]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
c93f27b981f5f6e0a858257a465f44b7166b6818
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55                 return false;
56
57         if (!i915_gem_object_is_coherent(obj))
58                 return true;
59
60         return obj->pin_display;
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67         memset(node, 0, sizeof(*node));
68         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69                                            size, 0, I915_COLOR_UNEVICTABLE,
70                                            0, ggtt->mappable_end,
71                                            DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77         drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82                                   u64 size)
83 {
84         spin_lock(&dev_priv->mm.object_stat_lock);
85         dev_priv->mm.object_count++;
86         dev_priv->mm.object_memory += size;
87         spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91                                      u64 size)
92 {
93         spin_lock(&dev_priv->mm.object_stat_lock);
94         dev_priv->mm.object_count--;
95         dev_priv->mm.object_memory -= size;
96         spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102         int ret;
103
104         might_sleep();
105
106         /*
107          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108          * userspace. If it takes that long something really bad is going on and
109          * we should simply try to bail out and fail as gracefully as possible.
110          */
111         ret = wait_event_interruptible_timeout(error->reset_queue,
112                                                !i915_reset_backoff(error),
113                                                I915_RESET_TIMEOUT);
114         if (ret == 0) {
115                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116                 return -EIO;
117         } else if (ret < 0) {
118                 return ret;
119         } else {
120                 return 0;
121         }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = to_i915(dev);
127         int ret;
128
129         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130         if (ret)
131                 return ret;
132
133         ret = mutex_lock_interruptible(&dev->struct_mutex);
134         if (ret)
135                 return ret;
136
137         return 0;
138 }
139
140 int
141 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
142                             struct drm_file *file)
143 {
144         struct drm_i915_private *dev_priv = to_i915(dev);
145         struct i915_ggtt *ggtt = &dev_priv->ggtt;
146         struct drm_i915_gem_get_aperture *args = data;
147         struct i915_vma *vma;
148         size_t pinned;
149
150         pinned = 0;
151         mutex_lock(&dev->struct_mutex);
152         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
153                 if (i915_vma_is_pinned(vma))
154                         pinned += vma->node.size;
155         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
156                 if (i915_vma_is_pinned(vma))
157                         pinned += vma->node.size;
158         mutex_unlock(&dev->struct_mutex);
159
160         args->aper_size = ggtt->base.total;
161         args->aper_available_size = args->aper_size - pinned;
162
163         return 0;
164 }
165
166 static struct sg_table *
167 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
168 {
169         struct address_space *mapping = obj->base.filp->f_mapping;
170         drm_dma_handle_t *phys;
171         struct sg_table *st;
172         struct scatterlist *sg;
173         char *vaddr;
174         int i;
175
176         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
177                 return ERR_PTR(-EINVAL);
178
179         /* Always aligning to the object size, allows a single allocation
180          * to handle all possible callers, and given typical object sizes,
181          * the alignment of the buddy allocation will naturally match.
182          */
183         phys = drm_pci_alloc(obj->base.dev,
184                              obj->base.size,
185                              roundup_pow_of_two(obj->base.size));
186         if (!phys)
187                 return ERR_PTR(-ENOMEM);
188
189         vaddr = phys->vaddr;
190         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191                 struct page *page;
192                 char *src;
193
194                 page = shmem_read_mapping_page(mapping, i);
195                 if (IS_ERR(page)) {
196                         st = ERR_CAST(page);
197                         goto err_phys;
198                 }
199
200                 src = kmap_atomic(page);
201                 memcpy(vaddr, src, PAGE_SIZE);
202                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
203                 kunmap_atomic(src);
204
205                 put_page(page);
206                 vaddr += PAGE_SIZE;
207         }
208
209         i915_gem_chipset_flush(to_i915(obj->base.dev));
210
211         st = kmalloc(sizeof(*st), GFP_KERNEL);
212         if (!st) {
213                 st = ERR_PTR(-ENOMEM);
214                 goto err_phys;
215         }
216
217         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
218                 kfree(st);
219                 st = ERR_PTR(-ENOMEM);
220                 goto err_phys;
221         }
222
223         sg = st->sgl;
224         sg->offset = 0;
225         sg->length = obj->base.size;
226
227         sg_dma_address(sg) = phys->busaddr;
228         sg_dma_len(sg) = obj->base.size;
229
230         obj->phys_handle = phys;
231         return st;
232
233 err_phys:
234         drm_pci_free(obj->base.dev, phys);
235         return st;
236 }
237
238 static void
239 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
240                                 struct sg_table *pages,
241                                 bool needs_clflush)
242 {
243         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
244
245         if (obj->mm.madv == I915_MADV_DONTNEED)
246                 obj->mm.dirty = false;
247
248         if (needs_clflush &&
249             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
250             !i915_gem_object_is_coherent(obj))
251                 drm_clflush_sg(pages);
252
253         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
254         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
255 }
256
257 static void
258 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
259                                struct sg_table *pages)
260 {
261         __i915_gem_object_release_shmem(obj, pages, false);
262
263         if (obj->mm.dirty) {
264                 struct address_space *mapping = obj->base.filp->f_mapping;
265                 char *vaddr = obj->phys_handle->vaddr;
266                 int i;
267
268                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
269                         struct page *page;
270                         char *dst;
271
272                         page = shmem_read_mapping_page(mapping, i);
273                         if (IS_ERR(page))
274                                 continue;
275
276                         dst = kmap_atomic(page);
277                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
278                         memcpy(dst, vaddr, PAGE_SIZE);
279                         kunmap_atomic(dst);
280
281                         set_page_dirty(page);
282                         if (obj->mm.madv == I915_MADV_WILLNEED)
283                                 mark_page_accessed(page);
284                         put_page(page);
285                         vaddr += PAGE_SIZE;
286                 }
287                 obj->mm.dirty = false;
288         }
289
290         sg_free_table(pages);
291         kfree(pages);
292
293         drm_pci_free(obj->base.dev, obj->phys_handle);
294 }
295
296 static void
297 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
298 {
299         i915_gem_object_unpin_pages(obj);
300 }
301
302 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
303         .get_pages = i915_gem_object_get_pages_phys,
304         .put_pages = i915_gem_object_put_pages_phys,
305         .release = i915_gem_object_release_phys,
306 };
307
308 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
309
310 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
311 {
312         struct i915_vma *vma;
313         LIST_HEAD(still_in_list);
314         int ret;
315
316         lockdep_assert_held(&obj->base.dev->struct_mutex);
317
318         /* Closed vma are removed from the obj->vma_list - but they may
319          * still have an active binding on the object. To remove those we
320          * must wait for all rendering to complete to the object (as unbinding
321          * must anyway), and retire the requests.
322          */
323         ret = i915_gem_object_wait(obj,
324                                    I915_WAIT_INTERRUPTIBLE |
325                                    I915_WAIT_LOCKED |
326                                    I915_WAIT_ALL,
327                                    MAX_SCHEDULE_TIMEOUT,
328                                    NULL);
329         if (ret)
330                 return ret;
331
332         i915_gem_retire_requests(to_i915(obj->base.dev));
333
334         while ((vma = list_first_entry_or_null(&obj->vma_list,
335                                                struct i915_vma,
336                                                obj_link))) {
337                 list_move_tail(&vma->obj_link, &still_in_list);
338                 ret = i915_vma_unbind(vma);
339                 if (ret)
340                         break;
341         }
342         list_splice(&still_in_list, &obj->vma_list);
343
344         return ret;
345 }
346
347 static long
348 i915_gem_object_wait_fence(struct dma_fence *fence,
349                            unsigned int flags,
350                            long timeout,
351                            struct intel_rps_client *rps)
352 {
353         struct drm_i915_gem_request *rq;
354
355         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
356
357         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
358                 return timeout;
359
360         if (!dma_fence_is_i915(fence))
361                 return dma_fence_wait_timeout(fence,
362                                               flags & I915_WAIT_INTERRUPTIBLE,
363                                               timeout);
364
365         rq = to_request(fence);
366         if (i915_gem_request_completed(rq))
367                 goto out;
368
369         /* This client is about to stall waiting for the GPU. In many cases
370          * this is undesirable and limits the throughput of the system, as
371          * many clients cannot continue processing user input/output whilst
372          * blocked. RPS autotuning may take tens of milliseconds to respond
373          * to the GPU load and thus incurs additional latency for the client.
374          * We can circumvent that by promoting the GPU frequency to maximum
375          * before we wait. This makes the GPU throttle up much more quickly
376          * (good for benchmarks and user experience, e.g. window animations),
377          * but at a cost of spending more power processing the workload
378          * (bad for battery). Not all clients even want their results
379          * immediately and for them we should just let the GPU select its own
380          * frequency to maximise efficiency. To prevent a single client from
381          * forcing the clocks too high for the whole system, we only allow
382          * each client to waitboost once in a busy period.
383          */
384         if (rps) {
385                 if (INTEL_GEN(rq->i915) >= 6)
386                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
387                 else
388                         rps = NULL;
389         }
390
391         timeout = i915_wait_request(rq, flags, timeout);
392
393 out:
394         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
395                 i915_gem_request_retire_upto(rq);
396
397         if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
398                 /* The GPU is now idle and this client has stalled.
399                  * Since no other client has submitted a request in the
400                  * meantime, assume that this client is the only one
401                  * supplying work to the GPU but is unable to keep that
402                  * work supplied because it is waiting. Since the GPU is
403                  * then never kept fully busy, RPS autoclocking will
404                  * keep the clocks relatively low, causing further delays.
405                  * Compensate by giving the synchronous client credit for
406                  * a waitboost next time.
407                  */
408                 spin_lock(&rq->i915->rps.client_lock);
409                 list_del_init(&rps->link);
410                 spin_unlock(&rq->i915->rps.client_lock);
411         }
412
413         return timeout;
414 }
415
416 static long
417 i915_gem_object_wait_reservation(struct reservation_object *resv,
418                                  unsigned int flags,
419                                  long timeout,
420                                  struct intel_rps_client *rps)
421 {
422         unsigned int seq = __read_seqcount_begin(&resv->seq);
423         struct dma_fence *excl;
424         bool prune_fences = false;
425
426         if (flags & I915_WAIT_ALL) {
427                 struct dma_fence **shared;
428                 unsigned int count, i;
429                 int ret;
430
431                 ret = reservation_object_get_fences_rcu(resv,
432                                                         &excl, &count, &shared);
433                 if (ret)
434                         return ret;
435
436                 for (i = 0; i < count; i++) {
437                         timeout = i915_gem_object_wait_fence(shared[i],
438                                                              flags, timeout,
439                                                              rps);
440                         if (timeout < 0)
441                                 break;
442
443                         dma_fence_put(shared[i]);
444                 }
445
446                 for (; i < count; i++)
447                         dma_fence_put(shared[i]);
448                 kfree(shared);
449
450                 prune_fences = count && timeout >= 0;
451         } else {
452                 excl = reservation_object_get_excl_rcu(resv);
453         }
454
455         if (excl && timeout >= 0) {
456                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
457                 prune_fences = timeout >= 0;
458         }
459
460         dma_fence_put(excl);
461
462         /* Oportunistically prune the fences iff we know they have *all* been
463          * signaled and that the reservation object has not been changed (i.e.
464          * no new fences have been added).
465          */
466         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
467                 if (reservation_object_trylock(resv)) {
468                         if (!__read_seqcount_retry(&resv->seq, seq))
469                                 reservation_object_add_excl_fence(resv, NULL);
470                         reservation_object_unlock(resv);
471                 }
472         }
473
474         return timeout;
475 }
476
477 static void __fence_set_priority(struct dma_fence *fence, int prio)
478 {
479         struct drm_i915_gem_request *rq;
480         struct intel_engine_cs *engine;
481
482         if (!dma_fence_is_i915(fence))
483                 return;
484
485         rq = to_request(fence);
486         engine = rq->engine;
487         if (!engine->schedule)
488                 return;
489
490         engine->schedule(rq, prio);
491 }
492
493 static void fence_set_priority(struct dma_fence *fence, int prio)
494 {
495         /* Recurse once into a fence-array */
496         if (dma_fence_is_array(fence)) {
497                 struct dma_fence_array *array = to_dma_fence_array(fence);
498                 int i;
499
500                 for (i = 0; i < array->num_fences; i++)
501                         __fence_set_priority(array->fences[i], prio);
502         } else {
503                 __fence_set_priority(fence, prio);
504         }
505 }
506
507 int
508 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
509                               unsigned int flags,
510                               int prio)
511 {
512         struct dma_fence *excl;
513
514         if (flags & I915_WAIT_ALL) {
515                 struct dma_fence **shared;
516                 unsigned int count, i;
517                 int ret;
518
519                 ret = reservation_object_get_fences_rcu(obj->resv,
520                                                         &excl, &count, &shared);
521                 if (ret)
522                         return ret;
523
524                 for (i = 0; i < count; i++) {
525                         fence_set_priority(shared[i], prio);
526                         dma_fence_put(shared[i]);
527                 }
528
529                 kfree(shared);
530         } else {
531                 excl = reservation_object_get_excl_rcu(obj->resv);
532         }
533
534         if (excl) {
535                 fence_set_priority(excl, prio);
536                 dma_fence_put(excl);
537         }
538         return 0;
539 }
540
541 /**
542  * Waits for rendering to the object to be completed
543  * @obj: i915 gem object
544  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
545  * @timeout: how long to wait
546  * @rps: client (user process) to charge for any waitboosting
547  */
548 int
549 i915_gem_object_wait(struct drm_i915_gem_object *obj,
550                      unsigned int flags,
551                      long timeout,
552                      struct intel_rps_client *rps)
553 {
554         might_sleep();
555 #if IS_ENABLED(CONFIG_LOCKDEP)
556         GEM_BUG_ON(debug_locks &&
557                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
558                    !!(flags & I915_WAIT_LOCKED));
559 #endif
560         GEM_BUG_ON(timeout < 0);
561
562         timeout = i915_gem_object_wait_reservation(obj->resv,
563                                                    flags, timeout,
564                                                    rps);
565         return timeout < 0 ? timeout : 0;
566 }
567
568 static struct intel_rps_client *to_rps_client(struct drm_file *file)
569 {
570         struct drm_i915_file_private *fpriv = file->driver_priv;
571
572         return &fpriv->rps;
573 }
574
575 int
576 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
577                             int align)
578 {
579         int ret;
580
581         if (align > obj->base.size)
582                 return -EINVAL;
583
584         if (obj->ops == &i915_gem_phys_ops)
585                 return 0;
586
587         if (obj->mm.madv != I915_MADV_WILLNEED)
588                 return -EFAULT;
589
590         if (obj->base.filp == NULL)
591                 return -EINVAL;
592
593         ret = i915_gem_object_unbind(obj);
594         if (ret)
595                 return ret;
596
597         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
598         if (obj->mm.pages)
599                 return -EBUSY;
600
601         GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
602         obj->ops = &i915_gem_phys_ops;
603
604         ret = i915_gem_object_pin_pages(obj);
605         if (ret)
606                 goto err_xfer;
607
608         return 0;
609
610 err_xfer:
611         obj->ops = &i915_gem_object_ops;
612         return ret;
613 }
614
615 static int
616 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
617                      struct drm_i915_gem_pwrite *args,
618                      struct drm_file *file)
619 {
620         void *vaddr = obj->phys_handle->vaddr + args->offset;
621         char __user *user_data = u64_to_user_ptr(args->data_ptr);
622
623         /* We manually control the domain here and pretend that it
624          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
625          */
626         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
627         if (copy_from_user(vaddr, user_data, args->size))
628                 return -EFAULT;
629
630         drm_clflush_virt_range(vaddr, args->size);
631         i915_gem_chipset_flush(to_i915(obj->base.dev));
632
633         intel_fb_obj_flush(obj, ORIGIN_CPU);
634         return 0;
635 }
636
637 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
638 {
639         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
640 }
641
642 void i915_gem_object_free(struct drm_i915_gem_object *obj)
643 {
644         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
645         kmem_cache_free(dev_priv->objects, obj);
646 }
647
648 static int
649 i915_gem_create(struct drm_file *file,
650                 struct drm_i915_private *dev_priv,
651                 uint64_t size,
652                 uint32_t *handle_p)
653 {
654         struct drm_i915_gem_object *obj;
655         int ret;
656         u32 handle;
657
658         size = roundup(size, PAGE_SIZE);
659         if (size == 0)
660                 return -EINVAL;
661
662         /* Allocate the new object */
663         obj = i915_gem_object_create(dev_priv, size);
664         if (IS_ERR(obj))
665                 return PTR_ERR(obj);
666
667         ret = drm_gem_handle_create(file, &obj->base, &handle);
668         /* drop reference from allocate - handle holds it now */
669         i915_gem_object_put(obj);
670         if (ret)
671                 return ret;
672
673         *handle_p = handle;
674         return 0;
675 }
676
677 int
678 i915_gem_dumb_create(struct drm_file *file,
679                      struct drm_device *dev,
680                      struct drm_mode_create_dumb *args)
681 {
682         /* have to work out size/pitch and return them */
683         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
684         args->size = args->pitch * args->height;
685         return i915_gem_create(file, to_i915(dev),
686                                args->size, &args->handle);
687 }
688
689 /**
690  * Creates a new mm object and returns a handle to it.
691  * @dev: drm device pointer
692  * @data: ioctl data blob
693  * @file: drm file pointer
694  */
695 int
696 i915_gem_create_ioctl(struct drm_device *dev, void *data,
697                       struct drm_file *file)
698 {
699         struct drm_i915_private *dev_priv = to_i915(dev);
700         struct drm_i915_gem_create *args = data;
701
702         i915_gem_flush_free_objects(dev_priv);
703
704         return i915_gem_create(file, dev_priv,
705                                args->size, &args->handle);
706 }
707
708 static inline int
709 __copy_to_user_swizzled(char __user *cpu_vaddr,
710                         const char *gpu_vaddr, int gpu_offset,
711                         int length)
712 {
713         int ret, cpu_offset = 0;
714
715         while (length > 0) {
716                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
717                 int this_length = min(cacheline_end - gpu_offset, length);
718                 int swizzled_gpu_offset = gpu_offset ^ 64;
719
720                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
721                                      gpu_vaddr + swizzled_gpu_offset,
722                                      this_length);
723                 if (ret)
724                         return ret + length;
725
726                 cpu_offset += this_length;
727                 gpu_offset += this_length;
728                 length -= this_length;
729         }
730
731         return 0;
732 }
733
734 static inline int
735 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
736                           const char __user *cpu_vaddr,
737                           int length)
738 {
739         int ret, cpu_offset = 0;
740
741         while (length > 0) {
742                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
743                 int this_length = min(cacheline_end - gpu_offset, length);
744                 int swizzled_gpu_offset = gpu_offset ^ 64;
745
746                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
747                                        cpu_vaddr + cpu_offset,
748                                        this_length);
749                 if (ret)
750                         return ret + length;
751
752                 cpu_offset += this_length;
753                 gpu_offset += this_length;
754                 length -= this_length;
755         }
756
757         return 0;
758 }
759
760 /*
761  * Pins the specified object's pages and synchronizes the object with
762  * GPU accesses. Sets needs_clflush to non-zero if the caller should
763  * flush the object from the CPU cache.
