]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Fix __wait_seqno to use true infinite timeouts
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (obj->pin_count)
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915_prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915_prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 /**
986  * __wait_seqno - wait until execution of seqno has finished
987  * @ring: the ring expected to report seqno
988  * @seqno: duh!
989  * @reset_counter: reset sequence associated with the given seqno
990  * @interruptible: do an interruptible wait (normally yes)
991  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
992  *
993  * Note: It is of utmost importance that the passed in seqno and reset_counter
994  * values have been read by the caller in an smp safe manner. Where read-side
995  * locks are involved, it is sufficient to read the reset_counter before
996  * unlocking the lock that protects the seqno. For lockless tricks, the
997  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
998  * inserted.
999  *
1000  * Returns 0 if the seqno was found within the alloted time. Else returns the
1001  * errno with remaining time filled in timeout argument.
1002  */
1003 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1004                         unsigned reset_counter,
1005                         bool interruptible, struct timespec *timeout)
1006 {
1007         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1008         struct timespec before, now;
1009         DEFINE_WAIT(wait);
1010         long timeout_jiffies;
1011         int ret;
1012
1013         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1014
1015         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1016                 return 0;
1017
1018         timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
1019
1020         if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1021             WARN_ON(!ring->irq_get(ring)))
1022                 return -ENODEV;
1023
1024         /* Record current time in case interrupted by signal, or wedged */
1025         trace_i915_gem_request_wait_begin(ring, seqno);
1026         getrawmonotonic(&before);
1027         for (;;) {
1028                 struct timer_list timer;
1029                 unsigned long expire;
1030
1031                 prepare_to_wait(&ring->irq_queue, &wait,
1032                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1033
1034                 /* We need to check whether any gpu reset happened in between
1035                  * the caller grabbing the seqno and now ... */
1036                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1037                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1038                          * is truely gone. */
1039                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1040                         if (ret == 0)
1041                                 ret = -EAGAIN;
1042                         break;
1043                 }
1044
1045                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1046                         ret = 0;
1047                         break;
1048                 }
1049
1050                 if (interruptible && signal_pending(current)) {
1051                         ret = -ERESTARTSYS;
1052                         break;
1053                 }
1054
1055                 if (timeout_jiffies <= 0) {
1056                         ret = -ETIME;
1057                         break;
1058                 }
1059
1060                 timer.function = NULL;
1061                 if (timeout || missed_irq(dev_priv, ring)) {
1062                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1063                         expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1064                         mod_timer(&timer, expire);
1065                 }
1066
1067                 schedule();
1068
1069                 if (timeout)
1070                         timeout_jiffies = expire - jiffies;
1071
1072                 if (timer.function) {
1073                         del_singleshot_timer_sync(&timer);
1074                         destroy_timer_on_stack(&timer);
1075                 }
1076         }
1077         getrawmonotonic(&now);
1078         trace_i915_gem_request_wait_end(ring, seqno);
1079
1080         ring->irq_put(ring);
1081
1082         finish_wait(&ring->irq_queue, &wait);
1083
1084         if (timeout) {
1085                 struct timespec sleep_time = timespec_sub(now, before);
1086                 *timeout = timespec_sub(*timeout, sleep_time);
1087                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1088                         set_normalized_timespec(timeout, 0, 0);
1089         }
1090
1091         return ret;
1092 }
1093
1094 /**
1095  * Waits for a sequence number to be signaled, and cleans up the
1096  * request and object lists appropriately for that event.
1097  */
1098 int
1099 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1100 {
1101         struct drm_device *dev = ring->dev;
1102         struct drm_i915_private *dev_priv = dev->dev_private;
1103         bool interruptible = dev_priv->mm.interruptible;
1104         int ret;
1105
1106         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1107         BUG_ON(seqno == 0);
1108
1109         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1110         if (ret)
1111                 return ret;
1112
1113         ret = i915_gem_check_olr(ring, seqno);
1114         if (ret)
1115                 return ret;
1116
1117         return __wait_seqno(ring, seqno,
1118                             atomic_read(&dev_priv->gpu_error.reset_counter),
1119                             interruptible, NULL);
1120 }
1121
1122 static int
1123 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1124                                      struct intel_ring_buffer *ring)
1125 {
1126         i915_gem_retire_requests_ring(ring);
1127
1128         /* Manually manage the write flush as we may have not yet
1129          * retired the buffer.
1130          *
1131          * Note that the last_write_seqno is always the earlier of
1132          * the two (read/write) seqno, so if we haved successfully waited,
1133          * we know we have passed the last write.
1134          */
1135         obj->last_write_seqno = 0;
1136         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1137
1138         return 0;
1139 }
1140
1141 /**
1142  * Ensures that all rendering to the object has completed and the object is
1143  * safe to unbind from the GTT or access from the CPU.
1144  */
1145 static __must_check int
1146 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1147                                bool readonly)
1148 {
1149         struct intel_ring_buffer *ring = obj->ring;
1150         u32 seqno;
1151         int ret;
1152
1153         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1154         if (seqno == 0)
1155                 return 0;
1156
1157         ret = i915_wait_seqno(ring, seqno);
1158         if (ret)
1159                 return ret;
1160
1161         return i915_gem_object_wait_rendering__tail(obj, ring);
1162 }
1163
1164 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1165  * as the object state may change during this call.
1166  */
1167 static __must_check int
1168 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1169                                             bool readonly)
1170 {
1171         struct drm_device *dev = obj->base.dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173         struct intel_ring_buffer *ring = obj->ring;
1174         unsigned reset_counter;
1175         u32 seqno;
1176         int ret;
1177
1178         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1179         BUG_ON(!dev_priv->mm.interruptible);
1180
1181         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1182         if (seqno == 0)
1183                 return 0;
1184
1185         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1186         if (ret)
1187                 return ret;
1188
1189         ret = i915_gem_check_olr(ring, seqno);
1190         if (ret)
1191                 return ret;
1192
1193         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1194         mutex_unlock(&dev->struct_mutex);
1195         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1196         mutex_lock(&dev->struct_mutex);
1197         if (ret)
1198                 return ret;
1199
1200         return i915_gem_object_wait_rendering__tail(obj, ring);
1201 }
1202
1203 /**
1204  * Called when user space prepares to use an object with the CPU, either
1205  * through the mmap ioctl's mapping or a GTT mapping.
1206  */
1207 int
1208 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1209                           struct drm_file *file)
1210 {
1211         struct drm_i915_gem_set_domain *args = data;
1212         struct drm_i915_gem_object *obj;
1213         uint32_t read_domains = args->read_domains;
1214         uint32_t write_domain = args->write_domain;
1215         int ret;
1216
1217         /* Only handle setting domains to types used by the CPU. */
1218         if (write_domain & I915_GEM_GPU_DOMAINS)
1219                 return -EINVAL;
1220
1221         if (read_domains & I915_GEM_GPU_DOMAINS)
1222                 return -EINVAL;
1223
1224         /* Having something in the write domain implies it's in the read
1225          * domain, and only that read domain.  Enforce that in the request.
1226          */
1227         if (write_domain != 0 && read_domains != write_domain)
1228                 return -EINVAL;
1229
1230         ret = i915_mutex_lock_interruptible(dev);
1231         if (ret)
1232                 return ret;
1233
1234         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1235         if (&obj->base == NULL) {
1236                 ret = -ENOENT;
1237                 goto unlock;
1238         }
1239
1240         /* Try to flush the object off the GPU without holding the lock.
1241          * We will repeat the flush holding the lock in the normal manner
1242          * to catch cases where we are gazumped.
1243          */
1244         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1245         if (ret)
1246                 goto unref;
1247
1248         if (read_domains & I915_GEM_DOMAIN_GTT) {
1249                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1250
1251                 /* Silently promote "you're not bound, there was nothing to do"
1252                  * to success, since the client was just asking us to
1253                  * make sure everything was done.
1254                  */
1255                 if (ret == -EINVAL)
1256                         ret = 0;
1257         } else {
1258                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1259         }
1260
1261 unref:
1262         drm_gem_object_unreference(&obj->base);
1263 unlock:
1264         mutex_unlock(&dev->struct_mutex);
1265         return ret;
1266 }
1267
1268 /**
1269  * Called when user space has done writes to this buffer
1270  */
1271 int
1272 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1273                          struct drm_file *file)
1274 {
1275         struct drm_i915_gem_sw_finish *args = data;
1276         struct drm_i915_gem_object *obj;
1277         int ret = 0;
1278
1279         ret = i915_mutex_lock_interruptible(dev);
1280         if (ret)
1281                 return ret;
1282
1283         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1284         if (&obj->base == NULL) {
1285                 ret = -ENOENT;
1286                 goto unlock;
1287         }
1288
1289         /* Pinned buffers may be scanout, so flush the cache */
1290         if (obj->pin_display)
1291                 i915_gem_object_flush_cpu_write_domain(obj, true);
1292
1293         drm_gem_object_unreference(&obj->base);
1294 unlock:
1295         mutex_unlock(&dev->struct_mutex);
1296         return ret;
1297 }
1298
1299 /**
1300  * Maps the contents of an object, returning the address it is mapped
1301  * into.
1302  *
1303  * While the mapping holds a reference on the contents of the object, it doesn't
1304  * imply a ref on the object itself.
1305  */
1306 int
1307 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1308                     struct drm_file *file)
1309 {
1310         struct drm_i915_gem_mmap *args = data;
1311         struct drm_gem_object *obj;
1312         unsigned long addr;
1313
1314         obj = drm_gem_object_lookup(dev, file, args->handle);
1315         if (obj == NULL)
1316                 return -ENOENT;
1317
1318         /* prime objects have no backing filp to GEM mmap
1319          * pages from.
1320          */
1321         if (!obj->filp) {
1322                 drm_gem_object_unreference_unlocked(obj);
1323                 return -EINVAL;
1324         }
1325
1326         addr = vm_mmap(obj->filp, 0, args->size,
1327                        PROT_READ | PROT_WRITE, MAP_SHARED,
1328                        args->offset);
1329         drm_gem_object_unreference_unlocked(obj);
1330         if (IS_ERR((void *)addr))
1331                 return addr;
1332
1333         args->addr_ptr = (uint64_t) addr;
1334
1335         return 0;
1336 }
1337
1338 /**
1339  * i915_gem_fault - fault a page into the GTT
1340  * vma: VMA in question
1341  * vmf: fault info
1342  *
1343  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1344  * from userspace.  The fault handler takes care of binding the object to
1345  * the GTT (if needed), allocating and programming a fence register (again,
1346  * only if needed based on whether the old reg is still valid or the object
1347  * is tiled) and inserting a new PTE into the faulting process.
1348  *
1349  * Note that the faulting process may involve evicting existing objects
1350  * from the GTT and/or fence registers to make room.  So performance may
1351  * suffer if the GTT working set is large or there are few fence registers
1352  * left.
1353  */
1354 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1355 {
1356         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1357         struct drm_device *dev = obj->base.dev;
1358         drm_i915_private_t *dev_priv = dev->dev_private;
1359         pgoff_t page_offset;
1360         unsigned long pfn;
1361         int ret = 0;
1362         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1363
1364         /* We don't use vmf->pgoff since that has the fake offset */
1365         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1366                 PAGE_SHIFT;
1367
1368         ret = i915_mutex_lock_interruptible(dev);
1369         if (ret)
1370                 goto out;
1371
1372         trace_i915_gem_object_fault(obj, page_offset, true, write);
1373
1374         /* Access to snoopable pages through the GTT is incoherent. */
1375         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1376                 ret = -EINVAL;
1377                 goto unlock;
1378         }
1379
1380         /* Now bind it into the GTT if needed */
1381         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1382         if (ret)
1383                 goto unlock;
1384
1385         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1386         if (ret)
1387                 goto unpin;
1388
1389         ret = i915_gem_object_get_fence(obj);
1390         if (ret)
1391                 goto unpin;
1392
1393         obj->fault_mappable = true;
1394
1395         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1396         pfn >>= PAGE_SHIFT;
1397         pfn += page_offset;
1398
1399         /* Finally, remap it using the new GTT offset */
1400         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1401 unpin:
1402         i915_gem_object_unpin(obj);
1403 unlock:
1404         mutex_unlock(&dev->struct_mutex);
1405 out:
1406         switch (ret) {
1407         case -EIO:
1408                 /* If this -EIO is due to a gpu hang, give the reset code a
1409                  * chance to clean up the mess. Otherwise return the proper
1410                  * SIGBUS. */
1411                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1412                         return VM_FAULT_SIGBUS;
1413         case -EAGAIN:
1414                 /*
1415                  * EAGAIN means the gpu is hung and we'll wait for the error
1416                  * handler to reset everything when re-faulting in
1417                  * i915_mutex_lock_interruptible.
1418                  */
1419         case 0:
1420         case -ERESTARTSYS:
1421         case -EINTR:
1422         case -EBUSY:
1423                 /*
1424                  * EBUSY is ok: this just means that another thread
1425                  * already did the job.
1426                  */
1427                 return VM_FAULT_NOPAGE;
1428         case -ENOMEM:
1429                 return VM_FAULT_OOM;
1430         case -ENOSPC:
1431                 return VM_FAULT_SIGBUS;
1432         default:
1433                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1434                 return VM_FAULT_SIGBUS;
1435         }
1436 }
1437
1438 /**
1439  * i915_gem_release_mmap - remove physical page mappings
1440  * @obj: obj in question
1441  *
1442  * Preserve the reservation of the mmapping with the DRM core code, but
1443  * relinquish ownership of the pages back to the system.
1444  *
1445  * It is vital that we remove the page mapping if we have mapped a tiled
1446  * object through the GTT and then lose the fence register due to
1447  * resource pressure. Similarly if the object has been moved out of the
1448  * aperture, than pages mapped into userspace must be revoked. Removing the
1449  * mapping will then trigger a page fault on the next user access, allowing
1450  * fixup by i915_gem_fault().
1451  */
1452 void
1453 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1454 {
1455         if (!obj->fault_mappable)
1456                 return;
1457
1458         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1459         obj->fault_mappable = false;
1460 }
1461
1462 uint32_t
1463 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1464 {
1465         uint32_t gtt_size;
1466
1467         if (INTEL_INFO(dev)->gen >= 4 ||
1468             tiling_mode == I915_TILING_NONE)
1469                 return size;
1470
1471         /* Previous chips need a power-of-two fence region when tiling */
1472         if (INTEL_INFO(dev)->gen == 3)
1473                 gtt_size = 1024*1024;
1474         else
1475                 gtt_size = 512*1024;
1476
1477         while (gtt_size < size)
1478                 gtt_size <<= 1;
1479
1480         return gtt_size;
1481 }
1482
1483 /**
1484  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1485  * @obj: object to check
1486  *
1487  * Return the required GTT alignment for an object, taking into account
1488  * potential fence register mapping.
