]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
c7a997aeb33fe9d3fa8dc25c2b40c2dba7ae3d99
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_ggtt *ggtt = &dev_priv->ggtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->ggtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->ggtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *engine)
1145 {
1146         return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151         unsigned long t;
1152
1153         /* Cheaply and approximately convert from nanoseconds to microseconds.
1154          * The result and subsequent calculations are also defined in the same
1155          * approximate microseconds units. The principal source of timing
1156          * error here is from the simple truncation.
1157          *
1158          * Note that local_clock() is only defined wrt to the current CPU;
1159          * the comparisons are no longer valid if we switch CPUs. Instead of
1160          * blocking preemption for the entire busywait, we can detect the CPU
1161          * switch and use that as indicator of system load and a reason to
1162          * stop busywaiting, see busywait_stop().
1163          */
1164         *cpu = get_cpu();
1165         t = local_clock() >> 10;
1166         put_cpu();
1167
1168         return t;
1169 }
1170
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173         unsigned this_cpu;
1174
1175         if (time_after(local_clock_us(&this_cpu), timeout))
1176                 return true;
1177
1178         return this_cpu != cpu;
1179 }
1180
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183         unsigned long timeout;
1184         unsigned cpu;
1185
1186         /* When waiting for high frequency requests, e.g. during synchronous
1187          * rendering split between the CPU and GPU, the finite amount of time
1188          * required to set up the irq and wait upon it limits the response
1189          * rate. By busywaiting on the request completion for a short while we
1190          * can service the high frequency waits as quick as possible. However,
1191          * if it is a slow request, we want to sleep as quickly as possible.
1192          * The tradeoff between waiting and sleeping is roughly the time it
1193          * takes to sleep on a request, on the order of a microsecond.
1194          */
1195
1196         if (req->engine->irq_refcount)
1197                 return -EBUSY;
1198
1199         /* Only spin if we know the GPU is processing this request */
1200         if (!i915_gem_request_started(req, true))
1201                 return -EAGAIN;
1202
1203         timeout = local_clock_us(&cpu) + 5;
1204         while (!need_resched()) {
1205                 if (i915_gem_request_completed(req, true))
1206                         return 0;
1207
1208                 if (signal_pending_state(state, current))
1209                         break;
1210
1211                 if (busywait_stop(timeout, cpu))
1212                         break;
1213
1214                 cpu_relax_lowlatency();
1215         }
1216
1217         if (i915_gem_request_completed(req, false))
1218                 return 0;
1219
1220         return -EAGAIN;
1221 }
1222
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241                         unsigned reset_counter,
1242                         bool interruptible,
1243                         s64 *timeout,
1244                         struct intel_rps_client *rps)
1245 {
1246         struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1247         struct drm_device *dev = engine->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         const bool irq_test_in_progress =
1250                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1251         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252         DEFINE_WAIT(wait);
1253         unsigned long timeout_expire;
1254         s64 before = 0; /* Only to silence a compiler warning. */
1255         int ret;
1256
1257         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259         if (list_empty(&req->list))
1260                 return 0;
1261
1262         if (i915_gem_request_completed(req, true))
1263                 return 0;
1264
1265         timeout_expire = 0;
1266         if (timeout) {
1267                 if (WARN_ON(*timeout < 0))
1268                         return -EINVAL;
1269
1270                 if (*timeout == 0)
1271                         return -ETIME;
1272
1273                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275                 /*
1276                  * Record current time in case interrupted by signal, or wedged.
1277                  */
1278                 before = ktime_get_raw_ns();
1279         }
1280
1281         if (INTEL_INFO(dev_priv)->gen >= 6)
1282                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284         trace_i915_gem_request_wait_begin(req);
1285
1286         /* Optimistic spin for the next jiffie before touching IRQs */
1287         ret = __i915_spin_request(req, state);
1288         if (ret == 0)
1289                 goto out;
1290
1291         if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1292                 ret = -ENODEV;
1293                 goto out;
1294         }
1295
1296         for (;;) {
1297                 struct timer_list timer;
1298
1299                 prepare_to_wait(&engine->irq_queue, &wait, state);
1300
1301                 /* We need to check whether any gpu reset happened in between
1302                  * the caller grabbing the seqno and now ... */
1303                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305                          * is truely gone. */
1306                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307                         if (ret == 0)
1308                                 ret = -EAGAIN;
1309                         break;
1310                 }
1311
1312                 if (i915_gem_request_completed(req, false)) {
1313                         ret = 0;
1314                         break;
1315                 }
1316
1317                 if (signal_pending_state(state, current)) {
1318                         ret = -ERESTARTSYS;
1319                         break;
1320                 }
1321
1322                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323                         ret = -ETIME;
1324                         break;
1325                 }
1326
1327                 timer.function = NULL;
1328                 if (timeout || missed_irq(dev_priv, engine)) {
1329                         unsigned long expire;
1330
1331                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332                         expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1333                         mod_timer(&timer, expire);
1334                 }
1335
1336                 io_schedule();
1337
1338                 if (timer.function) {
1339                         del_singleshot_timer_sync(&timer);
1340                         destroy_timer_on_stack(&timer);
1341                 }
1342         }
1343         if (!irq_test_in_progress)
1344                 engine->irq_put(engine);
1345
1346         finish_wait(&engine->irq_queue, &wait);
1347
1348 out:
1349         trace_i915_gem_request_wait_end(req);
1350
1351         if (timeout) {
1352                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354                 *timeout = tres < 0 ? 0 : tres;
1355
1356                 /*
1357                  * Apparently ktime isn't accurate enough and occasionally has a
1358                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359                  * things up to make the test happy. We allow up to 1 jiffy.
1360                  *
1361                  * This is a regrssion from the timespec->ktime conversion.
1362                  */
1363                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364                         *timeout = 0;
1365         }
1366
1367         return ret;
1368 }
1369
1370 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371                                    struct drm_file *file)
1372 {
1373         struct drm_i915_file_private *file_priv;
1374
1375         WARN_ON(!req || !file || req->file_priv);
1376
1377         if (!req || !file)
1378                 return -EINVAL;
1379
1380         if (req->file_priv)
1381                 return -EINVAL;
1382
1383         file_priv = file->driver_priv;
1384
1385         spin_lock(&file_priv->mm.lock);
1386         req->file_priv = file_priv;
1387         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388         spin_unlock(&file_priv->mm.lock);
1389
1390         req->pid = get_pid(task_pid(current));
1391
1392         return 0;
1393 }
1394
1395 static inline void
1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398         struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400         if (!file_priv)
1401                 return;
1402
1403         spin_lock(&file_priv->mm.lock);
1404         list_del(&request->client_list);
1405         request->file_priv = NULL;
1406         spin_unlock(&file_priv->mm.lock);
1407
1408         put_pid(request->pid);
1409         request->pid = NULL;
1410 }
1411
1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414         trace_i915_gem_request_retire(request);
1415
1416         /* We know the GPU must have read the request to have
1417          * sent us the seqno + interrupt, so use the position
1418          * of tail of the request to update the last known position
1419          * of the GPU head.
1420          *
1421          * Note this requires that we are always called in request
1422          * completion order.
1423          */
1424         request->ringbuf->last_retired_head = request->postfix;
1425
1426         list_del_init(&request->list);
1427         i915_gem_request_remove_from_client(request);
1428
1429         i915_gem_request_unreference(request);
1430 }
1431
1432 static void
1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435         struct intel_engine_cs *engine = req->engine;
1436         struct drm_i915_gem_request *tmp;
1437
1438         lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440         if (list_empty(&req->list))
1441                 return;
1442
1443         do {
1444                 tmp = list_first_entry(&engine->request_list,
1445                                        typeof(*tmp), list);
1446
1447                 i915_gem_request_retire(tmp);
1448         } while (tmp != req);
1449
1450         WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452
1453 /**
1454  * Waits for a request to be signaled, and cleans up the
1455  * request and object lists appropriately for that event.
1456  */
1457 int
1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460         struct drm_device *dev;
1461         struct drm_i915_private *dev_priv;
1462         bool interruptible;
1463         int ret;
1464
1465         BUG_ON(req == NULL);
1466
1467         dev = req->engine->dev;
1468         dev_priv = dev->dev_private;
1469         interruptible = dev_priv->mm.interruptible;
1470
1471         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472
1473         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474         if (ret)
1475                 return ret;
1476
1477         ret = __i915_wait_request(req,
1478                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1479                                   interruptible, NULL, NULL);
1480         if (ret)
1481                 return ret;
1482
1483         __i915_gem_request_retire__upto(req);
1484         return 0;
1485 }
1486
1487 /**
1488  * Ensures that all rendering to the object has completed and the object is
1489  * safe to unbind from the GTT or access from the CPU.
1490  */
1491 int
1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493                                bool readonly)
1494 {
1495         int ret, i;
1496
1497         if (!obj->active)
1498                 return 0;
1499
1500         if (readonly) {
1501                 if (obj->last_write_req != NULL) {
1502                         ret = i915_wait_request(obj->last_write_req);
1503                         if (ret)
1504                                 return ret;
1505
1506                         i = obj->last_write_req->engine->id;
1507                         if (obj->last_read_req[i] == obj->last_write_req)
1508                                 i915_gem_object_retire__read(obj, i);
1509                         else
1510                                 i915_gem_object_retire__write(obj);
1511                 }
1512         } else {
1513                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1514                         if (obj->last_read_req[i] == NULL)
1515                                 continue;
1516
1517                         ret = i915_wait_request(obj->last_read_req[i]);
1518                         if (ret)
1519                                 return ret;
1520
1521                         i915_gem_object_retire__read(obj, i);
1522                 }
1523                 RQ_BUG_ON(obj->active);
1524         }
1525
1526         return 0;
1527 }
1528
1529 static void
1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531                                struct drm_i915_gem_request *req)
1532 {
1533         int ring = req->engine->id;
1534
1535         if (obj->last_read_req[ring] == req)
1536                 i915_gem_object_retire__read(obj, ring);
1537         else if (obj->last_write_req == req)
1538                 i915_gem_object_retire__write(obj);
1539
1540         __i915_gem_request_retire__upto(req);
1541 }
1542
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544  * as the object state may change during this call.
1545  */
1546 static __must_check int
1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548                                             struct intel_rps_client *rps,
1549                                             bool readonly)
1550 {
1551         struct drm_device *dev = obj->base.dev;
1552         struct drm_i915_private *dev_priv = dev->dev_private;
1553         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1554         unsigned reset_counter;
1555         int ret, i, n = 0;
1556
1557         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558         BUG_ON(!dev_priv->mm.interruptible);
1559
1560         if (!obj->active)
1561                 return 0;
1562
1563         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564         if (ret)
1565                 return ret;
1566
1567         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568
1569         if (readonly) {
1570                 struct drm_i915_gem_request *req;
1571
1572                 req = obj->last_write_req;
1573                 if (req == NULL)
1574                         return 0;
1575
1576                 requests[n++] = i915_gem_request_reference(req);
1577         } else {
1578                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1579                         struct drm_i915_gem_request *req;
1580
1581                         req = obj->last_read_req[i];
1582                         if (req == NULL)
1583                                 continue;
1584
1585                         requests[n++] = i915_gem_request_reference(req);
1586                 }
1587         }
1588
1589         mutex_unlock(&dev->struct_mutex);
1590         for (i = 0; ret == 0 && i < n; i++)
1591                 ret = __i915_wait_request(requests[i], reset_counter, true,
1592                                           NULL, rps);
1593         mutex_lock(&dev->struct_mutex);
1594
1595         for (i = 0; i < n; i++) {
1596                 if (ret == 0)
1597                         i915_gem_object_retire_request(obj, requests[i]);
1598                 i915_gem_request_unreference(requests[i]);
1599         }
1600
1601         return ret;
1602 }
1603
1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606         struct drm_i915_file_private *fpriv = file->driver_priv;
1607         return &fpriv->rps;
1608 }
1609
1610 /**
1611  * Called when user space prepares to use an object with the CPU, either
1612  * through the mmap ioctl's mapping or a GTT mapping.
1613  */
1614 int
1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616                           struct drm_file *file)
1617 {
1618         struct drm_i915_gem_set_domain *args = data;
1619         struct drm_i915_gem_object *obj;
1620         uint32_t read_domains = args->read_domains;
1621         uint32_t write_domain = args->write_domain;
1622         int ret;
1623
1624         /* Only handle setting domains to types used by the CPU. */
1625         if (write_domain & I915_GEM_GPU_DOMAINS)
1626                 return -EINVAL;
1627
1628         if (read_domains & I915_GEM_GPU_DOMAINS)
1629                 return -EINVAL;
1630
1631         /* Having something in the write domain implies it's in the read
1632          * domain, and only that read domain.  Enforce that in the request.
1633          */
1634         if (write_domain != 0 && read_domains != write_domain)
1635                 return -EINVAL;
1636
1637         ret = i915_mutex_lock_interruptible(dev);
1638         if (ret)
1639                 return ret;
1640
1641         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642         if (&obj->base == NULL) {
1643                 ret = -ENOENT;
1644                 goto unlock;
1645         }
1646
1647         /* Try to flush the object off the GPU without holding the lock.
1648          * We will repeat the flush holding the lock in the normal manner
1649          * to catch cases where we are gazumped.
1650          */
1651         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652                                                           to_rps_client(file),
1653                                                           !write_domain);
1654         if (ret)
1655                 goto unref;
1656
1657         if (read_domains & I915_GEM_DOMAIN_GTT)
1658                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659         else
1660                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661
1662         if (write_domain != 0)
1663                 intel_fb_obj_invalidate(obj,
1664                                         write_domain == I915_GEM_DOMAIN_GTT ?
1665                                         ORIGIN_GTT : ORIGIN_CPU);
1666
1667 unref:
1668         drm_gem_object_unreference(&obj->base);
1669 unlock:
1670         mutex_unlock(&dev->struct_mutex);
1671         return ret;
1672 }
1673
1674 /**
1675  * Called when user space has done writes to this buffer
1676  */
1677 int
1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679                          struct drm_file *file)
1680 {
1681         struct drm_i915_gem_sw_finish *args = data;
1682         struct drm_i915_gem_object *obj;
1683         int ret = 0;
1684
1685         ret = i915_mutex_lock_interruptible(dev);
1686         if (ret)
1687                 return ret;
1688
1689         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690         if (&obj->base == NULL) {
1691                 ret = -ENOENT;
1692                 goto unlock;
1693         }
1694
1695         /* Pinned buffers may be scanout, so flush the cache */
1696         if (obj->pin_display)
1697                 i915_gem_object_flush_cpu_write_domain(obj);
1698
1699         drm_gem_object_unreference(&obj->base);
1700 unlock:
1701         mutex_unlock(&dev->struct_mutex);
1702         return ret;
1703 }
1704
1705 /**
1706  * Maps the contents of an object, returning the address it is mapped
1707  * into.
1708  *
1709  * While the mapping holds a reference on the contents of the object, it doesn't
1710  * imply a ref on the object itself.
1711  *
1712  * IMPORTANT:
1713  *
1714  * DRM driver writers who look a this function as an example for how to do GEM
1715  * mmap support, please don't implement mmap support like here. The modern way
1716  * to implement DRM mmap support is with an mmap offset ioctl (like
1717  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718  * That way debug tooling like valgrind will understand what's going on, hiding
1719  * the mmap call in a driver private ioctl will break that. The i915 driver only
1720  * does cpu mmaps this way because we didn't know better.
