]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Fallback to single PAGE_SIZE segments for DMA remapping
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58                 return false;
59
60         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61                 return true;
62
63         return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct i915_ggtt *ggtt,
68                      struct drm_mm_node *node, u32 size)
69 {
70         memset(node, 0, sizeof(*node));
71         return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72                                                    size, 0, -1,
73                                                    0, ggtt->mappable_end,
74                                                    DRM_MM_SEARCH_DEFAULT,
75                                                    DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81         drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86                                   u64 size)
87 {
88         spin_lock(&dev_priv->mm.object_stat_lock);
89         dev_priv->mm.object_count++;
90         dev_priv->mm.object_memory += size;
91         spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95                                      u64 size)
96 {
97         spin_lock(&dev_priv->mm.object_stat_lock);
98         dev_priv->mm.object_count--;
99         dev_priv->mm.object_memory -= size;
100         spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106         int ret;
107
108         might_sleep();
109
110         if (!i915_reset_in_progress(error))
111                 return 0;
112
113         /*
114          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115          * userspace. If it takes that long something really bad is going on and
116          * we should simply try to bail out and fail as gracefully as possible.
117          */
118         ret = wait_event_interruptible_timeout(error->reset_queue,
119                                                !i915_reset_in_progress(error),
120                                                I915_RESET_TIMEOUT);
121         if (ret == 0) {
122                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123                 return -EIO;
124         } else if (ret < 0) {
125                 return ret;
126         } else {
127                 return 0;
128         }
129 }
130
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133         struct drm_i915_private *dev_priv = to_i915(dev);
134         int ret;
135
136         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137         if (ret)
138                 return ret;
139
140         ret = mutex_lock_interruptible(&dev->struct_mutex);
141         if (ret)
142                 return ret;
143
144         return 0;
145 }
146
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149                             struct drm_file *file)
150 {
151         struct drm_i915_private *dev_priv = to_i915(dev);
152         struct i915_ggtt *ggtt = &dev_priv->ggtt;
153         struct drm_i915_gem_get_aperture *args = data;
154         struct i915_vma *vma;
155         size_t pinned;
156
157         pinned = 0;
158         mutex_lock(&dev->struct_mutex);
159         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163                 if (i915_vma_is_pinned(vma))
164                         pinned += vma->node.size;
165         mutex_unlock(&dev->struct_mutex);
166
167         args->aper_size = ggtt->base.total;
168         args->aper_available_size = args->aper_size - pinned;
169
170         return 0;
171 }
172
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176         struct address_space *mapping = obj->base.filp->f_mapping;
177         drm_dma_handle_t *phys;
178         struct sg_table *st;
179         struct scatterlist *sg;
180         char *vaddr;
181         int i;
182
183         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184                 return ERR_PTR(-EINVAL);
185
186         /* Always aligning to the object size, allows a single allocation
187          * to handle all possible callers, and given typical object sizes,
188          * the alignment of the buddy allocation will naturally match.
189          */
190         phys = drm_pci_alloc(obj->base.dev,
191                              obj->base.size,
192                              roundup_pow_of_two(obj->base.size));
193         if (!phys)
194                 return ERR_PTR(-ENOMEM);
195
196         vaddr = phys->vaddr;
197         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198                 struct page *page;
199                 char *src;
200
201                 page = shmem_read_mapping_page(mapping, i);
202                 if (IS_ERR(page)) {
203                         st = ERR_CAST(page);
204                         goto err_phys;
205                 }
206
207                 src = kmap_atomic(page);
208                 memcpy(vaddr, src, PAGE_SIZE);
209                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
210                 kunmap_atomic(src);
211
212                 put_page(page);
213                 vaddr += PAGE_SIZE;
214         }
215
216         i915_gem_chipset_flush(to_i915(obj->base.dev));
217
218         st = kmalloc(sizeof(*st), GFP_KERNEL);
219         if (!st) {
220                 st = ERR_PTR(-ENOMEM);
221                 goto err_phys;
222         }
223
224         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225                 kfree(st);
226                 st = ERR_PTR(-ENOMEM);
227                 goto err_phys;
228         }
229
230         sg = st->sgl;
231         sg->offset = 0;
232         sg->length = obj->base.size;
233
234         sg_dma_address(sg) = phys->busaddr;
235         sg_dma_len(sg) = obj->base.size;
236
237         obj->phys_handle = phys;
238         return st;
239
240 err_phys:
241         drm_pci_free(obj->base.dev, phys);
242         return st;
243 }
244
245 static void
246 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247                                 struct sg_table *pages)
248 {
249         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251         if (obj->mm.madv == I915_MADV_DONTNEED)
252                 obj->mm.dirty = false;
253
254         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
255             !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
256                 drm_clflush_sg(pages);
257
258         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
259         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264                                struct sg_table *pages)
265 {
266         __i915_gem_object_release_shmem(obj, pages);
267
268         if (obj->mm.dirty) {
269                 struct address_space *mapping = obj->base.filp->f_mapping;
270                 char *vaddr = obj->phys_handle->vaddr;
271                 int i;
272
273                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274                         struct page *page;
275                         char *dst;
276
277                         page = shmem_read_mapping_page(mapping, i);
278                         if (IS_ERR(page))
279                                 continue;
280
281                         dst = kmap_atomic(page);
282                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
283                         memcpy(dst, vaddr, PAGE_SIZE);
284                         kunmap_atomic(dst);
285
286                         set_page_dirty(page);
287                         if (obj->mm.madv == I915_MADV_WILLNEED)
288                                 mark_page_accessed(page);
289                         put_page(page);
290                         vaddr += PAGE_SIZE;
291                 }
292                 obj->mm.dirty = false;
293         }
294
295         sg_free_table(pages);
296         kfree(pages);
297
298         drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304         i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308         .get_pages = i915_gem_object_get_pages_phys,
309         .put_pages = i915_gem_object_put_pages_phys,
310         .release = i915_gem_object_release_phys,
311 };
312
313 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
314 {
315         struct i915_vma *vma;
316         LIST_HEAD(still_in_list);
317         int ret;
318
319         lockdep_assert_held(&obj->base.dev->struct_mutex);
320
321         /* Closed vma are removed from the obj->vma_list - but they may
322          * still have an active binding on the object. To remove those we
323          * must wait for all rendering to complete to the object (as unbinding
324          * must anyway), and retire the requests.
325          */
326         ret = i915_gem_object_wait(obj,
327                                    I915_WAIT_INTERRUPTIBLE |
328                                    I915_WAIT_LOCKED |
329                                    I915_WAIT_ALL,
330                                    MAX_SCHEDULE_TIMEOUT,
331                                    NULL);
332         if (ret)
333                 return ret;
334
335         i915_gem_retire_requests(to_i915(obj->base.dev));
336
337         while ((vma = list_first_entry_or_null(&obj->vma_list,
338                                                struct i915_vma,
339                                                obj_link))) {
340                 list_move_tail(&vma->obj_link, &still_in_list);
341                 ret = i915_vma_unbind(vma);
342                 if (ret)
343                         break;
344         }
345         list_splice(&still_in_list, &obj->vma_list);
346
347         return ret;
348 }
349
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352                            unsigned int flags,
353                            long timeout,
354                            struct intel_rps_client *rps)
355 {
356         struct drm_i915_gem_request *rq;
357
358         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359
360         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361                 return timeout;
362
363         if (!dma_fence_is_i915(fence))
364                 return dma_fence_wait_timeout(fence,
365                                               flags & I915_WAIT_INTERRUPTIBLE,
366                                               timeout);
367
368         rq = to_request(fence);
369         if (i915_gem_request_completed(rq))
370                 goto out;
371
372         /* This client is about to stall waiting for the GPU. In many cases
373          * this is undesirable and limits the throughput of the system, as
374          * many clients cannot continue processing user input/output whilst
375          * blocked. RPS autotuning may take tens of milliseconds to respond
376          * to the GPU load and thus incurs additional latency for the client.
377          * We can circumvent that by promoting the GPU frequency to maximum
378          * before we wait. This makes the GPU throttle up much more quickly
379          * (good for benchmarks and user experience, e.g. window animations),
380          * but at a cost of spending more power processing the workload
381          * (bad for battery). Not all clients even want their results
382          * immediately and for them we should just let the GPU select its own
383          * frequency to maximise efficiency. To prevent a single client from
384          * forcing the clocks too high for the whole system, we only allow
385          * each client to waitboost once in a busy period.
386          */
387         if (rps) {
388                 if (INTEL_GEN(rq->i915) >= 6)
389                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
390                 else
391                         rps = NULL;
392         }
393
394         timeout = i915_wait_request(rq, flags, timeout);
395
396 out:
397         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398                 i915_gem_request_retire_upto(rq);
399
400         if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
401                 /* The GPU is now idle and this client has stalled.
402                  * Since no other client has submitted a request in the
403                  * meantime, assume that this client is the only one
404                  * supplying work to the GPU but is unable to keep that
405                  * work supplied because it is waiting. Since the GPU is
406                  * then never kept fully busy, RPS autoclocking will
407                  * keep the clocks relatively low, causing further delays.
408                  * Compensate by giving the synchronous client credit for
409                  * a waitboost next time.
410                  */
411                 spin_lock(&rq->i915->rps.client_lock);
412                 list_del_init(&rps->link);
413                 spin_unlock(&rq->i915->rps.client_lock);
414         }
415
416         return timeout;
417 }
418
419 static long
420 i915_gem_object_wait_reservation(struct reservation_object *resv,
421                                  unsigned int flags,
422                                  long timeout,
423                                  struct intel_rps_client *rps)
424 {
425         struct dma_fence *excl;
426
427         if (flags & I915_WAIT_ALL) {
428                 struct dma_fence **shared;
429                 unsigned int count, i;
430                 int ret;
431
432                 ret = reservation_object_get_fences_rcu(resv,
433                                                         &excl, &count, &shared);
434                 if (ret)
435                         return ret;
436
437                 for (i = 0; i < count; i++) {
438                         timeout = i915_gem_object_wait_fence(shared[i],
439                                                              flags, timeout,
440                                                              rps);
441                         if (timeout <= 0)
442                                 break;
443
444                         dma_fence_put(shared[i]);
445                 }
446
447                 for (; i < count; i++)
448                         dma_fence_put(shared[i]);
449                 kfree(shared);
450         } else {
451                 excl = reservation_object_get_excl_rcu(resv);
452         }
453
454         if (excl && timeout > 0)
455                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
456
457         dma_fence_put(excl);
458
459         return timeout;
460 }
461
462 static void __fence_set_priority(struct dma_fence *fence, int prio)
463 {
464         struct drm_i915_gem_request *rq;
465         struct intel_engine_cs *engine;
466
467         if (!dma_fence_is_i915(fence))
468                 return;
469
470         rq = to_request(fence);
471         engine = rq->engine;
472         if (!engine->schedule)
473                 return;
474
475         engine->schedule(rq, prio);
476 }
477
478 static void fence_set_priority(struct dma_fence *fence, int prio)
479 {
480         /* Recurse once into a fence-array */
481         if (dma_fence_is_array(fence)) {
482                 struct dma_fence_array *array = to_dma_fence_array(fence);
483                 int i;
484
485                 for (i = 0; i < array->num_fences; i++)
486                         __fence_set_priority(array->fences[i], prio);
487         } else {
488                 __fence_set_priority(fence, prio);
489         }
490 }
491
492 int
493 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
494                               unsigned int flags,
495                               int prio)
496 {
497         struct dma_fence *excl;
498
499         if (flags & I915_WAIT_ALL) {
500                 struct dma_fence **shared;
501                 unsigned int count, i;
502                 int ret;
503
504                 ret = reservation_object_get_fences_rcu(obj->resv,
505                                                         &excl, &count, &shared);
506                 if (ret)
507                         return ret;
508
509                 for (i = 0; i < count; i++) {
510                         fence_set_priority(shared[i], prio);
511                         dma_fence_put(shared[i]);
512                 }
513
514                 kfree(shared);
515         } else {
516                 excl = reservation_object_get_excl_rcu(obj->resv);
517         }
518
519         if (excl) {
520                 fence_set_priority(excl, prio);
521                 dma_fence_put(excl);
522         }
523         return 0;
524 }
525
526 /**
527  * Waits for rendering to the object to be completed
528  * @obj: i915 gem object
529  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
530  * @timeout: how long to wait
531  * @rps: client (user process) to charge for any waitboosting
532  */
533 int
534 i915_gem_object_wait(struct drm_i915_gem_object *obj,
535                      unsigned int flags,
536                      long timeout,
537                      struct intel_rps_client *rps)
538 {
539         might_sleep();
540 #if IS_ENABLED(CONFIG_LOCKDEP)
541         GEM_BUG_ON(debug_locks &&
542                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
543                    !!(flags & I915_WAIT_LOCKED));
544 #endif
545         GEM_BUG_ON(timeout < 0);
546
547         timeout = i915_gem_object_wait_reservation(obj->resv,
548                                                    flags, timeout,
549                                                    rps);
550         return timeout < 0 ? timeout : 0;
551 }
552
553 static struct intel_rps_client *to_rps_client(struct drm_file *file)
554 {
555         struct drm_i915_file_private *fpriv = file->driver_priv;
556
557         return &fpriv->rps;
558 }
559
560 int
561 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
562                             int align)
563 {
564         int ret;
565
566         if (align > obj->base.size)
567                 return -EINVAL;
568
569         if (obj->ops == &i915_gem_phys_ops)
570                 return 0;
571
572         if (obj->mm.madv != I915_MADV_WILLNEED)
573                 return -EFAULT;
574
575         if (obj->base.filp == NULL)
576                 return -EINVAL;
577
578         ret = i915_gem_object_unbind(obj);
579         if (ret)
580                 return ret;
581
582         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
583         if (obj->mm.pages)
584                 return -EBUSY;
585
586         obj->ops = &i915_gem_phys_ops;
587
588         return i915_gem_object_pin_pages(obj);
589 }
590
591 static int
592 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
593                      struct drm_i915_gem_pwrite *args,
594                      struct drm_file *file)
595 {
596         struct drm_device *dev = obj->base.dev;
597         void *vaddr = obj->phys_handle->vaddr + args->offset;
598         char __user *user_data = u64_to_user_ptr(args->data_ptr);
599         int ret;
600
601         /* We manually control the domain here and pretend that it
602          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
603          */
604         lockdep_assert_held(&obj->base.dev->struct_mutex);
605         ret = i915_gem_object_wait(obj,
606                                    I915_WAIT_INTERRUPTIBLE |
607                                    I915_WAIT_LOCKED |
608                                    I915_WAIT_ALL,
609                                    MAX_SCHEDULE_TIMEOUT,
610                                    to_rps_client(file));
611         if (ret)
612                 return ret;
613
614         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
615         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
616                 unsigned long unwritten;
617
618                 /* The physical object once assigned is fixed for the lifetime
619                  * of the obj, so we can safely drop the lock and continue
620                  * to access vaddr.
621                  */
622                 mutex_unlock(&dev->struct_mutex);
623                 unwritten = copy_from_user(vaddr, user_data, args->size);
624                 mutex_lock(&dev->struct_mutex);
625                 if (unwritten) {
626                         ret = -EFAULT;
627                         goto out;
628                 }
629         }
630
631         drm_clflush_virt_range(vaddr, args->size);
632         i915_gem_chipset_flush(to_i915(dev));
633
634 out:
635         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
636         return ret;
637 }
638
639 void *i915_gem_object_alloc(struct drm_device *dev)
640 {
641         struct drm_i915_private *dev_priv = to_i915(dev);
642         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
643 }
644
645 void i915_gem_object_free(struct drm_i915_gem_object *obj)
646 {
647         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
648         kmem_cache_free(dev_priv->objects, obj);
649 }
650
651 static int
652 i915_gem_create(struct drm_file *file,
653                 struct drm_device *dev,
654                 uint64_t size,
655                 uint32_t *handle_p)
656 {
657         struct drm_i915_gem_object *obj;
658         int ret;
659         u32 handle;
660
661         size = roundup(size, PAGE_SIZE);
662         if (size == 0)
663                 return -EINVAL;
664
665         /* Allocate the new object */
666         obj = i915_gem_object_create(dev, size);
667         if (IS_ERR(obj))
668                 return PTR_ERR(obj);
669
670         ret = drm_gem_handle_create(file, &obj->base, &handle);
671         /* drop reference from allocate - handle holds it now */
672         i915_gem_object_put(obj);
673         if (ret)
674                 return ret;
675
676         *handle_p = handle;
677         return 0;
678 }
679
680 int
681 i915_gem_dumb_create(struct drm_file *file,
682                      struct drm_device *dev,
683                      struct drm_mode_create_dumb *args)
684 {
685         /* have to work out size/pitch and return them */
686         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
687         args->size = args->pitch * args->height;
688         return i915_gem_create(file, dev,
689                                args->size, &args->handle);
690 }
691
692 /**
693  * Creates a new mm object and returns a handle to it.
694  * @dev: drm device pointer
695  * @data: ioctl data blob
696  * @file: drm file pointer
697  */
698 int
699 i915_gem_create_ioctl(struct drm_device *dev, void *data,
700                       struct drm_file *file)
701 {
702         struct drm_i915_gem_create *args = data;
703
704         i915_gem_flush_free_objects(to_i915(dev));
705
706         return i915_gem_create(file, dev,
707                                args->size, &args->handle);
708 }
709
710 static inline int
711 __copy_to_user_swizzled(char __user *cpu_vaddr,
712                         const char *gpu_vaddr, int gpu_offset,
713                         int length)
714 {
715         int ret, cpu_offset = 0;
716
717         while (length > 0) {
718                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
719                 int this_length = min(cacheline_end - gpu_offset, length);
720                 int swizzled_gpu_offset = gpu_offset ^ 64;
721
722                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
723                                      gpu_vaddr + swizzled_gpu_offset,
724                                      this_length);
725                 if (ret)
726                         return ret + length;
727
728                 cpu_offset += this_length;
729                 gpu_offset += this_length;
730                 length -= this_length;
731         }
732
733         return 0;
734 }
735
736 static inline int
737 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
738                           const char __user *cpu_vaddr,
739                           int length)
740 {
741         int ret, cpu_offset = 0;
742
743         while (length > 0) {
744                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
745                 int this_length = min(cacheline_end - gpu_offset, length);
746                 int swizzled_gpu_offset = gpu_offset ^ 64;
747
748                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
749                                        cpu_vaddr + cpu_offset,
750                                        this_length);
751                 if (ret)
752                         return ret + length;
753
754                 cpu_offset += this_length;
755                 gpu_offset += this_length;
756                 length -= this_length;
757         }
758
759         return 0;
760 }
761
762 /*
763  * Pins the specified object's pages and synchronizes the object with
764  * GPU accesses. Sets needs_clflush to non-zero if the caller should
765  * flush the object from the CPU cache.