1489  */
1490 uint32_t
1491 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1492                            int tiling_mode, bool fenced)
1493 {
1494         /*
1495          * Minimum alignment is 4k (GTT page size), but might be greater
1496          * if a fence register is needed for the object.
1497          */
1498         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1499             tiling_mode == I915_TILING_NONE)
1500                 return 4096;
1501
1502         /*
1503          * Previous chips need to be aligned to the size of the smallest
1504          * fence register that can contain the object.
1505          */
1506         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1507 }
1508
1509 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1510 {
1511         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1512         int ret;
1513
1514         if (drm_vma_node_has_offset(&obj->base.vma_node))
1515                 return 0;
1516
1517         dev_priv->mm.shrinker_no_lock_stealing = true;
1518
1519         ret = drm_gem_create_mmap_offset(&obj->base);
1520         if (ret != -ENOSPC)
1521                 goto out;
1522
1523         /* Badly fragmented mmap space? The only way we can recover
1524          * space is by destroying unwanted objects. We can't randomly release
1525          * mmap_offsets as userspace expects them to be persistent for the
1526          * lifetime of the objects. The closest we can is to release the
1527          * offsets on purgeable objects by truncating it and marking it purged,
1528          * which prevents userspace from ever using that object again.
1529          */
1530         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1531         ret = drm_gem_create_mmap_offset(&obj->base);
1532         if (ret != -ENOSPC)
1533                 goto out;
1534
1535         i915_gem_shrink_all(dev_priv);
1536         ret = drm_gem_create_mmap_offset(&obj->base);
1537 out:
1538         dev_priv->mm.shrinker_no_lock_stealing = false;
1539
1540         return ret;
1541 }
1542
1543 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1544 {
1545         drm_gem_free_mmap_offset(&obj->base);
1546 }
1547
1548 int
1549 i915_gem_mmap_gtt(struct drm_file *file,
1550                   struct drm_device *dev,
1551                   uint32_t handle,
1552                   uint64_t *offset)
1553 {
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         struct drm_i915_gem_object *obj;
1556         int ret;
1557
1558         ret = i915_mutex_lock_interruptible(dev);
1559         if (ret)
1560                 return ret;
1561
1562         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1563         if (&obj->base == NULL) {
1564                 ret = -ENOENT;
1565                 goto unlock;
1566         }
1567
1568         if (obj->base.size > dev_priv->gtt.mappable_end) {
1569                 ret = -E2BIG;
1570                 goto out;
1571         }
1572
1573         if (obj->madv != I915_MADV_WILLNEED) {
1574                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1575                 ret = -EINVAL;
1576                 goto out;
1577         }
1578
1579         ret = i915_gem_object_create_mmap_offset(obj);
1580         if (ret)
1581                 goto out;
1582
1583         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1584
1585 out:
1586         drm_gem_object_unreference(&obj->base);
1587 unlock:
1588         mutex_unlock(&dev->struct_mutex);
1589         return ret;
1590 }
1591
1592 /**
1593  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1594  * @dev: DRM device
1595  * @data: GTT mapping ioctl data
1596  * @file: GEM object info
1597  *
1598  * Simply returns the fake offset to userspace so it can mmap it.
1599  * The mmap call will end up in drm_gem_mmap(), which will set things
1600  * up so we can get faults in the handler above.
1601  *
1602  * The fault handler will take care of binding the object into the GTT
1603  * (since it may have been evicted to make room for something), allocating
1604  * a fence register, and mapping the appropriate aperture address into
1605  * userspace.
1606  */
1607 int
1608 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1609                         struct drm_file *file)
1610 {
1611         struct drm_i915_gem_mmap_gtt *args = data;
1612
1613         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1614 }
1615
1616 /* Immediately discard the backing storage */
1617 static void
1618 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1619 {
1620         struct inode *inode;
1621
1622         i915_gem_object_free_mmap_offset(obj);
1623
1624         if (obj->base.filp == NULL)
1625                 return;
1626
1627         /* Our goal here is to return as much of the memory as
1628          * is possible back to the system as we are called from OOM.
1629          * To do this we must instruct the shmfs to drop all of its
1630          * backing pages, *now*.
1631          */
1632         inode = file_inode(obj->base.filp);
1633         shmem_truncate_range(inode, 0, (loff_t)-1);
1634
1635         obj->madv = __I915_MADV_PURGED;
1636 }
1637
1638 static inline int
1639 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1640 {
1641         return obj->madv == I915_MADV_DONTNEED;
1642 }
1643
1644 static void
1645 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1646 {
1647         struct sg_page_iter sg_iter;
1648         int ret;
1649
1650         BUG_ON(obj->madv == __I915_MADV_PURGED);
1651
1652         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1653         if (ret) {
1654                 /* In the event of a disaster, abandon all caches and
1655                  * hope for the best.
1656                  */
1657                 WARN_ON(ret != -EIO);
1658                 i915_gem_clflush_object(obj, true);
1659                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1660         }
1661
1662         if (i915_gem_object_needs_bit17_swizzle(obj))
1663                 i915_gem_object_save_bit_17_swizzle(obj);
1664
1665         if (obj->madv == I915_MADV_DONTNEED)
1666                 obj->dirty = 0;
1667
1668         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1669                 struct page *page = sg_page_iter_page(&sg_iter);
1670
1671                 if (obj->dirty)
1672                         set_page_dirty(page);
1673
1674                 if (obj->madv == I915_MADV_WILLNEED)
1675                         mark_page_accessed(page);
1676
1677                 page_cache_release(page);
1678         }
1679         obj->dirty = 0;
1680
1681         sg_free_table(obj->pages);
1682         kfree(obj->pages);
1683 }
1684
1685 int
1686 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1687 {
1688         const struct drm_i915_gem_object_ops *ops = obj->ops;
1689
1690         if (obj->pages == NULL)
1691                 return 0;
1692
1693         if (obj->pages_pin_count)
1694                 return -EBUSY;
1695
1696         BUG_ON(i915_gem_obj_bound_any(obj));
1697
1698         /* ->put_pages might need to allocate memory for the bit17 swizzle
1699          * array, hence protect them from being reaped by removing them from gtt
1700          * lists early. */
1701         list_del(&obj->global_list);
1702
1703         ops->put_pages(obj);
1704         obj->pages = NULL;
1705
1706         if (i915_gem_object_is_purgeable(obj))
1707                 i915_gem_object_truncate(obj);
1708
1709         return 0;
1710 }
1711
1712 static long
1713 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1714                   bool purgeable_only)
1715 {
1716         struct list_head still_bound_list;
1717         struct drm_i915_gem_object *obj, *next;
1718         long count = 0;
1719
1720         list_for_each_entry_safe(obj, next,
1721                                  &dev_priv->mm.unbound_list,
1722                                  global_list) {
1723                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1724                     i915_gem_object_put_pages(obj) == 0) {
1725                         count += obj->base.size >> PAGE_SHIFT;
1726                         if (count >= target)
1727                                 return count;
1728                 }
1729         }
1730
1731         /*
1732          * As we may completely rewrite the bound list whilst unbinding
1733          * (due to retiring requests) we have to strictly process only
1734          * one element of the list at the time, and recheck the list
1735          * on every iteration.
1736          */
1737         INIT_LIST_HEAD(&still_bound_list);
1738         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1739                 struct i915_vma *vma, *v;
1740
1741                 obj = list_first_entry(&dev_priv->mm.bound_list,
1742                                        typeof(*obj), global_list);
1743                 list_move_tail(&obj->global_list, &still_bound_list);
1744
1745                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1746                         continue;
1747
1748                 /*
1749                  * Hold a reference whilst we unbind this object, as we may
1750                  * end up waiting for and retiring requests. This might
1751                  * release the final reference (held by the active list)
1752                  * and result in the object being freed from under us.
1753                  * in this object being freed.
1754                  *
1755                  * Note 1: Shrinking the bound list is special since only active
1756                  * (and hence bound objects) can contain such limbo objects, so
1757                  * we don't need special tricks for shrinking the unbound list.
1758                  * The only other place where we have to be careful with active
1759                  * objects suddenly disappearing due to retiring requests is the
1760                  * eviction code.
1761                  *
1762                  * Note 2: Even though the bound list doesn't hold a reference
1763                  * to the object we can safely grab one here: The final object
1764                  * unreferencing and the bound_list are both protected by the
1765                  * dev->struct_mutex and so we won't ever be able to observe an
1766                  * object on the bound_list with a reference count equals 0.
1767                  */
1768                 drm_gem_object_reference(&obj->base);
1769
1770                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1771                         if (i915_vma_unbind(vma))
1772                                 break;
1773
1774                 if (i915_gem_object_put_pages(obj) == 0)
1775                         count += obj->base.size >> PAGE_SHIFT;
1776
1777                 drm_gem_object_unreference(&obj->base);
1778         }
1779         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1780
1781         return count;
1782 }
1783
1784 static long
1785 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1786 {
1787         return __i915_gem_shrink(dev_priv, target, true);
1788 }
1789
1790 static long
1791 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1792 {
1793         struct drm_i915_gem_object *obj, *next;
1794         long freed = 0;
1795
1796         i915_gem_evict_everything(dev_priv->dev);
1797
1798         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1799                                  global_list) {
1800                 if (obj->pages_pin_count == 0)
1801                         freed += obj->base.size >> PAGE_SHIFT;
1802                 i915_gem_object_put_pages(obj);
1803         }
1804         return freed;
1805 }
1806
1807 static int
1808 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1809 {
1810         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1811         int page_count, i;
1812         struct address_space *mapping;
1813         struct sg_table *st;
1814         struct scatterlist *sg;
1815         struct sg_page_iter sg_iter;
1816         struct page *page;
1817         unsigned long last_pfn = 0;     /* suppress gcc warning */
1818         gfp_t gfp;
1819
1820         /* Assert that the object is not currently in any GPU domain. As it
1821          * wasn't in the GTT, there shouldn't be any way it could have been in
1822          * a GPU cache
1823          */
1824         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1825         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1826
1827         st = kmalloc(sizeof(*st), GFP_KERNEL);
1828         if (st == NULL)
1829                 return -ENOMEM;
1830
1831         page_count = obj->base.size / PAGE_SIZE;
1832         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1833                 kfree(st);
1834                 return -ENOMEM;
1835         }
1836
1837         /* Get the list of pages out of our struct file.  They'll be pinned
1838          * at this point until we release them.
1839          *
1840          * Fail silently without starting the shrinker
1841          */
1842         mapping = file_inode(obj->base.filp)->i_mapping;
1843         gfp = mapping_gfp_mask(mapping);
1844         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1845         gfp &= ~(__GFP_IO | __GFP_WAIT);
1846         sg = st->sgl;
1847         st->nents = 0;
1848         for (i = 0; i < page_count; i++) {
1849                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1850                 if (IS_ERR(page)) {
1851                         i915_gem_purge(dev_priv, page_count);
1852                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1853                 }
1854                 if (IS_ERR(page)) {
1855                         /* We've tried hard to allocate the memory by reaping
1856                          * our own buffer, now let the real VM do its job and
1857                          * go down in flames if truly OOM.
1858                          */
1859                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1860                         gfp |= __GFP_IO | __GFP_WAIT;
1861
1862                         i915_gem_shrink_all(dev_priv);
1863                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1864                         if (IS_ERR(page))
1865                                 goto err_pages;
1866
1867                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1868                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1869                 }
1870 #ifdef CONFIG_SWIOTLB
1871                 if (swiotlb_nr_tbl()) {
1872                         st->nents++;
1873                         sg_set_page(sg, page, PAGE_SIZE, 0);
1874                         sg = sg_next(sg);
1875                         continue;
1876                 }
1877 #endif
1878                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1879                         if (i)
1880                                 sg = sg_next(sg);
1881                         st->nents++;
1882                         sg_set_page(sg, page, PAGE_SIZE, 0);
1883                 } else {
1884                         sg->length += PAGE_SIZE;
1885                 }
1886                 last_pfn = page_to_pfn(page);
1887         }
1888 #ifdef CONFIG_SWIOTLB
1889         if (!swiotlb_nr_tbl())
1890 #endif
1891                 sg_mark_end(sg);
1892         obj->pages = st;
1893
1894         if (i915_gem_object_needs_bit17_swizzle(obj))
1895                 i915_gem_object_do_bit_17_swizzle(obj);
1896
1897         return 0;
1898
1899 err_pages:
1900         sg_mark_end(sg);
1901         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1902                 page_cache_release(sg_page_iter_page(&sg_iter));
1903         sg_free_table(st);
1904         kfree(st);
1905         return PTR_ERR(page);
1906 }
1907
1908 /* Ensure that the associated pages are gathered from the backing storage
1909  * and pinned into our object. i915_gem_object_get_pages() may be called
1910  * multiple times before they are released by a single call to
1911  * i915_gem_object_put_pages() - once the pages are no longer referenced
1912  * either as a result of memory pressure (reaping pages under the shrinker)
1913  * or as the object is itself released.
