]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Allow the application to choose the constant addressing mode
[mv-sheeva.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42                                              bool write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48                                        unsigned alignment,
49                                        bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51                                      struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59                                     int nr_to_scan,
60                                     gfp_t gfp_mask);
61
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65                                   size_t size)
66 {
67         dev_priv->mm.object_count++;
68         dev_priv->mm.object_memory += size;
69 }
70
71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72                                      size_t size)
73 {
74         dev_priv->mm.object_count--;
75         dev_priv->mm.object_memory -= size;
76 }
77
78 int
79 i915_gem_check_is_wedged(struct drm_device *dev)
80 {
81         struct drm_i915_private *dev_priv = dev->dev_private;
82         struct completion *x = &dev_priv->error_completion;
83         unsigned long flags;
84         int ret;
85
86         if (!atomic_read(&dev_priv->mm.wedged))
87                 return 0;
88
89         ret = wait_for_completion_interruptible(x);
90         if (ret)
91                 return ret;
92
93         /* Success, we reset the GPU! */
94         if (!atomic_read(&dev_priv->mm.wedged))
95                 return 0;
96
97         /* GPU is hung, bump the completion count to account for
98          * the token we just consumed so that we never hit zero and
99          * end up waiting upon a subsequent completion event that
100          * will never happen.
101          */
102         spin_lock_irqsave(&x->wait.lock, flags);
103         x->done++;
104         spin_unlock_irqrestore(&x->wait.lock, flags);
105         return -EIO;
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110         struct drm_i915_private *dev_priv = dev->dev_private;
111         int ret;
112
113         ret = i915_gem_check_is_wedged(dev);
114         if (ret)
115                 return ret;
116
117         ret = mutex_lock_interruptible(&dev->struct_mutex);
118         if (ret)
119                 return ret;
120
121         if (atomic_read(&dev_priv->mm.wedged)) {
122                 mutex_unlock(&dev->struct_mutex);
123                 return -EAGAIN;
124         }
125
126         WARN_ON(i915_verify_lists(dev));
127         return 0;
128 }
129
130 static inline bool
131 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
132 {
133         return obj->gtt_space && !obj->active && obj->pin_count == 0;
134 }
135
136 void i915_gem_do_init(struct drm_device *dev,
137                       unsigned long start,
138                       unsigned long mappable_end,
139                       unsigned long end)
140 {
141         drm_i915_private_t *dev_priv = dev->dev_private;
142
143         drm_mm_init(&dev_priv->mm.gtt_space, start,
144                     end - start);
145
146         dev_priv->mm.gtt_total = end - start;
147         dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
148         dev_priv->mm.gtt_mappable_end = mappable_end;
149 }
150
151 int
152 i915_gem_init_ioctl(struct drm_device *dev, void *data,
153                     struct drm_file *file)
154 {
155         struct drm_i915_gem_init *args = data;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         mutex_lock(&dev->struct_mutex);
162         i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
163         mutex_unlock(&dev->struct_mutex);
164
165         return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170                             struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_get_aperture *args = data;
174         struct drm_i915_gem_object *obj;
175         size_t pinned;
176
177         if (!(dev->driver->driver_features & DRIVER_GEM))
178                 return -ENODEV;
179
180         pinned = 0;
181         mutex_lock(&dev->struct_mutex);
182         list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
183                 pinned += obj->gtt_space->size;
184         mutex_unlock(&dev->struct_mutex);
185
186         args->aper_size = dev_priv->mm.gtt_total;
187         args->aper_available_size = args->aper_size -pinned;
188
189         return 0;
190 }
191
192 /**
193  * Creates a new mm object and returns a handle to it.
194  */
195 int
196 i915_gem_create_ioctl(struct drm_device *dev, void *data,
197                       struct drm_file *file)
198 {
199         struct drm_i915_gem_create *args = data;
200         struct drm_i915_gem_object *obj;
201         int ret;
202         u32 handle;
203
204         args->size = roundup(args->size, PAGE_SIZE);
205
206         /* Allocate the new object */
207         obj = i915_gem_alloc_object(dev, args->size);
208         if (obj == NULL)
209                 return -ENOMEM;
210
211         ret = drm_gem_handle_create(file, &obj->base, &handle);
212         if (ret) {
213                 drm_gem_object_release(&obj->base);
214                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
215                 kfree(obj);
216                 return ret;
217         }
218
219         /* drop reference from allocate - handle holds it now */
220         drm_gem_object_unreference(&obj->base);
221         trace_i915_gem_object_create(obj);
222
223         args->handle = handle;
224         return 0;
225 }
226
227 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
228 {
229         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
230
231         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
232                 obj->tiling_mode != I915_TILING_NONE;
233 }
234
235 static inline void
236 slow_shmem_copy(struct page *dst_page,
237                 int dst_offset,
238                 struct page *src_page,
239                 int src_offset,
240                 int length)
241 {
242         char *dst_vaddr, *src_vaddr;
243
244         dst_vaddr = kmap(dst_page);
245         src_vaddr = kmap(src_page);
246
247         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
248
249         kunmap(src_page);
250         kunmap(dst_page);
251 }
252
253 static inline void
254 slow_shmem_bit17_copy(struct page *gpu_page,
255                       int gpu_offset,
256                       struct page *cpu_page,
257                       int cpu_offset,
258                       int length,
259                       int is_read)
260 {
261         char *gpu_vaddr, *cpu_vaddr;
262
263         /* Use the unswizzled path if this page isn't affected. */
264         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
265                 if (is_read)
266                         return slow_shmem_copy(cpu_page, cpu_offset,
267                                                gpu_page, gpu_offset, length);
268                 else
269                         return slow_shmem_copy(gpu_page, gpu_offset,
270                                                cpu_page, cpu_offset, length);
271         }
272
273         gpu_vaddr = kmap(gpu_page);
274         cpu_vaddr = kmap(cpu_page);
275
276         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
277          * XORing with the other bits (A9 for Y, A9 and A10 for X)
278          */
279         while (length > 0) {
280                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281                 int this_length = min(cacheline_end - gpu_offset, length);
282                 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284                 if (is_read) {
285                         memcpy(cpu_vaddr + cpu_offset,
286                                gpu_vaddr + swizzled_gpu_offset,
287                                this_length);
288                 } else {
289                         memcpy(gpu_vaddr + swizzled_gpu_offset,
290                                cpu_vaddr + cpu_offset,
291                                this_length);
292                 }
293                 cpu_offset += this_length;
294                 gpu_offset += this_length;
295                 length -= this_length;
296         }
297
298         kunmap(cpu_page);
299         kunmap(gpu_page);
300 }
301
302 /**
303  * This is the fast shmem pread path, which attempts to copy_from_user directly
304  * from the backing pages of the object to the user's address space.  On a
305  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
306  */
307 static int
308 i915_gem_shmem_pread_fast(struct drm_device *dev,
309                           struct drm_i915_gem_object *obj,
310                           struct drm_i915_gem_pread *args,
311                           struct drm_file *file)
312 {
313         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
314         ssize_t remain;
315         loff_t offset;
316         char __user *user_data;
317         int page_offset, page_length;
318
319         user_data = (char __user *) (uintptr_t) args->data_ptr;
320         remain = args->size;
321
322         offset = args->offset;
323
324         while (remain > 0) {
325                 struct page *page;
326                 char *vaddr;
327                 int ret;
328
329                 /* Operation in this page
330                  *
331                  * page_offset = offset within page
332                  * page_length = bytes to copy for this page
333                  */
334                 page_offset = offset & (PAGE_SIZE-1);
335                 page_length = remain;
336                 if ((page_offset + remain) > PAGE_SIZE)
337                         page_length = PAGE_SIZE - page_offset;
338
339                 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
340                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
341                 if (IS_ERR(page))
342                         return PTR_ERR(page);
343
344                 vaddr = kmap_atomic(page);
345                 ret = __copy_to_user_inatomic(user_data,
346                                               vaddr + page_offset,
347                                               page_length);
348                 kunmap_atomic(vaddr);
349
350                 mark_page_accessed(page);
351                 page_cache_release(page);
352                 if (ret)
353                         return -EFAULT;
354
355                 remain -= page_length;
356                 user_data += page_length;
357                 offset += page_length;
358         }
359
360         return 0;
361 }
362
363 /**
364  * This is the fallback shmem pread path, which allocates temporary storage
365  * in kernel space to copy_to_user into outside of the struct_mutex, so we
366  * can copy out of the object's backing pages while holding the struct mutex
367  * and not take page faults.
368  */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev,
371                           struct drm_i915_gem_object *obj,
372                           struct drm_i915_gem_pread *args,
373                           struct drm_file *file)
374 {
375         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
376         struct mm_struct *mm = current->mm;
377         struct page **user_pages;
378         ssize_t remain;
379         loff_t offset, pinned_pages, i;
380         loff_t first_data_page, last_data_page, num_pages;
381         int shmem_page_offset;
382         int data_page_index, data_page_offset;
383         int page_length;
384         int ret;
385         uint64_t data_ptr = args->data_ptr;
386         int do_bit17_swizzling;
387
388         remain = args->size;
389
390         /* Pin the user pages containing the data.  We can't fault while
391          * holding the struct mutex, yet we want to hold it while
392          * dereferencing the user data.
393          */
394         first_data_page = data_ptr / PAGE_SIZE;
395         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
396         num_pages = last_data_page - first_data_page + 1;
397
398         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
399         if (user_pages == NULL)
400                 return -ENOMEM;
401
402         mutex_unlock(&dev->struct_mutex);
403         down_read(&mm->mmap_sem);
404         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
405                                       num_pages, 1, 0, user_pages, NULL);
406         up_read(&mm->mmap_sem);
407         mutex_lock(&dev->struct_mutex);
408         if (pinned_pages < num_pages) {
409                 ret = -EFAULT;
410                 goto out;
411         }
412
413         ret = i915_gem_object_set_cpu_read_domain_range(obj,
414                                                         args->offset,
415                                                         args->size);
416         if (ret)
417                 goto out;
418
419         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421         offset = args->offset;
422
423         while (remain > 0) {
424                 struct page *page;
425
426                 /* Operation in this page
427                  *
428                  * shmem_page_offset = offset within page in shmem file
429                  * data_page_index = page number in get_user_pages return
430                  * data_page_offset = offset with data_page_index page.
431                  * page_length = bytes to copy for this page
432                  */
433                 shmem_page_offset = offset & ~PAGE_MASK;
434                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
435                 data_page_offset = data_ptr & ~PAGE_MASK;
436
437                 page_length = remain;
438                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
439                         page_length = PAGE_SIZE - shmem_page_offset;
440                 if ((data_page_offset + page_length) > PAGE_SIZE)
441                         page_length = PAGE_SIZE - data_page_offset;
442
443                 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
444                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
445                 if (IS_ERR(page))
446                         return PTR_ERR(page);
447
448                 if (do_bit17_swizzling) {
449                         slow_shmem_bit17_copy(page,
450                                               shmem_page_offset,
451                                               user_pages[data_page_index],
452                                               data_page_offset,
453                                               page_length,
454                                               1);
455                 } else {
456                         slow_shmem_copy(user_pages[data_page_index],
457                                         data_page_offset,
458                                         page,
459                                         shmem_page_offset,
460                                         page_length);
461                 }
462
463                 mark_page_accessed(page);
464                 page_cache_release(page);
465
466                 remain -= page_length;
467                 data_ptr += page_length;
468                 offset += page_length;
469         }
470
471 out:
472         for (i = 0; i < pinned_pages; i++) {
473                 SetPageDirty(user_pages[i]);
474                 mark_page_accessed(user_pages[i]);
475                 page_cache_release(user_pages[i]);
476         }
477         drm_free_large(user_pages);
478
479         return ret;
480 }
481
482 /**
483  * Reads data from the object referenced by handle.
484  *
485  * On error, the contents of *data are undefined.
486  */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489                      struct drm_file *file)
490 {
491         struct drm_i915_gem_pread *args = data;
492         struct drm_i915_gem_object *obj;
493         int ret = 0;
494
495         if (args->size == 0)
496                 return 0;
497
498         if (!access_ok(VERIFY_WRITE,
499                        (char __user *)(uintptr_t)args->data_ptr,
500                        args->size))
501                 return -EFAULT;
502
503         ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
504                                        args->size);
505         if (ret)
506                 return -EFAULT;
507
508         ret = i915_mutex_lock_interruptible(dev);
509         if (ret)
510                 return ret;
511
512         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
513         if (obj == NULL) {
514                 ret = -ENOENT;
515                 goto unlock;
516         }
517
518         /* Bounds check source.  */
519         if (args->offset > obj->base.size ||
520             args->size > obj->base.size - args->offset) {
521                 ret = -EINVAL;
522                 goto out;
523         }
524
525         ret = i915_gem_object_set_cpu_read_domain_range(obj,
526                                                         args->offset,
527                                                         args->size);
528         if (ret)
529                 goto out;
530
531         ret = -EFAULT;
532         if (!i915_gem_object_needs_bit17_swizzle(obj))
533                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
534         if (ret == -EFAULT)
535                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
536
537 out:
538         drm_gem_object_unreference(&obj->base);
539 unlock:
540         mutex_unlock(&dev->struct_mutex);
541         return ret;
542 }
543
544 /* This is the fast write path which cannot handle
545  * page faults in the source data
546  */
547
548 static inline int
549 fast_user_write(struct io_mapping *mapping,
550                 loff_t page_base, int page_offset,
551                 char __user *user_data,
552                 int length)
553 {
554         char *vaddr_atomic;
555         unsigned long unwritten;
556
557         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
558         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
559                                                       user_data, length);
560         io_mapping_unmap_atomic(vaddr_atomic);
561         return unwritten;
562 }
563
564 /* Here's the write path which can sleep for
565  * page faults
566  */
567
568 static inline void
569 slow_kernel_write(struct io_mapping *mapping,
570                   loff_t gtt_base, int gtt_offset,
571                   struct page *user_page, int user_offset,
572                   int length)
573 {
574         char __iomem *dst_vaddr;
575         char *src_vaddr;
576
577         dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
578         src_vaddr = kmap(user_page);
579
580         memcpy_toio(dst_vaddr + gtt_offset,
581                     src_vaddr + user_offset,
582                     length);
583
584         kunmap(user_page);
585         io_mapping_unmap(dst_vaddr);
586 }
587
588 /**
589  * This is the fast pwrite path, where we copy the data directly from the
590  * user into the GTT, uncached.
