]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
mm, fs: introduce mapping_gfp_constraint()
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 i915_gem_chipset_flush(dev);
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014
1015         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1016         return ret;
1017 }
1018
1019 /**
1020  * Writes data to the object referenced by handle.
1021  *
1022  * On error, the contents of the buffer that were to be modified are undefined.
1023  */
1024 int
1025 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1026                       struct drm_file *file)
1027 {
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029         struct drm_i915_gem_pwrite *args = data;
1030         struct drm_i915_gem_object *obj;
1031         int ret;
1032
1033         if (args->size == 0)
1034                 return 0;
1035
1036         if (!access_ok(VERIFY_READ,
1037                        to_user_ptr(args->data_ptr),
1038                        args->size))
1039                 return -EFAULT;
1040
1041         if (likely(!i915.prefault_disable)) {
1042                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1043                                                    args->size);
1044                 if (ret)
1045                         return -EFAULT;
1046         }
1047
1048         intel_runtime_pm_get(dev_priv);
1049
1050         ret = i915_mutex_lock_interruptible(dev);
1051         if (ret)
1052                 goto put_rpm;
1053
1054         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1055         if (&obj->base == NULL) {
1056                 ret = -ENOENT;
1057                 goto unlock;
1058         }
1059
1060         /* Bounds check destination. */
1061         if (args->offset > obj->base.size ||
1062             args->size > obj->base.size - args->offset) {
1063                 ret = -EINVAL;
1064                 goto out;
1065         }
1066
1067         /* prime objects have no backing filp to GEM pread/pwrite
1068          * pages from.
1069          */
1070         if (!obj->base.filp) {
1071                 ret = -EINVAL;
1072                 goto out;
1073         }
1074
1075         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1076
1077         ret = -EFAULT;
1078         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1079          * it would end up going through the fenced access, and we'll get
1080          * different detiling behavior between reading and writing.
1081          * pread/pwrite currently are reading and writing from the CPU
1082          * perspective, requiring manual detiling by the client.
1083          */
1084         if (obj->tiling_mode == I915_TILING_NONE &&
1085             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1086             cpu_write_needs_clflush(obj)) {
1087                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1088                 /* Note that the gtt paths might fail with non-page-backed user
1089                  * pointers (e.g. gtt mappings when moving data between
1090                  * textures). Fallback to the shmem path in that case. */
1091         }
1092
1093         if (ret == -EFAULT || ret == -ENOSPC) {
1094                 if (obj->phys_handle)
1095                         ret = i915_gem_phys_pwrite(obj, args, file);
1096                 else
1097                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1098         }
1099
1100 out:
1101         drm_gem_object_unreference(&obj->base);
1102 unlock:
1103         mutex_unlock(&dev->struct_mutex);
1104 put_rpm:
1105         intel_runtime_pm_put(dev_priv);
1106
1107         return ret;
1108 }
1109
1110 int
1111 i915_gem_check_wedge(struct i915_gpu_error *error,
1112                      bool interruptible)
1113 {
1114         if (i915_reset_in_progress(error)) {
1115                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116                  * -EIO unconditionally for these. */
1117                 if (!interruptible)
1118                         return -EIO;
1119
1120                 /* Recovery complete, but the reset failed ... */
1121                 if (i915_terminally_wedged(error))
1122                         return -EIO;
1123
1124                 /*
1125                  * Check if GPU Reset is in progress - we need intel_ring_begin
1126                  * to work properly to reinit the hw state while the gpu is
1127                  * still marked as reset-in-progress. Handle this with a flag.
1128                  */
1129                 if (!error->reload_in_reset)
1130                         return -EAGAIN;
1131         }
1132
1133         return 0;
1134 }
1135
1136 static void fake_irq(unsigned long data)
1137 {
1138         wake_up_process((struct task_struct *)data);
1139 }
1140
1141 static bool missed_irq(struct drm_i915_private *dev_priv,
1142                        struct intel_engine_cs *ring)
1143 {
1144         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1145 }
1146
1147 static int __i915_spin_request(struct drm_i915_gem_request *req)
1148 {
1149         unsigned long timeout;
1150
1151         if (i915_gem_request_get_ring(req)->irq_refcount)
1152                 return -EBUSY;
1153
1154         timeout = jiffies + 1;
1155         while (!need_resched()) {
1156                 if (i915_gem_request_completed(req, true))
1157                         return 0;
1158
1159                 if (time_after_eq(jiffies, timeout))
1160                         break;
1161
1162                 cpu_relax_lowlatency();
1163         }
1164         if (i915_gem_request_completed(req, false))
1165                 return 0;
1166
1167         return -EAGAIN;
1168 }
1169
1170 /**
1171  * __i915_wait_request - wait until execution of request has finished
1172  * @req: duh!
1173  * @reset_counter: reset sequence associated with the given request
1174  * @interruptible: do an interruptible wait (normally yes)
1175  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1176  *
1177  * Note: It is of utmost importance that the passed in seqno and reset_counter
1178  * values have been read by the caller in an smp safe manner. Where read-side
1179  * locks are involved, it is sufficient to read the reset_counter before
1180  * unlocking the lock that protects the seqno. For lockless tricks, the
1181  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1182  * inserted.
1183  *
1184  * Returns 0 if the request was found within the alloted time. Else returns the
1185  * errno with remaining time filled in timeout argument.
1186  */
1187 int __i915_wait_request(struct drm_i915_gem_request *req,
1188                         unsigned reset_counter,
1189                         bool interruptible,
1190                         s64 *timeout,
1191                         struct intel_rps_client *rps)
1192 {
1193         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1194         struct drm_device *dev = ring->dev;
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         const bool irq_test_in_progress =
1197                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1198         DEFINE_WAIT(wait);
1199         unsigned long timeout_expire;
1200         s64 before, now;
1201         int ret;
1202
1203         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1204
1205         if (list_empty(&req->list))
1206                 return 0;
1207
1208         if (i915_gem_request_completed(req, true))
1209                 return 0;
1210
1211         timeout_expire = timeout ?