764  */
765 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
766                                     unsigned int *needs_clflush)
767 {
768         int ret;
769
770         lockdep_assert_held(&obj->base.dev->struct_mutex);
771
772         *needs_clflush = 0;
773         if (!i915_gem_object_has_struct_page(obj))
774                 return -ENODEV;
775
776         ret = i915_gem_object_wait(obj,
777                                    I915_WAIT_INTERRUPTIBLE |
778                                    I915_WAIT_LOCKED,
779                                    MAX_SCHEDULE_TIMEOUT,
780                                    NULL);
781         if (ret)
782                 return ret;
783
784         ret = i915_gem_object_pin_pages(obj);
785         if (ret)
786                 return ret;
787
788         if (i915_gem_object_is_coherent(obj) ||
789             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
790                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
791                 if (ret)
792                         goto err_unpin;
793                 else
794                         goto out;
795         }
796
797         i915_gem_object_flush_gtt_write_domain(obj);
798
799         /* If we're not in the cpu read domain, set ourself into the gtt
800          * read domain and manually flush cachelines (if required). This
801          * optimizes for the case when the gpu will dirty the data
802          * anyway again before the next pread happens.
803          */
804         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
805                 *needs_clflush = CLFLUSH_BEFORE;
806
807 out:
808         /* return with the pages pinned */
809         return 0;
810
811 err_unpin:
812         i915_gem_object_unpin_pages(obj);
813         return ret;
814 }
815
816 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
817                                      unsigned int *needs_clflush)
818 {
819         int ret;
820
821         lockdep_assert_held(&obj->base.dev->struct_mutex);
822
823         *needs_clflush = 0;
824         if (!i915_gem_object_has_struct_page(obj))
825                 return -ENODEV;
826
827         ret = i915_gem_object_wait(obj,
828                                    I915_WAIT_INTERRUPTIBLE |
829                                    I915_WAIT_LOCKED |
830                                    I915_WAIT_ALL,
831                                    MAX_SCHEDULE_TIMEOUT,
832                                    NULL);
833         if (ret)
834                 return ret;
835
836         ret = i915_gem_object_pin_pages(obj);
837         if (ret)
838                 return ret;
839
840         if (i915_gem_object_is_coherent(obj) ||
841             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
842                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
843                 if (ret)
844                         goto err_unpin;
845                 else
846                         goto out;
847         }
848
849         i915_gem_object_flush_gtt_write_domain(obj);
850
851         /* If we're not in the cpu write domain, set ourself into the
852          * gtt write domain and manually flush cachelines (as required).
853          * This optimizes for the case when the gpu will use the data
854          * right away and we therefore have to clflush anyway.
855          */
856         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
857                 *needs_clflush |= CLFLUSH_AFTER;
858
859         /* Same trick applies to invalidate partially written cachelines read
860          * before writing.
861          */
862         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
863                 *needs_clflush |= CLFLUSH_BEFORE;
864
865 out:
866         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
867         obj->mm.dirty = true;
868         /* return with the pages pinned */
869         return 0;
870
871 err_unpin:
872         i915_gem_object_unpin_pages(obj);
873         return ret;
874 }
875
876 static void
877 shmem_clflush_swizzled_range(char *addr, unsigned long length,
878                              bool swizzled)
879 {
880         if (unlikely(swizzled)) {
881                 unsigned long start = (unsigned long) addr;
882                 unsigned long end = (unsigned long) addr + length;
883
884                 /* For swizzling simply ensure that we always flush both
885                  * channels. Lame, but simple and it works. Swizzled
886                  * pwrite/pread is far from a hotpath - current userspace
887                  * doesn't use it at all. */
888                 start = round_down(start, 128);
889                 end = round_up(end, 128);
890
891                 drm_clflush_virt_range((void *)start, end - start);
892         } else {
893                 drm_clflush_virt_range(addr, length);
894         }
895
896 }
897
898 /* Only difference to the fast-path function is that this can handle bit17
899  * and uses non-atomic copy and kmap functions. */
900 static int
901 shmem_pread_slow(struct page *page, int offset, int length,
902                  char __user *user_data,
903                  bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905         char *vaddr;
906         int ret;
907
908         vaddr = kmap(page);
909         if (needs_clflush)
910                 shmem_clflush_swizzled_range(vaddr + offset, length,
911                                              page_do_bit17_swizzling);
912
913         if (page_do_bit17_swizzling)
914                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
915         else
916                 ret = __copy_to_user(user_data, vaddr + offset, length);
917         kunmap(page);
918
919         return ret ? - EFAULT : 0;
920 }
921
922 static int
923 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
924             bool page_do_bit17_swizzling, bool needs_clflush)
925 {
926         int ret;
927
928         ret = -ENODEV;
929         if (!page_do_bit17_swizzling) {
930                 char *vaddr = kmap_atomic(page);
931
932                 if (needs_clflush)
933                         drm_clflush_virt_range(vaddr + offset, length);
934                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
935                 kunmap_atomic(vaddr);
936         }
937         if (ret == 0)
938                 return 0;
939
940         return shmem_pread_slow(page, offset, length, user_data,
941                                 page_do_bit17_swizzling, needs_clflush);
942 }
943
944 static int
945 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
946                      struct drm_i915_gem_pread *args)
947 {
948         char __user *user_data;
949         u64 remain;
950         unsigned int obj_do_bit17_swizzling;
951         unsigned int needs_clflush;
952         unsigned int idx, offset;
953         int ret;
954
955         obj_do_bit17_swizzling = 0;
956         if (i915_gem_object_needs_bit17_swizzle(obj))
957                 obj_do_bit17_swizzling = BIT(17);
958
959         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
960         if (ret)
961                 return ret;
962
963         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
964         mutex_unlock(&obj->base.dev->struct_mutex);
965         if (ret)
966                 return ret;
967
968         remain = args->size;
969         user_data = u64_to_user_ptr(args->data_ptr);
970         offset = offset_in_page(args->offset);
971         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
972                 struct page *page = i915_gem_object_get_page(obj, idx);
973                 int length;
974
975                 length = remain;
976                 if (offset + length > PAGE_SIZE)
977                         length = PAGE_SIZE - offset;
978
979                 ret = shmem_pread(page, offset, length, user_data,
980                                   page_to_phys(page) & obj_do_bit17_swizzling,
981                                   needs_clflush);
982                 if (ret)
983                         break;
984
985                 remain -= length;
986                 user_data += length;
987                 offset = 0;
988         }
989
990         i915_gem_obj_finish_shmem_access(obj);
991         return ret;
992 }
993
994 static inline bool
995 gtt_user_read(struct io_mapping *mapping,
996               loff_t base, int offset,
997               char __user *user_data, int length)
998 {
999         void *vaddr;
1000         unsigned long unwritten;
1001
1002         /* We can use the cpu mem copy function because this is X86. */
1003         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1004         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1005         io_mapping_unmap_atomic(vaddr);
1006         if (unwritten) {
1007                 vaddr = (void __force *)
1008                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1009                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1010                 io_mapping_unmap(vaddr);
1011         }
1012         return unwritten;
1013 }
1014
1015 static int
1016 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1017                    const struct drm_i915_gem_pread *args)
1018 {
1019         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1020         struct i915_ggtt *ggtt = &i915->ggtt;
1021         struct drm_mm_node node;
1022         struct i915_vma *vma;
1023         void __user *user_data;
1024         u64 remain, offset;
1025         int ret;
1026
1027         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1028         if (ret)
1029                 return ret;
1030
1031         intel_runtime_pm_get(i915);
1032         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1033                                        PIN_MAPPABLE | PIN_NONBLOCK);
1034         if (!IS_ERR(vma)) {
1035                 node.start = i915_ggtt_offset(vma);
1036                 node.allocated = false;
1037                 ret = i915_vma_put_fence(vma);
1038                 if (ret) {
1039                         i915_vma_unpin(vma);
1040                         vma = ERR_PTR(ret);
1041                 }
1042         }
1043         if (IS_ERR(vma)) {
1044                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1045                 if (ret)
1046                         goto out_unlock;
1047                 GEM_BUG_ON(!node.allocated);
1048         }
1049
1050         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1051         if (ret)
1052                 goto out_unpin;
1053
1054         mutex_unlock(&i915->drm.struct_mutex);
1055
1056         user_data = u64_to_user_ptr(args->data_ptr);
1057         remain = args->size;
1058         offset = args->offset;
1059
1060         while (remain > 0) {
1061                 /* Operation in this page
1062                  *
1063                  * page_base = page offset within aperture
1064                  * page_offset = offset within page
1065                  * page_length = bytes to copy for this page
1066                  */
1067                 u32 page_base = node.start;
1068                 unsigned page_offset = offset_in_page(offset);
1069                 unsigned page_length = PAGE_SIZE - page_offset;
1070                 page_length = remain < page_length ? remain : page_length;
1071                 if (node.allocated) {
1072                         wmb();
1073                         ggtt->base.insert_page(&ggtt->base,
1074                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1075                                                node.start, I915_CACHE_NONE, 0);
1076                         wmb();
1077                 } else {
1078                         page_base += offset & PAGE_MASK;
1079                 }
1080
1081                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1082                                   user_data, page_length)) {
1083                         ret = -EFAULT;
1084                         break;
1085                 }
1086
1087                 remain -= page_length;
1088                 user_data += page_length;
1089                 offset += page_length;
1090         }
1091
1092         mutex_lock(&i915->drm.struct_mutex);
1093 out_unpin:
1094         if (node.allocated) {
1095                 wmb();
1096                 ggtt->base.clear_range(&ggtt->base,
1097                                        node.start, node.size);
1098                 remove_mappable_node(&node);
1099         } else {
1100                 i915_vma_unpin(vma);
1101         }
1102 out_unlock:
1103         intel_runtime_pm_put(i915);
1104         mutex_unlock(&i915->drm.struct_mutex);
1105
1106         return ret;
1107 }
1108
1109 /**
1110  * Reads data from the object referenced by handle.
1111  * @dev: drm device pointer
1112  * @data: ioctl data blob
1113  * @file: drm file pointer
1114  *
1115  * On error, the contents of *data are undefined.
1116  */
1117 int
1118 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1119                      struct drm_file *file)
1120 {
1121         struct drm_i915_gem_pread *args = data;
1122         struct drm_i915_gem_object *obj;
1123         int ret;
1124
1125         if (args->size == 0)
1126                 return 0;
1127
1128         if (!access_ok(VERIFY_WRITE,
1129                        u64_to_user_ptr(args->data_ptr),
1130                        args->size))
1131                 return -EFAULT;
1132
1133         obj = i915_gem_object_lookup(file, args->handle);
1134         if (!obj)
1135                 return -ENOENT;
1136
1137         /* Bounds check source.  */
1138         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1139                 ret = -EINVAL;
1140                 goto out;
1141         }
1142
1143         trace_i915_gem_object_pread(obj, args->offset, args->size);
1144
1145         ret = i915_gem_object_wait(obj,
1146                                    I915_WAIT_INTERRUPTIBLE,
1147                                    MAX_SCHEDULE_TIMEOUT,
1148                                    to_rps_client(file));
1149         if (ret)
1150                 goto out;
1151
1152         ret = i915_gem_object_pin_pages(obj);
1153         if (ret)
1154                 goto out;
1155
1156         ret = i915_gem_shmem_pread(obj, args);
1157         if (ret == -EFAULT || ret == -ENODEV)
1158                 ret = i915_gem_gtt_pread(obj, args);
1159
1160         i915_gem_object_unpin_pages(obj);
1161 out:
1162         i915_gem_object_put(obj);
1163         return ret;
1164 }
1165
1166 /* This is the fast write path which cannot handle
1167  * page faults in the source data
1168  */
1169
1170 static inline bool
1171 ggtt_write(struct io_mapping *mapping,
1172            loff_t base, int offset,
1173            char __user *user_data, int length)
1174 {
1175         void *vaddr;
1176         unsigned long unwritten;
1177
1178         /* We can use the cpu mem copy function because this is X86. */
1179         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1180         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1181                                                       user_data, length);
1182         io_mapping_unmap_atomic(vaddr);
1183         if (unwritten) {
1184                 vaddr = (void __force *)
1185                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1186                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1187                 io_mapping_unmap(vaddr);
1188         }
1189
1190         return unwritten;
1191 }
1192
1193 /**
1194  * This is the fast pwrite path, where we copy the data directly from the
1195  * user into the GTT, uncached.
1196  * @obj: i915 GEM object
1197  * @args: pwrite arguments structure
1198  */
1199 static int
1200 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1201                          const struct drm_i915_gem_pwrite *args)
1202 {
1203         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1204         struct i915_ggtt *ggtt = &i915->ggtt;
1205         struct drm_mm_node node;
1206         struct i915_vma *vma;
1207         u64 remain, offset;
1208         void __user *user_data;
1209         int ret;
1210
1211         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1212         if (ret)
1213                 return ret;
1214
1215         intel_runtime_pm_get(i915);
1216         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1217                                        PIN_MAPPABLE | PIN_NONBLOCK);
1218         if (!IS_ERR(vma)) {
1219                 node.start = i915_ggtt_offset(vma);
1220                 node.allocated = false;
1221                 ret = i915_vma_put_fence(vma);
1222                 if (ret) {
1223                         i915_vma_unpin(vma);
1224                         vma = ERR_PTR(ret);
1225                 }
1226         }
1227         if (IS_ERR(vma)) {
1228                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1229                 if (ret)
1230                         goto out_unlock;
1231                 GEM_BUG_ON(!node.allocated);
1232         }
1233
1234         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1235         if (ret)
1236                 goto out_unpin;
1237
1238         mutex_unlock(&i915->drm.struct_mutex);
1239
1240         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1241
1242         user_data = u64_to_user_ptr(args->data_ptr);
1243         offset = args->offset;
1244         remain = args->size;
1245         while (remain) {
1246                 /* Operation in this page
1247                  *
1248                  * page_base = page offset within aperture
1249                  * page_offset = offset within page
1250                  * page_length = bytes to copy for this page
1251                  */
1252                 u32 page_base = node.start;
1253                 unsigned int page_offset = offset_in_page(offset);
1254                 unsigned int page_length = PAGE_SIZE - page_offset;
1255                 page_length = remain < page_length ? remain : page_length;
1256                 if (node.allocated) {
1257                         wmb(); /* flush the write before we modify the GGTT */
1258                         ggtt->base.insert_page(&ggtt->base,
1259                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1260                                                node.start, I915_CACHE_NONE, 0);
1261                         wmb(); /* flush modifications to the GGTT (insert_page) */
1262                 } else {
1263                         page_base += offset & PAGE_MASK;
1264                 }
1265                 /* If we get a fault while copying data, then (presumably) our
1266                  * source page isn't available.  Return the error and we'll
1267                  * retry in the slow path.
1268                  * If the object is non-shmem backed, we retry again with the
1269                  * path that handles page fault.
1270                  */
1271                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1272                                user_data, page_length)) {
1273                         ret = -EFAULT;
1274                         break;
1275                 }
1276
1277                 remain -= page_length;
1278                 user_data += page_length;
1279                 offset += page_length;
1280         }
1281         intel_fb_obj_flush(obj, ORIGIN_CPU);
1282
1283         mutex_lock(&i915->drm.struct_mutex);
1284 out_unpin:
1285         if (node.allocated) {
1286                 wmb();
1287                 ggtt->base.clear_range(&ggtt->base,
1288                                        node.start, node.size);
1289                 remove_mappable_node(&node);
1290         } else {
1291                 i915_vma_unpin(vma);
1292         }
1293 out_unlock:
1294         intel_runtime_pm_put(i915);
1295         mutex_unlock(&i915->drm.struct_mutex);
1296         return ret;
1297 }
1298
1299 static int
1300 shmem_pwrite_slow(struct page *page, int offset, int length,
1301                   char __user *user_data,
1302                   bool page_do_bit17_swizzling,
1303                   bool needs_clflush_before,
1304                   bool needs_clflush_after)
1305 {
1306         char *vaddr;
1307         int ret;
1308
1309         vaddr = kmap(page);
1310         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1311                 shmem_clflush_swizzled_range(vaddr + offset, length,
1312                                              page_do_bit17_swizzling);
1313         if (page_do_bit17_swizzling)
1314                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1315                                                 length);
1316         else
1317                 ret = __copy_from_user(vaddr + offset, user_data, length);
1318         if (needs_clflush_after)
1319                 shmem_clflush_swizzled_range(vaddr + offset, length,
1320                                              page_do_bit17_swizzling);
1321         kunmap(page);
1322
1323         return ret ? -EFAULT : 0;
1324 }
1325
1326 /* Per-page copy function for the shmem pwrite fastpath.
1327  * Flushes invalid cachelines before writing to the target if
1328  * needs_clflush_before is set and flushes out any written cachelines after
1329  * writing if needs_clflush is set.
1330  */
1331 static int
1332 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1333              bool page_do_bit17_swizzling,
1334              bool needs_clflush_before,
1335              bool needs_clflush_after)
1336 {
1337         int ret;
1338
1339         ret = -ENODEV;
1340         if (!page_do_bit17_swizzling) {
1341                 char *vaddr = kmap_atomic(page);
1342
1343                 if (needs_clflush_before)
1344                         drm_clflush_virt_range(vaddr + offset, len);
1345                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1346                 if (needs_clflush_after)
1347                         drm_clflush_virt_range(vaddr + offset, len);
1348
1349                 kunmap_atomic(vaddr);
1350         }
1351         if (ret == 0)
1352                 return ret;
1353
1354         return shmem_pwrite_slow(page, offset, len, user_data,
1355                                  page_do_bit17_swizzling,
1356                                  needs_clflush_before,
1357                                  needs_clflush_after);
1358 }
1359
1360 static int
1361 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1362                       const struct drm_i915_gem_pwrite *args)
1363 {
1364         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365         void __user *user_data;
1366         u64 remain;
1367         unsigned int obj_do_bit17_swizzling;
1368         unsigned int partial_cacheline_write;
1369         unsigned int needs_clflush;
1370         unsigned int offset, idx;
1371         int ret;
1372
1373         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1374         if (ret)
1375                 return ret;
1376
1377         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1378         mutex_unlock(&i915->drm.struct_mutex);
1379         if (ret)
1380                 return ret;
1381
1382         obj_do_bit17_swizzling = 0;
1383         if (i915_gem_object_needs_bit17_swizzle(obj))
1384                 obj_do_bit17_swizzling = BIT(17);
1385
1386         /* If we don't overwrite a cacheline completely we need to be
1387          * careful to have up-to-date data by first clflushing. Don't
1388          * overcomplicate things and flush the entire patch.
1389          */
1390         partial_cacheline_write = 0;
1391         if (needs_clflush & CLFLUSH_BEFORE)
1392                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1393
1394         user_data = u64_to_user_ptr(args->data_ptr);
1395         remain = args->size;
1396         offset = offset_in_page(args->offset);
1397         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1398                 struct page *page = i915_gem_object_get_page(obj, idx);
1399                 int length;
1400
1401                 length = remain;
1402                 if (offset + length > PAGE_SIZE)
1403                         length = PAGE_SIZE - offset;
1404
1405                 ret = shmem_pwrite(page, offset, length, user_data,
1406                                    page_to_phys(page) & obj_do_bit17_swizzling,
1407                                    (offset | length) & partial_cacheline_write,
1408                                    needs_clflush & CLFLUSH_AFTER);
1409                 if (ret)
1410                         break;
1411
1412                 remain -= length;
1413                 user_data += length;
1414                 offset = 0;
1415         }
1416
1417         intel_fb_obj_flush(obj, ORIGIN_CPU);
1418         i915_gem_obj_finish_shmem_access(obj);
1419         return ret;
1420 }
1421
1422 /**
1423  * Writes data to the object referenced by handle.
1424  * @dev: drm device
1425  * @data: ioctl data blob
1426  * @file: drm file
1427  *
1428  * On error, the contents of the buffer that were to be modified are undefined.