766  */
767 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
768                                     unsigned int *needs_clflush)
769 {
770         int ret;
771
772         lockdep_assert_held(&obj->base.dev->struct_mutex);
773
774         *needs_clflush = 0;
775         if (!i915_gem_object_has_struct_page(obj))
776                 return -ENODEV;
777
778         ret = i915_gem_object_wait(obj,
779                                    I915_WAIT_INTERRUPTIBLE |
780                                    I915_WAIT_LOCKED,
781                                    MAX_SCHEDULE_TIMEOUT,
782                                    NULL);
783         if (ret)
784                 return ret;
785
786         ret = i915_gem_object_pin_pages(obj);
787         if (ret)
788                 return ret;
789
790         i915_gem_object_flush_gtt_write_domain(obj);
791
792         /* If we're not in the cpu read domain, set ourself into the gtt
793          * read domain and manually flush cachelines (if required). This
794          * optimizes for the case when the gpu will dirty the data
795          * anyway again before the next pread happens.
796          */
797         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
798                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
799                                                         obj->cache_level);
800
801         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
802                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
803                 if (ret)
804                         goto err_unpin;
805
806                 *needs_clflush = 0;
807         }
808
809         /* return with the pages pinned */
810         return 0;
811
812 err_unpin:
813         i915_gem_object_unpin_pages(obj);
814         return ret;
815 }
816
817 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
818                                      unsigned int *needs_clflush)
819 {
820         int ret;
821
822         lockdep_assert_held(&obj->base.dev->struct_mutex);
823
824         *needs_clflush = 0;
825         if (!i915_gem_object_has_struct_page(obj))
826                 return -ENODEV;
827
828         ret = i915_gem_object_wait(obj,
829                                    I915_WAIT_INTERRUPTIBLE |
830                                    I915_WAIT_LOCKED |
831                                    I915_WAIT_ALL,
832                                    MAX_SCHEDULE_TIMEOUT,
833                                    NULL);
834         if (ret)
835                 return ret;
836
837         ret = i915_gem_object_pin_pages(obj);
838         if (ret)
839                 return ret;
840
841         i915_gem_object_flush_gtt_write_domain(obj);
842
843         /* If we're not in the cpu write domain, set ourself into the
844          * gtt write domain and manually flush cachelines (as required).
845          * This optimizes for the case when the gpu will use the data
846          * right away and we therefore have to clflush anyway.
847          */
848         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
849                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
850
851         /* Same trick applies to invalidate partially written cachelines read
852          * before writing.
853          */
854         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
855                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
856                                                          obj->cache_level);
857
858         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
859                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
860                 if (ret)
861                         goto err_unpin;
862
863                 *needs_clflush = 0;
864         }
865
866         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
867                 obj->cache_dirty = true;
868
869         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
870         obj->mm.dirty = true;
871         /* return with the pages pinned */
872         return 0;
873
874 err_unpin:
875         i915_gem_object_unpin_pages(obj);
876         return ret;
877 }
878
879 static void
880 shmem_clflush_swizzled_range(char *addr, unsigned long length,
881                              bool swizzled)
882 {
883         if (unlikely(swizzled)) {
884                 unsigned long start = (unsigned long) addr;
885                 unsigned long end = (unsigned long) addr + length;
886
887                 /* For swizzling simply ensure that we always flush both
888                  * channels. Lame, but simple and it works. Swizzled
889                  * pwrite/pread is far from a hotpath - current userspace
890                  * doesn't use it at all. */
891                 start = round_down(start, 128);
892                 end = round_up(end, 128);
893
894                 drm_clflush_virt_range((void *)start, end - start);
895         } else {
896                 drm_clflush_virt_range(addr, length);
897         }
898
899 }
900
901 /* Only difference to the fast-path function is that this can handle bit17
902  * and uses non-atomic copy and kmap functions. */
903 static int
904 shmem_pread_slow(struct page *page, int offset, int length,
905                  char __user *user_data,
906                  bool page_do_bit17_swizzling, bool needs_clflush)
907 {
908         char *vaddr;
909         int ret;
910
911         vaddr = kmap(page);
912         if (needs_clflush)
913                 shmem_clflush_swizzled_range(vaddr + offset, length,
914                                              page_do_bit17_swizzling);
915
916         if (page_do_bit17_swizzling)
917                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
918         else
919                 ret = __copy_to_user(user_data, vaddr + offset, length);
920         kunmap(page);
921
922         return ret ? - EFAULT : 0;
923 }
924
925 static int
926 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
927             bool page_do_bit17_swizzling, bool needs_clflush)
928 {
929         int ret;
930
931         ret = -ENODEV;
932         if (!page_do_bit17_swizzling) {
933                 char *vaddr = kmap_atomic(page);
934
935                 if (needs_clflush)
936                         drm_clflush_virt_range(vaddr + offset, length);
937                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
938                 kunmap_atomic(vaddr);
939         }
940         if (ret == 0)
941                 return 0;
942
943         return shmem_pread_slow(page, offset, length, user_data,
944                                 page_do_bit17_swizzling, needs_clflush);
945 }
946
947 static int
948 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
949                      struct drm_i915_gem_pread *args)
950 {
951         char __user *user_data;
952         u64 remain;
953         unsigned int obj_do_bit17_swizzling;
954         unsigned int needs_clflush;
955         unsigned int idx, offset;
956         int ret;
957
958         obj_do_bit17_swizzling = 0;
959         if (i915_gem_object_needs_bit17_swizzle(obj))
960                 obj_do_bit17_swizzling = BIT(17);
961
962         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
963         if (ret)
964                 return ret;
965
966         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
967         mutex_unlock(&obj->base.dev->struct_mutex);
968         if (ret)
969                 return ret;
970
971         remain = args->size;
972         user_data = u64_to_user_ptr(args->data_ptr);
973         offset = offset_in_page(args->offset);
974         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
975                 struct page *page = i915_gem_object_get_page(obj, idx);
976                 int length;
977
978                 length = remain;
979                 if (offset + length > PAGE_SIZE)
980                         length = PAGE_SIZE - offset;
981
982                 ret = shmem_pread(page, offset, length, user_data,
983                                   page_to_phys(page) & obj_do_bit17_swizzling,
984                                   needs_clflush);
985                 if (ret)
986                         break;
987
988                 remain -= length;
989                 user_data += length;
990                 offset = 0;
991         }
992
993         i915_gem_obj_finish_shmem_access(obj);
994         return ret;
995 }
996
997 static inline bool
998 gtt_user_read(struct io_mapping *mapping,
999               loff_t base, int offset,
1000               char __user *user_data, int length)
1001 {
1002         void *vaddr;
1003         unsigned long unwritten;
1004
1005         /* We can use the cpu mem copy function because this is X86. */
1006         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1007         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1008         io_mapping_unmap_atomic(vaddr);
1009         if (unwritten) {
1010                 vaddr = (void __force *)
1011                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1012                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1013                 io_mapping_unmap(vaddr);
1014         }
1015         return unwritten;
1016 }
1017
1018 static int
1019 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1020                    const struct drm_i915_gem_pread *args)
1021 {
1022         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1023         struct i915_ggtt *ggtt = &i915->ggtt;
1024         struct drm_mm_node node;
1025         struct i915_vma *vma;
1026         void __user *user_data;
1027         u64 remain, offset;
1028         int ret;
1029
1030         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1031         if (ret)
1032                 return ret;
1033
1034         intel_runtime_pm_get(i915);
1035         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1036                                        PIN_MAPPABLE | PIN_NONBLOCK);
1037         if (!IS_ERR(vma)) {
1038                 node.start = i915_ggtt_offset(vma);
1039                 node.allocated = false;
1040                 ret = i915_vma_put_fence(vma);
1041                 if (ret) {
1042                         i915_vma_unpin(vma);
1043                         vma = ERR_PTR(ret);
1044                 }
1045         }
1046         if (IS_ERR(vma)) {
1047                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1048                 if (ret)
1049                         goto out_unlock;
1050                 GEM_BUG_ON(!node.allocated);
1051         }
1052
1053         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1054         if (ret)
1055                 goto out_unpin;
1056
1057         mutex_unlock(&i915->drm.struct_mutex);
1058
1059         user_data = u64_to_user_ptr(args->data_ptr);
1060         remain = args->size;
1061         offset = args->offset;
1062
1063         while (remain > 0) {
1064                 /* Operation in this page
1065                  *
1066                  * page_base = page offset within aperture
1067                  * page_offset = offset within page
1068                  * page_length = bytes to copy for this page
1069                  */
1070                 u32 page_base = node.start;
1071                 unsigned page_offset = offset_in_page(offset);
1072                 unsigned page_length = PAGE_SIZE - page_offset;
1073                 page_length = remain < page_length ? remain : page_length;
1074                 if (node.allocated) {
1075                         wmb();
1076                         ggtt->base.insert_page(&ggtt->base,
1077                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1078                                                node.start, I915_CACHE_NONE, 0);
1079                         wmb();
1080                 } else {
1081                         page_base += offset & PAGE_MASK;
1082                 }
1083
1084                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1085                                   user_data, page_length)) {
1086                         ret = -EFAULT;
1087                         break;
1088                 }
1089
1090                 remain -= page_length;
1091                 user_data += page_length;
1092                 offset += page_length;
1093         }
1094
1095         mutex_lock(&i915->drm.struct_mutex);
1096 out_unpin:
1097         if (node.allocated) {
1098                 wmb();
1099                 ggtt->base.clear_range(&ggtt->base,
1100                                        node.start, node.size);
1101                 remove_mappable_node(&node);
1102         } else {
1103                 i915_vma_unpin(vma);
1104         }
1105 out_unlock:
1106         intel_runtime_pm_put(i915);
1107         mutex_unlock(&i915->drm.struct_mutex);
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * Reads data from the object referenced by handle.
1114  * @dev: drm device pointer
1115  * @data: ioctl data blob
1116  * @file: drm file pointer
1117  *
1118  * On error, the contents of *data are undefined.
1119  */
1120 int
1121 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1122                      struct drm_file *file)
1123 {
1124         struct drm_i915_gem_pread *args = data;
1125         struct drm_i915_gem_object *obj;
1126         int ret;
1127
1128         if (args->size == 0)
1129                 return 0;
1130
1131         if (!access_ok(VERIFY_WRITE,
1132                        u64_to_user_ptr(args->data_ptr),
1133                        args->size))
1134                 return -EFAULT;
1135
1136         obj = i915_gem_object_lookup(file, args->handle);
1137         if (!obj)
1138                 return -ENOENT;
1139
1140         /* Bounds check source.  */
1141         if (args->offset > obj->base.size ||
1142             args->size > obj->base.size - args->offset) {
1143                 ret = -EINVAL;
1144                 goto out;
1145         }
1146
1147         trace_i915_gem_object_pread(obj, args->offset, args->size);
1148
1149         ret = i915_gem_object_wait(obj,
1150                                    I915_WAIT_INTERRUPTIBLE,
1151                                    MAX_SCHEDULE_TIMEOUT,
1152                                    to_rps_client(file));
1153         if (ret)
1154                 goto out;
1155
1156         ret = i915_gem_object_pin_pages(obj);
1157         if (ret)
1158                 goto out;
1159
1160         ret = i915_gem_shmem_pread(obj, args);
1161         if (ret == -EFAULT || ret == -ENODEV)
1162                 ret = i915_gem_gtt_pread(obj, args);
1163
1164         i915_gem_object_unpin_pages(obj);
1165 out:
1166         i915_gem_object_put(obj);
1167         return ret;
1168 }
1169
1170 /* This is the fast write path which cannot handle
1171  * page faults in the source data
1172  */
1173
1174 static inline bool
1175 ggtt_write(struct io_mapping *mapping,
1176            loff_t base, int offset,
1177            char __user *user_data, int length)
1178 {
1179         void *vaddr;
1180         unsigned long unwritten;
1181
1182         /* We can use the cpu mem copy function because this is X86. */
1183         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1184         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1185                                                       user_data, length);
1186         io_mapping_unmap_atomic(vaddr);
1187         if (unwritten) {
1188                 vaddr = (void __force *)
1189                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1190                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1191                 io_mapping_unmap(vaddr);
1192         }
1193
1194         return unwritten;
1195 }
1196
1197 /**
1198  * This is the fast pwrite path, where we copy the data directly from the
1199  * user into the GTT, uncached.
1200  * @obj: i915 GEM object
1201  * @args: pwrite arguments structure
1202  */
1203 static int
1204 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1205                          const struct drm_i915_gem_pwrite *args)
1206 {
1207         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1208         struct i915_ggtt *ggtt = &i915->ggtt;
1209         struct drm_mm_node node;
1210         struct i915_vma *vma;
1211         u64 remain, offset;
1212         void __user *user_data;
1213         int ret;
1214
1215         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1216         if (ret)
1217                 return ret;
1218
1219         intel_runtime_pm_get(i915);
1220         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1221                                        PIN_MAPPABLE | PIN_NONBLOCK);
1222         if (!IS_ERR(vma)) {
1223                 node.start = i915_ggtt_offset(vma);
1224                 node.allocated = false;
1225                 ret = i915_vma_put_fence(vma);
1226                 if (ret) {
1227                         i915_vma_unpin(vma);
1228                         vma = ERR_PTR(ret);
1229                 }
1230         }
1231         if (IS_ERR(vma)) {
1232                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1233                 if (ret)
1234                         goto out_unlock;
1235                 GEM_BUG_ON(!node.allocated);
1236         }
1237
1238         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1239         if (ret)
1240                 goto out_unpin;
1241
1242         mutex_unlock(&i915->drm.struct_mutex);
1243
1244         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1245
1246         user_data = u64_to_user_ptr(args->data_ptr);
1247         offset = args->offset;
1248         remain = args->size;
1249         while (remain) {
1250                 /* Operation in this page
1251                  *
1252                  * page_base = page offset within aperture
1253                  * page_offset = offset within page
1254                  * page_length = bytes to copy for this page
1255                  */
1256                 u32 page_base = node.start;
1257                 unsigned int page_offset = offset_in_page(offset);
1258                 unsigned int page_length = PAGE_SIZE - page_offset;
1259                 page_length = remain < page_length ? remain : page_length;
1260                 if (node.allocated) {
1261                         wmb(); /* flush the write before we modify the GGTT */
1262                         ggtt->base.insert_page(&ggtt->base,
1263                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1264                                                node.start, I915_CACHE_NONE, 0);
1265                         wmb(); /* flush modifications to the GGTT (insert_page) */
1266                 } else {
1267                         page_base += offset & PAGE_MASK;
1268                 }
1269                 /* If we get a fault while copying data, then (presumably) our
1270                  * source page isn't available.  Return the error and we'll
1271                  * retry in the slow path.
1272                  * If the object is non-shmem backed, we retry again with the
1273                  * path that handles page fault.
1274                  */
1275                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1276                                user_data, page_length)) {
1277                         ret = -EFAULT;
1278                         break;
1279                 }
1280
1281                 remain -= page_length;
1282                 user_data += page_length;
1283                 offset += page_length;
1284         }
1285         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1286
1287         mutex_lock(&i915->drm.struct_mutex);
1288 out_unpin:
1289         if (node.allocated) {
1290                 wmb();
1291                 ggtt->base.clear_range(&ggtt->base,
1292                                        node.start, node.size);
1293                 remove_mappable_node(&node);
1294         } else {
1295                 i915_vma_unpin(vma);
1296         }
1297 out_unlock:
1298         intel_runtime_pm_put(i915);
1299         mutex_unlock(&i915->drm.struct_mutex);
1300         return ret;
1301 }
1302
1303 static int
1304 shmem_pwrite_slow(struct page *page, int offset, int length,
1305                   char __user *user_data,
1306                   bool page_do_bit17_swizzling,
1307                   bool needs_clflush_before,
1308                   bool needs_clflush_after)
1309 {
1310         char *vaddr;
1311         int ret;
1312
1313         vaddr = kmap(page);
1314         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1315                 shmem_clflush_swizzled_range(vaddr + offset, length,
1316                                              page_do_bit17_swizzling);
1317         if (page_do_bit17_swizzling)
1318                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1319                                                 length);
1320         else
1321                 ret = __copy_from_user(vaddr + offset, user_data, length);
1322         if (needs_clflush_after)
1323                 shmem_clflush_swizzled_range(vaddr + offset, length,
1324                                              page_do_bit17_swizzling);
1325         kunmap(page);
1326
1327         return ret ? -EFAULT : 0;
1328 }
1329
1330 /* Per-page copy function for the shmem pwrite fastpath.
1331  * Flushes invalid cachelines before writing to the target if
1332  * needs_clflush_before is set and flushes out any written cachelines after
1333  * writing if needs_clflush is set.
1334  */
1335 static int
1336 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1337              bool page_do_bit17_swizzling,
1338              bool needs_clflush_before,
1339              bool needs_clflush_after)
1340 {
1341         int ret;
1342
1343         ret = -ENODEV;
1344         if (!page_do_bit17_swizzling) {
1345                 char *vaddr = kmap_atomic(page);
1346
1347                 if (needs_clflush_before)
1348                         drm_clflush_virt_range(vaddr + offset, len);
1349                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1350                 if (needs_clflush_after)
1351                         drm_clflush_virt_range(vaddr + offset, len);
1352
1353                 kunmap_atomic(vaddr);
1354         }
1355         if (ret == 0)
1356                 return ret;
1357
1358         return shmem_pwrite_slow(page, offset, len, user_data,
1359                                  page_do_bit17_swizzling,
1360                                  needs_clflush_before,
1361                                  needs_clflush_after);
1362 }
1363
1364 static int
1365 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1366                       const struct drm_i915_gem_pwrite *args)
1367 {
1368         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1369         void __user *user_data;
1370         u64 remain;
1371         unsigned int obj_do_bit17_swizzling;
1372         unsigned int partial_cacheline_write;
1373         unsigned int needs_clflush;
1374         unsigned int offset, idx;
1375         int ret;
1376
1377         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1378         if (ret)
1379                 return ret;
1380
1381         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1382         mutex_unlock(&i915->drm.struct_mutex);
1383         if (ret)
1384                 return ret;
1385
1386         obj_do_bit17_swizzling = 0;
1387         if (i915_gem_object_needs_bit17_swizzle(obj))
1388                 obj_do_bit17_swizzling = BIT(17);
1389
1390         /* If we don't overwrite a cacheline completely we need to be
1391          * careful to have up-to-date data by first clflushing. Don't
1392          * overcomplicate things and flush the entire patch.
