]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
dcd8d7b42552a2449024419d949ec3adcf350ed1
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67                                   enum i915_cache_level level)
68 {
69         return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75                 return true;
76
77         return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82         if (obj->tiling_mode)
83                 i915_gem_release_mmap(obj);
84
85         /* As we do not have an associated fence register, we will force
86          * a tiling change if we ever need to acquire one.
87          */
88         obj->fence_dirty = false;
89         obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94                                   size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count++;
98         dev_priv->mm.object_memory += size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103                                      size_t size)
104 {
105         spin_lock(&dev_priv->mm.object_stat_lock);
106         dev_priv->mm.object_count--;
107         dev_priv->mm.object_memory -= size;
108         spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114         int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117                    i915_terminally_wedged(error))
118         if (EXIT_COND)
119                 return 0;
120
121         /*
122          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123          * userspace. If it takes that long something really bad is going on and
124          * we should simply try to bail out and fail as gracefully as possible.
125          */
126         ret = wait_event_interruptible_timeout(error->reset_queue,
127                                                EXIT_COND,
128                                                10*HZ);
129         if (ret == 0) {
130                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131                 return -EIO;
132         } else if (ret < 0) {
133                 return ret;
134         }
135 #undef EXIT_COND
136
137         return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         int ret;
144
145         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146         if (ret)
147                 return ret;
148
149         ret = mutex_lock_interruptible(&dev->struct_mutex);
150         if (ret)
151                 return ret;
152
153         WARN_ON(i915_verify_lists(dev));
154         return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160         return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165                     struct drm_file *file)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168         struct drm_i915_gem_init *args = data;
169
170         if (drm_core_check_feature(dev, DRIVER_MODESET))
171                 return -ENODEV;
172
173         if (args->gtt_start >= args->gtt_end ||
174             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175                 return -EINVAL;
176
177         /* GEM with user mode setting was never supported on ilk and later. */
178         if (INTEL_INFO(dev)->gen >= 5)
179                 return -ENODEV;
180
181         mutex_lock(&dev->struct_mutex);
182         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183                                   args->gtt_end);
184         dev_priv->gtt.mappable_end = args->gtt_end;
185         mutex_unlock(&dev->struct_mutex);
186
187         return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192                             struct drm_file *file)
193 {
194         struct drm_i915_private *dev_priv = dev->dev_private;
195         struct drm_i915_gem_get_aperture *args = data;
196         struct drm_i915_gem_object *obj;
197         size_t pinned;
198
199         pinned = 0;
200         mutex_lock(&dev->struct_mutex);
201         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202                 if (i915_gem_obj_is_pinned(obj))
203                         pinned += i915_gem_obj_ggtt_size(obj);
204         mutex_unlock(&dev->struct_mutex);
205
206         args->aper_size = dev_priv->gtt.base.total;
207         args->aper_available_size = args->aper_size - pinned;
208
209         return 0;
210 }
211
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213 {
214         drm_dma_handle_t *phys = obj->phys_handle;
215
216         if (!phys)
217                 return;
218
219         if (obj->madv == I915_MADV_WILLNEED) {
220                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221                 char *vaddr = phys->vaddr;
222                 int i;
223
224                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225                         struct page *page = shmem_read_mapping_page(mapping, i);
226                         if (!IS_ERR(page)) {
227                                 char *dst = kmap_atomic(page);
228                                 memcpy(dst, vaddr, PAGE_SIZE);
229                                 drm_clflush_virt_range(dst, PAGE_SIZE);
230                                 kunmap_atomic(dst);
231
232                                 set_page_dirty(page);
233                                 mark_page_accessed(page);
234                                 page_cache_release(page);
235                         }
236                         vaddr += PAGE_SIZE;
237                 }
238                 i915_gem_chipset_flush(obj->base.dev);
239         }
240
241 #ifdef CONFIG_X86
242         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243 #endif
244         drm_pci_free(obj->base.dev, phys);
245         obj->phys_handle = NULL;
246 }
247
248 int
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250                             int align)
251 {
252         drm_dma_handle_t *phys;
253         struct address_space *mapping;
254         char *vaddr;
255         int i;
256
257         if (obj->phys_handle) {
258                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259                         return -EBUSY;
260
261                 return 0;
262         }
263
264         if (obj->madv != I915_MADV_WILLNEED)
265                 return -EFAULT;
266
267         if (obj->base.filp == NULL)
268                 return -EINVAL;
269
270         /* create a new object */
271         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272         if (!phys)
273                 return -ENOMEM;
274
275         vaddr = phys->vaddr;
276 #ifdef CONFIG_X86
277         set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278 #endif
279         mapping = file_inode(obj->base.filp)->i_mapping;
280         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281                 struct page *page;
282                 char *src;
283
284                 page = shmem_read_mapping_page(mapping, i);
285                 if (IS_ERR(page)) {
286 #ifdef CONFIG_X86
287                         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288 #endif
289                         drm_pci_free(obj->base.dev, phys);
290                         return PTR_ERR(page);
291                 }
292
293                 src = kmap_atomic(page);
294                 memcpy(vaddr, src, PAGE_SIZE);
295                 kunmap_atomic(src);
296
297                 mark_page_accessed(page);
298                 page_cache_release(page);
299
300                 vaddr += PAGE_SIZE;
301         }
302
303         obj->phys_handle = phys;
304         return 0;
305 }
306
307 static int
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309                      struct drm_i915_gem_pwrite *args,
310                      struct drm_file *file_priv)
311 {
312         struct drm_device *dev = obj->base.dev;
313         void *vaddr = obj->phys_handle->vaddr + args->offset;
314         char __user *user_data = to_user_ptr(args->data_ptr);
315
316         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317                 unsigned long unwritten;
318
319                 /* The physical object once assigned is fixed for the lifetime
320                  * of the obj, so we can safely drop the lock and continue
321                  * to access vaddr.
322                  */
323                 mutex_unlock(&dev->struct_mutex);
324                 unwritten = copy_from_user(vaddr, user_data, args->size);
325                 mutex_lock(&dev->struct_mutex);
326                 if (unwritten)
327                         return -EFAULT;
328         }
329
330         i915_gem_chipset_flush(dev);
331         return 0;
332 }
333
334 void *i915_gem_object_alloc(struct drm_device *dev)
335 {
336         struct drm_i915_private *dev_priv = dev->dev_private;
337         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 }
339
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
341 {
342         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343         kmem_cache_free(dev_priv->slab, obj);
344 }
345
346 static int
347 i915_gem_create(struct drm_file *file,
348                 struct drm_device *dev,
349                 uint64_t size,
350                 uint32_t *handle_p)
351 {
352         struct drm_i915_gem_object *obj;
353         int ret;
354         u32 handle;
355
356         size = roundup(size, PAGE_SIZE);
357         if (size == 0)
358                 return -EINVAL;
359
360         /* Allocate the new object */
361         obj = i915_gem_alloc_object(dev, size);
362         if (obj == NULL)
363                 return -ENOMEM;
364
365         ret = drm_gem_handle_create(file, &obj->base, &handle);
366         /* drop reference from allocate - handle holds it now */
367         drm_gem_object_unreference_unlocked(&obj->base);
368         if (ret)
369                 return ret;
370
371         *handle_p = handle;
372         return 0;
373 }
374
375 int
376 i915_gem_dumb_create(struct drm_file *file,
377                      struct drm_device *dev,
378                      struct drm_mode_create_dumb *args)
379 {
380         /* have to work out size/pitch and return them */
381         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382         args->size = args->pitch * args->height;
383         return i915_gem_create(file, dev,
384                                args->size, &args->handle);
385 }
386
387 /**
388  * Creates a new mm object and returns a handle to it.
389  */
390 int
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392                       struct drm_file *file)
393 {
394         struct drm_i915_gem_create *args = data;
395
396         return i915_gem_create(file, dev,
397                                args->size, &args->handle);
398 }
399
400 static inline int
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402                         const char *gpu_vaddr, int gpu_offset,
403                         int length)
404 {
405         int ret, cpu_offset = 0;
406
407         while (length > 0) {
408                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409                 int this_length = min(cacheline_end - gpu_offset, length);
410                 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413                                      gpu_vaddr + swizzled_gpu_offset,
414                                      this_length);
415                 if (ret)
416                         return ret + length;
417
418                 cpu_offset += this_length;
419                 gpu_offset += this_length;
420                 length -= this_length;
421         }
422
423         return 0;
424 }
425
426 static inline int
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428                           const char __user *cpu_vaddr,
429                           int length)
430 {
431         int ret, cpu_offset = 0;
432
433         while (length > 0) {
434                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435                 int this_length = min(cacheline_end - gpu_offset, length);
436                 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439                                        cpu_vaddr + cpu_offset,
440                                        this_length);
441                 if (ret)
442                         return ret + length;
443
444                 cpu_offset += this_length;
445                 gpu_offset += this_length;
446                 length -= this_length;
447         }
448
449         return 0;
450 }
451
452 /*
453  * Pins the specified object's pages and synchronizes the object with
454  * GPU accesses. Sets needs_clflush to non-zero if the caller should
455  * flush the object from the CPU cache.
456  */
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458                                     int *needs_clflush)
459 {
460         int ret;
461
462         *needs_clflush = 0;
463
464         if (!obj->base.filp)
465                 return -EINVAL;
466
467         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468                 /* If we're not in the cpu read domain, set ourself into the gtt
469                  * read domain and manually flush cachelines (if required). This
470                  * optimizes for the case when the gpu will dirty the data
471                  * anyway again before the next pread happens. */
472                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473                                                         obj->cache_level);
474                 ret = i915_gem_object_wait_rendering(obj, true);
475                 if (ret)
476                         return ret;
477
478                 i915_gem_object_retire(obj);
479         }
480
481         ret = i915_gem_object_get_pages(obj);
482         if (ret)
483                 return ret;
484
485         i915_gem_object_pin_pages(obj);
486
487         return ret;
488 }
489
490 /* Per-page copy function for the shmem pread fastpath.
491  * Flushes invalid cachelines before reading the target if
492  * needs_clflush is set. */
493 static int
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495                  char __user *user_data,
496                  bool page_do_bit17_swizzling, bool needs_clflush)
497 {
498         char *vaddr;
499         int ret;
500
501         if (unlikely(page_do_bit17_swizzling))
502                 return -EINVAL;
503
504         vaddr = kmap_atomic(page);
505         if (needs_clflush)
506                 drm_clflush_virt_range(vaddr + shmem_page_offset,
507                                        page_length);
508         ret = __copy_to_user_inatomic(user_data,
509                                       vaddr + shmem_page_offset,
510                                       page_length);
511         kunmap_atomic(vaddr);
512
513         return ret ? -EFAULT : 0;
514 }
515
516 static void
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
518                              bool swizzled)
519 {
520         if (unlikely(swizzled)) {
521                 unsigned long start = (unsigned long) addr;
522                 unsigned long end = (unsigned long) addr + length;
523
524                 /* For swizzling simply ensure that we always flush both
525                  * channels. Lame, but simple and it works. Swizzled
526                  * pwrite/pread is far from a hotpath - current userspace
527                  * doesn't use it at all. */
528                 start = round_down(start, 128);
529                 end = round_up(end, 128);
530
531                 drm_clflush_virt_range((void *)start, end - start);
532         } else {
533                 drm_clflush_virt_range(addr, length);
534         }
535
536 }
537
538 /* Only difference to the fast-path function is that this can handle bit17
539  * and uses non-atomic copy and kmap functions. */
540 static int
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542                  char __user *user_data,
543                  bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545         char *vaddr;
546         int ret;
547
548         vaddr = kmap(page);
549         if (needs_clflush)
550                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551                                              page_length,
552                                              page_do_bit17_swizzling);
553
554         if (page_do_bit17_swizzling)
555                 ret = __copy_to_user_swizzled(user_data,
556                                               vaddr, shmem_page_offset,
557                                               page_length);
558         else
559                 ret = __copy_to_user(user_data,
560                                      vaddr + shmem_page_offset,
561                                      page_length);
562         kunmap(page);
563
564         return ret ? - EFAULT : 0;
565 }
566
567 static int
568 i915_gem_shmem_pread(struct drm_device *dev,
569                      struct drm_i915_gem_object *obj,
570                      struct drm_i915_gem_pread *args,
571                      struct drm_file *file)
572 {
573         char __user *user_data;
574         ssize_t remain;
575         loff_t offset;
576         int shmem_page_offset, page_length, ret = 0;
577         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578         int prefaulted = 0;
579         int needs_clflush = 0;
580         struct sg_page_iter sg_iter;
581
582         user_data = to_user_ptr(args->data_ptr);
583         remain = args->size;
584
585         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586
587         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588         if (ret)
589                 return ret;
590
591         offset = args->offset;
592
593         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594                          offset >> PAGE_SHIFT) {
595                 struct page *page = sg_page_iter_page(&sg_iter);
596
597                 if (remain <= 0)
598                         break;
599
600                 /* Operation in this page
601                  *
602                  * shmem_page_offset = offset within page in shmem file
603                  * page_length = bytes to copy for this page
604                  */
605                 shmem_page_offset = offset_in_page(offset);
606                 page_length = remain;
607                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608                         page_length = PAGE_SIZE - shmem_page_offset;
609
610                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611                         (page_to_phys(page) & (1 << 17)) != 0;
612
613                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614                                        user_data, page_do_bit17_swizzling,
615                                        needs_clflush);
616                 if (ret == 0)
617                         goto next_page;
618
619                 mutex_unlock(&dev->struct_mutex);
620
621                 if (likely(!i915.prefault_disable) && !prefaulted) {
622                         ret = fault_in_multipages_writeable(user_data, remain);
623                         /* Userspace is tricking us, but we've already clobbered
624                          * its pages with the prefault and promised to write the
625                          * data up to the first fault. Hence ignore any errors
626                          * and just continue. */
627                         (void)ret;
628                         prefaulted = 1;
629                 }
630
631                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632                                        user_data, page_do_bit17_swizzling,
633                                        needs_clflush);
634
635                 mutex_lock(&dev->struct_mutex);
636
637                 if (ret)
638                         goto out;
639
640 next_page:
641                 remain -= page_length;
642                 user_data += page_length;
643                 offset += page_length;
644         }
645
646 out:
647         i915_gem_object_unpin_pages(obj);
648
649         return ret;
650 }
651
652 /**
653  * Reads data from the object referenced by handle.
654  *
655  * On error, the contents of *data are undefined.
656  */
657 int
658 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659                      struct drm_file *file)
660 {
661         struct drm_i915_gem_pread *args = data;
662         struct drm_i915_gem_object *obj;
663         int ret = 0;
664
665         if (args->size == 0)
666                 return 0;
667
668         if (!access_ok(VERIFY_WRITE,
669                        to_user_ptr(args->data_ptr),
670                        args->size))
671                 return -EFAULT;
672
673         ret = i915_mutex_lock_interruptible(dev);
674         if (ret)
675                 return ret;
676
677         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678         if (&obj->base == NULL) {
679                 ret = -ENOENT;
680                 goto unlock;
681         }
682
683         /* Bounds check source.  */
684         if (args->offset > obj->base.size ||
685             args->size > obj->base.size - args->offset) {
686                 ret = -EINVAL;
687                 goto out;
688         }
689
690         /* prime objects have no backing filp to GEM pread/pwrite
691          * pages from.
692          */
693         if (!obj->base.filp) {
694                 ret = -EINVAL;
695                 goto out;
696         }
697
698         trace_i915_gem_object_pread(obj, args->offset, args->size);
699
700         ret = i915_gem_shmem_pread(dev, obj, args, file);
701
702 out:
703         drm_gem_object_unreference(&obj->base);
704 unlock:
705         mutex_unlock(&dev->struct_mutex);
706         return ret;
707 }
708
709 /* This is the fast write path which cannot handle
710  * page faults in the source data
711  */
712
713 static inline int
714 fast_user_write(struct io_mapping *mapping,
715                 loff_t page_base, int page_offset,
716                 char __user *user_data,
717                 int length)
718 {
719         void __iomem *vaddr_atomic;
720         void *vaddr;
721         unsigned long unwritten;
722
723         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724         /* We can use the cpu mem copy function because this is X86. */
725         vaddr = (void __force*)vaddr_atomic + page_offset;
726         unwritten = __copy_from_user_inatomic_nocache(vaddr,
727                                                       user_data, length);
728         io_mapping_unmap_atomic(vaddr_atomic);
729         return unwritten;
730 }
731
732 /**
733  * This is the fast pwrite path, where we copy the data directly from the
734  * user into the GTT, uncached.
735  */
736 static int
737 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738                          struct drm_i915_gem_object *obj,
739                          struct drm_i915_gem_pwrite *args,
740                          struct drm_file *file)
741 {
742         struct drm_i915_private *dev_priv = dev->dev_private;
743         ssize_t remain;
744         loff_t offset, page_base;
745         char __user *user_data;
746         int page_offset, page_length, ret;
747
748         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
749         if (ret)
750                 goto out;
751
752         ret = i915_gem_object_set_to_gtt_domain(obj, true);
753         if (ret)
754                 goto out_unpin;
755
756         ret = i915_gem_object_put_fence(obj);
757         if (ret)
758                 goto out_unpin;
759
760         user_data = to_user_ptr(args->data_ptr);
761         remain = args->size;
762
763         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764
765         while (remain > 0) {
766                 /* Operation in this page
767                  *
768                  * page_base = page offset within aperture
769                  * page_offset = offset within page
770                  * page_length = bytes to copy for this page
771                  */
772                 page_base = offset & PAGE_MASK;
773                 page_offset = offset_in_page(offset);
774                 page_length = remain;
775                 if ((page_offset + remain) > PAGE_SIZE)
776                         page_length = PAGE_SIZE - page_offset;
777
778                 /* If we get a fault while copying data, then (presumably) our
779                  * source page isn't available.  Return the error and we'll
780                  * retry in the slow path.
781                  */
782                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
783                                     page_offset, user_data, page_length)) {
784                         ret = -EFAULT;
785                         goto out_unpin;
786                 }
787
788                 remain -= page_length;
789                 user_data += page_length;
790                 offset += page_length;
791         }
792
793 out_unpin:
794         i915_gem_object_ggtt_unpin(obj);
795 out:
796         return ret;
797 }
798
799 /* Per-page copy function for the shmem pwrite fastpath.