1721  */
1722 int
1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724                     struct drm_file *file)
1725 {
1726         struct drm_i915_gem_mmap *args = data;
1727         struct drm_gem_object *obj;
1728         unsigned long addr;
1729
1730         if (args->flags & ~(I915_MMAP_WC))
1731                 return -EINVAL;
1732
1733         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734                 return -ENODEV;
1735
1736         obj = drm_gem_object_lookup(dev, file, args->handle);
1737         if (obj == NULL)
1738                 return -ENOENT;
1739
1740         /* prime objects have no backing filp to GEM mmap
1741          * pages from.
1742          */
1743         if (!obj->filp) {
1744                 drm_gem_object_unreference_unlocked(obj);
1745                 return -EINVAL;
1746         }
1747
1748         addr = vm_mmap(obj->filp, 0, args->size,
1749                        PROT_READ | PROT_WRITE, MAP_SHARED,
1750                        args->offset);
1751         if (args->flags & I915_MMAP_WC) {
1752                 struct mm_struct *mm = current->mm;
1753                 struct vm_area_struct *vma;
1754
1755                 down_write(&mm->mmap_sem);
1756                 vma = find_vma(mm, addr);
1757                 if (vma)
1758                         vma->vm_page_prot =
1759                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760                 else
1761                         addr = -ENOMEM;
1762                 up_write(&mm->mmap_sem);
1763         }
1764         drm_gem_object_unreference_unlocked(obj);
1765         if (IS_ERR((void *)addr))
1766                 return addr;
1767
1768         args->addr_ptr = (uint64_t) addr;
1769
1770         return 0;
1771 }
1772
1773 /**
1774  * i915_gem_fault - fault a page into the GTT
1775  * @vma: VMA in question
1776  * @vmf: fault info
1777  *
1778  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779  * from userspace.  The fault handler takes care of binding the object to
1780  * the GTT (if needed), allocating and programming a fence register (again,
1781  * only if needed based on whether the old reg is still valid or the object
1782  * is tiled) and inserting a new PTE into the faulting process.
1783  *
1784  * Note that the faulting process may involve evicting existing objects
1785  * from the GTT and/or fence registers to make room.  So performance may
1786  * suffer if the GTT working set is large or there are few fence registers
1787  * left.
1788  */
1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792         struct drm_device *dev = obj->base.dev;
1793         struct drm_i915_private *dev_priv = dev->dev_private;
1794         struct i915_ggtt_view view = i915_ggtt_view_normal;
1795         pgoff_t page_offset;
1796         unsigned long pfn;
1797         int ret = 0;
1798         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799
1800         intel_runtime_pm_get(dev_priv);
1801
1802         /* We don't use vmf->pgoff since that has the fake offset */
1803         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804                 PAGE_SHIFT;
1805
1806         ret = i915_mutex_lock_interruptible(dev);
1807         if (ret)
1808                 goto out;
1809
1810         trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
1812         /* Try to flush the object off the GPU first without holding the lock.
1813          * Upon reacquiring the lock, we will perform our sanity checks and then
1814          * repeat the flush holding the lock in the normal manner to catch cases
1815          * where we are gazumped.
1816          */
1817         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818         if (ret)
1819                 goto unlock;
1820
1821         /* Access to snoopable pages through the GTT is incoherent. */
1822         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823                 ret = -EFAULT;
1824                 goto unlock;
1825         }
1826
1827         /* Use a partial view if the object is bigger than the aperture. */
1828         if (obj->base.size >= dev_priv->ggtt.mappable_end &&
1829             obj->tiling_mode == I915_TILING_NONE) {
1830                 static const unsigned int chunk_size = 256; // 1 MiB
1831
1832                 memset(&view, 0, sizeof(view));
1833                 view.type = I915_GGTT_VIEW_PARTIAL;
1834                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835                 view.params.partial.size =
1836                         min_t(unsigned int,
1837                               chunk_size,
1838                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839                               view.params.partial.offset);
1840         }
1841
1842         /* Now pin it into the GTT if needed */
1843         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844         if (ret)
1845                 goto unlock;
1846
1847         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848         if (ret)
1849                 goto unpin;
1850
1851         ret = i915_gem_object_get_fence(obj);
1852         if (ret)
1853                 goto unpin;
1854
1855         /* Finally, remap it using the new GTT offset */
1856         pfn = dev_priv->ggtt.mappable_base +
1857                 i915_gem_obj_ggtt_offset_view(obj, &view);
1858         pfn >>= PAGE_SHIFT;
1859
1860         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861                 /* Overriding existing pages in partial view does not cause
1862                  * us any trouble as TLBs are still valid because the fault
1863                  * is due to userspace losing part of the mapping or never
1864                  * having accessed it before (at this partials' range).
1865                  */
1866                 unsigned long base = vma->vm_start +
1867                                      (view.params.partial.offset << PAGE_SHIFT);
1868                 unsigned int i;
1869
1870                 for (i = 0; i < view.params.partial.size; i++) {
1871                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872                         if (ret)
1873                                 break;
1874                 }
1875
1876                 obj->fault_mappable = true;
1877         } else {
1878                 if (!obj->fault_mappable) {
1879                         unsigned long size = min_t(unsigned long,
1880                                                    vma->vm_end - vma->vm_start,
1881                                                    obj->base.size);
1882                         int i;
1883
1884                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885                                 ret = vm_insert_pfn(vma,
1886                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887                                                     pfn + i);
1888                                 if (ret)
1889                                         break;
1890                         }
1891
1892                         obj->fault_mappable = true;
1893                 } else
1894                         ret = vm_insert_pfn(vma,
1895                                             (unsigned long)vmf->virtual_address,
1896                                             pfn + page_offset);
1897         }
1898 unpin:
1899         i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901         mutex_unlock(&dev->struct_mutex);
1902 out:
1903         switch (ret) {
1904         case -EIO:
1905                 /*
1906                  * We eat errors when the gpu is terminally wedged to avoid
1907                  * userspace unduly crashing (gl has no provisions for mmaps to
1908                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909                  * and so needs to be reported.
1910                  */
1911                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912                         ret = VM_FAULT_SIGBUS;
1913                         break;
1914                 }
1915         case -EAGAIN:
1916                 /*
1917                  * EAGAIN means the gpu is hung and we'll wait for the error
1918                  * handler to reset everything when re-faulting in
1919                  * i915_mutex_lock_interruptible.
1920                  */
1921         case 0:
1922         case -ERESTARTSYS:
1923         case -EINTR:
1924         case -EBUSY:
1925                 /*
1926                  * EBUSY is ok: this just means that another thread
1927                  * already did the job.
1928                  */
1929                 ret = VM_FAULT_NOPAGE;
1930                 break;
1931         case -ENOMEM:
1932                 ret = VM_FAULT_OOM;
1933                 break;
1934         case -ENOSPC:
1935         case -EFAULT:
1936                 ret = VM_FAULT_SIGBUS;
1937                 break;
1938         default:
1939                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940                 ret = VM_FAULT_SIGBUS;
1941                 break;
1942         }
1943
1944         intel_runtime_pm_put(dev_priv);
1945         return ret;
1946 }
1947
1948 /**
1949  * i915_gem_release_mmap - remove physical page mappings
1950  * @obj: obj in question
1951  *
1952  * Preserve the reservation of the mmapping with the DRM core code, but
1953  * relinquish ownership of the pages back to the system.
1954  *
1955  * It is vital that we remove the page mapping if we have mapped a tiled
1956  * object through the GTT and then lose the fence register due to
1957  * resource pressure. Similarly if the object has been moved out of the
1958  * aperture, than pages mapped into userspace must be revoked. Removing the
1959  * mapping will then trigger a page fault on the next user access, allowing
1960  * fixup by i915_gem_fault().
1961  */
1962 void
1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965         if (!obj->fault_mappable)
1966                 return;
1967
1968         drm_vma_node_unmap(&obj->base.vma_node,
1969                            obj->base.dev->anon_inode->i_mapping);
1970         obj->fault_mappable = false;
1971 }
1972
1973 void
1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976         struct drm_i915_gem_object *obj;
1977
1978         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979                 i915_gem_release_mmap(obj);
1980 }
1981
1982 uint32_t
1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985         uint32_t gtt_size;
1986
1987         if (INTEL_INFO(dev)->gen >= 4 ||
1988             tiling_mode == I915_TILING_NONE)
1989                 return size;
1990
1991         /* Previous chips need a power-of-two fence region when tiling */
1992         if (INTEL_INFO(dev)->gen == 3)
1993                 gtt_size = 1024*1024;
1994         else
1995                 gtt_size = 512*1024;
1996
1997         while (gtt_size < size)
1998                 gtt_size <<= 1;
1999
2000         return gtt_size;
2001 }
2002
2003 /**
2004  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005  * @obj: object to check
2006  *
2007  * Return the required GTT alignment for an object, taking into account
2008  * potential fence register mapping.
2009  */
2010 uint32_t
2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012                            int tiling_mode, bool fenced)
2013 {
2014         /*
2015          * Minimum alignment is 4k (GTT page size), but might be greater
2016          * if a fence register is needed for the object.
2017          */
2018         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019             tiling_mode == I915_TILING_NONE)
2020                 return 4096;
2021
2022         /*
2023          * Previous chips need to be aligned to the size of the smallest
2024          * fence register that can contain the object.
2025          */
2026         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028
2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032         int ret;
2033
2034         if (drm_vma_node_has_offset(&obj->base.vma_node))
2035                 return 0;
2036
2037         dev_priv->mm.shrinker_no_lock_stealing = true;
2038
2039         ret = drm_gem_create_mmap_offset(&obj->base);
2040         if (ret != -ENOSPC)
2041                 goto out;
2042
2043         /* Badly fragmented mmap space? The only way we can recover
2044          * space is by destroying unwanted objects. We can't randomly release
2045          * mmap_offsets as userspace expects them to be persistent for the
2046          * lifetime of the objects. The closest we can is to release the
2047          * offsets on purgeable objects by truncating it and marking it purged,
2048          * which prevents userspace from ever using that object again.
2049          */
2050         i915_gem_shrink(dev_priv,
2051                         obj->base.size >> PAGE_SHIFT,
2052                         I915_SHRINK_BOUND |
2053                         I915_SHRINK_UNBOUND |
2054                         I915_SHRINK_PURGEABLE);
2055         ret = drm_gem_create_mmap_offset(&obj->base);
2056         if (ret != -ENOSPC)
2057                 goto out;
2058
2059         i915_gem_shrink_all(dev_priv);
2060         ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062         dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064         return ret;
2065 }
2066
2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069         drm_gem_free_mmap_offset(&obj->base);
2070 }
2071
2072 int
2073 i915_gem_mmap_gtt(struct drm_file *file,
2074                   struct drm_device *dev,
2075                   uint32_t handle,
2076                   uint64_t *offset)
2077 {
2078         struct drm_i915_gem_object *obj;
2079         int ret;
2080
2081         ret = i915_mutex_lock_interruptible(dev);
2082         if (ret)
2083                 return ret;
2084
2085         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086         if (&obj->base == NULL) {
2087                 ret = -ENOENT;
2088                 goto unlock;
2089         }
2090
2091         if (obj->madv != I915_MADV_WILLNEED) {
2092                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093                 ret = -EFAULT;
2094                 goto out;
2095         }
2096
2097         ret = i915_gem_object_create_mmap_offset(obj);
2098         if (ret)
2099                 goto out;
2100
2101         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102
2103 out:
2104         drm_gem_object_unreference(&obj->base);
2105 unlock:
2106         mutex_unlock(&dev->struct_mutex);
2107         return ret;
2108 }
2109
2110 /**
2111  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112  * @dev: DRM device
2113  * @data: GTT mapping ioctl data
2114  * @file: GEM object info
2115  *
2116  * Simply returns the fake offset to userspace so it can mmap it.
2117  * The mmap call will end up in drm_gem_mmap(), which will set things
2118  * up so we can get faults in the handler above.
2119  *
2120  * The fault handler will take care of binding the object into the GTT
2121  * (since it may have been evicted to make room for something), allocating
2122  * a fence register, and mapping the appropriate aperture address into
2123  * userspace.
2124  */
2125 int
2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127                         struct drm_file *file)
2128 {
2129         struct drm_i915_gem_mmap_gtt *args = data;
2130
2131         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133
2134 /* Immediately discard the backing storage */
2135 static void
2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138         i915_gem_object_free_mmap_offset(obj);
2139
2140         if (obj->base.filp == NULL)
2141                 return;
2142
2143         /* Our goal here is to return as much of the memory as
2144          * is possible back to the system as we are called from OOM.
2145          * To do this we must instruct the shmfs to drop all of its
2146          * backing pages, *now*.
2147          */
2148         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149         obj->madv = __I915_MADV_PURGED;
2150 }
2151
2152 /* Try to discard unwanted pages */
2153 static void
2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156         struct address_space *mapping;
2157
2158         switch (obj->madv) {
2159         case I915_MADV_DONTNEED:
2160                 i915_gem_object_truncate(obj);
2161         case __I915_MADV_PURGED:
2162                 return;
2163         }
2164
2165         if (obj->base.filp == NULL)
2166                 return;
2167
2168         mapping = file_inode(obj->base.filp)->i_mapping,
2169         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171
2172 static void
2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175         struct sg_page_iter sg_iter;
2176         int ret;
2177
2178         BUG_ON(obj->madv == __I915_MADV_PURGED);
2179
2180         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181         if (ret) {
2182                 /* In the event of a disaster, abandon all caches and
2183                  * hope for the best.
2184                  */
2185                 WARN_ON(ret != -EIO);
2186                 i915_gem_clflush_object(obj, true);
2187                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188         }
2189
2190         i915_gem_gtt_finish_object(obj);
2191
2192         if (i915_gem_object_needs_bit17_swizzle(obj))
2193                 i915_gem_object_save_bit_17_swizzle(obj);
2194
2195         if (obj->madv == I915_MADV_DONTNEED)
2196                 obj->dirty = 0;
2197
2198         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199                 struct page *page = sg_page_iter_page(&sg_iter);
2200
2201                 if (obj->dirty)
2202                         set_page_dirty(page);
2203
2204                 if (obj->madv == I915_MADV_WILLNEED)
2205                         mark_page_accessed(page);
2206
2207                 page_cache_release(page);
2208         }
2209         obj->dirty = 0;
2210
2211         sg_free_table(obj->pages);
2212         kfree(obj->pages);
2213 }
2214
2215 int
2216 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217 {
2218         const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2220         if (obj->pages == NULL)
2221                 return 0;
2222
2223         if (obj->pages_pin_count)
2224                 return -EBUSY;
2225
2226         BUG_ON(i915_gem_obj_bound_any(obj));
2227
2228         /* ->put_pages might need to allocate memory for the bit17 swizzle
2229          * array, hence protect them from being reaped by removing them from gtt
2230          * lists early. */
2231         list_del(&obj->global_list);
2232
2233         ops->put_pages(obj);
2234         obj->pages = NULL;
2235
2236         i915_gem_object_invalidate(obj);
2237
2238         return 0;
2239 }
2240
2241 static int
2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243 {
2244         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245         int page_count, i;
2246         struct address_space *mapping;
2247         struct sg_table *st;
2248         struct scatterlist *sg;
2249         struct sg_page_iter sg_iter;
2250         struct page *page;
2251         unsigned long last_pfn = 0;     /* suppress gcc warning */
2252         int ret;
2253         gfp_t gfp;
2254
2255         /* Assert that the object is not currently in any GPU domain. As it
2256          * wasn't in the GTT, there shouldn't be any way it could have been in
2257          * a GPU cache
2258          */
2259         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
2262         st = kmalloc(sizeof(*st), GFP_KERNEL);
2263         if (st == NULL)
2264                 return -ENOMEM;
2265
2266         page_count = obj->base.size / PAGE_SIZE;
2267         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2268                 kfree(st);
2269                 return -ENOMEM;
2270         }
2271
2272         /* Get the list of pages out of our struct file.  They'll be pinned
2273          * at this point until we release them.