1393          */
1394         partial_cacheline_write = 0;
1395         if (needs_clflush & CLFLUSH_BEFORE)
1396                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1397
1398         user_data = u64_to_user_ptr(args->data_ptr);
1399         remain = args->size;
1400         offset = offset_in_page(args->offset);
1401         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1402                 struct page *page = i915_gem_object_get_page(obj, idx);
1403                 int length;
1404
1405                 length = remain;
1406                 if (offset + length > PAGE_SIZE)
1407                         length = PAGE_SIZE - offset;
1408
1409                 ret = shmem_pwrite(page, offset, length, user_data,
1410                                    page_to_phys(page) & obj_do_bit17_swizzling,
1411                                    (offset | length) & partial_cacheline_write,
1412                                    needs_clflush & CLFLUSH_AFTER);
1413                 if (ret)
1414                         break;
1415
1416                 remain -= length;
1417                 user_data += length;
1418                 offset = 0;
1419         }
1420
1421         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1422         i915_gem_obj_finish_shmem_access(obj);
1423         return ret;
1424 }
1425
1426 /**
1427  * Writes data to the object referenced by handle.
1428  * @dev: drm device
1429  * @data: ioctl data blob
1430  * @file: drm file
1431  *
1432  * On error, the contents of the buffer that were to be modified are undefined.
1433  */
1434 int
1435 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1436                       struct drm_file *file)
1437 {
1438         struct drm_i915_gem_pwrite *args = data;
1439         struct drm_i915_gem_object *obj;
1440         int ret;
1441
1442         if (args->size == 0)
1443                 return 0;
1444
1445         if (!access_ok(VERIFY_READ,
1446                        u64_to_user_ptr(args->data_ptr),
1447                        args->size))
1448                 return -EFAULT;
1449
1450         obj = i915_gem_object_lookup(file, args->handle);
1451         if (!obj)
1452                 return -ENOENT;
1453
1454         /* Bounds check destination. */
1455         if (args->offset > obj->base.size ||
1456             args->size > obj->base.size - args->offset) {
1457                 ret = -EINVAL;
1458                 goto err;
1459         }
1460
1461         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1462
1463         ret = i915_gem_object_wait(obj,
1464                                    I915_WAIT_INTERRUPTIBLE |
1465                                    I915_WAIT_ALL,
1466                                    MAX_SCHEDULE_TIMEOUT,
1467                                    to_rps_client(file));
1468         if (ret)
1469                 goto err;
1470
1471         ret = i915_gem_object_pin_pages(obj);
1472         if (ret)
1473                 goto err;
1474
1475         ret = -EFAULT;
1476         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1477          * it would end up going through the fenced access, and we'll get
1478          * different detiling behavior between reading and writing.
1479          * pread/pwrite currently are reading and writing from the CPU
1480          * perspective, requiring manual detiling by the client.
1481          */
1482         if (!i915_gem_object_has_struct_page(obj) ||
1483             cpu_write_needs_clflush(obj))
1484                 /* Note that the gtt paths might fail with non-page-backed user
1485                  * pointers (e.g. gtt mappings when moving data between
1486                  * textures). Fallback to the shmem path in that case.
1487                  */
1488                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1489
1490         if (ret == -EFAULT || ret == -ENOSPC) {
1491                 if (obj->phys_handle)
1492                         ret = i915_gem_phys_pwrite(obj, args, file);
1493                 else
1494                         ret = i915_gem_shmem_pwrite(obj, args);
1495         }
1496
1497         i915_gem_object_unpin_pages(obj);
1498 err:
1499         i915_gem_object_put(obj);
1500         return ret;
1501 }
1502
1503 static inline enum fb_op_origin
1504 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1505 {
1506         return (domain == I915_GEM_DOMAIN_GTT ?
1507                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1508 }
1509
1510 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1511 {
1512         struct drm_i915_private *i915;
1513         struct list_head *list;
1514         struct i915_vma *vma;
1515
1516         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1517                 if (!i915_vma_is_ggtt(vma))
1518                         continue;
1519
1520                 if (i915_vma_is_active(vma))
1521                         continue;
1522
1523                 if (!drm_mm_node_allocated(&vma->node))
1524                         continue;
1525
1526                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1527         }
1528
1529         i915 = to_i915(obj->base.dev);
1530         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1531         list_move_tail(&obj->global_link, list);
1532 }
1533
1534 /**
1535  * Called when user space prepares to use an object with the CPU, either
1536  * through the mmap ioctl's mapping or a GTT mapping.
1537  * @dev: drm device
1538  * @data: ioctl data blob
1539  * @file: drm file
1540  */
1541 int
1542 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1543                           struct drm_file *file)
1544 {
1545         struct drm_i915_gem_set_domain *args = data;
1546         struct drm_i915_gem_object *obj;
1547         uint32_t read_domains = args->read_domains;
1548         uint32_t write_domain = args->write_domain;
1549         int err;
1550
1551         /* Only handle setting domains to types used by the CPU. */
1552         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1553                 return -EINVAL;
1554
1555         /* Having something in the write domain implies it's in the read
1556          * domain, and only that read domain.  Enforce that in the request.
1557          */
1558         if (write_domain != 0 && read_domains != write_domain)
1559                 return -EINVAL;
1560
1561         obj = i915_gem_object_lookup(file, args->handle);
1562         if (!obj)
1563                 return -ENOENT;
1564
1565         /* Try to flush the object off the GPU without holding the lock.
1566          * We will repeat the flush holding the lock in the normal manner
1567          * to catch cases where we are gazumped.
1568          */
1569         err = i915_gem_object_wait(obj,
1570                                    I915_WAIT_INTERRUPTIBLE |
1571                                    (write_domain ? I915_WAIT_ALL : 0),
1572                                    MAX_SCHEDULE_TIMEOUT,
1573                                    to_rps_client(file));
1574         if (err)
1575                 goto out;
1576
1577         /* Flush and acquire obj->pages so that we are coherent through
1578          * direct access in memory with previous cached writes through
1579          * shmemfs and that our cache domain tracking remains valid.
1580          * For example, if the obj->filp was moved to swap without us
1581          * being notified and releasing the pages, we would mistakenly
1582          * continue to assume that the obj remained out of the CPU cached
1583          * domain.
1584          */
1585         err = i915_gem_object_pin_pages(obj);
1586         if (err)
1587                 goto out;
1588
1589         err = i915_mutex_lock_interruptible(dev);
1590         if (err)
1591                 goto out_unpin;
1592
1593         if (read_domains & I915_GEM_DOMAIN_GTT)
1594                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1595         else
1596                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1597
1598         /* And bump the LRU for this access */
1599         i915_gem_object_bump_inactive_ggtt(obj);
1600
1601         mutex_unlock(&dev->struct_mutex);
1602
1603         if (write_domain != 0)
1604                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1605
1606 out_unpin:
1607         i915_gem_object_unpin_pages(obj);
1608 out:
1609         i915_gem_object_put(obj);
1610         return err;
1611 }
1612
1613 /**
1614  * Called when user space has done writes to this buffer
1615  * @dev: drm device
1616  * @data: ioctl data blob
1617  * @file: drm file
1618  */
1619 int
1620 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1621                          struct drm_file *file)
1622 {
1623         struct drm_i915_gem_sw_finish *args = data;
1624         struct drm_i915_gem_object *obj;
1625         int err = 0;
1626
1627         obj = i915_gem_object_lookup(file, args->handle);
1628         if (!obj)
1629                 return -ENOENT;
1630
1631         /* Pinned buffers may be scanout, so flush the cache */
1632         if (READ_ONCE(obj->pin_display)) {
1633                 err = i915_mutex_lock_interruptible(dev);
1634                 if (!err) {
1635                         i915_gem_object_flush_cpu_write_domain(obj);
1636                         mutex_unlock(&dev->struct_mutex);
1637                 }
1638         }
1639
1640         i915_gem_object_put(obj);
1641         return err;
1642 }
1643
1644 /**
1645  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1646  *                       it is mapped to.
1647  * @dev: drm device
1648  * @data: ioctl data blob
1649  * @file: drm file
1650  *
1651  * While the mapping holds a reference on the contents of the object, it doesn't
1652  * imply a ref on the object itself.
1653  *
1654  * IMPORTANT:
1655  *
1656  * DRM driver writers who look a this function as an example for how to do GEM
1657  * mmap support, please don't implement mmap support like here. The modern way
1658  * to implement DRM mmap support is with an mmap offset ioctl (like
1659  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1660  * That way debug tooling like valgrind will understand what's going on, hiding
1661  * the mmap call in a driver private ioctl will break that. The i915 driver only
1662  * does cpu mmaps this way because we didn't know better.
1663  */
1664 int
1665 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1666                     struct drm_file *file)
1667 {
1668         struct drm_i915_gem_mmap *args = data;
1669         struct drm_i915_gem_object *obj;
1670         unsigned long addr;
1671
1672         if (args->flags & ~(I915_MMAP_WC))
1673                 return -EINVAL;
1674
1675         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1676                 return -ENODEV;
1677
1678         obj = i915_gem_object_lookup(file, args->handle);
1679         if (!obj)
1680                 return -ENOENT;
1681
1682         /* prime objects have no backing filp to GEM mmap
1683          * pages from.
1684          */
1685         if (!obj->base.filp) {
1686                 i915_gem_object_put(obj);
1687                 return -EINVAL;
1688         }
1689
1690         addr = vm_mmap(obj->base.filp, 0, args->size,
1691                        PROT_READ | PROT_WRITE, MAP_SHARED,
1692                        args->offset);
1693         if (args->flags & I915_MMAP_WC) {
1694                 struct mm_struct *mm = current->mm;
1695                 struct vm_area_struct *vma;
1696
1697                 if (down_write_killable(&mm->mmap_sem)) {
1698                         i915_gem_object_put(obj);
1699                         return -EINTR;
1700                 }
1701                 vma = find_vma(mm, addr);
1702                 if (vma)
1703                         vma->vm_page_prot =
1704                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1705                 else
1706                         addr = -ENOMEM;
1707                 up_write(&mm->mmap_sem);
1708
1709                 /* This may race, but that's ok, it only gets set */
1710                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1711         }
1712         i915_gem_object_put(obj);
1713         if (IS_ERR((void *)addr))
1714                 return addr;
1715
1716         args->addr_ptr = (uint64_t) addr;
1717
1718         return 0;
1719 }
1720
1721 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1722 {
1723         u64 size;
1724
1725         size = i915_gem_object_get_stride(obj);
1726         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1727
1728         return size >> PAGE_SHIFT;
1729 }
1730
1731 /**
1732  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1733  *
1734  * A history of the GTT mmap interface:
1735  *
1736  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1737  *     aligned and suitable for fencing, and still fit into the available
1738  *     mappable space left by the pinned display objects. A classic problem
1739  *     we called the page-fault-of-doom where we would ping-pong between
1740  *     two objects that could not fit inside the GTT and so the memcpy
1741  *     would page one object in at the expense of the other between every
1742  *     single byte.
1743  *
1744  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1745  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1746  *     object is too large for the available space (or simply too large
1747  *     for the mappable aperture!), a view is created instead and faulted
1748  *     into userspace. (This view is aligned and sized appropriately for
1749  *     fenced access.)
1750  *
1751  * Restrictions:
1752  *
1753  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1754  *    hangs on some architectures, corruption on others. An attempt to service
1755  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1756  *
1757  *  * the object must be able to fit into RAM (physical memory, though no
1758  *    limited to the mappable aperture).
1759  *
1760  *
1761  * Caveats:
1762  *
1763  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1764  *    all data to system memory. Subsequent access will not be synchronized.
1765  *
1766  *  * all mappings are revoked on runtime device suspend.
1767  *
1768  *  * there are only 8, 16 or 32 fence registers to share between all users
1769  *    (older machines require fence register for display and blitter access
1770  *    as well). Contention of the fence registers will cause the previous users
1771  *    to be unmapped and any new access will generate new page faults.
1772  *
1773  *  * running out of memory while servicing a fault may generate a SIGBUS,
1774  *    rather than the expected SIGSEGV.
1775  */
1776 int i915_gem_mmap_gtt_version(void)
1777 {
1778         return 1;
1779 }
1780
1781 /**
1782  * i915_gem_fault - fault a page into the GTT
1783  * @area: CPU VMA in question
1784  * @vmf: fault info
1785  *
1786  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1787  * from userspace.  The fault handler takes care of binding the object to
1788  * the GTT (if needed), allocating and programming a fence register (again,
1789  * only if needed based on whether the old reg is still valid or the object
1790  * is tiled) and inserting a new PTE into the faulting process.
1791  *
1792  * Note that the faulting process may involve evicting existing objects
1793  * from the GTT and/or fence registers to make room.  So performance may
1794  * suffer if the GTT working set is large or there are few fence registers
1795  * left.
1796  *
1797  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1798  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1799  */
1800 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1801 {
1802 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1803         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1804         struct drm_device *dev = obj->base.dev;
1805         struct drm_i915_private *dev_priv = to_i915(dev);
1806         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1807         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1808         struct i915_vma *vma;
1809         pgoff_t page_offset;
1810         unsigned int flags;
1811         int ret;
1812
1813         /* We don't use vmf->pgoff since that has the fake offset */
1814         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1815                 PAGE_SHIFT;
1816
1817         trace_i915_gem_object_fault(obj, page_offset, true, write);
1818
1819         /* Try to flush the object off the GPU first without holding the lock.
1820          * Upon acquiring the lock, we will perform our sanity checks and then
1821          * repeat the flush holding the lock in the normal manner to catch cases
1822          * where we are gazumped.
1823          */
1824         ret = i915_gem_object_wait(obj,
1825                                    I915_WAIT_INTERRUPTIBLE,
1826                                    MAX_SCHEDULE_TIMEOUT,
1827                                    NULL);
1828         if (ret)
1829                 goto err;
1830
1831         ret = i915_gem_object_pin_pages(obj);
1832         if (ret)
1833                 goto err;
1834
1835         intel_runtime_pm_get(dev_priv);
1836
1837         ret = i915_mutex_lock_interruptible(dev);
1838         if (ret)
1839                 goto err_rpm;
1840
1841         /* Access to snoopable pages through the GTT is incoherent. */
1842         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1843                 ret = -EFAULT;
1844                 goto err_unlock;
1845         }
1846
1847         /* If the object is smaller than a couple of partial vma, it is
1848          * not worth only creating a single partial vma - we may as well
1849          * clear enough space for the full object.
1850          */
1851         flags = PIN_MAPPABLE;
1852         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1853                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1854
1855         /* Now pin it into the GTT as needed */
1856         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1857         if (IS_ERR(vma)) {
1858                 struct i915_ggtt_view view;
1859                 unsigned int chunk_size;
1860
1861                 /* Use a partial view if it is bigger than available space */
1862                 chunk_size = MIN_CHUNK_PAGES;
1863                 if (i915_gem_object_is_tiled(obj))
1864                         chunk_size = roundup(chunk_size, tile_row_pages(obj));
1865
1866                 memset(&view, 0, sizeof(view));
1867                 view.type = I915_GGTT_VIEW_PARTIAL;
1868                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1869                 view.params.partial.size =
1870                         min_t(unsigned int, chunk_size,
1871                               vma_pages(area) - view.params.partial.offset);
1872
1873                 /* If the partial covers the entire object, just create a
1874                  * normal VMA.
1875                  */
1876                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1877                         view.type = I915_GGTT_VIEW_NORMAL;
1878
1879                 /* Userspace is now writing through an untracked VMA, abandon
1880                  * all hope that the hardware is able to track future writes.
1881                  */
1882                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1883
1884                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1885         }
1886         if (IS_ERR(vma)) {
1887                 ret = PTR_ERR(vma);
1888                 goto err_unlock;
1889         }
1890
1891         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1892         if (ret)
1893                 goto err_unpin;
1894
1895         ret = i915_vma_get_fence(vma);
1896         if (ret)
1897                 goto err_unpin;
1898
1899         /* Mark as being mmapped into userspace for later revocation */
1900         assert_rpm_wakelock_held(dev_priv);
1901         if (list_empty(&obj->userfault_link))
1902                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1903
1904         /* Finally, remap it using the new GTT offset */
1905         ret = remap_io_mapping(area,
1906                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1907                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1908                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1909                                &ggtt->mappable);
1910
1911 err_unpin:
1912         __i915_vma_unpin(vma);
1913 err_unlock:
1914         mutex_unlock(&dev->struct_mutex);
1915 err_rpm:
1916         intel_runtime_pm_put(dev_priv);
1917         i915_gem_object_unpin_pages(obj);
1918 err:
1919         switch (ret) {
1920         case -EIO:
1921                 /*
1922                  * We eat errors when the gpu is terminally wedged to avoid
1923                  * userspace unduly crashing (gl has no provisions for mmaps to
1924                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1925                  * and so needs to be reported.
1926                  */
1927                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1928                         ret = VM_FAULT_SIGBUS;
1929                         break;
1930                 }
1931         case -EAGAIN:
1932                 /*
1933                  * EAGAIN means the gpu is hung and we'll wait for the error
1934                  * handler to reset everything when re-faulting in
1935                  * i915_mutex_lock_interruptible.
1936                  */
1937         case 0:
1938         case -ERESTARTSYS:
1939         case -EINTR:
1940         case -EBUSY:
1941                 /*
1942                  * EBUSY is ok: this just means that another thread
1943                  * already did the job.
1944                  */
1945                 ret = VM_FAULT_NOPAGE;
1946                 break;
1947         case -ENOMEM:
1948                 ret = VM_FAULT_OOM;
1949                 break;
1950         case -ENOSPC:
1951         case -EFAULT:
1952                 ret = VM_FAULT_SIGBUS;
1953                 break;
1954         default:
1955                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1956                 ret = VM_FAULT_SIGBUS;
1957                 break;
1958         }
1959         return ret;
1960 }
1961
1962 /**
1963  * i915_gem_release_mmap - remove physical page mappings
1964  * @obj: obj in question
1965  *
1966  * Preserve the reservation of the mmapping with the DRM core code, but
1967  * relinquish ownership of the pages back to the system.