800  * Flushes invalid cachelines before writing to the target if
801  * needs_clflush_before is set and flushes out any written cachelines after
802  * writing if needs_clflush is set. */
803 static int
804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805                   char __user *user_data,
806                   bool page_do_bit17_swizzling,
807                   bool needs_clflush_before,
808                   bool needs_clflush_after)
809 {
810         char *vaddr;
811         int ret;
812
813         if (unlikely(page_do_bit17_swizzling))
814                 return -EINVAL;
815
816         vaddr = kmap_atomic(page);
817         if (needs_clflush_before)
818                 drm_clflush_virt_range(vaddr + shmem_page_offset,
819                                        page_length);
820         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821                                         user_data, page_length);
822         if (needs_clflush_after)
823                 drm_clflush_virt_range(vaddr + shmem_page_offset,
824                                        page_length);
825         kunmap_atomic(vaddr);
826
827         return ret ? -EFAULT : 0;
828 }
829
830 /* Only difference to the fast-path function is that this can handle bit17
831  * and uses non-atomic copy and kmap functions. */
832 static int
833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834                   char __user *user_data,
835                   bool page_do_bit17_swizzling,
836                   bool needs_clflush_before,
837                   bool needs_clflush_after)
838 {
839         char *vaddr;
840         int ret;
841
842         vaddr = kmap(page);
843         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845                                              page_length,
846                                              page_do_bit17_swizzling);
847         if (page_do_bit17_swizzling)
848                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849                                                 user_data,
850                                                 page_length);
851         else
852                 ret = __copy_from_user(vaddr + shmem_page_offset,
853                                        user_data,
854                                        page_length);
855         if (needs_clflush_after)
856                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857                                              page_length,
858                                              page_do_bit17_swizzling);
859         kunmap(page);
860
861         return ret ? -EFAULT : 0;
862 }
863
864 static int
865 i915_gem_shmem_pwrite(struct drm_device *dev,
866                       struct drm_i915_gem_object *obj,
867                       struct drm_i915_gem_pwrite *args,
868                       struct drm_file *file)
869 {
870         ssize_t remain;
871         loff_t offset;
872         char __user *user_data;
873         int shmem_page_offset, page_length, ret = 0;
874         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875         int hit_slowpath = 0;
876         int needs_clflush_after = 0;
877         int needs_clflush_before = 0;
878         struct sg_page_iter sg_iter;
879
880         user_data = to_user_ptr(args->data_ptr);
881         remain = args->size;
882
883         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884
885         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886                 /* If we're not in the cpu write domain, set ourself into the gtt
887                  * write domain and manually flush cachelines (if required). This
888                  * optimizes for the case when the gpu will use the data
889                  * right away and we therefore have to clflush anyway. */
890                 needs_clflush_after = cpu_write_needs_clflush(obj);
891                 ret = i915_gem_object_wait_rendering(obj, false);
892                 if (ret)
893                         return ret;
894
895                 i915_gem_object_retire(obj);
896         }
897         /* Same trick applies to invalidate partially written cachelines read
898          * before writing. */
899         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900                 needs_clflush_before =
901                         !cpu_cache_is_coherent(dev, obj->cache_level);
902
903         ret = i915_gem_object_get_pages(obj);
904         if (ret)
905                 return ret;
906
907         i915_gem_object_pin_pages(obj);
908
909         offset = args->offset;
910         obj->dirty = 1;
911
912         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913                          offset >> PAGE_SHIFT) {
914                 struct page *page = sg_page_iter_page(&sg_iter);
915                 int partial_cacheline_write;
916
917                 if (remain <= 0)
918                         break;
919
920                 /* Operation in this page
921                  *
922                  * shmem_page_offset = offset within page in shmem file
923                  * page_length = bytes to copy for this page
924                  */
925                 shmem_page_offset = offset_in_page(offset);
926
927                 page_length = remain;
928                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929                         page_length = PAGE_SIZE - shmem_page_offset;
930
931                 /* If we don't overwrite a cacheline completely we need to be
932                  * careful to have up-to-date data by first clflushing. Don't
933                  * overcomplicate things and flush the entire patch. */
934                 partial_cacheline_write = needs_clflush_before &&
935                         ((shmem_page_offset | page_length)
936                                 & (boot_cpu_data.x86_clflush_size - 1));
937
938                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939                         (page_to_phys(page) & (1 << 17)) != 0;
940
941                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942                                         user_data, page_do_bit17_swizzling,
943                                         partial_cacheline_write,
944                                         needs_clflush_after);
945                 if (ret == 0)
946                         goto next_page;
947
948                 hit_slowpath = 1;
949                 mutex_unlock(&dev->struct_mutex);
950                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951                                         user_data, page_do_bit17_swizzling,
952                                         partial_cacheline_write,
953                                         needs_clflush_after);
954
955                 mutex_lock(&dev->struct_mutex);
956
957                 if (ret)
958                         goto out;
959
960 next_page:
961                 remain -= page_length;
962                 user_data += page_length;
963                 offset += page_length;
964         }
965
966 out:
967         i915_gem_object_unpin_pages(obj);
968
969         if (hit_slowpath) {
970                 /*
971                  * Fixup: Flush cpu caches in case we didn't flush the dirty
972                  * cachelines in-line while writing and the object moved
973                  * out of the cpu write domain while we've dropped the lock.
974                  */
975                 if (!needs_clflush_after &&
976                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977                         if (i915_gem_clflush_object(obj, obj->pin_display))
978                                 i915_gem_chipset_flush(dev);
979                 }
980         }
981
982         if (needs_clflush_after)
983                 i915_gem_chipset_flush(dev);
984
985         return ret;
986 }
987
988 /**
989  * Writes data to the object referenced by handle.
990  *
991  * On error, the contents of the buffer that were to be modified are undefined.
992  */
993 int
994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995                       struct drm_file *file)
996 {
997         struct drm_i915_gem_pwrite *args = data;
998         struct drm_i915_gem_object *obj;
999         int ret;
1000
1001         if (args->size == 0)
1002                 return 0;
1003
1004         if (!access_ok(VERIFY_READ,
1005                        to_user_ptr(args->data_ptr),
1006                        args->size))
1007                 return -EFAULT;
1008
1009         if (likely(!i915.prefault_disable)) {
1010                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011                                                    args->size);
1012                 if (ret)
1013                         return -EFAULT;
1014         }
1015
1016         ret = i915_mutex_lock_interruptible(dev);
1017         if (ret)
1018                 return ret;
1019
1020         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021         if (&obj->base == NULL) {
1022                 ret = -ENOENT;
1023                 goto unlock;
1024         }
1025
1026         /* Bounds check destination. */
1027         if (args->offset > obj->base.size ||
1028             args->size > obj->base.size - args->offset) {
1029                 ret = -EINVAL;
1030                 goto out;
1031         }
1032
1033         /* prime objects have no backing filp to GEM pread/pwrite
1034          * pages from.
1035          */
1036         if (!obj->base.filp) {
1037                 ret = -EINVAL;
1038                 goto out;
1039         }
1040
1041         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
1043         ret = -EFAULT;
1044         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045          * it would end up going through the fenced access, and we'll get
1046          * different detiling behavior between reading and writing.
1047          * pread/pwrite currently are reading and writing from the CPU
1048          * perspective, requiring manual detiling by the client.
1049          */
1050         if (obj->phys_handle) {
1051                 ret = i915_gem_phys_pwrite(obj, args, file);
1052                 goto out;
1053         }
1054
1055         if (obj->tiling_mode == I915_TILING_NONE &&
1056             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057             cpu_write_needs_clflush(obj)) {
1058                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059                 /* Note that the gtt paths might fail with non-page-backed user
1060                  * pointers (e.g. gtt mappings when moving data between
1061                  * textures). Fallback to the shmem path in that case. */
1062         }
1063
1064         if (ret == -EFAULT || ret == -ENOSPC)
1065                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066
1067 out:
1068         drm_gem_object_unreference(&obj->base);
1069 unlock:
1070         mutex_unlock(&dev->struct_mutex);
1071         return ret;
1072 }
1073
1074 int
1075 i915_gem_check_wedge(struct i915_gpu_error *error,
1076                      bool interruptible)
1077 {
1078         if (i915_reset_in_progress(error)) {
1079                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080                  * -EIO unconditionally for these. */
1081                 if (!interruptible)
1082                         return -EIO;
1083
1084                 /* Recovery complete, but the reset failed ... */
1085                 if (i915_terminally_wedged(error))
1086                         return -EIO;
1087
1088                 return -EAGAIN;
1089         }
1090
1091         return 0;
1092 }
1093
1094 /*
1095  * Compare seqno against outstanding lazy request. Emit a request if they are
1096  * equal.
1097  */
1098 int
1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1100 {
1101         int ret;
1102
1103         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105         ret = 0;
1106         if (seqno == ring->outstanding_lazy_seqno)
1107                 ret = i915_add_request(ring, NULL);
1108
1109         return ret;
1110 }
1111
1112 static void fake_irq(unsigned long data)
1113 {
1114         wake_up_process((struct task_struct *)data);
1115 }
1116
1117 static bool missed_irq(struct drm_i915_private *dev_priv,
1118                        struct intel_engine_cs *ring)
1119 {
1120         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121 }
1122
1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124 {
1125         if (file_priv == NULL)
1126                 return true;
1127
1128         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129 }
1130
1131 /**
1132  * __wait_seqno - wait until execution of seqno has finished
1133  * @ring: the ring expected to report seqno
1134  * @seqno: duh!
1135  * @reset_counter: reset sequence associated with the given seqno
1136  * @interruptible: do an interruptible wait (normally yes)
1137  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138  *
1139  * Note: It is of utmost importance that the passed in seqno and reset_counter
1140  * values have been read by the caller in an smp safe manner. Where read-side
1141  * locks are involved, it is sufficient to read the reset_counter before
1142  * unlocking the lock that protects the seqno. For lockless tricks, the
1143  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144  * inserted.
1145  *
1146  * Returns 0 if the seqno was found within the alloted time. Else returns the
1147  * errno with remaining time filled in timeout argument.
1148  */
1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150                         unsigned reset_counter,
1151                         bool interruptible,
1152                         struct timespec *timeout,
1153                         struct drm_i915_file_private *file_priv)
1154 {
1155         struct drm_device *dev = ring->dev;
1156         struct drm_i915_private *dev_priv = dev->dev_private;
1157         const bool irq_test_in_progress =
1158                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159         struct timespec before, now;
1160         DEFINE_WAIT(wait);
1161         unsigned long timeout_expire;
1162         int ret;
1163
1164         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1165
1166         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167                 return 0;
1168
1169         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1170
1171         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1172                 gen6_rps_boost(dev_priv);
1173                 if (file_priv)
1174                         mod_delayed_work(dev_priv->wq,
1175                                          &file_priv->mm.idle_work,
1176                                          msecs_to_jiffies(100));
1177         }
1178
1179         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180                 return -ENODEV;
1181
1182         /* Record current time in case interrupted by signal, or wedged */
1183         trace_i915_gem_request_wait_begin(ring, seqno);
1184         getrawmonotonic(&before);
1185         for (;;) {
1186                 struct timer_list timer;
1187
1188                 prepare_to_wait(&ring->irq_queue, &wait,
1189                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1190
1191                 /* We need to check whether any gpu reset happened in between
1192                  * the caller grabbing the seqno and now ... */
1193                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195                          * is truely gone. */
1196                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197                         if (ret == 0)
1198                                 ret = -EAGAIN;
1199                         break;
1200                 }
1201
1202                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203                         ret = 0;
1204                         break;
1205                 }
1206
1207                 if (interruptible && signal_pending(current)) {
1208                         ret = -ERESTARTSYS;
1209                         break;
1210                 }
1211
1212                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213                         ret = -ETIME;
1214                         break;
1215                 }
1216
1217                 timer.function = NULL;
1218                 if (timeout || missed_irq(dev_priv, ring)) {
1219                         unsigned long expire;
1220
1221                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223                         mod_timer(&timer, expire);
1224                 }
1225
1226                 io_schedule();
1227
1228                 if (timer.function) {
1229                         del_singleshot_timer_sync(&timer);
1230                         destroy_timer_on_stack(&timer);
1231                 }
1232         }
1233         getrawmonotonic(&now);
1234         trace_i915_gem_request_wait_end(ring, seqno);
1235
1236         if (!irq_test_in_progress)
1237                 ring->irq_put(ring);
1238
1239         finish_wait(&ring->irq_queue, &wait);
1240
1241         if (timeout) {
1242                 struct timespec sleep_time = timespec_sub(now, before);
1243                 *timeout = timespec_sub(*timeout, sleep_time);
1244                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245                         set_normalized_timespec(timeout, 0, 0);
1246         }
1247
1248         return ret;
1249 }
1250
1251 /**
1252  * Waits for a sequence number to be signaled, and cleans up the
1253  * request and object lists appropriately for that event.
1254  */
1255 int
1256 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1257 {
1258         struct drm_device *dev = ring->dev;
1259         struct drm_i915_private *dev_priv = dev->dev_private;
1260         bool interruptible = dev_priv->mm.interruptible;
1261         int ret;
1262
1263         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264         BUG_ON(seqno == 0);
1265
1266         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1267         if (ret)
1268                 return ret;
1269
1270         ret = i915_gem_check_olr(ring, seqno);
1271         if (ret)
1272                 return ret;
1273
1274         return __wait_seqno(ring, seqno,
1275                             atomic_read(&dev_priv->gpu_error.reset_counter),
1276                             interruptible, NULL, NULL);
1277 }
1278
1279 static int
1280 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1281                                      struct intel_engine_cs *ring)
1282 {
1283         if (!obj->active)
1284                 return 0;
1285
1286         /* Manually manage the write flush as we may have not yet
1287          * retired the buffer.
1288          *
1289          * Note that the last_write_seqno is always the earlier of
1290          * the two (read/write) seqno, so if we haved successfully waited,
1291          * we know we have passed the last write.
1292          */
1293         obj->last_write_seqno = 0;
1294
1295         return 0;
1296 }
1297
1298 /**
1299  * Ensures that all rendering to the object has completed and the object is
1300  * safe to unbind from the GTT or access from the CPU.
1301  */
1302 static __must_check int
1303 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304                                bool readonly)
1305 {
1306         struct intel_engine_cs *ring = obj->ring;
1307         u32 seqno;
1308         int ret;
1309
1310         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311         if (seqno == 0)
1312                 return 0;
1313
1314         ret = i915_wait_seqno(ring, seqno);
1315         if (ret)
1316                 return ret;
1317
1318         return i915_gem_object_wait_rendering__tail(obj, ring);
1319 }
1320
1321 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1322  * as the object state may change during this call.
1323  */
1324 static __must_check int
1325 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1326                                             struct drm_i915_file_private *file_priv,
1327                                             bool readonly)
1328 {
1329         struct drm_device *dev = obj->base.dev;
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331         struct intel_engine_cs *ring = obj->ring;
1332         unsigned reset_counter;
1333         u32 seqno;
1334         int ret;
1335
1336         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337         BUG_ON(!dev_priv->mm.interruptible);
1338
1339         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340         if (seqno == 0)
1341                 return 0;
1342
1343         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1344         if (ret)
1345                 return ret;
1346
1347         ret = i915_gem_check_olr(ring, seqno);
1348         if (ret)
1349                 return ret;
1350
1351         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352         mutex_unlock(&dev->struct_mutex);
1353         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1354         mutex_lock(&dev->struct_mutex);
1355         if (ret)
1356                 return ret;
1357
1358         return i915_gem_object_wait_rendering__tail(obj, ring);
1359 }
1360
1361 /**
1362  * Called when user space prepares to use an object with the CPU, either
1363  * through the mmap ioctl's mapping or a GTT mapping.
1364  */
1365 int
1366 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1367                           struct drm_file *file)
1368 {
1369         struct drm_i915_gem_set_domain *args = data;
1370         struct drm_i915_gem_object *obj;
1371         uint32_t read_domains = args->read_domains;
1372         uint32_t write_domain = args->write_domain;
1373         int ret;
1374
1375         /* Only handle setting domains to types used by the CPU. */
1376         if (write_domain & I915_GEM_GPU_DOMAINS)
1377                 return -EINVAL;
1378
1379         if (read_domains & I915_GEM_GPU_DOMAINS)
1380                 return -EINVAL;
1381
1382         /* Having something in the write domain implies it's in the read
1383          * domain, and only that read domain.  Enforce that in the request.
1384          */
1385         if (write_domain != 0 && read_domains != write_domain)
1386                 return -EINVAL;
1387
1388         ret = i915_mutex_lock_interruptible(dev);
1389         if (ret)
1390                 return ret;
1391
1392         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1393         if (&obj->base == NULL) {
1394                 ret = -ENOENT;
1395                 goto unlock;
1396         }
1397
1398         /* Try to flush the object off the GPU without holding the lock.
1399          * We will repeat the flush holding the lock in the normal manner
1400          * to catch cases where we are gazumped.
1401          */
1402         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1403                                                           file->driver_priv,
1404                                                           !write_domain);
1405         if (ret)
1406                 goto unref;
1407
1408         if (read_domains & I915_GEM_DOMAIN_GTT) {
1409                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1410
1411                 /* Silently promote "you're not bound, there was nothing to do"
1412                  * to success, since the client was just asking us to
1413                  * make sure everything was done.
1414                  */
1415                 if (ret == -EINVAL)
1416                         ret = 0;
1417         } else {
1418                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1419         }
1420
1421 unref:
1422         drm_gem_object_unreference(&obj->base);
1423 unlock:
1424         mutex_unlock(&dev->struct_mutex);
1425         return ret;
1426 }
1427
1428 /**
1429  * Called when user space has done writes to this buffer
1430  */
1431 int
1432 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1433                          struct drm_file *file)
1434 {
1435         struct drm_i915_gem_sw_finish *args = data;
1436         struct drm_i915_gem_object *obj;
1437         int ret = 0;
1438
1439         ret = i915_mutex_lock_interruptible(dev);
1440         if (ret)
1441                 return ret;
1442
1443         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1444         if (&obj->base == NULL) {
1445                 ret = -ENOENT;
1446                 goto unlock;
1447         }
1448
1449         /* Pinned buffers may be scanout, so flush the cache */
1450         if (obj->pin_display)
1451                 i915_gem_object_flush_cpu_write_domain(obj, true);
1452
1453         drm_gem_object_unreference(&obj->base);
1454 unlock:
1455         mutex_unlock(&dev->struct_mutex);
1456         return ret;
1457 }
1458
1459 /**
1460  * Maps the contents of an object, returning the address it is mapped
1461  * into.