591  */
592 static int
593 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
594                          struct drm_i915_gem_object *obj,
595                          struct drm_i915_gem_pwrite *args,
596                          struct drm_file *file)
597 {
598         drm_i915_private_t *dev_priv = dev->dev_private;
599         ssize_t remain;
600         loff_t offset, page_base;
601         char __user *user_data;
602         int page_offset, page_length;
603
604         user_data = (char __user *) (uintptr_t) args->data_ptr;
605         remain = args->size;
606
607         offset = obj->gtt_offset + args->offset;
608
609         while (remain > 0) {
610                 /* Operation in this page
611                  *
612                  * page_base = page offset within aperture
613                  * page_offset = offset within page
614                  * page_length = bytes to copy for this page
615                  */
616                 page_base = (offset & ~(PAGE_SIZE-1));
617                 page_offset = offset & (PAGE_SIZE-1);
618                 page_length = remain;
619                 if ((page_offset + remain) > PAGE_SIZE)
620                         page_length = PAGE_SIZE - page_offset;
621
622                 /* If we get a fault while copying data, then (presumably) our
623                  * source page isn't available.  Return the error and we'll
624                  * retry in the slow path.
625                  */
626                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
627                                     page_offset, user_data, page_length))
628
629                         return -EFAULT;
630
631                 remain -= page_length;
632                 user_data += page_length;
633                 offset += page_length;
634         }
635
636         return 0;
637 }
638
639 /**
640  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
641  * the memory and maps it using kmap_atomic for copying.
642  *
643  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
644  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
645  */
646 static int
647 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
648                          struct drm_i915_gem_object *obj,
649                          struct drm_i915_gem_pwrite *args,
650                          struct drm_file *file)
651 {
652         drm_i915_private_t *dev_priv = dev->dev_private;
653         ssize_t remain;
654         loff_t gtt_page_base, offset;
655         loff_t first_data_page, last_data_page, num_pages;
656         loff_t pinned_pages, i;
657         struct page **user_pages;
658         struct mm_struct *mm = current->mm;
659         int gtt_page_offset, data_page_offset, data_page_index, page_length;
660         int ret;
661         uint64_t data_ptr = args->data_ptr;
662
663         remain = args->size;
664
665         /* Pin the user pages containing the data.  We can't fault while
666          * holding the struct mutex, and all of the pwrite implementations
667          * want to hold it while dereferencing the user data.
668          */
669         first_data_page = data_ptr / PAGE_SIZE;
670         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
671         num_pages = last_data_page - first_data_page + 1;
672
673         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
674         if (user_pages == NULL)
675                 return -ENOMEM;
676
677         mutex_unlock(&dev->struct_mutex);
678         down_read(&mm->mmap_sem);
679         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
680                                       num_pages, 0, 0, user_pages, NULL);
681         up_read(&mm->mmap_sem);
682         mutex_lock(&dev->struct_mutex);
683         if (pinned_pages < num_pages) {
684                 ret = -EFAULT;
685                 goto out_unpin_pages;
686         }
687
688         ret = i915_gem_object_set_to_gtt_domain(obj, true);
689         if (ret)
690                 goto out_unpin_pages;
691
692         ret = i915_gem_object_put_fence(obj);
693         if (ret)
694                 goto out_unpin_pages;
695
696         offset = obj->gtt_offset + args->offset;
697
698         while (remain > 0) {
699                 /* Operation in this page
700                  *
701                  * gtt_page_base = page offset within aperture
702                  * gtt_page_offset = offset within page in aperture
703                  * data_page_index = page number in get_user_pages return
704                  * data_page_offset = offset with data_page_index page.
705                  * page_length = bytes to copy for this page
706                  */
707                 gtt_page_base = offset & PAGE_MASK;
708                 gtt_page_offset = offset & ~PAGE_MASK;
709                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
710                 data_page_offset = data_ptr & ~PAGE_MASK;
711
712                 page_length = remain;
713                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
714                         page_length = PAGE_SIZE - gtt_page_offset;
715                 if ((data_page_offset + page_length) > PAGE_SIZE)
716                         page_length = PAGE_SIZE - data_page_offset;
717
718                 slow_kernel_write(dev_priv->mm.gtt_mapping,
719                                   gtt_page_base, gtt_page_offset,
720                                   user_pages[data_page_index],
721                                   data_page_offset,
722                                   page_length);
723
724                 remain -= page_length;
725                 offset += page_length;
726                 data_ptr += page_length;
727         }
728
729 out_unpin_pages:
730         for (i = 0; i < pinned_pages; i++)
731                 page_cache_release(user_pages[i]);
732         drm_free_large(user_pages);
733
734         return ret;
735 }
736
737 /**
738  * This is the fast shmem pwrite path, which attempts to directly
739  * copy_from_user into the kmapped pages backing the object.
740  */
741 static int
742 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
743                            struct drm_i915_gem_object *obj,
744                            struct drm_i915_gem_pwrite *args,
745                            struct drm_file *file)
746 {
747         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
748         ssize_t remain;
749         loff_t offset;
750         char __user *user_data;
751         int page_offset, page_length;
752
753         user_data = (char __user *) (uintptr_t) args->data_ptr;
754         remain = args->size;
755
756         offset = args->offset;
757         obj->dirty = 1;
758
759         while (remain > 0) {
760                 struct page *page;
761                 char *vaddr;
762                 int ret;
763
764                 /* Operation in this page
765                  *
766                  * page_offset = offset within page
767                  * page_length = bytes to copy for this page
768                  */
769                 page_offset = offset & (PAGE_SIZE-1);
770                 page_length = remain;
771                 if ((page_offset + remain) > PAGE_SIZE)
772                         page_length = PAGE_SIZE - page_offset;
773
774                 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
775                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
776                 if (IS_ERR(page))
777                         return PTR_ERR(page);
778
779                 vaddr = kmap_atomic(page, KM_USER0);
780                 ret = __copy_from_user_inatomic(vaddr + page_offset,
781                                                 user_data,
782                                                 page_length);
783                 kunmap_atomic(vaddr, KM_USER0);
784
785                 set_page_dirty(page);
786                 mark_page_accessed(page);
787                 page_cache_release(page);
788
789                 /* If we get a fault while copying data, then (presumably) our
790                  * source page isn't available.  Return the error and we'll
791                  * retry in the slow path.
792                  */
793                 if (ret)
794                         return -EFAULT;
795
796                 remain -= page_length;
797                 user_data += page_length;
798                 offset += page_length;
799         }
800
801         return 0;
802 }
803
804 /**
805  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
806  * the memory and maps it using kmap_atomic for copying.
807  *
808  * This avoids taking mmap_sem for faulting on the user's address while the
809  * struct_mutex is held.
810  */
811 static int
812 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
813                            struct drm_i915_gem_object *obj,
814                            struct drm_i915_gem_pwrite *args,
815                            struct drm_file *file)
816 {
817         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
818         struct mm_struct *mm = current->mm;
819         struct page **user_pages;
820         ssize_t remain;
821         loff_t offset, pinned_pages, i;
822         loff_t first_data_page, last_data_page, num_pages;
823         int shmem_page_offset;
824         int data_page_index,  data_page_offset;
825         int page_length;
826         int ret;
827         uint64_t data_ptr = args->data_ptr;
828         int do_bit17_swizzling;
829
830         remain = args->size;
831
832         /* Pin the user pages containing the data.  We can't fault while
833          * holding the struct mutex, and all of the pwrite implementations
834          * want to hold it while dereferencing the user data.
835          */
836         first_data_page = data_ptr / PAGE_SIZE;
837         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838         num_pages = last_data_page - first_data_page + 1;
839
840         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
841         if (user_pages == NULL)
842                 return -ENOMEM;
843
844         mutex_unlock(&dev->struct_mutex);
845         down_read(&mm->mmap_sem);
846         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
847                                       num_pages, 0, 0, user_pages, NULL);
848         up_read(&mm->mmap_sem);
849         mutex_lock(&dev->struct_mutex);
850         if (pinned_pages < num_pages) {
851                 ret = -EFAULT;
852                 goto out;
853         }
854
855         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
856         if (ret)
857                 goto out;
858
859         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
860
861         offset = args->offset;
862         obj->dirty = 1;
863
864         while (remain > 0) {
865                 struct page *page;
866
867                 /* Operation in this page
868                  *
869                  * shmem_page_offset = offset within page in shmem file
870                  * data_page_index = page number in get_user_pages return
871                  * data_page_offset = offset with data_page_index page.
872                  * page_length = bytes to copy for this page
873                  */
874                 shmem_page_offset = offset & ~PAGE_MASK;
875                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
876                 data_page_offset = data_ptr & ~PAGE_MASK;
877
878                 page_length = remain;
879                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
880                         page_length = PAGE_SIZE - shmem_page_offset;
881                 if ((data_page_offset + page_length) > PAGE_SIZE)
882                         page_length = PAGE_SIZE - data_page_offset;
883
884                 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
885                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
886                 if (IS_ERR(page)) {
887                         ret = PTR_ERR(page);
888                         goto out;
889                 }
890
891                 if (do_bit17_swizzling) {
892                         slow_shmem_bit17_copy(page,
893                                               shmem_page_offset,
894                                               user_pages[data_page_index],
895                                               data_page_offset,
896                                               page_length,
897                                               0);
898                 } else {
899                         slow_shmem_copy(page,
900                                         shmem_page_offset,
901                                         user_pages[data_page_index],
902                                         data_page_offset,
903                                         page_length);
904                 }
905
906                 set_page_dirty(page);
907                 mark_page_accessed(page);
908                 page_cache_release(page);
909
910                 remain -= page_length;
911                 data_ptr += page_length;
912                 offset += page_length;
913         }
914
915 out:
916         for (i = 0; i < pinned_pages; i++)
917                 page_cache_release(user_pages[i]);
918         drm_free_large(user_pages);
919
920         return ret;
921 }
922
923 /**
924  * Writes data to the object referenced by handle.
925  *
926  * On error, the contents of the buffer that were to be modified are undefined.
927  */
928 int
929 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
930                       struct drm_file *file)
931 {
932         struct drm_i915_gem_pwrite *args = data;
933         struct drm_i915_gem_object *obj;
934         int ret;
935
936         if (args->size == 0)
937                 return 0;
938
939         if (!access_ok(VERIFY_READ,
940                        (char __user *)(uintptr_t)args->data_ptr,
941                        args->size))
942                 return -EFAULT;
943
944         ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
945                                       args->size);
946         if (ret)
947                 return -EFAULT;
948
949         ret = i915_mutex_lock_interruptible(dev);
950         if (ret)
951                 return ret;
952
953         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
954         if (obj == NULL) {
955                 ret = -ENOENT;
956                 goto unlock;
957         }
958
959         /* Bounds check destination. */
960         if (args->offset > obj->base.size ||
961             args->size > obj->base.size - args->offset) {
962                 ret = -EINVAL;
963                 goto out;
964         }
965
966         /* We can only do the GTT pwrite on untiled buffers, as otherwise
967          * it would end up going through the fenced access, and we'll get
968          * different detiling behavior between reading and writing.
969          * pread/pwrite currently are reading and writing from the CPU
970          * perspective, requiring manual detiling by the client.
971          */
972         if (obj->phys_obj)
973                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
974         else if (obj->gtt_space &&
975                  obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976                 ret = i915_gem_object_pin(obj, 0, true);
977                 if (ret)
978                         goto out;
979
980                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
981                 if (ret)
982                         goto out_unpin;
983
984                 ret = i915_gem_object_put_fence(obj);
985                 if (ret)
986                         goto out_unpin;
987
988                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
989                 if (ret == -EFAULT)
990                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
991
992 out_unpin:
993                 i915_gem_object_unpin(obj);
994         } else {
995                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
996                 if (ret)
997                         goto out;
998
999                 ret = -EFAULT;
1000                 if (!i915_gem_object_needs_bit17_swizzle(obj))
1001                         ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1002                 if (ret == -EFAULT)
1003                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1004         }
1005
1006 out:
1007         drm_gem_object_unreference(&obj->base);
1008 unlock:
1009         mutex_unlock(&dev->struct_mutex);
1010         return ret;
1011 }
1012
1013 /**
1014  * Called when user space prepares to use an object with the CPU, either
1015  * through the mmap ioctl's mapping or a GTT mapping.
1016  */
1017 int
1018 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1019                           struct drm_file *file)
1020 {
1021         struct drm_i915_gem_set_domain *args = data;
1022         struct drm_i915_gem_object *obj;
1023         uint32_t read_domains = args->read_domains;
1024         uint32_t write_domain = args->write_domain;
1025         int ret;
1026
1027         if (!(dev->driver->driver_features & DRIVER_GEM))
1028                 return -ENODEV;
1029
1030         /* Only handle setting domains to types used by the CPU. */
1031         if (write_domain & I915_GEM_GPU_DOMAINS)
1032                 return -EINVAL;
1033
1034         if (read_domains & I915_GEM_GPU_DOMAINS)
1035                 return -EINVAL;
1036
1037         /* Having something in the write domain implies it's in the read
1038          * domain, and only that read domain.  Enforce that in the request.
1039          */
1040         if (write_domain != 0 && read_domains != write_domain)
1041                 return -EINVAL;
1042
1043         ret = i915_mutex_lock_interruptible(dev);
1044         if (ret)
1045                 return ret;
1046
1047         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1048         if (obj == NULL) {
1049                 ret = -ENOENT;
1050                 goto unlock;
1051         }
1052
1053         if (read_domains & I915_GEM_DOMAIN_GTT) {
1054                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1055
1056                 /* Silently promote "you're not bound, there was nothing to do"
1057                  * to success, since the client was just asking us to
1058                  * make sure everything was done.
1059                  */
1060                 if (ret == -EINVAL)
1061                         ret = 0;
1062         } else {
1063                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1064         }
1065
1066         drm_gem_object_unreference(&obj->base);
1067 unlock:
1068         mutex_unlock(&dev->struct_mutex);
1069         return ret;
1070 }
1071
1072 /**
1073  * Called when user space has done writes to this buffer
1074  */
1075 int
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077                          struct drm_file *file)
1078 {
1079         struct drm_i915_gem_sw_finish *args = data;
1080         struct drm_i915_gem_object *obj;
1081         int ret = 0;
1082
1083         if (!(dev->driver->driver_features & DRIVER_GEM))
1084                 return -ENODEV;
1085
1086         ret = i915_mutex_lock_interruptible(dev);
1087         if (ret)
1088                 return ret;
1089
1090         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1091         if (obj == NULL) {
1092                 ret = -ENOENT;
1093                 goto unlock;
1094         }
1095
1096         /* Pinned buffers may be scanout, so flush the cache */
1097         if (obj->pin_count)
1098                 i915_gem_object_flush_cpu_write_domain(obj);
1099
1100         drm_gem_object_unreference(&obj->base);
1101 unlock:
1102         mutex_unlock(&dev->struct_mutex);
1103         return ret;
1104 }
1105
1106 /**
1107  * Maps the contents of an object, returning the address it is mapped
1108  * into.
1109  *
1110  * While the mapping holds a reference on the contents of the object, it doesn't
1111  * imply a ref on the object itself.