1968  *
1969  * It is vital that we remove the page mapping if we have mapped a tiled
1970  * object through the GTT and then lose the fence register due to
1971  * resource pressure. Similarly if the object has been moved out of the
1972  * aperture, than pages mapped into userspace must be revoked. Removing the
1973  * mapping will then trigger a page fault on the next user access, allowing
1974  * fixup by i915_gem_fault().
1975  */
1976 void
1977 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1978 {
1979         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1980
1981         /* Serialisation between user GTT access and our code depends upon
1982          * revoking the CPU's PTE whilst the mutex is held. The next user
1983          * pagefault then has to wait until we release the mutex.
1984          *
1985          * Note that RPM complicates somewhat by adding an additional
1986          * requirement that operations to the GGTT be made holding the RPM
1987          * wakeref.
1988          */
1989         lockdep_assert_held(&i915->drm.struct_mutex);
1990         intel_runtime_pm_get(i915);
1991
1992         if (list_empty(&obj->userfault_link))
1993                 goto out;
1994
1995         list_del_init(&obj->userfault_link);
1996         drm_vma_node_unmap(&obj->base.vma_node,
1997                            obj->base.dev->anon_inode->i_mapping);
1998
1999         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2000          * memory transactions from userspace before we return. The TLB
2001          * flushing implied above by changing the PTE above *should* be
2002          * sufficient, an extra barrier here just provides us with a bit
2003          * of paranoid documentation about our requirement to serialise
2004          * memory writes before touching registers / GSM.
2005          */
2006         wmb();
2007
2008 out:
2009         intel_runtime_pm_put(i915);
2010 }
2011
2012 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2013 {
2014         struct drm_i915_gem_object *obj, *on;
2015         int i;
2016
2017         /*
2018          * Only called during RPM suspend. All users of the userfault_list
2019          * must be holding an RPM wakeref to ensure that this can not
2020          * run concurrently with themselves (and use the struct_mutex for
2021          * protection between themselves).
2022          */
2023
2024         list_for_each_entry_safe(obj, on,
2025                                  &dev_priv->mm.userfault_list, userfault_link) {
2026                 list_del_init(&obj->userfault_link);
2027                 drm_vma_node_unmap(&obj->base.vma_node,
2028                                    obj->base.dev->anon_inode->i_mapping);
2029         }
2030
2031         /* The fence will be lost when the device powers down. If any were
2032          * in use by hardware (i.e. they are pinned), we should not be powering
2033          * down! All other fences will be reacquired by the user upon waking.
2034          */
2035         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2036                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2037
2038                 if (WARN_ON(reg->pin_count))
2039                         continue;
2040
2041                 if (!reg->vma)
2042                         continue;
2043
2044                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2045                 reg->dirty = true;
2046         }
2047 }
2048
2049 /**
2050  * i915_gem_get_ggtt_size - return required global GTT size for an object
2051  * @dev_priv: i915 device
2052  * @size: object size
2053  * @tiling_mode: tiling mode
2054  *
2055  * Return the required global GTT size for an object, taking into account
2056  * potential fence register mapping.
2057  */
2058 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2059                            u64 size, int tiling_mode)
2060 {
2061         u64 ggtt_size;
2062
2063         GEM_BUG_ON(size == 0);
2064
2065         if (INTEL_GEN(dev_priv) >= 4 ||
2066             tiling_mode == I915_TILING_NONE)
2067                 return size;
2068
2069         /* Previous chips need a power-of-two fence region when tiling */
2070         if (IS_GEN3(dev_priv))
2071                 ggtt_size = 1024*1024;
2072         else
2073                 ggtt_size = 512*1024;
2074
2075         while (ggtt_size < size)
2076                 ggtt_size <<= 1;
2077
2078         return ggtt_size;
2079 }
2080
2081 /**
2082  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2083  * @dev_priv: i915 device
2084  * @size: object size
2085  * @tiling_mode: tiling mode
2086  * @fenced: is fenced alignment required or not
2087  *
2088  * Return the required global GTT alignment for an object, taking into account
2089  * potential fence register mapping.
2090  */
2091 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2092                                 int tiling_mode, bool fenced)
2093 {
2094         GEM_BUG_ON(size == 0);
2095
2096         /*
2097          * Minimum alignment is 4k (GTT page size), but might be greater
2098          * if a fence register is needed for the object.
2099          */
2100         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2101             tiling_mode == I915_TILING_NONE)
2102                 return 4096;
2103
2104         /*
2105          * Previous chips need to be aligned to the size of the smallest
2106          * fence register that can contain the object.
2107          */
2108         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2109 }
2110
2111 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2112 {
2113         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2114         int err;
2115
2116         err = drm_gem_create_mmap_offset(&obj->base);
2117         if (!err)
2118                 return 0;
2119
2120         /* We can idle the GPU locklessly to flush stale objects, but in order
2121          * to claim that space for ourselves, we need to take the big
2122          * struct_mutex to free the requests+objects and allocate our slot.
2123          */
2124         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2125         if (err)
2126                 return err;
2127
2128         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2129         if (!err) {
2130                 i915_gem_retire_requests(dev_priv);
2131                 err = drm_gem_create_mmap_offset(&obj->base);
2132                 mutex_unlock(&dev_priv->drm.struct_mutex);
2133         }
2134
2135         return err;
2136 }
2137
2138 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2139 {
2140         drm_gem_free_mmap_offset(&obj->base);
2141 }
2142
2143 int
2144 i915_gem_mmap_gtt(struct drm_file *file,
2145                   struct drm_device *dev,
2146                   uint32_t handle,
2147                   uint64_t *offset)
2148 {
2149         struct drm_i915_gem_object *obj;
2150         int ret;
2151
2152         obj = i915_gem_object_lookup(file, handle);
2153         if (!obj)
2154                 return -ENOENT;
2155
2156         ret = i915_gem_object_create_mmap_offset(obj);
2157         if (ret == 0)
2158                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2159
2160         i915_gem_object_put(obj);
2161         return ret;
2162 }
2163
2164 /**
2165  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2166  * @dev: DRM device
2167  * @data: GTT mapping ioctl data
2168  * @file: GEM object info
2169  *
2170  * Simply returns the fake offset to userspace so it can mmap it.
2171  * The mmap call will end up in drm_gem_mmap(), which will set things
2172  * up so we can get faults in the handler above.
2173  *
2174  * The fault handler will take care of binding the object into the GTT
2175  * (since it may have been evicted to make room for something), allocating
2176  * a fence register, and mapping the appropriate aperture address into
2177  * userspace.
2178  */
2179 int
2180 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2181                         struct drm_file *file)
2182 {
2183         struct drm_i915_gem_mmap_gtt *args = data;
2184
2185         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2186 }
2187
2188 /* Immediately discard the backing storage */
2189 static void
2190 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2191 {
2192         i915_gem_object_free_mmap_offset(obj);
2193
2194         if (obj->base.filp == NULL)
2195                 return;
2196
2197         /* Our goal here is to return as much of the memory as
2198          * is possible back to the system as we are called from OOM.
2199          * To do this we must instruct the shmfs to drop all of its
2200          * backing pages, *now*.
2201          */
2202         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2203         obj->mm.madv = __I915_MADV_PURGED;
2204 }
2205
2206 /* Try to discard unwanted pages */
2207 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2208 {
2209         struct address_space *mapping;
2210
2211         lockdep_assert_held(&obj->mm.lock);
2212         GEM_BUG_ON(obj->mm.pages);
2213
2214         switch (obj->mm.madv) {
2215         case I915_MADV_DONTNEED:
2216                 i915_gem_object_truncate(obj);
2217         case __I915_MADV_PURGED:
2218                 return;
2219         }
2220
2221         if (obj->base.filp == NULL)
2222                 return;
2223
2224         mapping = obj->base.filp->f_mapping,
2225         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2226 }
2227
2228 static void
2229 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2230                               struct sg_table *pages)
2231 {
2232         struct sgt_iter sgt_iter;
2233         struct page *page;
2234
2235         __i915_gem_object_release_shmem(obj, pages);
2236
2237         i915_gem_gtt_finish_pages(obj, pages);
2238
2239         if (i915_gem_object_needs_bit17_swizzle(obj))
2240                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2241
2242         for_each_sgt_page(page, sgt_iter, pages) {
2243                 if (obj->mm.dirty)
2244                         set_page_dirty(page);
2245
2246                 if (obj->mm.madv == I915_MADV_WILLNEED)
2247                         mark_page_accessed(page);
2248
2249                 put_page(page);
2250         }
2251         obj->mm.dirty = false;
2252
2253         sg_free_table(pages);
2254         kfree(pages);
2255 }
2256
2257 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2258 {
2259         struct radix_tree_iter iter;
2260         void **slot;
2261
2262         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2263                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2264 }
2265
2266 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2267                                  enum i915_mm_subclass subclass)
2268 {
2269         struct sg_table *pages;
2270
2271         if (i915_gem_object_has_pinned_pages(obj))
2272                 return;
2273
2274         GEM_BUG_ON(obj->bind_count);
2275         if (!READ_ONCE(obj->mm.pages))
2276                 return;
2277
2278         /* May be called by shrinker from within get_pages() (on another bo) */
2279         mutex_lock_nested(&obj->mm.lock, subclass);
2280         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2281                 goto unlock;
2282
2283         /* ->put_pages might need to allocate memory for the bit17 swizzle
2284          * array, hence protect them from being reaped by removing them from gtt
2285          * lists early. */
2286         pages = fetch_and_zero(&obj->mm.pages);
2287         GEM_BUG_ON(!pages);
2288
2289         if (obj->mm.mapping) {
2290                 void *ptr;
2291
2292                 ptr = ptr_mask_bits(obj->mm.mapping);
2293                 if (is_vmalloc_addr(ptr))
2294                         vunmap(ptr);
2295                 else
2296                         kunmap(kmap_to_page(ptr));
2297
2298                 obj->mm.mapping = NULL;
2299         }
2300
2301         __i915_gem_object_reset_page_iter(obj);
2302
2303         obj->ops->put_pages(obj, pages);
2304 unlock:
2305         mutex_unlock(&obj->mm.lock);
2306 }
2307
2308 static unsigned int swiotlb_max_size(void)
2309 {
2310 #if IS_ENABLED(CONFIG_SWIOTLB)
2311         return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2312 #else
2313         return 0;
2314 #endif
2315 }
2316
2317 static void i915_sg_trim(struct sg_table *orig_st)
2318 {
2319         struct sg_table new_st;
2320         struct scatterlist *sg, *new_sg;
2321         unsigned int i;
2322
2323         if (orig_st->nents == orig_st->orig_nents)
2324                 return;
2325
2326         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2327                 return;
2328
2329         new_sg = new_st.sgl;
2330         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2331                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2332                 /* called before being DMA mapped, no need to copy sg->dma_* */
2333                 new_sg = sg_next(new_sg);
2334         }
2335
2336         sg_free_table(orig_st);
2337
2338         *orig_st = new_st;
2339 }
2340
2341 static struct sg_table *
2342 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2343 {
2344         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2345         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2346         unsigned long i;
2347         struct address_space *mapping;
2348         struct sg_table *st;
2349         struct scatterlist *sg;
2350         struct sgt_iter sgt_iter;
2351         struct page *page;
2352         unsigned long last_pfn = 0;     /* suppress gcc warning */
2353         unsigned int max_segment;
2354         int ret;
2355         gfp_t gfp;
2356
2357         /* Assert that the object is not currently in any GPU domain. As it
2358          * wasn't in the GTT, there shouldn't be any way it could have been in
2359          * a GPU cache
2360          */
2361         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2362         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2363
2364         max_segment = swiotlb_max_size();
2365         if (!max_segment)
2366                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2367
2368         st = kmalloc(sizeof(*st), GFP_KERNEL);
2369         if (st == NULL)
2370                 return ERR_PTR(-ENOMEM);
2371
2372 rebuild_st:
2373         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2374                 kfree(st);
2375                 return ERR_PTR(-ENOMEM);
2376         }
2377
2378         /* Get the list of pages out of our struct file.  They'll be pinned
2379          * at this point until we release them.
2380          *
2381          * Fail silently without starting the shrinker
2382          */
2383         mapping = obj->base.filp->f_mapping;
2384         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2385         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2386         sg = st->sgl;
2387         st->nents = 0;
2388         for (i = 0; i < page_count; i++) {
2389                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2390                 if (IS_ERR(page)) {
2391                         i915_gem_shrink(dev_priv,
2392                                         page_count,
2393                                         I915_SHRINK_BOUND |
2394                                         I915_SHRINK_UNBOUND |
2395                                         I915_SHRINK_PURGEABLE);
2396                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2397                 }
2398                 if (IS_ERR(page)) {
2399                         /* We've tried hard to allocate the memory by reaping
2400                          * our own buffer, now let the real VM do its job and
2401                          * go down in flames if truly OOM.
2402                          */
2403                         page = shmem_read_mapping_page(mapping, i);
2404                         if (IS_ERR(page)) {
2405                                 ret = PTR_ERR(page);
2406                                 goto err_sg;
2407                         }
2408                 }
2409                 if (!i ||
2410                     sg->length >= max_segment ||
2411                     page_to_pfn(page) != last_pfn + 1) {
2412                         if (i)
2413                                 sg = sg_next(sg);
2414                         st->nents++;
2415                         sg_set_page(sg, page, PAGE_SIZE, 0);
2416                 } else {
2417                         sg->length += PAGE_SIZE;
2418                 }
2419                 last_pfn = page_to_pfn(page);
2420
2421                 /* Check that the i965g/gm workaround works. */
2422                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2423         }
2424         if (sg) /* loop terminated early; short sg table */
2425                 sg_mark_end(sg);
2426
2427         /* Trim unused sg entries to avoid wasting memory. */
2428         i915_sg_trim(st);
2429
2430         ret = i915_gem_gtt_prepare_pages(obj, st);
2431         if (ret) {
2432                 /* DMA remapping failed? One possible cause is that
2433                  * it could not reserve enough large entries, asking
2434                  * for PAGE_SIZE chunks instead may be helpful.
2435                  */
2436                 if (max_segment > PAGE_SIZE) {
2437                         for_each_sgt_page(page, sgt_iter, st)
2438                                 put_page(page);
2439                         sg_free_table(st);
2440
2441                         max_segment = PAGE_SIZE;
2442                         goto rebuild_st;
2443                 } else {
2444                         dev_warn(&dev_priv->drm.pdev->dev,
2445                                  "Failed to DMA remap %lu pages\n",
2446                                  page_count);
2447                         goto err_pages;
2448                 }
2449         }
2450
2451         if (i915_gem_object_needs_bit17_swizzle(obj))
2452                 i915_gem_object_do_bit_17_swizzle(obj, st);
2453
2454         return st;
2455
2456 err_sg:
2457         sg_mark_end(sg);
2458 err_pages:
2459         for_each_sgt_page(page, sgt_iter, st)
2460                 put_page(page);
2461         sg_free_table(st);
2462         kfree(st);
2463
2464         /* shmemfs first checks if there is enough memory to allocate the page
2465          * and reports ENOSPC should there be insufficient, along with the usual
2466          * ENOMEM for a genuine allocation failure.
2467          *
2468          * We use ENOSPC in our driver to mean that we have run out of aperture
2469          * space and so want to translate the error from shmemfs back to our
2470          * usual understanding of ENOMEM.
2471          */
2472         if (ret == -ENOSPC)
2473                 ret = -ENOMEM;
2474
2475         return ERR_PTR(ret);
2476 }
2477
2478 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2479                                  struct sg_table *pages)
2480 {
2481         lockdep_assert_held(&obj->mm.lock);
2482
2483         obj->mm.get_page.sg_pos = pages->sgl;
2484         obj->mm.get_page.sg_idx = 0;
2485
2486         obj->mm.pages = pages;
2487
2488         if (i915_gem_object_is_tiled(obj) &&
2489             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2490                 GEM_BUG_ON(obj->mm.quirked);
2491                 __i915_gem_object_pin_pages(obj);
2492                 obj->mm.quirked = true;
2493         }
2494 }
2495
2496 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2497 {
2498         struct sg_table *pages;
2499
2500         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2501
2502         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2503                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2504                 return -EFAULT;
2505         }
2506
2507         pages = obj->ops->get_pages(obj);
2508         if (unlikely(IS_ERR(pages)))
2509                 return PTR_ERR(pages);
2510
2511         __i915_gem_object_set_pages(obj, pages);
2512         return 0;
2513 }
2514
2515 /* Ensure that the associated pages are gathered from the backing storage
2516  * and pinned into our object. i915_gem_object_pin_pages() may be called
2517  * multiple times before they are released by a single call to
2518  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2519  * either as a result of memory pressure (reaping pages under the shrinker)
2520  * or as the object is itself released.