1429  */
1430 int
1431 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1432                       struct drm_file *file)
1433 {
1434         struct drm_i915_gem_pwrite *args = data;
1435         struct drm_i915_gem_object *obj;
1436         int ret;
1437
1438         if (args->size == 0)
1439                 return 0;
1440
1441         if (!access_ok(VERIFY_READ,
1442                        u64_to_user_ptr(args->data_ptr),
1443                        args->size))
1444                 return -EFAULT;
1445
1446         obj = i915_gem_object_lookup(file, args->handle);
1447         if (!obj)
1448                 return -ENOENT;
1449
1450         /* Bounds check destination. */
1451         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1452                 ret = -EINVAL;
1453                 goto err;
1454         }
1455
1456         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1457
1458         ret = -ENODEV;
1459         if (obj->ops->pwrite)
1460                 ret = obj->ops->pwrite(obj, args);
1461         if (ret != -ENODEV)
1462                 goto err;
1463
1464         ret = i915_gem_object_wait(obj,
1465                                    I915_WAIT_INTERRUPTIBLE |
1466                                    I915_WAIT_ALL,
1467                                    MAX_SCHEDULE_TIMEOUT,
1468                                    to_rps_client(file));
1469         if (ret)
1470                 goto err;
1471
1472         ret = i915_gem_object_pin_pages(obj);
1473         if (ret)
1474                 goto err;
1475
1476         ret = -EFAULT;
1477         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1478          * it would end up going through the fenced access, and we'll get
1479          * different detiling behavior between reading and writing.
1480          * pread/pwrite currently are reading and writing from the CPU
1481          * perspective, requiring manual detiling by the client.
1482          */
1483         if (!i915_gem_object_has_struct_page(obj) ||
1484             cpu_write_needs_clflush(obj))
1485                 /* Note that the gtt paths might fail with non-page-backed user
1486                  * pointers (e.g. gtt mappings when moving data between
1487                  * textures). Fallback to the shmem path in that case.
1488                  */
1489                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1490
1491         if (ret == -EFAULT || ret == -ENOSPC) {
1492                 if (obj->phys_handle)
1493                         ret = i915_gem_phys_pwrite(obj, args, file);
1494                 else
1495                         ret = i915_gem_shmem_pwrite(obj, args);
1496         }
1497
1498         i915_gem_object_unpin_pages(obj);
1499 err:
1500         i915_gem_object_put(obj);
1501         return ret;
1502 }
1503
1504 static inline enum fb_op_origin
1505 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1506 {
1507         return (domain == I915_GEM_DOMAIN_GTT ?
1508                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1509 }
1510
1511 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1512 {
1513         struct drm_i915_private *i915;
1514         struct list_head *list;
1515         struct i915_vma *vma;
1516
1517         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1518                 if (!i915_vma_is_ggtt(vma))
1519                         break;
1520
1521                 if (i915_vma_is_active(vma))
1522                         continue;
1523
1524                 if (!drm_mm_node_allocated(&vma->node))
1525                         continue;
1526
1527                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1528         }
1529
1530         i915 = to_i915(obj->base.dev);
1531         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1532         list_move_tail(&obj->global_link, list);
1533 }
1534
1535 /**
1536  * Called when user space prepares to use an object with the CPU, either
1537  * through the mmap ioctl's mapping or a GTT mapping.
1538  * @dev: drm device
1539  * @data: ioctl data blob
1540  * @file: drm file
1541  */
1542 int
1543 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1544                           struct drm_file *file)
1545 {
1546         struct drm_i915_gem_set_domain *args = data;
1547         struct drm_i915_gem_object *obj;
1548         uint32_t read_domains = args->read_domains;
1549         uint32_t write_domain = args->write_domain;
1550         int err;
1551
1552         /* Only handle setting domains to types used by the CPU. */
1553         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1554                 return -EINVAL;
1555
1556         /* Having something in the write domain implies it's in the read
1557          * domain, and only that read domain.  Enforce that in the request.
1558          */
1559         if (write_domain != 0 && read_domains != write_domain)
1560                 return -EINVAL;
1561
1562         obj = i915_gem_object_lookup(file, args->handle);
1563         if (!obj)
1564                 return -ENOENT;
1565
1566         /* Try to flush the object off the GPU without holding the lock.
1567          * We will repeat the flush holding the lock in the normal manner
1568          * to catch cases where we are gazumped.
1569          */
1570         err = i915_gem_object_wait(obj,
1571                                    I915_WAIT_INTERRUPTIBLE |
1572                                    (write_domain ? I915_WAIT_ALL : 0),
1573                                    MAX_SCHEDULE_TIMEOUT,
1574                                    to_rps_client(file));
1575         if (err)
1576                 goto out;
1577
1578         /* Flush and acquire obj->pages so that we are coherent through
1579          * direct access in memory with previous cached writes through
1580          * shmemfs and that our cache domain tracking remains valid.
1581          * For example, if the obj->filp was moved to swap without us
1582          * being notified and releasing the pages, we would mistakenly
1583          * continue to assume that the obj remained out of the CPU cached
1584          * domain.
1585          */
1586         err = i915_gem_object_pin_pages(obj);
1587         if (err)
1588                 goto out;
1589
1590         err = i915_mutex_lock_interruptible(dev);
1591         if (err)
1592                 goto out_unpin;
1593
1594         if (read_domains & I915_GEM_DOMAIN_GTT)
1595                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1596         else
1597                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1598
1599         /* And bump the LRU for this access */
1600         i915_gem_object_bump_inactive_ggtt(obj);
1601
1602         mutex_unlock(&dev->struct_mutex);
1603
1604         if (write_domain != 0)
1605                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1606
1607 out_unpin:
1608         i915_gem_object_unpin_pages(obj);
1609 out:
1610         i915_gem_object_put(obj);
1611         return err;
1612 }
1613
1614 /**
1615  * Called when user space has done writes to this buffer
1616  * @dev: drm device
1617  * @data: ioctl data blob
1618  * @file: drm file
1619  */
1620 int
1621 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1622                          struct drm_file *file)
1623 {
1624         struct drm_i915_gem_sw_finish *args = data;
1625         struct drm_i915_gem_object *obj;
1626
1627         obj = i915_gem_object_lookup(file, args->handle);
1628         if (!obj)
1629                 return -ENOENT;
1630
1631         /* Pinned buffers may be scanout, so flush the cache */
1632         i915_gem_object_flush_if_display(obj);
1633         i915_gem_object_put(obj);
1634
1635         return 0;
1636 }
1637
1638 /**
1639  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1640  *                       it is mapped to.
1641  * @dev: drm device
1642  * @data: ioctl data blob
1643  * @file: drm file
1644  *
1645  * While the mapping holds a reference on the contents of the object, it doesn't
1646  * imply a ref on the object itself.
1647  *
1648  * IMPORTANT:
1649  *
1650  * DRM driver writers who look a this function as an example for how to do GEM
1651  * mmap support, please don't implement mmap support like here. The modern way
1652  * to implement DRM mmap support is with an mmap offset ioctl (like
1653  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1654  * That way debug tooling like valgrind will understand what's going on, hiding
1655  * the mmap call in a driver private ioctl will break that. The i915 driver only
1656  * does cpu mmaps this way because we didn't know better.
1657  */
1658 int
1659 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1660                     struct drm_file *file)
1661 {
1662         struct drm_i915_gem_mmap *args = data;
1663         struct drm_i915_gem_object *obj;
1664         unsigned long addr;
1665
1666         if (args->flags & ~(I915_MMAP_WC))
1667                 return -EINVAL;
1668
1669         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1670                 return -ENODEV;
1671
1672         obj = i915_gem_object_lookup(file, args->handle);
1673         if (!obj)
1674                 return -ENOENT;
1675
1676         /* prime objects have no backing filp to GEM mmap
1677          * pages from.
1678          */
1679         if (!obj->base.filp) {
1680                 i915_gem_object_put(obj);
1681                 return -EINVAL;
1682         }
1683
1684         addr = vm_mmap(obj->base.filp, 0, args->size,
1685                        PROT_READ | PROT_WRITE, MAP_SHARED,
1686                        args->offset);
1687         if (args->flags & I915_MMAP_WC) {
1688                 struct mm_struct *mm = current->mm;
1689                 struct vm_area_struct *vma;
1690
1691                 if (down_write_killable(&mm->mmap_sem)) {
1692                         i915_gem_object_put(obj);
1693                         return -EINTR;
1694                 }
1695                 vma = find_vma(mm, addr);
1696                 if (vma)
1697                         vma->vm_page_prot =
1698                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699                 else
1700                         addr = -ENOMEM;
1701                 up_write(&mm->mmap_sem);
1702
1703                 /* This may race, but that's ok, it only gets set */
1704                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1705         }
1706         i915_gem_object_put(obj);
1707         if (IS_ERR((void *)addr))
1708                 return addr;
1709
1710         args->addr_ptr = (uint64_t) addr;
1711
1712         return 0;
1713 }
1714
1715 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1716 {
1717         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1718 }
1719
1720 /**
1721  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1722  *
1723  * A history of the GTT mmap interface:
1724  *
1725  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1726  *     aligned and suitable for fencing, and still fit into the available
1727  *     mappable space left by the pinned display objects. A classic problem
1728  *     we called the page-fault-of-doom where we would ping-pong between
1729  *     two objects that could not fit inside the GTT and so the memcpy
1730  *     would page one object in at the expense of the other between every
1731  *     single byte.
1732  *
1733  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1734  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1735  *     object is too large for the available space (or simply too large
1736  *     for the mappable aperture!), a view is created instead and faulted
1737  *     into userspace. (This view is aligned and sized appropriately for
1738  *     fenced access.)
1739  *
1740  * Restrictions:
1741  *
1742  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1743  *    hangs on some architectures, corruption on others. An attempt to service
1744  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1745  *
1746  *  * the object must be able to fit into RAM (physical memory, though no
1747  *    limited to the mappable aperture).
1748  *
1749  *
1750  * Caveats:
1751  *
1752  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1753  *    all data to system memory. Subsequent access will not be synchronized.
1754  *
1755  *  * all mappings are revoked on runtime device suspend.
1756  *
1757  *  * there are only 8, 16 or 32 fence registers to share between all users
1758  *    (older machines require fence register for display and blitter access
1759  *    as well). Contention of the fence registers will cause the previous users
1760  *    to be unmapped and any new access will generate new page faults.
1761  *
1762  *  * running out of memory while servicing a fault may generate a SIGBUS,
1763  *    rather than the expected SIGSEGV.
1764  */
1765 int i915_gem_mmap_gtt_version(void)
1766 {
1767         return 1;
1768 }
1769
1770 static inline struct i915_ggtt_view
1771 compute_partial_view(struct drm_i915_gem_object *obj,
1772                      pgoff_t page_offset,
1773                      unsigned int chunk)
1774 {
1775         struct i915_ggtt_view view;
1776
1777         if (i915_gem_object_is_tiled(obj))
1778                 chunk = roundup(chunk, tile_row_pages(obj));
1779
1780         view.type = I915_GGTT_VIEW_PARTIAL;
1781         view.partial.offset = rounddown(page_offset, chunk);
1782         view.partial.size =
1783                 min_t(unsigned int, chunk,
1784                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1785
1786         /* If the partial covers the entire object, just create a normal VMA. */
1787         if (chunk >= obj->base.size >> PAGE_SHIFT)
1788                 view.type = I915_GGTT_VIEW_NORMAL;
1789
1790         return view;
1791 }
1792
1793 /**
1794  * i915_gem_fault - fault a page into the GTT
1795  * @vmf: fault info
1796  *
1797  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1798  * from userspace.  The fault handler takes care of binding the object to
1799  * the GTT (if needed), allocating and programming a fence register (again,
1800  * only if needed based on whether the old reg is still valid or the object
1801  * is tiled) and inserting a new PTE into the faulting process.
1802  *
1803  * Note that the faulting process may involve evicting existing objects
1804  * from the GTT and/or fence registers to make room.  So performance may
1805  * suffer if the GTT working set is large or there are few fence registers
1806  * left.
1807  *
1808  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1809  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1810  */
1811 int i915_gem_fault(struct vm_fault *vmf)
1812 {
1813 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1814         struct vm_area_struct *area = vmf->vma;
1815         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1816         struct drm_device *dev = obj->base.dev;
1817         struct drm_i915_private *dev_priv = to_i915(dev);
1818         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1819         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1820         struct i915_vma *vma;
1821         pgoff_t page_offset;
1822         unsigned int flags;
1823         int ret;
1824
1825         /* We don't use vmf->pgoff since that has the fake offset */
1826         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1827
1828         trace_i915_gem_object_fault(obj, page_offset, true, write);
1829
1830         /* Try to flush the object off the GPU first without holding the lock.
1831          * Upon acquiring the lock, we will perform our sanity checks and then
1832          * repeat the flush holding the lock in the normal manner to catch cases
1833          * where we are gazumped.
1834          */
1835         ret = i915_gem_object_wait(obj,
1836                                    I915_WAIT_INTERRUPTIBLE,
1837                                    MAX_SCHEDULE_TIMEOUT,
1838                                    NULL);
1839         if (ret)
1840                 goto err;
1841
1842         ret = i915_gem_object_pin_pages(obj);
1843         if (ret)
1844                 goto err;
1845
1846         intel_runtime_pm_get(dev_priv);
1847
1848         ret = i915_mutex_lock_interruptible(dev);
1849         if (ret)
1850                 goto err_rpm;
1851
1852         /* Access to snoopable pages through the GTT is incoherent. */
1853         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1854                 ret = -EFAULT;
1855                 goto err_unlock;
1856         }
1857
1858         /* If the object is smaller than a couple of partial vma, it is
1859          * not worth only creating a single partial vma - we may as well
1860          * clear enough space for the full object.
1861          */
1862         flags = PIN_MAPPABLE;
1863         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1864                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1865
1866         /* Now pin it into the GTT as needed */
1867         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1868         if (IS_ERR(vma)) {
1869                 /* Use a partial view if it is bigger than available space */
1870                 struct i915_ggtt_view view =
1871                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1872
1873                 /* Userspace is now writing through an untracked VMA, abandon
1874                  * all hope that the hardware is able to track future writes.
1875                  */
1876                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1877
1878                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1879         }
1880         if (IS_ERR(vma)) {
1881                 ret = PTR_ERR(vma);
1882                 goto err_unlock;
1883         }
1884
1885         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1886         if (ret)
1887                 goto err_unpin;
1888
1889         ret = i915_vma_get_fence(vma);
1890         if (ret)
1891                 goto err_unpin;
1892
1893         /* Mark as being mmapped into userspace for later revocation */
1894         assert_rpm_wakelock_held(dev_priv);
1895         if (list_empty(&obj->userfault_link))
1896                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1897
1898         /* Finally, remap it using the new GTT offset */
1899         ret = remap_io_mapping(area,
1900                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1901                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1902                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1903                                &ggtt->mappable);
1904
1905 err_unpin:
1906         __i915_vma_unpin(vma);
1907 err_unlock:
1908         mutex_unlock(&dev->struct_mutex);
1909 err_rpm:
1910         intel_runtime_pm_put(dev_priv);
1911         i915_gem_object_unpin_pages(obj);
1912 err:
1913         switch (ret) {
1914         case -EIO:
1915                 /*
1916                  * We eat errors when the gpu is terminally wedged to avoid
1917                  * userspace unduly crashing (gl has no provisions for mmaps to
1918                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1919                  * and so needs to be reported.
1920                  */
1921                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1922                         ret = VM_FAULT_SIGBUS;
1923                         break;
1924                 }
1925         case -EAGAIN:
1926                 /*
1927                  * EAGAIN means the gpu is hung and we'll wait for the error
1928                  * handler to reset everything when re-faulting in
1929                  * i915_mutex_lock_interruptible.
1930                  */
1931         case 0:
1932         case -ERESTARTSYS:
1933         case -EINTR:
1934         case -EBUSY:
1935                 /*
1936                  * EBUSY is ok: this just means that another thread
1937                  * already did the job.
1938                  */
1939                 ret = VM_FAULT_NOPAGE;
1940                 break;
1941         case -ENOMEM:
1942                 ret = VM_FAULT_OOM;
1943                 break;
1944         case -ENOSPC:
1945         case -EFAULT:
1946                 ret = VM_FAULT_SIGBUS;
1947                 break;
1948         default:
1949                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1950                 ret = VM_FAULT_SIGBUS;
1951                 break;
1952         }
1953         return ret;
1954 }
1955
1956 /**
1957  * i915_gem_release_mmap - remove physical page mappings
1958  * @obj: obj in question
1959  *
1960  * Preserve the reservation of the mmapping with the DRM core code, but
1961  * relinquish ownership of the pages back to the system.
1962  *
1963  * It is vital that we remove the page mapping if we have mapped a tiled
1964  * object through the GTT and then lose the fence register due to
1965  * resource pressure. Similarly if the object has been moved out of the
1966  * aperture, than pages mapped into userspace must be revoked. Removing the
1967  * mapping will then trigger a page fault on the next user access, allowing
1968  * fixup by i915_gem_fault().
1969  */
1970 void
1971 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1972 {
1973         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1974
1975         /* Serialisation between user GTT access and our code depends upon
1976          * revoking the CPU's PTE whilst the mutex is held. The next user
1977          * pagefault then has to wait until we release the mutex.
1978          *
1979          * Note that RPM complicates somewhat by adding an additional
1980          * requirement that operations to the GGTT be made holding the RPM
1981          * wakeref.
1982          */
1983         lockdep_assert_held(&i915->drm.struct_mutex);
1984         intel_runtime_pm_get(i915);
1985
1986         if (list_empty(&obj->userfault_link))
1987                 goto out;
1988
1989         list_del_init(&obj->userfault_link);
1990         drm_vma_node_unmap(&obj->base.vma_node,
1991                            obj->base.dev->anon_inode->i_mapping);
1992
1993         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1994          * memory transactions from userspace before we return. The TLB
1995          * flushing implied above by changing the PTE above *should* be
1996          * sufficient, an extra barrier here just provides us with a bit
1997          * of paranoid documentation about our requirement to serialise
1998          * memory writes before touching registers / GSM.
1999          */
2000         wmb();
2001
2002 out:
2003         intel_runtime_pm_put(i915);
2004 }
2005
2006 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2007 {
2008         struct drm_i915_gem_object *obj, *on;
2009         int i;
2010
2011         /*
2012          * Only called during RPM suspend. All users of the userfault_list
2013          * must be holding an RPM wakeref to ensure that this can not
2014          * run concurrently with themselves (and use the struct_mutex for
2015          * protection between themselves).
2016          */
2017
2018         list_for_each_entry_safe(obj, on,
2019                                  &dev_priv->mm.userfault_list, userfault_link) {
2020                 list_del_init(&obj->userfault_link);
2021                 drm_vma_node_unmap(&obj->base.vma_node,
2022                                    obj->base.dev->anon_inode->i_mapping);
2023         }
2024
2025         /* The fence will be lost when the device powers down. If any were
2026          * in use by hardware (i.e. they are pinned), we should not be powering
2027          * down! All other fences will be reacquired by the user upon waking.
2028          */
2029         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2030                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2031
2032                 /* Ideally we want to assert that the fence register is not
2033                  * live at this point (i.e. that no piece of code will be
2034                  * trying to write through fence + GTT, as that both violates
2035                  * our tracking of activity and associated locking/barriers,
2036                  * but also is illegal given that the hw is powered down).
2037                  *
2038                  * Previously we used reg->pin_count as a "liveness" indicator.
2039                  * That is not sufficient, and we need a more fine-grained
2040                  * tool if we want to have a sanity check here.