1462  *
1463  * While the mapping holds a reference on the contents of the object, it doesn't
1464  * imply a ref on the object itself.
1465  */
1466 int
1467 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1468                     struct drm_file *file)
1469 {
1470         struct drm_i915_gem_mmap *args = data;
1471         struct drm_gem_object *obj;
1472         unsigned long addr;
1473
1474         obj = drm_gem_object_lookup(dev, file, args->handle);
1475         if (obj == NULL)
1476                 return -ENOENT;
1477
1478         /* prime objects have no backing filp to GEM mmap
1479          * pages from.
1480          */
1481         if (!obj->filp) {
1482                 drm_gem_object_unreference_unlocked(obj);
1483                 return -EINVAL;
1484         }
1485
1486         addr = vm_mmap(obj->filp, 0, args->size,
1487                        PROT_READ | PROT_WRITE, MAP_SHARED,
1488                        args->offset);
1489         drm_gem_object_unreference_unlocked(obj);
1490         if (IS_ERR((void *)addr))
1491                 return addr;
1492
1493         args->addr_ptr = (uint64_t) addr;
1494
1495         return 0;
1496 }
1497
1498 /**
1499  * i915_gem_fault - fault a page into the GTT
1500  * vma: VMA in question
1501  * vmf: fault info
1502  *
1503  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1504  * from userspace.  The fault handler takes care of binding the object to
1505  * the GTT (if needed), allocating and programming a fence register (again,
1506  * only if needed based on whether the old reg is still valid or the object
1507  * is tiled) and inserting a new PTE into the faulting process.
1508  *
1509  * Note that the faulting process may involve evicting existing objects
1510  * from the GTT and/or fence registers to make room.  So performance may
1511  * suffer if the GTT working set is large or there are few fence registers
1512  * left.
1513  */
1514 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1515 {
1516         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1517         struct drm_device *dev = obj->base.dev;
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519         pgoff_t page_offset;
1520         unsigned long pfn;
1521         int ret = 0;
1522         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1523
1524         intel_runtime_pm_get(dev_priv);
1525
1526         /* We don't use vmf->pgoff since that has the fake offset */
1527         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1528                 PAGE_SHIFT;
1529
1530         ret = i915_mutex_lock_interruptible(dev);
1531         if (ret)
1532                 goto out;
1533
1534         trace_i915_gem_object_fault(obj, page_offset, true, write);
1535
1536         /* Try to flush the object off the GPU first without holding the lock.
1537          * Upon reacquiring the lock, we will perform our sanity checks and then
1538          * repeat the flush holding the lock in the normal manner to catch cases
1539          * where we are gazumped.
1540          */
1541         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1542         if (ret)
1543                 goto unlock;
1544
1545         /* Access to snoopable pages through the GTT is incoherent. */
1546         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1547                 ret = -EFAULT;
1548                 goto unlock;
1549         }
1550
1551         /* Now bind it into the GTT if needed */
1552         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1553         if (ret)
1554                 goto unlock;
1555
1556         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1557         if (ret)
1558                 goto unpin;
1559
1560         ret = i915_gem_object_get_fence(obj);
1561         if (ret)
1562                 goto unpin;
1563
1564         /* Finally, remap it using the new GTT offset */
1565         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1566         pfn >>= PAGE_SHIFT;
1567
1568         if (!obj->fault_mappable) {
1569                 unsigned long size = min_t(unsigned long,
1570                                            vma->vm_end - vma->vm_start,
1571                                            obj->base.size);
1572                 int i;
1573
1574                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1575                         ret = vm_insert_pfn(vma,
1576                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1577                                             pfn + i);
1578                         if (ret)
1579                                 break;
1580                 }
1581
1582                 obj->fault_mappable = true;
1583         } else
1584                 ret = vm_insert_pfn(vma,
1585                                     (unsigned long)vmf->virtual_address,
1586                                     pfn + page_offset);
1587 unpin:
1588         i915_gem_object_ggtt_unpin(obj);
1589 unlock:
1590         mutex_unlock(&dev->struct_mutex);
1591 out:
1592         switch (ret) {
1593         case -EIO:
1594                 /* If this -EIO is due to a gpu hang, give the reset code a
1595                  * chance to clean up the mess. Otherwise return the proper
1596                  * SIGBUS. */
1597                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1598                         ret = VM_FAULT_SIGBUS;
1599                         break;
1600                 }
1601         case -EAGAIN:
1602                 /*
1603                  * EAGAIN means the gpu is hung and we'll wait for the error
1604                  * handler to reset everything when re-faulting in
1605                  * i915_mutex_lock_interruptible.
1606                  */
1607         case 0:
1608         case -ERESTARTSYS:
1609         case -EINTR:
1610         case -EBUSY:
1611                 /*
1612                  * EBUSY is ok: this just means that another thread
1613                  * already did the job.
1614                  */
1615                 ret = VM_FAULT_NOPAGE;
1616                 break;
1617         case -ENOMEM:
1618                 ret = VM_FAULT_OOM;
1619                 break;
1620         case -ENOSPC:
1621         case -EFAULT:
1622                 ret = VM_FAULT_SIGBUS;
1623                 break;
1624         default:
1625                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1626                 ret = VM_FAULT_SIGBUS;
1627                 break;
1628         }
1629
1630         intel_runtime_pm_put(dev_priv);
1631         return ret;
1632 }
1633
1634 /**
1635  * i915_gem_release_mmap - remove physical page mappings
1636  * @obj: obj in question
1637  *
1638  * Preserve the reservation of the mmapping with the DRM core code, but
1639  * relinquish ownership of the pages back to the system.
1640  *
1641  * It is vital that we remove the page mapping if we have mapped a tiled
1642  * object through the GTT and then lose the fence register due to
1643  * resource pressure. Similarly if the object has been moved out of the
1644  * aperture, than pages mapped into userspace must be revoked. Removing the
1645  * mapping will then trigger a page fault on the next user access, allowing
1646  * fixup by i915_gem_fault().
1647  */
1648 void
1649 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1650 {
1651         if (!obj->fault_mappable)
1652                 return;
1653
1654         drm_vma_node_unmap(&obj->base.vma_node,
1655                            obj->base.dev->anon_inode->i_mapping);
1656         obj->fault_mappable = false;
1657 }
1658
1659 void
1660 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1661 {
1662         struct drm_i915_gem_object *obj;
1663
1664         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1665                 i915_gem_release_mmap(obj);
1666 }
1667
1668 uint32_t
1669 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1670 {
1671         uint32_t gtt_size;
1672
1673         if (INTEL_INFO(dev)->gen >= 4 ||
1674             tiling_mode == I915_TILING_NONE)
1675                 return size;
1676
1677         /* Previous chips need a power-of-two fence region when tiling */
1678         if (INTEL_INFO(dev)->gen == 3)
1679                 gtt_size = 1024*1024;
1680         else
1681                 gtt_size = 512*1024;
1682
1683         while (gtt_size < size)
1684                 gtt_size <<= 1;
1685
1686         return gtt_size;
1687 }
1688
1689 /**
1690  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1691  * @obj: object to check
1692  *
1693  * Return the required GTT alignment for an object, taking into account
1694  * potential fence register mapping.
1695  */
1696 uint32_t
1697 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1698                            int tiling_mode, bool fenced)
1699 {
1700         /*
1701          * Minimum alignment is 4k (GTT page size), but might be greater
1702          * if a fence register is needed for the object.
1703          */
1704         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1705             tiling_mode == I915_TILING_NONE)
1706                 return 4096;
1707
1708         /*
1709          * Previous chips need to be aligned to the size of the smallest
1710          * fence register that can contain the object.
1711          */
1712         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1713 }
1714
1715 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1716 {
1717         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1718         int ret;
1719
1720         if (drm_vma_node_has_offset(&obj->base.vma_node))
1721                 return 0;
1722
1723         dev_priv->mm.shrinker_no_lock_stealing = true;
1724
1725         ret = drm_gem_create_mmap_offset(&obj->base);
1726         if (ret != -ENOSPC)
1727                 goto out;
1728
1729         /* Badly fragmented mmap space? The only way we can recover
1730          * space is by destroying unwanted objects. We can't randomly release
1731          * mmap_offsets as userspace expects them to be persistent for the
1732          * lifetime of the objects. The closest we can is to release the
1733          * offsets on purgeable objects by truncating it and marking it purged,
1734          * which prevents userspace from ever using that object again.
1735          */
1736         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1737         ret = drm_gem_create_mmap_offset(&obj->base);
1738         if (ret != -ENOSPC)
1739                 goto out;
1740
1741         i915_gem_shrink_all(dev_priv);
1742         ret = drm_gem_create_mmap_offset(&obj->base);
1743 out:
1744         dev_priv->mm.shrinker_no_lock_stealing = false;
1745
1746         return ret;
1747 }
1748
1749 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1750 {
1751         drm_gem_free_mmap_offset(&obj->base);
1752 }
1753
1754 int
1755 i915_gem_mmap_gtt(struct drm_file *file,
1756                   struct drm_device *dev,
1757                   uint32_t handle,
1758                   uint64_t *offset)
1759 {
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         struct drm_i915_gem_object *obj;
1762         int ret;
1763
1764         ret = i915_mutex_lock_interruptible(dev);
1765         if (ret)
1766                 return ret;
1767
1768         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1769         if (&obj->base == NULL) {
1770                 ret = -ENOENT;
1771                 goto unlock;
1772         }
1773
1774         if (obj->base.size > dev_priv->gtt.mappable_end) {
1775                 ret = -E2BIG;
1776                 goto out;
1777         }
1778
1779         if (obj->madv != I915_MADV_WILLNEED) {
1780                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1781                 ret = -EFAULT;
1782                 goto out;
1783         }
1784
1785         ret = i915_gem_object_create_mmap_offset(obj);
1786         if (ret)
1787                 goto out;
1788
1789         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1790
1791 out:
1792         drm_gem_object_unreference(&obj->base);
1793 unlock:
1794         mutex_unlock(&dev->struct_mutex);
1795         return ret;
1796 }
1797
1798 /**
1799  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1800  * @dev: DRM device
1801  * @data: GTT mapping ioctl data
1802  * @file: GEM object info
1803  *
1804  * Simply returns the fake offset to userspace so it can mmap it.
1805  * The mmap call will end up in drm_gem_mmap(), which will set things
1806  * up so we can get faults in the handler above.
1807  *
1808  * The fault handler will take care of binding the object into the GTT
1809  * (since it may have been evicted to make room for something), allocating
1810  * a fence register, and mapping the appropriate aperture address into
1811  * userspace.
1812  */
1813 int
1814 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1815                         struct drm_file *file)
1816 {
1817         struct drm_i915_gem_mmap_gtt *args = data;
1818
1819         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1820 }
1821
1822 static inline int
1823 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1824 {
1825         return obj->madv == I915_MADV_DONTNEED;
1826 }
1827
1828 /* Immediately discard the backing storage */
1829 static void
1830 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1831 {
1832         i915_gem_object_free_mmap_offset(obj);
1833
1834         if (obj->base.filp == NULL)
1835                 return;
1836
1837         /* Our goal here is to return as much of the memory as
1838          * is possible back to the system as we are called from OOM.
1839          * To do this we must instruct the shmfs to drop all of its
1840          * backing pages, *now*.
1841          */
1842         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1843         obj->madv = __I915_MADV_PURGED;
1844 }
1845
1846 /* Try to discard unwanted pages */
1847 static void
1848 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1849 {
1850         struct address_space *mapping;
1851
1852         switch (obj->madv) {
1853         case I915_MADV_DONTNEED:
1854                 i915_gem_object_truncate(obj);
1855         case __I915_MADV_PURGED:
1856                 return;
1857         }
1858
1859         if (obj->base.filp == NULL)
1860                 return;
1861
1862         mapping = file_inode(obj->base.filp)->i_mapping,
1863         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1864 }
1865
1866 static void
1867 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1868 {
1869         struct sg_page_iter sg_iter;
1870         int ret;
1871
1872         BUG_ON(obj->madv == __I915_MADV_PURGED);
1873
1874         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1875         if (ret) {
1876                 /* In the event of a disaster, abandon all caches and
1877                  * hope for the best.
1878                  */
1879                 WARN_ON(ret != -EIO);
1880                 i915_gem_clflush_object(obj, true);
1881                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1882         }
1883
1884         if (i915_gem_object_needs_bit17_swizzle(obj))
1885                 i915_gem_object_save_bit_17_swizzle(obj);
1886
1887         if (obj->madv == I915_MADV_DONTNEED)
1888                 obj->dirty = 0;
1889
1890         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1891                 struct page *page = sg_page_iter_page(&sg_iter);
1892
1893                 if (obj->dirty)
1894                         set_page_dirty(page);
1895
1896                 if (obj->madv == I915_MADV_WILLNEED)
1897                         mark_page_accessed(page);
1898
1899                 page_cache_release(page);
1900         }
1901         obj->dirty = 0;
1902
1903         sg_free_table(obj->pages);
1904         kfree(obj->pages);
1905 }
1906
1907 int
1908 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1909 {
1910         const struct drm_i915_gem_object_ops *ops = obj->ops;
1911
1912         if (obj->pages == NULL)
1913                 return 0;
1914
1915         if (obj->pages_pin_count)
1916                 return -EBUSY;
1917
1918         BUG_ON(i915_gem_obj_bound_any(obj));
1919
1920         /* ->put_pages might need to allocate memory for the bit17 swizzle
1921          * array, hence protect them from being reaped by removing them from gtt
1922          * lists early. */
1923         list_del(&obj->global_list);
1924
1925         ops->put_pages(obj);
1926         obj->pages = NULL;
1927
1928         i915_gem_object_invalidate(obj);
1929
1930         return 0;
1931 }
1932
1933 static unsigned long
1934 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1935                   bool purgeable_only)
1936 {
1937         struct list_head still_in_list;
1938         struct drm_i915_gem_object *obj;
1939         unsigned long count = 0;
1940
1941         /*
1942          * As we may completely rewrite the (un)bound list whilst unbinding
1943          * (due to retiring requests) we have to strictly process only
1944          * one element of the list at the time, and recheck the list
1945          * on every iteration.
1946          *
1947          * In particular, we must hold a reference whilst removing the
1948          * object as we may end up waiting for and/or retiring the objects.
1949          * This might release the final reference (held by the active list)
1950          * and result in the object being freed from under us. This is
1951          * similar to the precautions the eviction code must take whilst
1952          * removing objects.
1953          *
1954          * Also note that although these lists do not hold a reference to
1955          * the object we can safely grab one here: The final object
1956          * unreferencing and the bound_list are both protected by the
1957          * dev->struct_mutex and so we won't ever be able to observe an
1958          * object on the bound_list with a reference count equals 0.
1959          */
1960         INIT_LIST_HEAD(&still_in_list);
1961         while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1962                 obj = list_first_entry(&dev_priv->mm.unbound_list,
1963                                        typeof(*obj), global_list);
1964                 list_move_tail(&obj->global_list, &still_in_list);
1965
1966                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1967                         continue;
1968
1969                 drm_gem_object_reference(&obj->base);
1970
1971                 if (i915_gem_object_put_pages(obj) == 0)
1972                         count += obj->base.size >> PAGE_SHIFT;
1973
1974                 drm_gem_object_unreference(&obj->base);
1975         }
1976         list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1977
1978         INIT_LIST_HEAD(&still_in_list);
1979         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1980                 struct i915_vma *vma, *v;
1981
1982                 obj = list_first_entry(&dev_priv->mm.bound_list,
1983                                        typeof(*obj), global_list);
1984                 list_move_tail(&obj->global_list, &still_in_list);
1985
1986                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1987                         continue;
1988
1989                 drm_gem_object_reference(&obj->base);
1990
1991                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1992                         if (i915_vma_unbind(vma))
1993                                 break;
1994
1995                 if (i915_gem_object_put_pages(obj) == 0)
1996                         count += obj->base.size >> PAGE_SHIFT;
1997
1998                 drm_gem_object_unreference(&obj->base);
1999         }
2000         list_splice(&still_in_list, &dev_priv->mm.bound_list);
2001
2002         return count;
2003 }
2004
2005 static unsigned long
2006 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2007 {
2008         return __i915_gem_shrink(dev_priv, target, true);
2009 }
2010
2011 static unsigned long
2012 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2013 {
2014         i915_gem_evict_everything(dev_priv->dev);
2015         return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2016 }
2017
2018 static int
2019 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2020 {
2021         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2022         int page_count, i;
2023         struct address_space *mapping;
2024         struct sg_table *st;
2025         struct scatterlist *sg;
2026         struct sg_page_iter sg_iter;
2027         struct page *page;
2028         unsigned long last_pfn = 0;     /* suppress gcc warning */
2029         gfp_t gfp;
2030
2031         /* Assert that the object is not currently in any GPU domain. As it
2032          * wasn't in the GTT, there shouldn't be any way it could have been in
2033          * a GPU cache
2034          */
2035         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2036         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2037
2038         st = kmalloc(sizeof(*st), GFP_KERNEL);
2039         if (st == NULL)
2040                 return -ENOMEM;
2041
2042         page_count = obj->base.size / PAGE_SIZE;
2043         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2044                 kfree(st);
2045                 return -ENOMEM;
2046         }
2047
2048         /* Get the list of pages out of our struct file.  They'll be pinned
2049          * at this point until we release them.
2050          *
2051          * Fail silently without starting the shrinker
2052          */
2053         mapping = file_inode(obj->base.filp)->i_mapping;
2054         gfp = mapping_gfp_mask(mapping);
2055         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2056         gfp &= ~(__GFP_IO | __GFP_WAIT);
2057         sg = st->sgl;
2058         st->nents = 0;
2059         for (i = 0; i < page_count; i++) {
2060                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2061                 if (IS_ERR(page)) {
2062                         i915_gem_purge(dev_priv, page_count);
2063                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2064                 }
2065                 if (IS_ERR(page)) {
2066                         /* We've tried hard to allocate the memory by reaping
2067                          * our own buffer, now let the real VM do its job and
2068                          * go down in flames if truly OOM.
