return ret;
1154
1155         mutex_unlock(&dev->struct_mutex);
1156         ret = __wait_seqno(ring, seqno, true, NULL);
1157         mutex_lock(&dev->struct_mutex);
1158
1159         i915_gem_retire_requests_ring(ring);
1160
1161         /* Manually manage the write flush as we may have not yet
1162          * retired the buffer.
1163          */
1164         if (obj->last_write_seqno &&
1165             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166                 obj->last_write_seqno = 0;
1167                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168         }
1169
1170         return ret;
1171 }
1172
1173 /**
1174  * Called when user space prepares to use an object with the CPU, either
1175  * through the mmap ioctl's mapping or a GTT mapping.
1176  */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179                           struct drm_file *file)
1180 {
1181         struct drm_i915_gem_set_domain *args = data;
1182         struct drm_i915_gem_object *obj;
1183         uint32_t read_domains = args->read_domains;
1184         uint32_t write_domain = args->write_domain;
1185         int ret;
1186
1187         /* Only handle setting domains to types used by the CPU. */
1188         if (write_domain & I915_GEM_GPU_DOMAINS)
1189                 return -EINVAL;
1190
1191         if (read_domains & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         /* Having something in the write domain implies it's in the read
1195          * domain, and only that read domain.  Enforce that in the request.
1196          */
1197         if (write_domain != 0 && read_domains != write_domain)
1198                 return -EINVAL;
1199
1200         ret = i915_mutex_lock_interruptible(dev);
1201         if (ret)
1202                 return ret;
1203
1204         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205         if (&obj->base == NULL) {
1206                 ret = -ENOENT;
1207                 goto unlock;
1208         }
1209
1210         /* Try to flush the object off the GPU without holding the lock.
1211          * We will repeat the flush holding the lock in the normal manner
1212          * to catch cases where we are gazumped.
1213          */
1214         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215         if (ret)
1216                 goto unref;
1217
1218         if (read_domains & I915_GEM_DOMAIN_GTT) {
1219                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221                 /* Silently promote "you're not bound, there was nothing to do"
1222                  * to success, since the client was just asking us to
1223                  * make sure everything was done.
1224                  */
1225                 if (ret == -EINVAL)
1226                         ret = 0;
1227         } else {
1228                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229         }
1230
1231 unref:
1232         drm_gem_object_unreference(&obj->base);
1233 unlock:
1234         mutex_unlock(&dev->struct_mutex);
1235         return ret;
1236 }
1237
1238 /**
1239  * Called when user space has done writes to this buffer
1240  */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243                          struct drm_file *file)
1244 {
1245         struct drm_i915_gem_sw_finish *args = data;
1246         struct drm_i915_gem_object *obj;
1247         int ret = 0;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Pinned buffers may be scanout, so flush the cache */
1260         if (obj->pin_count)
1261                 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263         drm_gem_object_unreference(&obj->base);
1264 unlock:
1265         mutex_unlock(&dev->struct_mutex);
1266         return ret;
1267 }
1268
1269 /**
1270  * Maps the contents of an object, returning the address it is mapped
1271  * into.
1272  *
1273  * While the mapping holds a reference on the contents of the object, it doesn't
1274  * imply a ref on the object itself.
1275  */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278                     struct drm_file *file)
1279 {
1280         struct drm_i915_gem_mmap *args = data;
1281         struct drm_gem_object *obj;
1282         unsigned long addr;
1283
1284         obj = drm_gem_object_lookup(dev, file, args->handle);
1285         if (obj == NULL)
1286                 return -ENOENT;
1287
1288         /* prime objects have no backing filp to GEM mmap
1289          * pages from.
1290          */
1291         if (!obj->filp) {
1292                 drm_gem_object_unreference_unlocked(obj);
1293                 return -EINVAL;
1294         }
1295
1296         addr = vm_mmap(obj->filp, 0, args->size,
1297                        PROT_READ | PROT_WRITE, MAP_SHARED,
1298                        args->offset);
1299         drm_gem_object_unreference_unlocked(obj);
1300         if (IS_ERR((void *)addr))
1301                 return addr;
1302
1303         args->addr_ptr = (uint64_t) addr;
1304
1305         return 0;
1306 }
1307
1308 /**
1309  * i915_gem_fault - fault a page into the GTT
1310  * vma: VMA in question
1311  * vmf: fault info
1312  *
1313  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314  * from userspace.  The fault handler takes care of binding the object to
1315  * the GTT (if needed), allocating and programming a fence register (again,
1316  * only if needed based on whether the old reg is still valid or the object
1317  * is tiled) and inserting a new PTE into the faulting process.
1318  *
1319  * Note that the faulting process may involve evicting existing objects
1320  * from the GTT and/or fence registers to make room.  So performance may
1321  * suffer if the GTT working set is large or there are few fence registers
1322  * left.
1323  */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327         struct drm_device *dev = obj->base.dev;
1328         drm_i915_private_t *dev_priv = dev->dev_private;
1329         pgoff_t page_offset;
1330         unsigned long pfn;
1331         int ret = 0;
1332         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334         /* We don't use vmf->pgoff since that has the fake offset */
1335         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336                 PAGE_SHIFT;
1337
1338         ret = i915_mutex_lock_interruptible(dev);
1339         if (ret)
1340                 goto out;
1341
1342         trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344         /* Now bind it into the GTT if needed */
1345         ret = i915_gem_object_pin(obj, 0, true, false);
1346         if (ret)
1347                 goto unlock;
1348
1349         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1350         if (ret)
1351                 goto unpin;
1352
1353         ret = i915_gem_object_get_fence(obj);
1354         if (ret)
1355                 goto unpin;
1356
1357         obj->fault_mappable = true;
1358
1359         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1360                 page_offset;
1361
1362         /* Finally, remap it using the new GTT offset */
1363         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1364 unpin:
1365         i915_gem_object_unpin(obj);
1366 unlock:
1367         mutex_unlock(&dev->struct_mutex);
1368 out:
1369         switch (ret) {
1370         case -EIO:
1371                 /* If this -EIO is due to a gpu hang, give the reset code a
1372                  * chance to clean up the mess. Otherwise return the proper
1373                  * SIGBUS. */
1374                 if (!atomic_read(&dev_priv->mm.wedged))
1375                         return VM_FAULT_SIGBUS;
1376         case -EAGAIN:
1377                 /* Give the error handler a chance to run and move the
1378                  * objects off the GPU active list. Next time we service the
1379                  * fault, we should be able to transition the page into the
1380                  * GTT without touching the GPU (and so avoid further
1381                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1382                  * with coherency, just lost writes.
1383                  */
1384                 set_need_resched();
1385         case 0:
1386         case -ERESTARTSYS:
1387         case -EINTR:
1388         case -EBUSY:
1389                 /*
1390                  * EBUSY is ok: this just means that another thread
1391                  * already did the job.
1392                  */
1393                 return VM_FAULT_NOPAGE;
1394         case -ENOMEM:
1395                 return VM_FAULT_OOM;
1396         case -ENOSPC:
1397                 return VM_FAULT_SIGBUS;
1398         default:
1399                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1400                 return VM_FAULT_SIGBUS;
1401         }
1402 }
1403
1404 /**
1405  * i915_gem_release_mmap - remove physical page mappings
1406  * @obj: obj in question
1407  *
1408  * Preserve the reservation of the mmapping with the DRM core code, but
1409  * relinquish ownership of the pages back to the system.
1410  *
1411  * It is vital that we remove the page mapping if we have mapped a tiled
1412  * object through the GTT and then lose the fence register due to
1413  * resource pressure. Similarly if the object has been moved out of the
1414  * aperture, than pages mapped into userspace must be revoked. Removing the
1415  * mapping will then trigger a page fault on the next user access, allowing
1416  * fixup by i915_gem_fault().
1417  */
1418 void
1419 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1420 {
1421         if (!obj->fault_mappable)
1422                 return;
1423
1424         if (obj->base.dev->dev_mapping)
1425                 unmap_mapping_range(obj->base.dev->dev_mapping,
1426                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1427                                     obj->base.size, 1);
1428
1429         obj->fault_mappable = false;
1430 }
1431
1432 static uint32_t
1433 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1434 {
1435         uint32_t gtt_size;
1436
1437         if (INTEL_INFO(dev)->gen >= 4 ||
1438             tiling_mode == I915_TILING_NONE)
1439                 return size;
1440
1441         /* Previous chips need a power-of-two fence region when tiling */
1442         if (INTEL_INFO(dev)->gen == 3)
1443                 gtt_size = 1024*1024;
1444         else
1445                 gtt_size = 512*1024;
1446
1447         while (gtt_size < size)
1448                 gtt_size <<= 1;
1449
1450         return gtt_size;
1451 }
1452
1453 /**
1454  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1455  * @obj: object to check
1456  *
1457  * Return the required GTT alignment for an object, taking into account
1458  * potential fence register mapping.
1459  */
1460 static uint32_t
1461 i915_gem_get_gtt_alignment(struct drm_device *dev,
1462                            uint32_t size,
1463                            int tiling_mode)
1464 {
1465         /*
1466          * Minimum alignment is 4k (GTT page size), but might be greater
1467          * if a fence register is needed for the object.
1468          */
1469         if (INTEL_INFO(dev)->gen >= 4 ||
1470             tiling_mode == I915_TILING_NONE)
1471                 return 4096;
1472
1473         /*
1474          * Previous chips need to be aligned to the size of the smallest
1475          * fence register that can contain the object.
1476          */
1477         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1478 }
1479
1480 /**
1481  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1482  *                                       unfenced object
1483  * @dev: the device
1484  * @size: size of the object
1485  * @tiling_mode: tiling mode of the object
1486  *
1487  * Return the required GTT alignment for an object, only taking into account
1488  * unfenced tiled surface requirements.
1489  */
1490 uint32_t
1491 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1492                                     uint32_t size,
1493                                     int tiling_mode)
1494 {
1495         /*
1496          * Minimum alignment is 4k (GTT page size) for sane hw.
1497          */
1498         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1499             tiling_mode == I915_TILING_NONE)
1500                 return 4096;
1501
1502         /* Previous hardware however needs to be aligned to a power-of-two
1503          * tile height. The simplest method for determining this is to reuse
1504          * the power-of-tile object size.
1505          */
1506         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1507 }
1508
1509 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1510 {
1511         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1512         int ret;
1513
1514         if (obj->base.map_list.map)
1515                 return 0;
1516
1517         ret = drm_gem_create_mmap_offset(&obj->base);
1518         if (ret != -ENOSPC)
1519                 return ret;
1520
1521         /* Badly fragmented mmap space? The only way we can recover
1522          * space is by destroying unwanted objects. We can't randomly release
1523          * mmap_offsets as userspace expects them to be persistent for the
1524          * lifetime of the objects. The closest we can is to release the
1525          * offsets on purgeable objects by truncating it and marking it purged,
1526          * which prevents userspace from ever using that object again.
1527          */
1528         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1529         ret = drm_gem_create_mmap_offset(&obj->base);
1530         if (ret != -ENOSPC)
1531                 return ret;
1532
1533         i915_gem_shrink_all(dev_priv);
1534         return drm_gem_create_mmap_offset(&obj->base);
1535 }
1536
1537 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1538 {
1539         if (!obj->base.map_list.map)
1540                 return;
1541
1542         drm_gem_free_mmap_offset(&obj->base);
1543 }
1544
1545 int
1546 i915_gem_mmap_gtt(struct drm_file *file,
1547                   struct drm_device *dev,
1548                   uint32_t handle,
1549                   uint64_t *offset)
1550 {
1551         struct drm_i915_private *dev_priv = dev->dev_private;
1552         struct drm_i915_gem_object *obj;
1553         int ret;
1554
1555         ret = i915_mutex_lock_interruptible(dev);
1556         if (ret)
1557                 return ret;
1558
1559         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1560         if (&obj->base == NULL) {
1561                 ret = -ENOENT;
1562                 goto unlock;
1563         }
1564
1565         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1566                 ret = -E2BIG;
1567                 goto out;
1568         }
1569
1570         if (obj->madv != I915_MADV_WILLNEED) {
1571                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1572                 ret = -EINVAL;
1573                 goto out;
1574         }
1575
1576         ret = i915_gem_object_create_mmap_offset(obj);
1577         if (ret)
1578                 goto out;
1579
1580         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1581
1582 out:
1583         drm_gem_object_unreference(&obj->base);
1584 unlock:
1585         mutex_unlock(&dev->struct_mutex);
1586         return ret;
1587 }
1588
1589 /**
1590  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1591  * @dev: DRM device
1592  * @data: GTT mapping ioctl data
1593  * @file: GEM object info
1594  *
1595  * Simply returns the fake offset to userspace so it can mmap it.