2041                  */
2042
2043                 if (!reg->vma)
2044                         continue;
2045
2046                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2047                 reg->dirty = true;
2048         }
2049 }
2050
2051 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2052 {
2053         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2054         int err;
2055
2056         err = drm_gem_create_mmap_offset(&obj->base);
2057         if (likely(!err))
2058                 return 0;
2059
2060         /* Attempt to reap some mmap space from dead objects */
2061         do {
2062                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2063                 if (err)
2064                         break;
2065
2066                 i915_gem_drain_freed_objects(dev_priv);
2067                 err = drm_gem_create_mmap_offset(&obj->base);
2068                 if (!err)
2069                         break;
2070
2071         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2072
2073         return err;
2074 }
2075
2076 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2077 {
2078         drm_gem_free_mmap_offset(&obj->base);
2079 }
2080
2081 int
2082 i915_gem_mmap_gtt(struct drm_file *file,
2083                   struct drm_device *dev,
2084                   uint32_t handle,
2085                   uint64_t *offset)
2086 {
2087         struct drm_i915_gem_object *obj;
2088         int ret;
2089
2090         obj = i915_gem_object_lookup(file, handle);
2091         if (!obj)
2092                 return -ENOENT;
2093
2094         ret = i915_gem_object_create_mmap_offset(obj);
2095         if (ret == 0)
2096                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2097
2098         i915_gem_object_put(obj);
2099         return ret;
2100 }
2101
2102 /**
2103  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2104  * @dev: DRM device
2105  * @data: GTT mapping ioctl data
2106  * @file: GEM object info
2107  *
2108  * Simply returns the fake offset to userspace so it can mmap it.
2109  * The mmap call will end up in drm_gem_mmap(), which will set things
2110  * up so we can get faults in the handler above.
2111  *
2112  * The fault handler will take care of binding the object into the GTT
2113  * (since it may have been evicted to make room for something), allocating
2114  * a fence register, and mapping the appropriate aperture address into
2115  * userspace.
2116  */
2117 int
2118 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2119                         struct drm_file *file)
2120 {
2121         struct drm_i915_gem_mmap_gtt *args = data;
2122
2123         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2124 }
2125
2126 /* Immediately discard the backing storage */
2127 static void
2128 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2129 {
2130         i915_gem_object_free_mmap_offset(obj);
2131
2132         if (obj->base.filp == NULL)
2133                 return;
2134
2135         /* Our goal here is to return as much of the memory as
2136          * is possible back to the system as we are called from OOM.
2137          * To do this we must instruct the shmfs to drop all of its
2138          * backing pages, *now*.
2139          */
2140         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2141         obj->mm.madv = __I915_MADV_PURGED;
2142         obj->mm.pages = ERR_PTR(-EFAULT);
2143 }
2144
2145 /* Try to discard unwanted pages */
2146 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2147 {
2148         struct address_space *mapping;
2149
2150         lockdep_assert_held(&obj->mm.lock);
2151         GEM_BUG_ON(obj->mm.pages);
2152
2153         switch (obj->mm.madv) {
2154         case I915_MADV_DONTNEED:
2155                 i915_gem_object_truncate(obj);
2156         case __I915_MADV_PURGED:
2157                 return;
2158         }
2159
2160         if (obj->base.filp == NULL)
2161                 return;
2162
2163         mapping = obj->base.filp->f_mapping,
2164         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 }
2166
2167 static void
2168 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2169                               struct sg_table *pages)
2170 {
2171         struct sgt_iter sgt_iter;
2172         struct page *page;
2173
2174         __i915_gem_object_release_shmem(obj, pages, true);
2175
2176         i915_gem_gtt_finish_pages(obj, pages);
2177
2178         if (i915_gem_object_needs_bit17_swizzle(obj))
2179                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2180
2181         for_each_sgt_page(page, sgt_iter, pages) {
2182                 if (obj->mm.dirty)
2183                         set_page_dirty(page);
2184
2185                 if (obj->mm.madv == I915_MADV_WILLNEED)
2186                         mark_page_accessed(page);
2187
2188                 put_page(page);
2189         }
2190         obj->mm.dirty = false;
2191
2192         sg_free_table(pages);
2193         kfree(pages);
2194 }
2195
2196 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2197 {
2198         struct radix_tree_iter iter;
2199         void **slot;
2200
2201         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2202                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2203 }
2204
2205 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2206                                  enum i915_mm_subclass subclass)
2207 {
2208         struct sg_table *pages;
2209
2210         if (i915_gem_object_has_pinned_pages(obj))
2211                 return;
2212
2213         GEM_BUG_ON(obj->bind_count);
2214         if (!READ_ONCE(obj->mm.pages))
2215                 return;
2216
2217         /* May be called by shrinker from within get_pages() (on another bo) */
2218         mutex_lock_nested(&obj->mm.lock, subclass);
2219         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2220                 goto unlock;
2221
2222         /* ->put_pages might need to allocate memory for the bit17 swizzle
2223          * array, hence protect them from being reaped by removing them from gtt
2224          * lists early. */
2225         pages = fetch_and_zero(&obj->mm.pages);
2226         GEM_BUG_ON(!pages);
2227
2228         if (obj->mm.mapping) {
2229                 void *ptr;
2230
2231                 ptr = ptr_mask_bits(obj->mm.mapping);
2232                 if (is_vmalloc_addr(ptr))
2233                         vunmap(ptr);
2234                 else
2235                         kunmap(kmap_to_page(ptr));
2236
2237                 obj->mm.mapping = NULL;
2238         }
2239
2240         __i915_gem_object_reset_page_iter(obj);
2241
2242         if (!IS_ERR(pages))
2243                 obj->ops->put_pages(obj, pages);
2244
2245 unlock:
2246         mutex_unlock(&obj->mm.lock);
2247 }
2248
2249 static bool i915_sg_trim(struct sg_table *orig_st)
2250 {
2251         struct sg_table new_st;
2252         struct scatterlist *sg, *new_sg;
2253         unsigned int i;
2254
2255         if (orig_st->nents == orig_st->orig_nents)
2256                 return false;
2257
2258         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2259                 return false;
2260
2261         new_sg = new_st.sgl;
2262         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2263                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2264                 /* called before being DMA mapped, no need to copy sg->dma_* */
2265                 new_sg = sg_next(new_sg);
2266         }
2267         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2268
2269         sg_free_table(orig_st);
2270
2271         *orig_st = new_st;
2272         return true;
2273 }
2274
2275 static struct sg_table *
2276 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2277 {
2278         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2279         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2280         unsigned long i;
2281         struct address_space *mapping;
2282         struct sg_table *st;
2283         struct scatterlist *sg;
2284         struct sgt_iter sgt_iter;
2285         struct page *page;
2286         unsigned long last_pfn = 0;     /* suppress gcc warning */
2287         unsigned int max_segment;
2288         gfp_t noreclaim;
2289         int ret;
2290
2291         /* Assert that the object is not currently in any GPU domain. As it
2292          * wasn't in the GTT, there shouldn't be any way it could have been in
2293          * a GPU cache
2294          */
2295         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2296         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2297
2298         max_segment = swiotlb_max_segment();
2299         if (!max_segment)
2300                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2301
2302         st = kmalloc(sizeof(*st), GFP_KERNEL);
2303         if (st == NULL)
2304                 return ERR_PTR(-ENOMEM);
2305
2306 rebuild_st:
2307         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2308                 kfree(st);
2309                 return ERR_PTR(-ENOMEM);
2310         }
2311
2312         /* Get the list of pages out of our struct file.  They'll be pinned
2313          * at this point until we release them.
2314          *
2315          * Fail silently without starting the shrinker
2316          */
2317         mapping = obj->base.filp->f_mapping;
2318         noreclaim = mapping_gfp_constraint(mapping,
2319                                            ~(__GFP_IO | __GFP_RECLAIM));
2320         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2321
2322         sg = st->sgl;
2323         st->nents = 0;
2324         for (i = 0; i < page_count; i++) {
2325                 const unsigned int shrink[] = {
2326                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2327                         0,
2328                 }, *s = shrink;
2329                 gfp_t gfp = noreclaim;
2330
2331                 do {
2332                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2333                         if (likely(!IS_ERR(page)))
2334                                 break;
2335
2336                         if (!*s) {
2337                                 ret = PTR_ERR(page);
2338                                 goto err_sg;
2339                         }
2340
2341                         i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2342                         cond_resched();
2343
2344                         /* We've tried hard to allocate the memory by reaping
2345                          * our own buffer, now let the real VM do its job and
2346                          * go down in flames if truly OOM.
2347                          *
2348                          * However, since graphics tend to be disposable,
2349                          * defer the oom here by reporting the ENOMEM back
2350                          * to userspace.
2351                          */
2352                         if (!*s) {
2353                                 /* reclaim and warn, but no oom */
2354                                 gfp = mapping_gfp_mask(mapping);
2355                                 gfp |= __GFP_NORETRY;
2356                         }
2357                 } while (1);
2358
2359                 if (!i ||
2360                     sg->length >= max_segment ||
2361                     page_to_pfn(page) != last_pfn + 1) {
2362                         if (i)
2363                                 sg = sg_next(sg);
2364                         st->nents++;
2365                         sg_set_page(sg, page, PAGE_SIZE, 0);
2366                 } else {
2367                         sg->length += PAGE_SIZE;
2368                 }
2369                 last_pfn = page_to_pfn(page);
2370
2371                 /* Check that the i965g/gm workaround works. */
2372                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2373         }
2374         if (sg) /* loop terminated early; short sg table */
2375                 sg_mark_end(sg);
2376
2377         /* Trim unused sg entries to avoid wasting memory. */
2378         i915_sg_trim(st);
2379
2380         ret = i915_gem_gtt_prepare_pages(obj, st);
2381         if (ret) {
2382                 /* DMA remapping failed? One possible cause is that
2383                  * it could not reserve enough large entries, asking
2384                  * for PAGE_SIZE chunks instead may be helpful.
2385                  */
2386                 if (max_segment > PAGE_SIZE) {
2387                         for_each_sgt_page(page, sgt_iter, st)
2388                                 put_page(page);
2389                         sg_free_table(st);
2390
2391                         max_segment = PAGE_SIZE;
2392                         goto rebuild_st;
2393                 } else {
2394                         dev_warn(&dev_priv->drm.pdev->dev,
2395                                  "Failed to DMA remap %lu pages\n",
2396                                  page_count);
2397                         goto err_pages;
2398                 }
2399         }
2400
2401         if (i915_gem_object_needs_bit17_swizzle(obj))
2402                 i915_gem_object_do_bit_17_swizzle(obj, st);
2403
2404         return st;
2405
2406 err_sg:
2407         sg_mark_end(sg);
2408 err_pages:
2409         for_each_sgt_page(page, sgt_iter, st)
2410                 put_page(page);
2411         sg_free_table(st);
2412         kfree(st);
2413
2414         /* shmemfs first checks if there is enough memory to allocate the page
2415          * and reports ENOSPC should there be insufficient, along with the usual
2416          * ENOMEM for a genuine allocation failure.
2417          *
2418          * We use ENOSPC in our driver to mean that we have run out of aperture
2419          * space and so want to translate the error from shmemfs back to our
2420          * usual understanding of ENOMEM.
2421          */
2422         if (ret == -ENOSPC)
2423                 ret = -ENOMEM;
2424
2425         return ERR_PTR(ret);
2426 }
2427
2428 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2429                                  struct sg_table *pages)
2430 {
2431         lockdep_assert_held(&obj->mm.lock);
2432
2433         obj->mm.get_page.sg_pos = pages->sgl;
2434         obj->mm.get_page.sg_idx = 0;
2435
2436         obj->mm.pages = pages;
2437
2438         if (i915_gem_object_is_tiled(obj) &&
2439             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2440                 GEM_BUG_ON(obj->mm.quirked);
2441                 __i915_gem_object_pin_pages(obj);
2442                 obj->mm.quirked = true;
2443         }
2444 }
2445
2446 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2447 {
2448         struct sg_table *pages;
2449
2450         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2451
2452         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2453                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2454                 return -EFAULT;
2455         }
2456
2457         pages = obj->ops->get_pages(obj);
2458         if (unlikely(IS_ERR(pages)))
2459                 return PTR_ERR(pages);
2460
2461         __i915_gem_object_set_pages(obj, pages);
2462         return 0;
2463 }
2464
2465 /* Ensure that the associated pages are gathered from the backing storage
2466  * and pinned into our object. i915_gem_object_pin_pages() may be called
2467  * multiple times before they are released by a single call to
2468  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2469  * either as a result of memory pressure (reaping pages under the shrinker)
2470  * or as the object is itself released.
2471  */
2472 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2473 {
2474         int err;
2475
2476         err = mutex_lock_interruptible(&obj->mm.lock);
2477         if (err)
2478                 return err;
2479
2480         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2481                 err = ____i915_gem_object_get_pages(obj);
2482                 if (err)
2483                         goto unlock;
2484
2485                 smp_mb__before_atomic();
2486         }
2487         atomic_inc(&obj->mm.pages_pin_count);
2488
2489 unlock:
2490         mutex_unlock(&obj->mm.lock);
2491         return err;
2492 }
2493
2494 /* The 'mapping' part of i915_gem_object_pin_map() below */
2495 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2496                                  enum i915_map_type type)
2497 {
2498         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2499         struct sg_table *sgt = obj->mm.pages;
2500         struct sgt_iter sgt_iter;
2501         struct page *page;
2502         struct page *stack_pages[32];
2503         struct page **pages = stack_pages;
2504         unsigned long i = 0;
2505         pgprot_t pgprot;
2506         void *addr;
2507
2508         /* A single page can always be kmapped */
2509         if (n_pages == 1 && type == I915_MAP_WB)
2510                 return kmap(sg_page(sgt->sgl));
2511
2512         if (n_pages > ARRAY_SIZE(stack_pages)) {
2513                 /* Too big for stack -- allocate temporary array instead */
2514                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2515                 if (!pages)
2516                         return NULL;
2517         }
2518
2519         for_each_sgt_page(page, sgt_iter, sgt)
2520                 pages[i++] = page;
2521
2522         /* Check that we have the expected number of pages */
2523         GEM_BUG_ON(i != n_pages);
2524
2525         switch (type) {
2526         case I915_MAP_WB:
2527                 pgprot = PAGE_KERNEL;
2528                 break;
2529         case I915_MAP_WC:
2530                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2531                 break;
2532         }
2533         addr = vmap(pages, n_pages, 0, pgprot);
2534
2535         if (pages != stack_pages)
2536                 drm_free_large(pages);
2537
2538         return addr;
2539 }
2540
2541 /* get, pin, and map the pages of the object into kernel space */
2542 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2543                               enum i915_map_type type)
2544 {
2545         enum i915_map_type has_type;
2546         bool pinned;
2547         void *ptr;
2548         int ret;
2549
2550         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2551
2552         ret = mutex_lock_interruptible(&obj->mm.lock);
2553         if (ret)
2554                 return ERR_PTR(ret);
2555
2556         pinned = true;
2557         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2558                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2559                         ret = ____i915_gem_object_get_pages(obj);
2560                         if (ret)
2561                                 goto err_unlock;
2562
2563                         smp_mb__before_atomic();
2564                 }
2565                 atomic_inc(&obj->mm.pages_pin_count);
2566                 pinned = false;
2567         }
2568         GEM_BUG_ON(!obj->mm.pages);
2569
2570         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2571         if (ptr && has_type != type) {
2572                 if (pinned) {
2573                         ret = -EBUSY;
2574                         goto err_unpin;
2575                 }
2576
2577                 if (is_vmalloc_addr(ptr))
2578                         vunmap(ptr);
2579                 else
2580                         kunmap(kmap_to_page(ptr));
2581
2582                 ptr = obj->mm.mapping = NULL;
2583         }
2584
2585         if (!ptr) {
2586                 ptr = i915_gem_object_map(obj, type);
2587                 if (!ptr) {
2588                         ret = -ENOMEM;
2589                         goto err_unpin;
2590                 }
2591
2592                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2593         }
2594
2595 out_unlock:
2596         mutex_unlock(&obj->mm.lock);
2597         return ptr;
2598
2599 err_unpin:
2600         atomic_dec(&obj->mm.pages_pin_count);
2601 err_unlock:
2602         ptr = ERR_PTR(ret);
2603         goto out_unlock;
2604 }
2605
2606 static int
2607 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2608                            const struct drm_i915_gem_pwrite *arg)
2609 {
2610         struct address_space *mapping = obj->base.filp->f_mapping;
2611         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2612         u64 remain, offset;
2613         unsigned int pg;
2614
2615         /* Before we instantiate/pin the backing store for our use, we
2616          * can prepopulate the shmemfs filp efficiently using a write into
2617          * the pagecache. We avoid the penalty of instantiating all the
2618          * pages, important if the user is just writing to a few and never
2619          * uses the object on the GPU, and using a direct write into shmemfs
2620          * allows it to avoid the cost of retrieving a page (either swapin
2621          * or clearing-before-use) before it is overwritten.
2622          */
2623         if (READ_ONCE(obj->mm.pages))
2624                 return -ENODEV;
2625
2626         /* Before the pages are instantiated the object is treated as being
2627          * in the CPU domain. The pages will be clflushed as required before
2628          * use, and we can freely write into the pages directly. If userspace
2629          * races pwrite with any other operation; corruption will ensue -
2630          * that is userspace's prerogative!
2631          */
2632
2633         remain = arg->size;
2634         offset = arg->offset;
2635         pg = offset_in_page(offset);
2636
2637         do {
2638                 unsigned int len, unwritten;
2639                 struct page *page;
2640                 void *data, *vaddr;
2641                 int err;
2642
2643                 len = PAGE_SIZE - pg;
2644                 if (len > remain)
2645                         len = remain;
2646
2647                 err = pagecache_write_begin(obj->base.filp, mapping,
2648                                             offset, len, 0,
2649                                             &page, &data);
2650                 if (err < 0)
2651                         return err;
2652
2653                 vaddr = kmap(page);
2654                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2655                 kunmap(page);
2656
2657                 err = pagecache_write_end(obj->base.filp, mapping,
2658                                           offset, len, len - unwritten,
2659                                           page, data);
2660                 if (err < 0)
2661                         return err;
2662
2663                 if (unwritten)
2664                         return -EFAULT;
2665
2666                 remain -= len;
2667                 user_data += len;
2668                 offset += len;
2669                 pg = 0;
2670         } while (remain);
2671
2672         return 0;
2673 }
2674
2675 static bool ban_context(const struct i915_gem_context *ctx)
2676 {
2677         return (i915_gem_context_is_bannable(ctx) &&
2678                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2679 }
2680
2681 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2682 {
2683         ctx->guilty_count++;
2684         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2685         if (ban_context(ctx))
2686                 i915_gem_context_set_banned(ctx);
2687
2688         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2689                          ctx->name, ctx->ban_score,
2690                          yesno(i915_gem_context_is_banned(ctx)));
2691
2692         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2693                 return;
2694
2695         ctx->file_priv->context_bans++;
2696         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2697                          ctx->name, ctx->file_priv->context_bans);
2698 }
2699
2700 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2701 {
2702         ctx->active_count++;
2703 }
2704
2705 struct drm_i915_gem_request *
2706 i915_gem_find_active_request(struct intel_engine_cs *engine)
2707 {
2708         struct drm_i915_gem_request *request, *active = NULL;
2709         unsigned long flags;
2710
2711         /* We are called by the error capture and reset at a random
2712          * point in time. In particular, note that neither is crucially
2713          * ordered with an interrupt. After a hang, the GPU is dead and we
2714          * assume that no more writes can happen (we waited long enough for
2715          * all writes that were in transaction to be flushed) - adding an
2716          * extra delay for a recent interrupt is pointless. Hence, we do
2717          * not need an engine->irq_seqno_barrier() before the seqno reads.