1914  */
1915 int
1916 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1917 {
1918         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1919         const struct drm_i915_gem_object_ops *ops = obj->ops;
1920         int ret;
1921
1922         if (obj->pages)
1923                 return 0;
1924
1925         if (obj->madv != I915_MADV_WILLNEED) {
1926                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1927                 return -EINVAL;
1928         }
1929
1930         BUG_ON(obj->pages_pin_count);
1931
1932         ret = ops->get_pages(obj);
1933         if (ret)
1934                 return ret;
1935
1936         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1937         return 0;
1938 }
1939
1940 static void
1941 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1942                                struct intel_ring_buffer *ring)
1943 {
1944         struct drm_device *dev = obj->base.dev;
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         u32 seqno = intel_ring_get_seqno(ring);
1947
1948         BUG_ON(ring == NULL);
1949         if (obj->ring != ring && obj->last_write_seqno) {
1950                 /* Keep the seqno relative to the current ring */
1951                 obj->last_write_seqno = seqno;
1952         }
1953         obj->ring = ring;
1954
1955         /* Add a reference if we're newly entering the active list. */
1956         if (!obj->active) {
1957                 drm_gem_object_reference(&obj->base);
1958                 obj->active = 1;
1959         }
1960
1961         list_move_tail(&obj->ring_list, &ring->active_list);
1962
1963         obj->last_read_seqno = seqno;
1964
1965         if (obj->fenced_gpu_access) {
1966                 obj->last_fenced_seqno = seqno;
1967
1968                 /* Bump MRU to take account of the delayed flush */
1969                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1970                         struct drm_i915_fence_reg *reg;
1971
1972                         reg = &dev_priv->fence_regs[obj->fence_reg];
1973                         list_move_tail(&reg->lru_list,
1974                                        &dev_priv->mm.fence_list);
1975                 }
1976         }
1977 }
1978
1979 void i915_vma_move_to_active(struct i915_vma *vma,
1980                              struct intel_ring_buffer *ring)
1981 {
1982         list_move_tail(&vma->mm_list, &vma->vm->active_list);
1983         return i915_gem_object_move_to_active(vma->obj, ring);
1984 }
1985
1986 static void
1987 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1988 {
1989         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1990         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1991         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1992
1993         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1994         BUG_ON(!obj->active);
1995
1996         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1997
1998         list_del_init(&obj->ring_list);
1999         obj->ring = NULL;
2000
2001         obj->last_read_seqno = 0;
2002         obj->last_write_seqno = 0;
2003         obj->base.write_domain = 0;
2004
2005         obj->last_fenced_seqno = 0;
2006         obj->fenced_gpu_access = false;
2007
2008         obj->active = 0;
2009         drm_gem_object_unreference(&obj->base);
2010
2011         WARN_ON(i915_verify_lists(dev));
2012 }
2013
2014 static int
2015 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2016 {
2017         struct drm_i915_private *dev_priv = dev->dev_private;
2018         struct intel_ring_buffer *ring;
2019         int ret, i, j;
2020
2021         /* Carefully retire all requests without writing to the rings */
2022         for_each_ring(ring, dev_priv, i) {
2023                 ret = intel_ring_idle(ring);
2024                 if (ret)
2025                         return ret;
2026         }
2027         i915_gem_retire_requests(dev);
2028
2029         /* Finally reset hw state */
2030         for_each_ring(ring, dev_priv, i) {
2031                 intel_ring_init_seqno(ring, seqno);
2032
2033                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2034                         ring->sync_seqno[j] = 0;
2035         }
2036
2037         return 0;
2038 }
2039
2040 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2041 {
2042         struct drm_i915_private *dev_priv = dev->dev_private;
2043         int ret;
2044
2045         if (seqno == 0)
2046                 return -EINVAL;
2047
2048         /* HWS page needs to be set less than what we
2049          * will inject to ring
2050          */
2051         ret = i915_gem_init_seqno(dev, seqno - 1);
2052         if (ret)
2053                 return ret;
2054
2055         /* Carefully set the last_seqno value so that wrap
2056          * detection still works
2057          */
2058         dev_priv->next_seqno = seqno;
2059         dev_priv->last_seqno = seqno - 1;
2060         if (dev_priv->last_seqno == 0)
2061                 dev_priv->last_seqno--;
2062
2063         return 0;
2064 }
2065
2066 int
2067 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2068 {
2069         struct drm_i915_private *dev_priv = dev->dev_private;
2070
2071         /* reserve 0 for non-seqno */
2072         if (dev_priv->next_seqno == 0) {
2073                 int ret = i915_gem_init_seqno(dev, 0);
2074                 if (ret)
2075                         return ret;
2076
2077                 dev_priv->next_seqno = 1;
2078         }
2079
2080         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2081         return 0;
2082 }
2083
2084 int __i915_add_request(struct intel_ring_buffer *ring,
2085                        struct drm_file *file,
2086                        struct drm_i915_gem_object *obj,
2087                        u32 *out_seqno)
2088 {
2089         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2090         struct drm_i915_gem_request *request;
2091         u32 request_ring_position, request_start;
2092         int was_empty;
2093         int ret;
2094
2095         request_start = intel_ring_get_tail(ring);
2096         /*
2097          * Emit any outstanding flushes - execbuf can fail to emit the flush
2098          * after having emitted the batchbuffer command. Hence we need to fix
2099          * things up similar to emitting the lazy request. The difference here
2100          * is that the flush _must_ happen before the next request, no matter
2101          * what.
2102          */
2103         ret = intel_ring_flush_all_caches(ring);
2104         if (ret)
2105                 return ret;
2106
2107         request = ring->preallocated_lazy_request;
2108         if (WARN_ON(request == NULL))
2109                 return -ENOMEM;
2110
2111         /* Record the position of the start of the request so that
2112          * should we detect the updated seqno part-way through the
2113          * GPU processing the request, we never over-estimate the
2114          * position of the head.
2115          */
2116         request_ring_position = intel_ring_get_tail(ring);
2117
2118         ret = ring->add_request(ring);
2119         if (ret)
2120                 return ret;
2121
2122         request->seqno = intel_ring_get_seqno(ring);
2123         request->ring = ring;
2124         request->head = request_start;
2125         request->tail = request_ring_position;
2126
2127         /* Whilst this request exists, batch_obj will be on the
2128          * active_list, and so will hold the active reference. Only when this
2129          * request is retired will the the batch_obj be moved onto the
2130          * inactive_list and lose its active reference. Hence we do not need
2131          * to explicitly hold another reference here.
2132          */
2133         request->batch_obj = obj;
2134
2135         /* Hold a reference to the current context so that we can inspect
2136          * it later in case a hangcheck error event fires.
2137          */
2138         request->ctx = ring->last_context;
2139         if (request->ctx)
2140                 i915_gem_context_reference(request->ctx);
2141
2142         request->emitted_jiffies = jiffies;
2143         was_empty = list_empty(&ring->request_list);
2144         list_add_tail(&request->list, &ring->request_list);
2145         request->file_priv = NULL;
2146
2147         if (file) {
2148                 struct drm_i915_file_private *file_priv = file->driver_priv;
2149
2150                 spin_lock(&file_priv->mm.lock);
2151                 request->file_priv = file_priv;
2152                 list_add_tail(&request->client_list,
2153                               &file_priv->mm.request_list);
2154                 spin_unlock(&file_priv->mm.lock);
2155         }
2156
2157         trace_i915_gem_request_add(ring, request->seqno);
2158         ring->outstanding_lazy_seqno = 0;
2159         ring->preallocated_lazy_request = NULL;
2160
2161         if (!dev_priv->ums.mm_suspended) {
2162                 i915_queue_hangcheck(ring->dev);
2163
2164                 if (was_empty) {
2165                         queue_delayed_work(dev_priv->wq,
2166                                            &dev_priv->mm.retire_work,
2167                                            round_jiffies_up_relative(HZ));
2168                         intel_mark_busy(dev_priv->dev);
2169                 }
2170         }
2171
2172         if (out_seqno)
2173                 *out_seqno = request->seqno;
2174         return 0;
2175 }
2176
2177 static inline void
2178 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2179 {
2180         struct drm_i915_file_private *file_priv = request->file_priv;
2181
2182         if (!file_priv)
2183                 return;
2184
2185         spin_lock(&file_priv->mm.lock);
2186         if (request->file_priv) {
2187                 list_del(&request->client_list);
2188                 request->file_priv = NULL;
2189         }
2190         spin_unlock(&file_priv->mm.lock);
2191 }
2192
2193 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2194                                     struct i915_address_space *vm)
2195 {
2196         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2197             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2198                 return true;
2199
2200         return false;
2201 }
2202
2203 static bool i915_head_inside_request(const u32 acthd_unmasked,
2204                                      const u32 request_start,
2205                                      const u32 request_end)
2206 {
2207         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2208
2209         if (request_start < request_end) {
2210                 if (acthd >= request_start && acthd < request_end)
2211                         return true;
2212         } else if (request_start > request_end) {
2213                 if (acthd >= request_start || acthd < request_end)
2214                         return true;
2215         }
2216
2217         return false;
2218 }
2219
2220 static struct i915_address_space *
2221 request_to_vm(struct drm_i915_gem_request *request)
2222 {
2223         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2224         struct i915_address_space *vm;
2225
2226         vm = &dev_priv->gtt.base;
2227
2228         return vm;
2229 }
2230
2231 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2232                                 const u32 acthd, bool *inside)
2233 {
2234         /* There is a possibility that unmasked head address
2235          * pointing inside the ring, matches the batch_obj address range.
2236          * However this is extremely unlikely.
2237          */
2238         if (request->batch_obj) {
2239                 if (i915_head_inside_object(acthd, request->batch_obj,
2240                                             request_to_vm(request))) {
2241                         *inside = true;
2242                         return true;
2243                 }
2244         }
2245
2246         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2247                 *inside = false;
2248                 return true;
2249         }
2250
2251         return false;
2252 }
2253
2254 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2255 {
2256         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2257
2258         if (hs->banned)
2259                 return true;
2260
2261         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2262                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2263                 return true;
2264         }
2265
2266         return false;
2267 }
2268
2269 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2270                                   struct drm_i915_gem_request *request,
2271                                   u32 acthd)
2272 {
2273         struct i915_ctx_hang_stats *hs = NULL;
2274         bool inside, guilty;
2275         unsigned long offset = 0;
2276
2277         /* Innocent until proven guilty */
2278         guilty = false;
2279
2280         if (request->batch_obj)
2281                 offset = i915_gem_obj_offset(request->batch_obj,
2282                                              request_to_vm(request));
2283
2284         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2285             i915_request_guilty(request, acthd, &inside)) {
2286                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2287                           ring->name,
2288                           inside ? "inside" : "flushing",
2289                           offset,
2290                           request->ctx ? request->ctx->id : 0,
2291                           acthd);
2292
2293                 guilty = true;
2294         }
2295
2296         /* If contexts are disabled or this is the default context, use
2297          * file_priv->reset_state
2298          */
2299         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2300                 hs = &request->ctx->hang_stats;
2301         else if (request->file_priv)
2302                 hs = &request->file_priv->hang_stats;
2303
2304         if (hs) {
2305                 if (guilty) {
2306                         hs->banned = i915_context_is_banned(hs);
2307                         hs->batch_active++;
2308                         hs->guilty_ts = get_seconds();
2309                 } else {
2310                         hs->batch_pending++;
2311                 }
2312         }
2313 }
2314
2315 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2316 {
2317         list_del(&request->list);
2318         i915_gem_request_remove_from_client(request);
2319
2320         if (request->ctx)
2321                 i915_gem_context_unreference(request->ctx);
2322
2323         kfree(request);
2324 }
2325
2326 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2327                                       struct intel_ring_buffer *ring)
2328 {
2329         u32 completed_seqno;
2330         u32 acthd;
2331
2332         acthd = intel_ring_get_active_head(ring);
2333         completed_seqno = ring->get_seqno(ring, false);
2334
2335         while (!list_empty(&ring->request_list)) {
2336                 struct drm_i915_gem_request *request;
2337
2338                 request = list_first_entry(&ring->request_list,
2339                                            struct drm_i915_gem_request,
2340                                            list);
2341
2342                 if (request->seqno > completed_seqno)
2343                         i915_set_reset_status(ring, request, acthd);
2344
2345                 i915_gem_free_request(request);
2346         }
2347
2348         while (!list_empty(&ring->active_list)) {
2349                 struct drm_i915_gem_object *obj;
2350
2351                 obj = list_first_entry(&ring->active_list,
2352                                        struct drm_i915_gem_object,
2353                                        ring_list);
2354
2355                 i915_gem_object_move_to_inactive(obj);
2356         }
2357 }
2358
2359 void i915_gem_restore_fences(struct drm_device *dev)
2360 {
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         int i;
2363
2364         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2365                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2366
2367                 /*
2368                  * Commit delayed tiling changes if we have an object still
2369                  * attached to the fence, otherwise just clear the fence.
2370                  */
2371                 if (reg->obj) {
2372                         i915_gem_object_update_fence(reg->obj, reg,
2373                                                      reg->obj->tiling_mode);
2374                 } else {
2375                         i915_gem_write_fence(dev, i, NULL);
2376                 }
2377         }
2378 }
2379
2380 void i915_gem_reset(struct drm_device *dev)
2381 {
2382         struct drm_i915_private *dev_priv = dev->dev_private;
2383         struct intel_ring_buffer *ring;
2384         int i;
2385
2386         for_each_ring(ring, dev_priv, i)
2387                 i915_gem_reset_ring_lists(dev_priv, ring);
2388
2389         i915_gem_restore_fences(dev);
2390 }
2391
2392 /**
2393  * This function clears the request list as sequence numbers are passed.
2394  */
2395 void
2396 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2397 {
2398         uint32_t seqno;
2399
2400         if (list_empty(&ring->request_list))
2401                 return;
2402
2403         WARN_ON(i915_verify_lists(ring->dev));
2404
2405         seqno = ring->get_seqno(ring, true);
2406
2407         while (!list_empty(&ring->request_list)) {
2408                 struct drm_i915_gem_request *request;
2409
2410                 request = list_first_entry(&ring->request_list,
2411                                            struct drm_i915_gem_request,
2412                                            list);
2413
2414                 if (!i915_seqno_passed(seqno, request->seqno))
2415                         break;
2416
2417                 trace_i915_gem_request_retire(ring, request->seqno);
2418                 /* We know the GPU must have read the request to have
2419                  * sent us the seqno + interrupt, so use the position
2420                  * of tail of the request to update the last known position
2421                  * of the GPU head.
2422                  */
2423                 ring->last_retired_head = request->tail;
2424
2425                 i915_gem_free_request(request);
2426         }
2427
2428         /* Move any buffers on the active list that are no longer referenced
2429          * by the ringbuffer to the flushing/inactive lists as appropriate.
2430          */
2431         while (!list_empty(&ring->active_list)) {
2432                 struct drm_i915_gem_object *obj;
2433
2434                 obj = list_first_entry(&ring->active_list,
2435                                       struct drm_i915_gem_object,
2436                                       ring_list);
2437
2438                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2439                         break;
2440
2441                 i915_gem_object_move_to_inactive(obj);
2442         }
2443
2444         if (unlikely(ring->trace_irq_seqno &&
2445                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2446                 ring->irq_put(ring);
2447                 ring->trace_irq_seqno = 0;
2448         }
2449
2450         WARN_ON(i915_verify_lists(ring->dev));
2451 }
2452
2453 void
2454 i915_gem_retire_requests(struct drm_device *dev)
2455 {
2456         drm_i915_private_t *dev_priv = dev->dev_private;
2457         struct intel_ring_buffer *ring;
2458         int i;
2459
2460         for_each_ring(ring, dev_priv, i)
2461                 i915_gem_retire_requests_ring(ring);
2462 }
2463
2464 static void
2465 i915_gem_retire_work_handler(struct work_struct *work)
2466 {
2467         drm_i915_private_t *dev_priv;
2468         struct drm_device *dev;
2469         struct intel_ring_buffer *ring;
2470         bool idle;
2471         int i;
2472
2473         dev_priv = container_of(work, drm_i915_private_t,
2474                                 mm.retire_work.work);
2475         dev = dev_priv->dev;
2476
2477         /* Come back later if the device is busy... */
2478         if (!mutex_trylock(&dev->struct_mutex)) {
2479                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2480                                    round_jiffies_up_relative(HZ));
2481                 return;
2482         }
2483
2484         i915_gem_retire_requests(dev);
2485
2486         /* Send a periodic flush down the ring so we don't hold onto GEM
2487          * objects indefinitely.