1596  * The mmap call will end up in drm_gem_mmap(), which will set things
1597  * up so we can get faults in the handler above.
1598  *
1599  * The fault handler will take care of binding the object into the GTT
1600  * (since it may have been evicted to make room for something), allocating
1601  * a fence register, and mapping the appropriate aperture address into
1602  * userspace.
1603  */
1604 int
1605 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1606                         struct drm_file *file)
1607 {
1608         struct drm_i915_gem_mmap_gtt *args = data;
1609
1610         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1611 }
1612
1613 /* Immediately discard the backing storage */
1614 static void
1615 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1616 {
1617         struct inode *inode;
1618
1619         i915_gem_object_free_mmap_offset(obj);
1620
1621         if (obj->base.filp == NULL)
1622                 return;
1623
1624         /* Our goal here is to return as much of the memory as
1625          * is possible back to the system as we are called from OOM.
1626          * To do this we must instruct the shmfs to drop all of its
1627          * backing pages, *now*.
1628          */
1629         inode = obj->base.filp->f_path.dentry->d_inode;
1630         shmem_truncate_range(inode, 0, (loff_t)-1);
1631
1632         obj->madv = __I915_MADV_PURGED;
1633 }
1634
1635 static inline int
1636 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1637 {
1638         return obj->madv == I915_MADV_DONTNEED;
1639 }
1640
1641 static void
1642 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1643 {
1644         int page_count = obj->base.size / PAGE_SIZE;
1645         struct scatterlist *sg;
1646         int ret, i;
1647
1648         BUG_ON(obj->madv == __I915_MADV_PURGED);
1649
1650         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1651         if (ret) {
1652                 /* In the event of a disaster, abandon all caches and
1653                  * hope for the best.
1654                  */
1655                 WARN_ON(ret != -EIO);
1656                 i915_gem_clflush_object(obj);
1657                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1658         }
1659
1660         if (i915_gem_object_needs_bit17_swizzle(obj))
1661                 i915_gem_object_save_bit_17_swizzle(obj);
1662
1663         if (obj->madv == I915_MADV_DONTNEED)
1664                 obj->dirty = 0;
1665
1666         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1667                 struct page *page = sg_page(sg);
1668
1669                 if (obj->dirty)
1670                         set_page_dirty(page);
1671
1672                 if (obj->madv == I915_MADV_WILLNEED)
1673                         mark_page_accessed(page);
1674
1675                 page_cache_release(page);
1676         }
1677         obj->dirty = 0;
1678
1679         sg_free_table(obj->pages);
1680         kfree(obj->pages);
1681 }
1682
1683 static int
1684 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1685 {
1686         const struct drm_i915_gem_object_ops *ops = obj->ops;
1687
1688         if (obj->pages == NULL)
1689                 return 0;
1690
1691         BUG_ON(obj->gtt_space);
1692
1693         if (obj->pages_pin_count)
1694                 return -EBUSY;
1695
1696         ops->put_pages(obj);
1697         obj->pages = NULL;
1698
1699         list_del(&obj->gtt_list);
1700         if (i915_gem_object_is_purgeable(obj))
1701                 i915_gem_object_truncate(obj);
1702
1703         return 0;
1704 }
1705
1706 static long
1707 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1708 {
1709         struct drm_i915_gem_object *obj, *next;
1710         long count = 0;
1711
1712         list_for_each_entry_safe(obj, next,
1713                                  &dev_priv->mm.unbound_list,
1714                                  gtt_list) {
1715                 if (i915_gem_object_is_purgeable(obj) &&
1716                     i915_gem_object_put_pages(obj) == 0) {
1717                         count += obj->base.size >> PAGE_SHIFT;
1718                         if (count >= target)
1719                                 return count;
1720                 }
1721         }
1722
1723         list_for_each_entry_safe(obj, next,
1724                                  &dev_priv->mm.inactive_list,
1725                                  mm_list) {
1726                 if (i915_gem_object_is_purgeable(obj) &&
1727                     i915_gem_object_unbind(obj) == 0 &&
1728                     i915_gem_object_put_pages(obj) == 0) {
1729                         count += obj->base.size >> PAGE_SHIFT;
1730                         if (count >= target)
1731                                 return count;
1732                 }
1733         }
1734
1735         return count;
1736 }
1737
1738 static void
1739 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1740 {
1741         struct drm_i915_gem_object *obj, *next;
1742
1743         i915_gem_evict_everything(dev_priv->dev);
1744
1745         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1746                 i915_gem_object_put_pages(obj);
1747 }
1748
1749 static int
1750 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1751 {
1752         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1753         int page_count, i;
1754         struct address_space *mapping;
1755         struct sg_table *st;
1756         struct scatterlist *sg;
1757         struct page *page;
1758         gfp_t gfp;
1759
1760         /* Assert that the object is not currently in any GPU domain. As it
1761          * wasn't in the GTT, there shouldn't be any way it could have been in
1762          * a GPU cache
1763          */
1764         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1765         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1766
1767         st = kmalloc(sizeof(*st), GFP_KERNEL);
1768         if (st == NULL)
1769                 return -ENOMEM;
1770
1771         page_count = obj->base.size / PAGE_SIZE;
1772         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1773                 sg_free_table(st);
1774                 kfree(st);
1775                 return -ENOMEM;
1776         }
1777
1778         /* Get the list of pages out of our struct file.  They'll be pinned
1779          * at this point until we release them.
1780          *
1781          * Fail silently without starting the shrinker
1782          */
1783         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1784         gfp = mapping_gfp_mask(mapping);
1785         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1786         gfp &= ~(__GFP_IO | __GFP_WAIT);
1787         for_each_sg(st->sgl, sg, page_count, i) {
1788                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1789                 if (IS_ERR(page)) {
1790                         i915_gem_purge(dev_priv, page_count);
1791                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1792                 }
1793                 if (IS_ERR(page)) {
1794                         /* We've tried hard to allocate the memory by reaping
1795                          * our own buffer, now let the real VM do its job and
1796                          * go down in flames if truly OOM.
1797                          */
1798                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1799                         gfp |= __GFP_IO | __GFP_WAIT;
1800
1801                         i915_gem_shrink_all(dev_priv);
1802                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1803                         if (IS_ERR(page))
1804                                 goto err_pages;
1805
1806                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1807                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1808                 }
1809
1810                 sg_set_page(sg, page, PAGE_SIZE, 0);
1811         }
1812
1813         obj->pages = st;
1814
1815         if (i915_gem_object_needs_bit17_swizzle(obj))
1816                 i915_gem_object_do_bit_17_swizzle(obj);
1817
1818         return 0;
1819
1820 err_pages:
1821         for_each_sg(st->sgl, sg, i, page_count)
1822                 page_cache_release(sg_page(sg));
1823         sg_free_table(st);
1824         kfree(st);
1825         return PTR_ERR(page);
1826 }
1827
1828 /* Ensure that the associated pages are gathered from the backing storage
1829  * and pinned into our object. i915_gem_object_get_pages() may be called
1830  * multiple times before they are released by a single call to
1831  * i915_gem_object_put_pages() - once the pages are no longer referenced
1832  * either as a result of memory pressure (reaping pages under the shrinker)
1833  * or as the object is itself released.
1834  */
1835 int
1836 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1837 {
1838         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1839         const struct drm_i915_gem_object_ops *ops = obj->ops;
1840         int ret;
1841
1842         if (obj->pages)
1843                 return 0;
1844
1845         BUG_ON(obj->pages_pin_count);
1846
1847         ret = ops->get_pages(obj);
1848         if (ret)
1849                 return ret;
1850
1851         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1852         return 0;
1853 }
1854
1855 void
1856 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1857                                struct intel_ring_buffer *ring)
1858 {
1859         struct drm_device *dev = obj->base.dev;
1860         struct drm_i915_private *dev_priv = dev->dev_private;
1861         u32 seqno = intel_ring_get_seqno(ring);
1862
1863         BUG_ON(ring == NULL);
1864         obj->ring = ring;
1865
1866         /* Add a reference if we're newly entering the active list. */
1867         if (!obj->active) {
1868                 drm_gem_object_reference(&obj->base);
1869                 obj->active = 1;
1870         }
1871
1872         /* Move from whatever list we were on to the tail of execution. */
1873         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1874         list_move_tail(&obj->ring_list, &ring->active_list);
1875
1876         obj->last_read_seqno = seqno;
1877
1878         if (obj->fenced_gpu_access) {
1879                 obj->last_fenced_seqno = seqno;
1880
1881                 /* Bump MRU to take account of the delayed flush */
1882                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1883                         struct drm_i915_fence_reg *reg;
1884
1885                         reg = &dev_priv->fence_regs[obj->fence_reg];
1886                         list_move_tail(&reg->lru_list,
1887                                        &dev_priv->mm.fence_list);
1888                 }
1889         }
1890 }
1891
1892 static void
1893 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1894 {
1895         struct drm_device *dev = obj->base.dev;
1896         struct drm_i915_private *dev_priv = dev->dev_private;
1897
1898         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1899         BUG_ON(!obj->active);
1900
1901         if (obj->pin_count) /* are we a framebuffer? */
1902                 intel_mark_fb_idle(obj);
1903
1904         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1905
1906         list_del_init(&obj->ring_list);
1907         obj->ring = NULL;
1908
1909         obj->last_read_seqno = 0;
1910         obj->last_write_seqno = 0;
1911         obj->base.write_domain = 0;
1912
1913         obj->last_fenced_seqno = 0;
1914         obj->fenced_gpu_access = false;
1915
1916         obj->active = 0;
1917         drm_gem_object_unreference(&obj->base);
1918
1919         WARN_ON(i915_verify_lists(dev));
1920 }
1921
1922 static int
1923 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1924 {
1925         struct drm_i915_private *dev_priv = dev->dev_private;
1926         struct intel_ring_buffer *ring;
1927         int ret, i, j;
1928
1929         /* The hardware uses various monotonic 32-bit counters, if we
1930          * detect that they will wraparound we need to idle the GPU
1931          * and reset those counters.
1932          */
1933         ret = 0;
1934         for_each_ring(ring, dev_priv, i) {
1935                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1936                         ret |= ring->sync_seqno[j] != 0;
1937         }
1938         if (ret == 0)
1939                 return ret;
1940
1941         /* Carefully retire all requests without writing to the rings */
1942         for_each_ring(ring, dev_priv, i) {
1943                 ret = intel_ring_idle(ring);
1944                 if (ret)
1945                         return ret;
1946         }
1947         i915_gem_retire_requests(dev);
1948
1949         /* Finally reset hw state */
1950         for_each_ring(ring, dev_priv, i) {
1951                 ret = intel_ring_handle_seqno_wrap(ring);
1952                 if (ret)
1953                         return ret;
1954
1955                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1956                         ring->sync_seqno[j] = 0;
1957         }
1958
1959         return 0;
1960 }
1961
1962 int
1963 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1964 {
1965         struct drm_i915_private *dev_priv = dev->dev_private;
1966
1967         /* reserve 0 for non-seqno */
1968         if (dev_priv->next_seqno == 0) {
1969                 int ret = i915_gem_handle_seqno_wrap(dev);
1970                 if (ret)
1971                         return ret;
1972
1973                 dev_priv->next_seqno = 1;
1974         }
1975
1976         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1977         return 0;
1978 }
1979
1980 int
1981 i915_add_request(struct intel_ring_buffer *ring,
1982                  struct drm_file *file,
1983                  u32 *out_seqno)
1984 {
1985         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1986         struct drm_i915_gem_request *request;
1987         u32 request_ring_position;
1988         int was_empty;
1989         int ret;
1990
1991         /*
1992          * Emit any outstanding flushes - execbuf can fail to emit the flush
1993          * after having emitted the batchbuffer command. Hence we need to fix
1994          * things up similar to emitting the lazy request. The difference here
1995          * is that the flush _must_ happen before the next request, no matter
1996          * what.