2521  */
2522 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2523 {
2524         int err;
2525
2526         err = mutex_lock_interruptible(&obj->mm.lock);
2527         if (err)
2528                 return err;
2529
2530         if (unlikely(!obj->mm.pages)) {
2531                 err = ____i915_gem_object_get_pages(obj);
2532                 if (err)
2533                         goto unlock;
2534
2535                 smp_mb__before_atomic();
2536         }
2537         atomic_inc(&obj->mm.pages_pin_count);
2538
2539 unlock:
2540         mutex_unlock(&obj->mm.lock);
2541         return err;
2542 }
2543
2544 /* The 'mapping' part of i915_gem_object_pin_map() below */
2545 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2546                                  enum i915_map_type type)
2547 {
2548         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2549         struct sg_table *sgt = obj->mm.pages;
2550         struct sgt_iter sgt_iter;
2551         struct page *page;
2552         struct page *stack_pages[32];
2553         struct page **pages = stack_pages;
2554         unsigned long i = 0;
2555         pgprot_t pgprot;
2556         void *addr;
2557
2558         /* A single page can always be kmapped */
2559         if (n_pages == 1 && type == I915_MAP_WB)
2560                 return kmap(sg_page(sgt->sgl));
2561
2562         if (n_pages > ARRAY_SIZE(stack_pages)) {
2563                 /* Too big for stack -- allocate temporary array instead */
2564                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2565                 if (!pages)
2566                         return NULL;
2567         }
2568
2569         for_each_sgt_page(page, sgt_iter, sgt)
2570                 pages[i++] = page;
2571
2572         /* Check that we have the expected number of pages */
2573         GEM_BUG_ON(i != n_pages);
2574
2575         switch (type) {
2576         case I915_MAP_WB:
2577                 pgprot = PAGE_KERNEL;
2578                 break;
2579         case I915_MAP_WC:
2580                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2581                 break;
2582         }
2583         addr = vmap(pages, n_pages, 0, pgprot);
2584
2585         if (pages != stack_pages)
2586                 drm_free_large(pages);
2587
2588         return addr;
2589 }
2590
2591 /* get, pin, and map the pages of the object into kernel space */
2592 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2593                               enum i915_map_type type)
2594 {
2595         enum i915_map_type has_type;
2596         bool pinned;
2597         void *ptr;
2598         int ret;
2599
2600         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2601
2602         ret = mutex_lock_interruptible(&obj->mm.lock);
2603         if (ret)
2604                 return ERR_PTR(ret);
2605
2606         pinned = true;
2607         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2608                 if (unlikely(!obj->mm.pages)) {
2609                         ret = ____i915_gem_object_get_pages(obj);
2610                         if (ret)
2611                                 goto err_unlock;
2612
2613                         smp_mb__before_atomic();
2614                 }
2615                 atomic_inc(&obj->mm.pages_pin_count);
2616                 pinned = false;
2617         }
2618         GEM_BUG_ON(!obj->mm.pages);
2619
2620         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2621         if (ptr && has_type != type) {
2622                 if (pinned) {
2623                         ret = -EBUSY;
2624                         goto err_unpin;
2625                 }
2626
2627                 if (is_vmalloc_addr(ptr))
2628                         vunmap(ptr);
2629                 else
2630                         kunmap(kmap_to_page(ptr));
2631
2632                 ptr = obj->mm.mapping = NULL;
2633         }
2634
2635         if (!ptr) {
2636                 ptr = i915_gem_object_map(obj, type);
2637                 if (!ptr) {
2638                         ret = -ENOMEM;
2639                         goto err_unpin;
2640                 }
2641
2642                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2643         }
2644
2645 out_unlock:
2646         mutex_unlock(&obj->mm.lock);
2647         return ptr;
2648
2649 err_unpin:
2650         atomic_dec(&obj->mm.pages_pin_count);
2651 err_unlock:
2652         ptr = ERR_PTR(ret);
2653         goto out_unlock;
2654 }
2655
2656 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2657 {
2658         unsigned long elapsed;
2659
2660         if (ctx->hang_stats.banned)
2661                 return true;
2662
2663         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2664         if (ctx->hang_stats.ban_period_seconds &&
2665             elapsed <= ctx->hang_stats.ban_period_seconds) {
2666                 DRM_DEBUG("context hanging too fast, banning!\n");
2667                 return true;
2668         }
2669
2670         return false;
2671 }
2672
2673 static void i915_set_reset_status(struct i915_gem_context *ctx,
2674                                   const bool guilty)
2675 {
2676         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2677
2678         if (guilty) {
2679                 hs->banned = i915_context_is_banned(ctx);
2680                 hs->batch_active++;
2681                 hs->guilty_ts = get_seconds();
2682         } else {
2683                 hs->batch_pending++;
2684         }
2685 }
2686
2687 struct drm_i915_gem_request *
2688 i915_gem_find_active_request(struct intel_engine_cs *engine)
2689 {
2690         struct drm_i915_gem_request *request;
2691
2692         /* We are called by the error capture and reset at a random
2693          * point in time. In particular, note that neither is crucially
2694          * ordered with an interrupt. After a hang, the GPU is dead and we
2695          * assume that no more writes can happen (we waited long enough for
2696          * all writes that were in transaction to be flushed) - adding an
2697          * extra delay for a recent interrupt is pointless. Hence, we do
2698          * not need an engine->irq_seqno_barrier() before the seqno reads.
2699          */
2700         list_for_each_entry(request, &engine->timeline->requests, link) {
2701                 if (__i915_gem_request_completed(request))
2702                         continue;
2703
2704                 return request;
2705         }
2706
2707         return NULL;
2708 }
2709
2710 static void reset_request(struct drm_i915_gem_request *request)
2711 {
2712         void *vaddr = request->ring->vaddr;
2713         u32 head;
2714
2715         /* As this request likely depends on state from the lost
2716          * context, clear out all the user operations leaving the
2717          * breadcrumb at the end (so we get the fence notifications).
2718          */
2719         head = request->head;
2720         if (request->postfix < head) {
2721                 memset(vaddr + head, 0, request->ring->size - head);
2722                 head = 0;
2723         }
2724         memset(vaddr + head, 0, request->postfix - head);
2725 }
2726
2727 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2728 {
2729         struct drm_i915_gem_request *request;
2730         struct i915_gem_context *incomplete_ctx;
2731         struct intel_timeline *timeline;
2732         bool ring_hung;
2733
2734         if (engine->irq_seqno_barrier)
2735                 engine->irq_seqno_barrier(engine);
2736
2737         request = i915_gem_find_active_request(engine);
2738         if (!request)
2739                 return;
2740
2741         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2742         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2743                 ring_hung = false;
2744
2745         i915_set_reset_status(request->ctx, ring_hung);
2746         if (!ring_hung)
2747                 return;
2748
2749         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2750                          engine->name, request->global_seqno);
2751
2752         /* Setup the CS to resume from the breadcrumb of the hung request */
2753         engine->reset_hw(engine, request);
2754
2755         /* Users of the default context do not rely on logical state
2756          * preserved between batches. They have to emit full state on
2757          * every batch and so it is safe to execute queued requests following
2758          * the hang.
2759          *
2760          * Other contexts preserve state, now corrupt. We want to skip all
2761          * queued requests that reference the corrupt context.
2762          */
2763         incomplete_ctx = request->ctx;
2764         if (i915_gem_context_is_default(incomplete_ctx))
2765                 return;
2766
2767         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2768                 if (request->ctx == incomplete_ctx)
2769                         reset_request(request);
2770
2771         timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2772         list_for_each_entry(request, &timeline->requests, link)
2773                 reset_request(request);
2774 }
2775
2776 void i915_gem_reset(struct drm_i915_private *dev_priv)
2777 {
2778         struct intel_engine_cs *engine;
2779         enum intel_engine_id id;
2780
2781         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2782
2783         i915_gem_retire_requests(dev_priv);
2784
2785         for_each_engine(engine, dev_priv, id)
2786                 i915_gem_reset_engine(engine);
2787
2788         i915_gem_restore_fences(dev_priv);
2789
2790         if (dev_priv->gt.awake) {
2791                 intel_sanitize_gt_powersave(dev_priv);
2792                 intel_enable_gt_powersave(dev_priv);
2793                 if (INTEL_GEN(dev_priv) >= 6)
2794                         gen6_rps_busy(dev_priv);
2795         }
2796 }
2797
2798 static void nop_submit_request(struct drm_i915_gem_request *request)
2799 {
2800         i915_gem_request_submit(request);
2801         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2802 }
2803
2804 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2805 {
2806         engine->submit_request = nop_submit_request;
2807
2808         /* Mark all pending requests as complete so that any concurrent
2809          * (lockless) lookup doesn't try and wait upon the request as we
2810          * reset it.
2811          */
2812         intel_engine_init_global_seqno(engine,
2813                                        intel_engine_last_submit(engine));
2814
2815         /*
2816          * Clear the execlists queue up before freeing the requests, as those
2817          * are the ones that keep the context and ringbuffer backing objects
2818          * pinned in place.
2819          */
2820
2821         if (i915.enable_execlists) {
2822                 unsigned long flags;
2823
2824                 spin_lock_irqsave(&engine->timeline->lock, flags);
2825
2826                 i915_gem_request_put(engine->execlist_port[0].request);
2827                 i915_gem_request_put(engine->execlist_port[1].request);
2828                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2829                 engine->execlist_queue = RB_ROOT;
2830                 engine->execlist_first = NULL;
2831
2832                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2833         }
2834 }
2835
2836 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2837 {
2838         struct intel_engine_cs *engine;
2839         enum intel_engine_id id;
2840
2841         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2842         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2843
2844         i915_gem_context_lost(dev_priv);
2845         for_each_engine(engine, dev_priv, id)
2846                 i915_gem_cleanup_engine(engine);
2847         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2848
2849         i915_gem_retire_requests(dev_priv);
2850 }
2851
2852 static void
2853 i915_gem_retire_work_handler(struct work_struct *work)
2854 {
2855         struct drm_i915_private *dev_priv =
2856                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2857         struct drm_device *dev = &dev_priv->drm;
2858
2859         /* Come back later if the device is busy... */
2860         if (mutex_trylock(&dev->struct_mutex)) {
2861                 i915_gem_retire_requests(dev_priv);
2862                 mutex_unlock(&dev->struct_mutex);
2863         }
2864
2865         /* Keep the retire handler running until we are finally idle.
2866          * We do not need to do this test under locking as in the worst-case
2867          * we queue the retire worker once too often.
2868          */
2869         if (READ_ONCE(dev_priv->gt.awake)) {
2870                 i915_queue_hangcheck(dev_priv);
2871                 queue_delayed_work(dev_priv->wq,
2872                                    &dev_priv->gt.retire_work,
2873                                    round_jiffies_up_relative(HZ));
2874         }
2875 }
2876
2877 static void
2878 i915_gem_idle_work_handler(struct work_struct *work)
2879 {
2880         struct drm_i915_private *dev_priv =
2881                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2882         struct drm_device *dev = &dev_priv->drm;
2883         struct intel_engine_cs *engine;
2884         enum intel_engine_id id;
2885         bool rearm_hangcheck;
2886
2887         if (!READ_ONCE(dev_priv->gt.awake))
2888                 return;
2889
2890         /*
2891          * Wait for last execlists context complete, but bail out in case a
2892          * new request is submitted.
2893          */
2894         wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2895                  intel_execlists_idle(dev_priv), 10);
2896
2897         if (READ_ONCE(dev_priv->gt.active_requests))
2898                 return;
2899
2900         rearm_hangcheck =
2901                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2902
2903         if (!mutex_trylock(&dev->struct_mutex)) {
2904                 /* Currently busy, come back later */
2905                 mod_delayed_work(dev_priv->wq,
2906                                  &dev_priv->gt.idle_work,
2907                                  msecs_to_jiffies(50));
2908                 goto out_rearm;
2909         }
2910
2911         /*
2912          * New request retired after this work handler started, extend active
2913          * period until next instance of the work.
2914          */
2915         if (work_pending(work))
2916                 goto out_unlock;
2917
2918         if (dev_priv->gt.active_requests)
2919                 goto out_unlock;
2920
2921         if (wait_for(intel_execlists_idle(dev_priv), 10))
2922                 DRM_ERROR("Timeout waiting for engines to idle\n");
2923
2924         for_each_engine(engine, dev_priv, id)
2925                 i915_gem_batch_pool_fini(&engine->batch_pool);
2926
2927         GEM_BUG_ON(!dev_priv->gt.awake);
2928         dev_priv->gt.awake = false;
2929         rearm_hangcheck = false;
2930
2931         if (INTEL_GEN(dev_priv) >= 6)
2932                 gen6_rps_idle(dev_priv);
2933         intel_runtime_pm_put(dev_priv);
2934 out_unlock:
2935         mutex_unlock(&dev->struct_mutex);
2936
2937 out_rearm:
2938         if (rearm_hangcheck) {
2939                 GEM_BUG_ON(!dev_priv->gt.awake);
2940                 i915_queue_hangcheck(dev_priv);
2941         }
2942 }
2943
2944 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2945 {
2946         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2947         struct drm_i915_file_private *fpriv = file->driver_priv;
2948         struct i915_vma *vma, *vn;
2949
2950         mutex_lock(&obj->base.dev->struct_mutex);
2951         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2952                 if (vma->vm->file == fpriv)
2953                         i915_vma_close(vma);
2954
2955         if (i915_gem_object_is_active(obj) &&
2956             !i915_gem_object_has_active_reference(obj)) {
2957                 i915_gem_object_set_active_reference(obj);
2958                 i915_gem_object_get(obj);
2959         }
2960         mutex_unlock(&obj->base.dev->struct_mutex);
2961 }
2962
2963 static unsigned long to_wait_timeout(s64 timeout_ns)
2964 {
2965         if (timeout_ns < 0)
2966                 return MAX_SCHEDULE_TIMEOUT;
2967
2968         if (timeout_ns == 0)
2969                 return 0;
2970
2971         return nsecs_to_jiffies_timeout(timeout_ns);
2972 }
2973
2974 /**
2975  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2976  * @dev: drm device pointer
2977  * @data: ioctl data blob
2978  * @file: drm file pointer
2979  *
2980  * Returns 0 if successful, else an error is returned with the remaining time in
2981  * the timeout parameter.
2982  *  -ETIME: object is still busy after timeout
2983  *  -ERESTARTSYS: signal interrupted the wait
2984  *  -ENONENT: object doesn't exist
2985  * Also possible, but rare:
2986  *  -EAGAIN: GPU wedged
2987  *  -ENOMEM: damn
2988  *  -ENODEV: Internal IRQ fail
2989  *  -E?: The add request failed
2990  *
2991  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2992  * non-zero timeout parameter the wait ioctl will wait for the given number of
2993  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2994  * without holding struct_mutex the object may become re-busied before this
2995  * function completes. A similar but shorter * race condition exists in the busy
2996  * ioctl
2997  */
2998 int
2999 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3000 {
3001         struct drm_i915_gem_wait *args = data;
3002         struct drm_i915_gem_object *obj;
3003         ktime_t start;
3004         long ret;
3005
3006         if (args->flags != 0)
3007                 return -EINVAL;
3008
3009         obj = i915_gem_object_lookup(file, args->bo_handle);
3010         if (!obj)
3011                 return -ENOENT;
3012
3013         start = ktime_get();
3014
3015         ret = i915_gem_object_wait(obj,
3016                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3017                                    to_wait_timeout(args->timeout_ns),
3018                                    to_rps_client(file));
3019
3020         if (args->timeout_ns > 0) {
3021                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3022                 if (args->timeout_ns < 0)
3023                         args->timeout_ns = 0;
3024         }
3025
3026         i915_gem_object_put(obj);
3027         return ret;
3028 }
3029
3030 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3031 {
3032         int ret, i;
3033
3034         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3035                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3036                 if (ret)
3037                         return ret;
3038         }
3039
3040         return 0;
3041 }
3042
3043 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3044 {
3045         int ret;
3046
3047         if (flags & I915_WAIT_LOCKED) {
3048                 struct i915_gem_timeline *tl;
3049
3050                 lockdep_assert_held(&i915->drm.struct_mutex);
3051
3052                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3053                         ret = wait_for_timeline(tl, flags);
3054                         if (ret)
3055                                 return ret;
3056                 }
3057         } else {
3058                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3059                 if (ret)
3060                         return ret;
3061         }
3062
3063         return 0;
3064 }
3065
3066 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3067                              bool force)
3068 {
3069         /* If we don't have a page list set up, then we're not pinned
3070          * to GPU, and we can ignore the cache flush because it'll happen
3071          * again at bind time.
3072          */
3073         if (!obj->mm.pages)
3074                 return;
3075
3076         /*
3077          * Stolen memory is always coherent with the GPU as it is explicitly
3078          * marked as wc by the system, or the system is cache-coherent.
3079          */
3080         if (obj->stolen || obj->phys_handle)
3081                 return;
3082
3083         /* If the GPU is snooping the contents of the CPU cache,
3084          * we do not need to manually clear the CPU cache lines.  However,
3085          * the caches are only snooped when the render cache is
3086          * flushed/invalidated.  As we always have to emit invalidations
3087          * and flushes when moving into and out of the RENDER domain, correct
3088          * snooping behaviour occurs naturally as the result of our domain
3089          * tracking.
3090          */
3091         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3092                 obj->cache_dirty = true;
3093                 return;
3094         }
3095
3096         trace_i915_gem_object_clflush(obj);
3097         drm_clflush_sg(obj->mm.pages);
3098         obj->cache_dirty = false;
3099 }
3100
3101 /** Flushes the GTT write domain for the object if it's dirty. */
3102 static void
3103 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3104 {
3105         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3106
3107         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3108                 return;
3109
3110         /* No actual flushing is required for the GTT write domain.  Writes
3111          * to it "immediately" go to main memory as far as we know, so there's
3112          * no chipset flush.  It also doesn't land in render cache.
3113          *
3114          * However, we do have to enforce the order so that all writes through
3115          * the GTT land before any writes to the device, such as updates to
3116          * the GATT itself.
3117          *
3118          * We also have to wait a bit for the writes to land from the GTT.
3119          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3120          * timing. This issue has only been observed when switching quickly
3121          * between GTT writes and CPU reads from inside the kernel on recent hw,
3122          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3123          * system agents we cannot reproduce this behaviour).
3124          */
3125         wmb();
3126         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3127                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3128
3129         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3130
3131         obj->base.write_domain = 0;
3132         trace_i915_gem_object_change_domain(obj,
3133                                             obj->base.read_domains,
3134                                             I915_GEM_DOMAIN_GTT);
3135 }
3136
3137 /** Flushes the CPU write domain for the object if it's dirty. */
3138 static void
3139 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3140 {
3141         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3142                 return;
3143
3144         i915_gem_clflush_object(obj, obj->pin_display);
3145         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3146
3147         obj->base.write_domain = 0;
3148         trace_i915_gem_object_change_domain(obj,
3149                                             obj->base.read_domains,
3150                                             I915_GEM_DOMAIN_CPU);
3151 }
3152
3153 /**
3154  * Moves a single object to the GTT read, and possibly write domain.
3155  * @obj: object to act on
3156  * @write: ask for write access or read only
3157  *
3158  * This function returns when the move is complete, including waiting on
3159  * flushes to occur.
3160  */
3161 int
3162 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3163 {
3164         uint32_t old_write_domain, old_read_domains;
3165         int ret;
3166
3167         lockdep_assert_held(&obj->base.dev->struct_mutex);
3168
3169         ret = i915_gem_object_wait(obj,
3170                                    I915_WAIT_INTERRUPTIBLE |
3171                                    I915_WAIT_LOCKED |
3172                                    (write ? I915_WAIT_ALL : 0),
3173                                    MAX_SCHEDULE_TIMEOUT,
3174                                    NULL);
3175         if (ret)
3176                 return ret;
3177
3178         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3179                 return 0;
3180
3181         /* Flush and acquire obj->pages so that we are coherent through
3182          * direct access in memory with previous cached writes through
3183          * shmemfs and that our cache domain tracking remains valid.
3184          * For example, if the obj->filp was moved to swap without us
3185          * being notified and releasing the pages, we would mistakenly
3186          * continue to assume that the obj remained out of the CPU cached
3187          * domain.