2274          *
2275          * Fail silently without starting the shrinker
2276          */
2277         mapping = file_inode(obj->base.filp)->i_mapping;
2278         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280         sg = st->sgl;
2281         st->nents = 0;
2282         for (i = 0; i < page_count; i++) {
2283                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284                 if (IS_ERR(page)) {
2285                         i915_gem_shrink(dev_priv,
2286                                         page_count,
2287                                         I915_SHRINK_BOUND |
2288                                         I915_SHRINK_UNBOUND |
2289                                         I915_SHRINK_PURGEABLE);
2290                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291                 }
2292                 if (IS_ERR(page)) {
2293                         /* We've tried hard to allocate the memory by reaping
2294                          * our own buffer, now let the real VM do its job and
2295                          * go down in flames if truly OOM.
2296                          */
2297                         i915_gem_shrink_all(dev_priv);
2298                         page = shmem_read_mapping_page(mapping, i);
2299                         if (IS_ERR(page)) {
2300                                 ret = PTR_ERR(page);
2301                                 goto err_pages;
2302                         }
2303                 }
2304 #ifdef CONFIG_SWIOTLB
2305                 if (swiotlb_nr_tbl()) {
2306                         st->nents++;
2307                         sg_set_page(sg, page, PAGE_SIZE, 0);
2308                         sg = sg_next(sg);
2309                         continue;
2310                 }
2311 #endif
2312                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313                         if (i)
2314                                 sg = sg_next(sg);
2315                         st->nents++;
2316                         sg_set_page(sg, page, PAGE_SIZE, 0);
2317                 } else {
2318                         sg->length += PAGE_SIZE;
2319                 }
2320                 last_pfn = page_to_pfn(page);
2321
2322                 /* Check that the i965g/gm workaround works. */
2323                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324         }
2325 #ifdef CONFIG_SWIOTLB
2326         if (!swiotlb_nr_tbl())
2327 #endif
2328                 sg_mark_end(sg);
2329         obj->pages = st;
2330
2331         ret = i915_gem_gtt_prepare_object(obj);
2332         if (ret)
2333                 goto err_pages;
2334
2335         if (i915_gem_object_needs_bit17_swizzle(obj))
2336                 i915_gem_object_do_bit_17_swizzle(obj);
2337
2338         if (obj->tiling_mode != I915_TILING_NONE &&
2339             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340                 i915_gem_object_pin_pages(obj);
2341
2342         return 0;
2343
2344 err_pages:
2345         sg_mark_end(sg);
2346         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347                 page_cache_release(sg_page_iter_page(&sg_iter));
2348         sg_free_table(st);
2349         kfree(st);
2350
2351         /* shmemfs first checks if there is enough memory to allocate the page
2352          * and reports ENOSPC should there be insufficient, along with the usual
2353          * ENOMEM for a genuine allocation failure.
2354          *
2355          * We use ENOSPC in our driver to mean that we have run out of aperture
2356          * space and so want to translate the error from shmemfs back to our
2357          * usual understanding of ENOMEM.
2358          */
2359         if (ret == -ENOSPC)
2360                 ret = -ENOMEM;
2361
2362         return ret;
2363 }
2364
2365 /* Ensure that the associated pages are gathered from the backing storage
2366  * and pinned into our object. i915_gem_object_get_pages() may be called
2367  * multiple times before they are released by a single call to
2368  * i915_gem_object_put_pages() - once the pages are no longer referenced
2369  * either as a result of memory pressure (reaping pages under the shrinker)
2370  * or as the object is itself released.
2371  */
2372 int
2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374 {
2375         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376         const struct drm_i915_gem_object_ops *ops = obj->ops;
2377         int ret;
2378
2379         if (obj->pages)
2380                 return 0;
2381
2382         if (obj->madv != I915_MADV_WILLNEED) {
2383                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384                 return -EFAULT;
2385         }
2386
2387         BUG_ON(obj->pages_pin_count);
2388
2389         ret = ops->get_pages(obj);
2390         if (ret)
2391                 return ret;
2392
2393         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394
2395         obj->get_page.sg = obj->pages->sgl;
2396         obj->get_page.last = 0;
2397
2398         return 0;
2399 }
2400
2401 void i915_vma_move_to_active(struct i915_vma *vma,
2402                              struct drm_i915_gem_request *req)
2403 {
2404         struct drm_i915_gem_object *obj = vma->obj;
2405         struct intel_engine_cs *engine;
2406
2407         engine = i915_gem_request_get_engine(req);
2408
2409         /* Add a reference if we're newly entering the active list. */
2410         if (obj->active == 0)
2411                 drm_gem_object_reference(&obj->base);
2412         obj->active |= intel_engine_flag(engine);
2413
2414         list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2415         i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2416
2417         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2418 }
2419
2420 static void
2421 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2422 {
2423         RQ_BUG_ON(obj->last_write_req == NULL);
2424         RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2425
2426         i915_gem_request_assign(&obj->last_write_req, NULL);
2427         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2428 }
2429
2430 static void
2431 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2432 {
2433         struct i915_vma *vma;
2434
2435         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436         RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
2438         list_del_init(&obj->engine_list[ring]);
2439         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
2441         if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2442                 i915_gem_object_retire__write(obj);
2443
2444         obj->active &= ~(1 << ring);
2445         if (obj->active)
2446                 return;
2447
2448         /* Bump our place on the bound list to keep it roughly in LRU order
2449          * so that we don't steal from recently used but inactive objects
2450          * (unless we are forced to ofc!)
2451          */
2452         list_move_tail(&obj->global_list,
2453                        &to_i915(obj->base.dev)->mm.bound_list);
2454
2455         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2456                 if (!list_empty(&vma->vm_link))
2457                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2458         }
2459
2460         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2461         drm_gem_object_unreference(&obj->base);
2462 }
2463
2464 static int
2465 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2466 {
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_engine_cs *engine;
2469         int ret, j;
2470
2471         /* Carefully retire all requests without writing to the rings */
2472         for_each_engine(engine, dev_priv) {
2473                 ret = intel_engine_idle(engine);
2474                 if (ret)
2475                         return ret;
2476         }
2477         i915_gem_retire_requests(dev);
2478
2479         /* Finally reset hw state */
2480         for_each_engine(engine, dev_priv) {
2481                 intel_ring_init_seqno(engine, seqno);
2482
2483                 for (j = 0; j < ARRAY_SIZE(engine->semaphore.sync_seqno); j++)
2484                         engine->semaphore.sync_seqno[j] = 0;
2485         }
2486
2487         return 0;
2488 }
2489
2490 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491 {
2492         struct drm_i915_private *dev_priv = dev->dev_private;
2493         int ret;
2494
2495         if (seqno == 0)
2496                 return -EINVAL;
2497
2498         /* HWS page needs to be set less than what we
2499          * will inject to ring
2500          */
2501         ret = i915_gem_init_seqno(dev, seqno - 1);
2502         if (ret)
2503                 return ret;
2504
2505         /* Carefully set the last_seqno value so that wrap
2506          * detection still works
2507          */
2508         dev_priv->next_seqno = seqno;
2509         dev_priv->last_seqno = seqno - 1;
2510         if (dev_priv->last_seqno == 0)
2511                 dev_priv->last_seqno--;
2512
2513         return 0;
2514 }
2515
2516 int
2517 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2518 {
2519         struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521         /* reserve 0 for non-seqno */
2522         if (dev_priv->next_seqno == 0) {
2523                 int ret = i915_gem_init_seqno(dev, 0);
2524                 if (ret)
2525                         return ret;
2526
2527                 dev_priv->next_seqno = 1;
2528         }
2529
2530         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2531         return 0;
2532 }
2533
2534 /*
2535  * NB: This function is not allowed to fail. Doing so would mean the the
2536  * request is not being tracked for completion but the work itself is
2537  * going to happen on the hardware. This would be a Bad Thing(tm).
2538  */
2539 void __i915_add_request(struct drm_i915_gem_request *request,
2540                         struct drm_i915_gem_object *obj,
2541                         bool flush_caches)
2542 {
2543         struct intel_engine_cs *engine;
2544         struct drm_i915_private *dev_priv;
2545         struct intel_ringbuffer *ringbuf;
2546         u32 request_start;
2547         int ret;
2548
2549         if (WARN_ON(request == NULL))
2550                 return;
2551
2552         engine = request->engine;
2553         dev_priv = request->i915;
2554         ringbuf = request->ringbuf;
2555
2556         /*
2557          * To ensure that this call will not fail, space for its emissions
2558          * should already have been reserved in the ring buffer. Let the ring
2559          * know that it is time to use that space up.
2560          */
2561         intel_ring_reserved_space_use(ringbuf);
2562
2563         request_start = intel_ring_get_tail(ringbuf);
2564         /*
2565          * Emit any outstanding flushes - execbuf can fail to emit the flush
2566          * after having emitted the batchbuffer command. Hence we need to fix
2567          * things up similar to emitting the lazy request. The difference here
2568          * is that the flush _must_ happen before the next request, no matter
2569          * what.
2570          */
2571         if (flush_caches) {
2572                 if (i915.enable_execlists)
2573                         ret = logical_ring_flush_all_caches(request);
2574                 else
2575                         ret = intel_ring_flush_all_caches(request);
2576                 /* Not allowed to fail! */
2577                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578         }
2579
2580         /* Record the position of the start of the request so that
2581          * should we detect the updated seqno part-way through the
2582          * GPU processing the request, we never over-estimate the
2583          * position of the head.
2584          */
2585         request->postfix = intel_ring_get_tail(ringbuf);
2586
2587         if (i915.enable_execlists)
2588                 ret = engine->emit_request(request);
2589         else {
2590                 ret = engine->add_request(request);
2591
2592                 request->tail = intel_ring_get_tail(ringbuf);
2593         }
2594         /* Not allowed to fail! */
2595         WARN(ret, "emit|add_request failed: %d!\n", ret);
2596
2597         request->head = request_start;
2598
2599         /* Whilst this request exists, batch_obj will be on the
2600          * active_list, and so will hold the active reference. Only when this
2601          * request is retired will the the batch_obj be moved onto the
2602          * inactive_list and lose its active reference. Hence we do not need
2603          * to explicitly hold another reference here.
2604          */
2605         request->batch_obj = obj;
2606
2607         request->emitted_jiffies = jiffies;
2608         request->previous_seqno = engine->last_submitted_seqno;
2609         engine->last_submitted_seqno = request->seqno;
2610         list_add_tail(&request->list, &engine->request_list);
2611
2612         trace_i915_gem_request_add(request);
2613
2614         i915_queue_hangcheck(engine->dev);
2615
2616         queue_delayed_work(dev_priv->wq,
2617                            &dev_priv->mm.retire_work,
2618                            round_jiffies_up_relative(HZ));
2619         intel_mark_busy(dev_priv->dev);
2620
2621         /* Sanity check that the reserved size was large enough. */
2622         intel_ring_reserved_space_end(ringbuf);
2623 }
2624
2625 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2626                                    const struct intel_context *ctx)
2627 {
2628         unsigned long elapsed;
2629
2630         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632         if (ctx->hang_stats.banned)
2633                 return true;
2634
2635         if (ctx->hang_stats.ban_period_seconds &&
2636             elapsed <= ctx->hang_stats.ban_period_seconds) {
2637                 if (!i915_gem_context_is_default(ctx)) {
2638                         DRM_DEBUG("context hanging too fast, banning!\n");
2639                         return true;
2640                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641                         if (i915_stop_ring_allow_warn(dev_priv))
2642                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2643                         return true;
2644                 }
2645         }
2646
2647         return false;
2648 }
2649
2650 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2651                                   struct intel_context *ctx,
2652                                   const bool guilty)
2653 {
2654         struct i915_ctx_hang_stats *hs;
2655
2656         if (WARN_ON(!ctx))
2657                 return;
2658
2659         hs = &ctx->hang_stats;
2660
2661         if (guilty) {
2662                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2663                 hs->batch_active++;
2664                 hs->guilty_ts = get_seconds();
2665         } else {
2666                 hs->batch_pending++;
2667         }
2668 }
2669
2670 void i915_gem_request_free(struct kref *req_ref)
2671 {
2672         struct drm_i915_gem_request *req = container_of(req_ref,
2673                                                  typeof(*req), ref);
2674         struct intel_context *ctx = req->ctx;
2675
2676         if (req->file_priv)
2677                 i915_gem_request_remove_from_client(req);
2678
2679         if (ctx) {
2680                 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2681                         intel_lr_context_unpin(ctx, req->engine);
2682
2683                 i915_gem_context_unreference(ctx);
2684         }
2685
2686         kmem_cache_free(req->i915->requests, req);
2687 }
2688
2689 static inline int
2690 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2691                          struct intel_context *ctx,
2692                          struct drm_i915_gem_request **req_out)
2693 {
2694         struct drm_i915_private *dev_priv = to_i915(engine->dev);
2695         struct drm_i915_gem_request *req;
2696         int ret;
2697
2698         if (!req_out)
2699                 return -EINVAL;
2700
2701         *req_out = NULL;
2702
2703         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2704         if (req == NULL)
2705                 return -ENOMEM;
2706
2707         ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2708         if (ret)
2709                 goto err;
2710
2711         kref_init(&req->ref);
2712         req->i915 = dev_priv;
2713         req->engine = engine;
2714         req->ctx  = ctx;
2715         i915_gem_context_reference(req->ctx);
2716
2717         if (i915.enable_execlists)
2718                 ret = intel_logical_ring_alloc_request_extras(req);
2719         else
2720                 ret = intel_ring_alloc_request_extras(req);
2721         if (ret) {
2722                 i915_gem_context_unreference(req->ctx);
2723                 goto err;
2724         }
2725
2726         /*
2727          * Reserve space in the ring buffer for all the commands required to
2728          * eventually emit this request. This is to guarantee that the
2729          * i915_add_request() call can't fail. Note that the reserve may need
2730          * to be redone if the request is not actually submitted straight
2731          * away, e.g. because a GPU scheduler has deferred it.
2732          */
2733         if (i915.enable_execlists)
2734                 ret = intel_logical_ring_reserve_space(req);
2735         else
2736                 ret = intel_ring_reserve_space(req);
2737         if (ret) {
2738                 /*
2739                  * At this point, the request is fully allocated even if not
2740                  * fully prepared. Thus it can be cleaned up using the proper
2741                  * free code.
2742                  */
2743                 i915_gem_request_cancel(req);
2744                 return ret;
2745         }
2746
2747         *req_out = req;
2748         return 0;
2749
2750 err:
2751         kmem_cache_free(dev_priv->requests, req);
2752         return ret;
2753 }
2754
2755 /**
2756  * i915_gem_request_alloc - allocate a request structure
2757  *
2758  * @engine: engine that we wish to issue the request on.
2759  * @ctx: context that the request will be associated with.
2760  *       This can be NULL if the request is not directly related to
2761  *       any specific user context, in which case this function will
2762  *       choose an appropriate context to use.
2763  *
2764  * Returns a pointer to the allocated request if successful,
2765  * or an error code if not.