1997          */
1998         ret = intel_ring_flush_all_caches(ring);
1999         if (ret)
2000                 return ret;
2001
2002         request = kmalloc(sizeof(*request), GFP_KERNEL);
2003         if (request == NULL)
2004                 return -ENOMEM;
2005
2006
2007         /* Record the position of the start of the request so that
2008          * should we detect the updated seqno part-way through the
2009          * GPU processing the request, we never over-estimate the
2010          * position of the head.
2011          */
2012         request_ring_position = intel_ring_get_tail(ring);
2013
2014         ret = ring->add_request(ring);
2015         if (ret) {
2016                 kfree(request);
2017                 return ret;
2018         }
2019
2020         request->seqno = intel_ring_get_seqno(ring);
2021         request->ring = ring;
2022         request->tail = request_ring_position;
2023         request->emitted_jiffies = jiffies;
2024         was_empty = list_empty(&ring->request_list);
2025         list_add_tail(&request->list, &ring->request_list);
2026         request->file_priv = NULL;
2027
2028         if (file) {
2029                 struct drm_i915_file_private *file_priv = file->driver_priv;
2030
2031                 spin_lock(&file_priv->mm.lock);
2032                 request->file_priv = file_priv;
2033                 list_add_tail(&request->client_list,
2034                               &file_priv->mm.request_list);
2035                 spin_unlock(&file_priv->mm.lock);
2036         }
2037
2038         trace_i915_gem_request_add(ring, request->seqno);
2039         ring->outstanding_lazy_request = 0;
2040
2041         if (!dev_priv->mm.suspended) {
2042                 if (i915_enable_hangcheck) {
2043                         mod_timer(&dev_priv->hangcheck_timer,
2044                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2045                 }
2046                 if (was_empty) {
2047                         queue_delayed_work(dev_priv->wq,
2048                                            &dev_priv->mm.retire_work,
2049                                            round_jiffies_up_relative(HZ));
2050                         intel_mark_busy(dev_priv->dev);
2051                 }
2052         }
2053
2054         if (out_seqno)
2055                 *out_seqno = request->seqno;
2056         return 0;
2057 }
2058
2059 static inline void
2060 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2061 {
2062         struct drm_i915_file_private *file_priv = request->file_priv;
2063
2064         if (!file_priv)
2065                 return;
2066
2067         spin_lock(&file_priv->mm.lock);
2068         if (request->file_priv) {
2069                 list_del(&request->client_list);
2070                 request->file_priv = NULL;
2071         }
2072         spin_unlock(&file_priv->mm.lock);
2073 }
2074
2075 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2076                                       struct intel_ring_buffer *ring)
2077 {
2078         while (!list_empty(&ring->request_list)) {
2079                 struct drm_i915_gem_request *request;
2080
2081                 request = list_first_entry(&ring->request_list,
2082                                            struct drm_i915_gem_request,
2083                                            list);
2084
2085                 list_del(&request->list);
2086                 i915_gem_request_remove_from_client(request);
2087                 kfree(request);
2088         }
2089
2090         while (!list_empty(&ring->active_list)) {
2091                 struct drm_i915_gem_object *obj;
2092
2093                 obj = list_first_entry(&ring->active_list,
2094                                        struct drm_i915_gem_object,
2095                                        ring_list);
2096
2097                 i915_gem_object_move_to_inactive(obj);
2098         }
2099 }
2100
2101 static void i915_gem_reset_fences(struct drm_device *dev)
2102 {
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         int i;
2105
2106         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2107                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2108
2109                 i915_gem_write_fence(dev, i, NULL);
2110
2111                 if (reg->obj)
2112                         i915_gem_object_fence_lost(reg->obj);
2113
2114                 reg->pin_count = 0;
2115                 reg->obj = NULL;
2116                 INIT_LIST_HEAD(&reg->lru_list);
2117         }
2118
2119         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2120 }
2121
2122 void i915_gem_reset(struct drm_device *dev)
2123 {
2124         struct drm_i915_private *dev_priv = dev->dev_private;
2125         struct drm_i915_gem_object *obj;
2126         struct intel_ring_buffer *ring;
2127         int i;
2128
2129         for_each_ring(ring, dev_priv, i)
2130                 i915_gem_reset_ring_lists(dev_priv, ring);
2131
2132         /* Move everything out of the GPU domains to ensure we do any
2133          * necessary invalidation upon reuse.
2134          */
2135         list_for_each_entry(obj,
2136                             &dev_priv->mm.inactive_list,
2137                             mm_list)
2138         {
2139                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2140         }
2141
2142         /* The fence registers are invalidated so clear them out */
2143         i915_gem_reset_fences(dev);
2144 }
2145
2146 /**
2147  * This function clears the request list as sequence numbers are passed.
2148  */
2149 void
2150 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2151 {
2152         uint32_t seqno;
2153
2154         if (list_empty(&ring->request_list))
2155                 return;
2156
2157         WARN_ON(i915_verify_lists(ring->dev));
2158
2159         seqno = ring->get_seqno(ring, true);
2160
2161         while (!list_empty(&ring->request_list)) {
2162                 struct drm_i915_gem_request *request;
2163
2164                 request = list_first_entry(&ring->request_list,
2165                                            struct drm_i915_gem_request,
2166                                            list);
2167
2168                 if (!i915_seqno_passed(seqno, request->seqno))
2169                         break;
2170
2171                 trace_i915_gem_request_retire(ring, request->seqno);
2172                 /* We know the GPU must have read the request to have
2173                  * sent us the seqno + interrupt, so use the position
2174                  * of tail of the request to update the last known position
2175                  * of the GPU head.
2176                  */
2177                 ring->last_retired_head = request->tail;
2178
2179                 list_del(&request->list);
2180                 i915_gem_request_remove_from_client(request);
2181                 kfree(request);
2182         }
2183
2184         /* Move any buffers on the active list that are no longer referenced
2185          * by the ringbuffer to the flushing/inactive lists as appropriate.
2186          */
2187         while (!list_empty(&ring->active_list)) {
2188                 struct drm_i915_gem_object *obj;
2189
2190                 obj = list_first_entry(&ring->active_list,
2191                                       struct drm_i915_gem_object,
2192                                       ring_list);
2193
2194                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2195                         break;
2196
2197                 i915_gem_object_move_to_inactive(obj);
2198         }
2199
2200         if (unlikely(ring->trace_irq_seqno &&
2201                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2202                 ring->irq_put(ring);
2203                 ring->trace_irq_seqno = 0;
2204         }
2205
2206         WARN_ON(i915_verify_lists(ring->dev));
2207 }
2208
2209 void
2210 i915_gem_retire_requests(struct drm_device *dev)
2211 {
2212         drm_i915_private_t *dev_priv = dev->dev_private;
2213         struct intel_ring_buffer *ring;
2214         int i;
2215
2216         for_each_ring(ring, dev_priv, i)
2217                 i915_gem_retire_requests_ring(ring);
2218 }
2219
2220 static void
2221 i915_gem_retire_work_handler(struct work_struct *work)
2222 {
2223         drm_i915_private_t *dev_priv;
2224         struct drm_device *dev;
2225         struct intel_ring_buffer *ring;
2226         bool idle;
2227         int i;
2228
2229         dev_priv = container_of(work, drm_i915_private_t,
2230                                 mm.retire_work.work);
2231         dev = dev_priv->dev;
2232
2233         /* Come back later if the device is busy... */
2234         if (!mutex_trylock(&dev->struct_mutex)) {
2235                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2236                                    round_jiffies_up_relative(HZ));
2237                 return;
2238         }
2239
2240         i915_gem_retire_requests(dev);
2241
2242         /* Send a periodic flush down the ring so we don't hold onto GEM
2243          * objects indefinitely.
2244          */
2245         idle = true;
2246         for_each_ring(ring, dev_priv, i) {
2247                 if (ring->gpu_caches_dirty)
2248                         i915_add_request(ring, NULL, NULL);
2249
2250                 idle &= list_empty(&ring->request_list);
2251         }
2252
2253         if (!dev_priv->mm.suspended && !idle)
2254                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2255                                    round_jiffies_up_relative(HZ));
2256         if (idle)
2257                 intel_mark_idle(dev);
2258
2259         mutex_unlock(&dev->struct_mutex);
2260 }
2261
2262 /**
2263  * Ensures that an object will eventually get non-busy by flushing any required
2264  * write domains, emitting any outstanding lazy request and retiring and
2265  * completed requests.
2266  */
2267 static int
2268 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2269 {
2270         int ret;
2271
2272         if (obj->active) {
2273                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2274                 if (ret)
2275                         return ret;
2276
2277                 i915_gem_retire_requests_ring(obj->ring);
2278         }
2279
2280         return 0;
2281 }
2282
2283 /**
2284  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2285  * @DRM_IOCTL_ARGS: standard ioctl arguments
2286  *
2287  * Returns 0 if successful, else an error is returned with the remaining time in
2288  * the timeout parameter.
2289  *  -ETIME: object is still busy after timeout
2290  *  -ERESTARTSYS: signal interrupted the wait
2291  *  -ENONENT: object doesn't exist
2292  * Also possible, but rare:
2293  *  -EAGAIN: GPU wedged
2294  *  -ENOMEM: damn
2295  *  -ENODEV: Internal IRQ fail
2296  *  -E?: The add request failed
2297  *
2298  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2299  * non-zero timeout parameter the wait ioctl will wait for the given number of
2300  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2301  * without holding struct_mutex the object may become re-busied before this
2302  * function completes. A similar but shorter * race condition exists in the busy
2303  * ioctl
2304  */
2305 int
2306 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2307 {
2308         struct drm_i915_gem_wait *args = data;
2309         struct drm_i915_gem_object *obj;
2310         struct intel_ring_buffer *ring = NULL;
2311         struct timespec timeout_stack, *timeout = NULL;
2312         u32 seqno = 0;
2313         int ret = 0;
2314
2315         if (args->timeout_ns >= 0) {
2316                 timeout_stack = ns_to_timespec(args->timeout_ns);
2317                 timeout = &timeout_stack;
2318         }
2319
2320         ret = i915_mutex_lock_interruptible(dev);
2321         if (ret)
2322                 return ret;
2323
2324         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2325         if (&obj->base == NULL) {
2326                 mutex_unlock(&dev->struct_mutex);
2327                 return -ENOENT;
2328         }
2329
2330         /* Need to make sure the object gets inactive eventually. */
2331         ret = i915_gem_object_flush_active(obj);
2332         if (ret)
2333                 goto out;
2334
2335         if (obj->active) {
2336                 seqno = obj->last_read_seqno;
2337                 ring = obj->ring;
2338         }
2339
2340         if (seqno == 0)
2341                  goto out;
2342
2343         /* Do this after OLR check to make sure we make forward progress polling
2344          * on this IOCTL with a 0 timeout (like busy ioctl)
2345          */
2346         if (!args->timeout_ns) {
2347                 ret = -ETIME;
2348                 goto out;
2349         }
2350
2351         drm_gem_object_unreference(&obj->base);
2352         mutex_unlock(&dev->struct_mutex);
2353
2354         ret = __wait_seqno(ring, seqno, true, timeout);
2355         if (timeout) {
2356                 WARN_ON(!timespec_valid(timeout));
2357                 args->timeout_ns = timespec_to_ns(timeout);
2358         }
2359         return ret;
2360
2361 out:
2362         drm_gem_object_unreference(&obj->base);
2363         mutex_unlock(&dev->struct_mutex);
2364         return ret;
2365 }
2366
2367 /**
2368  * i915_gem_object_sync - sync an object to a ring.