2069                          */
2070                         i915_gem_shrink_all(dev_priv);
2071                         page = shmem_read_mapping_page(mapping, i);
2072                         if (IS_ERR(page))
2073                                 goto err_pages;
2074                 }
2075 #ifdef CONFIG_SWIOTLB
2076                 if (swiotlb_nr_tbl()) {
2077                         st->nents++;
2078                         sg_set_page(sg, page, PAGE_SIZE, 0);
2079                         sg = sg_next(sg);
2080                         continue;
2081                 }
2082 #endif
2083                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2084                         if (i)
2085                                 sg = sg_next(sg);
2086                         st->nents++;
2087                         sg_set_page(sg, page, PAGE_SIZE, 0);
2088                 } else {
2089                         sg->length += PAGE_SIZE;
2090                 }
2091                 last_pfn = page_to_pfn(page);
2092
2093                 /* Check that the i965g/gm workaround works. */
2094                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2095         }
2096 #ifdef CONFIG_SWIOTLB
2097         if (!swiotlb_nr_tbl())
2098 #endif
2099                 sg_mark_end(sg);
2100         obj->pages = st;
2101
2102         if (i915_gem_object_needs_bit17_swizzle(obj))
2103                 i915_gem_object_do_bit_17_swizzle(obj);
2104
2105         return 0;
2106
2107 err_pages:
2108         sg_mark_end(sg);
2109         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2110                 page_cache_release(sg_page_iter_page(&sg_iter));
2111         sg_free_table(st);
2112         kfree(st);
2113
2114         /* shmemfs first checks if there is enough memory to allocate the page
2115          * and reports ENOSPC should there be insufficient, along with the usual
2116          * ENOMEM for a genuine allocation failure.
2117          *
2118          * We use ENOSPC in our driver to mean that we have run out of aperture
2119          * space and so want to translate the error from shmemfs back to our
2120          * usual understanding of ENOMEM.
2121          */
2122         if (PTR_ERR(page) == -ENOSPC)
2123                 return -ENOMEM;
2124         else
2125                 return PTR_ERR(page);
2126 }
2127
2128 /* Ensure that the associated pages are gathered from the backing storage
2129  * and pinned into our object. i915_gem_object_get_pages() may be called
2130  * multiple times before they are released by a single call to
2131  * i915_gem_object_put_pages() - once the pages are no longer referenced
2132  * either as a result of memory pressure (reaping pages under the shrinker)
2133  * or as the object is itself released.
2134  */
2135 int
2136 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2137 {
2138         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2139         const struct drm_i915_gem_object_ops *ops = obj->ops;
2140         int ret;
2141
2142         if (obj->pages)
2143                 return 0;
2144
2145         if (obj->madv != I915_MADV_WILLNEED) {
2146                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2147                 return -EFAULT;
2148         }
2149
2150         BUG_ON(obj->pages_pin_count);
2151
2152         ret = ops->get_pages(obj);
2153         if (ret)
2154                 return ret;
2155
2156         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2157         return 0;
2158 }
2159
2160 static void
2161 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2162                                struct intel_engine_cs *ring)
2163 {
2164         struct drm_device *dev = obj->base.dev;
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         u32 seqno = intel_ring_get_seqno(ring);
2167
2168         BUG_ON(ring == NULL);
2169         if (obj->ring != ring && obj->last_write_seqno) {
2170                 /* Keep the seqno relative to the current ring */
2171                 obj->last_write_seqno = seqno;
2172         }
2173         obj->ring = ring;
2174
2175         /* Add a reference if we're newly entering the active list. */
2176         if (!obj->active) {
2177                 drm_gem_object_reference(&obj->base);
2178                 obj->active = 1;
2179         }
2180
2181         list_move_tail(&obj->ring_list, &ring->active_list);
2182
2183         obj->last_read_seqno = seqno;
2184
2185         if (obj->fenced_gpu_access) {
2186                 obj->last_fenced_seqno = seqno;
2187
2188                 /* Bump MRU to take account of the delayed flush */
2189                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2190                         struct drm_i915_fence_reg *reg;
2191
2192                         reg = &dev_priv->fence_regs[obj->fence_reg];
2193                         list_move_tail(&reg->lru_list,
2194                                        &dev_priv->mm.fence_list);
2195                 }
2196         }
2197 }
2198
2199 void i915_vma_move_to_active(struct i915_vma *vma,
2200                              struct intel_engine_cs *ring)
2201 {
2202         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2203         return i915_gem_object_move_to_active(vma->obj, ring);
2204 }
2205
2206 static void
2207 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2208 {
2209         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2210         struct i915_address_space *vm;
2211         struct i915_vma *vma;
2212
2213         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2214         BUG_ON(!obj->active);
2215
2216         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2217                 vma = i915_gem_obj_to_vma(obj, vm);
2218                 if (vma && !list_empty(&vma->mm_list))
2219                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2220         }
2221
2222         intel_fb_obj_flush(obj, true);
2223
2224         list_del_init(&obj->ring_list);
2225         obj->ring = NULL;
2226
2227         obj->last_read_seqno = 0;
2228         obj->last_write_seqno = 0;
2229         obj->base.write_domain = 0;
2230
2231         obj->last_fenced_seqno = 0;
2232         obj->fenced_gpu_access = false;
2233
2234         obj->active = 0;
2235         drm_gem_object_unreference(&obj->base);
2236
2237         WARN_ON(i915_verify_lists(dev));
2238 }
2239
2240 static void
2241 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2242 {
2243         struct intel_engine_cs *ring = obj->ring;
2244
2245         if (ring == NULL)
2246                 return;
2247
2248         if (i915_seqno_passed(ring->get_seqno(ring, true),
2249                               obj->last_read_seqno))
2250                 i915_gem_object_move_to_inactive(obj);
2251 }
2252
2253 static int
2254 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2255 {
2256         struct drm_i915_private *dev_priv = dev->dev_private;
2257         struct intel_engine_cs *ring;
2258         int ret, i, j;
2259
2260         /* Carefully retire all requests without writing to the rings */
2261         for_each_ring(ring, dev_priv, i) {
2262                 ret = intel_ring_idle(ring);
2263                 if (ret)
2264                         return ret;
2265         }
2266         i915_gem_retire_requests(dev);
2267
2268         /* Finally reset hw state */
2269         for_each_ring(ring, dev_priv, i) {
2270                 intel_ring_init_seqno(ring, seqno);
2271
2272                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2273                         ring->semaphore.sync_seqno[j] = 0;
2274         }
2275
2276         return 0;
2277 }
2278
2279 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2280 {
2281         struct drm_i915_private *dev_priv = dev->dev_private;
2282         int ret;
2283
2284         if (seqno == 0)
2285                 return -EINVAL;
2286
2287         /* HWS page needs to be set less than what we
2288          * will inject to ring
2289          */
2290         ret = i915_gem_init_seqno(dev, seqno - 1);
2291         if (ret)
2292                 return ret;
2293
2294         /* Carefully set the last_seqno value so that wrap
2295          * detection still works
2296          */
2297         dev_priv->next_seqno = seqno;
2298         dev_priv->last_seqno = seqno - 1;
2299         if (dev_priv->last_seqno == 0)
2300                 dev_priv->last_seqno--;
2301
2302         return 0;
2303 }
2304
2305 int
2306 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2307 {
2308         struct drm_i915_private *dev_priv = dev->dev_private;
2309
2310         /* reserve 0 for non-seqno */
2311         if (dev_priv->next_seqno == 0) {
2312                 int ret = i915_gem_init_seqno(dev, 0);
2313                 if (ret)
2314                         return ret;
2315
2316                 dev_priv->next_seqno = 1;
2317         }
2318
2319         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2320         return 0;
2321 }
2322
2323 int __i915_add_request(struct intel_engine_cs *ring,
2324                        struct drm_file *file,
2325                        struct drm_i915_gem_object *obj,
2326                        u32 *out_seqno)
2327 {
2328         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2329         struct drm_i915_gem_request *request;
2330         u32 request_ring_position, request_start;
2331         int ret;
2332
2333         request_start = intel_ring_get_tail(ring->buffer);
2334         /*
2335          * Emit any outstanding flushes - execbuf can fail to emit the flush
2336          * after having emitted the batchbuffer command. Hence we need to fix
2337          * things up similar to emitting the lazy request. The difference here
2338          * is that the flush _must_ happen before the next request, no matter
2339          * what.
2340          */
2341         ret = intel_ring_flush_all_caches(ring);
2342         if (ret)
2343                 return ret;
2344
2345         request = ring->preallocated_lazy_request;
2346         if (WARN_ON(request == NULL))
2347                 return -ENOMEM;
2348
2349         /* Record the position of the start of the request so that
2350          * should we detect the updated seqno part-way through the
2351          * GPU processing the request, we never over-estimate the
2352          * position of the head.
2353          */
2354         request_ring_position = intel_ring_get_tail(ring->buffer);
2355
2356         ret = ring->add_request(ring);
2357         if (ret)
2358                 return ret;
2359
2360         request->seqno = intel_ring_get_seqno(ring);
2361         request->ring = ring;
2362         request->head = request_start;
2363         request->tail = request_ring_position;
2364
2365         /* Whilst this request exists, batch_obj will be on the
2366          * active_list, and so will hold the active reference. Only when this
2367          * request is retired will the the batch_obj be moved onto the
2368          * inactive_list and lose its active reference. Hence we do not need
2369          * to explicitly hold another reference here.
2370          */
2371         request->batch_obj = obj;
2372
2373         /* Hold a reference to the current context so that we can inspect
2374          * it later in case a hangcheck error event fires.
2375          */
2376         request->ctx = ring->last_context;
2377         if (request->ctx)
2378                 i915_gem_context_reference(request->ctx);
2379
2380         request->emitted_jiffies = jiffies;
2381         list_add_tail(&request->list, &ring->request_list);
2382         request->file_priv = NULL;
2383
2384         if (file) {
2385                 struct drm_i915_file_private *file_priv = file->driver_priv;
2386
2387                 spin_lock(&file_priv->mm.lock);
2388                 request->file_priv = file_priv;
2389                 list_add_tail(&request->client_list,
2390                               &file_priv->mm.request_list);
2391                 spin_unlock(&file_priv->mm.lock);
2392         }
2393
2394         trace_i915_gem_request_add(ring, request->seqno);
2395         ring->outstanding_lazy_seqno = 0;
2396         ring->preallocated_lazy_request = NULL;
2397
2398         if (!dev_priv->ums.mm_suspended) {
2399                 i915_queue_hangcheck(ring->dev);
2400
2401                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2402                 queue_delayed_work(dev_priv->wq,
2403                                    &dev_priv->mm.retire_work,
2404                                    round_jiffies_up_relative(HZ));
2405                 intel_mark_busy(dev_priv->dev);
2406         }
2407
2408         if (out_seqno)
2409                 *out_seqno = request->seqno;
2410         return 0;
2411 }
2412
2413 static inline void
2414 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2415 {
2416         struct drm_i915_file_private *file_priv = request->file_priv;
2417
2418         if (!file_priv)
2419                 return;
2420
2421         spin_lock(&file_priv->mm.lock);
2422         list_del(&request->client_list);
2423         request->file_priv = NULL;
2424         spin_unlock(&file_priv->mm.lock);
2425 }
2426
2427 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2428                                    const struct intel_context *ctx)
2429 {
2430         unsigned long elapsed;
2431
2432         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2433
2434         if (ctx->hang_stats.banned)
2435                 return true;
2436
2437         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2438                 if (!i915_gem_context_is_default(ctx)) {
2439                         DRM_DEBUG("context hanging too fast, banning!\n");
2440                         return true;
2441                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2442                         if (i915_stop_ring_allow_warn(dev_priv))
2443                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2444                         return true;
2445                 }
2446         }
2447
2448         return false;
2449 }
2450
2451 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2452                                   struct intel_context *ctx,
2453                                   const bool guilty)
2454 {
2455         struct i915_ctx_hang_stats *hs;
2456
2457         if (WARN_ON(!ctx))
2458                 return;
2459
2460         hs = &ctx->hang_stats;
2461
2462         if (guilty) {
2463                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2464                 hs->batch_active++;
2465                 hs->guilty_ts = get_seconds();
2466         } else {
2467                 hs->batch_pending++;
2468         }
2469 }
2470
2471 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2472 {
2473         list_del(&request->list);
2474         i915_gem_request_remove_from_client(request);
2475
2476         if (request->ctx)
2477                 i915_gem_context_unreference(request->ctx);
2478
2479         kfree(request);
2480 }
2481
2482 struct drm_i915_gem_request *
2483 i915_gem_find_active_request(struct intel_engine_cs *ring)
2484 {
2485         struct drm_i915_gem_request *request;
2486         u32 completed_seqno;
2487
2488         completed_seqno = ring->get_seqno(ring, false);
2489
2490         list_for_each_entry(request, &ring->request_list, list) {
2491                 if (i915_seqno_passed(completed_seqno, request->seqno))
2492                         continue;
2493
2494                 return request;
2495         }
2496
2497         return NULL;
2498 }
2499
2500 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2501                                        struct intel_engine_cs *ring)
2502 {
2503         struct drm_i915_gem_request *request;
2504         bool ring_hung;
2505
2506         request = i915_gem_find_active_request(ring);
2507
2508         if (request == NULL)
2509                 return;
2510
2511         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2512
2513         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2514
2515         list_for_each_entry_continue(request, &ring->request_list, list)
2516                 i915_set_reset_status(dev_priv, request->ctx, false);
2517 }
2518
2519 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2520                                         struct intel_engine_cs *ring)
2521 {
2522         while (!list_empty(&ring->active_list)) {
2523                 struct drm_i915_gem_object *obj;
2524
2525                 obj = list_first_entry(&ring->active_list,
2526                                        struct drm_i915_gem_object,
2527                                        ring_list);
2528
2529                 i915_gem_object_move_to_inactive(obj);
2530         }
2531
2532         /*
2533          * We must free the requests after all the corresponding objects have
2534          * been moved off active lists. Which is the same order as the normal
2535          * retire_requests function does. This is important if object hold
2536          * implicit references on things like e.g. ppgtt address spaces through
2537          * the request.
2538          */
2539         while (!list_empty(&ring->request_list)) {
2540                 struct drm_i915_gem_request *request;
2541
2542                 request = list_first_entry(&ring->request_list,
2543                                            struct drm_i915_gem_request,
2544                                            list);
2545
2546                 i915_gem_free_request(request);
2547         }
2548
2549         /* These may not have been flush before the reset, do so now */
2550         kfree(ring->preallocated_lazy_request);
2551         ring->preallocated_lazy_request = NULL;
2552         ring->outstanding_lazy_seqno = 0;
2553 }
2554
2555 void i915_gem_restore_fences(struct drm_device *dev)
2556 {
2557         struct drm_i915_private *dev_priv = dev->dev_private;
2558         int i;
2559
2560         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2561                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2562
2563                 /*
2564                  * Commit delayed tiling changes if we have an object still
2565                  * attached to the fence, otherwise just clear the fence.
2566                  */
2567                 if (reg->obj) {
2568                         i915_gem_object_update_fence(reg->obj, reg,
2569                                                      reg->obj->tiling_mode);
2570                 } else {
2571                         i915_gem_write_fence(dev, i, NULL);
2572                 }
2573         }
2574 }
2575
2576 void i915_gem_reset(struct drm_device *dev)
2577 {
2578         struct drm_i915_private *dev_priv = dev->dev_private;
2579         struct intel_engine_cs *ring;
2580         int i;
2581
2582         /*
2583          * Before we free the objects from the requests, we need to inspect
2584          * them for finding the guilty party. As the requests only borrow
2585          * their reference to the objects, the inspection must be done first.
2586          */
2587         for_each_ring(ring, dev_priv, i)
2588                 i915_gem_reset_ring_status(dev_priv, ring);
2589
2590         for_each_ring(ring, dev_priv, i)
2591                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2592
2593         i915_gem_context_reset(dev);
2594
2595         i915_gem_restore_fences(dev);
2596 }
2597
2598 /**
2599  * This function clears the request list as sequence numbers are passed.
2600  */
2601 void
2602 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2603 {
2604         uint32_t seqno;
2605
2606         if (list_empty(&ring->request_list))
2607                 return;
2608
2609         WARN_ON(i915_verify_lists(ring->dev));
2610
2611         seqno = ring->get_seqno(ring, true);
2612
2613         /* Move any buffers on the active list that are no longer referenced
2614          * by the ringbuffer to the flushing/inactive lists as appropriate,
2615          * before we free the context associated with the requests.
2616          */
2617         while (!list_empty(&ring->active_list)) {
2618                 struct drm_i915_gem_object *obj;
2619
2620                 obj = list_first_entry(&ring->active_list,
2621                                       struct drm_i915_gem_object,
2622                                       ring_list);
2623
2624                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2625                         break;
2626
2627                 i915_gem_object_move_to_inactive(obj);
2628         }
2629
2630
2631         while (!list_empty(&ring->request_list)) {
2632                 struct drm_i915_gem_request *request;
2633
2634                 request = list_first_entry(&ring->request_list,
2635                                            struct drm_i915_gem_request,
2636                                            list);
2637
2638                 if (!i915_seqno_passed(seqno, request->seqno))
2639                         break;
2640
2641                 trace_i915_gem_request_retire(ring, request->seqno);
2642                 /* We know the GPU must have read the request to have
2643                  * sent us the seqno + interrupt, so use the position
2644                  * of tail of the request to update the last known position
2645                  * of the GPU head.
2646                  */
2647                 ring->buffer->last_retired_head = request->tail;
2648
2649                 i915_gem_free_request(request);
2650         }
2651
2652         if (unlikely(ring->trace_irq_seqno &&
2653                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2654                 ring->irq_put(ring);
2655                 ring->trace_irq_seqno = 0;
2656         }
2657
2658         WARN_ON(i915_verify_lists(ring->dev));
2659 }
2660
2661 bool
2662 i915_gem_retire_requests(struct drm_device *dev)
2663 {
2664         struct drm_i915_private *dev_priv = dev->dev_private;
2665         struct intel_engine_cs *ring;
2666         bool idle = true;
2667         int i;
2668
2669         for_each_ring(ring, dev_priv, i) {
2670                 i915_gem_retire_requests_ring(ring);
2671                 idle &= list_empty(&ring->request_list);
2672         }
2673
2674         if (idle)
2675                 mod_delayed_work(dev_priv->wq,
2676                                    &dev_priv->mm.idle_work,
2677                                    msecs_to_jiffies(100));
2678
2679         return idle;
2680 }
2681
2682 static void
2683 i915_gem_retire_work_handler(struct work_struct *work)
2684 {
2685         struct drm_i915_private *dev_priv =
2686                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2687         struct drm_device *dev = dev_priv->dev;
2688         bool idle;
2689
2690         /* Come back later if the device is busy... */
2691         idle = false;
2692         if (mutex_trylock(&dev->struct_mutex)) {
2693                 idle = i915_gem_retire_requests(dev);
2694                 mutex_unlock(&dev->struct_mutex);
2695         }
2696         if (!idle)
2697                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2698                                    round_jiffies_up_relative(HZ));
2699 }
2700
2701 static void
2702 i915_gem_idle_work_handler(struct work_struct *work)
2703 {
2704         struct drm_i915_private *dev_priv =
2705                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2706
2707         intel_mark_idle(dev_priv->dev);
2708 }
2709
2710 /**
2711  * Ensures that an object will eventually get non-busy by flushing any required
2712  * write domains, emitting any outstanding lazy request and retiring and
2713  * completed requests.