2766  */
2767 struct drm_i915_gem_request *
2768 i915_gem_request_alloc(struct intel_engine_cs *engine,
2769                        struct intel_context *ctx)
2770 {
2771         struct drm_i915_gem_request *req;
2772         int err;
2773
2774         if (ctx == NULL)
2775                 ctx = to_i915(engine->dev)->kernel_context;
2776         err = __i915_gem_request_alloc(engine, ctx, &req);
2777         return err ? ERR_PTR(err) : req;
2778 }
2779
2780 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2781 {
2782         intel_ring_reserved_space_cancel(req->ringbuf);
2783
2784         i915_gem_request_unreference(req);
2785 }
2786
2787 struct drm_i915_gem_request *
2788 i915_gem_find_active_request(struct intel_engine_cs *engine)
2789 {
2790         struct drm_i915_gem_request *request;
2791
2792         list_for_each_entry(request, &engine->request_list, list) {
2793                 if (i915_gem_request_completed(request, false))
2794                         continue;
2795
2796                 return request;
2797         }
2798
2799         return NULL;
2800 }
2801
2802 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2803                                        struct intel_engine_cs *engine)
2804 {
2805         struct drm_i915_gem_request *request;
2806         bool ring_hung;
2807
2808         request = i915_gem_find_active_request(engine);
2809
2810         if (request == NULL)
2811                 return;
2812
2813         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2814
2815         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2816
2817         list_for_each_entry_continue(request, &engine->request_list, list)
2818                 i915_set_reset_status(dev_priv, request->ctx, false);
2819 }
2820
2821 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2822                                         struct intel_engine_cs *engine)
2823 {
2824         struct intel_ringbuffer *buffer;
2825
2826         while (!list_empty(&engine->active_list)) {
2827                 struct drm_i915_gem_object *obj;
2828
2829                 obj = list_first_entry(&engine->active_list,
2830                                        struct drm_i915_gem_object,
2831                                        engine_list[engine->id]);
2832
2833                 i915_gem_object_retire__read(obj, engine->id);
2834         }
2835
2836         /*
2837          * Clear the execlists queue up before freeing the requests, as those
2838          * are the ones that keep the context and ringbuffer backing objects
2839          * pinned in place.
2840          */
2841
2842         if (i915.enable_execlists) {
2843                 spin_lock_irq(&engine->execlist_lock);
2844
2845                 /* list_splice_tail_init checks for empty lists */
2846                 list_splice_tail_init(&engine->execlist_queue,
2847                                       &engine->execlist_retired_req_list);
2848
2849                 spin_unlock_irq(&engine->execlist_lock);
2850                 intel_execlists_retire_requests(engine);
2851         }
2852
2853         /*
2854          * We must free the requests after all the corresponding objects have
2855          * been moved off active lists. Which is the same order as the normal
2856          * retire_requests function does. This is important if object hold
2857          * implicit references on things like e.g. ppgtt address spaces through
2858          * the request.
2859          */
2860         while (!list_empty(&engine->request_list)) {
2861                 struct drm_i915_gem_request *request;
2862
2863                 request = list_first_entry(&engine->request_list,
2864                                            struct drm_i915_gem_request,
2865                                            list);
2866
2867                 i915_gem_request_retire(request);
2868         }
2869
2870         /* Having flushed all requests from all queues, we know that all
2871          * ringbuffers must now be empty. However, since we do not reclaim
2872          * all space when retiring the request (to prevent HEADs colliding
2873          * with rapid ringbuffer wraparound) the amount of available space
2874          * upon reset is less than when we start. Do one more pass over
2875          * all the ringbuffers to reset last_retired_head.
2876          */
2877         list_for_each_entry(buffer, &engine->buffers, link) {
2878                 buffer->last_retired_head = buffer->tail;
2879                 intel_ring_update_space(buffer);
2880         }
2881 }
2882
2883 void i915_gem_reset(struct drm_device *dev)
2884 {
2885         struct drm_i915_private *dev_priv = dev->dev_private;
2886         struct intel_engine_cs *engine;
2887
2888         /*
2889          * Before we free the objects from the requests, we need to inspect
2890          * them for finding the guilty party. As the requests only borrow
2891          * their reference to the objects, the inspection must be done first.
2892          */
2893         for_each_engine(engine, dev_priv)
2894                 i915_gem_reset_engine_status(dev_priv, engine);
2895
2896         for_each_engine(engine, dev_priv)
2897                 i915_gem_reset_engine_cleanup(dev_priv, engine);
2898
2899         i915_gem_context_reset(dev);
2900
2901         i915_gem_restore_fences(dev);
2902
2903         WARN_ON(i915_verify_lists(dev));
2904 }
2905
2906 /**
2907  * This function clears the request list as sequence numbers are passed.
2908  */
2909 void
2910 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2911 {
2912         WARN_ON(i915_verify_lists(engine->dev));
2913
2914         /* Retire requests first as we use it above for the early return.
2915          * If we retire requests last, we may use a later seqno and so clear
2916          * the requests lists without clearing the active list, leading to
2917          * confusion.
2918          */
2919         while (!list_empty(&engine->request_list)) {
2920                 struct drm_i915_gem_request *request;
2921
2922                 request = list_first_entry(&engine->request_list,
2923                                            struct drm_i915_gem_request,
2924                                            list);
2925
2926                 if (!i915_gem_request_completed(request, true))
2927                         break;
2928
2929                 i915_gem_request_retire(request);
2930         }
2931
2932         /* Move any buffers on the active list that are no longer referenced
2933          * by the ringbuffer to the flushing/inactive lists as appropriate,
2934          * before we free the context associated with the requests.
2935          */
2936         while (!list_empty(&engine->active_list)) {
2937                 struct drm_i915_gem_object *obj;
2938
2939                 obj = list_first_entry(&engine->active_list,
2940                                        struct drm_i915_gem_object,
2941                                        engine_list[engine->id]);
2942
2943                 if (!list_empty(&obj->last_read_req[engine->id]->list))
2944                         break;
2945
2946                 i915_gem_object_retire__read(obj, engine->id);
2947         }
2948
2949         if (unlikely(engine->trace_irq_req &&
2950                      i915_gem_request_completed(engine->trace_irq_req, true))) {
2951                 engine->irq_put(engine);
2952                 i915_gem_request_assign(&engine->trace_irq_req, NULL);
2953         }
2954
2955         WARN_ON(i915_verify_lists(engine->dev));
2956 }
2957
2958 bool
2959 i915_gem_retire_requests(struct drm_device *dev)
2960 {
2961         struct drm_i915_private *dev_priv = dev->dev_private;
2962         struct intel_engine_cs *engine;
2963         bool idle = true;
2964
2965         for_each_engine(engine, dev_priv) {
2966                 i915_gem_retire_requests_ring(engine);
2967                 idle &= list_empty(&engine->request_list);
2968                 if (i915.enable_execlists) {
2969                         spin_lock_irq(&engine->execlist_lock);
2970                         idle &= list_empty(&engine->execlist_queue);
2971                         spin_unlock_irq(&engine->execlist_lock);
2972
2973                         intel_execlists_retire_requests(engine);
2974                 }
2975         }
2976
2977         if (idle)
2978                 mod_delayed_work(dev_priv->wq,
2979                                    &dev_priv->mm.idle_work,
2980                                    msecs_to_jiffies(100));
2981
2982         return idle;
2983 }
2984
2985 static void
2986 i915_gem_retire_work_handler(struct work_struct *work)
2987 {
2988         struct drm_i915_private *dev_priv =
2989                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2990         struct drm_device *dev = dev_priv->dev;
2991         bool idle;
2992
2993         /* Come back later if the device is busy... */
2994         idle = false;
2995         if (mutex_trylock(&dev->struct_mutex)) {
2996                 idle = i915_gem_retire_requests(dev);
2997                 mutex_unlock(&dev->struct_mutex);
2998         }
2999         if (!idle)
3000                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3001                                    round_jiffies_up_relative(HZ));
3002 }
3003
3004 static void
3005 i915_gem_idle_work_handler(struct work_struct *work)
3006 {
3007         struct drm_i915_private *dev_priv =
3008                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3009         struct drm_device *dev = dev_priv->dev;
3010         struct intel_engine_cs *engine;
3011
3012         for_each_engine(engine, dev_priv)
3013                 if (!list_empty(&engine->request_list))
3014                         return;
3015
3016         /* we probably should sync with hangcheck here, using cancel_work_sync.
3017          * Also locking seems to be fubar here, engine->request_list is protected
3018          * by dev->struct_mutex. */
3019
3020         intel_mark_idle(dev);
3021
3022         if (mutex_trylock(&dev->struct_mutex)) {
3023                 for_each_engine(engine, dev_priv)
3024                         i915_gem_batch_pool_fini(&engine->batch_pool);
3025
3026                 mutex_unlock(&dev->struct_mutex);
3027         }
3028 }
3029
3030 /**
3031  * Ensures that an object will eventually get non-busy by flushing any required
3032  * write domains, emitting any outstanding lazy request and retiring and
3033  * completed requests.
3034  */
3035 static int
3036 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3037 {
3038         int i;
3039
3040         if (!obj->active)
3041                 return 0;
3042
3043         for (i = 0; i < I915_NUM_ENGINES; i++) {
3044                 struct drm_i915_gem_request *req;
3045
3046                 req = obj->last_read_req[i];
3047                 if (req == NULL)
3048                         continue;
3049
3050                 if (list_empty(&req->list))
3051                         goto retire;
3052
3053                 if (i915_gem_request_completed(req, true)) {
3054                         __i915_gem_request_retire__upto(req);
3055 retire:
3056                         i915_gem_object_retire__read(obj, i);
3057                 }
3058         }
3059
3060         return 0;
3061 }
3062
3063 /**
3064  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3065  * @DRM_IOCTL_ARGS: standard ioctl arguments
3066  *
3067  * Returns 0 if successful, else an error is returned with the remaining time in
3068  * the timeout parameter.
3069  *  -ETIME: object is still busy after timeout
3070  *  -ERESTARTSYS: signal interrupted the wait
3071  *  -ENONENT: object doesn't exist
3072  * Also possible, but rare:
3073  *  -EAGAIN: GPU wedged
3074  *  -ENOMEM: damn
3075  *  -ENODEV: Internal IRQ fail
3076  *  -E?: The add request failed
3077  *
3078  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3079  * non-zero timeout parameter the wait ioctl will wait for the given number of
3080  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3081  * without holding struct_mutex the object may become re-busied before this
3082  * function completes. A similar but shorter * race condition exists in the busy
3083  * ioctl
3084  */
3085 int
3086 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3087 {
3088         struct drm_i915_private *dev_priv = dev->dev_private;
3089         struct drm_i915_gem_wait *args = data;
3090         struct drm_i915_gem_object *obj;
3091         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3092         unsigned reset_counter;
3093         int i, n = 0;
3094         int ret;
3095
3096         if (args->flags != 0)
3097                 return -EINVAL;
3098
3099         ret = i915_mutex_lock_interruptible(dev);
3100         if (ret)
3101                 return ret;
3102
3103         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3104         if (&obj->base == NULL) {
3105                 mutex_unlock(&dev->struct_mutex);
3106                 return -ENOENT;
3107         }
3108
3109         /* Need to make sure the object gets inactive eventually. */
3110         ret = i915_gem_object_flush_active(obj);
3111         if (ret)
3112                 goto out;
3113
3114         if (!obj->active)
3115                 goto out;
3116
3117         /* Do this after OLR check to make sure we make forward progress polling
3118          * on this IOCTL with a timeout == 0 (like busy ioctl)
3119          */
3120         if (args->timeout_ns == 0) {
3121                 ret = -ETIME;
3122                 goto out;
3123         }
3124
3125         drm_gem_object_unreference(&obj->base);
3126         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3127
3128         for (i = 0; i < I915_NUM_ENGINES; i++) {
3129                 if (obj->last_read_req[i] == NULL)
3130                         continue;
3131
3132                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3133         }
3134
3135         mutex_unlock(&dev->struct_mutex);
3136
3137         for (i = 0; i < n; i++) {
3138                 if (ret == 0)
3139                         ret = __i915_wait_request(req[i], reset_counter, true,
3140                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3141                                                   to_rps_client(file));
3142                 i915_gem_request_unreference__unlocked(req[i]);
3143         }
3144         return ret;
3145
3146 out:
3147         drm_gem_object_unreference(&obj->base);
3148         mutex_unlock(&dev->struct_mutex);
3149         return ret;
3150 }
3151
3152 static int
3153 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3154                        struct intel_engine_cs *to,
3155                        struct drm_i915_gem_request *from_req,
3156                        struct drm_i915_gem_request **to_req)
3157 {
3158         struct intel_engine_cs *from;
3159         int ret;
3160
3161         from = i915_gem_request_get_engine(from_req);
3162         if (to == from)
3163                 return 0;
3164
3165         if (i915_gem_request_completed(from_req, true))
3166                 return 0;
3167
3168         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3169                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3170                 ret = __i915_wait_request(from_req,
3171                                           atomic_read(&i915->gpu_error.reset_counter),
3172                                           i915->mm.interruptible,
3173                                           NULL,
3174                                           &i915->rps.semaphores);
3175                 if (ret)
3176                         return ret;
3177
3178                 i915_gem_object_retire_request(obj, from_req);
3179         } else {
3180                 int idx = intel_ring_sync_index(from, to);
3181                 u32 seqno = i915_gem_request_get_seqno(from_req);
3182
3183                 WARN_ON(!to_req);
3184
3185                 if (seqno <= from->semaphore.sync_seqno[idx])
3186                         return 0;
3187
3188                 if (*to_req == NULL) {
3189                         struct drm_i915_gem_request *req;
3190
3191                         req = i915_gem_request_alloc(to, NULL);
3192                         if (IS_ERR(req))
3193                                 return PTR_ERR(req);
3194
3195                         *to_req = req;
3196                 }
3197
3198                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3199                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3200                 if (ret)
3201                         return ret;
3202
3203                 /* We use last_read_req because sync_to()
3204                  * might have just caused seqno wrap under
3205                  * the radar.
3206                  */
3207                 from->semaphore.sync_seqno[idx] =
3208                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3209         }
3210
3211         return 0;
3212 }
3213
3214 /**
3215  * i915_gem_object_sync - sync an object to a ring.
3216  *
3217  * @obj: object which may be in use on another ring.
3218  * @to: ring we wish to use the object on. May be NULL.
3219  * @to_req: request we wish to use the object for. See below.
3220  *          This will be allocated and returned if a request is
3221  *          required but not passed in.
3222  *
3223  * This code is meant to abstract object synchronization with the GPU.
3224  * Calling with NULL implies synchronizing the object with the CPU
3225  * rather than a particular GPU ring. Conceptually we serialise writes
3226  * between engines inside the GPU. We only allow one engine to write
3227  * into a buffer at any time, but multiple readers. To ensure each has
3228  * a coherent view of memory, we must:
3229  *
3230  * - If there is an outstanding write request to the object, the new
3231  *   request must wait for it to complete (either CPU or in hw, requests
3232  *   on the same ring will be naturally ordered).
3233  *
3234  * - If we are a write request (pending_write_domain is set), the new
3235  *   request must wait for outstanding read requests to complete.
3236  *
3237  * For CPU synchronisation (NULL to) no request is required. For syncing with
3238  * rings to_req must be non-NULL. However, a request does not have to be
3239  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3240  * request will be allocated automatically and returned through *to_req. Note
3241  * that it is not guaranteed that commands will be emitted (because the system
3242  * might already be idle). Hence there is no need to create a request that
3243  * might never have any work submitted. Note further that if a request is
3244  * returned in *to_req, it is the responsibility of the caller to submit
3245  * that request (after potentially adding more work to it).