1112  */
1113 int
1114 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1115                     struct drm_file *file)
1116 {
1117         struct drm_i915_private *dev_priv = dev->dev_private;
1118         struct drm_i915_gem_mmap *args = data;
1119         struct drm_gem_object *obj;
1120         loff_t offset;
1121         unsigned long addr;
1122
1123         if (!(dev->driver->driver_features & DRIVER_GEM))
1124                 return -ENODEV;
1125
1126         obj = drm_gem_object_lookup(dev, file, args->handle);
1127         if (obj == NULL)
1128                 return -ENOENT;
1129
1130         if (obj->size > dev_priv->mm.gtt_mappable_end) {
1131                 drm_gem_object_unreference_unlocked(obj);
1132                 return -E2BIG;
1133         }
1134
1135         offset = args->offset;
1136
1137         down_write(&current->mm->mmap_sem);
1138         addr = do_mmap(obj->filp, 0, args->size,
1139                        PROT_READ | PROT_WRITE, MAP_SHARED,
1140                        args->offset);
1141         up_write(&current->mm->mmap_sem);
1142         drm_gem_object_unreference_unlocked(obj);
1143         if (IS_ERR((void *)addr))
1144                 return addr;
1145
1146         args->addr_ptr = (uint64_t) addr;
1147
1148         return 0;
1149 }
1150
1151 /**
1152  * i915_gem_fault - fault a page into the GTT
1153  * vma: VMA in question
1154  * vmf: fault info
1155  *
1156  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1157  * from userspace.  The fault handler takes care of binding the object to
1158  * the GTT (if needed), allocating and programming a fence register (again,
1159  * only if needed based on whether the old reg is still valid or the object
1160  * is tiled) and inserting a new PTE into the faulting process.
1161  *
1162  * Note that the faulting process may involve evicting existing objects
1163  * from the GTT and/or fence registers to make room.  So performance may
1164  * suffer if the GTT working set is large or there are few fence registers
1165  * left.
1166  */
1167 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1168 {
1169         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1170         struct drm_device *dev = obj->base.dev;
1171         drm_i915_private_t *dev_priv = dev->dev_private;
1172         pgoff_t page_offset;
1173         unsigned long pfn;
1174         int ret = 0;
1175         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1176
1177         /* We don't use vmf->pgoff since that has the fake offset */
1178         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1179                 PAGE_SHIFT;
1180
1181         /* Now bind it into the GTT if needed */
1182         mutex_lock(&dev->struct_mutex);
1183
1184         if (!obj->map_and_fenceable) {
1185                 ret = i915_gem_object_unbind(obj);
1186                 if (ret)
1187                         goto unlock;
1188         }
1189         if (!obj->gtt_space) {
1190                 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1191                 if (ret)
1192                         goto unlock;
1193         }
1194
1195         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1196         if (ret)
1197                 goto unlock;
1198
1199         if (obj->tiling_mode == I915_TILING_NONE)
1200                 ret = i915_gem_object_put_fence(obj);
1201         else
1202                 ret = i915_gem_object_get_fence(obj, NULL, true);
1203         if (ret)
1204                 goto unlock;
1205
1206         if (i915_gem_object_is_inactive(obj))
1207                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1208
1209         obj->fault_mappable = true;
1210
1211         pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1212                 page_offset;
1213
1214         /* Finally, remap it using the new GTT offset */
1215         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1216 unlock:
1217         mutex_unlock(&dev->struct_mutex);
1218
1219         switch (ret) {
1220         case -EAGAIN:
1221                 set_need_resched();
1222         case 0:
1223         case -ERESTARTSYS:
1224                 return VM_FAULT_NOPAGE;
1225         case -ENOMEM:
1226                 return VM_FAULT_OOM;
1227         default:
1228                 return VM_FAULT_SIGBUS;
1229         }
1230 }
1231
1232 /**
1233  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1234  * @obj: obj in question
1235  *
1236  * GEM memory mapping works by handing back to userspace a fake mmap offset
1237  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1238  * up the object based on the offset and sets up the various memory mapping
1239  * structures.
1240  *
1241  * This routine allocates and attaches a fake offset for @obj.
1242  */
1243 static int
1244 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1245 {
1246         struct drm_device *dev = obj->base.dev;
1247         struct drm_gem_mm *mm = dev->mm_private;
1248         struct drm_map_list *list;
1249         struct drm_local_map *map;
1250         int ret = 0;
1251
1252         /* Set the object up for mmap'ing */
1253         list = &obj->base.map_list;
1254         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1255         if (!list->map)
1256                 return -ENOMEM;
1257
1258         map = list->map;
1259         map->type = _DRM_GEM;
1260         map->size = obj->base.size;
1261         map->handle = obj;
1262
1263         /* Get a DRM GEM mmap offset allocated... */
1264         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1265                                                     obj->base.size / PAGE_SIZE,
1266                                                     0, 0);
1267         if (!list->file_offset_node) {
1268                 DRM_ERROR("failed to allocate offset for bo %d\n",
1269                           obj->base.name);
1270                 ret = -ENOSPC;
1271                 goto out_free_list;
1272         }
1273
1274         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1275                                                   obj->base.size / PAGE_SIZE,
1276                                                   0);
1277         if (!list->file_offset_node) {
1278                 ret = -ENOMEM;
1279                 goto out_free_list;
1280         }
1281
1282         list->hash.key = list->file_offset_node->start;
1283         ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1284         if (ret) {
1285                 DRM_ERROR("failed to add to map hash\n");
1286                 goto out_free_mm;
1287         }
1288
1289         return 0;
1290
1291 out_free_mm:
1292         drm_mm_put_block(list->file_offset_node);
1293 out_free_list:
1294         kfree(list->map);
1295         list->map = NULL;
1296
1297         return ret;
1298 }
1299
1300 /**
1301  * i915_gem_release_mmap - remove physical page mappings
1302  * @obj: obj in question
1303  *
1304  * Preserve the reservation of the mmapping with the DRM core code, but
1305  * relinquish ownership of the pages back to the system.
1306  *
1307  * It is vital that we remove the page mapping if we have mapped a tiled
1308  * object through the GTT and then lose the fence register due to
1309  * resource pressure. Similarly if the object has been moved out of the
1310  * aperture, than pages mapped into userspace must be revoked. Removing the
1311  * mapping will then trigger a page fault on the next user access, allowing
1312  * fixup by i915_gem_fault().
1313  */
1314 void
1315 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1316 {
1317         if (!obj->fault_mappable)
1318                 return;
1319
1320         unmap_mapping_range(obj->base.dev->dev_mapping,
1321                             (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1322                             obj->base.size, 1);
1323
1324         obj->fault_mappable = false;
1325 }
1326
1327 static void
1328 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1329 {
1330         struct drm_device *dev = obj->base.dev;
1331         struct drm_gem_mm *mm = dev->mm_private;
1332         struct drm_map_list *list = &obj->base.map_list;
1333
1334         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1335         drm_mm_put_block(list->file_offset_node);
1336         kfree(list->map);
1337         list->map = NULL;
1338 }
1339
1340 static uint32_t
1341 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1342 {
1343         struct drm_device *dev = obj->base.dev;
1344         uint32_t size;
1345
1346         if (INTEL_INFO(dev)->gen >= 4 ||
1347             obj->tiling_mode == I915_TILING_NONE)
1348                 return obj->base.size;
1349
1350         /* Previous chips need a power-of-two fence region when tiling */
1351         if (INTEL_INFO(dev)->gen == 3)
1352                 size = 1024*1024;
1353         else
1354                 size = 512*1024;
1355
1356         while (size < obj->base.size)
1357                 size <<= 1;
1358
1359         return size;
1360 }
1361
1362 /**
1363  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1364  * @obj: object to check
1365  *
1366  * Return the required GTT alignment for an object, taking into account
1367  * potential fence register mapping.
1368  */
1369 static uint32_t
1370 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1371 {
1372         struct drm_device *dev = obj->base.dev;
1373
1374         /*
1375          * Minimum alignment is 4k (GTT page size), but might be greater
1376          * if a fence register is needed for the object.
1377          */
1378         if (INTEL_INFO(dev)->gen >= 4 ||
1379             obj->tiling_mode == I915_TILING_NONE)
1380                 return 4096;
1381
1382         /*
1383          * Previous chips need to be aligned to the size of the smallest
1384          * fence register that can contain the object.
1385          */
1386         return i915_gem_get_gtt_size(obj);
1387 }
1388
1389 /**
1390  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1391  *                                       unfenced object
1392  * @obj: object to check
1393  *
1394  * Return the required GTT alignment for an object, only taking into account
1395  * unfenced tiled surface requirements.
1396  */
1397 static uint32_t
1398 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1399 {
1400         struct drm_device *dev = obj->base.dev;
1401         int tile_height;
1402
1403         /*
1404          * Minimum alignment is 4k (GTT page size) for sane hw.
1405          */
1406         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1407             obj->tiling_mode == I915_TILING_NONE)
1408                 return 4096;
1409
1410         /*
1411          * Older chips need unfenced tiled buffers to be aligned to the left
1412          * edge of an even tile row (where tile rows are counted as if the bo is
1413          * placed in a fenced gtt region).
1414          */
1415         if (IS_GEN2(dev) ||
1416             (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1417                 tile_height = 32;
1418         else
1419                 tile_height = 8;
1420
1421         return tile_height * obj->stride * 2;
1422 }
1423
1424 /**
1425  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1426  * @dev: DRM device
1427  * @data: GTT mapping ioctl data
1428  * @file: GEM object info
1429  *
1430  * Simply returns the fake offset to userspace so it can mmap it.
1431  * The mmap call will end up in drm_gem_mmap(), which will set things
1432  * up so we can get faults in the handler above.
1433  *
1434  * The fault handler will take care of binding the object into the GTT
1435  * (since it may have been evicted to make room for something), allocating
1436  * a fence register, and mapping the appropriate aperture address into
1437  * userspace.
1438  */
1439 int
1440 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1441                         struct drm_file *file)
1442 {
1443         struct drm_i915_private *dev_priv = dev->dev_private;
1444         struct drm_i915_gem_mmap_gtt *args = data;
1445         struct drm_i915_gem_object *obj;
1446         int ret;
1447
1448         if (!(dev->driver->driver_features & DRIVER_GEM))
1449                 return -ENODEV;
1450
1451         ret = i915_mutex_lock_interruptible(dev);
1452         if (ret)
1453                 return ret;
1454
1455         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1456         if (obj == NULL) {
1457                 ret = -ENOENT;
1458                 goto unlock;
1459         }
1460
1461         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1462                 ret = -E2BIG;
1463                 goto unlock;
1464         }
1465
1466         if (obj->madv != I915_MADV_WILLNEED) {
1467                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1468                 ret = -EINVAL;
1469                 goto out;
1470         }
1471
1472         if (!obj->base.map_list.map) {
1473                 ret = i915_gem_create_mmap_offset(obj);
1474                 if (ret)
1475                         goto out;
1476         }
1477
1478         args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1479
1480 out:
1481         drm_gem_object_unreference(&obj->base);
1482 unlock:
1483         mutex_unlock(&dev->struct_mutex);
1484         return ret;
1485 }
1486
1487 static int
1488 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1489                               gfp_t gfpmask)
1490 {
1491         int page_count, i;
1492         struct address_space *mapping;
1493         struct inode *inode;
1494         struct page *page;
1495
1496         /* Get the list of pages out of our struct file.  They'll be pinned
1497          * at this point until we release them.
1498          */
1499         page_count = obj->base.size / PAGE_SIZE;
1500         BUG_ON(obj->pages != NULL);
1501         obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1502         if (obj->pages == NULL)
1503                 return -ENOMEM;
1504
1505         inode = obj->base.filp->f_path.dentry->d_inode;
1506         mapping = inode->i_mapping;
1507         for (i = 0; i < page_count; i++) {
1508                 page = read_cache_page_gfp(mapping, i,
1509                                            GFP_HIGHUSER |
1510                                            __GFP_COLD |
1511                                            __GFP_RECLAIMABLE |
1512                                            gfpmask);
1513                 if (IS_ERR(page))
1514                         goto err_pages;
1515
1516                 obj->pages[i] = page;
1517         }
1518
1519         if (obj->tiling_mode != I915_TILING_NONE)
1520                 i915_gem_object_do_bit_17_swizzle(obj);
1521
1522         return 0;
1523
1524 err_pages:
1525         while (i--)
1526                 page_cache_release(obj->pages[i]);
1527
1528         drm_free_large(obj->pages);
1529         obj->pages = NULL;
1530         return PTR_ERR(page);
1531 }
1532
1533 static void
1534 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1535 {
1536         int page_count = obj->base.size / PAGE_SIZE;
1537         int i;
1538
1539         BUG_ON(obj->madv == __I915_MADV_PURGED);
1540
1541         if (obj->tiling_mode != I915_TILING_NONE)
1542                 i915_gem_object_save_bit_17_swizzle(obj);
1543
1544         if (obj->madv == I915_MADV_DONTNEED)
1545                 obj->dirty = 0;
1546
1547         for (i = 0; i < page_count; i++) {
1548                 if (obj->dirty)
1549                         set_page_dirty(obj->pages[i]);
1550
1551                 if (obj->madv == I915_MADV_WILLNEED)
1552                         mark_page_accessed(obj->pages[i]);
1553
1554                 page_cache_release(obj->pages[i]);
1555         }
1556         obj->dirty = 0;
1557
1558         drm_free_large(obj->pages);
1559         obj->pages = NULL;
1560 }
1561
1562 void
1563 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1564                                struct intel_ring_buffer *ring,
1565                                u32 seqno)
1566 {
1567         struct drm_device *dev = obj->base.dev;
1568         struct drm_i915_private *dev_priv = dev->dev_private;
1569
1570         BUG_ON(ring == NULL);
1571         obj->ring = ring;
1572
1573         /* Add a reference if we're newly entering the active list. */
1574         if (!obj->active) {
1575                 drm_gem_object_reference(&obj->base);
1576                 obj->active = 1;
1577         }
1578
1579         /* Move from whatever list we were on to the tail of execution. */
1580         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1581         list_move_tail(&obj->ring_list, &ring->active_list);
1582
1583         obj->last_rendering_seqno = seqno;
1584         if (obj->fenced_gpu_access) {
1585                 struct drm_i915_fence_reg *reg;
1586
1587                 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1588
1589                 obj->last_fenced_seqno = seqno;
1590                 obj->last_fenced_ring = ring;
1591
1592                 reg = &dev_priv->fence_regs[obj->fence_reg];
1593                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1594         }
1595 }
1596
1597 static void
1598 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1599 {
1600         list_del_init(&obj->ring_list);
1601         obj->last_rendering_seqno = 0;
1602 }
1603
1604 static void
1605 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1606 {
1607         struct drm_device *dev = obj->base.dev;
1608         drm_i915_private_t *dev_priv = dev->dev_private;
1609
1610         BUG_ON(!obj->active);
1611         list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1612
1613         i915_gem_object_move_off_active(obj);
1614 }
1615
1616 static void
1617 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1618 {
1619         struct drm_device *dev = obj->base.dev;
1620         struct drm_i915_private *dev_priv = dev->dev_private;
1621
1622         if (obj->pin_count != 0)
1623                 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1624         else
1625                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1626
1627         BUG_ON(!list_empty(&obj->gpu_write_list));
1628         BUG_ON(!obj->active);
1629         obj->ring = NULL;
1630
1631         i915_gem_object_move_off_active(obj);
1632         obj->fenced_gpu_access = false;
1633
1634         obj->active = 0;
1635         obj->pending_gpu_write = false;
1636         drm_gem_object_unreference(&obj->base);
1637
1638         WARN_ON(i915_verify_lists(dev));
1639 }
1640
1641 /* Immediately discard the backing storage */
1642 static void
1643 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1644 {
1645         struct inode *inode;
1646
1647         /* Our goal here is to return as much of the memory as
1648          * is possible back to the system as we are called from OOM.