2714  */
2715 static int
2716 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2717 {
2718         int ret;
2719
2720         if (obj->active) {
2721                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2722                 if (ret)
2723                         return ret;
2724
2725                 i915_gem_retire_requests_ring(obj->ring);
2726         }
2727
2728         return 0;
2729 }
2730
2731 /**
2732  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2733  * @DRM_IOCTL_ARGS: standard ioctl arguments
2734  *
2735  * Returns 0 if successful, else an error is returned with the remaining time in
2736  * the timeout parameter.
2737  *  -ETIME: object is still busy after timeout
2738  *  -ERESTARTSYS: signal interrupted the wait
2739  *  -ENONENT: object doesn't exist
2740  * Also possible, but rare:
2741  *  -EAGAIN: GPU wedged
2742  *  -ENOMEM: damn
2743  *  -ENODEV: Internal IRQ fail
2744  *  -E?: The add request failed
2745  *
2746  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2747  * non-zero timeout parameter the wait ioctl will wait for the given number of
2748  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2749  * without holding struct_mutex the object may become re-busied before this
2750  * function completes. A similar but shorter * race condition exists in the busy
2751  * ioctl
2752  */
2753 int
2754 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2755 {
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         struct drm_i915_gem_wait *args = data;
2758         struct drm_i915_gem_object *obj;
2759         struct intel_engine_cs *ring = NULL;
2760         struct timespec timeout_stack, *timeout = NULL;
2761         unsigned reset_counter;
2762         u32 seqno = 0;
2763         int ret = 0;
2764
2765         if (args->timeout_ns >= 0) {
2766                 timeout_stack = ns_to_timespec(args->timeout_ns);
2767                 timeout = &timeout_stack;
2768         }
2769
2770         ret = i915_mutex_lock_interruptible(dev);
2771         if (ret)
2772                 return ret;
2773
2774         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2775         if (&obj->base == NULL) {
2776                 mutex_unlock(&dev->struct_mutex);
2777                 return -ENOENT;
2778         }
2779
2780         /* Need to make sure the object gets inactive eventually. */
2781         ret = i915_gem_object_flush_active(obj);
2782         if (ret)
2783                 goto out;
2784
2785         if (obj->active) {
2786                 seqno = obj->last_read_seqno;
2787                 ring = obj->ring;
2788         }
2789
2790         if (seqno == 0)
2791                  goto out;
2792
2793         /* Do this after OLR check to make sure we make forward progress polling
2794          * on this IOCTL with a 0 timeout (like busy ioctl)
2795          */
2796         if (!args->timeout_ns) {
2797                 ret = -ETIME;
2798                 goto out;
2799         }
2800
2801         drm_gem_object_unreference(&obj->base);
2802         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2803         mutex_unlock(&dev->struct_mutex);
2804
2805         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2806         if (timeout)
2807                 args->timeout_ns = timespec_to_ns(timeout);
2808         return ret;
2809
2810 out:
2811         drm_gem_object_unreference(&obj->base);
2812         mutex_unlock(&dev->struct_mutex);
2813         return ret;
2814 }
2815
2816 /**
2817  * i915_gem_object_sync - sync an object to a ring.
2818  *
2819  * @obj: object which may be in use on another ring.
2820  * @to: ring we wish to use the object on. May be NULL.
2821  *
2822  * This code is meant to abstract object synchronization with the GPU.
2823  * Calling with NULL implies synchronizing the object with the CPU
2824  * rather than a particular GPU ring.
2825  *
2826  * Returns 0 if successful, else propagates up the lower layer error.
2827  */
2828 int
2829 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2830                      struct intel_engine_cs *to)
2831 {
2832         struct intel_engine_cs *from = obj->ring;
2833         u32 seqno;
2834         int ret, idx;
2835
2836         if (from == NULL || to == from)
2837                 return 0;
2838
2839         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2840                 return i915_gem_object_wait_rendering(obj, false);
2841
2842         idx = intel_ring_sync_index(from, to);
2843
2844         seqno = obj->last_read_seqno;
2845         /* Optimization: Avoid semaphore sync when we are sure we already
2846          * waited for an object with higher seqno */
2847         if (seqno <= from->semaphore.sync_seqno[idx])
2848                 return 0;
2849
2850         ret = i915_gem_check_olr(obj->ring, seqno);
2851         if (ret)
2852                 return ret;
2853
2854         trace_i915_gem_ring_sync_to(from, to, seqno);
2855         ret = to->semaphore.sync_to(to, from, seqno);
2856         if (!ret)
2857                 /* We use last_read_seqno because sync_to()
2858                  * might have just caused seqno wrap under
2859                  * the radar.
2860                  */
2861                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2862
2863         return ret;
2864 }
2865
2866 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2867 {
2868         u32 old_write_domain, old_read_domains;
2869
2870         /* Force a pagefault for domain tracking on next user access */
2871         i915_gem_release_mmap(obj);
2872
2873         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2874                 return;
2875
2876         /* Wait for any direct GTT access to complete */
2877         mb();
2878
2879         old_read_domains = obj->base.read_domains;
2880         old_write_domain = obj->base.write_domain;
2881
2882         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2883         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2884
2885         trace_i915_gem_object_change_domain(obj,
2886                                             old_read_domains,
2887                                             old_write_domain);
2888 }
2889
2890 int i915_vma_unbind(struct i915_vma *vma)
2891 {
2892         struct drm_i915_gem_object *obj = vma->obj;
2893         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2894         int ret;
2895
2896         if (list_empty(&vma->vma_link))
2897                 return 0;
2898
2899         if (!drm_mm_node_allocated(&vma->node)) {
2900                 i915_gem_vma_destroy(vma);
2901                 return 0;
2902         }
2903
2904         if (vma->pin_count)
2905                 return -EBUSY;
2906
2907         BUG_ON(obj->pages == NULL);
2908
2909         ret = i915_gem_object_finish_gpu(obj);
2910         if (ret)
2911                 return ret;
2912         /* Continue on if we fail due to EIO, the GPU is hung so we
2913          * should be safe and we need to cleanup or else we might
2914          * cause memory corruption through use-after-free.
2915          */
2916
2917         if (i915_is_ggtt(vma->vm)) {
2918                 i915_gem_object_finish_gtt(obj);
2919
2920                 /* release the fence reg _after_ flushing */
2921                 ret = i915_gem_object_put_fence(obj);
2922                 if (ret)
2923                         return ret;
2924         }
2925
2926         trace_i915_vma_unbind(vma);
2927
2928         vma->unbind_vma(vma);
2929
2930         list_del_init(&vma->mm_list);
2931         /* Avoid an unnecessary call to unbind on rebind. */
2932         if (i915_is_ggtt(vma->vm))
2933                 obj->map_and_fenceable = true;
2934
2935         drm_mm_remove_node(&vma->node);
2936         i915_gem_vma_destroy(vma);
2937
2938         /* Since the unbound list is global, only move to that list if
2939          * no more VMAs exist. */
2940         if (list_empty(&obj->vma_list)) {
2941                 i915_gem_gtt_finish_object(obj);
2942                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2943         }
2944
2945         /* And finally now the object is completely decoupled from this vma,
2946          * we can drop its hold on the backing storage and allow it to be
2947          * reaped by the shrinker.
2948          */
2949         i915_gem_object_unpin_pages(obj);
2950
2951         return 0;
2952 }
2953
2954 int i915_gpu_idle(struct drm_device *dev)
2955 {
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         struct intel_engine_cs *ring;
2958         int ret, i;
2959
2960         /* Flush everything onto the inactive list. */
2961         for_each_ring(ring, dev_priv, i) {
2962                 ret = i915_switch_context(ring, ring->default_context);
2963                 if (ret)
2964                         return ret;
2965
2966                 ret = intel_ring_idle(ring);
2967                 if (ret)
2968                         return ret;
2969         }
2970
2971         return 0;
2972 }
2973
2974 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2975                                  struct drm_i915_gem_object *obj)
2976 {
2977         struct drm_i915_private *dev_priv = dev->dev_private;
2978         int fence_reg;
2979         int fence_pitch_shift;
2980
2981         if (INTEL_INFO(dev)->gen >= 6) {
2982                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2983                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2984         } else {
2985                 fence_reg = FENCE_REG_965_0;
2986                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2987         }
2988
2989         fence_reg += reg * 8;
2990
2991         /* To w/a incoherency with non-atomic 64-bit register updates,
2992          * we split the 64-bit update into two 32-bit writes. In order
2993          * for a partial fence not to be evaluated between writes, we
2994          * precede the update with write to turn off the fence register,
2995          * and only enable the fence as the last step.
2996          *
2997          * For extra levels of paranoia, we make sure each step lands
2998          * before applying the next step.
2999          */
3000         I915_WRITE(fence_reg, 0);
3001         POSTING_READ(fence_reg);
3002
3003         if (obj) {
3004                 u32 size = i915_gem_obj_ggtt_size(obj);
3005                 uint64_t val;
3006
3007                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3008                                  0xfffff000) << 32;
3009                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3010                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3011                 if (obj->tiling_mode == I915_TILING_Y)
3012                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3013                 val |= I965_FENCE_REG_VALID;
3014
3015                 I915_WRITE(fence_reg + 4, val >> 32);
3016                 POSTING_READ(fence_reg + 4);
3017
3018                 I915_WRITE(fence_reg + 0, val);
3019                 POSTING_READ(fence_reg);
3020         } else {
3021                 I915_WRITE(fence_reg + 4, 0);
3022                 POSTING_READ(fence_reg + 4);
3023         }
3024 }
3025
3026 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3027                                  struct drm_i915_gem_object *obj)
3028 {
3029         struct drm_i915_private *dev_priv = dev->dev_private;
3030         u32 val;
3031
3032         if (obj) {
3033                 u32 size = i915_gem_obj_ggtt_size(obj);
3034                 int pitch_val;
3035                 int tile_width;
3036
3037                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3038                      (size & -size) != size ||
3039                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3040                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3041                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3042
3043                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3044                         tile_width = 128;
3045                 else
3046                         tile_width = 512;
3047
3048                 /* Note: pitch better be a power of two tile widths */
3049                 pitch_val = obj->stride / tile_width;
3050                 pitch_val = ffs(pitch_val) - 1;
3051
3052                 val = i915_gem_obj_ggtt_offset(obj);
3053                 if (obj->tiling_mode == I915_TILING_Y)
3054                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3055                 val |= I915_FENCE_SIZE_BITS(size);
3056                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3057                 val |= I830_FENCE_REG_VALID;
3058         } else
3059                 val = 0;
3060
3061         if (reg < 8)
3062                 reg = FENCE_REG_830_0 + reg * 4;
3063         else
3064                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3065
3066         I915_WRITE(reg, val);
3067         POSTING_READ(reg);
3068 }
3069
3070 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3071                                 struct drm_i915_gem_object *obj)
3072 {
3073         struct drm_i915_private *dev_priv = dev->dev_private;
3074         uint32_t val;
3075
3076         if (obj) {
3077                 u32 size = i915_gem_obj_ggtt_size(obj);
3078                 uint32_t pitch_val;
3079
3080                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3081                      (size & -size) != size ||
3082                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3083                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3084                      i915_gem_obj_ggtt_offset(obj), size);
3085
3086                 pitch_val = obj->stride / 128;
3087                 pitch_val = ffs(pitch_val) - 1;
3088
3089                 val = i915_gem_obj_ggtt_offset(obj);
3090                 if (obj->tiling_mode == I915_TILING_Y)
3091                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3092                 val |= I830_FENCE_SIZE_BITS(size);
3093                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3094                 val |= I830_FENCE_REG_VALID;
3095         } else
3096                 val = 0;
3097
3098         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3099         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3100 }
3101
3102 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3103 {
3104         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3105 }
3106
3107 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3108                                  struct drm_i915_gem_object *obj)
3109 {
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112         /* Ensure that all CPU reads are completed before installing a fence
3113          * and all writes before removing the fence.
3114          */
3115         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3116                 mb();
3117
3118         WARN(obj && (!obj->stride || !obj->tiling_mode),
3119              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3120              obj->stride, obj->tiling_mode);
3121
3122         switch (INTEL_INFO(dev)->gen) {
3123         case 8:
3124         case 7:
3125         case 6:
3126         case 5:
3127         case 4: i965_write_fence_reg(dev, reg, obj); break;
3128         case 3: i915_write_fence_reg(dev, reg, obj); break;
3129         case 2: i830_write_fence_reg(dev, reg, obj); break;
3130         default: BUG();
3131         }
3132
3133         /* And similarly be paranoid that no direct access to this region
3134          * is reordered to before the fence is installed.
3135          */
3136         if (i915_gem_object_needs_mb(obj))
3137                 mb();
3138 }
3139
3140 static inline int fence_number(struct drm_i915_private *dev_priv,
3141                                struct drm_i915_fence_reg *fence)
3142 {
3143         return fence - dev_priv->fence_regs;
3144 }
3145
3146 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3147                                          struct drm_i915_fence_reg *fence,
3148                                          bool enable)
3149 {
3150         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3151         int reg = fence_number(dev_priv, fence);
3152
3153         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3154
3155         if (enable) {
3156                 obj->fence_reg = reg;
3157                 fence->obj = obj;
3158                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3159         } else {
3160                 obj->fence_reg = I915_FENCE_REG_NONE;
3161                 fence->obj = NULL;
3162                 list_del_init(&fence->lru_list);
3163         }
3164         obj->fence_dirty = false;
3165 }
3166
3167 static int
3168 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3169 {
3170         if (obj->last_fenced_seqno) {
3171                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3172                 if (ret)
3173                         return ret;
3174
3175                 obj->last_fenced_seqno = 0;
3176         }
3177
3178         obj->fenced_gpu_access = false;
3179         return 0;
3180 }
3181
3182 int
3183 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3184 {
3185         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3186         struct drm_i915_fence_reg *fence;
3187         int ret;
3188
3189         ret = i915_gem_object_wait_fence(obj);
3190         if (ret)
3191                 return ret;
3192
3193         if (obj->fence_reg == I915_FENCE_REG_NONE)
3194                 return 0;
3195
3196         fence = &dev_priv->fence_regs[obj->fence_reg];
3197
3198         if (WARN_ON(fence->pin_count))
3199                 return -EBUSY;
3200
3201         i915_gem_object_fence_lost(obj);
3202         i915_gem_object_update_fence(obj, fence, false);
3203
3204         return 0;
3205 }
3206
3207 static struct drm_i915_fence_reg *
3208 i915_find_fence_reg(struct drm_device *dev)
3209 {
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211         struct drm_i915_fence_reg *reg, *avail;
3212         int i;
3213
3214         /* First try to find a free reg */
3215         avail = NULL;
3216         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3217                 reg = &dev_priv->fence_regs[i];
3218                 if (!reg->obj)
3219                         return reg;
3220
3221                 if (!reg->pin_count)
3222                         avail = reg;
3223         }
3224
3225         if (avail == NULL)
3226                 goto deadlock;
3227
3228         /* None available, try to steal one or wait for a user to finish */
3229         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3230                 if (reg->pin_count)
3231                         continue;
3232
3233                 return reg;
3234         }
3235
3236 deadlock:
3237         /* Wait for completion of pending flips which consume fences */
3238         if (intel_has_pending_fb_unpin(dev))
3239                 return ERR_PTR(-EAGAIN);
3240
3241         return ERR_PTR(-EDEADLK);
3242 }
3243
3244 /**
3245  * i915_gem_object_get_fence - set up fencing for an object
3246  * @obj: object to map through a fence reg
3247  *
3248  * When mapping objects through the GTT, userspace wants to be able to write
3249  * to them without having to worry about swizzling if the object is tiled.
3250  * This function walks the fence regs looking for a free one for @obj,
3251  * stealing one if it can't find any.
3252  *
3253  * It then sets up the reg based on the object's properties: address, pitch
3254  * and tiling format.
3255  *
3256  * For an untiled surface, this removes any existing fence.
3257  */
3258 int
3259 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3260 {
3261         struct drm_device *dev = obj->base.dev;
3262         struct drm_i915_private *dev_priv = dev->dev_private;
3263         bool enable = obj->tiling_mode != I915_TILING_NONE;
3264         struct drm_i915_fence_reg *reg;
3265         int ret;
3266
3267         /* Have we updated the tiling parameters upon the object and so
3268          * will need to serialise the write to the associated fence register?
3269          */
3270         if (obj->fence_dirty) {
3271                 ret = i915_gem_object_wait_fence(obj);
3272                 if (ret)
3273                         return ret;
3274         }
3275
3276         /* Just update our place in the LRU if our fence is getting reused. */
3277         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3278                 reg = &dev_priv->fence_regs[obj->fence_reg];
3279                 if (!obj->fence_dirty) {
3280                         list_move_tail(&reg->lru_list,
3281                                        &dev_priv->mm.fence_list);
3282                         return 0;
3283                 }
3284         } else if (enable) {
3285                 reg = i915_find_fence_reg(dev);
3286                 if (IS_ERR(reg))
3287                         return PTR_ERR(reg);
3288
3289                 if (reg->obj) {
3290                         struct drm_i915_gem_object *old = reg->obj;
3291
3292                         ret = i915_gem_object_wait_fence(old);
3293                         if (ret)
3294                                 return ret;
3295
3296                         i915_gem_object_fence_lost(old);
3297                 }
3298         } else
3299                 return 0;
3300
3301         i915_gem_object_update_fence(obj, reg, enable);
3302
3303         return 0;
3304 }
3305
3306 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3307                                      struct drm_mm_node *gtt_space,
3308                                      unsigned long cache_level)
3309 {
3310         struct drm_mm_node *other;
3311
3312         /* On non-LLC machines we have to be careful when putting differing
3313          * types of snoopable memory together to avoid the prefetcher
3314          * crossing memory domains and dying.