2369  *
2370  * @obj: object which may be in use on another ring.
2371  * @to: ring we wish to use the object on. May be NULL.
2372  *
2373  * This code is meant to abstract object synchronization with the GPU.
2374  * Calling with NULL implies synchronizing the object with the CPU
2375  * rather than a particular GPU ring.
2376  *
2377  * Returns 0 if successful, else propagates up the lower layer error.
2378  */
2379 int
2380 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2381                      struct intel_ring_buffer *to)
2382 {
2383         struct intel_ring_buffer *from = obj->ring;
2384         u32 seqno;
2385         int ret, idx;
2386
2387         if (from == NULL || to == from)
2388                 return 0;
2389
2390         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2391                 return i915_gem_object_wait_rendering(obj, false);
2392
2393         idx = intel_ring_sync_index(from, to);
2394
2395         seqno = obj->last_read_seqno;
2396         if (seqno <= from->sync_seqno[idx])
2397                 return 0;
2398
2399         ret = i915_gem_check_olr(obj->ring, seqno);
2400         if (ret)
2401                 return ret;
2402
2403         ret = to->sync_to(to, from, seqno);
2404         if (!ret)
2405                 /* We use last_read_seqno because sync_to()
2406                  * might have just caused seqno wrap under
2407                  * the radar.
2408                  */
2409                 from->sync_seqno[idx] = obj->last_read_seqno;
2410
2411         return ret;
2412 }
2413
2414 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2415 {
2416         u32 old_write_domain, old_read_domains;
2417
2418         /* Act a barrier for all accesses through the GTT */
2419         mb();
2420
2421         /* Force a pagefault for domain tracking on next user access */
2422         i915_gem_release_mmap(obj);
2423
2424         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2425                 return;
2426
2427         old_read_domains = obj->base.read_domains;
2428         old_write_domain = obj->base.write_domain;
2429
2430         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2431         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2432
2433         trace_i915_gem_object_change_domain(obj,
2434                                             old_read_domains,
2435                                             old_write_domain);
2436 }
2437
2438 /**
2439  * Unbinds an object from the GTT aperture.
2440  */
2441 int
2442 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2443 {
2444         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2445         int ret = 0;
2446
2447         if (obj->gtt_space == NULL)
2448                 return 0;
2449
2450         if (obj->pin_count)
2451                 return -EBUSY;
2452
2453         BUG_ON(obj->pages == NULL);
2454
2455         ret = i915_gem_object_finish_gpu(obj);
2456         if (ret)
2457                 return ret;
2458         /* Continue on if we fail due to EIO, the GPU is hung so we
2459          * should be safe and we need to cleanup or else we might
2460          * cause memory corruption through use-after-free.
2461          */
2462
2463         i915_gem_object_finish_gtt(obj);
2464
2465         /* release the fence reg _after_ flushing */
2466         ret = i915_gem_object_put_fence(obj);
2467         if (ret)
2468                 return ret;
2469
2470         trace_i915_gem_object_unbind(obj);
2471
2472         if (obj->has_global_gtt_mapping)
2473                 i915_gem_gtt_unbind_object(obj);
2474         if (obj->has_aliasing_ppgtt_mapping) {
2475                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2476                 obj->has_aliasing_ppgtt_mapping = 0;
2477         }
2478         i915_gem_gtt_finish_object(obj);
2479
2480         list_del(&obj->mm_list);
2481         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2482         /* Avoid an unnecessary call to unbind on rebind. */
2483         obj->map_and_fenceable = true;
2484
2485         drm_mm_put_block(obj->gtt_space);
2486         obj->gtt_space = NULL;
2487         obj->gtt_offset = 0;
2488
2489         return 0;
2490 }
2491
2492 int i915_gpu_idle(struct drm_device *dev)
2493 {
2494         drm_i915_private_t *dev_priv = dev->dev_private;
2495         struct intel_ring_buffer *ring;
2496         int ret, i;
2497
2498         /* Flush everything onto the inactive list. */
2499         for_each_ring(ring, dev_priv, i) {
2500                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2501                 if (ret)
2502                         return ret;
2503
2504                 ret = intel_ring_idle(ring);
2505                 if (ret)
2506                         return ret;
2507         }
2508
2509         return 0;
2510 }
2511
2512 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2513                                         struct drm_i915_gem_object *obj)
2514 {
2515         drm_i915_private_t *dev_priv = dev->dev_private;
2516         uint64_t val;
2517
2518         if (obj) {
2519                 u32 size = obj->gtt_space->size;
2520
2521                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2522                                  0xfffff000) << 32;
2523                 val |= obj->gtt_offset & 0xfffff000;
2524                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2525                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2526
2527                 if (obj->tiling_mode == I915_TILING_Y)
2528                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2529                 val |= I965_FENCE_REG_VALID;
2530         } else
2531                 val = 0;
2532
2533         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2534         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2535 }
2536
2537 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2538                                  struct drm_i915_gem_object *obj)
2539 {
2540         drm_i915_private_t *dev_priv = dev->dev_private;
2541         uint64_t val;
2542
2543         if (obj) {
2544                 u32 size = obj->gtt_space->size;
2545
2546                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2547                                  0xfffff000) << 32;
2548                 val |= obj->gtt_offset & 0xfffff000;
2549                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2550                 if (obj->tiling_mode == I915_TILING_Y)
2551                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2552                 val |= I965_FENCE_REG_VALID;
2553         } else
2554                 val = 0;
2555
2556         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2557         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2558 }
2559
2560 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2561                                  struct drm_i915_gem_object *obj)
2562 {
2563         drm_i915_private_t *dev_priv = dev->dev_private;
2564         u32 val;
2565
2566         if (obj) {
2567                 u32 size = obj->gtt_space->size;
2568                 int pitch_val;
2569                 int tile_width;
2570
2571                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2572                      (size & -size) != size ||
2573                      (obj->gtt_offset & (size - 1)),
2574                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2575                      obj->gtt_offset, obj->map_and_fenceable, size);
2576
2577                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2578                         tile_width = 128;
2579                 else
2580                         tile_width = 512;
2581
2582                 /* Note: pitch better be a power of two tile widths */
2583                 pitch_val = obj->stride / tile_width;
2584                 pitch_val = ffs(pitch_val) - 1;
2585
2586                 val = obj->gtt_offset;
2587                 if (obj->tiling_mode == I915_TILING_Y)
2588                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2589                 val |= I915_FENCE_SIZE_BITS(size);
2590                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2591                 val |= I830_FENCE_REG_VALID;
2592         } else
2593                 val = 0;
2594
2595         if (reg < 8)
2596                 reg = FENCE_REG_830_0 + reg * 4;
2597         else
2598                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2599
2600         I915_WRITE(reg, val);
2601         POSTING_READ(reg);
2602 }
2603
2604 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2605                                 struct drm_i915_gem_object *obj)
2606 {
2607         drm_i915_private_t *dev_priv = dev->dev_private;
2608         uint32_t val;
2609
2610         if (obj) {
2611                 u32 size = obj->gtt_space->size;
2612                 uint32_t pitch_val;
2613
2614                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2615                      (size & -size) != size ||
2616                      (obj->gtt_offset & (size - 1)),
2617                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2618                      obj->gtt_offset, size);
2619
2620                 pitch_val = obj->stride / 128;
2621                 pitch_val = ffs(pitch_val) - 1;
2622
2623                 val = obj->gtt_offset;
2624                 if (obj->tiling_mode == I915_TILING_Y)
2625                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2626                 val |= I830_FENCE_SIZE_BITS(size);
2627                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2628                 val |= I830_FENCE_REG_VALID;
2629         } else
2630                 val = 0;
2631
2632         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2633         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2634 }
2635
2636 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2637                                  struct drm_i915_gem_object *obj)
2638 {
2639         switch (INTEL_INFO(dev)->gen) {
2640         case 7:
2641         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2642         case 5:
2643         case 4: i965_write_fence_reg(dev, reg, obj); break;
2644         case 3: i915_write_fence_reg(dev, reg, obj); break;
2645         case 2: i830_write_fence_reg(dev, reg, obj); break;
2646         default: break;
2647         }
2648 }
2649
2650 static inline int fence_number(struct drm_i915_private *dev_priv,
2651                                struct drm_i915_fence_reg *fence)
2652 {
2653         return fence - dev_priv->fence_regs;
2654 }
2655
2656 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2657                                          struct drm_i915_fence_reg *fence,
2658                                          bool enable)
2659 {
2660         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2661         int reg = fence_number(dev_priv, fence);
2662
2663         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2664
2665         if (enable) {
2666                 obj->fence_reg = reg;
2667                 fence->obj = obj;
2668                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2669         } else {
2670                 obj->fence_reg = I915_FENCE_REG_NONE;
2671                 fence->obj = NULL;
2672                 list_del_init(&fence->lru_list);
2673         }
2674 }
2675
2676 static int
2677 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2678 {
2679         if (obj->last_fenced_seqno) {
2680                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2681                 if (ret)
2682                         return ret;
2683
2684                 obj->last_fenced_seqno = 0;
2685         }
2686
2687         /* Ensure that all CPU reads are completed before installing a fence
2688          * and all writes before removing the fence.
2689          */
2690         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2691                 mb();
2692
2693         obj->fenced_gpu_access = false;
2694         return 0;
2695 }
2696
2697 int
2698 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2699 {
2700         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2701         int ret;
2702
2703         ret = i915_gem_object_flush_fence(obj);
2704         if (ret)
2705                 return ret;
2706
2707         if (obj->fence_reg == I915_FENCE_REG_NONE)
2708                 return 0;
2709
2710         i915_gem_object_update_fence(obj,
2711                                      &dev_priv->fence_regs[obj->fence_reg],
2712                                      false);
2713         i915_gem_object_fence_lost(obj);
2714
2715         return 0;
2716 }
2717
2718 static struct drm_i915_fence_reg *
2719 i915_find_fence_reg(struct drm_device *dev)
2720 {
2721         struct drm_i915_private *dev_priv = dev->dev_private;
2722         struct drm_i915_fence_reg *reg, *avail;
2723         int i;
2724
2725         /* First try to find a free reg */
2726         avail = NULL;
2727         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2728                 reg = &dev_priv->fence_regs[i];
2729                 if (!reg->obj)
2730                         return reg;
2731
2732                 if (!reg->pin_count)
2733                         avail = reg;
2734         }
2735
2736         if (avail == NULL)
2737                 return NULL;
2738
2739         /* None available, try to steal one or wait for a user to finish */
2740         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2741                 if (reg->pin_count)
2742                         continue;
2743
2744                 return reg;
2745         }
2746
2747         return NULL;
2748 }
2749
2750 /**
2751  * i915_gem_object_get_fence - set up fencing for an object
2752  * @obj: object to map through a fence reg
2753  *
2754  * When mapping objects through the GTT, userspace wants to be able to write
2755  * to them without having to worry about swizzling if the object is tiled.
2756  * This function walks the fence regs looking for a free one for @obj,
2757  * stealing one if it can't find any.
2758  *
2759  * It then sets up the reg based on the object's properties: address, pitch
2760  * and tiling format.
2761  *
2762  * For an untiled surface, this removes any existing fence.
2763  */
2764 int
2765 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2766 {
2767         struct drm_device *dev = obj->base.dev;
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         bool enable = obj->tiling_mode != I915_TILING_NONE;
2770         struct drm_i915_fence_reg *reg;
2771         int ret;
2772
2773         /* Have we updated the tiling parameters upon the object and so
2774          * will need to serialise the write to the associated fence register?