1649          * To do this we must instruct the shmfs to drop all of its
1650          * backing pages, *now*. Here we mirror the actions taken
1651          * when by shmem_delete_inode() to release the backing store.
1652          */
1653         inode = obj->base.filp->f_path.dentry->d_inode;
1654         truncate_inode_pages(inode->i_mapping, 0);
1655         if (inode->i_op->truncate_range)
1656                 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1657
1658         obj->madv = __I915_MADV_PURGED;
1659 }
1660
1661 static inline int
1662 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1663 {
1664         return obj->madv == I915_MADV_DONTNEED;
1665 }
1666
1667 static void
1668 i915_gem_process_flushing_list(struct drm_device *dev,
1669                                uint32_t flush_domains,
1670                                struct intel_ring_buffer *ring)
1671 {
1672         struct drm_i915_gem_object *obj, *next;
1673
1674         list_for_each_entry_safe(obj, next,
1675                                  &ring->gpu_write_list,
1676                                  gpu_write_list) {
1677                 if (obj->base.write_domain & flush_domains) {
1678                         uint32_t old_write_domain = obj->base.write_domain;
1679
1680                         obj->base.write_domain = 0;
1681                         list_del_init(&obj->gpu_write_list);
1682                         i915_gem_object_move_to_active(obj, ring,
1683                                                        i915_gem_next_request_seqno(dev, ring));
1684
1685                         trace_i915_gem_object_change_domain(obj,
1686                                                             obj->base.read_domains,
1687                                                             old_write_domain);
1688                 }
1689         }
1690 }
1691
1692 int
1693 i915_add_request(struct drm_device *dev,
1694                  struct drm_file *file,
1695                  struct drm_i915_gem_request *request,
1696                  struct intel_ring_buffer *ring)
1697 {
1698         drm_i915_private_t *dev_priv = dev->dev_private;
1699         struct drm_i915_file_private *file_priv = NULL;
1700         uint32_t seqno;
1701         int was_empty;
1702         int ret;
1703
1704         BUG_ON(request == NULL);
1705
1706         if (file != NULL)
1707                 file_priv = file->driver_priv;
1708
1709         ret = ring->add_request(ring, &seqno);
1710         if (ret)
1711             return ret;
1712
1713         ring->outstanding_lazy_request = false;
1714
1715         request->seqno = seqno;
1716         request->ring = ring;
1717         request->emitted_jiffies = jiffies;
1718         was_empty = list_empty(&ring->request_list);
1719         list_add_tail(&request->list, &ring->request_list);
1720
1721         if (file_priv) {
1722                 spin_lock(&file_priv->mm.lock);
1723                 request->file_priv = file_priv;
1724                 list_add_tail(&request->client_list,
1725                               &file_priv->mm.request_list);
1726                 spin_unlock(&file_priv->mm.lock);
1727         }
1728
1729         if (!dev_priv->mm.suspended) {
1730                 mod_timer(&dev_priv->hangcheck_timer,
1731                           jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1732                 if (was_empty)
1733                         queue_delayed_work(dev_priv->wq,
1734                                            &dev_priv->mm.retire_work, HZ);
1735         }
1736         return 0;
1737 }
1738
1739 static inline void
1740 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1741 {
1742         struct drm_i915_file_private *file_priv = request->file_priv;
1743
1744         if (!file_priv)
1745                 return;
1746
1747         spin_lock(&file_priv->mm.lock);
1748         list_del(&request->client_list);
1749         request->file_priv = NULL;
1750         spin_unlock(&file_priv->mm.lock);
1751 }
1752
1753 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1754                                       struct intel_ring_buffer *ring)
1755 {
1756         while (!list_empty(&ring->request_list)) {
1757                 struct drm_i915_gem_request *request;
1758
1759                 request = list_first_entry(&ring->request_list,
1760                                            struct drm_i915_gem_request,
1761                                            list);
1762
1763                 list_del(&request->list);
1764                 i915_gem_request_remove_from_client(request);
1765                 kfree(request);
1766         }
1767
1768         while (!list_empty(&ring->active_list)) {
1769                 struct drm_i915_gem_object *obj;
1770
1771                 obj = list_first_entry(&ring->active_list,
1772                                        struct drm_i915_gem_object,
1773                                        ring_list);
1774
1775                 obj->base.write_domain = 0;
1776                 list_del_init(&obj->gpu_write_list);
1777                 i915_gem_object_move_to_inactive(obj);
1778         }
1779 }
1780
1781 static void i915_gem_reset_fences(struct drm_device *dev)
1782 {
1783         struct drm_i915_private *dev_priv = dev->dev_private;
1784         int i;
1785
1786         for (i = 0; i < 16; i++) {
1787                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1788                 struct drm_i915_gem_object *obj = reg->obj;
1789
1790                 if (!obj)
1791                         continue;
1792
1793                 if (obj->tiling_mode)
1794                         i915_gem_release_mmap(obj);
1795
1796                 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1797                 reg->obj->fenced_gpu_access = false;
1798                 reg->obj->last_fenced_seqno = 0;
1799                 reg->obj->last_fenced_ring = NULL;
1800                 i915_gem_clear_fence_reg(dev, reg);
1801         }
1802 }
1803
1804 void i915_gem_reset(struct drm_device *dev)
1805 {
1806         struct drm_i915_private *dev_priv = dev->dev_private;
1807         struct drm_i915_gem_object *obj;
1808         int i;
1809
1810         for (i = 0; i < I915_NUM_RINGS; i++)
1811                 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1812
1813         /* Remove anything from the flushing lists. The GPU cache is likely
1814          * to be lost on reset along with the data, so simply move the
1815          * lost bo to the inactive list.
1816          */
1817         while (!list_empty(&dev_priv->mm.flushing_list)) {
1818                 obj= list_first_entry(&dev_priv->mm.flushing_list,
1819                                       struct drm_i915_gem_object,
1820                                       mm_list);
1821
1822                 obj->base.write_domain = 0;
1823                 list_del_init(&obj->gpu_write_list);
1824                 i915_gem_object_move_to_inactive(obj);
1825         }
1826
1827         /* Move everything out of the GPU domains to ensure we do any
1828          * necessary invalidation upon reuse.
1829          */
1830         list_for_each_entry(obj,
1831                             &dev_priv->mm.inactive_list,
1832                             mm_list)
1833         {
1834                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1835         }
1836
1837         /* The fence registers are invalidated so clear them out */
1838         i915_gem_reset_fences(dev);
1839 }
1840
1841 /**
1842  * This function clears the request list as sequence numbers are passed.
1843  */
1844 static void
1845 i915_gem_retire_requests_ring(struct drm_device *dev,
1846                               struct intel_ring_buffer *ring)
1847 {
1848         drm_i915_private_t *dev_priv = dev->dev_private;
1849         uint32_t seqno;
1850         int i;
1851
1852         if (!ring->status_page.page_addr ||
1853             list_empty(&ring->request_list))
1854                 return;
1855
1856         WARN_ON(i915_verify_lists(dev));
1857
1858         seqno = ring->get_seqno(ring);
1859
1860         for (i = 0; i < I915_NUM_RINGS; i++)
1861                 if (seqno >= ring->sync_seqno[i])
1862                         ring->sync_seqno[i] = 0;
1863
1864         while (!list_empty(&ring->request_list)) {
1865                 struct drm_i915_gem_request *request;
1866
1867                 request = list_first_entry(&ring->request_list,
1868                                            struct drm_i915_gem_request,
1869                                            list);
1870
1871                 if (!i915_seqno_passed(seqno, request->seqno))
1872                         break;
1873
1874                 trace_i915_gem_request_retire(dev, request->seqno);
1875
1876                 list_del(&request->list);
1877                 i915_gem_request_remove_from_client(request);
1878                 kfree(request);
1879         }
1880
1881         /* Move any buffers on the active list that are no longer referenced
1882          * by the ringbuffer to the flushing/inactive lists as appropriate.
1883          */
1884         while (!list_empty(&ring->active_list)) {
1885                 struct drm_i915_gem_object *obj;
1886
1887                 obj= list_first_entry(&ring->active_list,
1888                                       struct drm_i915_gem_object,
1889                                       ring_list);
1890
1891                 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1892                         break;
1893
1894                 if (obj->base.write_domain != 0)
1895                         i915_gem_object_move_to_flushing(obj);
1896                 else
1897                         i915_gem_object_move_to_inactive(obj);
1898         }
1899
1900         if (unlikely (dev_priv->trace_irq_seqno &&
1901                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1902                 ring->irq_put(ring);
1903                 dev_priv->trace_irq_seqno = 0;
1904         }
1905
1906         WARN_ON(i915_verify_lists(dev));
1907 }
1908
1909 void
1910 i915_gem_retire_requests(struct drm_device *dev)
1911 {
1912         drm_i915_private_t *dev_priv = dev->dev_private;
1913         int i;
1914
1915         if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1916             struct drm_i915_gem_object *obj, *next;
1917
1918             /* We must be careful that during unbind() we do not
1919              * accidentally infinitely recurse into retire requests.
1920              * Currently:
1921              *   retire -> free -> unbind -> wait -> retire_ring
1922              */
1923             list_for_each_entry_safe(obj, next,
1924                                      &dev_priv->mm.deferred_free_list,
1925                                      mm_list)
1926                     i915_gem_free_object_tail(obj);
1927         }
1928
1929         for (i = 0; i < I915_NUM_RINGS; i++)
1930                 i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
1931 }
1932
1933 static void
1934 i915_gem_retire_work_handler(struct work_struct *work)
1935 {
1936         drm_i915_private_t *dev_priv;
1937         struct drm_device *dev;
1938
1939         dev_priv = container_of(work, drm_i915_private_t,
1940                                 mm.retire_work.work);
1941         dev = dev_priv->dev;
1942
1943         /* Come back later if the device is busy... */
1944         if (!mutex_trylock(&dev->struct_mutex)) {
1945                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1946                 return;
1947         }
1948
1949         i915_gem_retire_requests(dev);
1950
1951         if (!dev_priv->mm.suspended &&
1952                 (!list_empty(&dev_priv->ring[RCS].request_list) ||
1953                  !list_empty(&dev_priv->ring[VCS].request_list) ||
1954                  !list_empty(&dev_priv->ring[BCS].request_list)))
1955                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1956         mutex_unlock(&dev->struct_mutex);
1957 }
1958
1959 int
1960 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1961                      bool interruptible, struct intel_ring_buffer *ring)
1962 {
1963         drm_i915_private_t *dev_priv = dev->dev_private;
1964         u32 ier;
1965         int ret = 0;
1966
1967         BUG_ON(seqno == 0);
1968
1969         if (atomic_read(&dev_priv->mm.wedged))
1970                 return -EAGAIN;
1971
1972         if (seqno == ring->outstanding_lazy_request) {
1973                 struct drm_i915_gem_request *request;
1974
1975                 request = kzalloc(sizeof(*request), GFP_KERNEL);
1976                 if (request == NULL)
1977                         return -ENOMEM;
1978
1979                 ret = i915_add_request(dev, NULL, request, ring);
1980                 if (ret) {
1981                         kfree(request);
1982                         return ret;
1983                 }
1984
1985                 seqno = request->seqno;
1986         }
1987
1988         if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1989                 if (HAS_PCH_SPLIT(dev))
1990                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1991                 else
1992                         ier = I915_READ(IER);
1993                 if (!ier) {
1994                         DRM_ERROR("something (likely vbetool) disabled "
1995                                   "interrupts, re-enabling\n");
1996                         i915_driver_irq_preinstall(dev);
1997                         i915_driver_irq_postinstall(dev);
1998                 }
1999
2000                 trace_i915_gem_request_wait_begin(dev, seqno);
2001
2002                 ring->waiting_seqno = seqno;
2003                 if (ring->irq_get(ring)) {
2004                         if (interruptible)
2005                                 ret = wait_event_interruptible(ring->irq_queue,
2006                                                                i915_seqno_passed(ring->get_seqno(ring), seqno)
2007                                                                || atomic_read(&dev_priv->mm.wedged));
2008                         else
2009                                 wait_event(ring->irq_queue,
2010                                            i915_seqno_passed(ring->get_seqno(ring), seqno)
2011                                            || atomic_read(&dev_priv->mm.wedged));
2012
2013                         ring->irq_put(ring);
2014                 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2015                                                       seqno) ||
2016                                     atomic_read(&dev_priv->mm.wedged), 3000))
2017                         ret = -EBUSY;
2018                 ring->waiting_seqno = 0;
2019
2020                 trace_i915_gem_request_wait_end(dev, seqno);
2021         }
2022         if (atomic_read(&dev_priv->mm.wedged))
2023                 ret = -EAGAIN;
2024
2025         if (ret && ret != -ERESTARTSYS)
2026                 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2027                           __func__, ret, seqno, ring->get_seqno(ring),
2028                           dev_priv->next_seqno);
2029
2030         /* Directly dispatch request retiring.  While we have the work queue
2031          * to handle this, the waiter on a request often wants an associated
2032          * buffer to have made it to the inactive list, and we would need
2033          * a separate wait queue to handle that.
2034          */
2035         if (ret == 0)
2036                 i915_gem_retire_requests_ring(dev, ring);
2037
2038         return ret;
2039 }
2040
2041 /**
2042  * Waits for a sequence number to be signaled, and cleans up the
2043  * request and object lists appropriately for that event.
2044  */
2045 static int
2046 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2047                   struct intel_ring_buffer *ring)
2048 {
2049         return i915_do_wait_request(dev, seqno, 1, ring);
2050 }
2051
2052 /**
2053  * Ensures that all rendering to the object has completed and the object is
2054  * safe to unbind from the GTT or access from the CPU.
2055  */
2056 int
2057 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2058                                bool interruptible)
2059 {
2060         struct drm_device *dev = obj->base.dev;
2061         int ret;
2062
2063         /* This function only exists to support waiting for existing rendering,
2064          * not for emitting required flushes.
2065          */
2066         BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2067
2068         /* If there is rendering queued on the buffer being evicted, wait for
2069          * it.