1212                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1213
1214         if (INTEL_INFO(dev_priv)->gen >= 6)
1215                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1216
1217         /* Record current time in case interrupted by signal, or wedged */
1218         trace_i915_gem_request_wait_begin(req);
1219         before = ktime_get_raw_ns();
1220
1221         /* Optimistic spin for the next jiffie before touching IRQs */
1222         ret = __i915_spin_request(req);
1223         if (ret == 0)
1224                 goto out;
1225
1226         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1227                 ret = -ENODEV;
1228                 goto out;
1229         }
1230
1231         for (;;) {
1232                 struct timer_list timer;
1233
1234                 prepare_to_wait(&ring->irq_queue, &wait,
1235                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1236
1237                 /* We need to check whether any gpu reset happened in between
1238                  * the caller grabbing the seqno and now ... */
1239                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1240                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1241                          * is truely gone. */
1242                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1243                         if (ret == 0)
1244                                 ret = -EAGAIN;
1245                         break;
1246                 }
1247
1248                 if (i915_gem_request_completed(req, false)) {
1249                         ret = 0;
1250                         break;
1251                 }
1252
1253                 if (interruptible && signal_pending(current)) {
1254                         ret = -ERESTARTSYS;
1255                         break;
1256                 }
1257
1258                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1259                         ret = -ETIME;
1260                         break;
1261                 }
1262
1263                 timer.function = NULL;
1264                 if (timeout || missed_irq(dev_priv, ring)) {
1265                         unsigned long expire;
1266
1267                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1268                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1269                         mod_timer(&timer, expire);
1270                 }
1271
1272                 io_schedule();
1273
1274                 if (timer.function) {
1275                         del_singleshot_timer_sync(&timer);
1276                         destroy_timer_on_stack(&timer);
1277                 }
1278         }
1279         if (!irq_test_in_progress)
1280                 ring->irq_put(ring);
1281
1282         finish_wait(&ring->irq_queue, &wait);
1283
1284 out:
1285         now = ktime_get_raw_ns();
1286         trace_i915_gem_request_wait_end(req);
1287
1288         if (timeout) {
1289                 s64 tres = *timeout - (now - before);
1290
1291                 *timeout = tres < 0 ? 0 : tres;
1292
1293                 /*
1294                  * Apparently ktime isn't accurate enough and occasionally has a
1295                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1296                  * things up to make the test happy. We allow up to 1 jiffy.
1297                  *
1298                  * This is a regrssion from the timespec->ktime conversion.
1299                  */
1300                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1301                         *timeout = 0;
1302         }
1303
1304         return ret;
1305 }
1306
1307 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1308                                    struct drm_file *file)
1309 {
1310         struct drm_i915_private *dev_private;
1311         struct drm_i915_file_private *file_priv;
1312
1313         WARN_ON(!req || !file || req->file_priv);
1314
1315         if (!req || !file)
1316                 return -EINVAL;
1317
1318         if (req->file_priv)
1319                 return -EINVAL;
1320
1321         dev_private = req->ring->dev->dev_private;
1322         file_priv = file->driver_priv;
1323
1324         spin_lock(&file_priv->mm.lock);
1325         req->file_priv = file_priv;
1326         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1327         spin_unlock(&file_priv->mm.lock);
1328
1329         req->pid = get_pid(task_pid(current));
1330
1331         return 0;
1332 }
1333
1334 static inline void
1335 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1336 {
1337         struct drm_i915_file_private *file_priv = request->file_priv;
1338
1339         if (!file_priv)
1340                 return;
1341
1342         spin_lock(&file_priv->mm.lock);
1343         list_del(&request->client_list);
1344         request->file_priv = NULL;
1345         spin_unlock(&file_priv->mm.lock);
1346
1347         put_pid(request->pid);
1348         request->pid = NULL;
1349 }
1350
1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352 {
1353         trace_i915_gem_request_retire(request);
1354
1355         /* We know the GPU must have read the request to have
1356          * sent us the seqno + interrupt, so use the position
1357          * of tail of the request to update the last known position
1358          * of the GPU head.
1359          *
1360          * Note this requires that we are always called in request
1361          * completion order.
1362          */
1363         request->ringbuf->last_retired_head = request->postfix;
1364
1365         list_del_init(&request->list);
1366         i915_gem_request_remove_from_client(request);
1367
1368         i915_gem_request_unreference(request);
1369 }
1370
1371 static void
1372 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1373 {
1374         struct intel_engine_cs *engine = req->ring;
1375         struct drm_i915_gem_request *tmp;
1376
1377         lockdep_assert_held(&engine->dev->struct_mutex);
1378
1379         if (list_empty(&req->list))
1380                 return;
1381
1382         do {
1383                 tmp = list_first_entry(&engine->request_list,
1384                                        typeof(*tmp), list);
1385
1386                 i915_gem_request_retire(tmp);
1387         } while (tmp != req);
1388
1389         WARN_ON(i915_verify_lists(engine->dev));
1390 }
1391
1392 /**
1393  * Waits for a request to be signaled, and cleans up the
1394  * request and object lists appropriately for that event.
1395  */
1396 int
1397 i915_wait_request(struct drm_i915_gem_request *req)
1398 {
1399         struct drm_device *dev;
1400         struct drm_i915_private *dev_priv;
1401         bool interruptible;
1402         int ret;
1403
1404         BUG_ON(req == NULL);
1405
1406         dev = req->ring->dev;
1407         dev_priv = dev->dev_private;
1408         interruptible = dev_priv->mm.interruptible;
1409
1410         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411
1412         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1413         if (ret)
1414                 return ret;
1415
1416         ret = __i915_wait_request(req,
1417                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1418                                   interruptible, NULL, NULL);
1419         if (ret)
1420                 return ret;
1421
1422         __i915_gem_request_retire__upto(req);
1423         return 0;
1424 }
1425
1426 /**
1427  * Ensures that all rendering to the object has completed and the object is
1428  * safe to unbind from the GTT or access from the CPU.