2488          */
2489         idle = true;
2490         for_each_ring(ring, dev_priv, i) {
2491                 if (ring->gpu_caches_dirty)
2492                         i915_add_request(ring, NULL);
2493
2494                 idle &= list_empty(&ring->request_list);
2495         }
2496
2497         if (!dev_priv->ums.mm_suspended && !idle)
2498                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2499                                    round_jiffies_up_relative(HZ));
2500         if (idle)
2501                 intel_mark_idle(dev);
2502
2503         mutex_unlock(&dev->struct_mutex);
2504 }
2505
2506 /**
2507  * Ensures that an object will eventually get non-busy by flushing any required
2508  * write domains, emitting any outstanding lazy request and retiring and
2509  * completed requests.
2510  */
2511 static int
2512 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2513 {
2514         int ret;
2515
2516         if (obj->active) {
2517                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2518                 if (ret)
2519                         return ret;
2520
2521                 i915_gem_retire_requests_ring(obj->ring);
2522         }
2523
2524         return 0;
2525 }
2526
2527 /**
2528  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2529  * @DRM_IOCTL_ARGS: standard ioctl arguments
2530  *
2531  * Returns 0 if successful, else an error is returned with the remaining time in
2532  * the timeout parameter.
2533  *  -ETIME: object is still busy after timeout
2534  *  -ERESTARTSYS: signal interrupted the wait
2535  *  -ENONENT: object doesn't exist
2536  * Also possible, but rare:
2537  *  -EAGAIN: GPU wedged
2538  *  -ENOMEM: damn
2539  *  -ENODEV: Internal IRQ fail
2540  *  -E?: The add request failed
2541  *
2542  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2543  * non-zero timeout parameter the wait ioctl will wait for the given number of
2544  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2545  * without holding struct_mutex the object may become re-busied before this
2546  * function completes. A similar but shorter * race condition exists in the busy
2547  * ioctl
2548  */
2549 int
2550 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2551 {
2552         drm_i915_private_t *dev_priv = dev->dev_private;
2553         struct drm_i915_gem_wait *args = data;
2554         struct drm_i915_gem_object *obj;
2555         struct intel_ring_buffer *ring = NULL;
2556         struct timespec timeout_stack, *timeout = NULL;
2557         unsigned reset_counter;
2558         u32 seqno = 0;
2559         int ret = 0;
2560
2561         if (args->timeout_ns >= 0) {
2562                 timeout_stack = ns_to_timespec(args->timeout_ns);
2563                 timeout = &timeout_stack;
2564         }
2565
2566         ret = i915_mutex_lock_interruptible(dev);
2567         if (ret)
2568                 return ret;
2569
2570         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2571         if (&obj->base == NULL) {
2572                 mutex_unlock(&dev->struct_mutex);
2573                 return -ENOENT;
2574         }
2575
2576         /* Need to make sure the object gets inactive eventually. */
2577         ret = i915_gem_object_flush_active(obj);
2578         if (ret)
2579                 goto out;
2580
2581         if (obj->active) {
2582                 seqno = obj->last_read_seqno;
2583                 ring = obj->ring;
2584         }
2585
2586         if (seqno == 0)
2587                  goto out;
2588
2589         /* Do this after OLR check to make sure we make forward progress polling
2590          * on this IOCTL with a 0 timeout (like busy ioctl)
2591          */
2592         if (!args->timeout_ns) {
2593                 ret = -ETIME;
2594                 goto out;
2595         }
2596
2597         drm_gem_object_unreference(&obj->base);
2598         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2599         mutex_unlock(&dev->struct_mutex);
2600
2601         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2602         if (timeout)
2603                 args->timeout_ns = timespec_to_ns(timeout);
2604         return ret;
2605
2606 out:
2607         drm_gem_object_unreference(&obj->base);
2608         mutex_unlock(&dev->struct_mutex);
2609         return ret;
2610 }
2611
2612 /**
2613  * i915_gem_object_sync - sync an object to a ring.
2614  *
2615  * @obj: object which may be in use on another ring.
2616  * @to: ring we wish to use the object on. May be NULL.
2617  *
2618  * This code is meant to abstract object synchronization with the GPU.
2619  * Calling with NULL implies synchronizing the object with the CPU
2620  * rather than a particular GPU ring.
2621  *
2622  * Returns 0 if successful, else propagates up the lower layer error.
2623  */
2624 int
2625 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2626                      struct intel_ring_buffer *to)
2627 {
2628         struct intel_ring_buffer *from = obj->ring;
2629         u32 seqno;
2630         int ret, idx;
2631
2632         if (from == NULL || to == from)
2633                 return 0;
2634
2635         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2636                 return i915_gem_object_wait_rendering(obj, false);
2637
2638         idx = intel_ring_sync_index(from, to);
2639
2640         seqno = obj->last_read_seqno;
2641         if (seqno <= from->sync_seqno[idx])
2642                 return 0;
2643
2644         ret = i915_gem_check_olr(obj->ring, seqno);
2645         if (ret)
2646                 return ret;
2647
2648         trace_i915_gem_ring_sync_to(from, to, seqno);
2649         ret = to->sync_to(to, from, seqno);
2650         if (!ret)
2651                 /* We use last_read_seqno because sync_to()
2652                  * might have just caused seqno wrap under
2653                  * the radar.
2654                  */
2655                 from->sync_seqno[idx] = obj->last_read_seqno;
2656
2657         return ret;
2658 }
2659
2660 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2661 {
2662         u32 old_write_domain, old_read_domains;
2663
2664         /* Force a pagefault for domain tracking on next user access */
2665         i915_gem_release_mmap(obj);
2666
2667         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2668                 return;
2669
2670         /* Wait for any direct GTT access to complete */
2671         mb();
2672
2673         old_read_domains = obj->base.read_domains;
2674         old_write_domain = obj->base.write_domain;
2675
2676         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2677         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2678
2679         trace_i915_gem_object_change_domain(obj,
2680                                             old_read_domains,
2681                                             old_write_domain);
2682 }
2683
2684 int i915_vma_unbind(struct i915_vma *vma)
2685 {
2686         struct drm_i915_gem_object *obj = vma->obj;
2687         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2688         int ret;
2689
2690         /* For now we only ever use 1 vma per object */
2691         WARN_ON(!list_is_singular(&obj->vma_list));
2692
2693         if (list_empty(&vma->vma_link))
2694                 return 0;
2695
2696         if (!drm_mm_node_allocated(&vma->node)) {
2697                 i915_gem_vma_destroy(vma);
2698
2699                 return 0;
2700         }
2701
2702         if (obj->pin_count)
2703                 return -EBUSY;
2704
2705         BUG_ON(obj->pages == NULL);
2706
2707         ret = i915_gem_object_finish_gpu(obj);
2708         if (ret)
2709                 return ret;
2710         /* Continue on if we fail due to EIO, the GPU is hung so we
2711          * should be safe and we need to cleanup or else we might
2712          * cause memory corruption through use-after-free.
2713          */
2714
2715         i915_gem_object_finish_gtt(obj);
2716
2717         /* release the fence reg _after_ flushing */
2718         ret = i915_gem_object_put_fence(obj);
2719         if (ret)
2720                 return ret;
2721
2722         trace_i915_vma_unbind(vma);
2723
2724         if (obj->has_global_gtt_mapping)
2725                 i915_gem_gtt_unbind_object(obj);
2726         if (obj->has_aliasing_ppgtt_mapping) {
2727                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2728                 obj->has_aliasing_ppgtt_mapping = 0;
2729         }
2730         i915_gem_gtt_finish_object(obj);
2731         i915_gem_object_unpin_pages(obj);
2732
2733         list_del(&vma->mm_list);
2734         /* Avoid an unnecessary call to unbind on rebind. */
2735         if (i915_is_ggtt(vma->vm))
2736                 obj->map_and_fenceable = true;
2737
2738         drm_mm_remove_node(&vma->node);
2739
2740         i915_gem_vma_destroy(vma);
2741
2742         /* Since the unbound list is global, only move to that list if
2743          * no more VMAs exist. */
2744         if (list_empty(&obj->vma_list))
2745                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2746
2747         return 0;
2748 }
2749
2750 /**
2751  * Unbinds an object from the global GTT aperture.
2752  */
2753 int
2754 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2755 {
2756         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2757         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2758
2759         if (!i915_gem_obj_ggtt_bound(obj))
2760                 return 0;
2761
2762         if (obj->pin_count)
2763                 return -EBUSY;
2764
2765         BUG_ON(obj->pages == NULL);
2766
2767         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2768 }
2769
2770 int i915_gpu_idle(struct drm_device *dev)
2771 {
2772         drm_i915_private_t *dev_priv = dev->dev_private;
2773         struct intel_ring_buffer *ring;
2774         int ret, i;
2775
2776         /* Flush everything onto the inactive list. */
2777         for_each_ring(ring, dev_priv, i) {
2778                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2779                 if (ret)
2780                         return ret;
2781
2782                 ret = intel_ring_idle(ring);
2783                 if (ret)
2784                         return ret;
2785         }
2786
2787         return 0;
2788 }
2789
2790 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2791                                  struct drm_i915_gem_object *obj)
2792 {
2793         drm_i915_private_t *dev_priv = dev->dev_private;
2794         int fence_reg;
2795         int fence_pitch_shift;
2796
2797         if (INTEL_INFO(dev)->gen >= 6) {
2798                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2799                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2800         } else {
2801                 fence_reg = FENCE_REG_965_0;
2802                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2803         }
2804
2805         fence_reg += reg * 8;
2806
2807         /* To w/a incoherency with non-atomic 64-bit register updates,
2808          * we split the 64-bit update into two 32-bit writes. In order
2809          * for a partial fence not to be evaluated between writes, we
2810          * precede the update with write to turn off the fence register,
2811          * and only enable the fence as the last step.
2812          *
2813          * For extra levels of paranoia, we make sure each step lands
2814          * before applying the next step.
2815          */
2816         I915_WRITE(fence_reg, 0);
2817         POSTING_READ(fence_reg);
2818
2819         if (obj) {
2820                 u32 size = i915_gem_obj_ggtt_size(obj);
2821                 uint64_t val;
2822
2823                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2824                                  0xfffff000) << 32;
2825                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2826                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2827                 if (obj->tiling_mode == I915_TILING_Y)
2828                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2829                 val |= I965_FENCE_REG_VALID;
2830
2831                 I915_WRITE(fence_reg + 4, val >> 32);
2832                 POSTING_READ(fence_reg + 4);
2833
2834                 I915_WRITE(fence_reg + 0, val);
2835                 POSTING_READ(fence_reg);
2836         } else {
2837                 I915_WRITE(fence_reg + 4, 0);
2838                 POSTING_READ(fence_reg + 4);
2839         }
2840 }
2841
2842 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2843                                  struct drm_i915_gem_object *obj)
2844 {
2845         drm_i915_private_t *dev_priv = dev->dev_private;
2846         u32 val;
2847
2848         if (obj) {
2849                 u32 size = i915_gem_obj_ggtt_size(obj);
2850                 int pitch_val;
2851                 int tile_width;
2852
2853                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2854                      (size & -size) != size ||
2855                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2856                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2857                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2858
2859                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2860                         tile_width = 128;
2861                 else
2862                         tile_width = 512;
2863
2864                 /* Note: pitch better be a power of two tile widths */
2865                 pitch_val = obj->stride / tile_width;
2866                 pitch_val = ffs(pitch_val) - 1;
2867
2868                 val = i915_gem_obj_ggtt_offset(obj);
2869                 if (obj->tiling_mode == I915_TILING_Y)
2870                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2871                 val |= I915_FENCE_SIZE_BITS(size);
2872                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2873                 val |= I830_FENCE_REG_VALID;
2874         } else
2875                 val = 0;
2876
2877         if (reg < 8)
2878                 reg = FENCE_REG_830_0 + reg * 4;
2879         else
2880                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2881
2882         I915_WRITE(reg, val);
2883         POSTING_READ(reg);
2884 }
2885
2886 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2887                                 struct drm_i915_gem_object *obj)
2888 {
2889         drm_i915_private_t *dev_priv = dev->dev_private;
2890         uint32_t val;
2891
2892         if (obj) {
2893                 u32 size = i915_gem_obj_ggtt_size(obj);
2894                 uint32_t pitch_val;
2895
2896                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2897                      (size & -size) != size ||
2898                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2899                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2900                      i915_gem_obj_ggtt_offset(obj), size);
2901
2902                 pitch_val = obj->stride / 128;
2903                 pitch_val = ffs(pitch_val) - 1;
2904
2905                 val = i915_gem_obj_ggtt_offset(obj);
2906                 if (obj->tiling_mode == I915_TILING_Y)
2907                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2908                 val |= I830_FENCE_SIZE_BITS(size);
2909                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2910                 val |= I830_FENCE_REG_VALID;
2911         } else
2912                 val = 0;
2913
2914         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2915         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2916 }
2917
2918 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2919 {
2920         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2921 }
2922
2923 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2924                                  struct drm_i915_gem_object *obj)
2925 {
2926         struct drm_i915_private *dev_priv = dev->dev_private;
2927
2928         /* Ensure that all CPU reads are completed before installing a fence
2929          * and all writes before removing the fence.
2930          */
2931         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2932                 mb();
2933
2934         WARN(obj && (!obj->stride || !obj->tiling_mode),
2935              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2936              obj->stride, obj->tiling_mode);
2937
2938         switch (INTEL_INFO(dev)->gen) {
2939         case 7:
2940         case 6:
2941         case 5:
2942         case 4: i965_write_fence_reg(dev, reg, obj); break;
2943         case 3: i915_write_fence_reg(dev, reg, obj); break;
2944         case 2: i830_write_fence_reg(dev, reg, obj); break;
2945         default: BUG();
2946         }
2947
2948         /* And similarly be paranoid that no direct access to this region
2949          * is reordered to before the fence is installed.