3246  *
3247  * Returns 0 if successful, else propagates up the lower layer error.
3248  */
3249 int
3250 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3251                      struct intel_engine_cs *to,
3252                      struct drm_i915_gem_request **to_req)
3253 {
3254         const bool readonly = obj->base.pending_write_domain == 0;
3255         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3256         int ret, i, n;
3257
3258         if (!obj->active)
3259                 return 0;
3260
3261         if (to == NULL)
3262                 return i915_gem_object_wait_rendering(obj, readonly);
3263
3264         n = 0;
3265         if (readonly) {
3266                 if (obj->last_write_req)
3267                         req[n++] = obj->last_write_req;
3268         } else {
3269                 for (i = 0; i < I915_NUM_ENGINES; i++)
3270                         if (obj->last_read_req[i])
3271                                 req[n++] = obj->last_read_req[i];
3272         }
3273         for (i = 0; i < n; i++) {
3274                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3275                 if (ret)
3276                         return ret;
3277         }
3278
3279         return 0;
3280 }
3281
3282 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3283 {
3284         u32 old_write_domain, old_read_domains;
3285
3286         /* Force a pagefault for domain tracking on next user access */
3287         i915_gem_release_mmap(obj);
3288
3289         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3290                 return;
3291
3292         /* Wait for any direct GTT access to complete */
3293         mb();
3294
3295         old_read_domains = obj->base.read_domains;
3296         old_write_domain = obj->base.write_domain;
3297
3298         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3299         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3300
3301         trace_i915_gem_object_change_domain(obj,
3302                                             old_read_domains,
3303                                             old_write_domain);
3304 }
3305
3306 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3307 {
3308         struct drm_i915_gem_object *obj = vma->obj;
3309         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310         int ret;
3311
3312         if (list_empty(&vma->obj_link))
3313                 return 0;
3314
3315         if (!drm_mm_node_allocated(&vma->node)) {
3316                 i915_gem_vma_destroy(vma);
3317                 return 0;
3318         }
3319
3320         if (vma->pin_count)
3321                 return -EBUSY;
3322
3323         BUG_ON(obj->pages == NULL);
3324
3325         if (wait) {
3326                 ret = i915_gem_object_wait_rendering(obj, false);
3327                 if (ret)
3328                         return ret;
3329         }
3330
3331         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3332                 i915_gem_object_finish_gtt(obj);
3333
3334                 /* release the fence reg _after_ flushing */
3335                 ret = i915_gem_object_put_fence(obj);
3336                 if (ret)
3337                         return ret;
3338         }
3339
3340         trace_i915_vma_unbind(vma);
3341
3342         vma->vm->unbind_vma(vma);
3343         vma->bound = 0;
3344
3345         list_del_init(&vma->vm_link);
3346         if (vma->is_ggtt) {
3347                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3348                         obj->map_and_fenceable = false;
3349                 } else if (vma->ggtt_view.pages) {
3350                         sg_free_table(vma->ggtt_view.pages);
3351                         kfree(vma->ggtt_view.pages);
3352                 }
3353                 vma->ggtt_view.pages = NULL;
3354         }
3355
3356         drm_mm_remove_node(&vma->node);
3357         i915_gem_vma_destroy(vma);
3358
3359         /* Since the unbound list is global, only move to that list if
3360          * no more VMAs exist. */
3361         if (list_empty(&obj->vma_list))
3362                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3363
3364         /* And finally now the object is completely decoupled from this vma,
3365          * we can drop its hold on the backing storage and allow it to be
3366          * reaped by the shrinker.
3367          */
3368         i915_gem_object_unpin_pages(obj);
3369
3370         return 0;
3371 }
3372
3373 int i915_vma_unbind(struct i915_vma *vma)
3374 {
3375         return __i915_vma_unbind(vma, true);
3376 }
3377
3378 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3379 {
3380         return __i915_vma_unbind(vma, false);
3381 }
3382
3383 int i915_gpu_idle(struct drm_device *dev)
3384 {
3385         struct drm_i915_private *dev_priv = dev->dev_private;
3386         struct intel_engine_cs *engine;
3387         int ret;
3388
3389         /* Flush everything onto the inactive list. */
3390         for_each_engine(engine, dev_priv) {
3391                 if (!i915.enable_execlists) {
3392                         struct drm_i915_gem_request *req;
3393
3394                         req = i915_gem_request_alloc(engine, NULL);
3395                         if (IS_ERR(req))
3396                                 return PTR_ERR(req);
3397
3398                         ret = i915_switch_context(req);
3399                         if (ret) {
3400                                 i915_gem_request_cancel(req);
3401                                 return ret;
3402                         }
3403
3404                         i915_add_request_no_flush(req);
3405                 }
3406
3407                 ret = intel_engine_idle(engine);
3408                 if (ret)
3409                         return ret;
3410         }
3411
3412         WARN_ON(i915_verify_lists(dev));
3413         return 0;
3414 }
3415
3416 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3417                                      unsigned long cache_level)
3418 {
3419         struct drm_mm_node *gtt_space = &vma->node;
3420         struct drm_mm_node *other;
3421
3422         /*
3423          * On some machines we have to be careful when putting differing types
3424          * of snoopable memory together to avoid the prefetcher crossing memory
3425          * domains and dying. During vm initialisation, we decide whether or not
3426          * these constraints apply and set the drm_mm.color_adjust
3427          * appropriately.
3428          */
3429         if (vma->vm->mm.color_adjust == NULL)
3430                 return true;
3431
3432         if (!drm_mm_node_allocated(gtt_space))
3433                 return true;
3434
3435         if (list_empty(&gtt_space->node_list))
3436                 return true;
3437
3438         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3439         if (other->allocated && !other->hole_follows && other->color != cache_level)
3440                 return false;
3441
3442         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3443         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3444                 return false;
3445
3446         return true;
3447 }
3448
3449 /**
3450  * Finds free space in the GTT aperture and binds the object or a view of it
3451  * there.
3452  */
3453 static struct i915_vma *
3454 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3455                            struct i915_address_space *vm,
3456                            const struct i915_ggtt_view *ggtt_view,
3457                            unsigned alignment,
3458                            uint64_t flags)
3459 {
3460         struct drm_device *dev = obj->base.dev;
3461         struct drm_i915_private *dev_priv = dev->dev_private;
3462         u32 fence_alignment, unfenced_alignment;
3463         u32 search_flag, alloc_flag;
3464         u64 start, end;
3465         u64 size, fence_size;
3466         struct i915_vma *vma;
3467         int ret;
3468
3469         if (i915_is_ggtt(vm)) {
3470                 u32 view_size;
3471
3472                 if (WARN_ON(!ggtt_view))
3473                         return ERR_PTR(-EINVAL);
3474
3475                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3476
3477                 fence_size = i915_gem_get_gtt_size(dev,
3478                                                    view_size,
3479                                                    obj->tiling_mode);
3480                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3481                                                              view_size,
3482                                                              obj->tiling_mode,
3483                                                              true);
3484                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3485                                                                 view_size,
3486                                                                 obj->tiling_mode,
3487                                                                 false);
3488                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3489         } else {
3490                 fence_size = i915_gem_get_gtt_size(dev,
3491                                                    obj->base.size,
3492                                                    obj->tiling_mode);
3493                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3494                                                              obj->base.size,
3495                                                              obj->tiling_mode,
3496                                                              true);
3497                 unfenced_alignment =
3498                         i915_gem_get_gtt_alignment(dev,
3499                                                    obj->base.size,
3500                                                    obj->tiling_mode,
3501                                                    false);
3502                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3503         }
3504
3505         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3506         end = vm->total;
3507         if (flags & PIN_MAPPABLE)
3508                 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3509         if (flags & PIN_ZONE_4G)
3510                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3511
3512         if (alignment == 0)
3513                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3514                                                 unfenced_alignment;
3515         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3516                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3517                           ggtt_view ? ggtt_view->type : 0,
3518                           alignment);
3519                 return ERR_PTR(-EINVAL);
3520         }
3521
3522         /* If binding the object/GGTT view requires more space than the entire
3523          * aperture has, reject it early before evicting everything in a vain
3524          * attempt to find space.
3525          */
3526         if (size > end) {
3527                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3528                           ggtt_view ? ggtt_view->type : 0,
3529                           size,
3530                           flags & PIN_MAPPABLE ? "mappable" : "total",
3531                           end);
3532                 return ERR_PTR(-E2BIG);
3533         }
3534
3535         ret = i915_gem_object_get_pages(obj);
3536         if (ret)
3537                 return ERR_PTR(ret);
3538
3539         i915_gem_object_pin_pages(obj);
3540
3541         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3542                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3543
3544         if (IS_ERR(vma))
3545                 goto err_unpin;
3546
3547         if (flags & PIN_OFFSET_FIXED) {
3548                 uint64_t offset = flags & PIN_OFFSET_MASK;
3549
3550                 if (offset & (alignment - 1) || offset + size > end) {
3551                         ret = -EINVAL;
3552                         goto err_free_vma;
3553                 }
3554                 vma->node.start = offset;
3555                 vma->node.size = size;
3556                 vma->node.color = obj->cache_level;
3557                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3558                 if (ret) {
3559                         ret = i915_gem_evict_for_vma(vma);
3560                         if (ret == 0)
3561                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3562                 }
3563                 if (ret)
3564                         goto err_free_vma;
3565         } else {
3566                 if (flags & PIN_HIGH) {
3567                         search_flag = DRM_MM_SEARCH_BELOW;
3568                         alloc_flag = DRM_MM_CREATE_TOP;
3569                 } else {
3570                         search_flag = DRM_MM_SEARCH_DEFAULT;
3571                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3572                 }
3573
3574 search_free:
3575                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3576                                                           size, alignment,
3577                                                           obj->cache_level,
3578                                                           start, end,
3579                                                           search_flag,
3580                                                           alloc_flag);
3581                 if (ret) {
3582                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3583                                                        obj->cache_level,
3584                                                        start, end,
3585                                                        flags);
3586                         if (ret == 0)
3587                                 goto search_free;
3588
3589                         goto err_free_vma;
3590                 }
3591         }
3592         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3593                 ret = -EINVAL;
3594                 goto err_remove_node;
3595         }
3596
3597         trace_i915_vma_bind(vma, flags);
3598         ret = i915_vma_bind(vma, obj->cache_level, flags);
3599         if (ret)
3600                 goto err_remove_node;
3601
3602         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3603         list_add_tail(&vma->vm_link, &vm->inactive_list);
3604
3605         return vma;
3606
3607 err_remove_node:
3608         drm_mm_remove_node(&vma->node);
3609 err_free_vma:
3610         i915_gem_vma_destroy(vma);
3611         vma = ERR_PTR(ret);
3612 err_unpin:
3613         i915_gem_object_unpin_pages(obj);
3614         return vma;
3615 }
3616
3617 bool
3618 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3619                         bool force)
3620 {
3621         /* If we don't have a page list set up, then we're not pinned
3622          * to GPU, and we can ignore the cache flush because it'll happen
3623          * again at bind time.
3624          */
3625         if (obj->pages == NULL)
3626                 return false;
3627
3628         /*
3629          * Stolen memory is always coherent with the GPU as it is explicitly
3630          * marked as wc by the system, or the system is cache-coherent.
3631          */
3632         if (obj->stolen || obj->phys_handle)
3633                 return false;
3634
3635         /* If the GPU is snooping the contents of the CPU cache,
3636          * we do not need to manually clear the CPU cache lines.  However,
3637          * the caches are only snooped when the render cache is
3638          * flushed/invalidated.  As we always have to emit invalidations
3639          * and flushes when moving into and out of the RENDER domain, correct
3640          * snooping behaviour occurs naturally as the result of our domain
3641          * tracking.
3642          */
3643         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3644                 obj->cache_dirty = true;
3645                 return false;
3646         }
3647
3648         trace_i915_gem_object_clflush(obj);
3649         drm_clflush_sg(obj->pages);
3650         obj->cache_dirty = false;
3651
3652         return true;
3653 }
3654
3655 /** Flushes the GTT write domain for the object if it's dirty. */
3656 static void
3657 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3658 {
3659         uint32_t old_write_domain;
3660
3661         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3662                 return;
3663
3664         /* No actual flushing is required for the GTT write domain.  Writes
3665          * to it immediately go to main memory as far as we know, so there's
3666          * no chipset flush.  It also doesn't land in render cache.
3667          *
3668          * However, we do have to enforce the order so that all writes through
3669          * the GTT land before any writes to the device, such as updates to
3670          * the GATT itself.
3671          */
3672         wmb();
3673
3674         old_write_domain = obj->base.write_domain;
3675         obj->base.write_domain = 0;
3676
3677         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3678
3679         trace_i915_gem_object_change_domain(obj,
3680                                             obj->base.read_domains,
3681                                             old_write_domain);
3682 }
3683
3684 /** Flushes the CPU write domain for the object if it's dirty. */
3685 static void
3686 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3687 {
3688         uint32_t old_write_domain;
3689
3690         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3691                 return;
3692
3693         if (i915_gem_clflush_object(obj, obj->pin_display))
3694                 i915_gem_chipset_flush(obj->base.dev);
3695
3696         old_write_domain = obj->base.write_domain;
3697         obj->base.write_domain = 0;
3698
3699         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3700
3701         trace_i915_gem_object_change_domain(obj,
3702                                             obj->base.read_domains,
3703                                             old_write_domain);
3704 }
3705
3706 /**
3707  * Moves a single object to the GTT read, and possibly write domain.
3708  *
3709  * This function returns when the move is complete, including waiting on
3710  * flushes to occur.
3711  */
3712 int
3713 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3714 {
3715         uint32_t old_write_domain, old_read_domains;
3716         struct i915_vma *vma;
3717         int ret;
3718
3719         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3720                 return 0;
3721
3722         ret = i915_gem_object_wait_rendering(obj, !write);
3723         if (ret)
3724                 return ret;
3725
3726         /* Flush and acquire obj->pages so that we are coherent through
3727          * direct access in memory with previous cached writes through
3728          * shmemfs and that our cache domain tracking remains valid.
3729          * For example, if the obj->filp was moved to swap without us
3730          * being notified and releasing the pages, we would mistakenly
3731          * continue to assume that the obj remained out of the CPU cached
3732          * domain.
3733          */
3734         ret = i915_gem_object_get_pages(obj);
3735         if (ret)
3736                 return ret;
3737
3738         i915_gem_object_flush_cpu_write_domain(obj);
3739
3740         /* Serialise direct access to this object with the barriers for
3741          * coherent writes from the GPU, by effectively invalidating the
3742          * GTT domain upon first access.
3743          */
3744         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3745                 mb();
3746
3747         old_write_domain = obj->base.write_domain;
3748         old_read_domains = obj->base.read_domains;
3749
3750         /* It should now be out of any other write domains, and we can update
3751          * the domain values for our changes.
3752          */
3753         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3754         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3755         if (write) {
3756                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3757                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3758                 obj->dirty = 1;
3759         }
3760
3761         trace_i915_gem_object_change_domain(obj,
3762                                             old_read_domains,
3763                                             old_write_domain);
3764
3765         /* And bump the LRU for this access */
3766         vma = i915_gem_obj_to_ggtt(obj);
3767         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3768                 list_move_tail(&vma->vm_link,
3769                                &to_i915(obj->base.dev)->ggtt.base.inactive_list);
3770
3771         return 0;
3772 }
3773
3774 /**
3775  * Changes the cache-level of an object across all VMA.