3188          */
3189         ret = i915_gem_object_pin_pages(obj);
3190         if (ret)
3191                 return ret;
3192
3193         i915_gem_object_flush_cpu_write_domain(obj);
3194
3195         /* Serialise direct access to this object with the barriers for
3196          * coherent writes from the GPU, by effectively invalidating the
3197          * GTT domain upon first access.
3198          */
3199         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3200                 mb();
3201
3202         old_write_domain = obj->base.write_domain;
3203         old_read_domains = obj->base.read_domains;
3204
3205         /* It should now be out of any other write domains, and we can update
3206          * the domain values for our changes.
3207          */
3208         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3209         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3210         if (write) {
3211                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3212                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3213                 obj->mm.dirty = true;
3214         }
3215
3216         trace_i915_gem_object_change_domain(obj,
3217                                             old_read_domains,
3218                                             old_write_domain);
3219
3220         i915_gem_object_unpin_pages(obj);
3221         return 0;
3222 }
3223
3224 /**
3225  * Changes the cache-level of an object across all VMA.
3226  * @obj: object to act on
3227  * @cache_level: new cache level to set for the object
3228  *
3229  * After this function returns, the object will be in the new cache-level
3230  * across all GTT and the contents of the backing storage will be coherent,
3231  * with respect to the new cache-level. In order to keep the backing storage
3232  * coherent for all users, we only allow a single cache level to be set
3233  * globally on the object and prevent it from being changed whilst the
3234  * hardware is reading from the object. That is if the object is currently
3235  * on the scanout it will be set to uncached (or equivalent display
3236  * cache coherency) and all non-MOCS GPU access will also be uncached so
3237  * that all direct access to the scanout remains coherent.
3238  */
3239 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3240                                     enum i915_cache_level cache_level)
3241 {
3242         struct i915_vma *vma;
3243         int ret;
3244
3245         lockdep_assert_held(&obj->base.dev->struct_mutex);
3246
3247         if (obj->cache_level == cache_level)
3248                 return 0;
3249
3250         /* Inspect the list of currently bound VMA and unbind any that would
3251          * be invalid given the new cache-level. This is principally to
3252          * catch the issue of the CS prefetch crossing page boundaries and
3253          * reading an invalid PTE on older architectures.
3254          */
3255 restart:
3256         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3257                 if (!drm_mm_node_allocated(&vma->node))
3258                         continue;
3259
3260                 if (i915_vma_is_pinned(vma)) {
3261                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3262                         return -EBUSY;
3263                 }
3264
3265                 if (i915_gem_valid_gtt_space(vma, cache_level))
3266                         continue;
3267
3268                 ret = i915_vma_unbind(vma);
3269                 if (ret)
3270                         return ret;
3271
3272                 /* As unbinding may affect other elements in the
3273                  * obj->vma_list (due to side-effects from retiring
3274                  * an active vma), play safe and restart the iterator.
3275                  */
3276                 goto restart;
3277         }
3278
3279         /* We can reuse the existing drm_mm nodes but need to change the
3280          * cache-level on the PTE. We could simply unbind them all and
3281          * rebind with the correct cache-level on next use. However since
3282          * we already have a valid slot, dma mapping, pages etc, we may as
3283          * rewrite the PTE in the belief that doing so tramples upon less
3284          * state and so involves less work.
3285          */
3286         if (obj->bind_count) {
3287                 /* Before we change the PTE, the GPU must not be accessing it.
3288                  * If we wait upon the object, we know that all the bound
3289                  * VMA are no longer active.
3290                  */
3291                 ret = i915_gem_object_wait(obj,
3292                                            I915_WAIT_INTERRUPTIBLE |
3293                                            I915_WAIT_LOCKED |
3294                                            I915_WAIT_ALL,
3295                                            MAX_SCHEDULE_TIMEOUT,
3296                                            NULL);
3297                 if (ret)
3298                         return ret;
3299
3300                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3301                     cache_level != I915_CACHE_NONE) {
3302                         /* Access to snoopable pages through the GTT is
3303                          * incoherent and on some machines causes a hard
3304                          * lockup. Relinquish the CPU mmaping to force
3305                          * userspace to refault in the pages and we can
3306                          * then double check if the GTT mapping is still
3307                          * valid for that pointer access.
3308                          */
3309                         i915_gem_release_mmap(obj);
3310
3311                         /* As we no longer need a fence for GTT access,
3312                          * we can relinquish it now (and so prevent having
3313                          * to steal a fence from someone else on the next
3314                          * fence request). Note GPU activity would have
3315                          * dropped the fence as all snoopable access is
3316                          * supposed to be linear.
3317                          */
3318                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3319                                 ret = i915_vma_put_fence(vma);
3320                                 if (ret)
3321                                         return ret;
3322                         }
3323                 } else {
3324                         /* We either have incoherent backing store and
3325                          * so no GTT access or the architecture is fully
3326                          * coherent. In such cases, existing GTT mmaps
3327                          * ignore the cache bit in the PTE and we can
3328                          * rewrite it without confusing the GPU or having
3329                          * to force userspace to fault back in its mmaps.
3330                          */
3331                 }
3332
3333                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3334                         if (!drm_mm_node_allocated(&vma->node))
3335                                 continue;
3336
3337                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3338                         if (ret)
3339                                 return ret;
3340                 }
3341         }
3342
3343         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3344             cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3345                 obj->cache_dirty = true;
3346
3347         list_for_each_entry(vma, &obj->vma_list, obj_link)
3348                 vma->node.color = cache_level;
3349         obj->cache_level = cache_level;
3350
3351         return 0;
3352 }
3353
3354 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3355                                struct drm_file *file)
3356 {
3357         struct drm_i915_gem_caching *args = data;
3358         struct drm_i915_gem_object *obj;
3359         int err = 0;
3360
3361         rcu_read_lock();
3362         obj = i915_gem_object_lookup_rcu(file, args->handle);
3363         if (!obj) {
3364                 err = -ENOENT;
3365                 goto out;
3366         }
3367
3368         switch (obj->cache_level) {
3369         case I915_CACHE_LLC:
3370         case I915_CACHE_L3_LLC:
3371                 args->caching = I915_CACHING_CACHED;
3372                 break;
3373
3374         case I915_CACHE_WT:
3375                 args->caching = I915_CACHING_DISPLAY;
3376                 break;
3377
3378         default:
3379                 args->caching = I915_CACHING_NONE;
3380                 break;
3381         }
3382 out:
3383         rcu_read_unlock();
3384         return err;
3385 }
3386
3387 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3388                                struct drm_file *file)
3389 {
3390         struct drm_i915_private *i915 = to_i915(dev);
3391         struct drm_i915_gem_caching *args = data;
3392         struct drm_i915_gem_object *obj;
3393         enum i915_cache_level level;
3394         int ret;
3395
3396         switch (args->caching) {
3397         case I915_CACHING_NONE:
3398                 level = I915_CACHE_NONE;
3399                 break;
3400         case I915_CACHING_CACHED:
3401                 /*
3402                  * Due to a HW issue on BXT A stepping, GPU stores via a
3403                  * snooped mapping may leave stale data in a corresponding CPU
3404                  * cacheline, whereas normally such cachelines would get
3405                  * invalidated.
3406                  */
3407                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3408                         return -ENODEV;
3409
3410                 level = I915_CACHE_LLC;
3411                 break;
3412         case I915_CACHING_DISPLAY:
3413                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3414                 break;
3415         default:
3416                 return -EINVAL;
3417         }
3418
3419         ret = i915_mutex_lock_interruptible(dev);
3420         if (ret)
3421                 return ret;
3422
3423         obj = i915_gem_object_lookup(file, args->handle);
3424         if (!obj) {
3425                 ret = -ENOENT;
3426                 goto unlock;
3427         }
3428
3429         ret = i915_gem_object_set_cache_level(obj, level);
3430         i915_gem_object_put(obj);
3431 unlock:
3432         mutex_unlock(&dev->struct_mutex);
3433         return ret;
3434 }
3435
3436 /*
3437  * Prepare buffer for display plane (scanout, cursors, etc).
3438  * Can be called from an uninterruptible phase (modesetting) and allows
3439  * any flushes to be pipelined (for pageflips).
3440  */
3441 struct i915_vma *
3442 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3443                                      u32 alignment,
3444                                      const struct i915_ggtt_view *view)
3445 {
3446         struct i915_vma *vma;
3447         u32 old_read_domains, old_write_domain;
3448         int ret;
3449
3450         lockdep_assert_held(&obj->base.dev->struct_mutex);
3451
3452         /* Mark the pin_display early so that we account for the
3453          * display coherency whilst setting up the cache domains.
3454          */
3455         obj->pin_display++;
3456
3457         /* The display engine is not coherent with the LLC cache on gen6.  As
3458          * a result, we make sure that the pinning that is about to occur is
3459          * done with uncached PTEs. This is lowest common denominator for all
3460          * chipsets.
3461          *
3462          * However for gen6+, we could do better by using the GFDT bit instead
3463          * of uncaching, which would allow us to flush all the LLC-cached data
3464          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3465          */
3466         ret = i915_gem_object_set_cache_level(obj,
3467                                               HAS_WT(to_i915(obj->base.dev)) ?
3468                                               I915_CACHE_WT : I915_CACHE_NONE);
3469         if (ret) {
3470                 vma = ERR_PTR(ret);
3471                 goto err_unpin_display;
3472         }
3473
3474         /* As the user may map the buffer once pinned in the display plane
3475          * (e.g. libkms for the bootup splash), we have to ensure that we
3476          * always use map_and_fenceable for all scanout buffers. However,
3477          * it may simply be too big to fit into mappable, in which case
3478          * put it anyway and hope that userspace can cope (but always first
3479          * try to preserve the existing ABI).
3480          */
3481         vma = ERR_PTR(-ENOSPC);
3482         if (view->type == I915_GGTT_VIEW_NORMAL)
3483                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3484                                                PIN_MAPPABLE | PIN_NONBLOCK);
3485         if (IS_ERR(vma)) {
3486                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3487                 unsigned int flags;
3488
3489                 /* Valleyview is definitely limited to scanning out the first
3490                  * 512MiB. Lets presume this behaviour was inherited from the
3491                  * g4x display engine and that all earlier gen are similarly
3492                  * limited. Testing suggests that it is a little more
3493                  * complicated than this. For example, Cherryview appears quite
3494                  * happy to scanout from anywhere within its global aperture.
3495                  */
3496                 flags = 0;
3497                 if (HAS_GMCH_DISPLAY(i915))
3498                         flags = PIN_MAPPABLE;
3499                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3500         }
3501         if (IS_ERR(vma))
3502                 goto err_unpin_display;
3503
3504         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3505
3506         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3507         if (obj->cache_dirty) {
3508                 i915_gem_clflush_object(obj, true);
3509                 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3510         }
3511
3512         old_write_domain = obj->base.write_domain;
3513         old_read_domains = obj->base.read_domains;
3514
3515         /* It should now be out of any other write domains, and we can update
3516          * the domain values for our changes.
3517          */
3518         obj->base.write_domain = 0;
3519         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3520
3521         trace_i915_gem_object_change_domain(obj,
3522                                             old_read_domains,
3523                                             old_write_domain);
3524
3525         return vma;
3526
3527 err_unpin_display:
3528         obj->pin_display--;
3529         return vma;
3530 }
3531
3532 void
3533 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3534 {
3535         lockdep_assert_held(&vma->vm->dev->struct_mutex);
3536
3537         if (WARN_ON(vma->obj->pin_display == 0))
3538                 return;
3539
3540         if (--vma->obj->pin_display == 0)
3541                 vma->display_alignment = 0;
3542
3543         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3544         if (!i915_vma_is_active(vma))
3545                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3546
3547         i915_vma_unpin(vma);
3548 }
3549
3550 /**
3551  * Moves a single object to the CPU read, and possibly write domain.
3552  * @obj: object to act on
3553  * @write: requesting write or read-only access
3554  *
3555  * This function returns when the move is complete, including waiting on
3556  * flushes to occur.
3557  */
3558 int
3559 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3560 {
3561         uint32_t old_write_domain, old_read_domains;
3562         int ret;
3563
3564         lockdep_assert_held(&obj->base.dev->struct_mutex);
3565
3566         ret = i915_gem_object_wait(obj,
3567                                    I915_WAIT_INTERRUPTIBLE |
3568                                    I915_WAIT_LOCKED |
3569                                    (write ? I915_WAIT_ALL : 0),
3570                                    MAX_SCHEDULE_TIMEOUT,
3571                                    NULL);
3572         if (ret)
3573                 return ret;
3574
3575         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3576                 return 0;
3577
3578         i915_gem_object_flush_gtt_write_domain(obj);
3579
3580         old_write_domain = obj->base.write_domain;
3581         old_read_domains = obj->base.read_domains;
3582
3583         /* Flush the CPU cache if it's still invalid. */
3584         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3585                 i915_gem_clflush_object(obj, false);
3586
3587                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3588         }
3589
3590         /* It should now be out of any other write domains, and we can update
3591          * the domain values for our changes.
3592          */
3593         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3594
3595         /* If we're writing through the CPU, then the GPU read domains will
3596          * need to be invalidated at next use.
3597          */
3598         if (write) {
3599                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3600                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3601         }
3602
3603         trace_i915_gem_object_change_domain(obj,
3604                                             old_read_domains,
3605                                             old_write_domain);
3606
3607         return 0;
3608 }
3609
3610 /* Throttle our rendering by waiting until the ring has completed our requests
3611  * emitted over 20 msec ago.
3612  *
3613  * Note that if we were to use the current jiffies each time around the loop,
3614  * we wouldn't escape the function with any frames outstanding if the time to
3615  * render a frame was over 20ms.
3616  *
3617  * This should get us reasonable parallelism between CPU and GPU but also
3618  * relatively low latency when blocking on a particular request to finish.
3619  */
3620 static int
3621 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3622 {
3623         struct drm_i915_private *dev_priv = to_i915(dev);
3624         struct drm_i915_file_private *file_priv = file->driver_priv;
3625         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3626         struct drm_i915_gem_request *request, *target = NULL;
3627         long ret;
3628
3629         /* ABI: return -EIO if already wedged */
3630         if (i915_terminally_wedged(&dev_priv->gpu_error))
3631                 return -EIO;
3632
3633         spin_lock(&file_priv->mm.lock);
3634         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3635                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3636                         break;
3637
3638                 /*
3639                  * Note that the request might not have been submitted yet.
3640                  * In which case emitted_jiffies will be zero.
3641                  */
3642                 if (!request->emitted_jiffies)
3643                         continue;
3644
3645                 target = request;
3646         }
3647         if (target)
3648                 i915_gem_request_get(target);
3649         spin_unlock(&file_priv->mm.lock);
3650
3651         if (target == NULL)
3652                 return 0;
3653
3654         ret = i915_wait_request(target,
3655                                 I915_WAIT_INTERRUPTIBLE,
3656                                 MAX_SCHEDULE_TIMEOUT);
3657         i915_gem_request_put(target);
3658
3659         return ret < 0 ? ret : 0;
3660 }
3661
3662 struct i915_vma *
3663 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3664                          const struct i915_ggtt_view *view,
3665                          u64 size,
3666                          u64 alignment,
3667                          u64 flags)
3668 {
3669         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3670         struct i915_address_space *vm = &dev_priv->ggtt.base;
3671         struct i915_vma *vma;
3672         int ret;
3673
3674         lockdep_assert_held(&obj->base.dev->struct_mutex);
3675
3676         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3677         if (IS_ERR(vma))
3678                 return vma;
3679
3680         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3681                 if (flags & PIN_NONBLOCK &&
3682                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3683                         return ERR_PTR(-ENOSPC);
3684
3685                 if (flags & PIN_MAPPABLE) {
3686                         u32 fence_size;
3687
3688                         fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3689                                                             i915_gem_object_get_tiling(obj));
3690                         /* If the required space is larger than the available
3691                          * aperture, we will not able to find a slot for the
3692                          * object and unbinding the object now will be in
3693                          * vain. Worse, doing so may cause us to ping-pong
3694                          * the object in and out of the Global GTT and
3695                          * waste a lot of cycles under the mutex.
3696                          */
3697                         if (fence_size > dev_priv->ggtt.mappable_end)
3698                                 return ERR_PTR(-E2BIG);
3699
3700                         /* If NONBLOCK is set the caller is optimistically
3701                          * trying to cache the full object within the mappable
3702                          * aperture, and *must* have a fallback in place for
3703                          * situations where we cannot bind the object. We
3704                          * can be a little more lax here and use the fallback
3705                          * more often to avoid costly migrations of ourselves
3706                          * and other objects within the aperture.
3707                          *
3708                          * Half-the-aperture is used as a simple heuristic.
3709                          * More interesting would to do search for a free
3710                          * block prior to making the commitment to unbind.
3711                          * That caters for the self-harm case, and with a
3712                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3713                          * we could try to minimise harm to others.
3714                          */
3715                         if (flags & PIN_NONBLOCK &&
3716                             fence_size > dev_priv->ggtt.mappable_end / 2)
3717                                 return ERR_PTR(-ENOSPC);
3718                 }
3719
3720                 WARN(i915_vma_is_pinned(vma),
3721                      "bo is already pinned in ggtt with incorrect alignment:"
3722                      " offset=%08x, req.alignment=%llx,"
3723                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3724                      i915_ggtt_offset(vma), alignment,
3725                      !!(flags & PIN_MAPPABLE),
3726                      i915_vma_is_map_and_fenceable(vma));
3727                 ret = i915_vma_unbind(vma);
3728                 if (ret)
3729                         return ERR_PTR(ret);
3730         }
3731
3732         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3733         if (ret)
3734                 return ERR_PTR(ret);
3735
3736         return vma;
3737 }
3738
3739 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3740 {
3741         /* Note that we could alias engines in the execbuf API, but
3742          * that would be very unwise as it prevents userspace from
3743          * fine control over engine selection. Ahem.
3744          *
3745          * This should be something like EXEC_MAX_ENGINE instead of
3746          * I915_NUM_ENGINES.
3747          */
3748         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3749         return 0x10000 << id;
3750 }
3751
3752 static __always_inline unsigned int __busy_write_id(unsigned int id)
3753 {
3754         /* The uABI guarantees an active writer is also amongst the read
3755          * engines. This would be true if we accessed the activity tracking
3756          * under the lock, but as we perform the lookup of the object and
3757          * its activity locklessly we can not guarantee that the last_write
3758          * being active implies that we have set the same engine flag from
3759          * last_read - hence we always set both read and write busy for
3760          * last_write.