2950          */
2951         if (i915_gem_object_needs_mb(obj))
2952                 mb();
2953 }
2954
2955 static inline int fence_number(struct drm_i915_private *dev_priv,
2956                                struct drm_i915_fence_reg *fence)
2957 {
2958         return fence - dev_priv->fence_regs;
2959 }
2960
2961 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2962                                          struct drm_i915_fence_reg *fence,
2963                                          bool enable)
2964 {
2965         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2966         int reg = fence_number(dev_priv, fence);
2967
2968         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2969
2970         if (enable) {
2971                 obj->fence_reg = reg;
2972                 fence->obj = obj;
2973                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2974         } else {
2975                 obj->fence_reg = I915_FENCE_REG_NONE;
2976                 fence->obj = NULL;
2977                 list_del_init(&fence->lru_list);
2978         }
2979         obj->fence_dirty = false;
2980 }
2981
2982 static int
2983 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2984 {
2985         if (obj->last_fenced_seqno) {
2986                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2987                 if (ret)
2988                         return ret;
2989
2990                 obj->last_fenced_seqno = 0;
2991         }
2992
2993         obj->fenced_gpu_access = false;
2994         return 0;
2995 }
2996
2997 int
2998 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2999 {
3000         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3001         struct drm_i915_fence_reg *fence;
3002         int ret;
3003
3004         ret = i915_gem_object_wait_fence(obj);
3005         if (ret)
3006                 return ret;
3007
3008         if (obj->fence_reg == I915_FENCE_REG_NONE)
3009                 return 0;
3010
3011         fence = &dev_priv->fence_regs[obj->fence_reg];
3012
3013         i915_gem_object_fence_lost(obj);
3014         i915_gem_object_update_fence(obj, fence, false);
3015
3016         return 0;
3017 }
3018
3019 static struct drm_i915_fence_reg *
3020 i915_find_fence_reg(struct drm_device *dev)
3021 {
3022         struct drm_i915_private *dev_priv = dev->dev_private;
3023         struct drm_i915_fence_reg *reg, *avail;
3024         int i;
3025
3026         /* First try to find a free reg */
3027         avail = NULL;
3028         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3029                 reg = &dev_priv->fence_regs[i];
3030                 if (!reg->obj)
3031                         return reg;
3032
3033                 if (!reg->pin_count)
3034                         avail = reg;
3035         }
3036
3037         if (avail == NULL)
3038                 return NULL;
3039
3040         /* None available, try to steal one or wait for a user to finish */
3041         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3042                 if (reg->pin_count)
3043                         continue;
3044
3045                 return reg;
3046         }
3047
3048         return NULL;
3049 }
3050
3051 /**
3052  * i915_gem_object_get_fence - set up fencing for an object
3053  * @obj: object to map through a fence reg
3054  *
3055  * When mapping objects through the GTT, userspace wants to be able to write
3056  * to them without having to worry about swizzling if the object is tiled.
3057  * This function walks the fence regs looking for a free one for @obj,
3058  * stealing one if it can't find any.
3059  *
3060  * It then sets up the reg based on the object's properties: address, pitch
3061  * and tiling format.
3062  *
3063  * For an untiled surface, this removes any existing fence.
3064  */
3065 int
3066 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3067 {
3068         struct drm_device *dev = obj->base.dev;
3069         struct drm_i915_private *dev_priv = dev->dev_private;
3070         bool enable = obj->tiling_mode != I915_TILING_NONE;
3071         struct drm_i915_fence_reg *reg;
3072         int ret;
3073
3074         /* Have we updated the tiling parameters upon the object and so
3075          * will need to serialise the write to the associated fence register?
3076          */
3077         if (obj->fence_dirty) {
3078                 ret = i915_gem_object_wait_fence(obj);
3079                 if (ret)
3080                         return ret;
3081         }
3082
3083         /* Just update our place in the LRU if our fence is getting reused. */
3084         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3085                 reg = &dev_priv->fence_regs[obj->fence_reg];
3086                 if (!obj->fence_dirty) {
3087                         list_move_tail(&reg->lru_list,
3088                                        &dev_priv->mm.fence_list);
3089                         return 0;
3090                 }
3091         } else if (enable) {
3092                 reg = i915_find_fence_reg(dev);
3093                 if (reg == NULL)
3094                         return -EDEADLK;
3095
3096                 if (reg->obj) {
3097                         struct drm_i915_gem_object *old = reg->obj;
3098
3099                         ret = i915_gem_object_wait_fence(old);
3100                         if (ret)
3101                                 return ret;
3102
3103                         i915_gem_object_fence_lost(old);
3104                 }
3105         } else
3106                 return 0;
3107
3108         i915_gem_object_update_fence(obj, reg, enable);
3109
3110         return 0;
3111 }
3112
3113 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3114                                      struct drm_mm_node *gtt_space,
3115                                      unsigned long cache_level)
3116 {
3117         struct drm_mm_node *other;
3118
3119         /* On non-LLC machines we have to be careful when putting differing
3120          * types of snoopable memory together to avoid the prefetcher
3121          * crossing memory domains and dying.
3122          */
3123         if (HAS_LLC(dev))
3124                 return true;
3125
3126         if (!drm_mm_node_allocated(gtt_space))
3127                 return true;
3128
3129         if (list_empty(&gtt_space->node_list))
3130                 return true;
3131
3132         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3133         if (other->allocated && !other->hole_follows && other->color != cache_level)
3134                 return false;
3135
3136         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3137         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3138                 return false;
3139
3140         return true;
3141 }
3142
3143 static void i915_gem_verify_gtt(struct drm_device *dev)
3144 {
3145 #if WATCH_GTT
3146         struct drm_i915_private *dev_priv = dev->dev_private;
3147         struct drm_i915_gem_object *obj;
3148         int err = 0;
3149
3150         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3151                 if (obj->gtt_space == NULL) {
3152                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3153                         err++;
3154                         continue;
3155                 }
3156
3157                 if (obj->cache_level != obj->gtt_space->color) {
3158                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3159                                i915_gem_obj_ggtt_offset(obj),
3160                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3161                                obj->cache_level,
3162                                obj->gtt_space->color);
3163                         err++;
3164                         continue;
3165                 }
3166
3167                 if (!i915_gem_valid_gtt_space(dev,
3168                                               obj->gtt_space,
3169                                               obj->cache_level)) {
3170                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3171                                i915_gem_obj_ggtt_offset(obj),
3172                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3173                                obj->cache_level);
3174                         err++;
3175                         continue;
3176                 }
3177         }
3178
3179         WARN_ON(err);
3180 #endif
3181 }
3182
3183 /**
3184  * Finds free space in the GTT aperture and binds the object there.
3185  */
3186 static int
3187 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3188                            struct i915_address_space *vm,
3189                            unsigned alignment,
3190                            bool map_and_fenceable,
3191                            bool nonblocking)
3192 {
3193         struct drm_device *dev = obj->base.dev;
3194         drm_i915_private_t *dev_priv = dev->dev_private;
3195         u32 size, fence_size, fence_alignment, unfenced_alignment;
3196         size_t gtt_max =
3197                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3198         struct i915_vma *vma;
3199         int ret;
3200
3201         fence_size = i915_gem_get_gtt_size(dev,
3202                                            obj->base.size,
3203                                            obj->tiling_mode);
3204         fence_alignment = i915_gem_get_gtt_alignment(dev,
3205                                                      obj->base.size,
3206                                                      obj->tiling_mode, true);
3207         unfenced_alignment =
3208                 i915_gem_get_gtt_alignment(dev,
3209                                                     obj->base.size,
3210                                                     obj->tiling_mode, false);
3211
3212         if (alignment == 0)
3213                 alignment = map_and_fenceable ? fence_alignment :
3214                                                 unfenced_alignment;
3215         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3216                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3217                 return -EINVAL;
3218         }
3219
3220         size = map_and_fenceable ? fence_size : obj->base.size;
3221
3222         /* If the object is bigger than the entire aperture, reject it early
3223          * before evicting everything in a vain attempt to find space.
3224          */
3225         if (obj->base.size > gtt_max) {
3226                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3227                           obj->base.size,
3228                           map_and_fenceable ? "mappable" : "total",
3229                           gtt_max);
3230                 return -E2BIG;
3231         }
3232
3233         ret = i915_gem_object_get_pages(obj);
3234         if (ret)
3235                 return ret;
3236
3237         i915_gem_object_pin_pages(obj);
3238
3239         BUG_ON(!i915_is_ggtt(vm));
3240
3241         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3242         if (IS_ERR(vma)) {
3243                 ret = PTR_ERR(vma);
3244                 goto err_unpin;
3245         }
3246
3247         /* For now we only ever use 1 vma per object */
3248         WARN_ON(!list_is_singular(&obj->vma_list));
3249
3250 search_free:
3251         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3252                                                   size, alignment,
3253                                                   obj->cache_level, 0, gtt_max,
3254                                                   DRM_MM_SEARCH_DEFAULT);
3255         if (ret) {
3256                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3257                                                obj->cache_level,
3258                                                map_and_fenceable,
3259                                                nonblocking);
3260                 if (ret == 0)
3261                         goto search_free;
3262
3263                 goto err_free_vma;
3264         }
3265         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3266                                               obj->cache_level))) {
3267                 ret = -EINVAL;
3268                 goto err_remove_node;
3269         }
3270
3271         ret = i915_gem_gtt_prepare_object(obj);
3272         if (ret)
3273                 goto err_remove_node;
3274
3275         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3276         list_add_tail(&vma->mm_list, &vm->inactive_list);
3277
3278         if (i915_is_ggtt(vm)) {
3279                 bool mappable, fenceable;
3280
3281                 fenceable = (vma->node.size == fence_size &&
3282                              (vma->node.start & (fence_alignment - 1)) == 0);
3283
3284                 mappable = (vma->node.start + obj->base.size <=
3285                             dev_priv->gtt.mappable_end);
3286
3287                 obj->map_and_fenceable = mappable && fenceable;
3288         }
3289
3290         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3291
3292         trace_i915_vma_bind(vma, map_and_fenceable);
3293         i915_gem_verify_gtt(dev);
3294         return 0;
3295
3296 err_remove_node:
3297         drm_mm_remove_node(&vma->node);
3298 err_free_vma:
3299         i915_gem_vma_destroy(vma);
3300 err_unpin:
3301         i915_gem_object_unpin_pages(obj);
3302         return ret;
3303 }
3304
3305 bool
3306 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3307                         bool force)
3308 {
3309         /* If we don't have a page list set up, then we're not pinned
3310          * to GPU, and we can ignore the cache flush because it'll happen
3311          * again at bind time.
3312          */
3313         if (obj->pages == NULL)
3314                 return false;
3315
3316         /*
3317          * Stolen memory is always coherent with the GPU as it is explicitly
3318          * marked as wc by the system, or the system is cache-coherent.
3319          */
3320         if (obj->stolen)
3321                 return false;
3322
3323         /* If the GPU is snooping the contents of the CPU cache,
3324          * we do not need to manually clear the CPU cache lines.  However,
3325          * the caches are only snooped when the render cache is
3326          * flushed/invalidated.  As we always have to emit invalidations
3327          * and flushes when moving into and out of the RENDER domain, correct
3328          * snooping behaviour occurs naturally as the result of our domain
3329          * tracking.
3330          */
3331         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3332                 return false;
3333
3334         trace_i915_gem_object_clflush(obj);
3335         drm_clflush_sg(obj->pages);
3336
3337         return true;
3338 }
3339
3340 /** Flushes the GTT write domain for the object if it's dirty. */
3341 static void
3342 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3343 {
3344         uint32_t old_write_domain;
3345
3346         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3347                 return;
3348
3349         /* No actual flushing is required for the GTT write domain.  Writes
3350          * to it immediately go to main memory as far as we know, so there's
3351          * no chipset flush.  It also doesn't land in render cache.
3352          *
3353          * However, we do have to enforce the order so that all writes through
3354          * the GTT land before any writes to the device, such as updates to
3355          * the GATT itself.
3356          */
3357         wmb();
3358
3359         old_write_domain = obj->base.write_domain;
3360         obj->base.write_domain = 0;
3361
3362         trace_i915_gem_object_change_domain(obj,
3363                                             obj->base.read_domains,
3364                                             old_write_domain);
3365 }
3366
3367 /** Flushes the CPU write domain for the object if it's dirty. */
3368 static void
3369 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3370                                        bool force)
3371 {
3372         uint32_t old_write_domain;
3373
3374         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3375                 return;
3376
3377         if (i915_gem_clflush_object(obj, force))
3378                 i915_gem_chipset_flush(obj->base.dev);
3379
3380         old_write_domain = obj->base.write_domain;
3381         obj->base.write_domain = 0;
3382
3383         trace_i915_gem_object_change_domain(obj,
3384                                             obj->base.read_domains,
3385                                             old_write_domain);
3386 }
3387
3388 /**
3389  * Moves a single object to the GTT read, and possibly write domain.
3390  *
3391  * This function returns when the move is complete, including waiting on
3392  * flushes to occur.
3393  */
3394 int
3395 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3396 {
3397         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3398         uint32_t old_write_domain, old_read_domains;
3399         int ret;
3400
3401         /* Not valid to be called on unbound objects. */
3402         if (!i915_gem_obj_bound_any(obj))
3403                 return -EINVAL;
3404
3405         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3406                 return 0;
3407
3408         ret = i915_gem_object_wait_rendering(obj, !write);
3409         if (ret)
3410                 return ret;
3411
3412         i915_gem_object_flush_cpu_write_domain(obj, false);
3413
3414         /* Serialise direct access to this object with the barriers for
3415          * coherent writes from the GPU, by effectively invalidating the
3416          * GTT domain upon first access.
3417          */
3418         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3419                 mb();
3420
3421         old_write_domain = obj->base.write_domain;
3422         old_read_domains = obj->base.read_domains;
3423
3424         /* It should now be out of any other write domains, and we can update
3425          * the domain values for our changes.
3426          */
3427         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3428         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3429         if (write) {
3430                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3431                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3432                 obj->dirty = 1;
3433         }
3434
3435         trace_i915_gem_object_change_domain(obj,
3436                                             old_read_domains,
3437                                             old_write_domain);
3438
3439         /* And bump the LRU for this access */
3440         if (i915_gem_object_is_inactive(obj)) {
3441                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3442                 if (vma)
3443                         list_move_tail(&vma->mm_list,
3444                                        &dev_priv->gtt.base.inactive_list);
3445
3446         }
3447
3448         return 0;
3449 }
3450
3451 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3452                                     enum i915_cache_level cache_level)
3453 {
3454         struct drm_device *dev = obj->base.dev;
3455         drm_i915_private_t *dev_priv = dev->dev_private;
3456         struct i915_vma *vma;
3457         int ret;
3458
3459         if (obj->cache_level == cache_level)
3460                 return 0;
3461
3462         if (obj->pin_count) {
3463                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3464                 return -EBUSY;
3465         }
3466
3467         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3468                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3469                         ret = i915_vma_unbind(vma);
3470                         if (ret)
3471                                 return ret;
3472
3473                         break;
3474                 }
3475         }
3476
3477         if (i915_gem_obj_bound_any(obj)) {
3478                 ret = i915_gem_object_finish_gpu(obj);
3479                 if (ret)
3480                         return ret;
3481
3482                 i915_gem_object_finish_gtt(obj);
3483
3484                 /* Before SandyBridge, you could not use tiling or fence
3485                  * registers with snooped memory, so relinquish any fences
3486                  * currently pointing to our region in the aperture.