2718          */
2719         spin_lock_irqsave(&engine->timeline->lock, flags);
2720         list_for_each_entry(request, &engine->timeline->requests, link) {
2721                 if (__i915_gem_request_completed(request,
2722                                                  request->global_seqno))
2723                         continue;
2724
2725                 GEM_BUG_ON(request->engine != engine);
2726                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2727                                     &request->fence.flags));
2728
2729                 active = request;
2730                 break;
2731         }
2732         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2733
2734         return active;
2735 }
2736
2737 static bool engine_stalled(struct intel_engine_cs *engine)
2738 {
2739         if (!engine->hangcheck.stalled)
2740                 return false;
2741
2742         /* Check for possible seqno movement after hang declaration */
2743         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2744                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2745                 return false;
2746         }
2747
2748         return true;
2749 }
2750
2751 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2752 {
2753         struct intel_engine_cs *engine;
2754         enum intel_engine_id id;
2755         int err = 0;
2756
2757         /* Ensure irq handler finishes, and not run again. */
2758         for_each_engine(engine, dev_priv, id) {
2759                 struct drm_i915_gem_request *request;
2760
2761                 /* Prevent the signaler thread from updating the request
2762                  * state (by calling dma_fence_signal) as we are processing
2763                  * the reset. The write from the GPU of the seqno is
2764                  * asynchronous and the signaler thread may see a different
2765                  * value to us and declare the request complete, even though
2766                  * the reset routine have picked that request as the active
2767                  * (incomplete) request. This conflict is not handled
2768                  * gracefully!
2769                  */
2770                 kthread_park(engine->breadcrumbs.signaler);
2771
2772                 /* Prevent request submission to the hardware until we have
2773                  * completed the reset in i915_gem_reset_finish(). If a request
2774                  * is completed by one engine, it may then queue a request
2775                  * to a second via its engine->irq_tasklet *just* as we are
2776                  * calling engine->init_hw() and also writing the ELSP.
2777                  * Turning off the engine->irq_tasklet until the reset is over
2778                  * prevents the race.
2779                  */
2780                 tasklet_kill(&engine->irq_tasklet);
2781                 tasklet_disable(&engine->irq_tasklet);
2782
2783                 if (engine->irq_seqno_barrier)
2784                         engine->irq_seqno_barrier(engine);
2785
2786                 if (engine_stalled(engine)) {
2787                         request = i915_gem_find_active_request(engine);
2788                         if (request && request->fence.error == -EIO)
2789                                 err = -EIO; /* Previous reset failed! */
2790                 }
2791         }
2792
2793         i915_gem_revoke_fences(dev_priv);
2794
2795         return err;
2796 }
2797
2798 static void skip_request(struct drm_i915_gem_request *request)
2799 {
2800         void *vaddr = request->ring->vaddr;
2801         u32 head;
2802
2803         /* As this request likely depends on state from the lost
2804          * context, clear out all the user operations leaving the
2805          * breadcrumb at the end (so we get the fence notifications).
2806          */
2807         head = request->head;
2808         if (request->postfix < head) {
2809                 memset(vaddr + head, 0, request->ring->size - head);
2810                 head = 0;
2811         }
2812         memset(vaddr + head, 0, request->postfix - head);
2813
2814         dma_fence_set_error(&request->fence, -EIO);
2815 }
2816
2817 static void engine_skip_context(struct drm_i915_gem_request *request)
2818 {
2819         struct intel_engine_cs *engine = request->engine;
2820         struct i915_gem_context *hung_ctx = request->ctx;
2821         struct intel_timeline *timeline;
2822         unsigned long flags;
2823
2824         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2825
2826         spin_lock_irqsave(&engine->timeline->lock, flags);
2827         spin_lock(&timeline->lock);
2828
2829         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2830                 if (request->ctx == hung_ctx)
2831                         skip_request(request);
2832
2833         list_for_each_entry(request, &timeline->requests, link)
2834                 skip_request(request);
2835
2836         spin_unlock(&timeline->lock);
2837         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2838 }
2839
2840 /* Returns true if the request was guilty of hang */
2841 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2842 {
2843         /* Read once and return the resolution */
2844         const bool guilty = engine_stalled(request->engine);
2845
2846         /* The guilty request will get skipped on a hung engine.
2847          *
2848          * Users of client default contexts do not rely on logical
2849          * state preserved between batches so it is safe to execute
2850          * queued requests following the hang. Non default contexts
2851          * rely on preserved state, so skipping a batch loses the
2852          * evolution of the state and it needs to be considered corrupted.
2853          * Executing more queued batches on top of corrupted state is
2854          * risky. But we take the risk by trying to advance through
2855          * the queued requests in order to make the client behaviour
2856          * more predictable around resets, by not throwing away random
2857          * amount of batches it has prepared for execution. Sophisticated
2858          * clients can use gem_reset_stats_ioctl and dma fence status
2859          * (exported via sync_file info ioctl on explicit fences) to observe
2860          * when it loses the context state and should rebuild accordingly.
2861          *
2862          * The context ban, and ultimately the client ban, mechanism are safety
2863          * valves if client submission ends up resulting in nothing more than
2864          * subsequent hangs.
2865          */
2866
2867         if (guilty) {
2868                 i915_gem_context_mark_guilty(request->ctx);
2869                 skip_request(request);
2870         } else {
2871                 i915_gem_context_mark_innocent(request->ctx);
2872                 dma_fence_set_error(&request->fence, -EAGAIN);
2873         }
2874
2875         return guilty;
2876 }
2877
2878 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2879 {
2880         struct drm_i915_gem_request *request;
2881
2882         request = i915_gem_find_active_request(engine);
2883         if (request && i915_gem_reset_request(request)) {
2884                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2885                                  engine->name, request->global_seqno);
2886
2887                 /* If this context is now banned, skip all pending requests. */
2888                 if (i915_gem_context_is_banned(request->ctx))
2889                         engine_skip_context(request);
2890         }
2891
2892         /* Setup the CS to resume from the breadcrumb of the hung request */
2893         engine->reset_hw(engine, request);
2894 }
2895
2896 void i915_gem_reset(struct drm_i915_private *dev_priv)
2897 {
2898         struct intel_engine_cs *engine;
2899         enum intel_engine_id id;
2900
2901         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2902
2903         i915_gem_retire_requests(dev_priv);
2904
2905         for_each_engine(engine, dev_priv, id) {
2906                 struct i915_gem_context *ctx;
2907
2908                 i915_gem_reset_engine(engine);
2909                 ctx = fetch_and_zero(&engine->last_retired_context);
2910                 if (ctx)
2911                         engine->context_unpin(engine, ctx);
2912         }
2913
2914         i915_gem_restore_fences(dev_priv);
2915
2916         if (dev_priv->gt.awake) {
2917                 intel_sanitize_gt_powersave(dev_priv);
2918                 intel_enable_gt_powersave(dev_priv);
2919                 if (INTEL_GEN(dev_priv) >= 6)
2920                         gen6_rps_busy(dev_priv);
2921         }
2922 }
2923
2924 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2925 {
2926         struct intel_engine_cs *engine;
2927         enum intel_engine_id id;
2928
2929         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2930
2931         for_each_engine(engine, dev_priv, id) {
2932                 tasklet_enable(&engine->irq_tasklet);
2933                 kthread_unpark(engine->breadcrumbs.signaler);
2934         }
2935 }
2936
2937 static void nop_submit_request(struct drm_i915_gem_request *request)
2938 {
2939         dma_fence_set_error(&request->fence, -EIO);
2940         i915_gem_request_submit(request);
2941         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2942 }
2943
2944 static void engine_set_wedged(struct intel_engine_cs *engine)
2945 {
2946         struct drm_i915_gem_request *request;
2947         unsigned long flags;
2948
2949         /* We need to be sure that no thread is running the old callback as
2950          * we install the nop handler (otherwise we would submit a request
2951          * to hardware that will never complete). In order to prevent this
2952          * race, we wait until the machine is idle before making the swap
2953          * (using stop_machine()).
2954          */
2955         engine->submit_request = nop_submit_request;
2956
2957         /* Mark all executing requests as skipped */
2958         spin_lock_irqsave(&engine->timeline->lock, flags);
2959         list_for_each_entry(request, &engine->timeline->requests, link)
2960                 dma_fence_set_error(&request->fence, -EIO);
2961         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2962
2963         /* Mark all pending requests as complete so that any concurrent
2964          * (lockless) lookup doesn't try and wait upon the request as we
2965          * reset it.
2966          */
2967         intel_engine_init_global_seqno(engine,
2968                                        intel_engine_last_submit(engine));
2969
2970         /*
2971          * Clear the execlists queue up before freeing the requests, as those
2972          * are the ones that keep the context and ringbuffer backing objects
2973          * pinned in place.
2974          */
2975
2976         if (i915.enable_execlists) {
2977                 unsigned long flags;
2978
2979                 spin_lock_irqsave(&engine->timeline->lock, flags);
2980
2981                 i915_gem_request_put(engine->execlist_port[0].request);
2982                 i915_gem_request_put(engine->execlist_port[1].request);
2983                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2984                 engine->execlist_queue = RB_ROOT;
2985                 engine->execlist_first = NULL;
2986
2987                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2988         }
2989 }
2990
2991 static int __i915_gem_set_wedged_BKL(void *data)
2992 {
2993         struct drm_i915_private *i915 = data;
2994         struct intel_engine_cs *engine;
2995         enum intel_engine_id id;
2996
2997         for_each_engine(engine, i915, id)
2998                 engine_set_wedged(engine);
2999
3000         return 0;
3001 }
3002
3003 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3004 {
3005         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3006         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3007
3008         /* Retire completed requests first so the list of inflight/incomplete
3009          * requests is accurate and we don't try and mark successful requests
3010          * as in error during __i915_gem_set_wedged_BKL().
3011          */
3012         i915_gem_retire_requests(dev_priv);
3013
3014         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3015
3016         i915_gem_context_lost(dev_priv);
3017
3018         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3019 }
3020
3021 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3022 {
3023         struct i915_gem_timeline *tl;
3024         int i;
3025
3026         lockdep_assert_held(&i915->drm.struct_mutex);
3027         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3028                 return true;
3029
3030         /* Before unwedging, make sure that all pending operations
3031          * are flushed and errored out - we may have requests waiting upon
3032          * third party fences. We marked all inflight requests as EIO, and
3033          * every execbuf since returned EIO, for consistency we want all
3034          * the currently pending requests to also be marked as EIO, which
3035          * is done inside our nop_submit_request - and so we must wait.
3036          *
3037          * No more can be submitted until we reset the wedged bit.
3038          */
3039         list_for_each_entry(tl, &i915->gt.timelines, link) {
3040                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3041                         struct drm_i915_gem_request *rq;
3042
3043                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3044                                                   &i915->drm.struct_mutex);
3045                         if (!rq)
3046                                 continue;
3047
3048                         /* We can't use our normal waiter as we want to
3049                          * avoid recursively trying to handle the current
3050                          * reset. The basic dma_fence_default_wait() installs
3051                          * a callback for dma_fence_signal(), which is
3052                          * triggered by our nop handler (indirectly, the
3053                          * callback enables the signaler thread which is
3054                          * woken by the nop_submit_request() advancing the seqno
3055                          * and when the seqno passes the fence, the signaler
3056                          * then signals the fence waking us up).
3057                          */
3058                         if (dma_fence_default_wait(&rq->fence, true,
3059                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3060                                 return false;
3061                 }
3062         }
3063
3064         /* Undo nop_submit_request. We prevent all new i915 requests from
3065          * being queued (by disallowing execbuf whilst wedged) so having
3066          * waited for all active requests above, we know the system is idle
3067          * and do not have to worry about a thread being inside
3068          * engine->submit_request() as we swap over. So unlike installing
3069          * the nop_submit_request on reset, we can do this from normal
3070          * context and do not require stop_machine().
3071          */
3072         intel_engines_reset_default_submission(i915);
3073
3074         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3075         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3076
3077         return true;
3078 }
3079
3080 static void
3081 i915_gem_retire_work_handler(struct work_struct *work)
3082 {
3083         struct drm_i915_private *dev_priv =
3084                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3085         struct drm_device *dev = &dev_priv->drm;
3086
3087         /* Come back later if the device is busy... */
3088         if (mutex_trylock(&dev->struct_mutex)) {
3089                 i915_gem_retire_requests(dev_priv);
3090                 mutex_unlock(&dev->struct_mutex);
3091         }
3092
3093         /* Keep the retire handler running until we are finally idle.
3094          * We do not need to do this test under locking as in the worst-case
3095          * we queue the retire worker once too often.
3096          */
3097         if (READ_ONCE(dev_priv->gt.awake)) {
3098                 i915_queue_hangcheck(dev_priv);
3099                 queue_delayed_work(dev_priv->wq,
3100                                    &dev_priv->gt.retire_work,
3101                                    round_jiffies_up_relative(HZ));
3102         }
3103 }
3104
3105 static void
3106 i915_gem_idle_work_handler(struct work_struct *work)
3107 {
3108         struct drm_i915_private *dev_priv =
3109                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3110         struct drm_device *dev = &dev_priv->drm;
3111         struct intel_engine_cs *engine;
3112         enum intel_engine_id id;
3113         bool rearm_hangcheck;
3114
3115         if (!READ_ONCE(dev_priv->gt.awake))
3116                 return;
3117
3118         /*
3119          * Wait for last execlists context complete, but bail out in case a
3120          * new request is submitted.
3121          */
3122         wait_for(intel_engines_are_idle(dev_priv), 10);
3123         if (READ_ONCE(dev_priv->gt.active_requests))
3124                 return;
3125
3126         rearm_hangcheck =
3127                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3128
3129         if (!mutex_trylock(&dev->struct_mutex)) {
3130                 /* Currently busy, come back later */
3131                 mod_delayed_work(dev_priv->wq,
3132                                  &dev_priv->gt.idle_work,
3133                                  msecs_to_jiffies(50));
3134                 goto out_rearm;
3135         }
3136
3137         /*
3138          * New request retired after this work handler started, extend active
3139          * period until next instance of the work.
3140          */
3141         if (work_pending(work))
3142                 goto out_unlock;
3143
3144         if (dev_priv->gt.active_requests)
3145                 goto out_unlock;
3146
3147         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3148                 DRM_ERROR("Timeout waiting for engines to idle\n");
3149
3150         for_each_engine(engine, dev_priv, id) {
3151                 intel_engine_disarm_breadcrumbs(engine);
3152                 i915_gem_batch_pool_fini(&engine->batch_pool);
3153         }
3154
3155         GEM_BUG_ON(!dev_priv->gt.awake);
3156         dev_priv->gt.awake = false;
3157         rearm_hangcheck = false;
3158
3159         if (INTEL_GEN(dev_priv) >= 6)
3160                 gen6_rps_idle(dev_priv);
3161         intel_runtime_pm_put(dev_priv);
3162 out_unlock:
3163         mutex_unlock(&dev->struct_mutex);
3164
3165 out_rearm:
3166         if (rearm_hangcheck) {
3167                 GEM_BUG_ON(!dev_priv->gt.awake);
3168                 i915_queue_hangcheck(dev_priv);
3169         }
3170 }
3171
3172 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3173 {
3174         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3175         struct drm_i915_file_private *fpriv = file->driver_priv;
3176         struct i915_vma *vma, *vn;
3177
3178         mutex_lock(&obj->base.dev->struct_mutex);
3179         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3180                 if (vma->vm->file == fpriv)
3181                         i915_vma_close(vma);
3182
3183         if (i915_gem_object_is_active(obj) &&
3184             !i915_gem_object_has_active_reference(obj)) {
3185                 i915_gem_object_set_active_reference(obj);
3186                 i915_gem_object_get(obj);
3187         }
3188         mutex_unlock(&obj->base.dev->struct_mutex);
3189 }
3190
3191 static unsigned long to_wait_timeout(s64 timeout_ns)
3192 {
3193         if (timeout_ns < 0)
3194                 return MAX_SCHEDULE_TIMEOUT;
3195
3196         if (timeout_ns == 0)
3197                 return 0;
3198
3199         return nsecs_to_jiffies_timeout(timeout_ns);
3200 }
3201
3202 /**
3203  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3204  * @dev: drm device pointer
3205  * @data: ioctl data blob
3206  * @file: drm file pointer
3207  *
3208  * Returns 0 if successful, else an error is returned with the remaining time in
3209  * the timeout parameter.
3210  *  -ETIME: object is still busy after timeout
3211  *  -ERESTARTSYS: signal interrupted the wait
3212  *  -ENONENT: object doesn't exist
3213  * Also possible, but rare:
3214  *  -EAGAIN: GPU wedged
3215  *  -ENOMEM: damn
3216  *  -ENODEV: Internal IRQ fail
3217  *  -E?: The add request failed
3218  *
3219  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3220  * non-zero timeout parameter the wait ioctl will wait for the given number of
3221  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3222  * without holding struct_mutex the object may become re-busied before this
3223  * function completes. A similar but shorter * race condition exists in the busy
3224  * ioctl
3225  */
3226 int
3227 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3228 {
3229         struct drm_i915_gem_wait *args = data;
3230         struct drm_i915_gem_object *obj;
3231         ktime_t start;
3232         long ret;
3233
3234         if (args->flags != 0)
3235                 return -EINVAL;
3236
3237         obj = i915_gem_object_lookup(file, args->bo_handle);
3238         if (!obj)
3239                 return -ENOENT;
3240
3241         start = ktime_get();
3242
3243         ret = i915_gem_object_wait(obj,
3244                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3245                                    to_wait_timeout(args->timeout_ns),
3246                                    to_rps_client(file));
3247
3248         if (args->timeout_ns > 0) {
3249                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3250                 if (args->timeout_ns < 0)
3251                         args->timeout_ns = 0;
3252
3253                 /*
3254                  * Apparently ktime isn't accurate enough and occasionally has a
3255                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3256                  * things up to make the test happy. We allow up to 1 jiffy.
3257                  *
3258                  * This is a regression from the timespec->ktime conversion.
3259                  */
3260                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3261                         args->timeout_ns = 0;
3262         }
3263
3264         i915_gem_object_put(obj);
3265         return ret;
3266 }
3267
3268 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3269 {
3270         int ret, i;
3271
3272         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3273                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3274                 if (ret)
3275                         return ret;
3276         }
3277
3278         return 0;
3279 }
3280
3281 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3282 {
3283         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3284 }
3285
3286 static int wait_for_engines(struct drm_i915_private *i915)
3287 {
3288         struct intel_engine_cs *engine;
3289         enum intel_engine_id id;
3290
3291         for_each_engine(engine, i915, id) {
3292                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3293                         i915_gem_set_wedged(i915);
3294                         return -EIO;
3295                 }
3296
3297                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3298                            intel_engine_last_submit(engine));
3299         }
3300
3301         return 0;
3302 }
3303
3304 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3305 {
3306         int ret;
3307
3308         /* If the device is asleep, we have no requests outstanding */
3309         if (!READ_ONCE(i915->gt.awake))
3310                 return 0;
3311
3312         if (flags & I915_WAIT_LOCKED) {
3313                 struct i915_gem_timeline *tl;
3314
3315                 lockdep_assert_held(&i915->drm.struct_mutex);
3316
3317                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3318                         ret = wait_for_timeline(tl, flags);
3319                         if (ret)
3320                                 return ret;
3321                 }
3322
3323                 i915_gem_retire_requests(i915);
3324                 GEM_BUG_ON(i915->gt.active_requests);
3325
3326                 ret = wait_for_engines(i915);
3327         } else {
3328                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3329         }
3330
3331         return ret;
3332 }
3333
3334 /** Flushes the GTT write domain for the object if it's dirty. */
3335 static void
3336 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3337 {
3338         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3339
3340         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3341                 return;
3342
3343         /* No actual flushing is required for the GTT write domain.  Writes
3344          * to it "immediately" go to main memory as far as we know, so there's
3345          * no chipset flush.  It also doesn't land in render cache.