2070          */
2071         if (obj->active) {
2072                 ret = i915_do_wait_request(dev,
2073                                            obj->last_rendering_seqno,
2074                                            interruptible,
2075                                            obj->ring);
2076                 if (ret)
2077                         return ret;
2078         }
2079
2080         return 0;
2081 }
2082
2083 /**
2084  * Unbinds an object from the GTT aperture.
2085  */
2086 int
2087 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2088 {
2089         int ret = 0;
2090
2091         if (obj->gtt_space == NULL)
2092                 return 0;
2093
2094         if (obj->pin_count != 0) {
2095                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2096                 return -EINVAL;
2097         }
2098
2099         /* blow away mappings if mapped through GTT */
2100         i915_gem_release_mmap(obj);
2101
2102         /* Move the object to the CPU domain to ensure that
2103          * any possible CPU writes while it's not in the GTT
2104          * are flushed when we go to remap it. This will
2105          * also ensure that all pending GPU writes are finished
2106          * before we unbind.
2107          */
2108         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2109         if (ret == -ERESTARTSYS)
2110                 return ret;
2111         /* Continue on if we fail due to EIO, the GPU is hung so we
2112          * should be safe and we need to cleanup or else we might
2113          * cause memory corruption through use-after-free.
2114          */
2115         if (ret) {
2116                 i915_gem_clflush_object(obj);
2117                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2118         }
2119
2120         /* release the fence reg _after_ flushing */
2121         ret = i915_gem_object_put_fence(obj);
2122         if (ret == -ERESTARTSYS)
2123                 return ret;
2124
2125         i915_gem_gtt_unbind_object(obj);
2126         i915_gem_object_put_pages_gtt(obj);
2127
2128         list_del_init(&obj->gtt_list);
2129         list_del_init(&obj->mm_list);
2130         /* Avoid an unnecessary call to unbind on rebind. */
2131         obj->map_and_fenceable = true;
2132
2133         drm_mm_put_block(obj->gtt_space);
2134         obj->gtt_space = NULL;
2135         obj->gtt_offset = 0;
2136
2137         if (i915_gem_object_is_purgeable(obj))
2138                 i915_gem_object_truncate(obj);
2139
2140         trace_i915_gem_object_unbind(obj);
2141
2142         return ret;
2143 }
2144
2145 void
2146 i915_gem_flush_ring(struct drm_device *dev,
2147                     struct intel_ring_buffer *ring,
2148                     uint32_t invalidate_domains,
2149                     uint32_t flush_domains)
2150 {
2151         ring->flush(ring, invalidate_domains, flush_domains);
2152         i915_gem_process_flushing_list(dev, flush_domains, ring);
2153 }
2154
2155 static int i915_ring_idle(struct drm_device *dev,
2156                           struct intel_ring_buffer *ring)
2157 {
2158         if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2159                 return 0;
2160
2161         if (!list_empty(&ring->gpu_write_list))
2162                 i915_gem_flush_ring(dev, ring,
2163                                     I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2164         return i915_wait_request(dev,
2165                                  i915_gem_next_request_seqno(dev, ring),
2166                                  ring);
2167 }
2168
2169 int
2170 i915_gpu_idle(struct drm_device *dev)
2171 {
2172         drm_i915_private_t *dev_priv = dev->dev_private;
2173         bool lists_empty;
2174         int ret, i;
2175
2176         lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2177                        list_empty(&dev_priv->mm.active_list));
2178         if (lists_empty)
2179                 return 0;
2180
2181         /* Flush everything onto the inactive list. */
2182         for (i = 0; i < I915_NUM_RINGS; i++) {
2183                 ret = i915_ring_idle(dev, &dev_priv->ring[i]);
2184                 if (ret)
2185                         return ret;
2186         }
2187
2188         return 0;
2189 }
2190
2191 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2192                                        struct intel_ring_buffer *pipelined)
2193 {
2194         struct drm_device *dev = obj->base.dev;
2195         drm_i915_private_t *dev_priv = dev->dev_private;
2196         u32 size = obj->gtt_space->size;
2197         int regnum = obj->fence_reg;
2198         uint64_t val;
2199
2200         val = (uint64_t)((obj->gtt_offset + size - 4096) &
2201                          0xfffff000) << 32;
2202         val |= obj->gtt_offset & 0xfffff000;
2203         val |= (uint64_t)((obj->stride / 128) - 1) <<
2204                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2205
2206         if (obj->tiling_mode == I915_TILING_Y)
2207                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2208         val |= I965_FENCE_REG_VALID;
2209
2210         if (pipelined) {
2211                 int ret = intel_ring_begin(pipelined, 6);
2212                 if (ret)
2213                         return ret;
2214
2215                 intel_ring_emit(pipelined, MI_NOOP);
2216                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2217                 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2218                 intel_ring_emit(pipelined, (u32)val);
2219                 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2220                 intel_ring_emit(pipelined, (u32)(val >> 32));
2221                 intel_ring_advance(pipelined);
2222         } else
2223                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2224
2225         return 0;
2226 }
2227
2228 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2229                                 struct intel_ring_buffer *pipelined)
2230 {
2231         struct drm_device *dev = obj->base.dev;
2232         drm_i915_private_t *dev_priv = dev->dev_private;
2233         u32 size = obj->gtt_space->size;
2234         int regnum = obj->fence_reg;
2235         uint64_t val;
2236
2237         val = (uint64_t)((obj->gtt_offset + size - 4096) &
2238                     0xfffff000) << 32;
2239         val |= obj->gtt_offset & 0xfffff000;
2240         val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2241         if (obj->tiling_mode == I915_TILING_Y)
2242                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2243         val |= I965_FENCE_REG_VALID;
2244
2245         if (pipelined) {
2246                 int ret = intel_ring_begin(pipelined, 6);
2247                 if (ret)
2248                         return ret;
2249
2250                 intel_ring_emit(pipelined, MI_NOOP);
2251                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2252                 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2253                 intel_ring_emit(pipelined, (u32)val);
2254                 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2255                 intel_ring_emit(pipelined, (u32)(val >> 32));
2256                 intel_ring_advance(pipelined);
2257         } else
2258                 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2259
2260         return 0;
2261 }
2262
2263 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2264                                 struct intel_ring_buffer *pipelined)
2265 {
2266         struct drm_device *dev = obj->base.dev;
2267         drm_i915_private_t *dev_priv = dev->dev_private;
2268         u32 size = obj->gtt_space->size;
2269         u32 fence_reg, val, pitch_val;
2270         int tile_width;
2271
2272         if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2273                  (size & -size) != size ||
2274                  (obj->gtt_offset & (size - 1)),
2275                  "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2276                  obj->gtt_offset, obj->map_and_fenceable, size))
2277                 return -EINVAL;
2278
2279         if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2280                 tile_width = 128;
2281         else
2282                 tile_width = 512;
2283
2284         /* Note: pitch better be a power of two tile widths */
2285         pitch_val = obj->stride / tile_width;
2286         pitch_val = ffs(pitch_val) - 1;
2287
2288         val = obj->gtt_offset;
2289         if (obj->tiling_mode == I915_TILING_Y)
2290                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2291         val |= I915_FENCE_SIZE_BITS(size);
2292         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2293         val |= I830_FENCE_REG_VALID;
2294
2295         fence_reg = obj->fence_reg;
2296         if (fence_reg < 8)
2297                 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2298         else
2299                 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2300
2301         if (pipelined) {
2302                 int ret = intel_ring_begin(pipelined, 4);
2303                 if (ret)
2304                         return ret;
2305
2306                 intel_ring_emit(pipelined, MI_NOOP);
2307                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2308                 intel_ring_emit(pipelined, fence_reg);
2309                 intel_ring_emit(pipelined, val);
2310                 intel_ring_advance(pipelined);
2311         } else
2312                 I915_WRITE(fence_reg, val);
2313
2314         return 0;
2315 }
2316
2317 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2318                                 struct intel_ring_buffer *pipelined)
2319 {
2320         struct drm_device *dev = obj->base.dev;
2321         drm_i915_private_t *dev_priv = dev->dev_private;
2322         u32 size = obj->gtt_space->size;
2323         int regnum = obj->fence_reg;
2324         uint32_t val;
2325         uint32_t pitch_val;
2326
2327         if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2328                  (size & -size) != size ||
2329                  (obj->gtt_offset & (size - 1)),
2330                  "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2331                  obj->gtt_offset, size))
2332                 return -EINVAL;
2333
2334         pitch_val = obj->stride / 128;
2335         pitch_val = ffs(pitch_val) - 1;
2336
2337         val = obj->gtt_offset;
2338         if (obj->tiling_mode == I915_TILING_Y)
2339                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2340         val |= I830_FENCE_SIZE_BITS(size);
2341         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2342         val |= I830_FENCE_REG_VALID;
2343
2344         if (pipelined) {
2345                 int ret = intel_ring_begin(pipelined, 4);
2346                 if (ret)
2347                         return ret;
2348
2349                 intel_ring_emit(pipelined, MI_NOOP);
2350                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2351                 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2352                 intel_ring_emit(pipelined, val);
2353                 intel_ring_advance(pipelined);
2354         } else
2355                 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2356
2357         return 0;
2358 }
2359
2360 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2361 {
2362         return i915_seqno_passed(ring->get_seqno(ring), seqno);
2363 }
2364
2365 static int
2366 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2367                             struct intel_ring_buffer *pipelined,
2368                             bool interruptible)
2369 {
2370         int ret;
2371
2372         if (obj->fenced_gpu_access) {
2373                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2374                         i915_gem_flush_ring(obj->base.dev,
2375                                             obj->last_fenced_ring,
2376                                             0, obj->base.write_domain);
2377
2378                 obj->fenced_gpu_access = false;
2379         }
2380
2381         if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2382                 if (!ring_passed_seqno(obj->last_fenced_ring,
2383                                        obj->last_fenced_seqno)) {
2384                         ret = i915_do_wait_request(obj->base.dev,
2385                                                    obj->last_fenced_seqno,
2386                                                    interruptible,
2387                                                    obj->last_fenced_ring);
2388                         if (ret)
2389                                 return ret;
2390                 }
2391
2392                 obj->last_fenced_seqno = 0;
2393                 obj->last_fenced_ring = NULL;
2394         }
2395
2396         return 0;
2397 }
2398
2399 int
2400 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2401 {
2402         int ret;
2403
2404         if (obj->tiling_mode)
2405                 i915_gem_release_mmap(obj);
2406
2407         ret = i915_gem_object_flush_fence(obj, NULL, true);
2408         if (ret)
2409                 return ret;
2410
2411         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2412                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2413                 i915_gem_clear_fence_reg(obj->base.dev,
2414                                          &dev_priv->fence_regs[obj->fence_reg]);
2415
2416                 obj->fence_reg = I915_FENCE_REG_NONE;
2417         }
2418
2419         return 0;
2420 }
2421
2422 static struct drm_i915_fence_reg *
2423 i915_find_fence_reg(struct drm_device *dev,
2424                     struct intel_ring_buffer *pipelined)
2425 {
2426         struct drm_i915_private *dev_priv = dev->dev_private;
2427         struct drm_i915_fence_reg *reg, *first, *avail;
2428         int i;
2429
2430         /* First try to find a free reg */
2431         avail = NULL;
2432         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2433                 reg = &dev_priv->fence_regs[i];
2434                 if (!reg->obj)
2435                         return reg;
2436
2437                 if (!reg->obj->pin_count)
2438                         avail = reg;
2439         }
2440
2441         if (avail == NULL)
2442                 return NULL;
2443
2444         /* None available, try to steal one or wait for a user to finish */
2445         avail = first = NULL;
2446         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2447                 if (reg->obj->pin_count)
2448                         continue;
2449
2450                 if (first == NULL)
2451                         first = reg;
2452
2453                 if (!pipelined ||
2454                     !reg->obj->last_fenced_ring ||
2455                     reg->obj->last_fenced_ring == pipelined) {
2456                         avail = reg;
2457                         break;
2458                 }
2459         }
2460
2461         if (avail == NULL)
2462                 avail = first;
2463
2464         return avail;
2465 }
2466
2467 /**
2468  * i915_gem_object_get_fence - set up a fence reg for an object
2469  * @obj: object to map through a fence reg
2470  * @pipelined: ring on which to queue the change, or NULL for CPU access
2471  * @interruptible: must we wait uninterruptibly for the register to retire?
2472  *
2473  * When mapping objects through the GTT, userspace wants to be able to write
2474  * to them without having to worry about swizzling if the object is tiled.
2475  *
2476  * This function walks the fence regs looking for a free one for @obj,
2477  * stealing one if it can't find any.
2478  *
2479  * It then sets up the reg based on the object's properties: address, pitch
2480  * and tiling format.
2481  */
2482 int
2483 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2484                           struct intel_ring_buffer *pipelined,
2485                           bool interruptible)
2486 {
2487         struct drm_device *dev = obj->base.dev;
2488         struct drm_i915_private *dev_priv = dev->dev_private;
2489         struct drm_i915_fence_reg *reg;
2490         int ret;
2491
2492         /* XXX disable pipelining. There are bugs. Shocking. */
2493         pipelined = NULL;
2494
2495         /* Just update our place in the LRU if our fence is getting reused. */
2496         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2497                 reg = &dev_priv->fence_regs[obj->fence_reg];
2498                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2499
2500                 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2501                         pipelined = NULL;
2502
2503                 if (!pipelined) {
2504                         if (reg->setup_seqno) {
2505                                 if (!ring_passed_seqno(obj->last_fenced_ring,
2506                                                        reg->setup_seqno)) {
2507                                         ret = i915_do_wait_request(obj->base.dev,
2508                                                                    reg->setup_seqno,
2509                                                                    interruptible,
2510                                                                    obj->last_fenced_ring);
2511                                         if (ret)
2512                                                 return ret;
2513                                 }
2514
2515                                 reg->setup_seqno = 0;
2516                         }
2517                 } else if (obj->last_fenced_ring &&
2518                            obj->last_fenced_ring != pipelined) {
2519                         ret = i915_gem_object_flush_fence(obj,
2520                                                           pipelined,
2521                                                           interruptible);
2522                         if (ret)
2523                                 return ret;
2524                 } else if (obj->tiling_changed) {
2525                         if (obj->fenced_gpu_access) {
2526                                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2527                                         i915_gem_flush_ring(obj->base.dev, obj->ring,
2528                                                             0, obj->base.write_domain);
2529
2530                                 obj->fenced_gpu_access = false;
2531                         }
2532                 }
2533
2534                 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2535                         pipelined = NULL;
2536                 BUG_ON(!pipelined && reg->setup_seqno);
2537
2538                 if (obj->tiling_changed) {
2539                         if (pipelined) {
2540                                 reg->setup_seqno =
2541                                         i915_gem_next_request_seqno(dev, pipelined);
2542                                 obj->last_fenced_seqno = reg->setup_seqno;
2543                                 obj->last_fenced_ring = pipelined;
2544                         }
2545                         goto update;
2546                 }
2547
2548                 return 0;
2549         }
2550
2551         reg = i915_find_fence_reg(dev, pipelined);
2552         if (reg == NULL)
2553                 return -ENOSPC;
2554
2555         ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
2556         if (ret)
2557                 return ret;
2558
2559         if (reg->obj) {
2560                 struct drm_i915_gem_object *old = reg->obj;
2561
2562                 drm_gem_object_reference(&old->base);
2563
2564                 if (old->tiling_mode)
2565                         i915_gem_release_mmap(old);
2566
2567                 ret = i915_gem_object_flush_fence(old,
2568                                                   pipelined,
2569                                                   interruptible);
2570                 if (ret) {
2571                         drm_gem_object_unreference(&old->base);
2572                         return ret;
2573                 }
2574
2575                 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2576                         pipelined = NULL;
2577
2578                 old->fence_reg = I915_FENCE_REG_NONE;
2579                 old->last_fenced_ring = pipelined;
2580                 old->last_fenced_seqno =
2581                         pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2582
2583                 drm_gem_object_unreference(&old->base);
2584         } else if (obj->last_fenced_seqno == 0)
2585                 pipelined = NULL;
2586
2587         reg->obj = obj;
2588         list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2589         obj->fence_reg = reg - dev_priv->fence_regs;
2590         obj->last_fenced_ring = pipelined;
2591
2592         reg->setup_seqno =
2593                 pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2594         obj->last_fenced_seqno = reg->setup_seqno;
2595
2596 update:
2597         obj->tiling_changed = false;
2598         switch (INTEL_INFO(dev)->gen) {
2599         case 6:
2600                 ret = sandybridge_write_fence_reg(obj, pipelined);
2601                 break;
2602         case 5:
2603         case 4:
2604                 ret = i965_write_fence_reg(obj, pipelined);
2605                 break;
2606         case 3:
2607                 ret = i915_write_fence_reg(obj, pipelined);
2608                 break;
2609         case 2:
2610                 ret = i830_write_fence_reg(obj, pipelined);
2611                 break;
2612         }
2613
2614         return ret;
2615 }
2616
2617 /**
2618  * i915_gem_clear_fence_reg - clear out fence register info
2619  * @obj: object to clear
2620  *
2621  * Zeroes out the fence register itself and clears out the associated
2622  * data structures in dev_priv and obj.