2775          */
2776         if (obj->fence_dirty) {
2777                 ret = i915_gem_object_flush_fence(obj);
2778                 if (ret)
2779                         return ret;
2780         }
2781
2782         /* Just update our place in the LRU if our fence is getting reused. */
2783         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2784                 reg = &dev_priv->fence_regs[obj->fence_reg];
2785                 if (!obj->fence_dirty) {
2786                         list_move_tail(&reg->lru_list,
2787                                        &dev_priv->mm.fence_list);
2788                         return 0;
2789                 }
2790         } else if (enable) {
2791                 reg = i915_find_fence_reg(dev);
2792                 if (reg == NULL)
2793                         return -EDEADLK;
2794
2795                 if (reg->obj) {
2796                         struct drm_i915_gem_object *old = reg->obj;
2797
2798                         ret = i915_gem_object_flush_fence(old);
2799                         if (ret)
2800                                 return ret;
2801
2802                         i915_gem_object_fence_lost(old);
2803                 }
2804         } else
2805                 return 0;
2806
2807         i915_gem_object_update_fence(obj, reg, enable);
2808         obj->fence_dirty = false;
2809
2810         return 0;
2811 }
2812
2813 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2814                                      struct drm_mm_node *gtt_space,
2815                                      unsigned long cache_level)
2816 {
2817         struct drm_mm_node *other;
2818
2819         /* On non-LLC machines we have to be careful when putting differing
2820          * types of snoopable memory together to avoid the prefetcher
2821          * crossing memory domains and dying.
2822          */
2823         if (HAS_LLC(dev))
2824                 return true;
2825
2826         if (gtt_space == NULL)
2827                 return true;
2828
2829         if (list_empty(&gtt_space->node_list))
2830                 return true;
2831
2832         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2833         if (other->allocated && !other->hole_follows && other->color != cache_level)
2834                 return false;
2835
2836         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2837         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2838                 return false;
2839
2840         return true;
2841 }
2842
2843 static void i915_gem_verify_gtt(struct drm_device *dev)
2844 {
2845 #if WATCH_GTT
2846         struct drm_i915_private *dev_priv = dev->dev_private;
2847         struct drm_i915_gem_object *obj;
2848         int err = 0;
2849
2850         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2851                 if (obj->gtt_space == NULL) {
2852                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2853                         err++;
2854                         continue;
2855                 }
2856
2857                 if (obj->cache_level != obj->gtt_space->color) {
2858                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2859                                obj->gtt_space->start,
2860                                obj->gtt_space->start + obj->gtt_space->size,
2861                                obj->cache_level,
2862                                obj->gtt_space->color);
2863                         err++;
2864                         continue;
2865                 }
2866
2867                 if (!i915_gem_valid_gtt_space(dev,
2868                                               obj->gtt_space,
2869                                               obj->cache_level)) {
2870                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2871                                obj->gtt_space->start,
2872                                obj->gtt_space->start + obj->gtt_space->size,
2873                                obj->cache_level);
2874                         err++;
2875                         continue;
2876                 }
2877         }
2878
2879         WARN_ON(err);
2880 #endif
2881 }
2882
2883 /**
2884  * Finds free space in the GTT aperture and binds the object there.
2885  */
2886 static int
2887 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2888                             unsigned alignment,
2889                             bool map_and_fenceable,
2890                             bool nonblocking)
2891 {
2892         struct drm_device *dev = obj->base.dev;
2893         drm_i915_private_t *dev_priv = dev->dev_private;
2894         struct drm_mm_node *free_space;
2895         u32 size, fence_size, fence_alignment, unfenced_alignment;
2896         bool mappable, fenceable;
2897         int ret;
2898
2899         if (obj->madv != I915_MADV_WILLNEED) {
2900                 DRM_ERROR("Attempting to bind a purgeable object\n");
2901                 return -EINVAL;
2902         }
2903
2904         fence_size = i915_gem_get_gtt_size(dev,
2905                                            obj->base.size,
2906                                            obj->tiling_mode);
2907         fence_alignment = i915_gem_get_gtt_alignment(dev,
2908                                                      obj->base.size,
2909                                                      obj->tiling_mode);
2910         unfenced_alignment =
2911                 i915_gem_get_unfenced_gtt_alignment(dev,
2912                                                     obj->base.size,
2913                                                     obj->tiling_mode);
2914
2915         if (alignment == 0)
2916                 alignment = map_and_fenceable ? fence_alignment :
2917                                                 unfenced_alignment;
2918         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2919                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2920                 return -EINVAL;
2921         }
2922
2923         size = map_and_fenceable ? fence_size : obj->base.size;
2924
2925         /* If the object is bigger than the entire aperture, reject it early
2926          * before evicting everything in a vain attempt to find space.
2927          */
2928         if (obj->base.size >
2929             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2930                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2931                 return -E2BIG;
2932         }
2933
2934         ret = i915_gem_object_get_pages(obj);
2935         if (ret)
2936                 return ret;
2937
2938         i915_gem_object_pin_pages(obj);
2939
2940  search_free:
2941         if (map_and_fenceable)
2942                 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2943                                                                size, alignment, obj->cache_level,
2944                                                                0, dev_priv->mm.gtt_mappable_end,
2945                                                                false);
2946         else
2947                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2948                                                       size, alignment, obj->cache_level,
2949                                                       false);
2950
2951         if (free_space != NULL) {
2952                 if (map_and_fenceable)
2953                         free_space =
2954                                 drm_mm_get_block_range_generic(free_space,
2955                                                                size, alignment, obj->cache_level,
2956                                                                0, dev_priv->mm.gtt_mappable_end,
2957                                                                false);
2958                 else
2959                         free_space =
2960                                 drm_mm_get_block_generic(free_space,
2961                                                          size, alignment, obj->cache_level,
2962                                                          false);
2963         }
2964         if (free_space == NULL) {
2965                 ret = i915_gem_evict_something(dev, size, alignment,
2966                                                obj->cache_level,
2967                                                map_and_fenceable,
2968                                                nonblocking);
2969                 if (ret) {
2970                         i915_gem_object_unpin_pages(obj);
2971                         return ret;
2972                 }
2973
2974                 goto search_free;
2975         }
2976         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2977                                               free_space,
2978                                               obj->cache_level))) {
2979                 i915_gem_object_unpin_pages(obj);
2980                 drm_mm_put_block(free_space);
2981                 return -EINVAL;
2982         }
2983
2984         ret = i915_gem_gtt_prepare_object(obj);
2985         if (ret) {
2986                 i915_gem_object_unpin_pages(obj);
2987                 drm_mm_put_block(free_space);
2988                 return ret;
2989         }
2990
2991         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2992         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2993
2994         obj->gtt_space = free_space;
2995         obj->gtt_offset = free_space->start;
2996
2997         fenceable =
2998                 free_space->size == fence_size &&
2999                 (free_space->start & (fence_alignment - 1)) == 0;
3000
3001         mappable =
3002                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3003
3004         obj->map_and_fenceable = mappable && fenceable;
3005
3006         i915_gem_object_unpin_pages(obj);
3007         trace_i915_gem_object_bind(obj, map_and_fenceable);
3008         i915_gem_verify_gtt(dev);
3009         return 0;
3010 }
3011
3012 void
3013 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3014 {
3015         /* If we don't have a page list set up, then we're not pinned
3016          * to GPU, and we can ignore the cache flush because it'll happen
3017          * again at bind time.
3018          */
3019         if (obj->pages == NULL)
3020                 return;
3021
3022         /* If the GPU is snooping the contents of the CPU cache,
3023          * we do not need to manually clear the CPU cache lines.  However,
3024          * the caches are only snooped when the render cache is
3025          * flushed/invalidated.  As we always have to emit invalidations
3026          * and flushes when moving into and out of the RENDER domain, correct
3027          * snooping behaviour occurs naturally as the result of our domain
3028          * tracking.
3029          */
3030         if (obj->cache_level != I915_CACHE_NONE)
3031                 return;
3032
3033         trace_i915_gem_object_clflush(obj);
3034
3035         drm_clflush_sg(obj->pages);
3036 }
3037
3038 /** Flushes the GTT write domain for the object if it's dirty. */
3039 static void
3040 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3041 {
3042         uint32_t old_write_domain;
3043
3044         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3045                 return;
3046
3047         /* No actual flushing is required for the GTT write domain.  Writes
3048          * to it immediately go to main memory as far as we know, so there's
3049          * no chipset flush.  It also doesn't land in render cache.
3050          *
3051          * However, we do have to enforce the order so that all writes through
3052          * the GTT land before any writes to the device, such as updates to
3053          * the GATT itself.
3054          */
3055         wmb();
3056
3057         old_write_domain = obj->base.write_domain;
3058         obj->base.write_domain = 0;
3059
3060         trace_i915_gem_object_change_domain(obj,
3061                                             obj->base.read_domains,
3062                                             old_write_domain);
3063 }
3064
3065 /** Flushes the CPU write domain for the object if it's dirty. */
3066 static void
3067 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3068 {
3069         uint32_t old_write_domain;
3070
3071         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3072                 return;
3073
3074         i915_gem_clflush_object(obj);
3075         i915_gem_chipset_flush(obj->base.dev);
3076         old_write_domain = obj->base.write_domain;
3077         obj->base.write_domain = 0;
3078
3079         trace_i915_gem_object_change_domain(obj,
3080                                             obj->base.read_domains,
3081                                             old_write_domain);
3082 }
3083
3084 /**
3085  * Moves a single object to the GTT read, and possibly write domain.
3086  *
3087  * This function returns when the move is complete, including waiting on
3088  * flushes to occur.
3089  */
3090 int
3091 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3092 {
3093         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3094         uint32_t old_write_domain, old_read_domains;
3095         int ret;
3096
3097         /* Not valid to be called on unbound objects. */
3098         if (obj->gtt_space == NULL)
3099                 return -EINVAL;
3100
3101         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3102                 return 0;
3103
3104         ret = i915_gem_object_wait_rendering(obj, !write);
3105         if (ret)
3106                 return ret;
3107
3108         i915_gem_object_flush_cpu_write_domain(obj);
3109
3110         old_write_domain = obj->base.write_domain;
3111         old_read_domains = obj->base.read_domains;
3112
3113         /* It should now be out of any other write domains, and we can update
3114          * the domain values for our changes.
3115          */
3116         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3117         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3118         if (write) {
3119                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3120                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3121                 obj->dirty = 1;
3122         }
3123
3124         trace_i915_gem_object_change_domain(obj,
3125                                             old_read_domains,
3126                                             old_write_domain);
3127
3128         /* And bump the LRU for this access */
3129         if (i915_gem_object_is_inactive(obj))
3130                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3131
3132         return 0;
3133 }
3134
3135 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3136                                     enum i915_cache_level cache_level)
3137 {
3138         struct drm_device *dev = obj->base.dev;
3139         drm_i915_private_t *dev_priv = dev->dev_private;
3140         int ret;
3141
3142         if (obj->cache_level == cache_level)
3143                 return 0;
3144
3145         if (obj->pin_count) {
3146                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3147                 return -EBUSY;
3148         }
3149
3150         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3151                 ret = i915_gem_object_unbind(obj);
3152                 if (ret)
3153                         return ret;
3154         }
3155
3156         if (obj->gtt_space) {
3157                 ret = i915_gem_object_finish_gpu(obj);
3158                 if (ret)
3159                         return ret;
3160
3161                 i915_gem_object_finish_gtt(obj);
3162
3163                 /* Before SandyBridge, you could not use tiling or fence
3164                  * registers with snooped memory, so relinquish any fences
3165                  * currently pointing to our region in the aperture.