3487                  */
3488                 if (INTEL_INFO(dev)->gen < 6) {
3489                         ret = i915_gem_object_put_fence(obj);
3490                         if (ret)
3491                                 return ret;
3492                 }
3493
3494                 if (obj->has_global_gtt_mapping)
3495                         i915_gem_gtt_bind_object(obj, cache_level);
3496                 if (obj->has_aliasing_ppgtt_mapping)
3497                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3498                                                obj, cache_level);
3499         }
3500
3501         list_for_each_entry(vma, &obj->vma_list, vma_link)
3502                 vma->node.color = cache_level;
3503         obj->cache_level = cache_level;
3504
3505         if (cpu_write_needs_clflush(obj)) {
3506                 u32 old_read_domains, old_write_domain;
3507
3508                 /* If we're coming from LLC cached, then we haven't
3509                  * actually been tracking whether the data is in the
3510                  * CPU cache or not, since we only allow one bit set
3511                  * in obj->write_domain and have been skipping the clflushes.
3512                  * Just set it to the CPU cache for now.
3513                  */
3514                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3515
3516                 old_read_domains = obj->base.read_domains;
3517                 old_write_domain = obj->base.write_domain;
3518
3519                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3520                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3521
3522                 trace_i915_gem_object_change_domain(obj,
3523                                                     old_read_domains,
3524                                                     old_write_domain);
3525         }
3526
3527         i915_gem_verify_gtt(dev);
3528         return 0;
3529 }
3530
3531 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3532                                struct drm_file *file)
3533 {
3534         struct drm_i915_gem_caching *args = data;
3535         struct drm_i915_gem_object *obj;
3536         int ret;
3537
3538         ret = i915_mutex_lock_interruptible(dev);
3539         if (ret)
3540                 return ret;
3541
3542         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3543         if (&obj->base == NULL) {
3544                 ret = -ENOENT;
3545                 goto unlock;
3546         }
3547
3548         switch (obj->cache_level) {
3549         case I915_CACHE_LLC:
3550         case I915_CACHE_L3_LLC:
3551                 args->caching = I915_CACHING_CACHED;
3552                 break;
3553
3554         case I915_CACHE_WT:
3555                 args->caching = I915_CACHING_DISPLAY;
3556                 break;
3557
3558         default:
3559                 args->caching = I915_CACHING_NONE;
3560                 break;
3561         }
3562
3563         drm_gem_object_unreference(&obj->base);
3564 unlock:
3565         mutex_unlock(&dev->struct_mutex);
3566         return ret;
3567 }
3568
3569 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3570                                struct drm_file *file)
3571 {
3572         struct drm_i915_gem_caching *args = data;
3573         struct drm_i915_gem_object *obj;
3574         enum i915_cache_level level;
3575         int ret;
3576
3577         switch (args->caching) {
3578         case I915_CACHING_NONE:
3579                 level = I915_CACHE_NONE;
3580                 break;
3581         case I915_CACHING_CACHED:
3582                 level = I915_CACHE_LLC;
3583                 break;
3584         case I915_CACHING_DISPLAY:
3585                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3586                 break;
3587         default:
3588                 return -EINVAL;
3589         }
3590
3591         ret = i915_mutex_lock_interruptible(dev);
3592         if (ret)
3593                 return ret;
3594
3595         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3596         if (&obj->base == NULL) {
3597                 ret = -ENOENT;
3598                 goto unlock;
3599         }
3600
3601         ret = i915_gem_object_set_cache_level(obj, level);
3602
3603         drm_gem_object_unreference(&obj->base);
3604 unlock:
3605         mutex_unlock(&dev->struct_mutex);
3606         return ret;
3607 }
3608
3609 static bool is_pin_display(struct drm_i915_gem_object *obj)
3610 {
3611         /* There are 3 sources that pin objects:
3612          *   1. The display engine (scanouts, sprites, cursors);
3613          *   2. Reservations for execbuffer;
3614          *   3. The user.
3615          *
3616          * We can ignore reservations as we hold the struct_mutex and
3617          * are only called outside of the reservation path.  The user
3618          * can only increment pin_count once, and so if after
3619          * subtracting the potential reference by the user, any pin_count
3620          * remains, it must be due to another use by the display engine.
3621          */
3622         return obj->pin_count - !!obj->user_pin_count;
3623 }
3624
3625 /*
3626  * Prepare buffer for display plane (scanout, cursors, etc).
3627  * Can be called from an uninterruptible phase (modesetting) and allows
3628  * any flushes to be pipelined (for pageflips).
3629  */
3630 int
3631 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3632                                      u32 alignment,
3633                                      struct intel_ring_buffer *pipelined)
3634 {
3635         u32 old_read_domains, old_write_domain;
3636         int ret;
3637
3638         if (pipelined != obj->ring) {
3639                 ret = i915_gem_object_sync(obj, pipelined);
3640                 if (ret)
3641                         return ret;
3642         }
3643
3644         /* Mark the pin_display early so that we account for the
3645          * display coherency whilst setting up the cache domains.
3646          */
3647         obj->pin_display = true;
3648
3649         /* The display engine is not coherent with the LLC cache on gen6.  As
3650          * a result, we make sure that the pinning that is about to occur is
3651          * done with uncached PTEs. This is lowest common denominator for all
3652          * chipsets.
3653          *
3654          * However for gen6+, we could do better by using the GFDT bit instead
3655          * of uncaching, which would allow us to flush all the LLC-cached data
3656          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3657          */
3658         ret = i915_gem_object_set_cache_level(obj,
3659                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3660         if (ret)
3661                 goto err_unpin_display;
3662
3663         /* As the user may map the buffer once pinned in the display plane
3664          * (e.g. libkms for the bootup splash), we have to ensure that we
3665          * always use map_and_fenceable for all scanout buffers.
3666          */
3667         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3668         if (ret)
3669                 goto err_unpin_display;
3670
3671         i915_gem_object_flush_cpu_write_domain(obj, true);
3672
3673         old_write_domain = obj->base.write_domain;
3674         old_read_domains = obj->base.read_domains;
3675
3676         /* It should now be out of any other write domains, and we can update
3677          * the domain values for our changes.
3678          */
3679         obj->base.write_domain = 0;
3680         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3681
3682         trace_i915_gem_object_change_domain(obj,
3683                                             old_read_domains,
3684                                             old_write_domain);
3685
3686         return 0;
3687
3688 err_unpin_display:
3689         obj->pin_display = is_pin_display(obj);
3690         return ret;
3691 }
3692
3693 void
3694 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3695 {
3696         i915_gem_object_unpin(obj);
3697         obj->pin_display = is_pin_display(obj);
3698 }
3699
3700 int
3701 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3702 {
3703         int ret;
3704
3705         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3706                 return 0;
3707
3708         ret = i915_gem_object_wait_rendering(obj, false);
3709         if (ret)
3710                 return ret;
3711
3712         /* Ensure that we invalidate the GPU's caches and TLBs. */
3713         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3714         return 0;
3715 }
3716
3717 /**
3718  * Moves a single object to the CPU read, and possibly write domain.
3719  *
3720  * This function returns when the move is complete, including waiting on
3721  * flushes to occur.
3722  */
3723 int
3724 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3725 {
3726         uint32_t old_write_domain, old_read_domains;
3727         int ret;
3728
3729         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3730                 return 0;
3731
3732         ret = i915_gem_object_wait_rendering(obj, !write);
3733         if (ret)
3734                 return ret;
3735
3736         i915_gem_object_flush_gtt_write_domain(obj);
3737
3738         old_write_domain = obj->base.write_domain;
3739         old_read_domains = obj->base.read_domains;
3740
3741         /* Flush the CPU cache if it's still invalid. */
3742         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3743                 i915_gem_clflush_object(obj, false);
3744
3745                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3746         }
3747
3748         /* It should now be out of any other write domains, and we can update
3749          * the domain values for our changes.
3750          */
3751         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3752
3753         /* If we're writing through the CPU, then the GPU read domains will
3754          * need to be invalidated at next use.
3755          */
3756         if (write) {
3757                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3758                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3759         }
3760
3761         trace_i915_gem_object_change_domain(obj,
3762                                             old_read_domains,
3763                                             old_write_domain);
3764
3765         return 0;
3766 }
3767
3768 /* Throttle our rendering by waiting until the ring has completed our requests
3769  * emitted over 20 msec ago.
3770  *
3771  * Note that if we were to use the current jiffies each time around the loop,
3772  * we wouldn't escape the function with any frames outstanding if the time to
3773  * render a frame was over 20ms.
3774  *
3775  * This should get us reasonable parallelism between CPU and GPU but also
3776  * relatively low latency when blocking on a particular request to finish.
3777  */
3778 static int
3779 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3780 {
3781         struct drm_i915_private *dev_priv = dev->dev_private;
3782         struct drm_i915_file_private *file_priv = file->driver_priv;
3783         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3784         struct drm_i915_gem_request *request;
3785         struct intel_ring_buffer *ring = NULL;
3786         unsigned reset_counter;
3787         u32 seqno = 0;
3788         int ret;
3789
3790         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3791         if (ret)
3792                 return ret;
3793
3794         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3795         if (ret)
3796                 return ret;
3797
3798         spin_lock(&file_priv->mm.lock);
3799         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3800                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3801                         break;
3802
3803                 ring = request->ring;
3804                 seqno = request->seqno;
3805         }
3806         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3807         spin_unlock(&file_priv->mm.lock);
3808
3809         if (seqno == 0)
3810                 return 0;
3811
3812         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3813         if (ret == 0)
3814                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3815
3816         return ret;
3817 }
3818
3819 int
3820 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3821                     struct i915_address_space *vm,
3822                     uint32_t alignment,
3823                     bool map_and_fenceable,
3824                     bool nonblocking)
3825 {
3826         struct i915_vma *vma;
3827         int ret;
3828
3829         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3830                 return -EBUSY;
3831
3832         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3833
3834         vma = i915_gem_obj_to_vma(obj, vm);
3835
3836         if (vma) {
3837                 if ((alignment &&
3838                      vma->node.start & (alignment - 1)) ||
3839                     (map_and_fenceable && !obj->map_and_fenceable)) {
3840                         WARN(obj->pin_count,
3841                              "bo is already pinned with incorrect alignment:"
3842                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3843                              " obj->map_and_fenceable=%d\n",
3844                              i915_gem_obj_offset(obj, vm), alignment,
3845                              map_and_fenceable,
3846                              obj->map_and_fenceable);
3847                         ret = i915_vma_unbind(vma);
3848                         if (ret)
3849                                 return ret;
3850                 }
3851         }
3852
3853         if (!i915_gem_obj_bound(obj, vm)) {
3854                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3855
3856                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3857                                                  map_and_fenceable,
3858                                                  nonblocking);
3859                 if (ret)
3860                         return ret;
3861
3862                 if (!dev_priv->mm.aliasing_ppgtt)
3863                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3864         }
3865
3866         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3867                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3868
3869         obj->pin_count++;
3870         obj->pin_mappable |= map_and_fenceable;
3871
3872         return 0;
3873 }
3874
3875 void
3876 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3877 {
3878         BUG_ON(obj->pin_count == 0);
3879         BUG_ON(!i915_gem_obj_bound_any(obj));
3880
3881         if (--obj->pin_count == 0)
3882                 obj->pin_mappable = false;
3883 }
3884
3885 int
3886 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3887                    struct drm_file *file)
3888 {
3889         struct drm_i915_gem_pin *args = data;
3890         struct drm_i915_gem_object *obj;
3891         int ret;
3892
3893         ret = i915_mutex_lock_interruptible(dev);
3894         if (ret)
3895                 return ret;
3896
3897         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3898         if (&obj->base == NULL) {
3899                 ret = -ENOENT;
3900                 goto unlock;
3901         }
3902
3903         if (obj->madv != I915_MADV_WILLNEED) {
3904                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3905                 ret = -EINVAL;
3906                 goto out;
3907         }
3908
3909         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3910                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3911                           args->handle);
3912                 ret = -EINVAL;
3913                 goto out;
3914         }
3915
3916         if (obj->user_pin_count == 0) {
3917                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3918                 if (ret)
3919                         goto out;
3920         }
3921
3922         obj->user_pin_count++;
3923         obj->pin_filp = file;
3924
3925         args->offset = i915_gem_obj_ggtt_offset(obj);
3926 out:
3927         drm_gem_object_unreference(&obj->base);
3928 unlock:
3929         mutex_unlock(&dev->struct_mutex);
3930         return ret;
3931 }
3932
3933 int
3934 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3935                      struct drm_file *file)
3936 {
3937         struct drm_i915_gem_pin *args = data;
3938         struct drm_i915_gem_object *obj;
3939         int ret;
3940
3941         ret = i915_mutex_lock_interruptible(dev);
3942         if (ret)
3943                 return ret;
3944
3945         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3946         if (&obj->base == NULL) {
3947                 ret = -ENOENT;
3948                 goto unlock;
3949         }
3950
3951         if (obj->pin_filp != file) {
3952                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3953                           args->handle);
3954                 ret = -EINVAL;
3955                 goto out;
3956         }
3957         obj->user_pin_count--;
3958         if (obj->user_pin_count == 0) {
3959                 obj->pin_filp = NULL;
3960                 i915_gem_object_unpin(obj);
3961         }
3962
3963 out:
3964         drm_gem_object_unreference(&obj->base);
3965 unlock:
3966         mutex_unlock(&dev->struct_mutex);
3967         return ret;
3968 }
3969
3970 int
3971 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3972                     struct drm_file *file)
3973 {
3974         struct drm_i915_gem_busy *args = data;
3975         struct drm_i915_gem_object *obj;
3976         int ret;
3977
3978         ret = i915_mutex_lock_interruptible(dev);
3979         if (ret)
3980                 return ret;
3981
3982         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3983         if (&obj->base == NULL) {
3984                 ret = -ENOENT;
3985                 goto unlock;
3986         }
3987
3988         /* Count all active objects as busy, even if they are currently not used
3989          * by the gpu. Users of this interface expect objects to eventually
3990          * become non-busy without any further actions, therefore emit any
3991          * necessary flushes here.