3346          *
3347          * However, we do have to enforce the order so that all writes through
3348          * the GTT land before any writes to the device, such as updates to
3349          * the GATT itself.
3350          *
3351          * We also have to wait a bit for the writes to land from the GTT.
3352          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3353          * timing. This issue has only been observed when switching quickly
3354          * between GTT writes and CPU reads from inside the kernel on recent hw,
3355          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3356          * system agents we cannot reproduce this behaviour).
3357          */
3358         wmb();
3359         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
3360                 if (intel_runtime_pm_get_if_in_use(dev_priv)) {
3361                         spin_lock_irq(&dev_priv->uncore.lock);
3362                         POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3363                         spin_unlock_irq(&dev_priv->uncore.lock);
3364                         intel_runtime_pm_put(dev_priv);
3365                 }
3366         }
3367
3368         intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3369
3370         obj->base.write_domain = 0;
3371 }
3372
3373 /** Flushes the CPU write domain for the object if it's dirty. */
3374 static void
3375 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3376 {
3377         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3378                 return;
3379
3380         i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3381         obj->base.write_domain = 0;
3382 }
3383
3384 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3385 {
3386         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3387                 return;
3388
3389         i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3390         obj->base.write_domain = 0;
3391 }
3392
3393 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3394 {
3395         if (!READ_ONCE(obj->pin_display))
3396                 return;
3397
3398         mutex_lock(&obj->base.dev->struct_mutex);
3399         __i915_gem_object_flush_for_display(obj);
3400         mutex_unlock(&obj->base.dev->struct_mutex);
3401 }
3402
3403 /**
3404  * Moves a single object to the GTT read, and possibly write domain.
3405  * @obj: object to act on
3406  * @write: ask for write access or read only
3407  *
3408  * This function returns when the move is complete, including waiting on
3409  * flushes to occur.
3410  */
3411 int
3412 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3413 {
3414         int ret;
3415
3416         lockdep_assert_held(&obj->base.dev->struct_mutex);
3417
3418         ret = i915_gem_object_wait(obj,
3419                                    I915_WAIT_INTERRUPTIBLE |
3420                                    I915_WAIT_LOCKED |
3421                                    (write ? I915_WAIT_ALL : 0),
3422                                    MAX_SCHEDULE_TIMEOUT,
3423                                    NULL);
3424         if (ret)
3425                 return ret;
3426
3427         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3428                 return 0;
3429
3430         /* Flush and acquire obj->pages so that we are coherent through
3431          * direct access in memory with previous cached writes through
3432          * shmemfs and that our cache domain tracking remains valid.
3433          * For example, if the obj->filp was moved to swap without us
3434          * being notified and releasing the pages, we would mistakenly
3435          * continue to assume that the obj remained out of the CPU cached
3436          * domain.
3437          */
3438         ret = i915_gem_object_pin_pages(obj);
3439         if (ret)
3440                 return ret;
3441
3442         i915_gem_object_flush_cpu_write_domain(obj);
3443
3444         /* Serialise direct access to this object with the barriers for
3445          * coherent writes from the GPU, by effectively invalidating the
3446          * GTT domain upon first access.
3447          */
3448         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3449                 mb();
3450
3451         /* It should now be out of any other write domains, and we can update
3452          * the domain values for our changes.
3453          */
3454         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3455         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3456         if (write) {
3457                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3458                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3459                 obj->mm.dirty = true;
3460         }
3461
3462         i915_gem_object_unpin_pages(obj);
3463         return 0;
3464 }
3465
3466 /**
3467  * Changes the cache-level of an object across all VMA.
3468  * @obj: object to act on
3469  * @cache_level: new cache level to set for the object
3470  *
3471  * After this function returns, the object will be in the new cache-level
3472  * across all GTT and the contents of the backing storage will be coherent,
3473  * with respect to the new cache-level. In order to keep the backing storage
3474  * coherent for all users, we only allow a single cache level to be set
3475  * globally on the object and prevent it from being changed whilst the
3476  * hardware is reading from the object. That is if the object is currently
3477  * on the scanout it will be set to uncached (or equivalent display
3478  * cache coherency) and all non-MOCS GPU access will also be uncached so
3479  * that all direct access to the scanout remains coherent.
3480  */
3481 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3482                                     enum i915_cache_level cache_level)
3483 {
3484         struct i915_vma *vma;
3485         int ret;
3486
3487         lockdep_assert_held(&obj->base.dev->struct_mutex);
3488
3489         if (obj->cache_level == cache_level)
3490                 return 0;
3491
3492         /* Inspect the list of currently bound VMA and unbind any that would
3493          * be invalid given the new cache-level. This is principally to
3494          * catch the issue of the CS prefetch crossing page boundaries and
3495          * reading an invalid PTE on older architectures.
3496          */
3497 restart:
3498         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3499                 if (!drm_mm_node_allocated(&vma->node))
3500                         continue;
3501
3502                 if (i915_vma_is_pinned(vma)) {
3503                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3504                         return -EBUSY;
3505                 }
3506
3507                 if (i915_gem_valid_gtt_space(vma, cache_level))
3508                         continue;
3509
3510                 ret = i915_vma_unbind(vma);
3511                 if (ret)
3512                         return ret;
3513
3514                 /* As unbinding may affect other elements in the
3515                  * obj->vma_list (due to side-effects from retiring
3516                  * an active vma), play safe and restart the iterator.
3517                  */
3518                 goto restart;
3519         }
3520
3521         /* We can reuse the existing drm_mm nodes but need to change the
3522          * cache-level on the PTE. We could simply unbind them all and
3523          * rebind with the correct cache-level on next use. However since
3524          * we already have a valid slot, dma mapping, pages etc, we may as
3525          * rewrite the PTE in the belief that doing so tramples upon less
3526          * state and so involves less work.
3527          */
3528         if (obj->bind_count) {
3529                 /* Before we change the PTE, the GPU must not be accessing it.
3530                  * If we wait upon the object, we know that all the bound
3531                  * VMA are no longer active.
3532                  */
3533                 ret = i915_gem_object_wait(obj,
3534                                            I915_WAIT_INTERRUPTIBLE |
3535                                            I915_WAIT_LOCKED |
3536                                            I915_WAIT_ALL,
3537                                            MAX_SCHEDULE_TIMEOUT,
3538                                            NULL);
3539                 if (ret)
3540                         return ret;
3541
3542                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3543                     cache_level != I915_CACHE_NONE) {
3544                         /* Access to snoopable pages through the GTT is
3545                          * incoherent and on some machines causes a hard
3546                          * lockup. Relinquish the CPU mmaping to force
3547                          * userspace to refault in the pages and we can
3548                          * then double check if the GTT mapping is still
3549                          * valid for that pointer access.
3550                          */
3551                         i915_gem_release_mmap(obj);
3552
3553                         /* As we no longer need a fence for GTT access,
3554                          * we can relinquish it now (and so prevent having
3555                          * to steal a fence from someone else on the next
3556                          * fence request). Note GPU activity would have
3557                          * dropped the fence as all snoopable access is
3558                          * supposed to be linear.
3559                          */
3560                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3561                                 ret = i915_vma_put_fence(vma);
3562                                 if (ret)
3563                                         return ret;
3564                         }
3565                 } else {
3566                         /* We either have incoherent backing store and
3567                          * so no GTT access or the architecture is fully
3568                          * coherent. In such cases, existing GTT mmaps
3569                          * ignore the cache bit in the PTE and we can
3570                          * rewrite it without confusing the GPU or having
3571                          * to force userspace to fault back in its mmaps.
3572                          */
3573                 }
3574
3575                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3576                         if (!drm_mm_node_allocated(&vma->node))
3577                                 continue;
3578
3579                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3580                         if (ret)
3581                                 return ret;
3582                 }
3583         }
3584
3585         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3586             i915_gem_object_is_coherent(obj))
3587                 obj->cache_dirty = true;
3588
3589         list_for_each_entry(vma, &obj->vma_list, obj_link)
3590                 vma->node.color = cache_level;
3591         obj->cache_level = cache_level;
3592
3593         return 0;
3594 }
3595
3596 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3597                                struct drm_file *file)
3598 {
3599         struct drm_i915_gem_caching *args = data;
3600         struct drm_i915_gem_object *obj;
3601         int err = 0;
3602
3603         rcu_read_lock();
3604         obj = i915_gem_object_lookup_rcu(file, args->handle);
3605         if (!obj) {
3606                 err = -ENOENT;
3607                 goto out;
3608         }
3609
3610         switch (obj->cache_level) {
3611         case I915_CACHE_LLC:
3612         case I915_CACHE_L3_LLC:
3613                 args->caching = I915_CACHING_CACHED;
3614                 break;
3615
3616         case I915_CACHE_WT:
3617                 args->caching = I915_CACHING_DISPLAY;
3618                 break;
3619
3620         default:
3621                 args->caching = I915_CACHING_NONE;
3622                 break;
3623         }
3624 out:
3625         rcu_read_unlock();
3626         return err;
3627 }
3628
3629 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3630                                struct drm_file *file)
3631 {
3632         struct drm_i915_private *i915 = to_i915(dev);
3633         struct drm_i915_gem_caching *args = data;
3634         struct drm_i915_gem_object *obj;
3635         enum i915_cache_level level;
3636         int ret = 0;
3637
3638         switch (args->caching) {
3639         case I915_CACHING_NONE:
3640                 level = I915_CACHE_NONE;
3641                 break;
3642         case I915_CACHING_CACHED:
3643                 /*
3644                  * Due to a HW issue on BXT A stepping, GPU stores via a
3645                  * snooped mapping may leave stale data in a corresponding CPU
3646                  * cacheline, whereas normally such cachelines would get
3647                  * invalidated.
3648                  */
3649                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3650                         return -ENODEV;
3651
3652                 level = I915_CACHE_LLC;
3653                 break;
3654         case I915_CACHING_DISPLAY:
3655                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3656                 break;
3657         default:
3658                 return -EINVAL;
3659         }
3660
3661         obj = i915_gem_object_lookup(file, args->handle);
3662         if (!obj)
3663                 return -ENOENT;
3664
3665         if (obj->cache_level == level)
3666                 goto out;
3667
3668         ret = i915_gem_object_wait(obj,
3669                                    I915_WAIT_INTERRUPTIBLE,
3670                                    MAX_SCHEDULE_TIMEOUT,
3671                                    to_rps_client(file));
3672         if (ret)
3673                 goto out;
3674
3675         ret = i915_mutex_lock_interruptible(dev);
3676         if (ret)
3677                 goto out;
3678
3679         ret = i915_gem_object_set_cache_level(obj, level);
3680         mutex_unlock(&dev->struct_mutex);
3681
3682 out:
3683         i915_gem_object_put(obj);
3684         return ret;
3685 }
3686
3687 /*
3688  * Prepare buffer for display plane (scanout, cursors, etc).
3689  * Can be called from an uninterruptible phase (modesetting) and allows
3690  * any flushes to be pipelined (for pageflips).
3691  */
3692 struct i915_vma *
3693 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3694                                      u32 alignment,
3695                                      const struct i915_ggtt_view *view)
3696 {
3697         struct i915_vma *vma;
3698         int ret;
3699
3700         lockdep_assert_held(&obj->base.dev->struct_mutex);
3701
3702         /* Mark the pin_display early so that we account for the
3703          * display coherency whilst setting up the cache domains.
3704          */
3705         obj->pin_display++;
3706
3707         /* The display engine is not coherent with the LLC cache on gen6.  As
3708          * a result, we make sure that the pinning that is about to occur is
3709          * done with uncached PTEs. This is lowest common denominator for all
3710          * chipsets.
3711          *
3712          * However for gen6+, we could do better by using the GFDT bit instead
3713          * of uncaching, which would allow us to flush all the LLC-cached data
3714          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3715          */
3716         ret = i915_gem_object_set_cache_level(obj,
3717                                               HAS_WT(to_i915(obj->base.dev)) ?
3718                                               I915_CACHE_WT : I915_CACHE_NONE);
3719         if (ret) {
3720                 vma = ERR_PTR(ret);
3721                 goto err_unpin_display;
3722         }
3723
3724         /* As the user may map the buffer once pinned in the display plane
3725          * (e.g. libkms for the bootup splash), we have to ensure that we
3726          * always use map_and_fenceable for all scanout buffers. However,
3727          * it may simply be too big to fit into mappable, in which case
3728          * put it anyway and hope that userspace can cope (but always first
3729          * try to preserve the existing ABI).
3730          */
3731         vma = ERR_PTR(-ENOSPC);
3732         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3733                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3734                                                PIN_MAPPABLE | PIN_NONBLOCK);
3735         if (IS_ERR(vma)) {
3736                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3737                 unsigned int flags;
3738
3739                 /* Valleyview is definitely limited to scanning out the first
3740                  * 512MiB. Lets presume this behaviour was inherited from the
3741                  * g4x display engine and that all earlier gen are similarly
3742                  * limited. Testing suggests that it is a little more
3743                  * complicated than this. For example, Cherryview appears quite
3744                  * happy to scanout from anywhere within its global aperture.
3745                  */
3746                 flags = 0;
3747                 if (HAS_GMCH_DISPLAY(i915))
3748                         flags = PIN_MAPPABLE;
3749                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3750         }
3751         if (IS_ERR(vma))
3752                 goto err_unpin_display;
3753
3754         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3755
3756         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3757         __i915_gem_object_flush_for_display(obj);
3758         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3759
3760         /* It should now be out of any other write domains, and we can update
3761          * the domain values for our changes.
3762          */
3763         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3764
3765         return vma;
3766
3767 err_unpin_display:
3768         obj->pin_display--;
3769         return vma;
3770 }
3771
3772 void
3773 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3774 {
3775         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3776
3777         if (WARN_ON(vma->obj->pin_display == 0))
3778                 return;
3779
3780         if (--vma->obj->pin_display == 0)
3781                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3782
3783         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3784         i915_gem_object_bump_inactive_ggtt(vma->obj);
3785
3786         i915_vma_unpin(vma);
3787 }
3788
3789 /**
3790  * Moves a single object to the CPU read, and possibly write domain.
3791  * @obj: object to act on
3792  * @write: requesting write or read-only access
3793  *
3794  * This function returns when the move is complete, including waiting on
3795  * flushes to occur.
3796  */
3797 int
3798 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3799 {
3800         int ret;
3801
3802         lockdep_assert_held(&obj->base.dev->struct_mutex);
3803
3804         ret = i915_gem_object_wait(obj,
3805                                    I915_WAIT_INTERRUPTIBLE |
3806                                    I915_WAIT_LOCKED |
3807                                    (write ? I915_WAIT_ALL : 0),
3808                                    MAX_SCHEDULE_TIMEOUT,
3809                                    NULL);
3810         if (ret)
3811                 return ret;
3812
3813         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3814                 return 0;
3815
3816         i915_gem_object_flush_gtt_write_domain(obj);
3817
3818         /* Flush the CPU cache if it's still invalid. */
3819         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3820                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3821                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3822         }
3823
3824         /* It should now be out of any other write domains, and we can update
3825          * the domain values for our changes.
3826          */
3827         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3828
3829         /* If we're writing through the CPU, then the GPU read domains will
3830          * need to be invalidated at next use.
3831          */
3832         if (write) {
3833                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3834                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3835         }
3836
3837         return 0;
3838 }
3839
3840 /* Throttle our rendering by waiting until the ring has completed our requests
3841  * emitted over 20 msec ago.
3842  *
3843  * Note that if we were to use the current jiffies each time around the loop,
3844  * we wouldn't escape the function with any frames outstanding if the time to
3845  * render a frame was over 20ms.
3846  *
3847  * This should get us reasonable parallelism between CPU and GPU but also
3848  * relatively low latency when blocking on a particular request to finish.
3849  */
3850 static int
3851 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3852 {
3853         struct drm_i915_private *dev_priv = to_i915(dev);
3854         struct drm_i915_file_private *file_priv = file->driver_priv;
3855         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3856         struct drm_i915_gem_request *request, *target = NULL;
3857         long ret;
3858
3859         /* ABI: return -EIO if already wedged */
3860         if (i915_terminally_wedged(&dev_priv->gpu_error))
3861                 return -EIO;
3862
3863         spin_lock(&file_priv->mm.lock);
3864         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3865                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3866                         break;
3867
3868                 if (target) {
3869                         list_del(&target->client_link);
3870                         target->file_priv = NULL;
3871                 }
3872
3873                 target = request;
3874         }
3875         if (target)
3876                 i915_gem_request_get(target);
3877         spin_unlock(&file_priv->mm.lock);
3878
3879         if (target == NULL)
3880                 return 0;
3881
3882         ret = i915_wait_request(target,
3883                                 I915_WAIT_INTERRUPTIBLE,
3884                                 MAX_SCHEDULE_TIMEOUT);
3885         i915_gem_request_put(target);
3886
3887         return ret < 0 ? ret : 0;
3888 }
3889
3890 struct i915_vma *
3891 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3892                          const struct i915_ggtt_view *view,
3893                          u64 size,
3894                          u64 alignment,
3895                          u64 flags)
3896 {
3897         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3898         struct i915_address_space *vm = &dev_priv->ggtt.base;
3899         struct i915_vma *vma;
3900         int ret;
3901
3902         lockdep_assert_held(&obj->base.dev->struct_mutex);
3903
3904         vma = i915_vma_instance(obj, vm, view);
3905         if (unlikely(IS_ERR(vma)))
3906                 return vma;
3907
3908         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3909                 if (flags & PIN_NONBLOCK &&
3910                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3911                         return ERR_PTR(-ENOSPC);
3912
3913                 if (flags & PIN_MAPPABLE) {
3914                         /* If the required space is larger than the available
3915                          * aperture, we will not able to find a slot for the
3916                          * object and unbinding the object now will be in
3917                          * vain. Worse, doing so may cause us to ping-pong
3918                          * the object in and out of the Global GTT and
3919                          * waste a lot of cycles under the mutex.
3920                          */
3921                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
3922                                 return ERR_PTR(-E2BIG);
3923
3924                         /* If NONBLOCK is set the caller is optimistically
3925                          * trying to cache the full object within the mappable
3926                          * aperture, and *must* have a fallback in place for
3927                          * situations where we cannot bind the object. We
3928                          * can be a little more lax here and use the fallback
3929                          * more often to avoid costly migrations of ourselves
3930                          * and other objects within the aperture.
3931                          *
3932                          * Half-the-aperture is used as a simple heuristic.
3933                          * More interesting would to do search for a free
3934                          * block prior to making the commitment to unbind.
3935                          * That caters for the self-harm case, and with a
3936                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3937                          * we could try to minimise harm to others.