3166                  */
3167                 if (INTEL_INFO(dev)->gen < 6) {
3168                         ret = i915_gem_object_put_fence(obj);
3169                         if (ret)
3170                                 return ret;
3171                 }
3172
3173                 if (obj->has_global_gtt_mapping)
3174                         i915_gem_gtt_bind_object(obj, cache_level);
3175                 if (obj->has_aliasing_ppgtt_mapping)
3176                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3177                                                obj, cache_level);
3178
3179                 obj->gtt_space->color = cache_level;
3180         }
3181
3182         if (cache_level == I915_CACHE_NONE) {
3183                 u32 old_read_domains, old_write_domain;
3184
3185                 /* If we're coming from LLC cached, then we haven't
3186                  * actually been tracking whether the data is in the
3187                  * CPU cache or not, since we only allow one bit set
3188                  * in obj->write_domain and have been skipping the clflushes.
3189                  * Just set it to the CPU cache for now.
3190                  */
3191                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3192                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3193
3194                 old_read_domains = obj->base.read_domains;
3195                 old_write_domain = obj->base.write_domain;
3196
3197                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3198                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3199
3200                 trace_i915_gem_object_change_domain(obj,
3201                                                     old_read_domains,
3202                                                     old_write_domain);
3203         }
3204
3205         obj->cache_level = cache_level;
3206         i915_gem_verify_gtt(dev);
3207         return 0;
3208 }
3209
3210 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3211                                struct drm_file *file)
3212 {
3213         struct drm_i915_gem_caching *args = data;
3214         struct drm_i915_gem_object *obj;
3215         int ret;
3216
3217         ret = i915_mutex_lock_interruptible(dev);
3218         if (ret)
3219                 return ret;
3220
3221         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3222         if (&obj->base == NULL) {
3223                 ret = -ENOENT;
3224                 goto unlock;
3225         }
3226
3227         args->caching = obj->cache_level != I915_CACHE_NONE;
3228
3229         drm_gem_object_unreference(&obj->base);
3230 unlock:
3231         mutex_unlock(&dev->struct_mutex);
3232         return ret;
3233 }
3234
3235 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3236                                struct drm_file *file)
3237 {
3238         struct drm_i915_gem_caching *args = data;
3239         struct drm_i915_gem_object *obj;
3240         enum i915_cache_level level;
3241         int ret;
3242
3243         switch (args->caching) {
3244         case I915_CACHING_NONE:
3245                 level = I915_CACHE_NONE;
3246                 break;
3247         case I915_CACHING_CACHED:
3248                 level = I915_CACHE_LLC;
3249                 break;
3250         default:
3251                 return -EINVAL;
3252         }
3253
3254         ret = i915_mutex_lock_interruptible(dev);
3255         if (ret)
3256                 return ret;
3257
3258         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3259         if (&obj->base == NULL) {
3260                 ret = -ENOENT;
3261                 goto unlock;
3262         }
3263
3264         ret = i915_gem_object_set_cache_level(obj, level);
3265
3266         drm_gem_object_unreference(&obj->base);
3267 unlock:
3268         mutex_unlock(&dev->struct_mutex);
3269         return ret;
3270 }
3271
3272 /*
3273  * Prepare buffer for display plane (scanout, cursors, etc).
3274  * Can be called from an uninterruptible phase (modesetting) and allows
3275  * any flushes to be pipelined (for pageflips).
3276  */
3277 int
3278 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3279                                      u32 alignment,
3280                                      struct intel_ring_buffer *pipelined)
3281 {
3282         u32 old_read_domains, old_write_domain;
3283         int ret;
3284
3285         if (pipelined != obj->ring) {
3286                 ret = i915_gem_object_sync(obj, pipelined);
3287                 if (ret)
3288                         return ret;
3289         }
3290
3291         /* The display engine is not coherent with the LLC cache on gen6.  As
3292          * a result, we make sure that the pinning that is about to occur is
3293          * done with uncached PTEs. This is lowest common denominator for all
3294          * chipsets.
3295          *
3296          * However for gen6+, we could do better by using the GFDT bit instead
3297          * of uncaching, which would allow us to flush all the LLC-cached data
3298          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3299          */
3300         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3301         if (ret)
3302                 return ret;
3303
3304         /* As the user may map the buffer once pinned in the display plane
3305          * (e.g. libkms for the bootup splash), we have to ensure that we
3306          * always use map_and_fenceable for all scanout buffers.
3307          */
3308         ret = i915_gem_object_pin(obj, alignment, true, false);
3309         if (ret)
3310                 return ret;
3311
3312         i915_gem_object_flush_cpu_write_domain(obj);
3313
3314         old_write_domain = obj->base.write_domain;
3315         old_read_domains = obj->base.read_domains;
3316
3317         /* It should now be out of any other write domains, and we can update
3318          * the domain values for our changes.
3319          */
3320         obj->base.write_domain = 0;
3321         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3322
3323         trace_i915_gem_object_change_domain(obj,
3324                                             old_read_domains,
3325                                             old_write_domain);
3326
3327         return 0;
3328 }
3329
3330 int
3331 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3332 {
3333         int ret;
3334
3335         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3336                 return 0;
3337
3338         ret = i915_gem_object_wait_rendering(obj, false);
3339         if (ret)
3340                 return ret;
3341
3342         /* Ensure that we invalidate the GPU's caches and TLBs. */
3343         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3344         return 0;
3345 }
3346
3347 /**
3348  * Moves a single object to the CPU read, and possibly write domain.
3349  *
3350  * This function returns when the move is complete, including waiting on
3351  * flushes to occur.
3352  */
3353 int
3354 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3355 {
3356         uint32_t old_write_domain, old_read_domains;
3357         int ret;
3358
3359         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3360                 return 0;
3361
3362         ret = i915_gem_object_wait_rendering(obj, !write);
3363         if (ret)
3364                 return ret;
3365
3366         i915_gem_object_flush_gtt_write_domain(obj);
3367
3368         old_write_domain = obj->base.write_domain;
3369         old_read_domains = obj->base.read_domains;
3370
3371         /* Flush the CPU cache if it's still invalid. */
3372         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3373                 i915_gem_clflush_object(obj);
3374
3375                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3376         }
3377
3378         /* It should now be out of any other write domains, and we can update
3379          * the domain values for our changes.
3380          */
3381         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3382
3383         /* If we're writing through the CPU, then the GPU read domains will
3384          * need to be invalidated at next use.
3385          */
3386         if (write) {
3387                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3388                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3389         }
3390
3391         trace_i915_gem_object_change_domain(obj,
3392                                             old_read_domains,
3393                                             old_write_domain);
3394
3395         return 0;
3396 }
3397
3398 /* Throttle our rendering by waiting until the ring has completed our requests
3399  * emitted over 20 msec ago.
3400  *
3401  * Note that if we were to use the current jiffies each time around the loop,
3402  * we wouldn't escape the function with any frames outstanding if the time to
3403  * render a frame was over 20ms.
3404  *
3405  * This should get us reasonable parallelism between CPU and GPU but also
3406  * relatively low latency when blocking on a particular request to finish.
3407  */
3408 static int
3409 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3410 {
3411         struct drm_i915_private *dev_priv = dev->dev_private;
3412         struct drm_i915_file_private *file_priv = file->driver_priv;
3413         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3414         struct drm_i915_gem_request *request;
3415         struct intel_ring_buffer *ring = NULL;
3416         u32 seqno = 0;
3417         int ret;
3418
3419         if (atomic_read(&dev_priv->mm.wedged))
3420                 return -EIO;
3421
3422         spin_lock(&file_priv->mm.lock);
3423         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3424                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3425                         break;
3426
3427                 ring = request->ring;
3428                 seqno = request->seqno;
3429         }
3430         spin_unlock(&file_priv->mm.lock);
3431
3432         if (seqno == 0)
3433                 return 0;
3434
3435         ret = __wait_seqno(ring, seqno, true, NULL);
3436         if (ret == 0)
3437                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3438
3439         return ret;
3440 }
3441
3442 int
3443 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3444                     uint32_t alignment,
3445                     bool map_and_fenceable,
3446                     bool nonblocking)
3447 {
3448         int ret;
3449
3450         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3451                 return -EBUSY;
3452
3453         if (obj->gtt_space != NULL) {
3454                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3455                     (map_and_fenceable && !obj->map_and_fenceable)) {
3456                         WARN(obj->pin_count,
3457                              "bo is already pinned with incorrect alignment:"
3458                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3459                              " obj->map_and_fenceable=%d\n",
3460                              obj->gtt_offset, alignment,
3461                              map_and_fenceable,
3462                              obj->map_and_fenceable);
3463                         ret = i915_gem_object_unbind(obj);
3464                         if (ret)
3465                                 return ret;
3466                 }
3467         }
3468
3469         if (obj->gtt_space == NULL) {
3470                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3471
3472                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3473                                                   map_and_fenceable,
3474                                                   nonblocking);
3475                 if (ret)
3476                         return ret;
3477
3478                 if (!dev_priv->mm.aliasing_ppgtt)
3479                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3480         }
3481
3482         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3483                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3484
3485         obj->pin_count++;
3486         obj->pin_mappable |= map_and_fenceable;
3487
3488         return 0;
3489 }
3490
3491 void
3492 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3493 {
3494         BUG_ON(obj->pin_count == 0);
3495         BUG_ON(obj->gtt_space == NULL);
3496
3497         if (--obj->pin_count == 0)
3498                 obj->pin_mappable = false;
3499 }
3500
3501 int
3502 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3503                    struct drm_file *file)
3504 {
3505         struct drm_i915_gem_pin *args = data;
3506         struct drm_i915_gem_object *obj;
3507         int ret;
3508
3509         ret = i915_mutex_lock_interruptible(dev);
3510         if (ret)
3511                 return ret;
3512
3513         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3514         if (&obj->base == NULL) {
3515                 ret = -ENOENT;
3516                 goto unlock;
3517         }
3518
3519         if (obj->madv != I915_MADV_WILLNEED) {
3520                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3521                 ret = -EINVAL;
3522                 goto out;
3523         }
3524
3525         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3526                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3527                           args->handle);
3528                 ret = -EINVAL;
3529                 goto out;
3530         }
3531
3532         obj->user_pin_count++;
3533         obj->pin_filp = file;
3534         if (obj->user_pin_count == 1) {
3535                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3536                 if (ret)
3537                         goto out;
3538         }
3539
3540         /* XXX - flush the CPU caches for pinned objects
3541          * as the X server doesn't manage domains yet
3542          */
3543         i915_gem_object_flush_cpu_write_domain(obj);
3544         args->offset = obj->gtt_offset;
3545 out:
3546         drm_gem_object_unreference(&obj->base);
3547 unlock:
3548         mutex_unlock(&dev->struct_mutex);
3549         return ret;
3550 }
3551
3552 int
3553 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3554                      struct drm_file *file)
3555 {
3556         struct drm_i915_gem_pin *args = data;
3557         struct drm_i915_gem_object *obj;
3558         int ret;
3559
3560         ret = i915_mutex_lock_interruptible(dev);
3561         if (ret)
3562                 return ret;
3563
3564         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3565         if (&obj->base == NULL) {
3566                 ret = -ENOENT;
3567                 goto unlock;
3568         }
3569
3570         if (obj->pin_filp != file) {
3571                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3572                           args->handle);
3573                 ret = -EINVAL;
3574                 goto out;
3575         }
3576         obj->user_pin_count--;
3577         if (obj->user_pin_count == 0) {
3578                 obj->pin_filp = NULL;
3579                 i915_gem_object_unpin(obj);
3580         }
3581
3582 out:
3583         drm_gem_object_unreference(&obj->base);
3584 unlock:
3585         mutex_unlock(&dev->struct_mutex);
3586         return ret;
3587 }
3588
3589 int
3590 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3591                     struct drm_file *file)
3592 {
3593         struct drm_i915_gem_busy *args = data;
3594         struct drm_i915_gem_object *obj;
3595         int ret;
3596
3597         ret = i915_mutex_lock_interruptible(dev);
3598         if (ret)
3599                 return ret;
3600
3601         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3602         if (&obj->base == NULL) {
3603                 ret = -ENOENT;
3604                 goto unlock;
3605         }
3606
3607         /* Count all active objects as busy, even if they are currently not used
3608          * by the gpu. Users of this interface expect objects to eventually
3609          * become non-busy without any further actions, therefore emit any
3610          * necessary flushes here.