2623  */
2624 static void
2625 i915_gem_clear_fence_reg(struct drm_device *dev,
2626                          struct drm_i915_fence_reg *reg)
2627 {
2628         drm_i915_private_t *dev_priv = dev->dev_private;
2629         uint32_t fence_reg = reg - dev_priv->fence_regs;
2630
2631         switch (INTEL_INFO(dev)->gen) {
2632         case 6:
2633                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2634                 break;
2635         case 5:
2636         case 4:
2637                 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2638                 break;
2639         case 3:
2640                 if (fence_reg >= 8)
2641                         fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2642                 else
2643         case 2:
2644                         fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2645
2646                 I915_WRITE(fence_reg, 0);
2647                 break;
2648         }
2649
2650         list_del_init(&reg->lru_list);
2651         reg->obj = NULL;
2652         reg->setup_seqno = 0;
2653 }
2654
2655 /**
2656  * Finds free space in the GTT aperture and binds the object there.
2657  */
2658 static int
2659 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2660                             unsigned alignment,
2661                             bool map_and_fenceable)
2662 {
2663         struct drm_device *dev = obj->base.dev;
2664         drm_i915_private_t *dev_priv = dev->dev_private;
2665         struct drm_mm_node *free_space;
2666         gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2667         u32 size, fence_size, fence_alignment, unfenced_alignment;
2668         bool mappable, fenceable;
2669         int ret;
2670
2671         if (obj->madv != I915_MADV_WILLNEED) {
2672                 DRM_ERROR("Attempting to bind a purgeable object\n");
2673                 return -EINVAL;
2674         }
2675
2676         fence_size = i915_gem_get_gtt_size(obj);
2677         fence_alignment = i915_gem_get_gtt_alignment(obj);
2678         unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2679
2680         if (alignment == 0)
2681                 alignment = map_and_fenceable ? fence_alignment :
2682                                                 unfenced_alignment;
2683         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2684                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2685                 return -EINVAL;
2686         }
2687
2688         size = map_and_fenceable ? fence_size : obj->base.size;
2689
2690         /* If the object is bigger than the entire aperture, reject it early
2691          * before evicting everything in a vain attempt to find space.
2692          */
2693         if (obj->base.size >
2694             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2695                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2696                 return -E2BIG;
2697         }
2698
2699  search_free:
2700         if (map_and_fenceable)
2701                 free_space =
2702                         drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2703                                                     size, alignment, 0,
2704                                                     dev_priv->mm.gtt_mappable_end,
2705                                                     0);
2706         else
2707                 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2708                                                 size, alignment, 0);
2709
2710         if (free_space != NULL) {
2711                 if (map_and_fenceable)
2712                         obj->gtt_space =
2713                                 drm_mm_get_block_range_generic(free_space,
2714                                                                size, alignment, 0,
2715                                                                dev_priv->mm.gtt_mappable_end,
2716                                                                0);
2717                 else
2718                         obj->gtt_space =
2719                                 drm_mm_get_block(free_space, size, alignment);
2720         }
2721         if (obj->gtt_space == NULL) {
2722                 /* If the gtt is empty and we're still having trouble
2723                  * fitting our object in, we're out of memory.
2724                  */
2725                 ret = i915_gem_evict_something(dev, size, alignment,
2726                                                map_and_fenceable);
2727                 if (ret)
2728                         return ret;
2729
2730                 goto search_free;
2731         }
2732
2733         ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2734         if (ret) {
2735                 drm_mm_put_block(obj->gtt_space);
2736                 obj->gtt_space = NULL;
2737
2738                 if (ret == -ENOMEM) {
2739                         /* first try to clear up some space from the GTT */
2740                         ret = i915_gem_evict_something(dev, size,
2741                                                        alignment,
2742                                                        map_and_fenceable);
2743                         if (ret) {
2744                                 /* now try to shrink everyone else */
2745                                 if (gfpmask) {
2746                                         gfpmask = 0;
2747                                         goto search_free;
2748                                 }
2749
2750                                 return ret;
2751                         }
2752
2753                         goto search_free;
2754                 }
2755
2756                 return ret;
2757         }
2758
2759         ret = i915_gem_gtt_bind_object(obj);
2760         if (ret) {
2761                 i915_gem_object_put_pages_gtt(obj);
2762                 drm_mm_put_block(obj->gtt_space);
2763                 obj->gtt_space = NULL;
2764
2765                 ret = i915_gem_evict_something(dev, size,
2766                                                alignment, map_and_fenceable);
2767                 if (ret)
2768                         return ret;
2769
2770                 goto search_free;
2771         }
2772
2773         list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2774         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2775
2776         /* Assert that the object is not currently in any GPU domain. As it
2777          * wasn't in the GTT, there shouldn't be any way it could have been in
2778          * a GPU cache
2779          */
2780         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2781         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2782
2783         obj->gtt_offset = obj->gtt_space->start;
2784
2785         fenceable =
2786                 obj->gtt_space->size == fence_size &&
2787                 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2788
2789         mappable =
2790                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2791
2792         obj->map_and_fenceable = mappable && fenceable;
2793
2794         trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
2795         return 0;
2796 }
2797
2798 void
2799 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2800 {
2801         /* If we don't have a page list set up, then we're not pinned
2802          * to GPU, and we can ignore the cache flush because it'll happen
2803          * again at bind time.
2804          */
2805         if (obj->pages == NULL)
2806                 return;
2807
2808         trace_i915_gem_object_clflush(obj);
2809
2810         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2811 }
2812
2813 /** Flushes any GPU write domain for the object if it's dirty. */
2814 static void
2815 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2816 {
2817         struct drm_device *dev = obj->base.dev;
2818
2819         if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2820                 return;
2821
2822         /* Queue the GPU write cache flushing we need. */
2823         i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2824         BUG_ON(obj->base.write_domain);
2825 }
2826
2827 /** Flushes the GTT write domain for the object if it's dirty. */
2828 static void
2829 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2830 {
2831         uint32_t old_write_domain;
2832
2833         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2834                 return;
2835
2836         /* No actual flushing is required for the GTT write domain.   Writes
2837          * to it immediately go to main memory as far as we know, so there's
2838          * no chipset flush.  It also doesn't land in render cache.
2839          */
2840         i915_gem_release_mmap(obj);
2841
2842         old_write_domain = obj->base.write_domain;
2843         obj->base.write_domain = 0;
2844
2845         trace_i915_gem_object_change_domain(obj,
2846                                             obj->base.read_domains,
2847                                             old_write_domain);
2848 }
2849
2850 /** Flushes the CPU write domain for the object if it's dirty. */
2851 static void
2852 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2853 {
2854         uint32_t old_write_domain;
2855
2856         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2857                 return;
2858
2859         i915_gem_clflush_object(obj);
2860         intel_gtt_chipset_flush();
2861         old_write_domain = obj->base.write_domain;
2862         obj->base.write_domain = 0;
2863
2864         trace_i915_gem_object_change_domain(obj,
2865                                             obj->base.read_domains,
2866                                             old_write_domain);
2867 }
2868
2869 /**
2870  * Moves a single object to the GTT read, and possibly write domain.
2871  *
2872  * This function returns when the move is complete, including waiting on
2873  * flushes to occur.
2874  */
2875 int
2876 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2877 {
2878         uint32_t old_write_domain, old_read_domains;
2879         int ret;
2880
2881         /* Not valid to be called on unbound objects. */
2882         if (obj->gtt_space == NULL)
2883                 return -EINVAL;
2884
2885         i915_gem_object_flush_gpu_write_domain(obj);
2886         if (obj->pending_gpu_write || write) {
2887                 ret = i915_gem_object_wait_rendering(obj, true);
2888                 if (ret)
2889                         return ret;
2890         }
2891
2892         i915_gem_object_flush_cpu_write_domain(obj);
2893
2894         old_write_domain = obj->base.write_domain;
2895         old_read_domains = obj->base.read_domains;
2896
2897         /* It should now be out of any other write domains, and we can update
2898          * the domain values for our changes.
2899          */
2900         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2901         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2902         if (write) {
2903                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2904                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2905                 obj->dirty = 1;
2906         }
2907
2908         trace_i915_gem_object_change_domain(obj,
2909                                             old_read_domains,
2910                                             old_write_domain);
2911
2912         return 0;
2913 }
2914
2915 /*
2916  * Prepare buffer for display plane. Use uninterruptible for possible flush
2917  * wait, as in modesetting process we're not supposed to be interrupted.
2918  */
2919 int
2920 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2921                                      struct intel_ring_buffer *pipelined)
2922 {
2923         uint32_t old_read_domains;
2924         int ret;
2925
2926         /* Not valid to be called on unbound objects. */
2927         if (obj->gtt_space == NULL)
2928                 return -EINVAL;
2929
2930         i915_gem_object_flush_gpu_write_domain(obj);
2931
2932         /* Currently, we are always called from an non-interruptible context. */
2933         if (pipelined != obj->ring) {
2934                 ret = i915_gem_object_wait_rendering(obj, false);
2935                 if (ret)
2936                         return ret;
2937         }
2938
2939         i915_gem_object_flush_cpu_write_domain(obj);
2940
2941         old_read_domains = obj->base.read_domains;
2942         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2943
2944         trace_i915_gem_object_change_domain(obj,
2945                                             old_read_domains,
2946                                             obj->base.write_domain);
2947
2948         return 0;
2949 }
2950
2951 int
2952 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
2953                           bool interruptible)
2954 {
2955         if (!obj->active)
2956                 return 0;
2957
2958         if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2959                 i915_gem_flush_ring(obj->base.dev, obj->ring,
2960                                     0, obj->base.write_domain);
2961
2962         return i915_gem_object_wait_rendering(obj, interruptible);
2963 }
2964
2965 /**
2966  * Moves a single object to the CPU read, and possibly write domain.
2967  *
2968  * This function returns when the move is complete, including waiting on
2969  * flushes to occur.
2970  */
2971 static int
2972 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2973 {
2974         uint32_t old_write_domain, old_read_domains;
2975         int ret;
2976
2977         i915_gem_object_flush_gpu_write_domain(obj);
2978         ret = i915_gem_object_wait_rendering(obj, true);
2979         if (ret)
2980                 return ret;
2981
2982         i915_gem_object_flush_gtt_write_domain(obj);
2983
2984         /* If we have a partially-valid cache of the object in the CPU,
2985          * finish invalidating it and free the per-page flags.
2986          */
2987         i915_gem_object_set_to_full_cpu_read_domain(obj);
2988
2989         old_write_domain = obj->base.write_domain;
2990         old_read_domains = obj->base.read_domains;
2991
2992         /* Flush the CPU cache if it's still invalid. */
2993         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2994                 i915_gem_clflush_object(obj);
2995
2996                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2997         }
2998
2999         /* It should now be out of any other write domains, and we can update
3000          * the domain values for our changes.
3001          */
3002         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3003
3004         /* If we're writing through the CPU, then the GPU read domains will
3005          * need to be invalidated at next use.
3006          */
3007         if (write) {
3008                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3009                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3010         }
3011
3012         trace_i915_gem_object_change_domain(obj,
3013                                             old_read_domains,
3014                                             old_write_domain);
3015
3016         return 0;
3017 }
3018
3019 /**
3020  * Moves the object from a partially CPU read to a full one.
3021  *
3022  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3023  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3024  */
3025 static void
3026 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3027 {
3028         if (!obj->page_cpu_valid)
3029                 return;
3030
3031         /* If we're partially in the CPU read domain, finish moving it in.
3032          */
3033         if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3034                 int i;
3035
3036                 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3037                         if (obj->page_cpu_valid[i])
3038                                 continue;
3039                         drm_clflush_pages(obj->pages + i, 1);
3040                 }
3041         }
3042
3043         /* Free the page_cpu_valid mappings which are now stale, whether
3044          * or not we've got I915_GEM_DOMAIN_CPU.
3045          */
3046         kfree(obj->page_cpu_valid);
3047         obj->page_cpu_valid = NULL;
3048 }
3049
3050 /**
3051  * Set the CPU read domain on a range of the object.
3052  *
3053  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3054  * not entirely valid.  The page_cpu_valid member of the object flags which
3055  * pages have been flushed, and will be respected by
3056  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3057  * of the whole object.
3058  *
3059  * This function returns when the move is complete, including waiting on
3060  * flushes to occur.