3315          */
3316         if (HAS_LLC(dev))
3317                 return true;
3318
3319         if (!drm_mm_node_allocated(gtt_space))
3320                 return true;
3321
3322         if (list_empty(&gtt_space->node_list))
3323                 return true;
3324
3325         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3326         if (other->allocated && !other->hole_follows && other->color != cache_level)
3327                 return false;
3328
3329         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3330         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3331                 return false;
3332
3333         return true;
3334 }
3335
3336 static void i915_gem_verify_gtt(struct drm_device *dev)
3337 {
3338 #if WATCH_GTT
3339         struct drm_i915_private *dev_priv = dev->dev_private;
3340         struct drm_i915_gem_object *obj;
3341         int err = 0;
3342
3343         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3344                 if (obj->gtt_space == NULL) {
3345                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3346                         err++;
3347                         continue;
3348                 }
3349
3350                 if (obj->cache_level != obj->gtt_space->color) {
3351                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3352                                i915_gem_obj_ggtt_offset(obj),
3353                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3354                                obj->cache_level,
3355                                obj->gtt_space->color);
3356                         err++;
3357                         continue;
3358                 }
3359
3360                 if (!i915_gem_valid_gtt_space(dev,
3361                                               obj->gtt_space,
3362                                               obj->cache_level)) {
3363                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3364                                i915_gem_obj_ggtt_offset(obj),
3365                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3366                                obj->cache_level);
3367                         err++;
3368                         continue;
3369                 }
3370         }
3371
3372         WARN_ON(err);
3373 #endif
3374 }
3375
3376 /**
3377  * Finds free space in the GTT aperture and binds the object there.
3378  */
3379 static struct i915_vma *
3380 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3381                            struct i915_address_space *vm,
3382                            unsigned alignment,
3383                            uint64_t flags)
3384 {
3385         struct drm_device *dev = obj->base.dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         u32 size, fence_size, fence_alignment, unfenced_alignment;
3388         unsigned long start =
3389                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3390         unsigned long end =
3391                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3392         struct i915_vma *vma;
3393         int ret;
3394
3395         fence_size = i915_gem_get_gtt_size(dev,
3396                                            obj->base.size,
3397                                            obj->tiling_mode);
3398         fence_alignment = i915_gem_get_gtt_alignment(dev,
3399                                                      obj->base.size,
3400                                                      obj->tiling_mode, true);
3401         unfenced_alignment =
3402                 i915_gem_get_gtt_alignment(dev,
3403                                            obj->base.size,
3404                                            obj->tiling_mode, false);
3405
3406         if (alignment == 0)
3407                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3408                                                 unfenced_alignment;
3409         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3410                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3411                 return ERR_PTR(-EINVAL);
3412         }
3413
3414         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3415
3416         /* If the object is bigger than the entire aperture, reject it early
3417          * before evicting everything in a vain attempt to find space.
3418          */
3419         if (obj->base.size > end) {
3420                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3421                           obj->base.size,
3422                           flags & PIN_MAPPABLE ? "mappable" : "total",
3423                           end);
3424                 return ERR_PTR(-E2BIG);
3425         }
3426
3427         ret = i915_gem_object_get_pages(obj);
3428         if (ret)
3429                 return ERR_PTR(ret);
3430
3431         i915_gem_object_pin_pages(obj);
3432
3433         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3434         if (IS_ERR(vma))
3435                 goto err_unpin;
3436
3437 search_free:
3438         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3439                                                   size, alignment,
3440                                                   obj->cache_level,
3441                                                   start, end,
3442                                                   DRM_MM_SEARCH_DEFAULT,
3443                                                   DRM_MM_CREATE_DEFAULT);
3444         if (ret) {
3445                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3446                                                obj->cache_level,
3447                                                start, end,
3448                                                flags);
3449                 if (ret == 0)
3450                         goto search_free;
3451
3452                 goto err_free_vma;
3453         }
3454         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3455                                               obj->cache_level))) {
3456                 ret = -EINVAL;
3457                 goto err_remove_node;
3458         }
3459
3460         ret = i915_gem_gtt_prepare_object(obj);
3461         if (ret)
3462                 goto err_remove_node;
3463
3464         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3465         list_add_tail(&vma->mm_list, &vm->inactive_list);
3466
3467         if (i915_is_ggtt(vm)) {
3468                 bool mappable, fenceable;
3469
3470                 fenceable = (vma->node.size == fence_size &&
3471                              (vma->node.start & (fence_alignment - 1)) == 0);
3472
3473                 mappable = (vma->node.start + obj->base.size <=
3474                             dev_priv->gtt.mappable_end);
3475
3476                 obj->map_and_fenceable = mappable && fenceable;
3477         }
3478
3479         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3480
3481         trace_i915_vma_bind(vma, flags);
3482         vma->bind_vma(vma, obj->cache_level,
3483                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3484
3485         i915_gem_verify_gtt(dev);
3486         return vma;
3487
3488 err_remove_node:
3489         drm_mm_remove_node(&vma->node);
3490 err_free_vma:
3491         i915_gem_vma_destroy(vma);
3492         vma = ERR_PTR(ret);
3493 err_unpin:
3494         i915_gem_object_unpin_pages(obj);
3495         return vma;
3496 }
3497
3498 bool
3499 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3500                         bool force)
3501 {
3502         /* If we don't have a page list set up, then we're not pinned
3503          * to GPU, and we can ignore the cache flush because it'll happen
3504          * again at bind time.
3505          */
3506         if (obj->pages == NULL)
3507                 return false;
3508
3509         /*
3510          * Stolen memory is always coherent with the GPU as it is explicitly
3511          * marked as wc by the system, or the system is cache-coherent.
3512          */
3513         if (obj->stolen)
3514                 return false;
3515
3516         /* If the GPU is snooping the contents of the CPU cache,
3517          * we do not need to manually clear the CPU cache lines.  However,
3518          * the caches are only snooped when the render cache is
3519          * flushed/invalidated.  As we always have to emit invalidations
3520          * and flushes when moving into and out of the RENDER domain, correct
3521          * snooping behaviour occurs naturally as the result of our domain
3522          * tracking.
3523          */
3524         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3525                 return false;
3526
3527         trace_i915_gem_object_clflush(obj);
3528         drm_clflush_sg(obj->pages);
3529
3530         return true;
3531 }
3532
3533 /** Flushes the GTT write domain for the object if it's dirty. */
3534 static void
3535 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3536 {
3537         uint32_t old_write_domain;
3538
3539         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3540                 return;
3541
3542         /* No actual flushing is required for the GTT write domain.  Writes
3543          * to it immediately go to main memory as far as we know, so there's
3544          * no chipset flush.  It also doesn't land in render cache.
3545          *
3546          * However, we do have to enforce the order so that all writes through
3547          * the GTT land before any writes to the device, such as updates to
3548          * the GATT itself.
3549          */
3550         wmb();
3551
3552         old_write_domain = obj->base.write_domain;
3553         obj->base.write_domain = 0;
3554
3555         intel_fb_obj_flush(obj, false);
3556
3557         trace_i915_gem_object_change_domain(obj,
3558                                             obj->base.read_domains,
3559                                             old_write_domain);
3560 }
3561
3562 /** Flushes the CPU write domain for the object if it's dirty. */
3563 static void
3564 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3565                                        bool force)
3566 {
3567         uint32_t old_write_domain;
3568
3569         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3570                 return;
3571
3572         if (i915_gem_clflush_object(obj, force))
3573                 i915_gem_chipset_flush(obj->base.dev);
3574
3575         old_write_domain = obj->base.write_domain;
3576         obj->base.write_domain = 0;
3577
3578         intel_fb_obj_flush(obj, false);
3579
3580         trace_i915_gem_object_change_domain(obj,
3581                                             obj->base.read_domains,
3582                                             old_write_domain);
3583 }
3584
3585 /**
3586  * Moves a single object to the GTT read, and possibly write domain.
3587  *
3588  * This function returns when the move is complete, including waiting on
3589  * flushes to occur.
3590  */
3591 int
3592 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3593 {
3594         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3595         uint32_t old_write_domain, old_read_domains;
3596         int ret;
3597
3598         /* Not valid to be called on unbound objects. */
3599         if (!i915_gem_obj_bound_any(obj))
3600                 return -EINVAL;
3601
3602         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3603                 return 0;
3604
3605         ret = i915_gem_object_wait_rendering(obj, !write);
3606         if (ret)
3607                 return ret;
3608
3609         i915_gem_object_retire(obj);
3610         i915_gem_object_flush_cpu_write_domain(obj, false);
3611
3612         /* Serialise direct access to this object with the barriers for
3613          * coherent writes from the GPU, by effectively invalidating the
3614          * GTT domain upon first access.
3615          */
3616         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3617                 mb();
3618
3619         old_write_domain = obj->base.write_domain;
3620         old_read_domains = obj->base.read_domains;
3621
3622         /* It should now be out of any other write domains, and we can update
3623          * the domain values for our changes.
3624          */
3625         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3626         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3627         if (write) {
3628                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3629                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3630                 obj->dirty = 1;
3631         }
3632
3633         if (write)
3634                 intel_fb_obj_invalidate(obj, NULL);
3635
3636         trace_i915_gem_object_change_domain(obj,
3637                                             old_read_domains,
3638                                             old_write_domain);
3639
3640         /* And bump the LRU for this access */
3641         if (i915_gem_object_is_inactive(obj)) {
3642                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3643                 if (vma)
3644                         list_move_tail(&vma->mm_list,
3645                                        &dev_priv->gtt.base.inactive_list);
3646
3647         }
3648
3649         return 0;
3650 }
3651
3652 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3653                                     enum i915_cache_level cache_level)
3654 {
3655         struct drm_device *dev = obj->base.dev;
3656         struct i915_vma *vma, *next;
3657         int ret;
3658
3659         if (obj->cache_level == cache_level)
3660                 return 0;
3661
3662         if (i915_gem_obj_is_pinned(obj)) {
3663                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3664                 return -EBUSY;
3665         }
3666
3667         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3668                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3669                         ret = i915_vma_unbind(vma);
3670                         if (ret)
3671                                 return ret;
3672                 }
3673         }
3674
3675         if (i915_gem_obj_bound_any(obj)) {
3676                 ret = i915_gem_object_finish_gpu(obj);
3677                 if (ret)
3678                         return ret;
3679
3680                 i915_gem_object_finish_gtt(obj);
3681
3682                 /* Before SandyBridge, you could not use tiling or fence
3683                  * registers with snooped memory, so relinquish any fences
3684                  * currently pointing to our region in the aperture.
3685                  */
3686                 if (INTEL_INFO(dev)->gen < 6) {
3687                         ret = i915_gem_object_put_fence(obj);
3688                         if (ret)
3689                                 return ret;
3690                 }
3691
3692                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3693                         if (drm_mm_node_allocated(&vma->node))
3694                                 vma->bind_vma(vma, cache_level,
3695                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3696         }
3697
3698         list_for_each_entry(vma, &obj->vma_list, vma_link)
3699                 vma->node.color = cache_level;
3700         obj->cache_level = cache_level;
3701
3702         if (cpu_write_needs_clflush(obj)) {
3703                 u32 old_read_domains, old_write_domain;
3704
3705                 /* If we're coming from LLC cached, then we haven't
3706                  * actually been tracking whether the data is in the
3707                  * CPU cache or not, since we only allow one bit set
3708                  * in obj->write_domain and have been skipping the clflushes.
3709                  * Just set it to the CPU cache for now.
3710                  */
3711                 i915_gem_object_retire(obj);
3712                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3713
3714                 old_read_domains = obj->base.read_domains;
3715                 old_write_domain = obj->base.write_domain;
3716
3717                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3718                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3719
3720                 trace_i915_gem_object_change_domain(obj,
3721                                                     old_read_domains,
3722                                                     old_write_domain);
3723         }
3724
3725         i915_gem_verify_gtt(dev);
3726         return 0;
3727 }
3728
3729 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3730                                struct drm_file *file)
3731 {
3732         struct drm_i915_gem_caching *args = data;
3733         struct drm_i915_gem_object *obj;
3734         int ret;
3735
3736         ret = i915_mutex_lock_interruptible(dev);
3737         if (ret)
3738                 return ret;
3739
3740         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3741         if (&obj->base == NULL) {
3742                 ret = -ENOENT;
3743                 goto unlock;
3744         }
3745
3746         switch (obj->cache_level) {
3747         case I915_CACHE_LLC:
3748         case I915_CACHE_L3_LLC:
3749                 args->caching = I915_CACHING_CACHED;
3750                 break;
3751
3752         case I915_CACHE_WT:
3753                 args->caching = I915_CACHING_DISPLAY;
3754                 break;
3755
3756         default:
3757                 args->caching = I915_CACHING_NONE;
3758                 break;
3759         }
3760
3761         drm_gem_object_unreference(&obj->base);
3762 unlock:
3763         mutex_unlock(&dev->struct_mutex);
3764         return ret;
3765 }
3766
3767 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3768                                struct drm_file *file)
3769 {
3770         struct drm_i915_gem_caching *args = data;
3771         struct drm_i915_gem_object *obj;
3772         enum i915_cache_level level;
3773         int ret;
3774
3775         switch (args->caching) {
3776         case I915_CACHING_NONE:
3777                 level = I915_CACHE_NONE;
3778                 break;
3779         case I915_CACHING_CACHED:
3780                 level = I915_CACHE_LLC;
3781                 break;
3782         case I915_CACHING_DISPLAY:
3783                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3784                 break;
3785         default:
3786                 return -EINVAL;
3787         }
3788
3789         ret = i915_mutex_lock_interruptible(dev);
3790         if (ret)
3791                 return ret;
3792
3793         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3794         if (&obj->base == NULL) {
3795                 ret = -ENOENT;
3796                 goto unlock;
3797         }
3798
3799         ret = i915_gem_object_set_cache_level(obj, level);
3800
3801         drm_gem_object_unreference(&obj->base);
3802 unlock:
3803         mutex_unlock(&dev->struct_mutex);
3804         return ret;
3805 }
3806
3807 static bool is_pin_display(struct drm_i915_gem_object *obj)
3808 {
3809         struct i915_vma *vma;
3810
3811         if (list_empty(&obj->vma_list))
3812                 return false;
3813
3814         vma = i915_gem_obj_to_ggtt(obj);
3815         if (!vma)
3816                 return false;
3817
3818         /* There are 3 sources that pin objects:
3819          *   1. The display engine (scanouts, sprites, cursors);
3820          *   2. Reservations for execbuffer;
3821          *   3. The user.
3822          *
3823          * We can ignore reservations as we hold the struct_mutex and
3824          * are only called outside of the reservation path.  The user
3825          * can only increment pin_count once, and so if after
3826          * subtracting the potential reference by the user, any pin_count
3827          * remains, it must be due to another use by the display engine.
3828          */
3829         return vma->pin_count - !!obj->user_pin_count;
3830 }
3831
3832 /*
3833  * Prepare buffer for display plane (scanout, cursors, etc).
3834  * Can be called from an uninterruptible phase (modesetting) and allows
3835  * any flushes to be pipelined (for pageflips).
3836  */
3837 int
3838 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3839                                      u32 alignment,
3840                                      struct intel_engine_cs *pipelined)
3841 {
3842         u32 old_read_domains, old_write_domain;
3843         bool was_pin_display;
3844         int ret;
3845
3846         if (pipelined != obj->ring) {
3847                 ret = i915_gem_object_sync(obj, pipelined);
3848                 if (ret)
3849                         return ret;
3850         }
3851
3852         /* Mark the pin_display early so that we account for the
3853          * display coherency whilst setting up the cache domains.
3854          */
3855         was_pin_display = obj->pin_display;
3856         obj->pin_display = true;
3857
3858         /* The display engine is not coherent with the LLC cache on gen6.  As
3859          * a result, we make sure that the pinning that is about to occur is
3860          * done with uncached PTEs. This is lowest common denominator for all
3861          * chipsets.
3862          *
3863          * However for gen6+, we could do better by using the GFDT bit instead
3864          * of uncaching, which would allow us to flush all the LLC-cached data
3865          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3866          */
3867         ret = i915_gem_object_set_cache_level(obj,
3868                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3869         if (ret)
3870                 goto err_unpin_display;
3871
3872         /* As the user may map the buffer once pinned in the display plane
3873          * (e.g. libkms for the bootup splash), we have to ensure that we
3874          * always use map_and_fenceable for all scanout buffers.
3875          */
3876         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3877         if (ret)
3878                 goto err_unpin_display;
3879
3880         i915_gem_object_flush_cpu_write_domain(obj, true);
3881
3882         old_write_domain = obj->base.write_domain;
3883         old_read_domains = obj->base.read_domains;
3884
3885         /* It should now be out of any other write domains, and we can update
3886          * the domain values for our changes.
3887          */
3888         obj->base.write_domain = 0;
3889         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3890
3891         trace_i915_gem_object_change_domain(obj,
3892                                             old_read_domains,
3893                                             old_write_domain);
3894
3895         return 0;
3896
3897 err_unpin_display:
3898         WARN_ON(was_pin_display != is_pin_display(obj));
3899         obj->pin_display = was_pin_display;
3900         return ret;
3901 }
3902
3903 void
3904 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3905 {
3906         i915_gem_object_ggtt_unpin(obj);
3907         obj->pin_display = is_pin_display(obj);
3908 }
3909
3910 int
3911 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3912 {
3913         int ret;
3914
3915         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3916                 return 0;
3917
3918         ret = i915_gem_object_wait_rendering(obj, false);
3919         if (ret)
3920                 return ret;
3921
3922         /* Ensure that we invalidate the GPU's caches and TLBs. */
3923         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3924         return 0;
3925 }
3926
3927 /**
3928  * Moves a single object to the CPU read, and possibly write domain.
3929  *
3930  * This function returns when the move is complete, including waiting on
3931  * flushes to occur.