3938                          */
3939                         if (flags & PIN_NONBLOCK &&
3940                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3941                                 return ERR_PTR(-ENOSPC);
3942                 }
3943
3944                 WARN(i915_vma_is_pinned(vma),
3945                      "bo is already pinned in ggtt with incorrect alignment:"
3946                      " offset=%08x, req.alignment=%llx,"
3947                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3948                      i915_ggtt_offset(vma), alignment,
3949                      !!(flags & PIN_MAPPABLE),
3950                      i915_vma_is_map_and_fenceable(vma));
3951                 ret = i915_vma_unbind(vma);
3952                 if (ret)
3953                         return ERR_PTR(ret);
3954         }
3955
3956         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3957         if (ret)
3958                 return ERR_PTR(ret);
3959
3960         return vma;
3961 }
3962
3963 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3964 {
3965         /* Note that we could alias engines in the execbuf API, but
3966          * that would be very unwise as it prevents userspace from
3967          * fine control over engine selection. Ahem.
3968          *
3969          * This should be something like EXEC_MAX_ENGINE instead of
3970          * I915_NUM_ENGINES.
3971          */
3972         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3973         return 0x10000 << id;
3974 }
3975
3976 static __always_inline unsigned int __busy_write_id(unsigned int id)
3977 {
3978         /* The uABI guarantees an active writer is also amongst the read
3979          * engines. This would be true if we accessed the activity tracking
3980          * under the lock, but as we perform the lookup of the object and
3981          * its activity locklessly we can not guarantee that the last_write
3982          * being active implies that we have set the same engine flag from
3983          * last_read - hence we always set both read and write busy for
3984          * last_write.
3985          */
3986         return id | __busy_read_flag(id);
3987 }
3988
3989 static __always_inline unsigned int
3990 __busy_set_if_active(const struct dma_fence *fence,
3991                      unsigned int (*flag)(unsigned int id))
3992 {
3993         struct drm_i915_gem_request *rq;
3994
3995         /* We have to check the current hw status of the fence as the uABI
3996          * guarantees forward progress. We could rely on the idle worker
3997          * to eventually flush us, but to minimise latency just ask the
3998          * hardware.
3999          *
4000          * Note we only report on the status of native fences.
4001          */
4002         if (!dma_fence_is_i915(fence))
4003                 return 0;
4004
4005         /* opencode to_request() in order to avoid const warnings */
4006         rq = container_of(fence, struct drm_i915_gem_request, fence);
4007         if (i915_gem_request_completed(rq))
4008                 return 0;
4009
4010         return flag(rq->engine->exec_id);
4011 }
4012
4013 static __always_inline unsigned int
4014 busy_check_reader(const struct dma_fence *fence)
4015 {
4016         return __busy_set_if_active(fence, __busy_read_flag);
4017 }
4018
4019 static __always_inline unsigned int
4020 busy_check_writer(const struct dma_fence *fence)
4021 {
4022         if (!fence)
4023                 return 0;
4024
4025         return __busy_set_if_active(fence, __busy_write_id);
4026 }
4027
4028 int
4029 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4030                     struct drm_file *file)
4031 {
4032         struct drm_i915_gem_busy *args = data;
4033         struct drm_i915_gem_object *obj;
4034         struct reservation_object_list *list;
4035         unsigned int seq;
4036         int err;
4037
4038         err = -ENOENT;
4039         rcu_read_lock();
4040         obj = i915_gem_object_lookup_rcu(file, args->handle);
4041         if (!obj)
4042                 goto out;
4043
4044         /* A discrepancy here is that we do not report the status of
4045          * non-i915 fences, i.e. even though we may report the object as idle,
4046          * a call to set-domain may still stall waiting for foreign rendering.
4047          * This also means that wait-ioctl may report an object as busy,
4048          * where busy-ioctl considers it idle.
4049          *
4050          * We trade the ability to warn of foreign fences to report on which
4051          * i915 engines are active for the object.
4052          *
4053          * Alternatively, we can trade that extra information on read/write
4054          * activity with
4055          *      args->busy =
4056          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4057          * to report the overall busyness. This is what the wait-ioctl does.
4058          *
4059          */
4060 retry:
4061         seq = raw_read_seqcount(&obj->resv->seq);
4062
4063         /* Translate the exclusive fence to the READ *and* WRITE engine */
4064         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4065
4066         /* Translate shared fences to READ set of engines */
4067         list = rcu_dereference(obj->resv->fence);
4068         if (list) {
4069                 unsigned int shared_count = list->shared_count, i;
4070
4071                 for (i = 0; i < shared_count; ++i) {
4072                         struct dma_fence *fence =
4073                                 rcu_dereference(list->shared[i]);
4074
4075                         args->busy |= busy_check_reader(fence);
4076                 }
4077         }
4078
4079         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4080                 goto retry;
4081
4082         err = 0;
4083 out:
4084         rcu_read_unlock();
4085         return err;
4086 }
4087
4088 int
4089 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4090                         struct drm_file *file_priv)
4091 {
4092         return i915_gem_ring_throttle(dev, file_priv);
4093 }
4094
4095 int
4096 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4097                        struct drm_file *file_priv)
4098 {
4099         struct drm_i915_private *dev_priv = to_i915(dev);
4100         struct drm_i915_gem_madvise *args = data;
4101         struct drm_i915_gem_object *obj;
4102         int err;
4103
4104         switch (args->madv) {
4105         case I915_MADV_DONTNEED:
4106         case I915_MADV_WILLNEED:
4107             break;
4108         default:
4109             return -EINVAL;
4110         }
4111
4112         obj = i915_gem_object_lookup(file_priv, args->handle);
4113         if (!obj)
4114                 return -ENOENT;
4115
4116         err = mutex_lock_interruptible(&obj->mm.lock);
4117         if (err)
4118                 goto out;
4119
4120         if (obj->mm.pages &&
4121             i915_gem_object_is_tiled(obj) &&
4122             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4123                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4124                         GEM_BUG_ON(!obj->mm.quirked);
4125                         __i915_gem_object_unpin_pages(obj);
4126                         obj->mm.quirked = false;
4127                 }
4128                 if (args->madv == I915_MADV_WILLNEED) {
4129                         GEM_BUG_ON(obj->mm.quirked);
4130                         __i915_gem_object_pin_pages(obj);
4131                         obj->mm.quirked = true;
4132                 }
4133         }
4134
4135         if (obj->mm.madv != __I915_MADV_PURGED)
4136                 obj->mm.madv = args->madv;
4137
4138         /* if the object is no longer attached, discard its backing storage */
4139         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4140                 i915_gem_object_truncate(obj);
4141
4142         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4143         mutex_unlock(&obj->mm.lock);
4144
4145 out:
4146         i915_gem_object_put(obj);
4147         return err;
4148 }
4149
4150 static void
4151 frontbuffer_retire(struct i915_gem_active *active,
4152                    struct drm_i915_gem_request *request)
4153 {
4154         struct drm_i915_gem_object *obj =
4155                 container_of(active, typeof(*obj), frontbuffer_write);
4156
4157         intel_fb_obj_flush(obj, ORIGIN_CS);
4158 }
4159
4160 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4161                           const struct drm_i915_gem_object_ops *ops)
4162 {
4163         mutex_init(&obj->mm.lock);
4164
4165         INIT_LIST_HEAD(&obj->global_link);
4166         INIT_LIST_HEAD(&obj->userfault_link);
4167         INIT_LIST_HEAD(&obj->obj_exec_link);
4168         INIT_LIST_HEAD(&obj->vma_list);
4169         INIT_LIST_HEAD(&obj->batch_pool_link);
4170
4171         obj->ops = ops;
4172
4173         reservation_object_init(&obj->__builtin_resv);
4174         obj->resv = &obj->__builtin_resv;
4175
4176         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4177         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4178
4179         obj->mm.madv = I915_MADV_WILLNEED;
4180         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4181         mutex_init(&obj->mm.get_page.lock);
4182
4183         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4184 }
4185
4186 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4187         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4188                  I915_GEM_OBJECT_IS_SHRINKABLE,
4189
4190         .get_pages = i915_gem_object_get_pages_gtt,
4191         .put_pages = i915_gem_object_put_pages_gtt,
4192
4193         .pwrite = i915_gem_object_pwrite_gtt,
4194 };
4195
4196 struct drm_i915_gem_object *
4197 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4198 {
4199         struct drm_i915_gem_object *obj;
4200         struct address_space *mapping;
4201         gfp_t mask;
4202         int ret;
4203
4204         /* There is a prevalence of the assumption that we fit the object's
4205          * page count inside a 32bit _signed_ variable. Let's document this and
4206          * catch if we ever need to fix it. In the meantime, if you do spot
4207          * such a local variable, please consider fixing!
4208          */
4209         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4210                 return ERR_PTR(-E2BIG);
4211
4212         if (overflows_type(size, obj->base.size))
4213                 return ERR_PTR(-E2BIG);
4214
4215         obj = i915_gem_object_alloc(dev_priv);
4216         if (obj == NULL)
4217                 return ERR_PTR(-ENOMEM);
4218
4219         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4220         if (ret)
4221                 goto fail;
4222
4223         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4224         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4225                 /* 965gm cannot relocate objects above 4GiB. */
4226                 mask &= ~__GFP_HIGHMEM;
4227                 mask |= __GFP_DMA32;
4228         }
4229
4230         mapping = obj->base.filp->f_mapping;
4231         mapping_set_gfp_mask(mapping, mask);
4232         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4233
4234         i915_gem_object_init(obj, &i915_gem_object_ops);
4235
4236         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4237         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4238
4239         if (HAS_LLC(dev_priv)) {
4240                 /* On some devices, we can have the GPU use the LLC (the CPU
4241                  * cache) for about a 10% performance improvement
4242                  * compared to uncached.  Graphics requests other than
4243                  * display scanout are coherent with the CPU in
4244                  * accessing this cache.  This means in this mode we
4245                  * don't need to clflush on the CPU side, and on the
4246                  * GPU side we only need to flush internal caches to
4247                  * get data visible to the CPU.
4248                  *
4249                  * However, we maintain the display planes as UC, and so
4250                  * need to rebind when first used as such.
4251                  */
4252                 obj->cache_level = I915_CACHE_LLC;
4253         } else
4254                 obj->cache_level = I915_CACHE_NONE;
4255
4256         trace_i915_gem_object_create(obj);
4257
4258         return obj;
4259
4260 fail:
4261         i915_gem_object_free(obj);
4262         return ERR_PTR(ret);
4263 }
4264
4265 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4266 {
4267         /* If we are the last user of the backing storage (be it shmemfs
4268          * pages or stolen etc), we know that the pages are going to be
4269          * immediately released. In this case, we can then skip copying
4270          * back the contents from the GPU.
4271          */
4272
4273         if (obj->mm.madv != I915_MADV_WILLNEED)
4274                 return false;
4275
4276         if (obj->base.filp == NULL)
4277                 return true;
4278
4279         /* At first glance, this looks racy, but then again so would be
4280          * userspace racing mmap against close. However, the first external
4281          * reference to the filp can only be obtained through the
4282          * i915_gem_mmap_ioctl() which safeguards us against the user
4283          * acquiring such a reference whilst we are in the middle of
4284          * freeing the object.
4285          */
4286         return atomic_long_read(&obj->base.filp->f_count) == 1;
4287 }
4288
4289 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4290                                     struct llist_node *freed)
4291 {
4292         struct drm_i915_gem_object *obj, *on;
4293
4294         mutex_lock(&i915->drm.struct_mutex);
4295         intel_runtime_pm_get(i915);
4296         llist_for_each_entry(obj, freed, freed) {
4297                 struct i915_vma *vma, *vn;
4298
4299                 trace_i915_gem_object_destroy(obj);
4300
4301                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4302                 list_for_each_entry_safe(vma, vn,
4303                                          &obj->vma_list, obj_link) {
4304                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4305                         GEM_BUG_ON(i915_vma_is_active(vma));
4306                         vma->flags &= ~I915_VMA_PIN_MASK;
4307                         i915_vma_close(vma);
4308                 }
4309                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4310                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4311
4312                 list_del(&obj->global_link);
4313         }
4314         intel_runtime_pm_put(i915);
4315         mutex_unlock(&i915->drm.struct_mutex);
4316
4317         llist_for_each_entry_safe(obj, on, freed, freed) {
4318                 GEM_BUG_ON(obj->bind_count);
4319                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4320
4321                 if (obj->ops->release)
4322                         obj->ops->release(obj);
4323
4324                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4325                         atomic_set(&obj->mm.pages_pin_count, 0);
4326                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4327                 GEM_BUG_ON(obj->mm.pages);
4328
4329                 if (obj->base.import_attach)
4330                         drm_prime_gem_destroy(&obj->base, NULL);
4331
4332                 reservation_object_fini(&obj->__builtin_resv);
4333                 drm_gem_object_release(&obj->base);
4334                 i915_gem_info_remove_obj(i915, obj->base.size);
4335
4336                 kfree(obj->bit_17);
4337                 i915_gem_object_free(obj);
4338         }
4339 }
4340
4341 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4342 {
4343         struct llist_node *freed;
4344
4345         freed = llist_del_all(&i915->mm.free_list);
4346         if (unlikely(freed))
4347                 __i915_gem_free_objects(i915, freed);
4348 }
4349
4350 static void __i915_gem_free_work(struct work_struct *work)
4351 {
4352         struct drm_i915_private *i915 =
4353                 container_of(work, struct drm_i915_private, mm.free_work);
4354         struct llist_node *freed;
4355
4356         /* All file-owned VMA should have been released by this point through
4357          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4358          * However, the object may also be bound into the global GTT (e.g.
4359          * older GPUs without per-process support, or for direct access through
4360          * the GTT either for the user or for scanout). Those VMA still need to
4361          * unbound now.
4362          */
4363
4364         while ((freed = llist_del_all(&i915->mm.free_list)))
4365                 __i915_gem_free_objects(i915, freed);
4366 }
4367
4368 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4369 {
4370         struct drm_i915_gem_object *obj =
4371                 container_of(head, typeof(*obj), rcu);
4372         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4373
4374         /* We can't simply use call_rcu() from i915_gem_free_object()
4375          * as we need to block whilst unbinding, and the call_rcu
4376          * task may be called from softirq context. So we take a
4377          * detour through a worker.
4378          */
4379         if (llist_add(&obj->freed, &i915->mm.free_list))
4380                 schedule_work(&i915->mm.free_work);
4381 }
4382
4383 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4384 {
4385         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4386
4387         if (obj->mm.quirked)
4388                 __i915_gem_object_unpin_pages(obj);
4389
4390         if (discard_backing_storage(obj))
4391                 obj->mm.madv = I915_MADV_DONTNEED;
4392
4393         /* Before we free the object, make sure any pure RCU-only
4394          * read-side critical sections are complete, e.g.
4395          * i915_gem_busy_ioctl(). For the corresponding synchronized
4396          * lookup see i915_gem_object_lookup_rcu().
4397          */
4398         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4399 }
4400
4401 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4402 {
4403         lockdep_assert_held(&obj->base.dev->struct_mutex);
4404
4405         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4406         if (i915_gem_object_is_active(obj))
4407                 i915_gem_object_set_active_reference(obj);
4408         else
4409                 i915_gem_object_put(obj);
4410 }
4411
4412 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4413 {
4414         struct intel_engine_cs *engine;
4415         enum intel_engine_id id;
4416
4417         for_each_engine(engine, dev_priv, id)
4418                 GEM_BUG_ON(engine->last_retired_context &&
4419                            !i915_gem_context_is_kernel(engine->last_retired_context));
4420 }
4421
4422 void i915_gem_sanitize(struct drm_i915_private *i915)
4423 {
4424         /*
4425          * If we inherit context state from the BIOS or earlier occupants
4426          * of the GPU, the GPU may be in an inconsistent state when we
4427          * try to take over. The only way to remove the earlier state
4428          * is by resetting. However, resetting on earlier gen is tricky as
4429          * it may impact the display and we are uncertain about the stability
4430          * of the reset, so we only reset recent machines with logical
4431          * context support (that must be reset to remove any stray contexts).
4432          */
4433         if (HAS_HW_CONTEXTS(i915)) {
4434                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4435                 WARN_ON(reset && reset != -ENODEV);
4436         }
4437 }
4438
4439 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4440 {
4441         struct drm_device *dev = &dev_priv->drm;
4442         int ret;
4443
4444         intel_runtime_pm_get(dev_priv);
4445         intel_suspend_gt_powersave(dev_priv);
4446
4447         mutex_lock(&dev->struct_mutex);
4448
4449         /* We have to flush all the executing contexts to main memory so
4450          * that they can saved in the hibernation image. To ensure the last
4451          * context image is coherent, we have to switch away from it. That
4452          * leaves the dev_priv->kernel_context still active when
4453          * we actually suspend, and its image in memory may not match the GPU
4454          * state. Fortunately, the kernel_context is disposable and we do
4455          * not rely on its state.
4456          */
4457         ret = i915_gem_switch_to_kernel_context(dev_priv);
4458         if (ret)
4459                 goto err_unlock;
4460
4461         ret = i915_gem_wait_for_idle(dev_priv,
4462                                      I915_WAIT_INTERRUPTIBLE |
4463                                      I915_WAIT_LOCKED);
4464         if (ret)
4465                 goto err_unlock;
4466
4467         assert_kernel_context_is_current(dev_priv);
4468         i915_gem_context_lost(dev_priv);
4469         mutex_unlock(&dev->struct_mutex);
4470
4471         intel_guc_suspend(dev_priv);
4472
4473         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4474         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4475
4476         /* As the idle_work is rearming if it detects a race, play safe and
4477          * repeat the flush until it is definitely idle.
4478          */
4479         while (flush_delayed_work(&dev_priv->gt.idle_work))
4480                 ;
4481
4482         i915_gem_drain_freed_objects(dev_priv);
4483
4484         /* Assert that we sucessfully flushed all the work and
4485          * reset the GPU back to its idle, low power state.
4486          */
4487         WARN_ON(dev_priv->gt.awake);
4488         WARN_ON(!intel_engines_are_idle(dev_priv));
4489
4490         /*
4491          * Neither the BIOS, ourselves or any other kernel
4492          * expects the system to be in execlists mode on startup,
4493          * so we need to reset the GPU back to legacy mode. And the only
4494          * known way to disable logical contexts is through a GPU reset.
4495          *
4496          * So in order to leave the system in a known default configuration,
4497          * always reset the GPU upon unload and suspend. Afterwards we then
4498          * clean up the GEM state tracking, flushing off the requests and
4499          * leaving the system in a known idle state.
4500          *
4501          * Note that is of the upmost importance that the GPU is idle and
4502          * all stray writes are flushed *before* we dismantle the backing
4503          * storage for the pinned objects.
4504          *
4505          * However, since we are uncertain that resetting the GPU on older
4506          * machines is a good idea, we don't - just in case it leaves the
4507          * machine in an unusable condition.
4508          */
4509         i915_gem_sanitize(dev_priv);
4510         goto out_rpm_put;
4511
4512 err_unlock:
4513         mutex_unlock(&dev->struct_mutex);
4514 out_rpm_put:
4515         intel_runtime_pm_put(dev_priv);
4516         return ret;
4517 }
4518
4519 void i915_gem_resume(struct drm_i915_private *dev_priv)
4520 {
4521         struct drm_device *dev = &dev_priv->drm;
4522
4523         WARN_ON(dev_priv->gt.awake);
4524
4525         mutex_lock(&dev->struct_mutex);
4526         i915_gem_restore_gtt_mappings(dev_priv);
4527
4528         /* As we didn't flush the kernel context before suspend, we cannot
4529          * guarantee that the context image is complete. So let's just reset
4530          * it and start again.