3776  *
3777  * After this function returns, the object will be in the new cache-level
3778  * across all GTT and the contents of the backing storage will be coherent,
3779  * with respect to the new cache-level. In order to keep the backing storage
3780  * coherent for all users, we only allow a single cache level to be set
3781  * globally on the object and prevent it from being changed whilst the
3782  * hardware is reading from the object. That is if the object is currently
3783  * on the scanout it will be set to uncached (or equivalent display
3784  * cache coherency) and all non-MOCS GPU access will also be uncached so
3785  * that all direct access to the scanout remains coherent.
3786  */
3787 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3788                                     enum i915_cache_level cache_level)
3789 {
3790         struct drm_device *dev = obj->base.dev;
3791         struct i915_vma *vma, *next;
3792         bool bound = false;
3793         int ret = 0;
3794
3795         if (obj->cache_level == cache_level)
3796                 goto out;
3797
3798         /* Inspect the list of currently bound VMA and unbind any that would
3799          * be invalid given the new cache-level. This is principally to
3800          * catch the issue of the CS prefetch crossing page boundaries and
3801          * reading an invalid PTE on older architectures.
3802          */
3803         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3804                 if (!drm_mm_node_allocated(&vma->node))
3805                         continue;
3806
3807                 if (vma->pin_count) {
3808                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3809                         return -EBUSY;
3810                 }
3811
3812                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3813                         ret = i915_vma_unbind(vma);
3814                         if (ret)
3815                                 return ret;
3816                 } else
3817                         bound = true;
3818         }
3819
3820         /* We can reuse the existing drm_mm nodes but need to change the
3821          * cache-level on the PTE. We could simply unbind them all and
3822          * rebind with the correct cache-level on next use. However since
3823          * we already have a valid slot, dma mapping, pages etc, we may as
3824          * rewrite the PTE in the belief that doing so tramples upon less
3825          * state and so involves less work.
3826          */
3827         if (bound) {
3828                 /* Before we change the PTE, the GPU must not be accessing it.
3829                  * If we wait upon the object, we know that all the bound
3830                  * VMA are no longer active.
3831                  */
3832                 ret = i915_gem_object_wait_rendering(obj, false);
3833                 if (ret)
3834                         return ret;
3835
3836                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3837                         /* Access to snoopable pages through the GTT is
3838                          * incoherent and on some machines causes a hard
3839                          * lockup. Relinquish the CPU mmaping to force
3840                          * userspace to refault in the pages and we can
3841                          * then double check if the GTT mapping is still
3842                          * valid for that pointer access.
3843                          */
3844                         i915_gem_release_mmap(obj);
3845
3846                         /* As we no longer need a fence for GTT access,
3847                          * we can relinquish it now (and so prevent having
3848                          * to steal a fence from someone else on the next
3849                          * fence request). Note GPU activity would have
3850                          * dropped the fence as all snoopable access is
3851                          * supposed to be linear.
3852                          */
3853                         ret = i915_gem_object_put_fence(obj);
3854                         if (ret)
3855                                 return ret;
3856                 } else {
3857                         /* We either have incoherent backing store and
3858                          * so no GTT access or the architecture is fully
3859                          * coherent. In such cases, existing GTT mmaps
3860                          * ignore the cache bit in the PTE and we can
3861                          * rewrite it without confusing the GPU or having
3862                          * to force userspace to fault back in its mmaps.
3863                          */
3864                 }
3865
3866                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3867                         if (!drm_mm_node_allocated(&vma->node))
3868                                 continue;
3869
3870                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3871                         if (ret)
3872                                 return ret;
3873                 }
3874         }
3875
3876         list_for_each_entry(vma, &obj->vma_list, obj_link)
3877                 vma->node.color = cache_level;
3878         obj->cache_level = cache_level;
3879
3880 out:
3881         /* Flush the dirty CPU caches to the backing storage so that the
3882          * object is now coherent at its new cache level (with respect
3883          * to the access domain).
3884          */
3885         if (obj->cache_dirty &&
3886             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3887             cpu_write_needs_clflush(obj)) {
3888                 if (i915_gem_clflush_object(obj, true))
3889                         i915_gem_chipset_flush(obj->base.dev);
3890         }
3891
3892         return 0;
3893 }
3894
3895 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3896                                struct drm_file *file)
3897 {
3898         struct drm_i915_gem_caching *args = data;
3899         struct drm_i915_gem_object *obj;
3900
3901         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3902         if (&obj->base == NULL)
3903                 return -ENOENT;
3904
3905         switch (obj->cache_level) {
3906         case I915_CACHE_LLC:
3907         case I915_CACHE_L3_LLC:
3908                 args->caching = I915_CACHING_CACHED;
3909                 break;
3910
3911         case I915_CACHE_WT:
3912                 args->caching = I915_CACHING_DISPLAY;
3913                 break;
3914
3915         default:
3916                 args->caching = I915_CACHING_NONE;
3917                 break;
3918         }
3919
3920         drm_gem_object_unreference_unlocked(&obj->base);
3921         return 0;
3922 }
3923
3924 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3925                                struct drm_file *file)
3926 {
3927         struct drm_i915_private *dev_priv = dev->dev_private;
3928         struct drm_i915_gem_caching *args = data;
3929         struct drm_i915_gem_object *obj;
3930         enum i915_cache_level level;
3931         int ret;
3932
3933         switch (args->caching) {
3934         case I915_CACHING_NONE:
3935                 level = I915_CACHE_NONE;
3936                 break;
3937         case I915_CACHING_CACHED:
3938                 /*
3939                  * Due to a HW issue on BXT A stepping, GPU stores via a
3940                  * snooped mapping may leave stale data in a corresponding CPU
3941                  * cacheline, whereas normally such cachelines would get
3942                  * invalidated.
3943                  */
3944                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3945                         return -ENODEV;
3946
3947                 level = I915_CACHE_LLC;
3948                 break;
3949         case I915_CACHING_DISPLAY:
3950                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3951                 break;
3952         default:
3953                 return -EINVAL;
3954         }
3955
3956         intel_runtime_pm_get(dev_priv);
3957
3958         ret = i915_mutex_lock_interruptible(dev);
3959         if (ret)
3960                 goto rpm_put;
3961
3962         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3963         if (&obj->base == NULL) {
3964                 ret = -ENOENT;
3965                 goto unlock;
3966         }
3967
3968         ret = i915_gem_object_set_cache_level(obj, level);
3969
3970         drm_gem_object_unreference(&obj->base);
3971 unlock:
3972         mutex_unlock(&dev->struct_mutex);
3973 rpm_put:
3974         intel_runtime_pm_put(dev_priv);
3975
3976         return ret;
3977 }
3978
3979 /*
3980  * Prepare buffer for display plane (scanout, cursors, etc).
3981  * Can be called from an uninterruptible phase (modesetting) and allows
3982  * any flushes to be pipelined (for pageflips).
3983  */
3984 int
3985 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3986                                      u32 alignment,
3987                                      const struct i915_ggtt_view *view)
3988 {
3989         u32 old_read_domains, old_write_domain;
3990         int ret;
3991
3992         /* Mark the pin_display early so that we account for the
3993          * display coherency whilst setting up the cache domains.
3994          */
3995         obj->pin_display++;
3996
3997         /* The display engine is not coherent with the LLC cache on gen6.  As
3998          * a result, we make sure that the pinning that is about to occur is
3999          * done with uncached PTEs. This is lowest common denominator for all
4000          * chipsets.
4001          *
4002          * However for gen6+, we could do better by using the GFDT bit instead
4003          * of uncaching, which would allow us to flush all the LLC-cached data
4004          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4005          */
4006         ret = i915_gem_object_set_cache_level(obj,
4007                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4008         if (ret)
4009                 goto err_unpin_display;
4010
4011         /* As the user may map the buffer once pinned in the display plane
4012          * (e.g. libkms for the bootup splash), we have to ensure that we
4013          * always use map_and_fenceable for all scanout buffers.
4014          */
4015         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4016                                        view->type == I915_GGTT_VIEW_NORMAL ?
4017                                        PIN_MAPPABLE : 0);
4018         if (ret)
4019                 goto err_unpin_display;
4020
4021         i915_gem_object_flush_cpu_write_domain(obj);
4022
4023         old_write_domain = obj->base.write_domain;
4024         old_read_domains = obj->base.read_domains;
4025
4026         /* It should now be out of any other write domains, and we can update
4027          * the domain values for our changes.
4028          */
4029         obj->base.write_domain = 0;
4030         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4031
4032         trace_i915_gem_object_change_domain(obj,
4033                                             old_read_domains,
4034                                             old_write_domain);
4035
4036         return 0;
4037
4038 err_unpin_display:
4039         obj->pin_display--;
4040         return ret;
4041 }
4042
4043 void
4044 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4045                                          const struct i915_ggtt_view *view)
4046 {
4047         if (WARN_ON(obj->pin_display == 0))
4048                 return;
4049
4050         i915_gem_object_ggtt_unpin_view(obj, view);
4051
4052         obj->pin_display--;
4053 }
4054
4055 /**
4056  * Moves a single object to the CPU read, and possibly write domain.
4057  *
4058  * This function returns when the move is complete, including waiting on
4059  * flushes to occur.
4060  */
4061 int
4062 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4063 {
4064         uint32_t old_write_domain, old_read_domains;
4065         int ret;
4066
4067         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4068                 return 0;
4069
4070         ret = i915_gem_object_wait_rendering(obj, !write);
4071         if (ret)
4072                 return ret;
4073
4074         i915_gem_object_flush_gtt_write_domain(obj);
4075
4076         old_write_domain = obj->base.write_domain;
4077         old_read_domains = obj->base.read_domains;
4078
4079         /* Flush the CPU cache if it's still invalid. */
4080         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4081                 i915_gem_clflush_object(obj, false);
4082
4083                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4084         }
4085
4086         /* It should now be out of any other write domains, and we can update
4087          * the domain values for our changes.
4088          */
4089         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4090
4091         /* If we're writing through the CPU, then the GPU read domains will
4092          * need to be invalidated at next use.
4093          */
4094         if (write) {
4095                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4096                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4097         }
4098
4099         trace_i915_gem_object_change_domain(obj,
4100                                             old_read_domains,
4101                                             old_write_domain);
4102
4103         return 0;
4104 }
4105
4106 /* Throttle our rendering by waiting until the ring has completed our requests
4107  * emitted over 20 msec ago.
4108  *
4109  * Note that if we were to use the current jiffies each time around the loop,
4110  * we wouldn't escape the function with any frames outstanding if the time to
4111  * render a frame was over 20ms.
4112  *
4113  * This should get us reasonable parallelism between CPU and GPU but also
4114  * relatively low latency when blocking on a particular request to finish.
4115  */
4116 static int
4117 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4118 {
4119         struct drm_i915_private *dev_priv = dev->dev_private;
4120         struct drm_i915_file_private *file_priv = file->driver_priv;
4121         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4122         struct drm_i915_gem_request *request, *target = NULL;
4123         unsigned reset_counter;
4124         int ret;
4125
4126         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4127         if (ret)
4128                 return ret;
4129
4130         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4131         if (ret)
4132                 return ret;
4133
4134         spin_lock(&file_priv->mm.lock);
4135         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4136                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4137                         break;
4138
4139                 /*
4140                  * Note that the request might not have been submitted yet.
4141                  * In which case emitted_jiffies will be zero.
4142                  */
4143                 if (!request->emitted_jiffies)
4144                         continue;
4145
4146                 target = request;
4147         }
4148         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4149         if (target)
4150                 i915_gem_request_reference(target);
4151         spin_unlock(&file_priv->mm.lock);
4152
4153         if (target == NULL)
4154                 return 0;
4155
4156         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4157         if (ret == 0)
4158                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4159
4160         i915_gem_request_unreference__unlocked(target);
4161
4162         return ret;
4163 }
4164
4165 static bool
4166 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4167 {
4168         struct drm_i915_gem_object *obj = vma->obj;
4169
4170         if (alignment &&
4171             vma->node.start & (alignment - 1))
4172                 return true;
4173
4174         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4175                 return true;
4176
4177         if (flags & PIN_OFFSET_BIAS &&
4178             vma->node.start < (flags & PIN_OFFSET_MASK))
4179                 return true;
4180
4181         if (flags & PIN_OFFSET_FIXED &&
4182             vma->node.start != (flags & PIN_OFFSET_MASK))
4183                 return true;
4184
4185         return false;
4186 }
4187
4188 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4189 {
4190         struct drm_i915_gem_object *obj = vma->obj;
4191         bool mappable, fenceable;
4192         u32 fence_size, fence_alignment;
4193
4194         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4195                                            obj->base.size,
4196                                            obj->tiling_mode);
4197         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4198                                                      obj->base.size,
4199                                                      obj->tiling_mode,
4200                                                      true);
4201
4202         fenceable = (vma->node.size == fence_size &&
4203                      (vma->node.start & (fence_alignment - 1)) == 0);
4204
4205         mappable = (vma->node.start + fence_size <=
4206                     to_i915(obj->base.dev)->ggtt.mappable_end);
4207
4208         obj->map_and_fenceable = mappable && fenceable;
4209 }
4210
4211 static int
4212 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4213                        struct i915_address_space *vm,
4214                        const struct i915_ggtt_view *ggtt_view,
4215                        uint32_t alignment,
4216                        uint64_t flags)
4217 {
4218         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4219         struct i915_vma *vma;
4220         unsigned bound;
4221         int ret;
4222
4223         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4224                 return -ENODEV;
4225
4226         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4227                 return -EINVAL;
4228
4229         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4230                 return -EINVAL;
4231
4232         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4233                 return -EINVAL;
4234
4235         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4236                           i915_gem_obj_to_vma(obj, vm);
4237
4238         if (IS_ERR(vma))
4239                 return PTR_ERR(vma);
4240
4241         if (vma) {
4242                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4243                         return -EBUSY;
4244
4245                 if (i915_vma_misplaced(vma, alignment, flags)) {
4246                         WARN(vma->pin_count,
4247                              "bo is already pinned in %s with incorrect alignment:"
4248                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4249                              " obj->map_and_fenceable=%d\n",
4250                              ggtt_view ? "ggtt" : "ppgtt",
4251                              upper_32_bits(vma->node.start),
4252                              lower_32_bits(vma->node.start),
4253                              alignment,
4254                              !!(flags & PIN_MAPPABLE),
4255                              obj->map_and_fenceable);
4256                         ret = i915_vma_unbind(vma);
4257                         if (ret)
4258                                 return ret;
4259
4260                         vma = NULL;
4261                 }
4262         }
4263
4264         bound = vma ? vma->bound : 0;
4265         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4266                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4267                                                  flags);
4268                 if (IS_ERR(vma))
4269                         return PTR_ERR(vma);
4270         } else {
4271                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4272                 if (ret)
4273                         return ret;
4274         }
4275
4276         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4277             (bound ^ vma->bound) & GLOBAL_BIND) {
4278                 __i915_vma_set_map_and_fenceable(vma);
4279                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4280         }
4281
4282         vma->pin_count++;
4283         return 0;
4284 }
4285
4286 int
4287 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4288                     struct i915_address_space *vm,
4289                     uint32_t alignment,
4290                     uint64_t flags)
4291 {
4292         return i915_gem_object_do_pin(obj, vm,
4293                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4294                                       alignment, flags);
4295 }
4296
4297 int
4298 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4299                          const struct i915_ggtt_view *view,
4300                          uint32_t alignment,
4301                          uint64_t flags)
4302 {
4303         if (WARN_ONCE(!view, "no view specified"))
4304                 return -EINVAL;
4305
4306         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4307                                       alignment, flags | PIN_GLOBAL);
4308 }
4309
4310 void
4311 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4312                                 const struct i915_ggtt_view *view)
4313 {
4314         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4315
4316         BUG_ON(!vma);
4317         WARN_ON(vma->pin_count == 0);
4318         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4319
4320         --vma->pin_count;
4321 }
4322
4323 int
4324 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4325                     struct drm_file *file)
4326 {
4327         struct drm_i915_gem_busy *args = data;
4328         struct drm_i915_gem_object *obj;
4329         int ret;
4330
4331         ret = i915_mutex_lock_interruptible(dev);
4332         if (ret)
4333                 return ret;
4334
4335         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4336         if (&obj->base == NULL) {
4337                 ret = -ENOENT;
4338                 goto unlock;
4339         }
4340
4341         /* Count all active objects as busy, even if they are currently not used
4342          * by the gpu. Users of this interface expect objects to eventually
4343          * become non-busy without any further actions, therefore emit any
4344          * necessary flushes here.