1429  */
1430 int
1431 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1432                                bool readonly)
1433 {
1434         int ret, i;
1435
1436         if (!obj->active)
1437                 return 0;
1438
1439         if (readonly) {
1440                 if (obj->last_write_req != NULL) {
1441                         ret = i915_wait_request(obj->last_write_req);
1442                         if (ret)
1443                                 return ret;
1444
1445                         i = obj->last_write_req->ring->id;
1446                         if (obj->last_read_req[i] == obj->last_write_req)
1447                                 i915_gem_object_retire__read(obj, i);
1448                         else
1449                                 i915_gem_object_retire__write(obj);
1450                 }
1451         } else {
1452                 for (i = 0; i < I915_NUM_RINGS; i++) {
1453                         if (obj->last_read_req[i] == NULL)
1454                                 continue;
1455
1456                         ret = i915_wait_request(obj->last_read_req[i]);
1457                         if (ret)
1458                                 return ret;
1459
1460                         i915_gem_object_retire__read(obj, i);
1461                 }
1462                 RQ_BUG_ON(obj->active);
1463         }
1464
1465         return 0;
1466 }
1467
1468 static void
1469 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1470                                struct drm_i915_gem_request *req)
1471 {
1472         int ring = req->ring->id;
1473
1474         if (obj->last_read_req[ring] == req)
1475                 i915_gem_object_retire__read(obj, ring);
1476         else if (obj->last_write_req == req)
1477                 i915_gem_object_retire__write(obj);
1478
1479         __i915_gem_request_retire__upto(req);
1480 }
1481
1482 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1483  * as the object state may change during this call.
1484  */
1485 static __must_check int
1486 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1487                                             struct intel_rps_client *rps,
1488                                             bool readonly)
1489 {
1490         struct drm_device *dev = obj->base.dev;
1491         struct drm_i915_private *dev_priv = dev->dev_private;
1492         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1493         unsigned reset_counter;
1494         int ret, i, n = 0;
1495
1496         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1497         BUG_ON(!dev_priv->mm.interruptible);
1498
1499         if (!obj->active)
1500                 return 0;
1501
1502         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1503         if (ret)
1504                 return ret;
1505
1506         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1507
1508         if (readonly) {
1509                 struct drm_i915_gem_request *req;
1510
1511                 req = obj->last_write_req;
1512                 if (req == NULL)
1513                         return 0;
1514
1515                 requests[n++] = i915_gem_request_reference(req);
1516         } else {
1517                 for (i = 0; i < I915_NUM_RINGS; i++) {
1518                         struct drm_i915_gem_request *req;
1519
1520                         req = obj->last_read_req[i];
1521                         if (req == NULL)
1522                                 continue;
1523
1524                         requests[n++] = i915_gem_request_reference(req);
1525                 }
1526         }
1527
1528         mutex_unlock(&dev->struct_mutex);
1529         for (i = 0; ret == 0 && i < n; i++)
1530                 ret = __i915_wait_request(requests[i], reset_counter, true,
1531                                           NULL, rps);
1532         mutex_lock(&dev->struct_mutex);
1533
1534         for (i = 0; i < n; i++) {
1535                 if (ret == 0)
1536                         i915_gem_object_retire_request(obj, requests[i]);
1537                 i915_gem_request_unreference(requests[i]);
1538         }
1539
1540         return ret;
1541 }
1542
1543 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1544 {
1545         struct drm_i915_file_private *fpriv = file->driver_priv;
1546         return &fpriv->rps;
1547 }
1548
1549 /**
1550  * Called when user space prepares to use an object with the CPU, either
1551  * through the mmap ioctl's mapping or a GTT mapping.
1552  */
1553 int
1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555                           struct drm_file *file)
1556 {
1557         struct drm_i915_gem_set_domain *args = data;
1558         struct drm_i915_gem_object *obj;
1559         uint32_t read_domains = args->read_domains;
1560         uint32_t write_domain = args->write_domain;
1561         int ret;
1562
1563         /* Only handle setting domains to types used by the CPU. */
1564         if (write_domain & I915_GEM_GPU_DOMAINS)
1565                 return -EINVAL;
1566
1567         if (read_domains & I915_GEM_GPU_DOMAINS)
1568                 return -EINVAL;
1569
1570         /* Having something in the write domain implies it's in the read
1571          * domain, and only that read domain.  Enforce that in the request.
1572          */
1573         if (write_domain != 0 && read_domains != write_domain)
1574                 return -EINVAL;
1575
1576         ret = i915_mutex_lock_interruptible(dev);
1577         if (ret)
1578                 return ret;
1579
1580         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1581         if (&obj->base == NULL) {
1582                 ret = -ENOENT;
1583                 goto unlock;
1584         }
1585
1586         /* Try to flush the object off the GPU without holding the lock.
1587          * We will repeat the flush holding the lock in the normal manner
1588          * to catch cases where we are gazumped.
1589          */
1590         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1591                                                           to_rps_client(file),
1592                                                           !write_domain);
1593         if (ret)
1594                 goto unref;
1595
1596         if (read_domains & I915_GEM_DOMAIN_GTT)
1597                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1598         else
1599                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1600
1601         if (write_domain != 0)
1602                 intel_fb_obj_invalidate(obj,
1603                                         write_domain == I915_GEM_DOMAIN_GTT ?