3761          */
3762         return id | __busy_read_flag(id);
3763 }
3764
3765 static __always_inline unsigned int
3766 __busy_set_if_active(const struct dma_fence *fence,
3767                      unsigned int (*flag)(unsigned int id))
3768 {
3769         struct drm_i915_gem_request *rq;
3770
3771         /* We have to check the current hw status of the fence as the uABI
3772          * guarantees forward progress. We could rely on the idle worker
3773          * to eventually flush us, but to minimise latency just ask the
3774          * hardware.
3775          *
3776          * Note we only report on the status of native fences.
3777          */
3778         if (!dma_fence_is_i915(fence))
3779                 return 0;
3780
3781         /* opencode to_request() in order to avoid const warnings */
3782         rq = container_of(fence, struct drm_i915_gem_request, fence);
3783         if (i915_gem_request_completed(rq))
3784                 return 0;
3785
3786         return flag(rq->engine->exec_id);
3787 }
3788
3789 static __always_inline unsigned int
3790 busy_check_reader(const struct dma_fence *fence)
3791 {
3792         return __busy_set_if_active(fence, __busy_read_flag);
3793 }
3794
3795 static __always_inline unsigned int
3796 busy_check_writer(const struct dma_fence *fence)
3797 {
3798         if (!fence)
3799                 return 0;
3800
3801         return __busy_set_if_active(fence, __busy_write_id);
3802 }
3803
3804 int
3805 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3806                     struct drm_file *file)
3807 {
3808         struct drm_i915_gem_busy *args = data;
3809         struct drm_i915_gem_object *obj;
3810         struct reservation_object_list *list;
3811         unsigned int seq;
3812         int err;
3813
3814         err = -ENOENT;
3815         rcu_read_lock();
3816         obj = i915_gem_object_lookup_rcu(file, args->handle);
3817         if (!obj)
3818                 goto out;
3819
3820         /* A discrepancy here is that we do not report the status of
3821          * non-i915 fences, i.e. even though we may report the object as idle,
3822          * a call to set-domain may still stall waiting for foreign rendering.
3823          * This also means that wait-ioctl may report an object as busy,
3824          * where busy-ioctl considers it idle.
3825          *
3826          * We trade the ability to warn of foreign fences to report on which
3827          * i915 engines are active for the object.
3828          *
3829          * Alternatively, we can trade that extra information on read/write
3830          * activity with
3831          *      args->busy =
3832          *              !reservation_object_test_signaled_rcu(obj->resv, true);
3833          * to report the overall busyness. This is what the wait-ioctl does.
3834          *
3835          */
3836 retry:
3837         seq = raw_read_seqcount(&obj->resv->seq);
3838
3839         /* Translate the exclusive fence to the READ *and* WRITE engine */
3840         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3841
3842         /* Translate shared fences to READ set of engines */
3843         list = rcu_dereference(obj->resv->fence);
3844         if (list) {
3845                 unsigned int shared_count = list->shared_count, i;
3846
3847                 for (i = 0; i < shared_count; ++i) {
3848                         struct dma_fence *fence =
3849                                 rcu_dereference(list->shared[i]);
3850
3851                         args->busy |= busy_check_reader(fence);
3852                 }
3853         }
3854
3855         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3856                 goto retry;
3857
3858         err = 0;
3859 out:
3860         rcu_read_unlock();
3861         return err;
3862 }
3863
3864 int
3865 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3866                         struct drm_file *file_priv)
3867 {
3868         return i915_gem_ring_throttle(dev, file_priv);
3869 }
3870
3871 int
3872 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3873                        struct drm_file *file_priv)
3874 {
3875         struct drm_i915_private *dev_priv = to_i915(dev);
3876         struct drm_i915_gem_madvise *args = data;
3877         struct drm_i915_gem_object *obj;
3878         int err;
3879
3880         switch (args->madv) {
3881         case I915_MADV_DONTNEED:
3882         case I915_MADV_WILLNEED:
3883             break;
3884         default:
3885             return -EINVAL;
3886         }
3887
3888         obj = i915_gem_object_lookup(file_priv, args->handle);
3889         if (!obj)
3890                 return -ENOENT;
3891
3892         err = mutex_lock_interruptible(&obj->mm.lock);
3893         if (err)
3894                 goto out;
3895
3896         if (obj->mm.pages &&
3897             i915_gem_object_is_tiled(obj) &&
3898             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3899                 if (obj->mm.madv == I915_MADV_WILLNEED) {
3900                         GEM_BUG_ON(!obj->mm.quirked);
3901                         __i915_gem_object_unpin_pages(obj);
3902                         obj->mm.quirked = false;
3903                 }
3904                 if (args->madv == I915_MADV_WILLNEED) {
3905                         GEM_BUG_ON(obj->mm.quirked);
3906                         __i915_gem_object_pin_pages(obj);
3907                         obj->mm.quirked = true;
3908                 }
3909         }
3910
3911         if (obj->mm.madv != __I915_MADV_PURGED)
3912                 obj->mm.madv = args->madv;
3913
3914         /* if the object is no longer attached, discard its backing storage */
3915         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3916                 i915_gem_object_truncate(obj);
3917
3918         args->retained = obj->mm.madv != __I915_MADV_PURGED;
3919         mutex_unlock(&obj->mm.lock);
3920
3921 out:
3922         i915_gem_object_put(obj);
3923         return err;
3924 }
3925
3926 static void
3927 frontbuffer_retire(struct i915_gem_active *active,
3928                    struct drm_i915_gem_request *request)
3929 {
3930         struct drm_i915_gem_object *obj =
3931                 container_of(active, typeof(*obj), frontbuffer_write);
3932
3933         intel_fb_obj_flush(obj, true, ORIGIN_CS);
3934 }
3935
3936 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3937                           const struct drm_i915_gem_object_ops *ops)
3938 {
3939         mutex_init(&obj->mm.lock);
3940
3941         INIT_LIST_HEAD(&obj->global_link);
3942         INIT_LIST_HEAD(&obj->userfault_link);
3943         INIT_LIST_HEAD(&obj->obj_exec_link);
3944         INIT_LIST_HEAD(&obj->vma_list);
3945         INIT_LIST_HEAD(&obj->batch_pool_link);
3946
3947         obj->ops = ops;
3948
3949         reservation_object_init(&obj->__builtin_resv);
3950         obj->resv = &obj->__builtin_resv;
3951
3952         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3953         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3954
3955         obj->mm.madv = I915_MADV_WILLNEED;
3956         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3957         mutex_init(&obj->mm.get_page.lock);
3958
3959         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3960 }
3961
3962 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3963         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3964                  I915_GEM_OBJECT_IS_SHRINKABLE,
3965         .get_pages = i915_gem_object_get_pages_gtt,
3966         .put_pages = i915_gem_object_put_pages_gtt,
3967 };
3968
3969 /* Note we don't consider signbits :| */
3970 #define overflows_type(x, T) \
3971         (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3972
3973 struct drm_i915_gem_object *
3974 i915_gem_object_create(struct drm_device *dev, u64 size)
3975 {
3976         struct drm_i915_private *dev_priv = to_i915(dev);
3977         struct drm_i915_gem_object *obj;
3978         struct address_space *mapping;
3979         gfp_t mask;
3980         int ret;
3981
3982         /* There is a prevalence of the assumption that we fit the object's
3983          * page count inside a 32bit _signed_ variable. Let's document this and
3984          * catch if we ever need to fix it. In the meantime, if you do spot
3985          * such a local variable, please consider fixing!
3986          */
3987         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3988                 return ERR_PTR(-E2BIG);
3989
3990         if (overflows_type(size, obj->base.size))
3991                 return ERR_PTR(-E2BIG);
3992
3993         obj = i915_gem_object_alloc(dev);
3994         if (obj == NULL)
3995                 return ERR_PTR(-ENOMEM);
3996
3997         ret = drm_gem_object_init(dev, &obj->base, size);
3998         if (ret)
3999                 goto fail;
4000
4001         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4002         if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
4003                 /* 965gm cannot relocate objects above 4GiB. */
4004                 mask &= ~__GFP_HIGHMEM;
4005                 mask |= __GFP_DMA32;
4006         }
4007
4008         mapping = obj->base.filp->f_mapping;
4009         mapping_set_gfp_mask(mapping, mask);
4010
4011         i915_gem_object_init(obj, &i915_gem_object_ops);
4012
4013         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4014         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4015
4016         if (HAS_LLC(dev_priv)) {
4017                 /* On some devices, we can have the GPU use the LLC (the CPU
4018                  * cache) for about a 10% performance improvement
4019                  * compared to uncached.  Graphics requests other than
4020                  * display scanout are coherent with the CPU in
4021                  * accessing this cache.  This means in this mode we
4022                  * don't need to clflush on the CPU side, and on the
4023                  * GPU side we only need to flush internal caches to
4024                  * get data visible to the CPU.
4025                  *
4026                  * However, we maintain the display planes as UC, and so
4027                  * need to rebind when first used as such.
4028                  */
4029                 obj->cache_level = I915_CACHE_LLC;
4030         } else
4031                 obj->cache_level = I915_CACHE_NONE;
4032
4033         trace_i915_gem_object_create(obj);
4034
4035         return obj;
4036
4037 fail:
4038         i915_gem_object_free(obj);
4039         return ERR_PTR(ret);
4040 }
4041
4042 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4043 {
4044         /* If we are the last user of the backing storage (be it shmemfs
4045          * pages or stolen etc), we know that the pages are going to be
4046          * immediately released. In this case, we can then skip copying
4047          * back the contents from the GPU.
4048          */
4049
4050         if (obj->mm.madv != I915_MADV_WILLNEED)
4051                 return false;
4052
4053         if (obj->base.filp == NULL)
4054                 return true;
4055
4056         /* At first glance, this looks racy, but then again so would be
4057          * userspace racing mmap against close. However, the first external
4058          * reference to the filp can only be obtained through the
4059          * i915_gem_mmap_ioctl() which safeguards us against the user
4060          * acquiring such a reference whilst we are in the middle of
4061          * freeing the object.
4062          */
4063         return atomic_long_read(&obj->base.filp->f_count) == 1;
4064 }
4065
4066 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4067                                     struct llist_node *freed)
4068 {
4069         struct drm_i915_gem_object *obj, *on;
4070
4071         mutex_lock(&i915->drm.struct_mutex);
4072         intel_runtime_pm_get(i915);
4073         llist_for_each_entry(obj, freed, freed) {
4074                 struct i915_vma *vma, *vn;
4075
4076                 trace_i915_gem_object_destroy(obj);
4077
4078                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4079                 list_for_each_entry_safe(vma, vn,
4080                                          &obj->vma_list, obj_link) {
4081                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4082                         GEM_BUG_ON(i915_vma_is_active(vma));
4083                         vma->flags &= ~I915_VMA_PIN_MASK;
4084                         i915_vma_close(vma);
4085                 }
4086                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4087                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4088
4089                 list_del(&obj->global_link);
4090         }
4091         intel_runtime_pm_put(i915);
4092         mutex_unlock(&i915->drm.struct_mutex);
4093
4094         llist_for_each_entry_safe(obj, on, freed, freed) {
4095                 GEM_BUG_ON(obj->bind_count);
4096                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4097
4098                 if (obj->ops->release)
4099                         obj->ops->release(obj);
4100
4101                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4102                         atomic_set(&obj->mm.pages_pin_count, 0);
4103                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4104                 GEM_BUG_ON(obj->mm.pages);
4105
4106                 if (obj->base.import_attach)
4107                         drm_prime_gem_destroy(&obj->base, NULL);
4108
4109                 reservation_object_fini(&obj->__builtin_resv);
4110                 drm_gem_object_release(&obj->base);
4111                 i915_gem_info_remove_obj(i915, obj->base.size);
4112
4113                 kfree(obj->bit_17);
4114                 i915_gem_object_free(obj);
4115         }
4116 }
4117
4118 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4119 {
4120         struct llist_node *freed;
4121
4122         freed = llist_del_all(&i915->mm.free_list);
4123         if (unlikely(freed))
4124                 __i915_gem_free_objects(i915, freed);
4125 }
4126
4127 static void __i915_gem_free_work(struct work_struct *work)
4128 {
4129         struct drm_i915_private *i915 =
4130                 container_of(work, struct drm_i915_private, mm.free_work);
4131         struct llist_node *freed;
4132
4133         /* All file-owned VMA should have been released by this point through
4134          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4135          * However, the object may also be bound into the global GTT (e.g.
4136          * older GPUs without per-process support, or for direct access through
4137          * the GTT either for the user or for scanout). Those VMA still need to
4138          * unbound now.
4139          */
4140
4141         while ((freed = llist_del_all(&i915->mm.free_list)))
4142                 __i915_gem_free_objects(i915, freed);
4143 }
4144
4145 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4146 {
4147         struct drm_i915_gem_object *obj =
4148                 container_of(head, typeof(*obj), rcu);
4149         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4150
4151         /* We can't simply use call_rcu() from i915_gem_free_object()
4152          * as we need to block whilst unbinding, and the call_rcu
4153          * task may be called from softirq context. So we take a
4154          * detour through a worker.
4155          */
4156         if (llist_add(&obj->freed, &i915->mm.free_list))
4157                 schedule_work(&i915->mm.free_work);
4158 }
4159
4160 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4161 {
4162         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4163
4164         if (obj->mm.quirked)
4165                 __i915_gem_object_unpin_pages(obj);
4166
4167         if (discard_backing_storage(obj))
4168                 obj->mm.madv = I915_MADV_DONTNEED;
4169
4170         /* Before we free the object, make sure any pure RCU-only
4171          * read-side critical sections are complete, e.g.
4172          * i915_gem_busy_ioctl(). For the corresponding synchronized
4173          * lookup see i915_gem_object_lookup_rcu().
4174          */
4175         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4176 }
4177
4178 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4179 {
4180         lockdep_assert_held(&obj->base.dev->struct_mutex);
4181
4182         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4183         if (i915_gem_object_is_active(obj))
4184                 i915_gem_object_set_active_reference(obj);
4185         else
4186                 i915_gem_object_put(obj);
4187 }
4188
4189 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4190 {
4191         struct intel_engine_cs *engine;
4192         enum intel_engine_id id;
4193
4194         for_each_engine(engine, dev_priv, id)
4195                 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4196 }
4197
4198 int i915_gem_suspend(struct drm_device *dev)
4199 {
4200         struct drm_i915_private *dev_priv = to_i915(dev);
4201         int ret;
4202
4203         intel_suspend_gt_powersave(dev_priv);
4204
4205         mutex_lock(&dev->struct_mutex);
4206
4207         /* We have to flush all the executing contexts to main memory so
4208          * that they can saved in the hibernation image. To ensure the last
4209          * context image is coherent, we have to switch away from it. That
4210          * leaves the dev_priv->kernel_context still active when
4211          * we actually suspend, and its image in memory may not match the GPU
4212          * state. Fortunately, the kernel_context is disposable and we do
4213          * not rely on its state.
4214          */
4215         ret = i915_gem_switch_to_kernel_context(dev_priv);
4216         if (ret)
4217                 goto err;
4218
4219         ret = i915_gem_wait_for_idle(dev_priv,
4220                                      I915_WAIT_INTERRUPTIBLE |
4221                                      I915_WAIT_LOCKED);
4222         if (ret)
4223                 goto err;
4224
4225         i915_gem_retire_requests(dev_priv);
4226         GEM_BUG_ON(dev_priv->gt.active_requests);
4227
4228         assert_kernel_context_is_current(dev_priv);
4229         i915_gem_context_lost(dev_priv);
4230         mutex_unlock(&dev->struct_mutex);
4231
4232         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4233         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4234         flush_delayed_work(&dev_priv->gt.idle_work);
4235         flush_work(&dev_priv->mm.free_work);
4236
4237         /* Assert that we sucessfully flushed all the work and
4238          * reset the GPU back to its idle, low power state.
4239          */
4240         WARN_ON(dev_priv->gt.awake);
4241         WARN_ON(!intel_execlists_idle(dev_priv));
4242
4243         /*
4244          * Neither the BIOS, ourselves or any other kernel
4245          * expects the system to be in execlists mode on startup,
4246          * so we need to reset the GPU back to legacy mode. And the only
4247          * known way to disable logical contexts is through a GPU reset.
4248          *
4249          * So in order to leave the system in a known default configuration,
4250          * always reset the GPU upon unload and suspend. Afterwards we then
4251          * clean up the GEM state tracking, flushing off the requests and
4252          * leaving the system in a known idle state.
4253          *
4254          * Note that is of the upmost importance that the GPU is idle and
4255          * all stray writes are flushed *before* we dismantle the backing
4256          * storage for the pinned objects.
4257          *
4258          * However, since we are uncertain that resetting the GPU on older
4259          * machines is a good idea, we don't - just in case it leaves the
4260          * machine in an unusable condition.
4261          */
4262         if (HAS_HW_CONTEXTS(dev_priv)) {
4263                 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4264                 WARN_ON(reset && reset != -ENODEV);
4265         }
4266
4267         return 0;
4268
4269 err:
4270         mutex_unlock(&dev->struct_mutex);
4271         return ret;
4272 }
4273
4274 void i915_gem_resume(struct drm_device *dev)
4275 {
4276         struct drm_i915_private *dev_priv = to_i915(dev);
4277
4278         WARN_ON(dev_priv->gt.awake);
4279
4280         mutex_lock(&dev->struct_mutex);
4281         i915_gem_restore_gtt_mappings(dev_priv);
4282
4283         /* As we didn't flush the kernel context before suspend, we cannot
4284          * guarantee that the context image is complete. So let's just reset
4285          * it and start again.