3992          */
3993         ret = i915_gem_object_flush_active(obj);
3994
3995         args->busy = obj->active;
3996         if (obj->ring) {
3997                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3998                 args->busy |= intel_ring_flag(obj->ring) << 16;
3999         }
4000
4001         drm_gem_object_unreference(&obj->base);
4002 unlock:
4003         mutex_unlock(&dev->struct_mutex);
4004         return ret;
4005 }
4006
4007 int
4008 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4009                         struct drm_file *file_priv)
4010 {
4011         return i915_gem_ring_throttle(dev, file_priv);
4012 }
4013
4014 int
4015 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4016                        struct drm_file *file_priv)
4017 {
4018         struct drm_i915_gem_madvise *args = data;
4019         struct drm_i915_gem_object *obj;
4020         int ret;
4021
4022         switch (args->madv) {
4023         case I915_MADV_DONTNEED:
4024         case I915_MADV_WILLNEED:
4025             break;
4026         default:
4027             return -EINVAL;
4028         }
4029
4030         ret = i915_mutex_lock_interruptible(dev);
4031         if (ret)
4032                 return ret;
4033
4034         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4035         if (&obj->base == NULL) {
4036                 ret = -ENOENT;
4037                 goto unlock;
4038         }
4039
4040         if (obj->pin_count) {
4041                 ret = -EINVAL;
4042                 goto out;
4043         }
4044
4045         if (obj->madv != __I915_MADV_PURGED)
4046                 obj->madv = args->madv;
4047
4048         /* if the object is no longer attached, discard its backing storage */
4049         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4050                 i915_gem_object_truncate(obj);
4051
4052         args->retained = obj->madv != __I915_MADV_PURGED;
4053
4054 out:
4055         drm_gem_object_unreference(&obj->base);
4056 unlock:
4057         mutex_unlock(&dev->struct_mutex);
4058         return ret;
4059 }
4060
4061 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4062                           const struct drm_i915_gem_object_ops *ops)
4063 {
4064         INIT_LIST_HEAD(&obj->global_list);
4065         INIT_LIST_HEAD(&obj->ring_list);
4066         INIT_LIST_HEAD(&obj->obj_exec_link);
4067         INIT_LIST_HEAD(&obj->vma_list);
4068
4069         obj->ops = ops;
4070
4071         obj->fence_reg = I915_FENCE_REG_NONE;
4072         obj->madv = I915_MADV_WILLNEED;
4073         /* Avoid an unnecessary call to unbind on the first bind. */
4074         obj->map_and_fenceable = true;
4075
4076         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4077 }
4078
4079 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4080         .get_pages = i915_gem_object_get_pages_gtt,
4081         .put_pages = i915_gem_object_put_pages_gtt,
4082 };
4083
4084 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4085                                                   size_t size)
4086 {
4087         struct drm_i915_gem_object *obj;
4088         struct address_space *mapping;
4089         gfp_t mask;
4090
4091         obj = i915_gem_object_alloc(dev);
4092         if (obj == NULL)
4093                 return NULL;
4094
4095         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4096                 i915_gem_object_free(obj);
4097                 return NULL;
4098         }
4099
4100         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4101         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4102                 /* 965gm cannot relocate objects above 4GiB. */
4103                 mask &= ~__GFP_HIGHMEM;
4104                 mask |= __GFP_DMA32;
4105         }
4106
4107         mapping = file_inode(obj->base.filp)->i_mapping;
4108         mapping_set_gfp_mask(mapping, mask);
4109
4110         i915_gem_object_init(obj, &i915_gem_object_ops);
4111
4112         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4113         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4114
4115         if (HAS_LLC(dev)) {
4116                 /* On some devices, we can have the GPU use the LLC (the CPU
4117                  * cache) for about a 10% performance improvement
4118                  * compared to uncached.  Graphics requests other than
4119                  * display scanout are coherent with the CPU in
4120                  * accessing this cache.  This means in this mode we
4121                  * don't need to clflush on the CPU side, and on the
4122                  * GPU side we only need to flush internal caches to
4123                  * get data visible to the CPU.
4124                  *
4125                  * However, we maintain the display planes as UC, and so
4126                  * need to rebind when first used as such.
4127                  */
4128                 obj->cache_level = I915_CACHE_LLC;
4129         } else
4130                 obj->cache_level = I915_CACHE_NONE;
4131
4132         trace_i915_gem_object_create(obj);
4133
4134         return obj;
4135 }
4136
4137 int i915_gem_init_object(struct drm_gem_object *obj)
4138 {
4139         BUG();
4140
4141         return 0;
4142 }
4143
4144 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4145 {
4146         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4147         struct drm_device *dev = obj->base.dev;
4148         drm_i915_private_t *dev_priv = dev->dev_private;
4149         struct i915_vma *vma, *next;
4150
4151         trace_i915_gem_object_destroy(obj);
4152
4153         if (obj->phys_obj)
4154                 i915_gem_detach_phys_object(dev, obj);
4155
4156         obj->pin_count = 0;
4157         /* NB: 0 or 1 elements */
4158         WARN_ON(!list_empty(&obj->vma_list) &&
4159                 !list_is_singular(&obj->vma_list));
4160         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4161                 int ret = i915_vma_unbind(vma);
4162                 if (WARN_ON(ret == -ERESTARTSYS)) {
4163                         bool was_interruptible;
4164
4165                         was_interruptible = dev_priv->mm.interruptible;
4166                         dev_priv->mm.interruptible = false;
4167
4168                         WARN_ON(i915_vma_unbind(vma));
4169
4170                         dev_priv->mm.interruptible = was_interruptible;
4171                 }
4172         }
4173
4174         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4175          * before progressing. */
4176         if (obj->stolen)
4177                 i915_gem_object_unpin_pages(obj);
4178
4179         if (WARN_ON(obj->pages_pin_count))
4180                 obj->pages_pin_count = 0;
4181         i915_gem_object_put_pages(obj);
4182         i915_gem_object_free_mmap_offset(obj);
4183         i915_gem_object_release_stolen(obj);
4184
4185         BUG_ON(obj->pages);
4186
4187         if (obj->base.import_attach)
4188                 drm_prime_gem_destroy(&obj->base, NULL);
4189
4190         drm_gem_object_release(&obj->base);
4191         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4192
4193         kfree(obj->bit_17);
4194         i915_gem_object_free(obj);
4195 }
4196
4197 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4198                                      struct i915_address_space *vm)
4199 {
4200         struct i915_vma *vma;
4201         list_for_each_entry(vma, &obj->vma_list, vma_link)
4202                 if (vma->vm == vm)
4203                         return vma;
4204
4205         return NULL;
4206 }
4207
4208 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4209                                               struct i915_address_space *vm)
4210 {
4211         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4212         if (vma == NULL)
4213                 return ERR_PTR(-ENOMEM);
4214
4215         INIT_LIST_HEAD(&vma->vma_link);
4216         INIT_LIST_HEAD(&vma->mm_list);
4217         INIT_LIST_HEAD(&vma->exec_list);
4218         vma->vm = vm;
4219         vma->obj = obj;
4220
4221         /* Keep GGTT vmas first to make debug easier */
4222         if (i915_is_ggtt(vm))
4223                 list_add(&vma->vma_link, &obj->vma_list);
4224         else
4225                 list_add_tail(&vma->vma_link, &obj->vma_list);
4226
4227         return vma;
4228 }
4229
4230 struct i915_vma *
4231 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4232                                   struct i915_address_space *vm)
4233 {
4234         struct i915_vma *vma;
4235
4236         vma = i915_gem_obj_to_vma(obj, vm);
4237         if (!vma)
4238                 vma = __i915_gem_vma_create(obj, vm);
4239
4240         return vma;
4241 }
4242
4243 void i915_gem_vma_destroy(struct i915_vma *vma)
4244 {
4245         WARN_ON(vma->node.allocated);
4246
4247         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4248         if (!list_empty(&vma->exec_list))
4249                 return;
4250
4251         list_del(&vma->vma_link);
4252
4253         kfree(vma);
4254 }
4255
4256 int
4257 i915_gem_idle(struct drm_device *dev)
4258 {
4259         drm_i915_private_t *dev_priv = dev->dev_private;
4260         int ret;
4261
4262         if (dev_priv->ums.mm_suspended)
4263                 return 0;
4264
4265         ret = i915_gpu_idle(dev);
4266         if (ret)
4267                 return ret;
4268
4269         i915_gem_retire_requests(dev);
4270
4271         /* Under UMS, be paranoid and evict. */
4272         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4273                 i915_gem_evict_everything(dev);
4274
4275         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4276
4277         i915_kernel_lost_context(dev);
4278         i915_gem_cleanup_ringbuffer(dev);
4279
4280         /* Cancel the retire work handler, which should be idle now. */
4281         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4282
4283         return 0;
4284 }
4285
4286 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4287 {
4288         struct drm_device *dev = ring->dev;
4289         drm_i915_private_t *dev_priv = dev->dev_private;
4290         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4291         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4292         int i, ret;
4293
4294         if (!HAS_L3_DPF(dev) || !remap_info)
4295                 return 0;
4296
4297         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4298         if (ret)
4299                 return ret;
4300
4301         /*
4302          * Note: We do not worry about the concurrent register cacheline hang
4303          * here because no other code should access these registers other than
4304          * at initialization time.
4305          */
4306         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4307                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4308                 intel_ring_emit(ring, reg_base + i);
4309                 intel_ring_emit(ring, remap_info[i/4]);
4310         }
4311
4312         intel_ring_advance(ring);
4313
4314         return ret;
4315 }
4316
4317 void i915_gem_init_swizzling(struct drm_device *dev)
4318 {
4319         drm_i915_private_t *dev_priv = dev->dev_private;
4320
4321         if (INTEL_INFO(dev)->gen < 5 ||
4322             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4323                 return;
4324
4325         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4326                                  DISP_TILE_SURFACE_SWIZZLING);
4327
4328         if (IS_GEN5(dev))
4329                 return;
4330
4331         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4332         if (IS_GEN6(dev))
4333                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4334         else if (IS_GEN7(dev))
4335                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4336         else
4337                 BUG();
4338 }
4339
4340 static bool
4341 intel_enable_blt(struct drm_device *dev)
4342 {
4343         if (!HAS_BLT(dev))
4344                 return false;
4345
4346         /* The blitter was dysfunctional on early prototypes */
4347         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4348                 DRM_INFO("BLT not supported on this pre-production hardware;"
4349                          " graphics performance will be degraded.\n");
4350                 return false;
4351         }
4352
4353         return true;
4354 }
4355
4356 static int i915_gem_init_rings(struct drm_device *dev)
4357 {
4358         struct drm_i915_private *dev_priv = dev->dev_private;
4359         int ret;
4360
4361         ret = intel_init_render_ring_buffer(dev);
4362         if (ret)
4363                 return ret;
4364
4365         if (HAS_BSD(dev)) {
4366                 ret = intel_init_bsd_ring_buffer(dev);
4367                 if (ret)
4368                         goto cleanup_render_ring;
4369         }
4370
4371         if (intel_enable_blt(dev)) {
4372                 ret = intel_init_blt_ring_buffer(dev);
4373                 if (ret)
4374                         goto cleanup_bsd_ring;
4375         }
4376
4377         if (HAS_VEBOX(dev)) {
4378                 ret = intel_init_vebox_ring_buffer(dev);
4379                 if (ret)
4380                         goto cleanup_blt_ring;
4381         }
4382
4383
4384         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4385         if (ret)
4386                 goto cleanup_vebox_ring;
4387
4388         return 0;
4389
4390 cleanup_vebox_ring:
4391         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4392 cleanup_blt_ring:
4393         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4394 cleanup_bsd_ring:
4395         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4396 cleanup_render_ring:
4397         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4398
4399         return ret;
4400 }
4401
4402 int
4403 i915_gem_init_hw(struct drm_device *dev)
4404 {
4405         drm_i915_private_t *dev_priv = dev->dev_private;
4406         int ret, i;
4407
4408         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4409                 return -EIO;
4410
4411         if (dev_priv->ellc_size)
4412                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4413
4414         if (IS_HSW_GT3(dev))
4415                 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4416         else
4417                 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4418
4419         if (HAS_PCH_NOP(dev)) {
4420                 u32 temp = I915_READ(GEN7_MSG_CTL);
4421                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4422                 I915_WRITE(GEN7_MSG_CTL, temp);
4423         }
4424
4425         i915_gem_init_swizzling(dev);
4426
4427         ret = i915_gem_init_rings(dev);
4428         if (ret)
4429                 return ret;
4430
4431         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4432                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4433
4434         /*
4435          * XXX: There was some w/a described somewhere suggesting loading
4436          * contexts before PPGTT.
4437          */
4438         i915_gem_context_init(dev);
4439         if (dev_priv->mm.aliasing_ppgtt) {
4440                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4441                 if (ret) {
4442                         i915_gem_cleanup_aliasing_ppgtt(dev);
4443                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4444                 }
4445         }
4446
4447         return 0;
4448 }
4449
4450 int i915_gem_init(struct drm_device *dev)
4451 {
4452         struct drm_i915_private *dev_priv = dev->dev_private;
4453         int ret;
4454
4455         mutex_lock(&dev->struct_mutex);
4456
4457         if (IS_VALLEYVIEW(dev)) {
4458                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4459                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4460                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4461                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4462         }
4463
4464         i915_gem_init_global_gtt(dev);
4465
4466         ret = i915_gem_init_hw(dev);
4467         mutex_unlock(&dev->struct_mutex);
4468         if (ret) {
4469                 i915_gem_cleanup_aliasing_ppgtt(dev);
4470                 return ret;
4471         }
4472
4473         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4474         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4475                 dev_priv->dri1.allow_batchbuffer = 1;
4476         return 0;
4477 }
4478
4479 void
4480 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4481 {
4482         drm_i915_private_t *dev_priv = dev->dev_private;
4483         struct intel_ring_buffer *ring;
4484         int i;
4485
4486         for_each_ring(ring, dev_priv, i)
4487                 intel_cleanup_ring_buffer(ring);
4488 }
4489
4490 int
4491 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4492                        struct drm_file *file_priv)
4493 {
4494         struct drm_i915_private *dev_priv = dev->dev_private;
4495         int ret;
4496
4497         if (drm_core_check_feature(dev, DRIVER_MODESET))
4498                 return 0;
4499
4500         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4501                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4502                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4503         }
4504
4505         mutex_lock(&dev->struct_mutex);
4506         dev_priv->ums.mm_suspended = 0;
4507
4508         ret = i915_gem_init_hw(dev);
4509         if (ret != 0) {
4510                 mutex_unlock(&dev->struct_mutex);
4511                 return ret;
4512         }
4513
4514         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4515         mutex_unlock(&dev->struct_mutex);
4516
4517         ret = drm_irq_install(dev);
4518         if (ret)
4519                 goto cleanup_ringbuffer;
4520
4521         return 0;
4522
4523 cleanup_ringbuffer:
4524         mutex_lock(&dev->struct_mutex);
4525         i915_gem_cleanup_ringbuffer(dev);
4526         dev_priv->ums.mm_suspended = 1;
4527         mutex_unlock(&dev->struct_mutex);
4528
4529         return ret;
4530 }
4531
4532 int
4533 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4534                        struct drm_file *file_priv)
4535 {
4536         struct drm_i915_private *dev_priv = dev->dev_private;
4537         int ret;
4538
4539         if (drm_core_check_feature(dev, DRIVER_MODESET))
4540                 return 0;
4541
4542         drm_irq_uninstall(dev);
4543
4544         mutex_lock(&dev->struct_mutex);
4545         ret =  i915_gem_idle(dev);
4546
4547         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4548          * We need to replace this with a semaphore, or something.