1604                                         ORIGIN_GTT : ORIGIN_CPU);
1605
1606 unref:
1607         drm_gem_object_unreference(&obj->base);
1608 unlock:
1609         mutex_unlock(&dev->struct_mutex);
1610         return ret;
1611 }
1612
1613 /**
1614  * Called when user space has done writes to this buffer
1615  */
1616 int
1617 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1618                          struct drm_file *file)
1619 {
1620         struct drm_i915_gem_sw_finish *args = data;
1621         struct drm_i915_gem_object *obj;
1622         int ret = 0;
1623
1624         ret = i915_mutex_lock_interruptible(dev);
1625         if (ret)
1626                 return ret;
1627
1628         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1629         if (&obj->base == NULL) {
1630                 ret = -ENOENT;
1631                 goto unlock;
1632         }
1633
1634         /* Pinned buffers may be scanout, so flush the cache */
1635         if (obj->pin_display)
1636                 i915_gem_object_flush_cpu_write_domain(obj);
1637
1638         drm_gem_object_unreference(&obj->base);
1639 unlock:
1640         mutex_unlock(&dev->struct_mutex);
1641         return ret;
1642 }
1643
1644 /**
1645  * Maps the contents of an object, returning the address it is mapped
1646  * into.
1647  *
1648  * While the mapping holds a reference on the contents of the object, it doesn't
1649  * imply a ref on the object itself.
1650  *
1651  * IMPORTANT:
1652  *
1653  * DRM driver writers who look a this function as an example for how to do GEM
1654  * mmap support, please don't implement mmap support like here. The modern way
1655  * to implement DRM mmap support is with an mmap offset ioctl (like
1656  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1657  * That way debug tooling like valgrind will understand what's going on, hiding
1658  * the mmap call in a driver private ioctl will break that. The i915 driver only
1659  * does cpu mmaps this way because we didn't know better.
1660  */
1661 int
1662 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1663                     struct drm_file *file)
1664 {
1665         struct drm_i915_gem_mmap *args = data;
1666         struct drm_gem_object *obj;
1667         unsigned long addr;
1668
1669         if (args->flags & ~(I915_MMAP_WC))
1670                 return -EINVAL;
1671
1672         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1673                 return -ENODEV;
1674
1675         obj = drm_gem_object_lookup(dev, file, args->handle);
1676         if (obj == NULL)
1677                 return -ENOENT;
1678
1679         /* prime objects have no backing filp to GEM mmap
1680          * pages from.
1681          */
1682         if (!obj->filp) {
1683                 drm_gem_object_unreference_unlocked(obj);
1684                 return -EINVAL;
1685         }
1686
1687         addr = vm_mmap(obj->filp, 0, args->size,
1688                        PROT_READ | PROT_WRITE, MAP_SHARED,
1689                        args->offset);
1690         if (args->flags & I915_MMAP_WC) {
1691                 struct mm_struct *mm = current->mm;
1692                 struct vm_area_struct *vma;
1693
1694                 down_write(&mm->mmap_sem);
1695                 vma = find_vma(mm, addr);
1696                 if (vma)
1697                         vma->vm_page_prot =
1698                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699                 else
1700                         addr = -ENOMEM;
1701                 up_write(&mm->mmap_sem);
1702         }
1703         drm_gem_object_unreference_unlocked(obj);
1704         if (IS_ERR((void *)addr))
1705                 return addr;
1706
1707         args->addr_ptr = (uint64_t) addr;
1708
1709         return 0;
1710 }
1711
1712 /**
1713  * i915_gem_fault - fault a page into the GTT
1714  * vma: VMA in question
1715  * vmf: fault info
1716  *
1717  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1718  * from userspace.  The fault handler takes care of binding the object to
1719  * the GTT (if needed), allocating and programming a fence register (again,
1720  * only if needed based on whether the old reg is still valid or the object
1721  * is tiled) and inserting a new PTE into the faulting process.
1722  *
1723  * Note that the faulting process may involve evicting existing objects
1724  * from the GTT and/or fence registers to make room.  So performance may
1725  * suffer if the GTT working set is large or there are few fence registers
1726  * left.
1727  */
1728 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1729 {
1730         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1731         struct drm_device *dev = obj->base.dev;
1732         struct drm_i915_private *dev_priv = dev->dev_private;
1733         struct i915_ggtt_view view = i915_ggtt_view_normal;
1734         pgoff_t page_offset;
1735         unsigned long pfn;
1736         int ret = 0;
1737         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1738
1739         intel_runtime_pm_get(dev_priv);
1740
1741         /* We don't use vmf->pgoff since that has the fake offset */
1742         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1743                 PAGE_SHIFT;
1744
1745         ret = i915_mutex_lock_interruptible(dev);
1746         if (ret)
1747                 goto out;
1748
1749         trace_i915_gem_object_fault(obj, page_offset, true, write);
1750
1751         /* Try to flush the object off the GPU first without holding the lock.
1752          * Upon reacquiring the lock, we will perform our sanity checks and then
1753          * repeat the flush holding the lock in the normal manner to catch cases
1754          * where we are gazumped.
1755          */
1756         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1757         if (ret)
1758                 goto unlock;
1759
1760         /* Access to snoopable pages through the GTT is incoherent. */
1761         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1762                 ret = -EFAULT;
1763                 goto unlock;
1764         }
1765
1766         /* Use a partial view if the object is bigger than the aperture. */
1767         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1768             obj->tiling_mode == I915_TILING_NONE) {
1769                 static const unsigned int chunk_size = 256; // 1 MiB
1770
1771                 memset(&view, 0, sizeof(view));
1772                 view.type = I915_GGTT_VIEW_PARTIAL;
1773                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1774                 view.params.partial.size =
1775                         min_t(unsigned int,
1776                               chunk_size,
1777                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1778                               view.params.partial.offset);
1779         }
1780
1781         /* Now pin it into the GTT if needed */
1782         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1783         if (ret)
1784                 goto unlock;
1785
1786         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1787         if (ret)
1788                 goto unpin;
1789
1790         ret = i915_gem_object_get_fence(obj);
1791         if (ret)
1792                 goto unpin;
1793
1794         /* Finally, remap it using the new GTT offset */
1795         pfn = dev_priv->gtt.mappable_base +
1796                 i915_gem_obj_ggtt_offset_view(obj, &view);
1797         pfn >>= PAGE_SHIFT;
1798
1799         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1800                 /* Overriding existing pages in partial view does not cause
1801                  * us any trouble as TLBs are still valid because the fault
1802                  * is due to userspace losing part of the mapping or never
1803                  * having accessed it before (at this partials' range).