4345          */
4346         ret = i915_gem_object_flush_active(obj);
4347         if (ret)
4348                 goto unref;
4349
4350         args->busy = 0;
4351         if (obj->active) {
4352                 int i;
4353
4354                 for (i = 0; i < I915_NUM_ENGINES; i++) {
4355                         struct drm_i915_gem_request *req;
4356
4357                         req = obj->last_read_req[i];
4358                         if (req)
4359                                 args->busy |= 1 << (16 + req->engine->exec_id);
4360                 }
4361                 if (obj->last_write_req)
4362                         args->busy |= obj->last_write_req->engine->exec_id;
4363         }
4364
4365 unref:
4366         drm_gem_object_unreference(&obj->base);
4367 unlock:
4368         mutex_unlock(&dev->struct_mutex);
4369         return ret;
4370 }
4371
4372 int
4373 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4374                         struct drm_file *file_priv)
4375 {
4376         return i915_gem_ring_throttle(dev, file_priv);
4377 }
4378
4379 int
4380 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4381                        struct drm_file *file_priv)
4382 {
4383         struct drm_i915_private *dev_priv = dev->dev_private;
4384         struct drm_i915_gem_madvise *args = data;
4385         struct drm_i915_gem_object *obj;
4386         int ret;
4387
4388         switch (args->madv) {
4389         case I915_MADV_DONTNEED:
4390         case I915_MADV_WILLNEED:
4391             break;
4392         default:
4393             return -EINVAL;
4394         }
4395
4396         ret = i915_mutex_lock_interruptible(dev);
4397         if (ret)
4398                 return ret;
4399
4400         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4401         if (&obj->base == NULL) {
4402                 ret = -ENOENT;
4403                 goto unlock;
4404         }
4405
4406         if (i915_gem_obj_is_pinned(obj)) {
4407                 ret = -EINVAL;
4408                 goto out;
4409         }
4410
4411         if (obj->pages &&
4412             obj->tiling_mode != I915_TILING_NONE &&
4413             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4414                 if (obj->madv == I915_MADV_WILLNEED)
4415                         i915_gem_object_unpin_pages(obj);
4416                 if (args->madv == I915_MADV_WILLNEED)
4417                         i915_gem_object_pin_pages(obj);
4418         }
4419
4420         if (obj->madv != __I915_MADV_PURGED)
4421                 obj->madv = args->madv;
4422
4423         /* if the object is no longer attached, discard its backing storage */
4424         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4425                 i915_gem_object_truncate(obj);
4426
4427         args->retained = obj->madv != __I915_MADV_PURGED;
4428
4429 out:
4430         drm_gem_object_unreference(&obj->base);
4431 unlock:
4432         mutex_unlock(&dev->struct_mutex);
4433         return ret;
4434 }
4435
4436 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4437                           const struct drm_i915_gem_object_ops *ops)
4438 {
4439         int i;
4440
4441         INIT_LIST_HEAD(&obj->global_list);
4442         for (i = 0; i < I915_NUM_ENGINES; i++)
4443                 INIT_LIST_HEAD(&obj->engine_list[i]);
4444         INIT_LIST_HEAD(&obj->obj_exec_link);
4445         INIT_LIST_HEAD(&obj->vma_list);
4446         INIT_LIST_HEAD(&obj->batch_pool_link);
4447
4448         obj->ops = ops;
4449
4450         obj->fence_reg = I915_FENCE_REG_NONE;
4451         obj->madv = I915_MADV_WILLNEED;
4452
4453         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4454 }
4455
4456 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4457         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4458         .get_pages = i915_gem_object_get_pages_gtt,
4459         .put_pages = i915_gem_object_put_pages_gtt,
4460 };
4461
4462 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4463                                                   size_t size)
4464 {
4465         struct drm_i915_gem_object *obj;
4466         struct address_space *mapping;
4467         gfp_t mask;
4468
4469         obj = i915_gem_object_alloc(dev);
4470         if (obj == NULL)
4471                 return NULL;
4472
4473         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4474                 i915_gem_object_free(obj);
4475                 return NULL;
4476         }
4477
4478         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4479         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4480                 /* 965gm cannot relocate objects above 4GiB. */
4481                 mask &= ~__GFP_HIGHMEM;
4482                 mask |= __GFP_DMA32;
4483         }
4484
4485         mapping = file_inode(obj->base.filp)->i_mapping;
4486         mapping_set_gfp_mask(mapping, mask);
4487
4488         i915_gem_object_init(obj, &i915_gem_object_ops);
4489
4490         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4491         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4492
4493         if (HAS_LLC(dev)) {
4494                 /* On some devices, we can have the GPU use the LLC (the CPU
4495                  * cache) for about a 10% performance improvement
4496                  * compared to uncached.  Graphics requests other than
4497                  * display scanout are coherent with the CPU in
4498                  * accessing this cache.  This means in this mode we
4499                  * don't need to clflush on the CPU side, and on the
4500                  * GPU side we only need to flush internal caches to
4501                  * get data visible to the CPU.
4502                  *
4503                  * However, we maintain the display planes as UC, and so
4504                  * need to rebind when first used as such.
4505                  */
4506                 obj->cache_level = I915_CACHE_LLC;
4507         } else
4508                 obj->cache_level = I915_CACHE_NONE;
4509
4510         trace_i915_gem_object_create(obj);
4511
4512         return obj;
4513 }
4514
4515 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4516 {
4517         /* If we are the last user of the backing storage (be it shmemfs
4518          * pages or stolen etc), we know that the pages are going to be
4519          * immediately released. In this case, we can then skip copying
4520          * back the contents from the GPU.
4521          */
4522
4523         if (obj->madv != I915_MADV_WILLNEED)
4524                 return false;
4525
4526         if (obj->base.filp == NULL)
4527                 return true;
4528
4529         /* At first glance, this looks racy, but then again so would be
4530          * userspace racing mmap against close. However, the first external
4531          * reference to the filp can only be obtained through the
4532          * i915_gem_mmap_ioctl() which safeguards us against the user
4533          * acquiring such a reference whilst we are in the middle of
4534          * freeing the object.
4535          */
4536         return atomic_long_read(&obj->base.filp->f_count) == 1;
4537 }
4538
4539 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4540 {
4541         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4542         struct drm_device *dev = obj->base.dev;
4543         struct drm_i915_private *dev_priv = dev->dev_private;
4544         struct i915_vma *vma, *next;
4545
4546         intel_runtime_pm_get(dev_priv);
4547
4548         trace_i915_gem_object_destroy(obj);
4549
4550         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4551                 int ret;
4552
4553                 vma->pin_count = 0;
4554                 ret = i915_vma_unbind(vma);
4555                 if (WARN_ON(ret == -ERESTARTSYS)) {
4556                         bool was_interruptible;
4557
4558                         was_interruptible = dev_priv->mm.interruptible;
4559                         dev_priv->mm.interruptible = false;
4560
4561                         WARN_ON(i915_vma_unbind(vma));
4562
4563                         dev_priv->mm.interruptible = was_interruptible;
4564                 }
4565         }
4566
4567         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4568          * before progressing. */
4569         if (obj->stolen)
4570                 i915_gem_object_unpin_pages(obj);
4571
4572         WARN_ON(obj->frontbuffer_bits);
4573
4574         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4575             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4576             obj->tiling_mode != I915_TILING_NONE)
4577                 i915_gem_object_unpin_pages(obj);
4578
4579         if (WARN_ON(obj->pages_pin_count))
4580                 obj->pages_pin_count = 0;
4581         if (discard_backing_storage(obj))
4582                 obj->madv = I915_MADV_DONTNEED;
4583         i915_gem_object_put_pages(obj);
4584         i915_gem_object_free_mmap_offset(obj);
4585
4586         BUG_ON(obj->pages);
4587
4588         if (obj->base.import_attach)
4589                 drm_prime_gem_destroy(&obj->base, NULL);
4590
4591         if (obj->ops->release)
4592                 obj->ops->release(obj);
4593
4594         drm_gem_object_release(&obj->base);
4595         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4596
4597         kfree(obj->bit_17);
4598         i915_gem_object_free(obj);
4599
4600         intel_runtime_pm_put(dev_priv);
4601 }
4602
4603 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4604                                      struct i915_address_space *vm)
4605 {
4606         struct i915_vma *vma;
4607         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4608                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4609                     vma->vm == vm)
4610                         return vma;
4611         }
4612         return NULL;
4613 }
4614
4615 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4616                                            const struct i915_ggtt_view *view)
4617 {
4618         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4619         struct i915_vma *vma;
4620
4621         if (WARN_ONCE(!view, "no view specified"))
4622                 return ERR_PTR(-EINVAL);
4623
4624         list_for_each_entry(vma, &obj->vma_list, obj_link)
4625                 if (vma->vm == ggtt &&
4626                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4627                         return vma;
4628         return NULL;
4629 }
4630
4631 void i915_gem_vma_destroy(struct i915_vma *vma)
4632 {
4633         WARN_ON(vma->node.allocated);
4634
4635         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4636         if (!list_empty(&vma->exec_list))
4637                 return;
4638
4639         if (!vma->is_ggtt)
4640                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4641
4642         list_del(&vma->obj_link);
4643
4644         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4645 }
4646
4647 static void
4648 i915_gem_stop_engines(struct drm_device *dev)
4649 {
4650         struct drm_i915_private *dev_priv = dev->dev_private;
4651         struct intel_engine_cs *engine;
4652
4653         for_each_engine(engine, dev_priv)
4654                 dev_priv->gt.stop_engine(engine);
4655 }
4656
4657 int
4658 i915_gem_suspend(struct drm_device *dev)
4659 {
4660         struct drm_i915_private *dev_priv = dev->dev_private;
4661         int ret = 0;
4662
4663         mutex_lock(&dev->struct_mutex);
4664         ret = i915_gpu_idle(dev);
4665         if (ret)
4666                 goto err;
4667
4668         i915_gem_retire_requests(dev);
4669
4670         i915_gem_stop_engines(dev);
4671         mutex_unlock(&dev->struct_mutex);
4672
4673         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4674         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4675         flush_delayed_work(&dev_priv->mm.idle_work);
4676
4677         /* Assert that we sucessfully flushed all the work and
4678          * reset the GPU back to its idle, low power state.
4679          */
4680         WARN_ON(dev_priv->mm.busy);
4681
4682         return 0;
4683
4684 err:
4685         mutex_unlock(&dev->struct_mutex);
4686         return ret;
4687 }
4688
4689 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4690 {
4691         struct intel_engine_cs *engine = req->engine;
4692         struct drm_device *dev = engine->dev;
4693         struct drm_i915_private *dev_priv = dev->dev_private;
4694         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4695         int i, ret;
4696
4697         if (!HAS_L3_DPF(dev) || !remap_info)
4698                 return 0;
4699
4700         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4701         if (ret)
4702                 return ret;
4703
4704         /*
4705          * Note: We do not worry about the concurrent register cacheline hang
4706          * here because no other code should access these registers other than
4707          * at initialization time.
4708          */
4709         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4710                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4711                 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4712                 intel_ring_emit(engine, remap_info[i]);
4713         }
4714
4715         intel_ring_advance(engine);
4716
4717         return ret;
4718 }
4719
4720 void i915_gem_init_swizzling(struct drm_device *dev)
4721 {
4722         struct drm_i915_private *dev_priv = dev->dev_private;
4723
4724         if (INTEL_INFO(dev)->gen < 5 ||
4725             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4726                 return;
4727
4728         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4729                                  DISP_TILE_SURFACE_SWIZZLING);
4730
4731         if (IS_GEN5(dev))
4732                 return;
4733
4734         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4735         if (IS_GEN6(dev))
4736                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4737         else if (IS_GEN7(dev))
4738                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4739         else if (IS_GEN8(dev))
4740                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4741         else
4742                 BUG();
4743 }
4744
4745 static void init_unused_ring(struct drm_device *dev, u32 base)
4746 {
4747         struct drm_i915_private *dev_priv = dev->dev_private;
4748
4749         I915_WRITE(RING_CTL(base), 0);
4750         I915_WRITE(RING_HEAD(base), 0);
4751         I915_WRITE(RING_TAIL(base), 0);
4752         I915_WRITE(RING_START(base), 0);
4753 }
4754
4755 static void init_unused_rings(struct drm_device *dev)
4756 {
4757         if (IS_I830(dev)) {
4758                 init_unused_ring(dev, PRB1_BASE);
4759                 init_unused_ring(dev, SRB0_BASE);
4760                 init_unused_ring(dev, SRB1_BASE);
4761                 init_unused_ring(dev, SRB2_BASE);
4762                 init_unused_ring(dev, SRB3_BASE);
4763         } else if (IS_GEN2(dev)) {
4764                 init_unused_ring(dev, SRB0_BASE);
4765                 init_unused_ring(dev, SRB1_BASE);
4766         } else if (IS_GEN3(dev)) {
4767                 init_unused_ring(dev, PRB1_BASE);
4768                 init_unused_ring(dev, PRB2_BASE);
4769         }
4770 }
4771
4772 int i915_gem_init_engines(struct drm_device *dev)
4773 {
4774         struct drm_i915_private *dev_priv = dev->dev_private;
4775         int ret;
4776
4777         ret = intel_init_render_ring_buffer(dev);
4778         if (ret)
4779                 return ret;
4780
4781         if (HAS_BSD(dev)) {
4782                 ret = intel_init_bsd_ring_buffer(dev);
4783                 if (ret)
4784                         goto cleanup_render_ring;
4785         }
4786
4787         if (HAS_BLT(dev)) {
4788                 ret = intel_init_blt_ring_buffer(dev);
4789                 if (ret)
4790                         goto cleanup_bsd_ring;
4791         }
4792
4793         if (HAS_VEBOX(dev)) {
4794                 ret = intel_init_vebox_ring_buffer(dev);
4795                 if (ret)
4796                         goto cleanup_blt_ring;
4797         }
4798
4799         if (HAS_BSD2(dev)) {
4800                 ret = intel_init_bsd2_ring_buffer(dev);
4801                 if (ret)
4802                         goto cleanup_vebox_ring;
4803         }
4804
4805         return 0;
4806
4807 cleanup_vebox_ring:
4808         intel_cleanup_engine(&dev_priv->engine[VECS]);
4809 cleanup_blt_ring:
4810         intel_cleanup_engine(&dev_priv->engine[BCS]);
4811 cleanup_bsd_ring:
4812         intel_cleanup_engine(&dev_priv->engine[VCS]);
4813 cleanup_render_ring:
4814         intel_cleanup_engine(&dev_priv->engine[RCS]);
4815
4816         return ret;
4817 }
4818
4819 int
4820 i915_gem_init_hw(struct drm_device *dev)
4821 {
4822         struct drm_i915_private *dev_priv = dev->dev_private;
4823         struct intel_engine_cs *engine;
4824         int ret, j;
4825
4826         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4827                 return -EIO;
4828
4829         /* Double layer security blanket, see i915_gem_init() */
4830         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4831
4832         if (dev_priv->ellc_size)
4833                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4834
4835         if (IS_HASWELL(dev))
4836                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4837                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4838
4839         if (HAS_PCH_NOP(dev)) {
4840                 if (IS_IVYBRIDGE(dev)) {
4841                         u32 temp = I915_READ(GEN7_MSG_CTL);
4842                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4843                         I915_WRITE(GEN7_MSG_CTL, temp);
4844                 } else if (INTEL_INFO(dev)->gen >= 7) {
4845                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4846                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4847                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4848                 }
4849         }
4850
4851         i915_gem_init_swizzling(dev);
4852
4853         /*
4854          * At least 830 can leave some of the unused rings
4855          * "active" (ie. head != tail) after resume which
4856          * will prevent c3 entry. Makes sure all unused rings
4857          * are totally idle.