3932  */
3933 int
3934 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3935 {
3936         uint32_t old_write_domain, old_read_domains;
3937         int ret;
3938
3939         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3940                 return 0;
3941
3942         ret = i915_gem_object_wait_rendering(obj, !write);
3943         if (ret)
3944                 return ret;
3945
3946         i915_gem_object_retire(obj);
3947         i915_gem_object_flush_gtt_write_domain(obj);
3948
3949         old_write_domain = obj->base.write_domain;
3950         old_read_domains = obj->base.read_domains;
3951
3952         /* Flush the CPU cache if it's still invalid. */
3953         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3954                 i915_gem_clflush_object(obj, false);
3955
3956                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3957         }
3958
3959         /* It should now be out of any other write domains, and we can update
3960          * the domain values for our changes.
3961          */
3962         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3963
3964         /* If we're writing through the CPU, then the GPU read domains will
3965          * need to be invalidated at next use.
3966          */
3967         if (write) {
3968                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3969                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3970         }
3971
3972         if (write)
3973                 intel_fb_obj_invalidate(obj, NULL);
3974
3975         trace_i915_gem_object_change_domain(obj,
3976                                             old_read_domains,
3977                                             old_write_domain);
3978
3979         return 0;
3980 }
3981
3982 /* Throttle our rendering by waiting until the ring has completed our requests
3983  * emitted over 20 msec ago.
3984  *
3985  * Note that if we were to use the current jiffies each time around the loop,
3986  * we wouldn't escape the function with any frames outstanding if the time to
3987  * render a frame was over 20ms.
3988  *
3989  * This should get us reasonable parallelism between CPU and GPU but also
3990  * relatively low latency when blocking on a particular request to finish.
3991  */
3992 static int
3993 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3994 {
3995         struct drm_i915_private *dev_priv = dev->dev_private;
3996         struct drm_i915_file_private *file_priv = file->driver_priv;
3997         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3998         struct drm_i915_gem_request *request;
3999         struct intel_engine_cs *ring = NULL;
4000         unsigned reset_counter;
4001         u32 seqno = 0;
4002         int ret;
4003
4004         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4005         if (ret)
4006                 return ret;
4007
4008         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4009         if (ret)
4010                 return ret;
4011
4012         spin_lock(&file_priv->mm.lock);
4013         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4014                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4015                         break;
4016
4017                 ring = request->ring;
4018                 seqno = request->seqno;
4019         }
4020         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4021         spin_unlock(&file_priv->mm.lock);
4022
4023         if (seqno == 0)
4024                 return 0;
4025
4026         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4027         if (ret == 0)
4028                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4029
4030         return ret;
4031 }
4032
4033 static bool
4034 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4035 {
4036         struct drm_i915_gem_object *obj = vma->obj;
4037
4038         if (alignment &&
4039             vma->node.start & (alignment - 1))
4040                 return true;
4041
4042         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4043                 return true;
4044
4045         if (flags & PIN_OFFSET_BIAS &&
4046             vma->node.start < (flags & PIN_OFFSET_MASK))
4047                 return true;
4048
4049         return false;
4050 }
4051
4052 int
4053 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4054                     struct i915_address_space *vm,
4055                     uint32_t alignment,
4056                     uint64_t flags)
4057 {
4058         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4059         struct i915_vma *vma;
4060         int ret;
4061
4062         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4063                 return -ENODEV;
4064
4065         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4066                 return -EINVAL;
4067
4068         vma = i915_gem_obj_to_vma(obj, vm);
4069         if (vma) {
4070                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4071                         return -EBUSY;
4072
4073                 if (i915_vma_misplaced(vma, alignment, flags)) {
4074                         WARN(vma->pin_count,
4075                              "bo is already pinned with incorrect alignment:"
4076                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4077                              " obj->map_and_fenceable=%d\n",
4078                              i915_gem_obj_offset(obj, vm), alignment,
4079                              !!(flags & PIN_MAPPABLE),
4080                              obj->map_and_fenceable);
4081                         ret = i915_vma_unbind(vma);
4082                         if (ret)
4083                                 return ret;
4084
4085                         vma = NULL;
4086                 }
4087         }
4088
4089         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4090                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4091                 if (IS_ERR(vma))
4092                         return PTR_ERR(vma);
4093         }
4094
4095         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4096                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4097
4098         vma->pin_count++;
4099         if (flags & PIN_MAPPABLE)
4100                 obj->pin_mappable |= true;
4101
4102         return 0;
4103 }
4104
4105 void
4106 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4107 {
4108         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4109
4110         BUG_ON(!vma);
4111         BUG_ON(vma->pin_count == 0);
4112         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4113
4114         if (--vma->pin_count == 0)
4115                 obj->pin_mappable = false;
4116 }
4117
4118 bool
4119 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4120 {
4121         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4122                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4123                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4124
4125                 WARN_ON(!ggtt_vma ||
4126                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4127                         ggtt_vma->pin_count);
4128                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4129                 return true;
4130         } else
4131                 return false;
4132 }
4133
4134 void
4135 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4136 {
4137         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4138                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4139                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4140                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4141         }
4142 }
4143
4144 int
4145 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4146                    struct drm_file *file)
4147 {
4148         struct drm_i915_gem_pin *args = data;
4149         struct drm_i915_gem_object *obj;
4150         int ret;
4151
4152         if (INTEL_INFO(dev)->gen >= 6)
4153                 return -ENODEV;
4154
4155         ret = i915_mutex_lock_interruptible(dev);
4156         if (ret)
4157                 return ret;
4158
4159         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4160         if (&obj->base == NULL) {
4161                 ret = -ENOENT;
4162                 goto unlock;
4163         }
4164
4165         if (obj->madv != I915_MADV_WILLNEED) {
4166                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4167                 ret = -EFAULT;
4168                 goto out;
4169         }
4170
4171         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4172                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4173                           args->handle);
4174                 ret = -EINVAL;
4175                 goto out;
4176         }
4177
4178         if (obj->user_pin_count == ULONG_MAX) {
4179                 ret = -EBUSY;
4180                 goto out;
4181         }
4182
4183         if (obj->user_pin_count == 0) {
4184                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4185                 if (ret)
4186                         goto out;
4187         }
4188
4189         obj->user_pin_count++;
4190         obj->pin_filp = file;
4191
4192         args->offset = i915_gem_obj_ggtt_offset(obj);
4193 out:
4194         drm_gem_object_unreference(&obj->base);
4195 unlock:
4196         mutex_unlock(&dev->struct_mutex);
4197         return ret;
4198 }
4199
4200 int
4201 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4202                      struct drm_file *file)
4203 {
4204         struct drm_i915_gem_pin *args = data;
4205         struct drm_i915_gem_object *obj;
4206         int ret;
4207
4208         ret = i915_mutex_lock_interruptible(dev);
4209         if (ret)
4210                 return ret;
4211
4212         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4213         if (&obj->base == NULL) {
4214                 ret = -ENOENT;
4215                 goto unlock;
4216         }
4217
4218         if (obj->pin_filp != file) {
4219                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4220                           args->handle);
4221                 ret = -EINVAL;
4222                 goto out;
4223         }
4224         obj->user_pin_count--;
4225         if (obj->user_pin_count == 0) {
4226                 obj->pin_filp = NULL;
4227                 i915_gem_object_ggtt_unpin(obj);
4228         }
4229
4230 out:
4231         drm_gem_object_unreference(&obj->base);
4232 unlock:
4233         mutex_unlock(&dev->struct_mutex);
4234         return ret;
4235 }
4236
4237 int
4238 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4239                     struct drm_file *file)
4240 {
4241         struct drm_i915_gem_busy *args = data;
4242         struct drm_i915_gem_object *obj;
4243         int ret;
4244
4245         ret = i915_mutex_lock_interruptible(dev);
4246         if (ret)
4247                 return ret;
4248
4249         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4250         if (&obj->base == NULL) {
4251                 ret = -ENOENT;
4252                 goto unlock;
4253         }
4254
4255         /* Count all active objects as busy, even if they are currently not used
4256          * by the gpu. Users of this interface expect objects to eventually
4257          * become non-busy without any further actions, therefore emit any
4258          * necessary flushes here.
4259          */
4260         ret = i915_gem_object_flush_active(obj);
4261
4262         args->busy = obj->active;
4263         if (obj->ring) {
4264                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4265                 args->busy |= intel_ring_flag(obj->ring) << 16;
4266         }
4267
4268         drm_gem_object_unreference(&obj->base);
4269 unlock:
4270         mutex_unlock(&dev->struct_mutex);
4271         return ret;
4272 }
4273
4274 int
4275 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4276                         struct drm_file *file_priv)
4277 {
4278         return i915_gem_ring_throttle(dev, file_priv);
4279 }
4280
4281 int
4282 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4283                        struct drm_file *file_priv)
4284 {
4285         struct drm_i915_gem_madvise *args = data;
4286         struct drm_i915_gem_object *obj;
4287         int ret;
4288
4289         switch (args->madv) {
4290         case I915_MADV_DONTNEED:
4291         case I915_MADV_WILLNEED:
4292             break;
4293         default:
4294             return -EINVAL;
4295         }
4296
4297         ret = i915_mutex_lock_interruptible(dev);
4298         if (ret)
4299                 return ret;
4300
4301         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4302         if (&obj->base == NULL) {
4303                 ret = -ENOENT;
4304                 goto unlock;
4305         }
4306
4307         if (i915_gem_obj_is_pinned(obj)) {
4308                 ret = -EINVAL;
4309                 goto out;
4310         }
4311
4312         if (obj->madv != __I915_MADV_PURGED)
4313                 obj->madv = args->madv;
4314
4315         /* if the object is no longer attached, discard its backing storage */
4316         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4317                 i915_gem_object_truncate(obj);
4318
4319         args->retained = obj->madv != __I915_MADV_PURGED;
4320
4321 out:
4322         drm_gem_object_unreference(&obj->base);
4323 unlock:
4324         mutex_unlock(&dev->struct_mutex);
4325         return ret;
4326 }
4327
4328 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4329                           const struct drm_i915_gem_object_ops *ops)
4330 {
4331         INIT_LIST_HEAD(&obj->global_list);
4332         INIT_LIST_HEAD(&obj->ring_list);
4333         INIT_LIST_HEAD(&obj->obj_exec_link);
4334         INIT_LIST_HEAD(&obj->vma_list);
4335
4336         obj->ops = ops;
4337
4338         obj->fence_reg = I915_FENCE_REG_NONE;
4339         obj->madv = I915_MADV_WILLNEED;
4340         /* Avoid an unnecessary call to unbind on the first bind. */
4341         obj->map_and_fenceable = true;
4342
4343         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4344 }
4345
4346 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4347         .get_pages = i915_gem_object_get_pages_gtt,
4348         .put_pages = i915_gem_object_put_pages_gtt,
4349 };
4350
4351 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4352                                                   size_t size)
4353 {
4354         struct drm_i915_gem_object *obj;
4355         struct address_space *mapping;
4356         gfp_t mask;
4357
4358         obj = i915_gem_object_alloc(dev);
4359         if (obj == NULL)
4360                 return NULL;
4361
4362         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4363                 i915_gem_object_free(obj);
4364                 return NULL;
4365         }
4366
4367         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4368         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4369                 /* 965gm cannot relocate objects above 4GiB. */
4370                 mask &= ~__GFP_HIGHMEM;
4371                 mask |= __GFP_DMA32;
4372         }
4373
4374         mapping = file_inode(obj->base.filp)->i_mapping;
4375         mapping_set_gfp_mask(mapping, mask);
4376
4377         i915_gem_object_init(obj, &i915_gem_object_ops);
4378
4379         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4380         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4381
4382         if (HAS_LLC(dev)) {
4383                 /* On some devices, we can have the GPU use the LLC (the CPU
4384                  * cache) for about a 10% performance improvement
4385                  * compared to uncached.  Graphics requests other than
4386                  * display scanout are coherent with the CPU in
4387                  * accessing this cache.  This means in this mode we
4388                  * don't need to clflush on the CPU side, and on the
4389                  * GPU side we only need to flush internal caches to
4390                  * get data visible to the CPU.
4391                  *
4392                  * However, we maintain the display planes as UC, and so
4393                  * need to rebind when first used as such.
4394                  */
4395                 obj->cache_level = I915_CACHE_LLC;
4396         } else
4397                 obj->cache_level = I915_CACHE_NONE;
4398
4399         trace_i915_gem_object_create(obj);
4400
4401         return obj;
4402 }
4403
4404 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4405 {
4406         /* If we are the last user of the backing storage (be it shmemfs
4407          * pages or stolen etc), we know that the pages are going to be
4408          * immediately released. In this case, we can then skip copying
4409          * back the contents from the GPU.
4410          */
4411
4412         if (obj->madv != I915_MADV_WILLNEED)
4413                 return false;
4414
4415         if (obj->base.filp == NULL)
4416                 return true;
4417
4418         /* At first glance, this looks racy, but then again so would be
4419          * userspace racing mmap against close. However, the first external
4420          * reference to the filp can only be obtained through the
4421          * i915_gem_mmap_ioctl() which safeguards us against the user
4422          * acquiring such a reference whilst we are in the middle of
4423          * freeing the object.
4424          */
4425         return atomic_long_read(&obj->base.filp->f_count) == 1;
4426 }
4427
4428 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4429 {
4430         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4431         struct drm_device *dev = obj->base.dev;
4432         struct drm_i915_private *dev_priv = dev->dev_private;
4433         struct i915_vma *vma, *next;
4434
4435         intel_runtime_pm_get(dev_priv);
4436
4437         trace_i915_gem_object_destroy(obj);
4438
4439         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4440                 int ret;
4441
4442                 vma->pin_count = 0;
4443                 ret = i915_vma_unbind(vma);
4444                 if (WARN_ON(ret == -ERESTARTSYS)) {
4445                         bool was_interruptible;
4446
4447                         was_interruptible = dev_priv->mm.interruptible;
4448                         dev_priv->mm.interruptible = false;
4449
4450                         WARN_ON(i915_vma_unbind(vma));
4451
4452                         dev_priv->mm.interruptible = was_interruptible;
4453                 }
4454         }
4455
4456         i915_gem_object_detach_phys(obj);
4457
4458         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4459          * before progressing. */
4460         if (obj->stolen)
4461                 i915_gem_object_unpin_pages(obj);
4462
4463         WARN_ON(obj->frontbuffer_bits);
4464
4465         if (WARN_ON(obj->pages_pin_count))
4466                 obj->pages_pin_count = 0;
4467         if (discard_backing_storage(obj))
4468                 obj->madv = I915_MADV_DONTNEED;
4469         i915_gem_object_put_pages(obj);
4470         i915_gem_object_free_mmap_offset(obj);
4471
4472         BUG_ON(obj->pages);
4473
4474         if (obj->base.import_attach)
4475                 drm_prime_gem_destroy(&obj->base, NULL);
4476
4477         if (obj->ops->release)
4478                 obj->ops->release(obj);
4479
4480         drm_gem_object_release(&obj->base);
4481         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4482
4483         kfree(obj->bit_17);
4484         i915_gem_object_free(obj);
4485
4486         intel_runtime_pm_put(dev_priv);
4487 }
4488
4489 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4490                                      struct i915_address_space *vm)
4491 {
4492         struct i915_vma *vma;
4493         list_for_each_entry(vma, &obj->vma_list, vma_link)
4494                 if (vma->vm == vm)
4495                         return vma;
4496
4497         return NULL;
4498 }
4499
4500 void i915_gem_vma_destroy(struct i915_vma *vma)
4501 {
4502         WARN_ON(vma->node.allocated);
4503
4504         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4505         if (!list_empty(&vma->exec_list))
4506                 return;
4507
4508         list_del(&vma->vma_link);
4509
4510         kfree(vma);
4511 }
4512
4513 static void
4514 i915_gem_stop_ringbuffers(struct drm_device *dev)
4515 {
4516         struct drm_i915_private *dev_priv = dev->dev_private;
4517         struct intel_engine_cs *ring;
4518         int i;
4519
4520         for_each_ring(ring, dev_priv, i)
4521                 intel_stop_ring_buffer(ring);
4522 }
4523
4524 int
4525 i915_gem_suspend(struct drm_device *dev)
4526 {
4527         struct drm_i915_private *dev_priv = dev->dev_private;
4528         int ret = 0;
4529
4530         mutex_lock(&dev->struct_mutex);
4531         if (dev_priv->ums.mm_suspended)
4532                 goto err;
4533
4534         ret = i915_gpu_idle(dev);
4535         if (ret)
4536                 goto err;
4537
4538         i915_gem_retire_requests(dev);
4539
4540         /* Under UMS, be paranoid and evict. */
4541         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4542                 i915_gem_evict_everything(dev);
4543
4544         i915_kernel_lost_context(dev);
4545         i915_gem_stop_ringbuffers(dev);
4546
4547         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4548          * We need to replace this with a semaphore, or something.
4549          * And not confound ums.mm_suspended!
4550          */
4551         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4552                                                              DRIVER_MODESET);
4553         mutex_unlock(&dev->struct_mutex);
4554
4555         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4556         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4557         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4558
4559         return 0;
4560
4561 err:
4562         mutex_unlock(&dev->struct_mutex);
4563         return ret;
4564 }
4565
4566 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4567 {
4568         struct drm_device *dev = ring->dev;
4569         struct drm_i915_private *dev_priv = dev->dev_private;
4570         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4571         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4572         int i, ret;
4573
4574         if (!HAS_L3_DPF(dev) || !remap_info)
4575                 return 0;
4576
4577         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4578         if (ret)
4579                 return ret;
4580
4581         /*
4582          * Note: We do not worry about the concurrent register cacheline hang
4583          * here because no other code should access these registers other than
4584          * at initialization time.