1804                  */
1805                 unsigned long base = vma->vm_start +
1806                                      (view.params.partial.offset << PAGE_SHIFT);
1807                 unsigned int i;
1808
1809                 for (i = 0; i < view.params.partial.size; i++) {
1810                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1811                         if (ret)
1812                                 break;
1813                 }
1814
1815                 obj->fault_mappable = true;
1816         } else {
1817                 if (!obj->fault_mappable) {
1818                         unsigned long size = min_t(unsigned long,
1819                                                    vma->vm_end - vma->vm_start,
1820                                                    obj->base.size);
1821                         int i;
1822
1823                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1824                                 ret = vm_insert_pfn(vma,
1825                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1826                                                     pfn + i);
1827                                 if (ret)
1828                                         break;
1829                         }
1830
1831                         obj->fault_mappable = true;
1832                 } else
1833                         ret = vm_insert_pfn(vma,
1834                                             (unsigned long)vmf->virtual_address,
1835                                             pfn + page_offset);
1836         }
1837 unpin:
1838         i915_gem_object_ggtt_unpin_view(obj, &view);
1839 unlock:
1840         mutex_unlock(&dev->struct_mutex);
1841 out:
1842         switch (ret) {
1843         case -EIO:
1844                 /*
1845                  * We eat errors when the gpu is terminally wedged to avoid
1846                  * userspace unduly crashing (gl has no provisions for mmaps to
1847                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1848                  * and so needs to be reported.
1849                  */
1850                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1851                         ret = VM_FAULT_SIGBUS;
1852                         break;
1853                 }
1854         case -EAGAIN:
1855                 /*
1856                  * EAGAIN means the gpu is hung and we'll wait for the error
1857                  * handler to reset everything when re-faulting in
1858                  * i915_mutex_lock_interruptible.
1859                  */
1860         case 0:
1861         case -ERESTARTSYS:
1862         case -EINTR:
1863         case -EBUSY:
1864                 /*
1865                  * EBUSY is ok: this just means that another thread
1866                  * already did the job.
1867                  */
1868                 ret = VM_FAULT_NOPAGE;
1869                 break;
1870         case -ENOMEM:
1871                 ret = VM_FAULT_OOM;
1872                 break;
1873         case -ENOSPC:
1874         case -EFAULT:
1875                 ret = VM_FAULT_SIGBUS;
1876                 break;
1877         default:
1878                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1879                 ret = VM_FAULT_SIGBUS;
1880                 break;
1881         }
1882
1883         intel_runtime_pm_put(dev_priv);
1884         return ret;
1885 }
1886
1887 /**
1888  * i915_gem_release_mmap - remove physical page mappings
1889  * @obj: obj in question
1890  *
1891  * Preserve the reservation of the mmapping with the DRM core code, but
1892  * relinquish ownership of the pages back to the system.
1893  *
1894  * It is vital that we remove the page mapping if we have mapped a tiled
1895  * object through the GTT and then lose the fence register due to
1896  * resource pressure. Similarly if the object has been moved out of the
1897  * aperture, than pages mapped into userspace must be revoked. Removing the
1898  * mapping will then trigger a page fault on the next user access, allowing
1899  * fixup by i915_gem_fault().
1900  */
1901 void
1902 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1903 {
1904         if (!obj->fault_mappable)
1905                 return;
1906
1907         drm_vma_node_unmap(&obj->base.vma_node,
1908                            obj->base.dev->anon_inode->i_mapping);
1909         obj->fault_mappable = false;
1910 }
1911
1912 void
1913 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1914 {
1915         struct drm_i915_gem_object *obj;
1916
1917         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1918                 i915_gem_release_mmap(obj);
1919 }
1920
1921 uint32_t
1922 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1923 {
1924         uint32_t gtt_size;
1925
1926         if (INTEL_INFO(dev)->gen >= 4 ||
1927             tiling_mode == I915_TILING_NONE)
1928                 return size;
1929
1930         /* Previous chips need a power-of-two fence region when tiling */
1931         if (INTEL_INFO(dev)->gen == 3)
1932                 gtt_size = 1024*1024;
1933         else
1934                 gtt_size = 512*1024;
1935
1936         while (gtt_size < size)
1937                 gtt_size <<= 1;
1938
1939         return gtt_size;
1940 }
1941
1942 /**
1943  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1944  * @obj: object to check
1945  *
1946  * Return the required GTT alignment for an object, taking into account
1947  * potential fence register mapping.
1948  */
1949 uint32_t
1950 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1951                            int tiling_mode, bool fenced)
1952 {
1953         /*
1954          * Minimum alignment is 4k (GTT page size), but might be greater
1955          * if a fence register is needed for the object.
1956          */
1957         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1958             tiling_mode == I915_TILING_NONE)
1959                 return 4096;
1960
1961         /*
1962          * Previous chips need to be aligned to the size of the smallest
1963          * fence register that can contain the object.
1964          */
1965         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1966 }
1967
1968 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1969 {
1970         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1971         int ret;
1972
1973         if (drm_vma_node_has_offset(&obj->base.vma_node))
1974                 return 0;
1975
1976         dev_priv->mm.shrinker_no_lock_stealing = true;
1977
1978         ret = drm_gem_create_mmap_offset(&obj->base);
1979         if (ret != -ENOSPC)
1980                 goto out;
1981
1982         /* Badly fragmented mmap space? The only way we can recover
1983          * space is by destroying unwanted objects. We can't randomly release
1984          * mmap_offsets as userspace expects them to be persistent for the
1985          * lifetime of the objects. The closest we can is to release the
1986          * offsets on purgeable objects by truncating it and marking it purged,
1987          * which prevents userspace from ever using that object again.