4549          * And not confound ums.mm_suspended!
4550          */
4551         if (ret != 0)
4552                 dev_priv->ums.mm_suspended = 1;
4553         mutex_unlock(&dev->struct_mutex);
4554
4555         return ret;
4556 }
4557
4558 void
4559 i915_gem_lastclose(struct drm_device *dev)
4560 {
4561         int ret;
4562
4563         if (drm_core_check_feature(dev, DRIVER_MODESET))
4564                 return;
4565
4566         mutex_lock(&dev->struct_mutex);
4567         ret = i915_gem_idle(dev);
4568         if (ret)
4569                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4570         mutex_unlock(&dev->struct_mutex);
4571 }
4572
4573 static void
4574 init_ring_lists(struct intel_ring_buffer *ring)
4575 {
4576         INIT_LIST_HEAD(&ring->active_list);
4577         INIT_LIST_HEAD(&ring->request_list);
4578 }
4579
4580 static void i915_init_vm(struct drm_i915_private *dev_priv,
4581                          struct i915_address_space *vm)
4582 {
4583         vm->dev = dev_priv->dev;
4584         INIT_LIST_HEAD(&vm->active_list);
4585         INIT_LIST_HEAD(&vm->inactive_list);
4586         INIT_LIST_HEAD(&vm->global_link);
4587         list_add(&vm->global_link, &dev_priv->vm_list);
4588 }
4589
4590 void
4591 i915_gem_load(struct drm_device *dev)
4592 {
4593         drm_i915_private_t *dev_priv = dev->dev_private;
4594         int i;
4595
4596         dev_priv->slab =
4597                 kmem_cache_create("i915_gem_object",
4598                                   sizeof(struct drm_i915_gem_object), 0,
4599                                   SLAB_HWCACHE_ALIGN,
4600                                   NULL);
4601
4602         INIT_LIST_HEAD(&dev_priv->vm_list);
4603         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4604
4605         INIT_LIST_HEAD(&dev_priv->context_list);
4606         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4607         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4608         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4609         for (i = 0; i < I915_NUM_RINGS; i++)
4610                 init_ring_lists(&dev_priv->ring[i]);
4611         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4612                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4613         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4614                           i915_gem_retire_work_handler);
4615         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4616
4617         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4618         if (IS_GEN3(dev)) {
4619                 I915_WRITE(MI_ARB_STATE,
4620                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4621         }
4622
4623         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4624
4625         /* Old X drivers will take 0-2 for front, back, depth buffers */
4626         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4627                 dev_priv->fence_reg_start = 3;
4628
4629         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4630                 dev_priv->num_fence_regs = 32;
4631         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4632                 dev_priv->num_fence_regs = 16;
4633         else
4634                 dev_priv->num_fence_regs = 8;
4635
4636         /* Initialize fence registers to zero */
4637         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4638         i915_gem_restore_fences(dev);
4639
4640         i915_gem_detect_bit_6_swizzle(dev);
4641         init_waitqueue_head(&dev_priv->pending_flip_queue);
4642
4643         dev_priv->mm.interruptible = true;
4644
4645         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4646         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4647         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4648         register_shrinker(&dev_priv->mm.inactive_shrinker);
4649 }
4650
4651 /*
4652  * Create a physically contiguous memory object for this object
4653  * e.g. for cursor + overlay regs
4654  */
4655 static int i915_gem_init_phys_object(struct drm_device *dev,
4656                                      int id, int size, int align)
4657 {
4658         drm_i915_private_t *dev_priv = dev->dev_private;
4659         struct drm_i915_gem_phys_object *phys_obj;
4660         int ret;
4661
4662         if (dev_priv->mm.phys_objs[id - 1] || !size)
4663                 return 0;
4664
4665         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4666         if (!phys_obj)
4667                 return -ENOMEM;
4668
4669         phys_obj->id = id;
4670
4671         phys_obj->handle = drm_pci_alloc(dev, size, align);
4672         if (!phys_obj->handle) {
4673                 ret = -ENOMEM;
4674                 goto kfree_obj;
4675         }
4676 #ifdef CONFIG_X86
4677         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4678 #endif
4679
4680         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4681
4682         return 0;
4683 kfree_obj:
4684         kfree(phys_obj);
4685         return ret;
4686 }
4687
4688 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4689 {
4690         drm_i915_private_t *dev_priv = dev->dev_private;
4691         struct drm_i915_gem_phys_object *phys_obj;
4692
4693         if (!dev_priv->mm.phys_objs[id - 1])
4694                 return;
4695
4696         phys_obj = dev_priv->mm.phys_objs[id - 1];
4697         if (phys_obj->cur_obj) {
4698                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4699         }
4700
4701 #ifdef CONFIG_X86
4702         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4703 #endif
4704         drm_pci_free(dev, phys_obj->handle);
4705         kfree(phys_obj);
4706         dev_priv->mm.phys_objs[id - 1] = NULL;
4707 }
4708
4709 void i915_gem_free_all_phys_object(struct drm_device *dev)
4710 {
4711         int i;
4712
4713         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4714                 i915_gem_free_phys_object(dev, i);
4715 }
4716
4717 void i915_gem_detach_phys_object(struct drm_device *dev,
4718                                  struct drm_i915_gem_object *obj)
4719 {
4720         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4721         char *vaddr;
4722         int i;
4723         int page_count;
4724
4725         if (!obj->phys_obj)
4726                 return;
4727         vaddr = obj->phys_obj->handle->vaddr;
4728
4729         page_count = obj->base.size / PAGE_SIZE;
4730         for (i = 0; i < page_count; i++) {
4731                 struct page *page = shmem_read_mapping_page(mapping, i);
4732                 if (!IS_ERR(page)) {
4733                         char *dst = kmap_atomic(page);
4734                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4735                         kunmap_atomic(dst);
4736
4737                         drm_clflush_pages(&page, 1);
4738
4739                         set_page_dirty(page);
4740                         mark_page_accessed(page);
4741                         page_cache_release(page);
4742                 }
4743         }
4744         i915_gem_chipset_flush(dev);
4745
4746         obj->phys_obj->cur_obj = NULL;
4747         obj->phys_obj = NULL;
4748 }
4749
4750 int
4751 i915_gem_attach_phys_object(struct drm_device *dev,
4752                             struct drm_i915_gem_object *obj,
4753                             int id,
4754                             int align)
4755 {
4756         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4757         drm_i915_private_t *dev_priv = dev->dev_private;
4758         int ret = 0;
4759         int page_count;
4760         int i;
4761
4762         if (id > I915_MAX_PHYS_OBJECT)
4763                 return -EINVAL;
4764
4765         if (obj->phys_obj) {
4766                 if (obj->phys_obj->id == id)
4767                         return 0;
4768                 i915_gem_detach_phys_object(dev, obj);
4769         }
4770
4771         /* create a new object */
4772         if (!dev_priv->mm.phys_objs[id - 1]) {
4773                 ret = i915_gem_init_phys_object(dev, id,
4774                                                 obj->base.size, align);
4775                 if (ret) {
4776                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4777                                   id, obj->base.size);
4778                         return ret;
4779                 }
4780         }
4781
4782         /* bind to the object */
4783         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4784         obj->phys_obj->cur_obj = obj;
4785
4786         page_count = obj->base.size / PAGE_SIZE;
4787
4788         for (i = 0; i < page_count; i++) {
4789                 struct page *page;
4790                 char *dst, *src;
4791
4792                 page = shmem_read_mapping_page(mapping, i);
4793                 if (IS_ERR(page))
4794                         return PTR_ERR(page);
4795
4796                 src = kmap_atomic(page);
4797                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4798                 memcpy(dst, src, PAGE_SIZE);
4799                 kunmap_atomic(src);
4800
4801                 mark_page_accessed(page);
4802                 page_cache_release(page);
4803         }
4804
4805         return 0;
4806 }
4807
4808 static int
4809 i915_gem_phys_pwrite(struct drm_device *dev,
4810                      struct drm_i915_gem_object *obj,
4811                      struct drm_i915_gem_pwrite *args,
4812                      struct drm_file *file_priv)
4813 {
4814         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4815         char __user *user_data = to_user_ptr(args->data_ptr);
4816
4817         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4818                 unsigned long unwritten;
4819
4820                 /* The physical object once assigned is fixed for the lifetime
4821                  * of the obj, so we can safely drop the lock and continue
4822                  * to access vaddr.
4823                  */
4824                 mutex_unlock(&dev->struct_mutex);
4825                 unwritten = copy_from_user(vaddr, user_data, args->size);
4826                 mutex_lock(&dev->struct_mutex);
4827                 if (unwritten)
4828                         return -EFAULT;
4829         }
4830
4831         i915_gem_chipset_flush(dev);
4832         return 0;
4833 }
4834
4835 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4836 {
4837         struct drm_i915_file_private *file_priv = file->driver_priv;
4838
4839         /* Clean up our request list when the client is going away, so that
4840          * later retire_requests won't dereference our soon-to-be-gone
4841          * file_priv.
4842          */
4843         spin_lock(&file_priv->mm.lock);
4844         while (!list_empty(&file_priv->mm.request_list)) {
4845                 struct drm_i915_gem_request *request;
4846
4847                 request = list_first_entry(&file_priv->mm.request_list,
4848                                            struct drm_i915_gem_request,
4849                                            client_list);
4850                 list_del(&request->client_list);
4851                 request->file_priv = NULL;
4852         }
4853         spin_unlock(&file_priv->mm.lock);
4854 }
4855
4856 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4857 {
4858         if (!mutex_is_locked(mutex))
4859                 return false;
4860
4861 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4862         return mutex->owner == task;
4863 #else
4864         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4865         return false;
4866 #endif
4867 }
4868
4869 static unsigned long
4870 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4871 {
4872         struct drm_i915_private *dev_priv =
4873                 container_of(shrinker,
4874                              struct drm_i915_private,
4875                              mm.inactive_shrinker);
4876         struct drm_device *dev = dev_priv->dev;
4877         struct drm_i915_gem_object *obj;
4878         bool unlock = true;
4879         unsigned long count;
4880
4881         if (!mutex_trylock(&dev->struct_mutex)) {
4882                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4883                         return 0;
4884
4885                 if (dev_priv->mm.shrinker_no_lock_stealing)
4886                         return 0;
4887
4888                 unlock = false;
4889         }
4890
4891         count = 0;
4892         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4893                 if (obj->pages_pin_count == 0)
4894                         count += obj->base.size >> PAGE_SHIFT;
4895
4896         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4897                 if (obj->active)
4898                         continue;
4899
4900                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4901                         count += obj->base.size >> PAGE_SHIFT;
4902         }
4903
4904         if (unlock)
4905                 mutex_unlock(&dev->struct_mutex);
4906         return count;
4907 }
4908
4909 /* All the new VM stuff */
4910 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4911                                   struct i915_address_space *vm)
4912 {
4913         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4914         struct i915_vma *vma;
4915
4916         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4917                 vm = &dev_priv->gtt.base;
4918
4919         BUG_ON(list_empty(&o->vma_list));
4920         list_for_each_entry(vma, &o->vma_list, vma_link) {
4921                 if (vma->vm == vm)
4922                         return vma->node.start;
4923
4924         }
4925         return -1;
4926 }
4927
4928 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4929                         struct i915_address_space *vm)
4930 {
4931         struct i915_vma *vma;
4932
4933         list_for_each_entry(vma, &o->vma_list, vma_link)
4934                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4935                         return true;
4936
4937         return false;
4938 }
4939
4940 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4941 {
4942         struct i915_vma *vma;
4943
4944         list_for_each_entry(vma, &o->vma_list, vma_link)
4945                 if (drm_mm_node_allocated(&vma->node))
4946                         return true;
4947
4948         return false;
4949 }
4950
4951 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4952                                 struct i915_address_space *vm)
4953 {
4954         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4955         struct i915_vma *vma;
4956
4957         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4958                 vm = &dev_priv->gtt.base;
4959
4960         BUG_ON(list_empty(&o->vma_list));
4961
4962         list_for_each_entry(vma, &o->vma_list, vma_link)
4963                 if (vma->vm == vm)
4964                         return vma->node.size;
4965
4966         return 0;
4967 }
4968
4969 static unsigned long
4970 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4971 {
4972         struct drm_i915_private *dev_priv =
4973                 container_of(shrinker,
4974                              struct drm_i915_private,
4975                              mm.inactive_shrinker);
4976         struct drm_device *dev = dev_priv->dev;
4977         int nr_to_scan = sc->nr_to_scan;
4978         unsigned long freed;
4979         bool unlock = true;
4980
4981         if (!mutex_trylock(&dev->struct_mutex)) {
4982                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4983                         return SHRINK_STOP;
4984
4985                 if (dev_priv->mm.shrinker_no_lock_stealing)
4986                         return SHRINK_STOP;
4987
4988                 unlock = false;
4989         }
4990
4991         freed = i915_gem_purge(dev_priv, nr_to_scan);
4992         if (freed < nr_to_scan)
4993                 freed += __i915_gem_shrink(dev_priv, nr_to_scan,
4994                                                         false);
4995         if (freed < nr_to_scan)
4996                 freed += i915_gem_shrink_all(dev_priv);
4997
4998         if (unlock)
4999                 mutex_unlock(&dev->struct_mutex);
5000         return freed;
5001 }
5002
5003 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5004 {
5005         struct i915_vma *vma;
5006
5007         if (WARN_ON(list_empty(&obj->vma_list)))
5008                 return NULL;
5009
5010         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5011         if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5012                 return NULL;
5013
5014         return vma;
5015 }