4585          */
4586         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4587                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4588                 intel_ring_emit(ring, reg_base + i);
4589                 intel_ring_emit(ring, remap_info[i/4]);
4590         }
4591
4592         intel_ring_advance(ring);
4593
4594         return ret;
4595 }
4596
4597 void i915_gem_init_swizzling(struct drm_device *dev)
4598 {
4599         struct drm_i915_private *dev_priv = dev->dev_private;
4600
4601         if (INTEL_INFO(dev)->gen < 5 ||
4602             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4603                 return;
4604
4605         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4606                                  DISP_TILE_SURFACE_SWIZZLING);
4607
4608         if (IS_GEN5(dev))
4609                 return;
4610
4611         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4612         if (IS_GEN6(dev))
4613                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4614         else if (IS_GEN7(dev))
4615                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4616         else if (IS_GEN8(dev))
4617                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4618         else
4619                 BUG();
4620 }
4621
4622 static bool
4623 intel_enable_blt(struct drm_device *dev)
4624 {
4625         if (!HAS_BLT(dev))
4626                 return false;
4627
4628         /* The blitter was dysfunctional on early prototypes */
4629         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4630                 DRM_INFO("BLT not supported on this pre-production hardware;"
4631                          " graphics performance will be degraded.\n");
4632                 return false;
4633         }
4634
4635         return true;
4636 }
4637
4638 static int i915_gem_init_rings(struct drm_device *dev)
4639 {
4640         struct drm_i915_private *dev_priv = dev->dev_private;
4641         int ret;
4642
4643         ret = intel_init_render_ring_buffer(dev);
4644         if (ret)
4645                 return ret;
4646
4647         if (HAS_BSD(dev)) {
4648                 ret = intel_init_bsd_ring_buffer(dev);
4649                 if (ret)
4650                         goto cleanup_render_ring;
4651         }
4652
4653         if (intel_enable_blt(dev)) {
4654                 ret = intel_init_blt_ring_buffer(dev);
4655                 if (ret)
4656                         goto cleanup_bsd_ring;
4657         }
4658
4659         if (HAS_VEBOX(dev)) {
4660                 ret = intel_init_vebox_ring_buffer(dev);
4661                 if (ret)
4662                         goto cleanup_blt_ring;
4663         }
4664
4665         if (HAS_BSD2(dev)) {
4666                 ret = intel_init_bsd2_ring_buffer(dev);
4667                 if (ret)
4668                         goto cleanup_vebox_ring;
4669         }
4670
4671         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4672         if (ret)
4673                 goto cleanup_bsd2_ring;
4674
4675         return 0;
4676
4677 cleanup_bsd2_ring:
4678         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4679 cleanup_vebox_ring:
4680         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4681 cleanup_blt_ring:
4682         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4683 cleanup_bsd_ring:
4684         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4685 cleanup_render_ring:
4686         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4687
4688         return ret;
4689 }
4690
4691 int
4692 i915_gem_init_hw(struct drm_device *dev)
4693 {
4694         struct drm_i915_private *dev_priv = dev->dev_private;
4695         int ret, i;
4696
4697         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4698                 return -EIO;
4699
4700         if (dev_priv->ellc_size)
4701                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4702
4703         if (IS_HASWELL(dev))
4704                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4705                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4706
4707         if (HAS_PCH_NOP(dev)) {
4708                 if (IS_IVYBRIDGE(dev)) {
4709                         u32 temp = I915_READ(GEN7_MSG_CTL);
4710                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4711                         I915_WRITE(GEN7_MSG_CTL, temp);
4712                 } else if (INTEL_INFO(dev)->gen >= 7) {
4713                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4714                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4715                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4716                 }
4717         }
4718
4719         i915_gem_init_swizzling(dev);
4720
4721         ret = i915_gem_init_rings(dev);
4722         if (ret)
4723                 return ret;
4724
4725         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4726                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4727
4728         /*
4729          * XXX: Contexts should only be initialized once. Doing a switch to the
4730          * default context switch however is something we'd like to do after
4731          * reset or thaw (the latter may not actually be necessary for HW, but
4732          * goes with our code better). Context switching requires rings (for
4733          * the do_switch), but before enabling PPGTT. So don't move this.
4734          */
4735         ret = i915_gem_context_enable(dev_priv);
4736         if (ret && ret != -EIO) {
4737                 DRM_ERROR("Context enable failed %d\n", ret);
4738                 i915_gem_cleanup_ringbuffer(dev);
4739         }
4740
4741         return ret;
4742 }
4743
4744 int i915_gem_init(struct drm_device *dev)
4745 {
4746         struct drm_i915_private *dev_priv = dev->dev_private;
4747         int ret;
4748
4749         mutex_lock(&dev->struct_mutex);
4750
4751         if (IS_VALLEYVIEW(dev)) {
4752                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4753                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4754                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4755                               VLV_GTLC_ALLOWWAKEACK), 10))
4756                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4757         }
4758
4759         i915_gem_init_userptr(dev);
4760         i915_gem_init_global_gtt(dev);
4761
4762         ret = i915_gem_context_init(dev);
4763         if (ret) {
4764                 mutex_unlock(&dev->struct_mutex);
4765                 return ret;
4766         }
4767
4768         ret = i915_gem_init_hw(dev);
4769         if (ret == -EIO) {
4770                 /* Allow ring initialisation to fail by marking the GPU as
4771                  * wedged. But we only want to do this where the GPU is angry,
4772                  * for all other failure, such as an allocation failure, bail.
4773                  */
4774                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4775                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4776                 ret = 0;
4777         }
4778         mutex_unlock(&dev->struct_mutex);
4779
4780         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4781         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4782                 dev_priv->dri1.allow_batchbuffer = 1;
4783         return ret;
4784 }
4785
4786 void
4787 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4788 {
4789         struct drm_i915_private *dev_priv = dev->dev_private;
4790         struct intel_engine_cs *ring;
4791         int i;
4792
4793         for_each_ring(ring, dev_priv, i)
4794                 intel_cleanup_ring_buffer(ring);
4795 }
4796
4797 int
4798 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4799                        struct drm_file *file_priv)
4800 {
4801         struct drm_i915_private *dev_priv = dev->dev_private;
4802         int ret;
4803
4804         if (drm_core_check_feature(dev, DRIVER_MODESET))
4805                 return 0;
4806
4807         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4808                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4809                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4810         }
4811
4812         mutex_lock(&dev->struct_mutex);
4813         dev_priv->ums.mm_suspended = 0;
4814
4815         ret = i915_gem_init_hw(dev);
4816         if (ret != 0) {
4817                 mutex_unlock(&dev->struct_mutex);
4818                 return ret;
4819         }
4820
4821         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4822
4823         ret = drm_irq_install(dev, dev->pdev->irq);
4824         if (ret)
4825                 goto cleanup_ringbuffer;
4826         mutex_unlock(&dev->struct_mutex);
4827
4828         return 0;
4829
4830 cleanup_ringbuffer:
4831         i915_gem_cleanup_ringbuffer(dev);
4832         dev_priv->ums.mm_suspended = 1;
4833         mutex_unlock(&dev->struct_mutex);
4834
4835         return ret;
4836 }
4837
4838 int
4839 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4840                        struct drm_file *file_priv)
4841 {
4842         if (drm_core_check_feature(dev, DRIVER_MODESET))
4843                 return 0;
4844
4845         mutex_lock(&dev->struct_mutex);
4846         drm_irq_uninstall(dev);
4847         mutex_unlock(&dev->struct_mutex);
4848
4849         return i915_gem_suspend(dev);
4850 }
4851
4852 void
4853 i915_gem_lastclose(struct drm_device *dev)
4854 {
4855         int ret;
4856
4857         if (drm_core_check_feature(dev, DRIVER_MODESET))
4858                 return;
4859
4860         ret = i915_gem_suspend(dev);
4861         if (ret)
4862                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4863 }
4864
4865 static void
4866 init_ring_lists(struct intel_engine_cs *ring)
4867 {
4868         INIT_LIST_HEAD(&ring->active_list);
4869         INIT_LIST_HEAD(&ring->request_list);
4870 }
4871
4872 void i915_init_vm(struct drm_i915_private *dev_priv,
4873                   struct i915_address_space *vm)
4874 {
4875         if (!i915_is_ggtt(vm))
4876                 drm_mm_init(&vm->mm, vm->start, vm->total);
4877         vm->dev = dev_priv->dev;
4878         INIT_LIST_HEAD(&vm->active_list);
4879         INIT_LIST_HEAD(&vm->inactive_list);
4880         INIT_LIST_HEAD(&vm->global_link);
4881         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4882 }
4883
4884 void
4885 i915_gem_load(struct drm_device *dev)
4886 {
4887         struct drm_i915_private *dev_priv = dev->dev_private;
4888         int i;
4889
4890         dev_priv->slab =
4891                 kmem_cache_create("i915_gem_object",
4892                                   sizeof(struct drm_i915_gem_object), 0,
4893                                   SLAB_HWCACHE_ALIGN,
4894                                   NULL);
4895
4896         INIT_LIST_HEAD(&dev_priv->vm_list);
4897         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4898
4899         INIT_LIST_HEAD(&dev_priv->context_list);
4900         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4901         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4902         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4903         for (i = 0; i < I915_NUM_RINGS; i++)
4904                 init_ring_lists(&dev_priv->ring[i]);
4905         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4906                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4907         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4908                           i915_gem_retire_work_handler);
4909         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4910                           i915_gem_idle_work_handler);
4911         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4912
4913         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4914         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4915                 I915_WRITE(MI_ARB_STATE,
4916                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4917         }
4918
4919         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4920
4921         /* Old X drivers will take 0-2 for front, back, depth buffers */
4922         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4923                 dev_priv->fence_reg_start = 3;
4924
4925         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4926                 dev_priv->num_fence_regs = 32;
4927         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4928                 dev_priv->num_fence_regs = 16;
4929         else
4930                 dev_priv->num_fence_regs = 8;
4931
4932         /* Initialize fence registers to zero */
4933         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4934         i915_gem_restore_fences(dev);
4935
4936         i915_gem_detect_bit_6_swizzle(dev);
4937         init_waitqueue_head(&dev_priv->pending_flip_queue);
4938
4939         dev_priv->mm.interruptible = true;
4940
4941         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4942         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4943         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4944         register_shrinker(&dev_priv->mm.shrinker);
4945
4946         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4947         register_oom_notifier(&dev_priv->mm.oom_notifier);
4948
4949         mutex_init(&dev_priv->fb_tracking.lock);
4950 }
4951
4952 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4953 {
4954         struct drm_i915_file_private *file_priv = file->driver_priv;
4955
4956         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4957
4958         /* Clean up our request list when the client is going away, so that
4959          * later retire_requests won't dereference our soon-to-be-gone
4960          * file_priv.
4961          */
4962         spin_lock(&file_priv->mm.lock);
4963         while (!list_empty(&file_priv->mm.request_list)) {
4964                 struct drm_i915_gem_request *request;
4965
4966                 request = list_first_entry(&file_priv->mm.request_list,
4967                                            struct drm_i915_gem_request,
4968                                            client_list);
4969                 list_del(&request->client_list);
4970                 request->file_priv = NULL;
4971         }
4972         spin_unlock(&file_priv->mm.lock);
4973 }
4974
4975 static void
4976 i915_gem_file_idle_work_handler(struct work_struct *work)
4977 {
4978         struct drm_i915_file_private *file_priv =
4979                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4980
4981         atomic_set(&file_priv->rps_wait_boost, false);
4982 }
4983
4984 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4985 {
4986         struct drm_i915_file_private *file_priv;
4987         int ret;
4988
4989         DRM_DEBUG_DRIVER("\n");
4990
4991         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4992         if (!file_priv)
4993                 return -ENOMEM;
4994
4995         file->driver_priv = file_priv;
4996         file_priv->dev_priv = dev->dev_private;
4997         file_priv->file = file;
4998
4999         spin_lock_init(&file_priv->mm.lock);
5000         INIT_LIST_HEAD(&file_priv->mm.request_list);
5001         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5002                           i915_gem_file_idle_work_handler);
5003
5004         ret = i915_gem_context_open(dev, file);
5005         if (ret)
5006                 kfree(file_priv);
5007
5008         return ret;
5009 }
5010
5011 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5012                        struct drm_i915_gem_object *new,
5013                        unsigned frontbuffer_bits)
5014 {
5015         if (old) {
5016                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5017                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5018                 old->frontbuffer_bits &= ~frontbuffer_bits;
5019         }
5020
5021         if (new) {
5022                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5023                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5024                 new->frontbuffer_bits |= frontbuffer_bits;
5025         }
5026 }
5027
5028 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5029 {
5030         if (!mutex_is_locked(mutex))
5031                 return false;
5032
5033 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5034         return mutex->owner == task;
5035 #else
5036         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5037         return false;
5038 #endif
5039 }
5040
5041 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5042 {
5043         if (!mutex_trylock(&dev->struct_mutex)) {
5044                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5045                         return false;
5046
5047                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5048                         return false;
5049
5050                 *unlock = false;
5051         } else
5052                 *unlock = true;
5053
5054         return true;
5055 }
5056
5057 static int num_vma_bound(struct drm_i915_gem_object *obj)
5058 {
5059         struct i915_vma *vma;
5060         int count = 0;
5061
5062         list_for_each_entry(vma, &obj->vma_list, vma_link)
5063                 if (drm_mm_node_allocated(&vma->node))
5064                         count++;
5065
5066         return count;
5067 }
5068
5069 static unsigned long
5070 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5071 {
5072         struct drm_i915_private *dev_priv =
5073                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5074         struct drm_device *dev = dev_priv->dev;
5075         struct drm_i915_gem_object *obj;
5076         unsigned long count;
5077         bool unlock;
5078
5079         if (!i915_gem_shrinker_lock(dev, &unlock))
5080                 return 0;
5081
5082         count = 0;
5083         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5084                 if (obj->pages_pin_count == 0)
5085                         count += obj->base.size >> PAGE_SHIFT;
5086
5087         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5088                 if (!i915_gem_obj_is_pinned(obj) &&
5089                     obj->pages_pin_count == num_vma_bound(obj))
5090                         count += obj->base.size >> PAGE_SHIFT;
5091         }
5092
5093         if (unlock)
5094                 mutex_unlock(&dev->struct_mutex);
5095
5096         return count;
5097 }
5098
5099 /* All the new VM stuff */
5100 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5101                                   struct i915_address_space *vm)
5102 {
5103         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5104         struct i915_vma *vma;
5105
5106         if (!dev_priv->mm.aliasing_ppgtt ||
5107             vm == &dev_priv->mm.aliasing_ppgtt->base)
5108                 vm = &dev_priv->gtt.base;
5109
5110         list_for_each_entry(vma, &o->vma_list, vma_link) {
5111                 if (vma->vm == vm)
5112                         return vma->node.start;
5113
5114         }
5115         WARN(1, "%s vma for this object not found.\n",
5116              i915_is_ggtt(vm) ? "global" : "ppgtt");
5117         return -1;
5118 }
5119
5120 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5121                         struct i915_address_space *vm)
5122 {
5123         struct i915_vma *vma;
5124
5125         list_for_each_entry(vma, &o->vma_list, vma_link)
5126                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5127                         return true;
5128
5129         return false;
5130 }
5131
5132 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5133 {
5134         struct i915_vma *vma;
5135
5136         list_for_each_entry(vma, &o->vma_list, vma_link)
5137                 if (drm_mm_node_allocated(&vma->node))
5138                         return true;
5139
5140         return false;
5141 }
5142
5143 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5144                                 struct i915_address_space *vm)
5145 {
5146         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5147         struct i915_vma *vma;
5148
5149         if (!dev_priv->mm.aliasing_ppgtt ||
5150             vm == &dev_priv->mm.aliasing_ppgtt->base)
5151                 vm = &dev_priv->gtt.base;
5152
5153         BUG_ON(list_empty(&o->vma_list));
5154
5155         list_for_each_entry(vma, &o->vma_list, vma_link)
5156                 if (vma->vm == vm)
5157                         return vma->node.size;
5158
5159         return 0;
5160 }
5161
5162 static unsigned long
5163 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5164 {
5165         struct drm_i915_private *dev_priv =
5166                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5167         struct drm_device *dev = dev_priv->dev;
5168         unsigned long freed;
5169         bool unlock;
5170
5171         if (!i915_gem_shrinker_lock(dev, &unlock))
5172                 return SHRINK_STOP;
5173
5174         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5175         if (freed < sc->nr_to_scan)
5176                 freed += __i915_gem_shrink(dev_priv,
5177                                            sc->nr_to_scan - freed,
5178                                            false);
5179         if (unlock)
5180                 mutex_unlock(&dev->struct_mutex);
5181
5182         return freed;
5183 }
5184
5185 static int
5186 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5187 {
5188         struct drm_i915_private *dev_priv =
5189                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5190         struct drm_device *dev = dev_priv->dev;
5191         struct drm_i915_gem_object *obj;
5192         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5193         unsigned long pinned, bound, unbound, freed;
5194         bool was_interruptible;
5195         bool unlock;
5196
5197         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5198                 schedule_timeout_killable(1);
5199                 if (fatal_signal_pending(current))
5200                         return NOTIFY_DONE;
5201         }
5202         if (timeout == 0) {
5203                 pr_err("Unable to purge GPU memory due lock contention.\n");
5204                 return NOTIFY_DONE;
5205         }
5206
5207         was_interruptible = dev_priv->mm.interruptible;
5208         dev_priv->mm.interruptible = false;
5209
5210         freed = i915_gem_shrink_all(dev_priv);
5211
5212         dev_priv->mm.interruptible = was_interruptible;
5213
5214         /* Because we may be allocating inside our own driver, we cannot
5215          * assert that there are no objects with pinned pages that are not
5216          * being pointed to by hardware.
5217          */
5218         unbound = bound = pinned = 0;
5219         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5220                 if (!obj->base.filp) /* not backed by a freeable object */
5221                         continue;
5222
5223                 if (obj->pages_pin_count)
5224                         pinned += obj->base.size;
5225                 else
5226                         unbound += obj->base.size;
5227         }
5228         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5229                 if (!obj->base.filp)
5230                         continue;
5231
5232                 if (obj->pages_pin_count)
5233                         pinned += obj->base.size;
5234                 else
5235                         bound += obj->base.size;
5236         }
5237
5238         if (unlock)
5239                 mutex_unlock(&dev->struct_mutex);
5240
5241         pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5242                 freed, pinned);
5243         if (unbound || bound)
5244                 pr_err("%lu and %lu bytes still available in the "
5245                        "bound and unbound GPU page lists.\n",
5246                        bound, unbound);
5247
5248         *(unsigned long *)ptr += freed;
5249         return NOTIFY_DONE;
5250 }
5251
5252 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5253 {
5254         struct i915_vma *vma;
5255
5256         /* This WARN has probably outlived its usefulness (callers already
5257          * WARN if they don't find the GGTT vma they expect). When removing,
5258          * remember to remove the pre-check in is_pin_display() as well */
5259         if (WARN_ON(list_empty(&obj->vma_list)))
5260                 return NULL;
5261
5262         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5263         if (vma->vm != obj_to_ggtt(obj))
5264                 return NULL;
5265
5266         return vma;
5267 }