1988          */
1989         i915_gem_shrink(dev_priv,
1990                         obj->base.size >> PAGE_SHIFT,
1991                         I915_SHRINK_BOUND |
1992                         I915_SHRINK_UNBOUND |
1993                         I915_SHRINK_PURGEABLE);
1994         ret = drm_gem_create_mmap_offset(&obj->base);
1995         if (ret != -ENOSPC)
1996                 goto out;
1997
1998         i915_gem_shrink_all(dev_priv);
1999         ret = drm_gem_create_mmap_offset(&obj->base);
2000 out:
2001         dev_priv->mm.shrinker_no_lock_stealing = false;
2002
2003         return ret;
2004 }
2005
2006 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2007 {
2008         drm_gem_free_mmap_offset(&obj->base);
2009 }
2010
2011 int
2012 i915_gem_mmap_gtt(struct drm_file *file,
2013                   struct drm_device *dev,
2014                   uint32_t handle,
2015                   uint64_t *offset)
2016 {
2017         struct drm_i915_gem_object *obj;
2018         int ret;
2019
2020         ret = i915_mutex_lock_interruptible(dev);
2021         if (ret)
2022                 return ret;
2023
2024         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2025         if (&obj->base == NULL) {
2026                 ret = -ENOENT;
2027                 goto unlock;
2028         }
2029
2030         if (obj->madv != I915_MADV_WILLNEED) {
2031                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2032                 ret = -EFAULT;
2033                 goto out;
2034         }
2035
2036         ret = i915_gem_object_create_mmap_offset(obj);
2037         if (ret)
2038                 goto out;
2039
2040         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2041
2042 out:
2043         drm_gem_object_unreference(&obj->base);
2044 unlock:
2045         mutex_unlock(&dev->struct_mutex);
2046         return ret;
2047 }
2048
2049 /**
2050  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2051  * @dev: DRM device
2052  * @data: GTT mapping ioctl data
2053  * @file: GEM object info
2054  *
2055  * Simply returns the fake offset to userspace so it can mmap it.
2056  * The mmap call will end up in drm_gem_mmap(), which will set things
2057  * up so we can get faults in the handler above.
2058  *
2059  * The fault handler will take care of binding the object into the GTT
2060  * (since it may have been evicted to make room for something), allocating
2061  * a fence register, and mapping the appropriate aperture address into
2062  * userspace.
2063  */
2064 int
2065 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2066                         struct drm_file *file)
2067 {
2068         struct drm_i915_gem_mmap_gtt *args = data;
2069
2070         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2071 }
2072
2073 /* Immediately discard the backing storage */
2074 static void
2075 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2076 {
2077         i915_gem_object_free_mmap_offset(obj);
2078
2079         if (obj->base.filp == NULL)
2080                 return;
2081
2082         /* Our goal here is to return as much of the memory as
2083          * is possible back to the system as we are called from OOM.
2084          * To do this we must instruct the shmfs to drop all of its
2085          * backing pages, *now*.
2086          */
2087         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2088         obj->madv = __I915_MADV_PURGED;
2089 }
2090
2091 /* Try to discard unwanted pages */
2092 static void
2093 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2094 {
2095         struct address_space *mapping;
2096
2097         switch (obj->madv) {
2098         case I915_MADV_DONTNEED:
2099                 i915_gem_object_truncate(obj);
2100         case __I915_MADV_PURGED:
2101                 return;
2102         }
2103
2104         if (obj->base.filp == NULL)
2105                 return;
2106
2107         mapping = file_inode(obj->base.filp)->i_mapping,
2108         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2109 }
2110
2111 static void
2112 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2113 {
2114         struct sg_page_iter sg_iter;
2115         int ret;
2116
2117         BUG_ON(obj->madv == __I915_MADV_PURGED);
2118
2119         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2120         if (ret) {
2121                 /* In the event of a disaster, abandon all caches and
2122                  * hope for the best.
2123                  */
2124                 WARN_ON(ret != -EIO);
2125                 i915_gem_clflush_object(obj, true);
2126                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2127         }
2128
2129         i915_gem_gtt_finish_object(obj);
2130
2131         if (i915_gem_object_needs_bit17_swizzle(obj))
2132                 i915_gem_object_save_bit_17_swizzle(obj);
2133
2134         if (obj->madv == I915_MADV_DONTNEED)
2135                 obj->dirty = 0;
2136
2137         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2138                 struct page *page = sg_page_iter_page(&sg_iter);
2139
2140                 if (obj->dirty)
2141                         set_page_dirty(page);
2142
2143                 if (obj->madv == I915_MADV_WILLNEED)
2144                         mark_page_accessed(page);
2145
2146                 page_cache_release(page);
2147         }
2148         obj->dirty = 0;
2149
2150         sg_free_table(obj->pages);
2151         kfree(obj->pages);
2152 }
2153
2154 int
2155 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2156 {
2157         const struct drm_i915_gem_object_ops *ops = obj->ops;
2158
2159         if (obj->pages == NULL)
2160                 return 0;
2161
2162         if (obj->pages_pin_count)
2163                 return -EBUSY;
2164
2165         BUG_ON(i915_gem_obj_bound_any(obj));
2166
2167         /* ->put_pages might need to allocate memory for the bit17 swizzle
2168          * array, hence protect them from being reaped by removing them from gtt
2169          * lists early. */
2170         list_del(&obj->global_list);
2171
2172         ops->put_pages(obj);
2173         obj->pages = NULL;
2174
2175         i915_gem_object_invalidate(obj);
2176
2177         return 0;
2178 }
2179
2180 static int
2181 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2182 {
2183         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2184         int page_count, i;
2185         struct address_space *mapping;
2186         struct sg_table *st;
2187         struct scatterlist *sg;
2188         struct sg_page_iter sg_iter;
2189         struct page *page;
2190         unsigned long last_pfn = 0;     /* suppress gcc warning */
2191         int ret;
2192         gfp_t gfp;
2193
2194         /* Assert that the object is not currently in any GPU domain. As it
2195          * wasn't in the GTT, there shouldn't be any way it could have been in
2196          * a GPU cache
2197          */
2198         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2199         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2200
2201         st = kmalloc(sizeof(*st), GFP_KERNEL);
2202         if (st == NULL)
2203                 return -ENOMEM;
2204
2205         page_count = obj->base.size / PAGE_SIZE;
2206         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2207                 kfree(st);
2208                 return -ENOMEM;
2209         }
2210
2211         /* Get the list of pages out of our struct file.  They'll be pinned
2212          * at this point until we release them.