4858          */
4859         init_unused_rings(dev);
4860
4861         BUG_ON(!dev_priv->kernel_context);
4862
4863         ret = i915_ppgtt_init_hw(dev);
4864         if (ret) {
4865                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4866                 goto out;
4867         }
4868
4869         /* Need to do basic initialisation of all rings first: */
4870         for_each_engine(engine, dev_priv) {
4871                 ret = engine->init_hw(engine);
4872                 if (ret)
4873                         goto out;
4874         }
4875
4876         /* We can't enable contexts until all firmware is loaded */
4877         if (HAS_GUC_UCODE(dev)) {
4878                 ret = intel_guc_ucode_load(dev);
4879                 if (ret) {
4880                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4881                         ret = -EIO;
4882                         goto out;
4883                 }
4884         }
4885
4886         /*
4887          * Increment the next seqno by 0x100 so we have a visible break
4888          * on re-initialisation
4889          */
4890         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4891         if (ret)
4892                 goto out;
4893
4894         /* Now it is safe to go back round and do everything else: */
4895         for_each_engine(engine, dev_priv) {
4896                 struct drm_i915_gem_request *req;
4897
4898                 req = i915_gem_request_alloc(engine, NULL);
4899                 if (IS_ERR(req)) {
4900                         ret = PTR_ERR(req);
4901                         i915_gem_cleanup_engines(dev);
4902                         goto out;
4903                 }
4904
4905                 if (engine->id == RCS) {
4906                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4907                                 i915_gem_l3_remap(req, j);
4908                 }
4909
4910                 ret = i915_ppgtt_init_ring(req);
4911                 if (ret && ret != -EIO) {
4912                         DRM_ERROR("PPGTT enable %s failed %d\n",
4913                                   engine->name, ret);
4914                         i915_gem_request_cancel(req);
4915                         i915_gem_cleanup_engines(dev);
4916                         goto out;
4917                 }
4918
4919                 ret = i915_gem_context_enable(req);
4920                 if (ret && ret != -EIO) {
4921                         DRM_ERROR("Context enable %s failed %d\n",
4922                                   engine->name, ret);
4923                         i915_gem_request_cancel(req);
4924                         i915_gem_cleanup_engines(dev);
4925                         goto out;
4926                 }
4927
4928                 i915_add_request_no_flush(req);
4929         }
4930
4931 out:
4932         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4933         return ret;
4934 }
4935
4936 int i915_gem_init(struct drm_device *dev)
4937 {
4938         struct drm_i915_private *dev_priv = dev->dev_private;
4939         int ret;
4940
4941         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4942                         i915.enable_execlists);
4943
4944         mutex_lock(&dev->struct_mutex);
4945
4946         if (!i915.enable_execlists) {
4947                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4948                 dev_priv->gt.init_engines = i915_gem_init_engines;
4949                 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4950                 dev_priv->gt.stop_engine = intel_stop_engine;
4951         } else {
4952                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4953                 dev_priv->gt.init_engines = intel_logical_rings_init;
4954                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4955                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4956         }
4957
4958         /* This is just a security blanket to placate dragons.
4959          * On some systems, we very sporadically observe that the first TLBs
4960          * used by the CS may be stale, despite us poking the TLB reset. If
4961          * we hold the forcewake during initialisation these problems
4962          * just magically go away.
4963          */
4964         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4965
4966         ret = i915_gem_init_userptr(dev);
4967         if (ret)
4968                 goto out_unlock;
4969
4970         i915_gem_init_global_gtt(dev);
4971
4972         ret = i915_gem_context_init(dev);
4973         if (ret)
4974                 goto out_unlock;
4975
4976         ret = dev_priv->gt.init_engines(dev);
4977         if (ret)
4978                 goto out_unlock;
4979
4980         ret = i915_gem_init_hw(dev);
4981         if (ret == -EIO) {
4982                 /* Allow ring initialisation to fail by marking the GPU as
4983                  * wedged. But we only want to do this where the GPU is angry,
4984                  * for all other failure, such as an allocation failure, bail.
4985                  */
4986                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4987                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4988                 ret = 0;
4989         }
4990
4991 out_unlock:
4992         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4993         mutex_unlock(&dev->struct_mutex);
4994
4995         return ret;
4996 }
4997
4998 void
4999 i915_gem_cleanup_engines(struct drm_device *dev)
5000 {
5001         struct drm_i915_private *dev_priv = dev->dev_private;
5002         struct intel_engine_cs *engine;
5003
5004         for_each_engine(engine, dev_priv)
5005                 dev_priv->gt.cleanup_engine(engine);
5006
5007         if (i915.enable_execlists)
5008                 /*
5009                  * Neither the BIOS, ourselves or any other kernel
5010                  * expects the system to be in execlists mode on startup,
5011                  * so we need to reset the GPU back to legacy mode.
5012                  */
5013                 intel_gpu_reset(dev, ALL_ENGINES);
5014 }
5015
5016 static void
5017 init_engine_lists(struct intel_engine_cs *engine)
5018 {
5019         INIT_LIST_HEAD(&engine->active_list);
5020         INIT_LIST_HEAD(&engine->request_list);
5021 }
5022
5023 void
5024 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5025 {
5026         struct drm_device *dev = dev_priv->dev;
5027
5028         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5029             !IS_CHERRYVIEW(dev_priv))
5030                 dev_priv->num_fence_regs = 32;
5031         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5032                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
5033                 dev_priv->num_fence_regs = 16;
5034         else
5035                 dev_priv->num_fence_regs = 8;
5036
5037         if (intel_vgpu_active(dev))
5038                 dev_priv->num_fence_regs =
5039                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5040
5041         /* Initialize fence registers to zero */
5042         i915_gem_restore_fences(dev);
5043
5044         i915_gem_detect_bit_6_swizzle(dev);
5045 }
5046
5047 void
5048 i915_gem_load_init(struct drm_device *dev)
5049 {
5050         struct drm_i915_private *dev_priv = dev->dev_private;
5051         int i;
5052
5053         dev_priv->objects =
5054                 kmem_cache_create("i915_gem_object",
5055                                   sizeof(struct drm_i915_gem_object), 0,
5056                                   SLAB_HWCACHE_ALIGN,
5057                                   NULL);
5058         dev_priv->vmas =
5059                 kmem_cache_create("i915_gem_vma",
5060                                   sizeof(struct i915_vma), 0,
5061                                   SLAB_HWCACHE_ALIGN,
5062                                   NULL);
5063         dev_priv->requests =
5064                 kmem_cache_create("i915_gem_request",
5065                                   sizeof(struct drm_i915_gem_request), 0,
5066                                   SLAB_HWCACHE_ALIGN,
5067                                   NULL);
5068
5069         INIT_LIST_HEAD(&dev_priv->vm_list);
5070         INIT_LIST_HEAD(&dev_priv->context_list);
5071         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5072         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5073         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5074         for (i = 0; i < I915_NUM_ENGINES; i++)
5075                 init_engine_lists(&dev_priv->engine[i]);
5076         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5077                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5078         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5079                           i915_gem_retire_work_handler);
5080         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5081                           i915_gem_idle_work_handler);
5082         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5083
5084         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5085
5086         /*
5087          * Set initial sequence number for requests.
5088          * Using this number allows the wraparound to happen early,
5089          * catching any obvious problems.
5090          */
5091         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5092         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5093
5094         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5095
5096         init_waitqueue_head(&dev_priv->pending_flip_queue);
5097
5098         dev_priv->mm.interruptible = true;
5099
5100         mutex_init(&dev_priv->fb_tracking.lock);
5101 }
5102
5103 void i915_gem_load_cleanup(struct drm_device *dev)
5104 {
5105         struct drm_i915_private *dev_priv = to_i915(dev);
5106
5107         kmem_cache_destroy(dev_priv->requests);
5108         kmem_cache_destroy(dev_priv->vmas);
5109         kmem_cache_destroy(dev_priv->objects);
5110 }
5111
5112 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5113 {
5114         struct drm_i915_file_private *file_priv = file->driver_priv;
5115
5116         /* Clean up our request list when the client is going away, so that
5117          * later retire_requests won't dereference our soon-to-be-gone
5118          * file_priv.
5119          */
5120         spin_lock(&file_priv->mm.lock);
5121         while (!list_empty(&file_priv->mm.request_list)) {
5122                 struct drm_i915_gem_request *request;
5123
5124                 request = list_first_entry(&file_priv->mm.request_list,
5125                                            struct drm_i915_gem_request,
5126                                            client_list);
5127                 list_del(&request->client_list);
5128                 request->file_priv = NULL;
5129         }
5130         spin_unlock(&file_priv->mm.lock);
5131
5132         if (!list_empty(&file_priv->rps.link)) {
5133                 spin_lock(&to_i915(dev)->rps.client_lock);
5134                 list_del(&file_priv->rps.link);
5135                 spin_unlock(&to_i915(dev)->rps.client_lock);
5136         }
5137 }
5138
5139 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5140 {
5141         struct drm_i915_file_private *file_priv;
5142         int ret;
5143
5144         DRM_DEBUG_DRIVER("\n");
5145
5146         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5147         if (!file_priv)
5148                 return -ENOMEM;
5149
5150         file->driver_priv = file_priv;
5151         file_priv->dev_priv = dev->dev_private;
5152         file_priv->file = file;
5153         INIT_LIST_HEAD(&file_priv->rps.link);
5154
5155         spin_lock_init(&file_priv->mm.lock);
5156         INIT_LIST_HEAD(&file_priv->mm.request_list);
5157
5158         file_priv->bsd_ring = -1;
5159
5160         ret = i915_gem_context_open(dev, file);
5161         if (ret)
5162                 kfree(file_priv);
5163
5164         return ret;
5165 }
5166
5167 /**
5168  * i915_gem_track_fb - update frontbuffer tracking
5169  * @old: current GEM buffer for the frontbuffer slots
5170  * @new: new GEM buffer for the frontbuffer slots
5171  * @frontbuffer_bits: bitmask of frontbuffer slots
5172  *
5173  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5174  * from @old and setting them in @new. Both @old and @new can be NULL.
5175  */
5176 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5177                        struct drm_i915_gem_object *new,
5178                        unsigned frontbuffer_bits)
5179 {
5180         if (old) {
5181                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5182                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5183                 old->frontbuffer_bits &= ~frontbuffer_bits;
5184         }
5185
5186         if (new) {
5187                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5188                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5189                 new->frontbuffer_bits |= frontbuffer_bits;
5190         }
5191 }
5192
5193 /* All the new VM stuff */
5194 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5195                         struct i915_address_space *vm)
5196 {
5197         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5198         struct i915_vma *vma;
5199
5200         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5201
5202         list_for_each_entry(vma, &o->vma_list, obj_link) {
5203                 if (vma->is_ggtt &&
5204                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5205                         continue;
5206                 if (vma->vm == vm)
5207                         return vma->node.start;
5208         }
5209
5210         WARN(1, "%s vma for this object not found.\n",
5211              i915_is_ggtt(vm) ? "global" : "ppgtt");
5212         return -1;
5213 }
5214
5215 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5216                                   const struct i915_ggtt_view *view)
5217 {
5218         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5219         struct i915_vma *vma;
5220
5221         list_for_each_entry(vma, &o->vma_list, obj_link)
5222                 if (vma->vm == ggtt &&
5223                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5224                         return vma->node.start;
5225
5226         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5227         return -1;
5228 }
5229
5230 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5231                         struct i915_address_space *vm)
5232 {
5233         struct i915_vma *vma;
5234
5235         list_for_each_entry(vma, &o->vma_list, obj_link) {
5236                 if (vma->is_ggtt &&
5237                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5238                         continue;
5239                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5240                         return true;
5241         }
5242
5243         return false;
5244 }
5245
5246 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5247                                   const struct i915_ggtt_view *view)
5248 {
5249         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5250         struct i915_vma *vma;
5251
5252         list_for_each_entry(vma, &o->vma_list, obj_link)
5253                 if (vma->vm == ggtt &&
5254                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5255                     drm_mm_node_allocated(&vma->node))
5256                         return true;
5257
5258         return false;
5259 }
5260
5261 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5262 {
5263         struct i915_vma *vma;
5264
5265         list_for_each_entry(vma, &o->vma_list, obj_link)
5266                 if (drm_mm_node_allocated(&vma->node))
5267                         return true;
5268
5269         return false;
5270 }
5271
5272 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5273                                 struct i915_address_space *vm)
5274 {
5275         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5276         struct i915_vma *vma;
5277
5278         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5279
5280         BUG_ON(list_empty(&o->vma_list));
5281
5282         list_for_each_entry(vma, &o->vma_list, obj_link) {
5283                 if (vma->is_ggtt &&
5284                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5285                         continue;
5286                 if (vma->vm == vm)
5287                         return vma->node.size;
5288         }
5289         return 0;
5290 }
5291
5292 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5293 {
5294         struct i915_vma *vma;
5295         list_for_each_entry(vma, &obj->vma_list, obj_link)
5296                 if (vma->pin_count > 0)
5297                         return true;
5298
5299         return false;
5300 }
5301
5302 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5303 struct page *
5304 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5305 {
5306         struct page *page;
5307
5308         /* Only default objects have per-page dirty tracking */
5309         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5310                 return NULL;
5311
5312         page = i915_gem_object_get_page(obj, n);
5313         set_page_dirty(page);
5314         return page;
5315 }
5316
5317 /* Allocate a new GEM object and fill it with the supplied data */
5318 struct drm_i915_gem_object *
5319 i915_gem_object_create_from_data(struct drm_device *dev,
5320                                  const void *data, size_t size)
5321 {
5322         struct drm_i915_gem_object *obj;
5323         struct sg_table *sg;
5324         size_t bytes;
5325         int ret;
5326
5327         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5328         if (IS_ERR_OR_NULL(obj))
5329                 return obj;
5330
5331         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5332         if (ret)
5333                 goto fail;
5334
5335         ret = i915_gem_object_get_pages(obj);
5336         if (ret)
5337                 goto fail;
5338
5339         i915_gem_object_pin_pages(obj);
5340         sg = obj->pages;
5341         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5342         obj->dirty = 1;         /* Backing store is now out of date */
5343         i915_gem_object_unpin_pages(obj);
5344
5345         if (WARN_ON(bytes != size)) {
5346                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5347                 ret = -EFAULT;
5348                 goto fail;
5349         }
5350
5351         return obj;
5352
5353 fail:
5354         drm_gem_object_unreference(&obj->base);
5355         return ERR_PTR(ret);
5356 }