4286          */
4287         dev_priv->gt.resume(dev_priv);
4288
4289         mutex_unlock(&dev->struct_mutex);
4290 }
4291
4292 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4293 {
4294         if (INTEL_GEN(dev_priv) < 5 ||
4295             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4296                 return;
4297
4298         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4299                                  DISP_TILE_SURFACE_SWIZZLING);
4300
4301         if (IS_GEN5(dev_priv))
4302                 return;
4303
4304         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4305         if (IS_GEN6(dev_priv))
4306                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4307         else if (IS_GEN7(dev_priv))
4308                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4309         else if (IS_GEN8(dev_priv))
4310                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4311         else
4312                 BUG();
4313 }
4314
4315 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4316 {
4317         I915_WRITE(RING_CTL(base), 0);
4318         I915_WRITE(RING_HEAD(base), 0);
4319         I915_WRITE(RING_TAIL(base), 0);
4320         I915_WRITE(RING_START(base), 0);
4321 }
4322
4323 static void init_unused_rings(struct drm_i915_private *dev_priv)
4324 {
4325         if (IS_I830(dev_priv)) {
4326                 init_unused_ring(dev_priv, PRB1_BASE);
4327                 init_unused_ring(dev_priv, SRB0_BASE);
4328                 init_unused_ring(dev_priv, SRB1_BASE);
4329                 init_unused_ring(dev_priv, SRB2_BASE);
4330                 init_unused_ring(dev_priv, SRB3_BASE);
4331         } else if (IS_GEN2(dev_priv)) {
4332                 init_unused_ring(dev_priv, SRB0_BASE);
4333                 init_unused_ring(dev_priv, SRB1_BASE);
4334         } else if (IS_GEN3(dev_priv)) {
4335                 init_unused_ring(dev_priv, PRB1_BASE);
4336                 init_unused_ring(dev_priv, PRB2_BASE);
4337         }
4338 }
4339
4340 int
4341 i915_gem_init_hw(struct drm_device *dev)
4342 {
4343         struct drm_i915_private *dev_priv = to_i915(dev);
4344         struct intel_engine_cs *engine;
4345         enum intel_engine_id id;
4346         int ret;
4347
4348         dev_priv->gt.last_init_time = ktime_get();
4349
4350         /* Double layer security blanket, see i915_gem_init() */
4351         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4352
4353         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4354                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4355
4356         if (IS_HASWELL(dev_priv))
4357                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4358                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4359
4360         if (HAS_PCH_NOP(dev_priv)) {
4361                 if (IS_IVYBRIDGE(dev_priv)) {
4362                         u32 temp = I915_READ(GEN7_MSG_CTL);
4363                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4364                         I915_WRITE(GEN7_MSG_CTL, temp);
4365                 } else if (INTEL_GEN(dev_priv) >= 7) {
4366                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4367                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4368                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4369                 }
4370         }
4371
4372         i915_gem_init_swizzling(dev_priv);
4373
4374         /*
4375          * At least 830 can leave some of the unused rings
4376          * "active" (ie. head != tail) after resume which
4377          * will prevent c3 entry. Makes sure all unused rings
4378          * are totally idle.
4379          */
4380         init_unused_rings(dev_priv);
4381
4382         BUG_ON(!dev_priv->kernel_context);
4383
4384         ret = i915_ppgtt_init_hw(dev_priv);
4385         if (ret) {
4386                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4387                 goto out;
4388         }
4389
4390         /* Need to do basic initialisation of all rings first: */
4391         for_each_engine(engine, dev_priv, id) {
4392                 ret = engine->init_hw(engine);
4393                 if (ret)
4394                         goto out;
4395         }
4396
4397         intel_mocs_init_l3cc_table(dev);
4398
4399         /* We can't enable contexts until all firmware is loaded */
4400         ret = intel_guc_setup(dev);
4401         if (ret)
4402                 goto out;
4403
4404 out:
4405         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4406         return ret;
4407 }
4408
4409 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4410 {
4411         if (INTEL_INFO(dev_priv)->gen < 6)
4412                 return false;
4413
4414         /* TODO: make semaphores and Execlists play nicely together */
4415         if (i915.enable_execlists)
4416                 return false;
4417
4418         if (value >= 0)
4419                 return value;
4420
4421 #ifdef CONFIG_INTEL_IOMMU
4422         /* Enable semaphores on SNB when IO remapping is off */
4423         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4424                 return false;
4425 #endif
4426
4427         return true;
4428 }
4429
4430 int i915_gem_init(struct drm_device *dev)
4431 {
4432         struct drm_i915_private *dev_priv = to_i915(dev);
4433         int ret;
4434
4435         mutex_lock(&dev->struct_mutex);
4436
4437         if (!i915.enable_execlists) {
4438                 dev_priv->gt.resume = intel_legacy_submission_resume;
4439                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4440         } else {
4441                 dev_priv->gt.resume = intel_lr_context_resume;
4442                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4443         }
4444
4445         /* This is just a security blanket to placate dragons.
4446          * On some systems, we very sporadically observe that the first TLBs
4447          * used by the CS may be stale, despite us poking the TLB reset. If
4448          * we hold the forcewake during initialisation these problems
4449          * just magically go away.
4450          */
4451         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4452
4453         i915_gem_init_userptr(dev_priv);
4454
4455         ret = i915_gem_init_ggtt(dev_priv);
4456         if (ret)
4457                 goto out_unlock;
4458
4459         ret = i915_gem_context_init(dev);
4460         if (ret)
4461                 goto out_unlock;
4462
4463         ret = intel_engines_init(dev);
4464         if (ret)
4465                 goto out_unlock;
4466
4467         ret = i915_gem_init_hw(dev);
4468         if (ret == -EIO) {
4469                 /* Allow engine initialisation to fail by marking the GPU as
4470                  * wedged. But we only want to do this where the GPU is angry,
4471                  * for all other failure, such as an allocation failure, bail.
4472                  */
4473                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4474                 i915_gem_set_wedged(dev_priv);
4475                 ret = 0;
4476         }
4477
4478 out_unlock:
4479         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4480         mutex_unlock(&dev->struct_mutex);
4481
4482         return ret;
4483 }
4484
4485 void
4486 i915_gem_cleanup_engines(struct drm_device *dev)
4487 {
4488         struct drm_i915_private *dev_priv = to_i915(dev);
4489         struct intel_engine_cs *engine;
4490         enum intel_engine_id id;
4491
4492         for_each_engine(engine, dev_priv, id)
4493                 dev_priv->gt.cleanup_engine(engine);
4494 }
4495
4496 void
4497 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4498 {
4499         int i;
4500
4501         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4502             !IS_CHERRYVIEW(dev_priv))
4503                 dev_priv->num_fence_regs = 32;
4504         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4505                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4506                 dev_priv->num_fence_regs = 16;
4507         else
4508                 dev_priv->num_fence_regs = 8;
4509
4510         if (intel_vgpu_active(dev_priv))
4511                 dev_priv->num_fence_regs =
4512                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4513
4514         /* Initialize fence registers to zero */
4515         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4516                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4517
4518                 fence->i915 = dev_priv;
4519                 fence->id = i;
4520                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4521         }
4522         i915_gem_restore_fences(dev_priv);
4523
4524         i915_gem_detect_bit_6_swizzle(dev_priv);
4525 }
4526
4527 int
4528 i915_gem_load_init(struct drm_device *dev)
4529 {
4530         struct drm_i915_private *dev_priv = to_i915(dev);
4531         int err = -ENOMEM;
4532
4533         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4534         if (!dev_priv->objects)
4535                 goto err_out;
4536
4537         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4538         if (!dev_priv->vmas)
4539                 goto err_objects;
4540
4541         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4542                                         SLAB_HWCACHE_ALIGN |
4543                                         SLAB_RECLAIM_ACCOUNT |
4544                                         SLAB_DESTROY_BY_RCU);
4545         if (!dev_priv->requests)
4546                 goto err_vmas;
4547
4548         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4549                                             SLAB_HWCACHE_ALIGN |
4550                                             SLAB_RECLAIM_ACCOUNT);
4551         if (!dev_priv->dependencies)
4552                 goto err_requests;
4553
4554         mutex_lock(&dev_priv->drm.struct_mutex);
4555         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4556         err = i915_gem_timeline_init__global(dev_priv);
4557         mutex_unlock(&dev_priv->drm.struct_mutex);
4558         if (err)
4559                 goto err_dependencies;
4560
4561         INIT_LIST_HEAD(&dev_priv->context_list);
4562         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4563         init_llist_head(&dev_priv->mm.free_list);
4564         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4565         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4566         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4567         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4568         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4569                           i915_gem_retire_work_handler);
4570         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4571                           i915_gem_idle_work_handler);
4572         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4573         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4574
4575         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4576
4577         init_waitqueue_head(&dev_priv->pending_flip_queue);
4578
4579         dev_priv->mm.interruptible = true;
4580
4581         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4582
4583         spin_lock_init(&dev_priv->fb_tracking.lock);
4584
4585         return 0;
4586
4587 err_dependencies:
4588         kmem_cache_destroy(dev_priv->dependencies);
4589 err_requests:
4590         kmem_cache_destroy(dev_priv->requests);
4591 err_vmas:
4592         kmem_cache_destroy(dev_priv->vmas);
4593 err_objects:
4594         kmem_cache_destroy(dev_priv->objects);
4595 err_out:
4596         return err;
4597 }
4598
4599 void i915_gem_load_cleanup(struct drm_device *dev)
4600 {
4601         struct drm_i915_private *dev_priv = to_i915(dev);
4602
4603         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4604
4605         mutex_lock(&dev_priv->drm.struct_mutex);
4606         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4607         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4608         mutex_unlock(&dev_priv->drm.struct_mutex);
4609
4610         kmem_cache_destroy(dev_priv->dependencies);
4611         kmem_cache_destroy(dev_priv->requests);
4612         kmem_cache_destroy(dev_priv->vmas);
4613         kmem_cache_destroy(dev_priv->objects);
4614
4615         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4616         rcu_barrier();
4617 }
4618
4619 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4620 {
4621         intel_runtime_pm_get(dev_priv);
4622
4623         mutex_lock(&dev_priv->drm.struct_mutex);
4624         i915_gem_shrink_all(dev_priv);
4625         mutex_unlock(&dev_priv->drm.struct_mutex);
4626
4627         intel_runtime_pm_put(dev_priv);
4628
4629         return 0;
4630 }
4631
4632 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4633 {
4634         struct drm_i915_gem_object *obj;
4635         struct list_head *phases[] = {
4636                 &dev_priv->mm.unbound_list,
4637                 &dev_priv->mm.bound_list,
4638                 NULL
4639         }, **p;
4640
4641         /* Called just before we write the hibernation image.
4642          *
4643          * We need to update the domain tracking to reflect that the CPU
4644          * will be accessing all the pages to create and restore from the
4645          * hibernation, and so upon restoration those pages will be in the
4646          * CPU domain.
4647          *
4648          * To make sure the hibernation image contains the latest state,
4649          * we update that state just before writing out the image.
4650          *
4651          * To try and reduce the hibernation image, we manually shrink
4652          * the objects as well.
4653          */
4654
4655         mutex_lock(&dev_priv->drm.struct_mutex);
4656         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4657
4658         for (p = phases; *p; p++) {
4659                 list_for_each_entry(obj, *p, global_link) {
4660                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4661                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4662                 }
4663         }
4664         mutex_unlock(&dev_priv->drm.struct_mutex);
4665
4666         return 0;
4667 }
4668
4669 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4670 {
4671         struct drm_i915_file_private *file_priv = file->driver_priv;
4672         struct drm_i915_gem_request *request;
4673
4674         /* Clean up our request list when the client is going away, so that
4675          * later retire_requests won't dereference our soon-to-be-gone
4676          * file_priv.
4677          */
4678         spin_lock(&file_priv->mm.lock);
4679         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4680                 request->file_priv = NULL;
4681         spin_unlock(&file_priv->mm.lock);
4682
4683         if (!list_empty(&file_priv->rps.link)) {
4684                 spin_lock(&to_i915(dev)->rps.client_lock);
4685                 list_del(&file_priv->rps.link);
4686                 spin_unlock(&to_i915(dev)->rps.client_lock);
4687         }
4688 }
4689
4690 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4691 {
4692         struct drm_i915_file_private *file_priv;
4693         int ret;
4694
4695         DRM_DEBUG("\n");
4696
4697         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4698         if (!file_priv)
4699                 return -ENOMEM;
4700
4701         file->driver_priv = file_priv;
4702         file_priv->dev_priv = to_i915(dev);
4703         file_priv->file = file;
4704         INIT_LIST_HEAD(&file_priv->rps.link);
4705
4706         spin_lock_init(&file_priv->mm.lock);
4707         INIT_LIST_HEAD(&file_priv->mm.request_list);
4708
4709         file_priv->bsd_engine = -1;
4710
4711         ret = i915_gem_context_open(dev, file);
4712         if (ret)
4713                 kfree(file_priv);
4714
4715         return ret;
4716 }
4717
4718 /**
4719  * i915_gem_track_fb - update frontbuffer tracking
4720  * @old: current GEM buffer for the frontbuffer slots
4721  * @new: new GEM buffer for the frontbuffer slots
4722  * @frontbuffer_bits: bitmask of frontbuffer slots
4723  *
4724  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4725  * from @old and setting them in @new. Both @old and @new can be NULL.
4726  */
4727 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4728                        struct drm_i915_gem_object *new,
4729                        unsigned frontbuffer_bits)
4730 {
4731         /* Control of individual bits within the mask are guarded by
4732          * the owning plane->mutex, i.e. we can never see concurrent
4733          * manipulation of individual bits. But since the bitfield as a whole
4734          * is updated using RMW, we need to use atomics in order to update
4735          * the bits.
4736          */
4737         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4738                      sizeof(atomic_t) * BITS_PER_BYTE);
4739
4740         if (old) {
4741                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4742                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4743         }
4744
4745         if (new) {
4746                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4747                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4748         }
4749 }
4750
4751 /* Allocate a new GEM object and fill it with the supplied data */
4752 struct drm_i915_gem_object *
4753 i915_gem_object_create_from_data(struct drm_device *dev,
4754                                  const void *data, size_t size)
4755 {
4756         struct drm_i915_gem_object *obj;
4757         struct sg_table *sg;
4758         size_t bytes;
4759         int ret;
4760
4761         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4762         if (IS_ERR(obj))
4763                 return obj;
4764
4765         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4766         if (ret)
4767                 goto fail;
4768
4769         ret = i915_gem_object_pin_pages(obj);
4770         if (ret)
4771                 goto fail;
4772
4773         sg = obj->mm.pages;
4774         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4775         obj->mm.dirty = true; /* Backing store is now out of date */
4776         i915_gem_object_unpin_pages(obj);
4777
4778         if (WARN_ON(bytes != size)) {
4779                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4780                 ret = -EFAULT;
4781                 goto fail;
4782         }
4783
4784         return obj;
4785
4786 fail:
4787         i915_gem_object_put(obj);
4788         return ERR_PTR(ret);
4789 }
4790
4791 struct scatterlist *
4792 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4793                        unsigned int n,
4794                        unsigned int *offset)
4795 {
4796         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4797         struct scatterlist *sg;
4798         unsigned int idx, count;
4799
4800         might_sleep();
4801         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4802         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4803
4804         /* As we iterate forward through the sg, we record each entry in a
4805          * radixtree for quick repeated (backwards) lookups. If we have seen
4806          * this index previously, we will have an entry for it.
4807          *
4808          * Initial lookup is O(N), but this is amortized to O(1) for
4809          * sequential page access (where each new request is consecutive
4810          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4811          * i.e. O(1) with a large constant!
4812          */
4813         if (n < READ_ONCE(iter->sg_idx))
4814                 goto lookup;
4815
4816         mutex_lock(&iter->lock);
4817
4818         /* We prefer to reuse the last sg so that repeated lookup of this
4819          * (or the subsequent) sg are fast - comparing against the last
4820          * sg is faster than going through the radixtree.
4821          */
4822
4823         sg = iter->sg_pos;
4824         idx = iter->sg_idx;
4825         count = __sg_page_count(sg);
4826
4827         while (idx + count <= n) {
4828                 unsigned long exception, i;
4829                 int ret;
4830
4831                 /* If we cannot allocate and insert this entry, or the
4832                  * individual pages from this range, cancel updating the
4833                  * sg_idx so that on this lookup we are forced to linearly
4834                  * scan onwards, but on future lookups we will try the
4835                  * insertion again (in which case we need to be careful of
4836                  * the error return reporting that we have already inserted
4837                  * this index).
4838                  */
4839                 ret = radix_tree_insert(&iter->radix, idx, sg);
4840                 if (ret && ret != -EEXIST)
4841                         goto scan;
4842
4843                 exception =
4844                         RADIX_TREE_EXCEPTIONAL_ENTRY |
4845                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4846                 for (i = 1; i < count; i++) {
4847                         ret = radix_tree_insert(&iter->radix, idx + i,
4848                                                 (void *)exception);
4849                         if (ret && ret != -EEXIST)
4850                                 goto scan;
4851                 }
4852
4853                 idx += count;
4854                 sg = ____sg_next(sg);
4855                 count = __sg_page_count(sg);
4856         }
4857
4858 scan:
4859         iter->sg_pos = sg;
4860         iter->sg_idx = idx;
4861
4862         mutex_unlock(&iter->lock);
4863
4864         if (unlikely(n < idx)) /* insertion completed by another thread */
4865                 goto lookup;
4866
4867         /* In case we failed to insert the entry into the radixtree, we need
4868          * to look beyond the current sg.
4869          */
4870         while (idx + count <= n) {
4871                 idx += count;
4872                 sg = ____sg_next(sg);
4873                 count = __sg_page_count(sg);
4874         }
4875
4876         *offset = n - idx;
4877         return sg;
4878
4879 lookup:
4880         rcu_read_lock();
4881
4882         sg = radix_tree_lookup(&iter->radix, n);
4883         GEM_BUG_ON(!sg);
4884
4885         /* If this index is in the middle of multi-page sg entry,
4886          * the radixtree will contain an exceptional entry that points
4887          * to the start of that range. We will return the pointer to
4888          * the base page and the offset of this page within the
4889          * sg entry's range.
4890          */
4891         *offset = 0;
4892         if (unlikely(radix_tree_exception(sg))) {
4893                 unsigned long base =
4894                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4895
4896                 sg = radix_tree_lookup(&iter->radix, base);
4897                 GEM_BUG_ON(!sg);
4898
4899                 *offset = n - base;
4900         }
4901
4902         rcu_read_unlock();
4903
4904         return sg;
4905 }
4906
4907 struct page *
4908 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4909 {
4910         struct scatterlist *sg;
4911         unsigned int offset;
4912
4913         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4914
4915         sg = i915_gem_object_get_sg(obj, n, &offset);
4916         return nth_page(sg_page(sg), offset);
4917 }
4918
4919 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4920 struct page *
4921 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4922                                unsigned int n)
4923 {
4924         struct page *page;
4925
4926         page = i915_gem_object_get_page(obj, n);
4927         if (!obj->mm.dirty)
4928                 set_page_dirty(page);
4929
4930         return page;
4931 }
4932
4933 dma_addr_t
4934 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4935                                 unsigned long n)
4936 {
4937         struct scatterlist *sg;
4938         unsigned int offset;
4939
4940         sg = i915_gem_object_get_sg(obj, n, &offset);
4941         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4942 }