2213          *
2214          * Fail silently without starting the shrinker
2215          */
2216         mapping = file_inode(obj->base.filp)->i_mapping;
2217         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2218         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2219         sg = st->sgl;
2220         st->nents = 0;
2221         for (i = 0; i < page_count; i++) {
2222                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2223                 if (IS_ERR(page)) {
2224                         i915_gem_shrink(dev_priv,
2225                                         page_count,
2226                                         I915_SHRINK_BOUND |
2227                                         I915_SHRINK_UNBOUND |
2228                                         I915_SHRINK_PURGEABLE);
2229                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2230                 }
2231                 if (IS_ERR(page)) {
2232                         /* We've tried hard to allocate the memory by reaping
2233                          * our own buffer, now let the real VM do its job and
2234                          * go down in flames if truly OOM.
2235                          */
2236                         i915_gem_shrink_all(dev_priv);
2237                         page = shmem_read_mapping_page(mapping, i);
2238                         if (IS_ERR(page)) {
2239                                 ret = PTR_ERR(page);
2240                                 goto err_pages;
2241                         }
2242                 }
2243 #ifdef CONFIG_SWIOTLB
2244                 if (swiotlb_nr_tbl()) {
2245                         st->nents++;
2246                         sg_set_page(sg, page, PAGE_SIZE, 0);
2247                         sg = sg_next(sg);
2248                         continue;
2249                 }
2250 #endif
2251                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2252                         if (i)
2253                                 sg = sg_next(sg);
2254                         st->nents++;
2255                         sg_set_page(sg, page, PAGE_SIZE, 0);
2256                 } else {
2257                         sg->length += PAGE_SIZE;
2258                 }
2259                 last_pfn = page_to_pfn(page);
2260
2261                 /* Check that the i965g/gm workaround works. */
2262                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2263         }
2264 #ifdef CONFIG_SWIOTLB
2265         if (!swiotlb_nr_tbl())
2266 #endif
2267                 sg_mark_end(sg);
2268         obj->pages = st;
2269
2270         ret = i915_gem_gtt_prepare_object(obj);
2271         if (ret)
2272                 goto err_pages;
2273
2274         if (i915_gem_object_needs_bit17_swizzle(obj))
2275                 i915_gem_object_do_bit_17_swizzle(obj);
2276
2277         if (obj->tiling_mode != I915_TILING_NONE &&
2278             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2279                 i915_gem_object_pin_pages(obj);
2280
2281         return 0;
2282
2283 err_pages:
2284         sg_mark_end(sg);
2285         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2286                 page_cache_release(sg_page_iter_page(&sg_iter));
2287         sg_free_table(st);
2288         kfree(st);
2289
2290         /* shmemfs first checks if there is enough memory to allocate the page
2291          * and reports ENOSPC should there be insufficient, along with the usual
2292          * ENOMEM for a genuine allocation failure.
2293          *
2294          * We use ENOSPC in our driver to mean that we have run out of aperture
2295          * space and so want to translate the error from shmemfs back to our
2296          * usual understanding of ENOMEM.
2297          */
2298         if (ret == -ENOSPC)
2299                 ret = -ENOMEM;
2300
2301         return ret;
2302 }
2303
2304 /* Ensure that the associated pages are gathered from the backing storage
2305  * and pinned into our object. i915_gem_object_get_pages() may be called
2306  * multiple times before they are released by a single call to
2307  * i915_gem_object_put_pages() - once the pages are no longer referenced
2308  * either as a result of memory pressure (reaping pages under the shrinker)
2309  * or as the object is itself released.
2310  */
2311 int
2312 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2313 {
2314         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2315         const struct drm_i915_gem_object_ops *ops = obj->ops;
2316         int ret;
2317
2318         if (obj->pages)
2319                 return 0;
2320
2321         if (obj->madv != I915_MADV_WILLNEED) {
2322                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2323                 return -EFAULT;
2324         }
2325
2326         BUG_ON(obj->pages_pin_count);
2327
2328         ret = ops->get_pages(obj);
2329         if (ret)
2330                 return ret;
2331
2332         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2333
2334         obj->get_page.sg = obj->pages->sgl;
2335         obj->get_page.last = 0;
2336
2337         return 0;
2338 }
2339
2340 void i915_vma_move_to_active(struct i915_vma *vma,
2341                              struct drm_i915_gem_request *req)
2342 {
2343         struct drm_i915_gem_object *obj = vma->obj;
2344         struct intel_engine_cs *ring;
2345
2346         ring = i915_gem_request_get_ring(req);
2347
2348         /* Add a reference if we're newly entering the active list. */
2349         if (obj->active == 0)
2350                 drm_gem_object_reference(&obj->base);
2351         obj->active |= intel_ring_flag(ring);
2352
2353         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2354         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2355
2356         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2357 }
2358
2359 static void
2360 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2361 {
2362         RQ_BUG_ON(obj->last_write_req == NULL);
2363         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2364
2365         i915_gem_request_assign(&obj->last_write_req, NULL);
2366         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2367 }
2368
2369 static void
2370 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2371 {
2372         struct i915_vma *vma;
2373
2374         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2375         RQ_BUG_ON(!(obj->active & (1 << ring)));
2376
2377         list_del_init(&obj->ring_list[ring]);
2378         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2379
2380         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2381                 i915_gem_object_retire__write(obj);
2382
2383         obj->active &= ~(1 << ring);
2384         if (obj->active)
2385                 return;
2386
2387         /* Bump our place on the bound list to keep it roughly in LRU order
2388          * so that we don't steal from recently used but inactive objects
2389          * (unless we are forced to ofc!)