3061  */
3062 static int
3063 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3064                                           uint64_t offset, uint64_t size)
3065 {
3066         uint32_t old_read_domains;
3067         int i, ret;
3068
3069         if (offset == 0 && size == obj->base.size)
3070                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3071
3072         i915_gem_object_flush_gpu_write_domain(obj);
3073         ret = i915_gem_object_wait_rendering(obj, true);
3074         if (ret)
3075                 return ret;
3076
3077         i915_gem_object_flush_gtt_write_domain(obj);
3078
3079         /* If we're already fully in the CPU read domain, we're done. */
3080         if (obj->page_cpu_valid == NULL &&
3081             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3082                 return 0;
3083
3084         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3085          * newly adding I915_GEM_DOMAIN_CPU
3086          */
3087         if (obj->page_cpu_valid == NULL) {
3088                 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3089                                               GFP_KERNEL);
3090                 if (obj->page_cpu_valid == NULL)
3091                         return -ENOMEM;
3092         } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3093                 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3094
3095         /* Flush the cache on any pages that are still invalid from the CPU's
3096          * perspective.
3097          */
3098         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3099              i++) {
3100                 if (obj->page_cpu_valid[i])
3101                         continue;
3102
3103                 drm_clflush_pages(obj->pages + i, 1);
3104
3105                 obj->page_cpu_valid[i] = 1;
3106         }
3107
3108         /* It should now be out of any other write domains, and we can update
3109          * the domain values for our changes.
3110          */
3111         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3112
3113         old_read_domains = obj->base.read_domains;
3114         obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3115
3116         trace_i915_gem_object_change_domain(obj,
3117                                             old_read_domains,
3118                                             obj->base.write_domain);
3119
3120         return 0;
3121 }
3122
3123 /* Throttle our rendering by waiting until the ring has completed our requests
3124  * emitted over 20 msec ago.
3125  *
3126  * Note that if we were to use the current jiffies each time around the loop,
3127  * we wouldn't escape the function with any frames outstanding if the time to
3128  * render a frame was over 20ms.
3129  *
3130  * This should get us reasonable parallelism between CPU and GPU but also
3131  * relatively low latency when blocking on a particular request to finish.
3132  */
3133 static int
3134 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3135 {
3136         struct drm_i915_private *dev_priv = dev->dev_private;
3137         struct drm_i915_file_private *file_priv = file->driver_priv;
3138         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3139         struct drm_i915_gem_request *request;
3140         struct intel_ring_buffer *ring = NULL;
3141         u32 seqno = 0;
3142         int ret;
3143
3144         spin_lock(&file_priv->mm.lock);
3145         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3146                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3147                         break;
3148
3149                 ring = request->ring;
3150                 seqno = request->seqno;
3151         }
3152         spin_unlock(&file_priv->mm.lock);
3153
3154         if (seqno == 0)
3155                 return 0;
3156
3157         ret = 0;
3158         if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3159                 /* And wait for the seqno passing without holding any locks and
3160                  * causing extra latency for others. This is safe as the irq
3161                  * generation is designed to be run atomically and so is
3162                  * lockless.
3163                  */
3164                 if (ring->irq_get(ring)) {
3165                         ret = wait_event_interruptible(ring->irq_queue,
3166                                                        i915_seqno_passed(ring->get_seqno(ring), seqno)
3167                                                        || atomic_read(&dev_priv->mm.wedged));
3168                         ring->irq_put(ring);
3169
3170                         if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3171                                 ret = -EIO;
3172                 }
3173         }
3174
3175         if (ret == 0)
3176                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3177
3178         return ret;
3179 }
3180
3181 int
3182 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3183                     uint32_t alignment,
3184                     bool map_and_fenceable)
3185 {
3186         struct drm_device *dev = obj->base.dev;
3187         struct drm_i915_private *dev_priv = dev->dev_private;
3188         int ret;
3189
3190         BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3191         WARN_ON(i915_verify_lists(dev));
3192
3193         if (obj->gtt_space != NULL) {
3194                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3195                     (map_and_fenceable && !obj->map_and_fenceable)) {
3196                         WARN(obj->pin_count,
3197                              "bo is already pinned with incorrect alignment:"
3198                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3199                              " obj->map_and_fenceable=%d\n",
3200                              obj->gtt_offset, alignment,
3201                              map_and_fenceable,
3202                              obj->map_and_fenceable);
3203                         ret = i915_gem_object_unbind(obj);
3204                         if (ret)
3205                                 return ret;
3206                 }
3207         }
3208
3209         if (obj->gtt_space == NULL) {
3210                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3211                                                   map_and_fenceable);
3212                 if (ret)
3213                         return ret;
3214         }
3215
3216         if (obj->pin_count++ == 0) {
3217                 if (!obj->active)
3218                         list_move_tail(&obj->mm_list,
3219                                        &dev_priv->mm.pinned_list);
3220         }
3221         obj->pin_mappable |= map_and_fenceable;
3222
3223         WARN_ON(i915_verify_lists(dev));
3224         return 0;
3225 }
3226
3227 void
3228 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3229 {
3230         struct drm_device *dev = obj->base.dev;
3231         drm_i915_private_t *dev_priv = dev->dev_private;
3232
3233         WARN_ON(i915_verify_lists(dev));
3234         BUG_ON(obj->pin_count == 0);
3235         BUG_ON(obj->gtt_space == NULL);
3236
3237         if (--obj->pin_count == 0) {
3238                 if (!obj->active)
3239                         list_move_tail(&obj->mm_list,
3240                                        &dev_priv->mm.inactive_list);
3241                 obj->pin_mappable = false;
3242         }
3243         WARN_ON(i915_verify_lists(dev));
3244 }
3245
3246 int
3247 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3248                    struct drm_file *file)
3249 {
3250         struct drm_i915_gem_pin *args = data;
3251         struct drm_i915_gem_object *obj;
3252         int ret;
3253
3254         ret = i915_mutex_lock_interruptible(dev);
3255         if (ret)
3256                 return ret;
3257
3258         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3259         if (obj == NULL) {
3260                 ret = -ENOENT;
3261                 goto unlock;
3262         }
3263
3264         if (obj->madv != I915_MADV_WILLNEED) {
3265                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3266                 ret = -EINVAL;
3267                 goto out;
3268         }
3269
3270         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3271                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3272                           args->handle);
3273                 ret = -EINVAL;
3274                 goto out;
3275         }
3276
3277         obj->user_pin_count++;
3278         obj->pin_filp = file;
3279         if (obj->user_pin_count == 1) {
3280                 ret = i915_gem_object_pin(obj, args->alignment, true);
3281                 if (ret)
3282                         goto out;
3283         }
3284
3285         /* XXX - flush the CPU caches for pinned objects
3286          * as the X server doesn't manage domains yet
3287          */
3288         i915_gem_object_flush_cpu_write_domain(obj);
3289         args->offset = obj->gtt_offset;
3290 out:
3291         drm_gem_object_unreference(&obj->base);
3292 unlock:
3293         mutex_unlock(&dev->struct_mutex);
3294         return ret;
3295 }
3296
3297 int
3298 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3299                      struct drm_file *file)
3300 {
3301         struct drm_i915_gem_pin *args = data;
3302         struct drm_i915_gem_object *obj;
3303         int ret;
3304
3305         ret = i915_mutex_lock_interruptible(dev);
3306         if (ret)
3307                 return ret;
3308
3309         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3310         if (obj == NULL) {
3311                 ret = -ENOENT;
3312                 goto unlock;
3313         }
3314
3315         if (obj->pin_filp != file) {
3316                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3317                           args->handle);
3318                 ret = -EINVAL;
3319                 goto out;
3320         }
3321         obj->user_pin_count--;
3322         if (obj->user_pin_count == 0) {
3323                 obj->pin_filp = NULL;
3324                 i915_gem_object_unpin(obj);
3325         }
3326
3327 out:
3328         drm_gem_object_unreference(&obj->base);
3329 unlock:
3330         mutex_unlock(&dev->struct_mutex);
3331         return ret;
3332 }
3333
3334 int
3335 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3336                     struct drm_file *file)
3337 {
3338         struct drm_i915_gem_busy *args = data;
3339         struct drm_i915_gem_object *obj;
3340         int ret;
3341
3342         ret = i915_mutex_lock_interruptible(dev);
3343         if (ret)
3344                 return ret;
3345
3346         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3347         if (obj == NULL) {
3348                 ret = -ENOENT;
3349                 goto unlock;
3350         }
3351
3352         /* Count all active objects as busy, even if they are currently not used
3353          * by the gpu. Users of this interface expect objects to eventually
3354          * become non-busy without any further actions, therefore emit any
3355          * necessary flushes here.
3356          */
3357         args->busy = obj->active;
3358         if (args->busy) {
3359                 /* Unconditionally flush objects, even when the gpu still uses this
3360                  * object. Userspace calling this function indicates that it wants to
3361                  * use this buffer rather sooner than later, so issuing the required
3362                  * flush earlier is beneficial.
3363                  */
3364                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3365                         i915_gem_flush_ring(dev, obj->ring,
3366                                             0, obj->base.write_domain);
3367                 } else if (obj->ring->outstanding_lazy_request ==
3368                            obj->last_rendering_seqno) {
3369                         struct drm_i915_gem_request *request;
3370
3371                         /* This ring is not being cleared by active usage,
3372                          * so emit a request to do so.
3373                          */
3374                         request = kzalloc(sizeof(*request), GFP_KERNEL);
3375                         if (request)
3376                                 ret = i915_add_request(dev,
3377                                                        NULL, request,
3378                                                        obj->ring);
3379                         else
3380                                 ret = -ENOMEM;
3381                 }
3382
3383                 /* Update the active list for the hardware's current position.
3384                  * Otherwise this only updates on a delayed timer or when irqs
3385                  * are actually unmasked, and our working set ends up being
3386                  * larger than required.
3387                  */
3388                 i915_gem_retire_requests_ring(dev, obj->ring);
3389
3390                 args->busy = obj->active;
3391         }
3392
3393         drm_gem_object_unreference(&obj->base);
3394 unlock:
3395         mutex_unlock(&dev->struct_mutex);
3396         return ret;
3397 }
3398
3399 int
3400 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3401                         struct drm_file *file_priv)
3402 {
3403     return i915_gem_ring_throttle(dev, file_priv);
3404 }
3405
3406 int
3407 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3408                        struct drm_file *file_priv)
3409 {
3410         struct drm_i915_gem_madvise *args = data;
3411         struct drm_i915_gem_object *obj;
3412         int ret;
3413
3414         switch (args->madv) {
3415         case I915_MADV_DONTNEED:
3416         case I915_MADV_WILLNEED:
3417             break;
3418         default:
3419             return -EINVAL;
3420         }
3421
3422         ret = i915_mutex_lock_interruptible(dev);
3423         if (ret)
3424                 return ret;
3425
3426         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3427         if (obj == NULL) {
3428                 ret = -ENOENT;
3429                 goto unlock;
3430         }
3431
3432         if (obj->pin_count) {
3433                 ret = -EINVAL;
3434                 goto out;
3435         }
3436
3437         if (obj->madv != __I915_MADV_PURGED)
3438                 obj->madv = args->madv;
3439
3440         /* if the object is no longer bound, discard its backing storage */
3441         if (i915_gem_object_is_purgeable(obj) &&
3442             obj->gtt_space == NULL)
3443                 i915_gem_object_truncate(obj);
3444
3445         args->retained = obj->madv != __I915_MADV_PURGED;
3446
3447 out:
3448         drm_gem_object_unreference(&obj->base);
3449 unlock:
3450         mutex_unlock(&dev->struct_mutex);
3451         return ret;
3452 }
3453
3454 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3455                                                   size_t size)
3456 {
3457         struct drm_i915_private *dev_priv = dev->dev_private;
3458         struct drm_i915_gem_object *obj;
3459
3460         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3461         if (obj == NULL)
3462                 return NULL;
3463
3464         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3465                 kfree(obj);
3466                 return NULL;
3467         }
3468
3469         i915_gem_info_add_obj(dev_priv, size);
3470
3471         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3472         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3473
3474         obj->agp_type = AGP_USER_MEMORY;
3475         obj->base.driver_private = NULL;
3476         obj->fence_reg = I915_FENCE_REG_NONE;
3477         INIT_LIST_HEAD(&obj->mm_list);
3478         INIT_LIST_HEAD(&obj->gtt_list);
3479         INIT_LIST_HEAD(&obj->ring_list);
3480         INIT_LIST_HEAD(&obj->exec_list);
3481         INIT_LIST_HEAD(&obj->gpu_write_list);
3482         obj->madv = I915_MADV_WILLNEED;
3483         /* Avoid an unnecessary call to unbind on the first bind. */
3484         obj->map_and_fenceable = true;
3485
3486         return obj;
3487 }
3488
3489 int i915_gem_init_object(struct drm_gem_object *obj)
3490 {
3491         BUG();
3492
3493         return 0;
3494 }
3495
3496 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3497 {
3498         struct drm_device *dev = obj->base.dev;
3499         drm_i915_private_t *dev_priv = dev->dev_private;
3500         int ret;
3501
3502         ret = i915_gem_object_unbind(obj);
3503         if (ret == -ERESTARTSYS) {
3504                 list_move(&obj->mm_list,
3505                           &dev_priv->mm.deferred_free_list);
3506                 return;
3507         }
3508
3509         if (obj->base.map_list.map)
3510                 i915_gem_free_mmap_offset(obj);
3511
3512         drm_gem_object_release(&obj->base);
3513         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3514
3515         kfree(obj->page_cpu_valid);
3516         kfree(obj->bit_17);
3517         kfree(obj);
3518 }
3519
3520 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3521 {
3522         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3523         struct drm_device *dev = obj->base.dev;
3524
3525         trace_i915_gem_object_destroy(obj);
3526
3527         while (obj->pin_count > 0)
3528                 i915_gem_object_unpin(obj);
3529
3530         if (obj->phys_obj)
3531                 i915_gem_detach_phys_object(dev, obj);
3532
3533         i915_gem_free_object_tail(obj);
3534 }
3535
3536 int
3537 i915_gem_idle(struct drm_device *dev)
3538 {
3539         drm_i915_private_t *dev_priv = dev->dev_private;
3540         int ret;
3541
3542         mutex_lock(&dev->struct_mutex);
3543
3544         if (dev_priv->mm.suspended) {
3545                 mutex_unlock(&dev->struct_mutex);
3546                 return 0;
3547         }
3548
3549         ret = i915_gpu_idle(dev);
3550         if (ret) {
3551                 mutex_unlock(&dev->struct_mutex);
3552                 return ret;
3553         }
3554
3555         /* Under UMS, be paranoid and evict. */
3556         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3557                 ret = i915_gem_evict_inactive(dev, false);
3558                 if (ret) {
3559                         mutex_unlock(&dev->struct_mutex);
3560                         return ret;
3561                 }
3562         }
3563
3564         i915_gem_reset_fences(dev);
3565
3566         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3567          * We need to replace this with a semaphore, or something.
3568          * And not confound mm.suspended!