4531          */
4532         dev_priv->gt.resume(dev_priv);
4533
4534         mutex_unlock(&dev->struct_mutex);
4535 }
4536
4537 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4538 {
4539         if (INTEL_GEN(dev_priv) < 5 ||
4540             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4541                 return;
4542
4543         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4544                                  DISP_TILE_SURFACE_SWIZZLING);
4545
4546         if (IS_GEN5(dev_priv))
4547                 return;
4548
4549         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4550         if (IS_GEN6(dev_priv))
4551                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4552         else if (IS_GEN7(dev_priv))
4553                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4554         else if (IS_GEN8(dev_priv))
4555                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4556         else
4557                 BUG();
4558 }
4559
4560 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4561 {
4562         I915_WRITE(RING_CTL(base), 0);
4563         I915_WRITE(RING_HEAD(base), 0);
4564         I915_WRITE(RING_TAIL(base), 0);
4565         I915_WRITE(RING_START(base), 0);
4566 }
4567
4568 static void init_unused_rings(struct drm_i915_private *dev_priv)
4569 {
4570         if (IS_I830(dev_priv)) {
4571                 init_unused_ring(dev_priv, PRB1_BASE);
4572                 init_unused_ring(dev_priv, SRB0_BASE);
4573                 init_unused_ring(dev_priv, SRB1_BASE);
4574                 init_unused_ring(dev_priv, SRB2_BASE);
4575                 init_unused_ring(dev_priv, SRB3_BASE);
4576         } else if (IS_GEN2(dev_priv)) {
4577                 init_unused_ring(dev_priv, SRB0_BASE);
4578                 init_unused_ring(dev_priv, SRB1_BASE);
4579         } else if (IS_GEN3(dev_priv)) {
4580                 init_unused_ring(dev_priv, PRB1_BASE);
4581                 init_unused_ring(dev_priv, PRB2_BASE);
4582         }
4583 }
4584
4585 static int __i915_gem_restart_engines(void *data)
4586 {
4587         struct drm_i915_private *i915 = data;
4588         struct intel_engine_cs *engine;
4589         enum intel_engine_id id;
4590         int err;
4591
4592         for_each_engine(engine, i915, id) {
4593                 err = engine->init_hw(engine);
4594                 if (err)
4595                         return err;
4596         }
4597
4598         return 0;
4599 }
4600
4601 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4602 {
4603         int ret;
4604
4605         dev_priv->gt.last_init_time = ktime_get();
4606
4607         /* Double layer security blanket, see i915_gem_init() */
4608         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4609
4610         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4611                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4612
4613         if (IS_HASWELL(dev_priv))
4614                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4615                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4616
4617         if (HAS_PCH_NOP(dev_priv)) {
4618                 if (IS_IVYBRIDGE(dev_priv)) {
4619                         u32 temp = I915_READ(GEN7_MSG_CTL);
4620                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4621                         I915_WRITE(GEN7_MSG_CTL, temp);
4622                 } else if (INTEL_GEN(dev_priv) >= 7) {
4623                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4624                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4625                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4626                 }
4627         }
4628
4629         i915_gem_init_swizzling(dev_priv);
4630
4631         /*
4632          * At least 830 can leave some of the unused rings
4633          * "active" (ie. head != tail) after resume which
4634          * will prevent c3 entry. Makes sure all unused rings
4635          * are totally idle.
4636          */
4637         init_unused_rings(dev_priv);
4638
4639         BUG_ON(!dev_priv->kernel_context);
4640
4641         ret = i915_ppgtt_init_hw(dev_priv);
4642         if (ret) {
4643                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4644                 goto out;
4645         }
4646
4647         /* Need to do basic initialisation of all rings first: */
4648         ret = __i915_gem_restart_engines(dev_priv);
4649         if (ret)
4650                 goto out;
4651
4652         intel_mocs_init_l3cc_table(dev_priv);
4653
4654         /* We can't enable contexts until all firmware is loaded */
4655         ret = intel_uc_init_hw(dev_priv);
4656         if (ret)
4657                 goto out;
4658
4659 out:
4660         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4661         return ret;
4662 }
4663
4664 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4665 {
4666         if (INTEL_INFO(dev_priv)->gen < 6)
4667                 return false;
4668
4669         /* TODO: make semaphores and Execlists play nicely together */
4670         if (i915.enable_execlists)
4671                 return false;
4672
4673         if (value >= 0)
4674                 return value;
4675
4676 #ifdef CONFIG_INTEL_IOMMU
4677         /* Enable semaphores on SNB when IO remapping is off */
4678         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4679                 return false;
4680 #endif
4681
4682         return true;
4683 }
4684
4685 int i915_gem_init(struct drm_i915_private *dev_priv)
4686 {
4687         int ret;
4688
4689         mutex_lock(&dev_priv->drm.struct_mutex);
4690
4691         i915_gem_clflush_init(dev_priv);
4692
4693         if (!i915.enable_execlists) {
4694                 dev_priv->gt.resume = intel_legacy_submission_resume;
4695                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4696         } else {
4697                 dev_priv->gt.resume = intel_lr_context_resume;
4698                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4699         }
4700
4701         /* This is just a security blanket to placate dragons.
4702          * On some systems, we very sporadically observe that the first TLBs
4703          * used by the CS may be stale, despite us poking the TLB reset. If
4704          * we hold the forcewake during initialisation these problems
4705          * just magically go away.
4706          */
4707         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4708
4709         i915_gem_init_userptr(dev_priv);
4710
4711         ret = i915_gem_init_ggtt(dev_priv);
4712         if (ret)
4713                 goto out_unlock;
4714
4715         ret = i915_gem_context_init(dev_priv);
4716         if (ret)
4717                 goto out_unlock;
4718
4719         ret = intel_engines_init(dev_priv);
4720         if (ret)
4721                 goto out_unlock;
4722
4723         ret = i915_gem_init_hw(dev_priv);
4724         if (ret == -EIO) {
4725                 /* Allow engine initialisation to fail by marking the GPU as
4726                  * wedged. But we only want to do this where the GPU is angry,
4727                  * for all other failure, such as an allocation failure, bail.
4728                  */
4729                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4730                 i915_gem_set_wedged(dev_priv);
4731                 ret = 0;
4732         }
4733
4734 out_unlock:
4735         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4736         mutex_unlock(&dev_priv->drm.struct_mutex);
4737
4738         return ret;
4739 }
4740
4741 void i915_gem_init_mmio(struct drm_i915_private *i915)
4742 {
4743         i915_gem_sanitize(i915);
4744 }
4745
4746 void
4747 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4748 {
4749         struct intel_engine_cs *engine;
4750         enum intel_engine_id id;
4751
4752         for_each_engine(engine, dev_priv, id)
4753                 dev_priv->gt.cleanup_engine(engine);
4754 }
4755
4756 void
4757 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4758 {
4759         int i;
4760
4761         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4762             !IS_CHERRYVIEW(dev_priv))
4763                 dev_priv->num_fence_regs = 32;
4764         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4765                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4766                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4767                 dev_priv->num_fence_regs = 16;
4768         else
4769                 dev_priv->num_fence_regs = 8;
4770
4771         if (intel_vgpu_active(dev_priv))
4772                 dev_priv->num_fence_regs =
4773                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4774
4775         /* Initialize fence registers to zero */
4776         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4777                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4778
4779                 fence->i915 = dev_priv;
4780                 fence->id = i;
4781                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4782         }
4783         i915_gem_restore_fences(dev_priv);
4784
4785         i915_gem_detect_bit_6_swizzle(dev_priv);
4786 }
4787
4788 int
4789 i915_gem_load_init(struct drm_i915_private *dev_priv)
4790 {
4791         int err = -ENOMEM;
4792
4793         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4794         if (!dev_priv->objects)
4795                 goto err_out;
4796
4797         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4798         if (!dev_priv->vmas)
4799                 goto err_objects;
4800
4801         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4802                                         SLAB_HWCACHE_ALIGN |
4803                                         SLAB_RECLAIM_ACCOUNT |
4804                                         SLAB_TYPESAFE_BY_RCU);
4805         if (!dev_priv->requests)
4806                 goto err_vmas;
4807
4808         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4809                                             SLAB_HWCACHE_ALIGN |
4810                                             SLAB_RECLAIM_ACCOUNT);
4811         if (!dev_priv->dependencies)
4812                 goto err_requests;
4813
4814         mutex_lock(&dev_priv->drm.struct_mutex);
4815         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4816         err = i915_gem_timeline_init__global(dev_priv);
4817         mutex_unlock(&dev_priv->drm.struct_mutex);
4818         if (err)
4819                 goto err_dependencies;
4820
4821         INIT_LIST_HEAD(&dev_priv->context_list);
4822         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4823         init_llist_head(&dev_priv->mm.free_list);
4824         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4825         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4826         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4827         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4828         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4829                           i915_gem_retire_work_handler);
4830         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4831                           i915_gem_idle_work_handler);
4832         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4833         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4834
4835         init_waitqueue_head(&dev_priv->pending_flip_queue);
4836
4837         dev_priv->mm.interruptible = true;
4838
4839         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4840
4841         spin_lock_init(&dev_priv->fb_tracking.lock);
4842
4843         return 0;
4844
4845 err_dependencies:
4846         kmem_cache_destroy(dev_priv->dependencies);
4847 err_requests:
4848         kmem_cache_destroy(dev_priv->requests);
4849 err_vmas:
4850         kmem_cache_destroy(dev_priv->vmas);
4851 err_objects:
4852         kmem_cache_destroy(dev_priv->objects);
4853 err_out:
4854         return err;
4855 }
4856
4857 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4858 {
4859         i915_gem_drain_freed_objects(dev_priv);
4860         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4861         WARN_ON(dev_priv->mm.object_count);
4862
4863         mutex_lock(&dev_priv->drm.struct_mutex);
4864         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4865         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4866         mutex_unlock(&dev_priv->drm.struct_mutex);
4867
4868         kmem_cache_destroy(dev_priv->dependencies);
4869         kmem_cache_destroy(dev_priv->requests);
4870         kmem_cache_destroy(dev_priv->vmas);
4871         kmem_cache_destroy(dev_priv->objects);
4872
4873         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4874         rcu_barrier();
4875 }
4876
4877 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4878 {
4879         mutex_lock(&dev_priv->drm.struct_mutex);
4880         i915_gem_shrink_all(dev_priv);
4881         mutex_unlock(&dev_priv->drm.struct_mutex);
4882
4883         return 0;
4884 }
4885
4886 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4887 {
4888         struct drm_i915_gem_object *obj;
4889         struct list_head *phases[] = {
4890                 &dev_priv->mm.unbound_list,
4891                 &dev_priv->mm.bound_list,
4892                 NULL
4893         }, **p;
4894
4895         /* Called just before we write the hibernation image.
4896          *
4897          * We need to update the domain tracking to reflect that the CPU
4898          * will be accessing all the pages to create and restore from the
4899          * hibernation, and so upon restoration those pages will be in the
4900          * CPU domain.
4901          *
4902          * To make sure the hibernation image contains the latest state,
4903          * we update that state just before writing out the image.
4904          *
4905          * To try and reduce the hibernation image, we manually shrink
4906          * the objects as well.
4907          */
4908
4909         mutex_lock(&dev_priv->drm.struct_mutex);
4910         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4911
4912         for (p = phases; *p; p++) {
4913                 list_for_each_entry(obj, *p, global_link) {
4914                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4915                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4916                 }
4917         }
4918         mutex_unlock(&dev_priv->drm.struct_mutex);
4919
4920         return 0;
4921 }
4922
4923 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4924 {
4925         struct drm_i915_file_private *file_priv = file->driver_priv;
4926         struct drm_i915_gem_request *request;
4927
4928         /* Clean up our request list when the client is going away, so that
4929          * later retire_requests won't dereference our soon-to-be-gone
4930          * file_priv.
4931          */
4932         spin_lock(&file_priv->mm.lock);
4933         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4934                 request->file_priv = NULL;
4935         spin_unlock(&file_priv->mm.lock);
4936
4937         if (!list_empty(&file_priv->rps.link)) {
4938                 spin_lock(&to_i915(dev)->rps.client_lock);
4939                 list_del(&file_priv->rps.link);
4940                 spin_unlock(&to_i915(dev)->rps.client_lock);
4941         }
4942 }
4943
4944 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4945 {
4946         struct drm_i915_file_private *file_priv;
4947         int ret;
4948
4949         DRM_DEBUG("\n");
4950
4951         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4952         if (!file_priv)
4953                 return -ENOMEM;
4954
4955         file->driver_priv = file_priv;
4956         file_priv->dev_priv = to_i915(dev);
4957         file_priv->file = file;
4958         INIT_LIST_HEAD(&file_priv->rps.link);
4959
4960         spin_lock_init(&file_priv->mm.lock);
4961         INIT_LIST_HEAD(&file_priv->mm.request_list);
4962
4963         file_priv->bsd_engine = -1;
4964
4965         ret = i915_gem_context_open(dev, file);
4966         if (ret)
4967                 kfree(file_priv);
4968
4969         return ret;
4970 }
4971
4972 /**
4973  * i915_gem_track_fb - update frontbuffer tracking
4974  * @old: current GEM buffer for the frontbuffer slots
4975  * @new: new GEM buffer for the frontbuffer slots
4976  * @frontbuffer_bits: bitmask of frontbuffer slots
4977  *
4978  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4979  * from @old and setting them in @new. Both @old and @new can be NULL.
4980  */
4981 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4982                        struct drm_i915_gem_object *new,
4983                        unsigned frontbuffer_bits)
4984 {
4985         /* Control of individual bits within the mask are guarded by
4986          * the owning plane->mutex, i.e. we can never see concurrent
4987          * manipulation of individual bits. But since the bitfield as a whole
4988          * is updated using RMW, we need to use atomics in order to update
4989          * the bits.
4990          */
4991         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4992                      sizeof(atomic_t) * BITS_PER_BYTE);
4993
4994         if (old) {
4995                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4996                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4997         }
4998
4999         if (new) {
5000                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5001                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5002         }
5003 }
5004
5005 /* Allocate a new GEM object and fill it with the supplied data */
5006 struct drm_i915_gem_object *
5007 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5008                                  const void *data, size_t size)
5009 {
5010         struct drm_i915_gem_object *obj;
5011         struct file *file;
5012         size_t offset;
5013         int err;
5014
5015         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5016         if (IS_ERR(obj))
5017                 return obj;
5018
5019         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5020
5021         file = obj->base.filp;
5022         offset = 0;
5023         do {
5024                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5025                 struct page *page;
5026                 void *pgdata, *vaddr;
5027
5028                 err = pagecache_write_begin(file, file->f_mapping,
5029                                             offset, len, 0,
5030                                             &page, &pgdata);
5031                 if (err < 0)
5032                         goto fail;
5033
5034                 vaddr = kmap(page);
5035                 memcpy(vaddr, data, len);
5036                 kunmap(page);
5037
5038                 err = pagecache_write_end(file, file->f_mapping,
5039                                           offset, len, len,
5040                                           page, pgdata);
5041                 if (err < 0)
5042                         goto fail;
5043
5044                 size -= len;
5045                 data += len;
5046                 offset += len;
5047         } while (size);
5048
5049         return obj;
5050
5051 fail:
5052         i915_gem_object_put(obj);
5053         return ERR_PTR(err);
5054 }
5055
5056 struct scatterlist *
5057 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5058                        unsigned int n,
5059                        unsigned int *offset)
5060 {
5061         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5062         struct scatterlist *sg;
5063         unsigned int idx, count;
5064
5065         might_sleep();
5066         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5067         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5068
5069         /* As we iterate forward through the sg, we record each entry in a
5070          * radixtree for quick repeated (backwards) lookups. If we have seen
5071          * this index previously, we will have an entry for it.
5072          *
5073          * Initial lookup is O(N), but this is amortized to O(1) for
5074          * sequential page access (where each new request is consecutive
5075          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5076          * i.e. O(1) with a large constant!
5077          */
5078         if (n < READ_ONCE(iter->sg_idx))
5079                 goto lookup;
5080
5081         mutex_lock(&iter->lock);
5082
5083         /* We prefer to reuse the last sg so that repeated lookup of this
5084          * (or the subsequent) sg are fast - comparing against the last
5085          * sg is faster than going through the radixtree.
5086          */
5087
5088         sg = iter->sg_pos;
5089         idx = iter->sg_idx;
5090         count = __sg_page_count(sg);
5091
5092         while (idx + count <= n) {
5093                 unsigned long exception, i;
5094                 int ret;
5095
5096                 /* If we cannot allocate and insert this entry, or the
5097                  * individual pages from this range, cancel updating the
5098                  * sg_idx so that on this lookup we are forced to linearly
5099                  * scan onwards, but on future lookups we will try the
5100                  * insertion again (in which case we need to be careful of
5101                  * the error return reporting that we have already inserted
5102                  * this index).
5103                  */
5104                 ret = radix_tree_insert(&iter->radix, idx, sg);
5105                 if (ret && ret != -EEXIST)
5106                         goto scan;
5107
5108                 exception =
5109                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5110                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5111                 for (i = 1; i < count; i++) {
5112                         ret = radix_tree_insert(&iter->radix, idx + i,
5113                                                 (void *)exception);
5114                         if (ret && ret != -EEXIST)
5115                                 goto scan;
5116                 }
5117
5118                 idx += count;
5119                 sg = ____sg_next(sg);
5120                 count = __sg_page_count(sg);
5121         }
5122
5123 scan:
5124         iter->sg_pos = sg;
5125         iter->sg_idx = idx;
5126
5127         mutex_unlock(&iter->lock);
5128
5129         if (unlikely(n < idx)) /* insertion completed by another thread */
5130                 goto lookup;
5131
5132         /* In case we failed to insert the entry into the radixtree, we need
5133          * to look beyond the current sg.
5134          */
5135         while (idx + count <= n) {
5136                 idx += count;
5137                 sg = ____sg_next(sg);
5138                 count = __sg_page_count(sg);
5139         }
5140
5141         *offset = n - idx;
5142         return sg;
5143
5144 lookup:
5145         rcu_read_lock();
5146
5147         sg = radix_tree_lookup(&iter->radix, n);
5148         GEM_BUG_ON(!sg);
5149
5150         /* If this index is in the middle of multi-page sg entry,
5151          * the radixtree will contain an exceptional entry that points
5152          * to the start of that range. We will return the pointer to
5153          * the base page and the offset of this page within the
5154          * sg entry's range.
5155          */
5156         *offset = 0;
5157         if (unlikely(radix_tree_exception(sg))) {
5158                 unsigned long base =
5159                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5160
5161                 sg = radix_tree_lookup(&iter->radix, base);
5162                 GEM_BUG_ON(!sg);
5163
5164                 *offset = n - base;
5165         }
5166
5167         rcu_read_unlock();
5168
5169         return sg;
5170 }
5171
5172 struct page *
5173 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5174 {
5175         struct scatterlist *sg;
5176         unsigned int offset;
5177
5178         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5179
5180         sg = i915_gem_object_get_sg(obj, n, &offset);
5181         return nth_page(sg_page(sg), offset);
5182 }
5183
5184 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5185 struct page *
5186 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5187                                unsigned int n)
5188 {
5189         struct page *page;
5190
5191         page = i915_gem_object_get_page(obj, n);
5192         if (!obj->mm.dirty)
5193                 set_page_dirty(page);
5194
5195         return page;
5196 }
5197
5198 dma_addr_t
5199 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5200                                 unsigned long n)
5201 {
5202         struct scatterlist *sg;
5203         unsigned int offset;
5204
5205         sg = i915_gem_object_get_sg(obj, n, &offset);
5206         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5207 }
5208
5209 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5210 #include "selftests/scatterlist.c"
5211 #include "selftests/mock_gem_device.c"
5212 #include "selftests/huge_gem_object.c"
5213 #include "selftests/i915_gem_object.c"
5214 #include "selftests/i915_gem_coherency.c"
5215 #endif