3611          */
3612         ret = i915_gem_object_flush_active(obj);
3613
3614         args->busy = obj->active;
3615         if (obj->ring) {
3616                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3617                 args->busy |= intel_ring_flag(obj->ring) << 16;
3618         }
3619
3620         drm_gem_object_unreference(&obj->base);
3621 unlock:
3622         mutex_unlock(&dev->struct_mutex);
3623         return ret;
3624 }
3625
3626 int
3627 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3628                         struct drm_file *file_priv)
3629 {
3630         return i915_gem_ring_throttle(dev, file_priv);
3631 }
3632
3633 int
3634 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3635                        struct drm_file *file_priv)
3636 {
3637         struct drm_i915_gem_madvise *args = data;
3638         struct drm_i915_gem_object *obj;
3639         int ret;
3640
3641         switch (args->madv) {
3642         case I915_MADV_DONTNEED:
3643         case I915_MADV_WILLNEED:
3644             break;
3645         default:
3646             return -EINVAL;
3647         }
3648
3649         ret = i915_mutex_lock_interruptible(dev);
3650         if (ret)
3651                 return ret;
3652
3653         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3654         if (&obj->base == NULL) {
3655                 ret = -ENOENT;
3656                 goto unlock;
3657         }
3658
3659         if (obj->pin_count) {
3660                 ret = -EINVAL;
3661                 goto out;
3662         }
3663
3664         if (obj->madv != __I915_MADV_PURGED)
3665                 obj->madv = args->madv;
3666
3667         /* if the object is no longer attached, discard its backing storage */
3668         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3669                 i915_gem_object_truncate(obj);
3670
3671         args->retained = obj->madv != __I915_MADV_PURGED;
3672
3673 out:
3674         drm_gem_object_unreference(&obj->base);
3675 unlock:
3676         mutex_unlock(&dev->struct_mutex);
3677         return ret;
3678 }
3679
3680 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3681                           const struct drm_i915_gem_object_ops *ops)
3682 {
3683         INIT_LIST_HEAD(&obj->mm_list);
3684         INIT_LIST_HEAD(&obj->gtt_list);
3685         INIT_LIST_HEAD(&obj->ring_list);
3686         INIT_LIST_HEAD(&obj->exec_list);
3687
3688         obj->ops = ops;
3689
3690         obj->fence_reg = I915_FENCE_REG_NONE;
3691         obj->madv = I915_MADV_WILLNEED;
3692         /* Avoid an unnecessary call to unbind on the first bind. */
3693         obj->map_and_fenceable = true;
3694
3695         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3696 }
3697
3698 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3699         .get_pages = i915_gem_object_get_pages_gtt,
3700         .put_pages = i915_gem_object_put_pages_gtt,
3701 };
3702
3703 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3704                                                   size_t size)
3705 {
3706         struct drm_i915_gem_object *obj;
3707         struct address_space *mapping;
3708         gfp_t mask;
3709
3710         obj = i915_gem_object_alloc(dev);
3711         if (obj == NULL)
3712                 return NULL;
3713
3714         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3715                 i915_gem_object_free(obj);
3716                 return NULL;
3717         }
3718
3719         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3720         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3721                 /* 965gm cannot relocate objects above 4GiB. */
3722                 mask &= ~__GFP_HIGHMEM;
3723                 mask |= __GFP_DMA32;
3724         }
3725
3726         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3727         mapping_set_gfp_mask(mapping, mask);
3728
3729         i915_gem_object_init(obj, &i915_gem_object_ops);
3730
3731         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3732         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3733
3734         if (HAS_LLC(dev)) {
3735                 /* On some devices, we can have the GPU use the LLC (the CPU
3736                  * cache) for about a 10% performance improvement
3737                  * compared to uncached.  Graphics requests other than
3738                  * display scanout are coherent with the CPU in
3739                  * accessing this cache.  This means in this mode we
3740                  * don't need to clflush on the CPU side, and on the
3741                  * GPU side we only need to flush internal caches to
3742                  * get data visible to the CPU.
3743                  *
3744                  * However, we maintain the display planes as UC, and so
3745                  * need to rebind when first used as such.
3746                  */
3747                 obj->cache_level = I915_CACHE_LLC;
3748         } else
3749                 obj->cache_level = I915_CACHE_NONE;
3750
3751         return obj;
3752 }
3753
3754 int i915_gem_init_object(struct drm_gem_object *obj)
3755 {
3756         BUG();
3757
3758         return 0;
3759 }
3760
3761 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3762 {
3763         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3764         struct drm_device *dev = obj->base.dev;
3765         drm_i915_private_t *dev_priv = dev->dev_private;
3766
3767         trace_i915_gem_object_destroy(obj);
3768
3769         if (obj->phys_obj)
3770                 i915_gem_detach_phys_object(dev, obj);
3771
3772         obj->pin_count = 0;
3773         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3774                 bool was_interruptible;
3775
3776                 was_interruptible = dev_priv->mm.interruptible;
3777                 dev_priv->mm.interruptible = false;
3778
3779                 WARN_ON(i915_gem_object_unbind(obj));
3780
3781                 dev_priv->mm.interruptible = was_interruptible;
3782         }
3783
3784         obj->pages_pin_count = 0;
3785         i915_gem_object_put_pages(obj);
3786         i915_gem_object_free_mmap_offset(obj);
3787         i915_gem_object_release_stolen(obj);
3788
3789         BUG_ON(obj->pages);
3790
3791         if (obj->base.import_attach)
3792                 drm_prime_gem_destroy(&obj->base, NULL);
3793
3794         drm_gem_object_release(&obj->base);
3795         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3796
3797         kfree(obj->bit_17);
3798         i915_gem_object_free(obj);
3799 }
3800
3801 int
3802 i915_gem_idle(struct drm_device *dev)
3803 {
3804         drm_i915_private_t *dev_priv = dev->dev_private;
3805         int ret;
3806
3807         mutex_lock(&dev->struct_mutex);
3808
3809         if (dev_priv->mm.suspended) {
3810                 mutex_unlock(&dev->struct_mutex);
3811                 return 0;
3812         }
3813
3814         ret = i915_gpu_idle(dev);
3815         if (ret) {
3816                 mutex_unlock(&dev->struct_mutex);
3817                 return ret;
3818         }
3819         i915_gem_retire_requests(dev);
3820
3821         /* Under UMS, be paranoid and evict. */
3822         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3823                 i915_gem_evict_everything(dev);
3824
3825         i915_gem_reset_fences(dev);
3826
3827         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3828          * We need to replace this with a semaphore, or something.
3829          * And not confound mm.suspended!
3830          */
3831         dev_priv->mm.suspended = 1;
3832         del_timer_sync(&dev_priv->hangcheck_timer);
3833
3834         i915_kernel_lost_context(dev);
3835         i915_gem_cleanup_ringbuffer(dev);
3836
3837         mutex_unlock(&dev->struct_mutex);
3838
3839         /* Cancel the retire work handler, which should be idle now. */
3840         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3841
3842         return 0;
3843 }
3844
3845 void i915_gem_l3_remap(struct drm_device *dev)
3846 {
3847         drm_i915_private_t *dev_priv = dev->dev_private;
3848         u32 misccpctl;
3849         int i;
3850
3851         if (!IS_IVYBRIDGE(dev))
3852                 return;
3853
3854         if (!dev_priv->l3_parity.remap_info)
3855                 return;
3856
3857         misccpctl = I915_READ(GEN7_MISCCPCTL);
3858         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3859         POSTING_READ(GEN7_MISCCPCTL);
3860
3861         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3862                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3863                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3864                         DRM_DEBUG("0x%x was already programmed to %x\n",
3865                                   GEN7_L3LOG_BASE + i, remap);
3866                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3867                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3868                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3869         }
3870
3871         /* Make sure all the writes land before disabling dop clock gating */
3872         POSTING_READ(GEN7_L3LOG_BASE);
3873
3874         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3875 }
3876
3877 void i915_gem_init_swizzling(struct drm_device *dev)
3878 {
3879         drm_i915_private_t *dev_priv = dev->dev_private;
3880
3881         if (INTEL_INFO(dev)->gen < 5 ||
3882             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3883                 return;
3884
3885         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3886                                  DISP_TILE_SURFACE_SWIZZLING);
3887
3888         if (IS_GEN5(dev))
3889                 return;
3890
3891         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3892         if (IS_GEN6(dev))
3893                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3894         else
3895                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3896 }
3897
3898 static bool
3899 intel_enable_blt(struct drm_device *dev)
3900 {
3901         if (!HAS_BLT(dev))
3902                 return false;
3903
3904         /* The blitter was dysfunctional on early prototypes */
3905         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3906                 DRM_INFO("BLT not supported on this pre-production hardware;"
3907                          " graphics performance will be degraded.\n");
3908                 return false;
3909         }
3910
3911         return true;
3912 }
3913
3914 int
3915 i915_gem_init_hw(struct drm_device *dev)
3916 {
3917         drm_i915_private_t *dev_priv = dev->dev_private;
3918         int ret;
3919
3920         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3921                 return -EIO;
3922
3923         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3924                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3925
3926         i915_gem_l3_remap(dev);
3927
3928         i915_gem_init_swizzling(dev);
3929
3930         ret = intel_init_render_ring_buffer(dev);
3931         if (ret)
3932                 return ret;
3933
3934         if (HAS_BSD(dev)) {
3935                 ret = intel_init_bsd_ring_buffer(dev);
3936                 if (ret)
3937                         goto cleanup_render_ring;
3938         }
3939
3940         if (intel_enable_blt(dev)) {
3941                 ret = intel_init_blt_ring_buffer(dev);
3942                 if (ret)
3943                         goto cleanup_bsd_ring;
3944         }
3945
3946         dev_priv->next_seqno = 1;
3947
3948         /*
3949          * XXX: There was some w/a described somewhere suggesting loading
3950          * contexts before PPGTT.
3951          */
3952         i915_gem_context_init(dev);
3953         i915_gem_init_ppgtt(dev);
3954
3955         return 0;
3956
3957 cleanup_bsd_ring:
3958         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3959 cleanup_render_ring:
3960         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3961         return ret;
3962 }
3963
3964 static bool
3965 intel_enable_ppgtt(struct drm_device *dev)
3966 {
3967         if (i915_enable_ppgtt >= 0)
3968                 return i915_enable_ppgtt;
3969
3970 #ifdef CONFIG_INTEL_IOMMU
3971         /* Disable ppgtt on SNB if VT-d is on. */
3972         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3973                 return false;
3974 #endif
3975
3976         return true;
3977 }
3978
3979 int i915_gem_init(struct drm_device *dev)
3980 {
3981         struct drm_i915_private *dev_priv = dev->dev_private;
3982         unsigned long gtt_size, mappable_size;
3983         int ret;
3984
3985         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3986         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3987
3988         mutex_lock(&dev->struct_mutex);
3989         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3990                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3991                  * aperture accordingly when using aliasing ppgtt. */
3992                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3993
3994                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3995
3996                 ret = i915_gem_init_aliasing_ppgtt(dev);
3997                 if (ret) {
3998                         mutex_unlock(&dev->struct_mutex);
3999                         return ret;
4000                 }
4001         } else {
4002                 /* Let GEM Manage all of the aperture.
4003                  *
4004                  * However, leave one page at the end still bound to the scratch
4005                  * page.  There are a number of places where the hardware
4006                  * apparently prefetches past the end of the object, and we've
4007                  * seen multiple hangs with the GPU head pointer stuck in a
4008                  * batchbuffer bound at the last page of the aperture.  One page
4009                  * should be enough to keep any prefetching inside of the
4010                  * aperture.