3569          */
3570         dev_priv->mm.suspended = 1;
3571         del_timer_sync(&dev_priv->hangcheck_timer);
3572
3573         i915_kernel_lost_context(dev);
3574         i915_gem_cleanup_ringbuffer(dev);
3575
3576         mutex_unlock(&dev->struct_mutex);
3577
3578         /* Cancel the retire work handler, which should be idle now. */
3579         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3580
3581         return 0;
3582 }
3583
3584 int
3585 i915_gem_init_ringbuffer(struct drm_device *dev)
3586 {
3587         drm_i915_private_t *dev_priv = dev->dev_private;
3588         int ret;
3589
3590         ret = intel_init_render_ring_buffer(dev);
3591         if (ret)
3592                 return ret;
3593
3594         if (HAS_BSD(dev)) {
3595                 ret = intel_init_bsd_ring_buffer(dev);
3596                 if (ret)
3597                         goto cleanup_render_ring;
3598         }
3599
3600         if (HAS_BLT(dev)) {
3601                 ret = intel_init_blt_ring_buffer(dev);
3602                 if (ret)
3603                         goto cleanup_bsd_ring;
3604         }
3605
3606         dev_priv->next_seqno = 1;
3607
3608         return 0;
3609
3610 cleanup_bsd_ring:
3611         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3612 cleanup_render_ring:
3613         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3614         return ret;
3615 }
3616
3617 void
3618 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3619 {
3620         drm_i915_private_t *dev_priv = dev->dev_private;
3621         int i;
3622
3623         for (i = 0; i < I915_NUM_RINGS; i++)
3624                 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3625 }
3626
3627 int
3628 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3629                        struct drm_file *file_priv)
3630 {
3631         drm_i915_private_t *dev_priv = dev->dev_private;
3632         int ret, i;
3633
3634         if (drm_core_check_feature(dev, DRIVER_MODESET))
3635                 return 0;
3636
3637         if (atomic_read(&dev_priv->mm.wedged)) {
3638                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3639                 atomic_set(&dev_priv->mm.wedged, 0);
3640         }
3641
3642         mutex_lock(&dev->struct_mutex);
3643         dev_priv->mm.suspended = 0;
3644
3645         ret = i915_gem_init_ringbuffer(dev);
3646         if (ret != 0) {
3647                 mutex_unlock(&dev->struct_mutex);
3648                 return ret;
3649         }
3650
3651         BUG_ON(!list_empty(&dev_priv->mm.active_list));
3652         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3653         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3654         for (i = 0; i < I915_NUM_RINGS; i++) {
3655                 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3656                 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3657         }
3658         mutex_unlock(&dev->struct_mutex);
3659
3660         ret = drm_irq_install(dev);
3661         if (ret)
3662                 goto cleanup_ringbuffer;
3663
3664         return 0;
3665
3666 cleanup_ringbuffer:
3667         mutex_lock(&dev->struct_mutex);
3668         i915_gem_cleanup_ringbuffer(dev);
3669         dev_priv->mm.suspended = 1;
3670         mutex_unlock(&dev->struct_mutex);
3671
3672         return ret;
3673 }
3674
3675 int
3676 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3677                        struct drm_file *file_priv)
3678 {
3679         if (drm_core_check_feature(dev, DRIVER_MODESET))
3680                 return 0;
3681
3682         drm_irq_uninstall(dev);
3683         return i915_gem_idle(dev);
3684 }
3685
3686 void
3687 i915_gem_lastclose(struct drm_device *dev)
3688 {
3689         int ret;
3690
3691         if (drm_core_check_feature(dev, DRIVER_MODESET))
3692                 return;
3693
3694         ret = i915_gem_idle(dev);
3695         if (ret)
3696                 DRM_ERROR("failed to idle hardware: %d\n", ret);
3697 }
3698
3699 static void
3700 init_ring_lists(struct intel_ring_buffer *ring)
3701 {
3702         INIT_LIST_HEAD(&ring->active_list);
3703         INIT_LIST_HEAD(&ring->request_list);
3704         INIT_LIST_HEAD(&ring->gpu_write_list);
3705 }
3706
3707 void
3708 i915_gem_load(struct drm_device *dev)
3709 {
3710         int i;
3711         drm_i915_private_t *dev_priv = dev->dev_private;
3712
3713         INIT_LIST_HEAD(&dev_priv->mm.active_list);
3714         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3715         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3716         INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3717         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3718         INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3719         INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3720         for (i = 0; i < I915_NUM_RINGS; i++)
3721                 init_ring_lists(&dev_priv->ring[i]);
3722         for (i = 0; i < 16; i++)
3723                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3724         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3725                           i915_gem_retire_work_handler);
3726         init_completion(&dev_priv->error_completion);
3727
3728         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3729         if (IS_GEN3(dev)) {
3730                 u32 tmp = I915_READ(MI_ARB_STATE);
3731                 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3732                         /* arb state is a masked write, so set bit + bit in mask */
3733                         tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3734                         I915_WRITE(MI_ARB_STATE, tmp);
3735                 }
3736         }
3737
3738         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3739
3740         /* Old X drivers will take 0-2 for front, back, depth buffers */
3741         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3742                 dev_priv->fence_reg_start = 3;
3743
3744         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3745                 dev_priv->num_fence_regs = 16;
3746         else
3747                 dev_priv->num_fence_regs = 8;
3748
3749         /* Initialize fence registers to zero */
3750         switch (INTEL_INFO(dev)->gen) {
3751         case 6:
3752                 for (i = 0; i < 16; i++)
3753                         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3754                 break;
3755         case 5:
3756         case 4:
3757                 for (i = 0; i < 16; i++)
3758                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3759                 break;
3760         case 3:
3761                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3762                         for (i = 0; i < 8; i++)
3763                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3764         case 2:
3765                 for (i = 0; i < 8; i++)
3766                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3767                 break;
3768         }
3769         i915_gem_detect_bit_6_swizzle(dev);
3770         init_waitqueue_head(&dev_priv->pending_flip_queue);
3771
3772         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3773         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3774         register_shrinker(&dev_priv->mm.inactive_shrinker);
3775 }
3776
3777 /*
3778  * Create a physically contiguous memory object for this object
3779  * e.g. for cursor + overlay regs
3780  */
3781 static int i915_gem_init_phys_object(struct drm_device *dev,
3782                                      int id, int size, int align)
3783 {
3784         drm_i915_private_t *dev_priv = dev->dev_private;
3785         struct drm_i915_gem_phys_object *phys_obj;
3786         int ret;
3787
3788         if (dev_priv->mm.phys_objs[id - 1] || !size)
3789                 return 0;
3790
3791         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3792         if (!phys_obj)
3793                 return -ENOMEM;
3794
3795         phys_obj->id = id;
3796
3797         phys_obj->handle = drm_pci_alloc(dev, size, align);
3798         if (!phys_obj->handle) {
3799                 ret = -ENOMEM;
3800                 goto kfree_obj;
3801         }
3802 #ifdef CONFIG_X86
3803         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3804 #endif
3805
3806         dev_priv->mm.phys_objs[id - 1] = phys_obj;
3807
3808         return 0;
3809 kfree_obj:
3810         kfree(phys_obj);
3811         return ret;
3812 }
3813
3814 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3815 {
3816         drm_i915_private_t *dev_priv = dev->dev_private;
3817         struct drm_i915_gem_phys_object *phys_obj;
3818
3819         if (!dev_priv->mm.phys_objs[id - 1])
3820                 return;
3821
3822         phys_obj = dev_priv->mm.phys_objs[id - 1];
3823         if (phys_obj->cur_obj) {
3824                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3825         }
3826
3827 #ifdef CONFIG_X86
3828         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3829 #endif
3830         drm_pci_free(dev, phys_obj->handle);
3831         kfree(phys_obj);
3832         dev_priv->mm.phys_objs[id - 1] = NULL;
3833 }
3834
3835 void i915_gem_free_all_phys_object(struct drm_device *dev)
3836 {
3837         int i;
3838
3839         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3840                 i915_gem_free_phys_object(dev, i);
3841 }
3842
3843 void i915_gem_detach_phys_object(struct drm_device *dev,
3844                                  struct drm_i915_gem_object *obj)
3845 {
3846         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3847         char *vaddr;
3848         int i;
3849         int page_count;
3850
3851         if (!obj->phys_obj)
3852                 return;
3853         vaddr = obj->phys_obj->handle->vaddr;
3854
3855         page_count = obj->base.size / PAGE_SIZE;
3856         for (i = 0; i < page_count; i++) {
3857                 struct page *page = read_cache_page_gfp(mapping, i,
3858                                                         GFP_HIGHUSER | __GFP_RECLAIMABLE);
3859                 if (!IS_ERR(page)) {
3860                         char *dst = kmap_atomic(page);
3861                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3862                         kunmap_atomic(dst);
3863
3864                         drm_clflush_pages(&page, 1);
3865
3866                         set_page_dirty(page);
3867                         mark_page_accessed(page);
3868                         page_cache_release(page);
3869                 }
3870         }
3871         intel_gtt_chipset_flush();
3872
3873         obj->phys_obj->cur_obj = NULL;
3874         obj->phys_obj = NULL;
3875 }
3876
3877 int
3878 i915_gem_attach_phys_object(struct drm_device *dev,
3879                             struct drm_i915_gem_object *obj,
3880                             int id,
3881                             int align)
3882 {
3883         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3884         drm_i915_private_t *dev_priv = dev->dev_private;
3885         int ret = 0;
3886         int page_count;
3887         int i;
3888
3889         if (id > I915_MAX_PHYS_OBJECT)
3890                 return -EINVAL;
3891
3892         if (obj->phys_obj) {
3893                 if (obj->phys_obj->id == id)
3894                         return 0;
3895                 i915_gem_detach_phys_object(dev, obj);
3896         }
3897
3898         /* create a new object */
3899         if (!dev_priv->mm.phys_objs[id - 1]) {
3900                 ret = i915_gem_init_phys_object(dev, id,
3901                                                 obj->base.size, align);
3902                 if (ret) {
3903                         DRM_ERROR("failed to init phys object %d size: %zu\n",
3904                                   id, obj->base.size);
3905                         return ret;
3906                 }
3907         }
3908
3909         /* bind to the object */
3910         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3911         obj->phys_obj->cur_obj = obj;
3912
3913         page_count = obj->base.size / PAGE_SIZE;
3914
3915         for (i = 0; i < page_count; i++) {
3916                 struct page *page;
3917                 char *dst, *src;
3918
3919                 page = read_cache_page_gfp(mapping, i,
3920                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
3921                 if (IS_ERR(page))
3922                         return PTR_ERR(page);
3923
3924                 src = kmap_atomic(page);
3925                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3926                 memcpy(dst, src, PAGE_SIZE);
3927                 kunmap_atomic(src);
3928
3929                 mark_page_accessed(page);
3930                 page_cache_release(page);
3931         }
3932
3933         return 0;
3934 }
3935
3936 static int
3937 i915_gem_phys_pwrite(struct drm_device *dev,
3938                      struct drm_i915_gem_object *obj,
3939                      struct drm_i915_gem_pwrite *args,
3940                      struct drm_file *file_priv)
3941 {
3942         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3943         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3944
3945         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3946                 unsigned long unwritten;
3947
3948                 /* The physical object once assigned is fixed for the lifetime
3949                  * of the obj, so we can safely drop the lock and continue
3950                  * to access vaddr.
3951                  */
3952                 mutex_unlock(&dev->struct_mutex);
3953                 unwritten = copy_from_user(vaddr, user_data, args->size);
3954                 mutex_lock(&dev->struct_mutex);
3955                 if (unwritten)
3956                         return -EFAULT;
3957         }
3958
3959         intel_gtt_chipset_flush();
3960         return 0;
3961 }
3962
3963 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3964 {
3965         struct drm_i915_file_private *file_priv = file->driver_priv;
3966
3967         /* Clean up our request list when the client is going away, so that
3968          * later retire_requests won't dereference our soon-to-be-gone
3969          * file_priv.
3970          */
3971         spin_lock(&file_priv->mm.lock);
3972         while (!list_empty(&file_priv->mm.request_list)) {
3973                 struct drm_i915_gem_request *request;
3974
3975                 request = list_first_entry(&file_priv->mm.request_list,
3976                                            struct drm_i915_gem_request,
3977                                            client_list);
3978                 list_del(&request->client_list);
3979                 request->file_priv = NULL;
3980         }
3981         spin_unlock(&file_priv->mm.lock);
3982 }
3983
3984 static int
3985 i915_gpu_is_active(struct drm_device *dev)
3986 {
3987         drm_i915_private_t *dev_priv = dev->dev_private;
3988         int lists_empty;
3989
3990         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3991                       list_empty(&dev_priv->mm.active_list);
3992
3993         return !lists_empty;
3994 }
3995
3996 static int
3997 i915_gem_inactive_shrink(struct shrinker *shrinker,
3998                          int nr_to_scan,
3999                          gfp_t gfp_mask)
4000 {
4001         struct drm_i915_private *dev_priv =
4002                 container_of(shrinker,
4003                              struct drm_i915_private,
4004                              mm.inactive_shrinker);
4005         struct drm_device *dev = dev_priv->dev;
4006         struct drm_i915_gem_object *obj, *next;
4007         int cnt;
4008
4009         if (!mutex_trylock(&dev->struct_mutex))
4010                 return 0;
4011
4012         /* "fast-path" to count number of available objects */
4013         if (nr_to_scan == 0) {
4014                 cnt = 0;
4015                 list_for_each_entry(obj,
4016                                     &dev_priv->mm.inactive_list,
4017                                     mm_list)
4018                         cnt++;
4019                 mutex_unlock(&dev->struct_mutex);
4020                 return cnt / 100 * sysctl_vfs_cache_pressure;
4021         }
4022
4023 rescan:
4024         /* first scan for clean buffers */
4025         i915_gem_retire_requests(dev);
4026
4027         list_for_each_entry_safe(obj, next,
4028                                  &dev_priv->mm.inactive_list,
4029                                  mm_list) {
4030                 if (i915_gem_object_is_purgeable(obj)) {
4031                         if (i915_gem_object_unbind(obj) == 0 &&
4032                             --nr_to_scan == 0)
4033                                 break;
4034                 }
4035         }
4036
4037         /* second pass, evict/count anything still on the inactive list */
4038         cnt = 0;
4039         list_for_each_entry_safe(obj, next,
4040                                  &dev_priv->mm.inactive_list,
4041                                  mm_list) {
4042                 if (nr_to_scan &&
4043                     i915_gem_object_unbind(obj) == 0)
4044                         nr_to_scan--;
4045                 else
4046                         cnt++;
4047         }
4048
4049         if (nr_to_scan && i915_gpu_is_active(dev)) {
4050                 /*
4051                  * We are desperate for pages, so as a last resort, wait
4052                  * for the GPU to finish and discard whatever we can.
4053                  * This has a dramatic impact to reduce the number of
4054                  * OOM-killer events whilst running the GPU aggressively.
4055                  */
4056                 if (i915_gpu_idle(dev) == 0)
4057                         goto rescan;
4058         }
4059         mutex_unlock(&dev->struct_mutex);
4060         return cnt / 100 * sysctl_vfs_cache_pressure;
4061 }