4011                  */
4012                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4013                                          gtt_size);
4014         }
4015
4016         ret = i915_gem_init_hw(dev);
4017         mutex_unlock(&dev->struct_mutex);
4018         if (ret) {
4019                 i915_gem_cleanup_aliasing_ppgtt(dev);
4020                 return ret;
4021         }
4022
4023         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4024         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4025                 dev_priv->dri1.allow_batchbuffer = 1;
4026         return 0;
4027 }
4028
4029 void
4030 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4031 {
4032         drm_i915_private_t *dev_priv = dev->dev_private;
4033         struct intel_ring_buffer *ring;
4034         int i;
4035
4036         for_each_ring(ring, dev_priv, i)
4037                 intel_cleanup_ring_buffer(ring);
4038 }
4039
4040 int
4041 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4042                        struct drm_file *file_priv)
4043 {
4044         drm_i915_private_t *dev_priv = dev->dev_private;
4045         int ret;
4046
4047         if (drm_core_check_feature(dev, DRIVER_MODESET))
4048                 return 0;
4049
4050         if (atomic_read(&dev_priv->mm.wedged)) {
4051                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4052                 atomic_set(&dev_priv->mm.wedged, 0);
4053         }
4054
4055         mutex_lock(&dev->struct_mutex);
4056         dev_priv->mm.suspended = 0;
4057
4058         ret = i915_gem_init_hw(dev);
4059         if (ret != 0) {
4060                 mutex_unlock(&dev->struct_mutex);
4061                 return ret;
4062         }
4063
4064         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4065         mutex_unlock(&dev->struct_mutex);
4066
4067         ret = drm_irq_install(dev);
4068         if (ret)
4069                 goto cleanup_ringbuffer;
4070
4071         return 0;
4072
4073 cleanup_ringbuffer:
4074         mutex_lock(&dev->struct_mutex);
4075         i915_gem_cleanup_ringbuffer(dev);
4076         dev_priv->mm.suspended = 1;
4077         mutex_unlock(&dev->struct_mutex);
4078
4079         return ret;
4080 }
4081
4082 int
4083 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4084                        struct drm_file *file_priv)
4085 {
4086         if (drm_core_check_feature(dev, DRIVER_MODESET))
4087                 return 0;
4088
4089         drm_irq_uninstall(dev);
4090         return i915_gem_idle(dev);
4091 }
4092
4093 void
4094 i915_gem_lastclose(struct drm_device *dev)
4095 {
4096         int ret;
4097
4098         if (drm_core_check_feature(dev, DRIVER_MODESET))
4099                 return;
4100
4101         ret = i915_gem_idle(dev);
4102         if (ret)
4103                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4104 }
4105
4106 static void
4107 init_ring_lists(struct intel_ring_buffer *ring)
4108 {
4109         INIT_LIST_HEAD(&ring->active_list);
4110         INIT_LIST_HEAD(&ring->request_list);
4111 }
4112
4113 void
4114 i915_gem_load(struct drm_device *dev)
4115 {
4116         drm_i915_private_t *dev_priv = dev->dev_private;
4117         int i;
4118
4119         dev_priv->slab =
4120                 kmem_cache_create("i915_gem_object",
4121                                   sizeof(struct drm_i915_gem_object), 0,
4122                                   SLAB_HWCACHE_ALIGN,
4123                                   NULL);
4124
4125         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4126         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4127         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4128         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4129         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4130         for (i = 0; i < I915_NUM_RINGS; i++)
4131                 init_ring_lists(&dev_priv->ring[i]);
4132         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4133                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4134         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4135                           i915_gem_retire_work_handler);
4136         init_completion(&dev_priv->error_completion);
4137
4138         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4139         if (IS_GEN3(dev)) {
4140                 I915_WRITE(MI_ARB_STATE,
4141                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4142         }
4143
4144         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4145
4146         /* Old X drivers will take 0-2 for front, back, depth buffers */
4147         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4148                 dev_priv->fence_reg_start = 3;
4149
4150         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4151                 dev_priv->num_fence_regs = 16;
4152         else
4153                 dev_priv->num_fence_regs = 8;
4154
4155         /* Initialize fence registers to zero */
4156         i915_gem_reset_fences(dev);
4157
4158         i915_gem_detect_bit_6_swizzle(dev);
4159         init_waitqueue_head(&dev_priv->pending_flip_queue);
4160
4161         dev_priv->mm.interruptible = true;
4162
4163         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4164         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4165         register_shrinker(&dev_priv->mm.inactive_shrinker);
4166 }
4167
4168 /*
4169  * Create a physically contiguous memory object for this object
4170  * e.g. for cursor + overlay regs
4171  */
4172 static int i915_gem_init_phys_object(struct drm_device *dev,
4173                                      int id, int size, int align)
4174 {
4175         drm_i915_private_t *dev_priv = dev->dev_private;
4176         struct drm_i915_gem_phys_object *phys_obj;
4177         int ret;
4178
4179         if (dev_priv->mm.phys_objs[id - 1] || !size)
4180                 return 0;
4181
4182         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4183         if (!phys_obj)
4184                 return -ENOMEM;
4185
4186         phys_obj->id = id;
4187
4188         phys_obj->handle = drm_pci_alloc(dev, size, align);
4189         if (!phys_obj->handle) {
4190                 ret = -ENOMEM;
4191                 goto kfree_obj;
4192         }
4193 #ifdef CONFIG_X86
4194         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4195 #endif
4196
4197         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4198
4199         return 0;
4200 kfree_obj:
4201         kfree(phys_obj);
4202         return ret;
4203 }
4204
4205 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4206 {
4207         drm_i915_private_t *dev_priv = dev->dev_private;
4208         struct drm_i915_gem_phys_object *phys_obj;
4209
4210         if (!dev_priv->mm.phys_objs[id - 1])
4211                 return;
4212
4213         phys_obj = dev_priv->mm.phys_objs[id - 1];
4214         if (phys_obj->cur_obj) {
4215                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4216         }
4217
4218 #ifdef CONFIG_X86
4219         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4220 #endif
4221         drm_pci_free(dev, phys_obj->handle);
4222         kfree(phys_obj);
4223         dev_priv->mm.phys_objs[id - 1] = NULL;
4224 }
4225
4226 void i915_gem_free_all_phys_object(struct drm_device *dev)
4227 {
4228         int i;
4229
4230         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4231                 i915_gem_free_phys_object(dev, i);
4232 }
4233
4234 void i915_gem_detach_phys_object(struct drm_device *dev,
4235                                  struct drm_i915_gem_object *obj)
4236 {
4237         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4238         char *vaddr;
4239         int i;
4240         int page_count;
4241
4242         if (!obj->phys_obj)
4243                 return;
4244         vaddr = obj->phys_obj->handle->vaddr;
4245
4246         page_count = obj->base.size / PAGE_SIZE;
4247         for (i = 0; i < page_count; i++) {
4248                 struct page *page = shmem_read_mapping_page(mapping, i);
4249                 if (!IS_ERR(page)) {
4250                         char *dst = kmap_atomic(page);
4251                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4252                         kunmap_atomic(dst);
4253
4254                         drm_clflush_pages(&page, 1);
4255
4256                         set_page_dirty(page);
4257                         mark_page_accessed(page);
4258                         page_cache_release(page);
4259                 }
4260         }
4261         i915_gem_chipset_flush(dev);
4262
4263         obj->phys_obj->cur_obj = NULL;
4264         obj->phys_obj = NULL;
4265 }
4266
4267 int
4268 i915_gem_attach_phys_object(struct drm_device *dev,
4269                             struct drm_i915_gem_object *obj,
4270                             int id,
4271                             int align)
4272 {
4273         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4274         drm_i915_private_t *dev_priv = dev->dev_private;
4275         int ret = 0;
4276         int page_count;
4277         int i;
4278
4279         if (id > I915_MAX_PHYS_OBJECT)
4280                 return -EINVAL;
4281
4282         if (obj->phys_obj) {
4283                 if (obj->phys_obj->id == id)
4284                         return 0;
4285                 i915_gem_detach_phys_object(dev, obj);
4286         }
4287
4288         /* create a new object */
4289         if (!dev_priv->mm.phys_objs[id - 1]) {
4290                 ret = i915_gem_init_phys_object(dev, id,
4291                                                 obj->base.size, align);
4292                 if (ret) {
4293                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4294                                   id, obj->base.size);
4295                         return ret;
4296                 }
4297         }
4298
4299         /* bind to the object */
4300         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4301         obj->phys_obj->cur_obj = obj;
4302
4303         page_count = obj->base.size / PAGE_SIZE;
4304
4305         for (i = 0; i < page_count; i++) {
4306                 struct page *page;
4307                 char *dst, *src;
4308
4309                 page = shmem_read_mapping_page(mapping, i);
4310                 if (IS_ERR(page))
4311                         return PTR_ERR(page);
4312
4313                 src = kmap_atomic(page);
4314                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4315                 memcpy(dst, src, PAGE_SIZE);
4316                 kunmap_atomic(src);
4317
4318                 mark_page_accessed(page);
4319                 page_cache_release(page);
4320         }
4321
4322         return 0;
4323 }
4324
4325 static int
4326 i915_gem_phys_pwrite(struct drm_device *dev,
4327                      struct drm_i915_gem_object *obj,
4328                      struct drm_i915_gem_pwrite *args,
4329                      struct drm_file *file_priv)
4330 {
4331         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4332         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4333
4334         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4335                 unsigned long unwritten;
4336
4337                 /* The physical object once assigned is fixed for the lifetime
4338                  * of the obj, so we can safely drop the lock and continue
4339                  * to access vaddr.
4340                  */
4341                 mutex_unlock(&dev->struct_mutex);
4342                 unwritten = copy_from_user(vaddr, user_data, args->size);
4343                 mutex_lock(&dev->struct_mutex);
4344                 if (unwritten)
4345                         return -EFAULT;
4346         }
4347
4348         i915_gem_chipset_flush(dev);
4349         return 0;
4350 }
4351
4352 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4353 {
4354         struct drm_i915_file_private *file_priv = file->driver_priv;
4355
4356         /* Clean up our request list when the client is going away, so that
4357          * later retire_requests won't dereference our soon-to-be-gone
4358          * file_priv.
4359          */
4360         spin_lock(&file_priv->mm.lock);
4361         while (!list_empty(&file_priv->mm.request_list)) {
4362                 struct drm_i915_gem_request *request;
4363
4364                 request = list_first_entry(&file_priv->mm.request_list,
4365                                            struct drm_i915_gem_request,
4366                                            client_list);
4367                 list_del(&request->client_list);
4368                 request->file_priv = NULL;
4369         }
4370         spin_unlock(&file_priv->mm.lock);
4371 }
4372
4373 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4374 {
4375         if (!mutex_is_locked(mutex))
4376                 return false;
4377
4378 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4379         return mutex->owner == task;
4380 #else
4381         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4382         return false;
4383 #endif
4384 }
4385
4386 static int
4387 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4388 {
4389         struct drm_i915_private *dev_priv =
4390                 container_of(shrinker,
4391                              struct drm_i915_private,
4392                              mm.inactive_shrinker);
4393         struct drm_device *dev = dev_priv->dev;
4394         struct drm_i915_gem_object *obj;
4395         int nr_to_scan = sc->nr_to_scan;
4396         bool unlock = true;
4397         int cnt;
4398
4399         if (!mutex_trylock(&dev->struct_mutex)) {
4400                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4401                         return 0;
4402
4403                 unlock = false;
4404         }
4405
4406         if (nr_to_scan) {
4407                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4408                 if (nr_to_scan > 0)
4409                         i915_gem_shrink_all(dev_priv);
4410         }
4411
4412         cnt = 0;
4413         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4414                 if (obj->pages_pin_count == 0)
4415                         cnt += obj->base.size >> PAGE_SHIFT;
4416         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4417                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4418                         cnt += obj->base.size >> PAGE_SHIFT;
4419
4420         if (unlock)
4421                 mutex_unlock(&dev->struct_mutex);
4422         return cnt;
4423 }