2390          */
2391         list_move_tail(&obj->global_list,
2392                        &to_i915(obj->base.dev)->mm.bound_list);
2393
2394         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2395                 if (!list_empty(&vma->mm_list))
2396                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2397         }
2398
2399         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2400         drm_gem_object_unreference(&obj->base);
2401 }
2402
2403 static int
2404 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2405 {
2406         struct drm_i915_private *dev_priv = dev->dev_private;
2407         struct intel_engine_cs *ring;
2408         int ret, i, j;
2409
2410         /* Carefully retire all requests without writing to the rings */
2411         for_each_ring(ring, dev_priv, i) {
2412                 ret = intel_ring_idle(ring);
2413                 if (ret)
2414                         return ret;
2415         }
2416         i915_gem_retire_requests(dev);
2417
2418         /* Finally reset hw state */
2419         for_each_ring(ring, dev_priv, i) {
2420                 intel_ring_init_seqno(ring, seqno);
2421
2422                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2423                         ring->semaphore.sync_seqno[j] = 0;
2424         }
2425
2426         return 0;
2427 }
2428
2429 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2430 {
2431         struct drm_i915_private *dev_priv = dev->dev_private;
2432         int ret;
2433
2434         if (seqno == 0)
2435                 return -EINVAL;
2436
2437         /* HWS page needs to be set less than what we
2438          * will inject to ring
2439          */
2440         ret = i915_gem_init_seqno(dev, seqno - 1);
2441         if (ret)
2442                 return ret;
2443
2444         /* Carefully set the last_seqno value so that wrap
2445          * detection still works
2446          */
2447         dev_priv->next_seqno = seqno;
2448         dev_priv->last_seqno = seqno - 1;
2449         if (dev_priv->last_seqno == 0)
2450                 dev_priv->last_seqno--;
2451
2452         return 0;
2453 }
2454
2455 int
2456 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2457 {
2458         struct drm_i915_private *dev_priv = dev->dev_private;
2459
2460         /* reserve 0 for non-seqno */
2461         if (dev_priv->next_seqno == 0) {
2462                 int ret = i915_gem_init_seqno(dev, 0);
2463                 if (ret)
2464                         return ret;
2465
2466                 dev_priv->next_seqno = 1;
2467         }
2468
2469         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2470         return 0;
2471 }
2472
2473 /*
2474  * NB: This function is not allowed to fail. Doing so would mean the the
2475  * request is not being tracked for completion but the work itself is
2476  * going to happen on the hardware. This would be a Bad Thing(tm).
2477  */
2478 void __i915_add_request(struct drm_i915_gem_request *request,
2479                         struct drm_i915_gem_object *obj,
2480                         bool flush_caches)
2481 {
2482         struct intel_engine_cs *ring;
2483         struct drm_i915_private *dev_priv;
2484         struct intel_ringbuffer *ringbuf;
2485         u32 request_start;
2486         int ret;
2487
2488         if (WARN_ON(request == NULL))
2489                 return;
2490
2491         ring = request->ring;
2492         dev_priv = ring->dev->dev_private;
2493         ringbuf = request->ringbuf;
2494
2495         /*
2496          * To ensure that this call will not fail, space for its emissions
2497          * should already have been reserved in the ring buffer. Let the ring
2498          * know that it is time to use that space up.
2499          */
2500         intel_ring_reserved_space_use(ringbuf);
2501
2502         request_start = intel_ring_get_tail(ringbuf);
2503         /*
2504          * Emit any outstanding flushes - execbuf can fail to emit the flush
2505          * after having emitted the batchbuffer command. Hence we need to fix
2506          * things up similar to emitting the lazy request. The difference here
2507          * is that the flush _must_ happen before the next request, no matter
2508          * what.
2509          */
2510         if (flush_caches) {
2511                 if (i915.enable_execlists)
2512                         ret = logical_ring_flush_all_caches(request);
2513                 else
2514                         ret = intel_ring_flush_all_caches(request);
2515                 /* Not allowed to fail! */
2516                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2517         }
2518
2519         /* Record the position of the start of the request so that
2520          * should we detect the updated seqno part-way through the
2521          * GPU processing the request, we never over-estimate the
2522          * position of the head.
2523          */
2524         request->postfix = intel_ring_get_tail(ringbuf);
2525
2526         if (i915.enable_execlists)
2527                 ret = ring->emit_request(request);
2528         else {
2529                 ret = ring->add_request(request);
2530
2531                 request->tail = intel_ring_get_tail(ringbuf);
2532         }
2533         /* Not allowed to fail! */
2534         WARN(ret, "emit|add_request failed: %d!\n", ret);
2535
2536         request->head = request_start;
2537
2538         /* Whilst this request exists, batch_obj will be on the
2539          * active_list, and so will hold the active reference. Only when this
2540          * request is retired will the the batch_obj be moved onto the
2541          * inactive_list and lose its active reference. Hence we do not need
2542          * to explicitly hold another reference here.
2543          */
2544         request->batch_obj = obj;
2545
2546         request->emitted_jiffies = jiffies;
2547         ring->last_submitted_seqno = request->seqno;
2548         list_add_tail(&request->list, &ring->request_list);
2549
2550         trace_i915_gem_request_add(request);
2551
2552         i915_queue_hangcheck(ring->dev);
2553
2554         queue_delayed_work(dev_priv->wq,
2555                            &dev_priv->mm.retire_work,
2556                            round_jiffies_up_relative(HZ));
2557         intel_mark_busy(dev_priv->dev);
2558
2559         /* Sanity check that the reserved size was large enough. */
2560         intel_ring_reserved_space_end(ringbuf);
2561 }
2562
2563 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2564                                    const struct intel_context *ctx)
2565 {
2566         unsigned long elapsed;
2567
2568         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2569
2570         if (ctx->hang_stats.banned)
2571                 return true;
2572
2573         if (ctx->hang_stats.ban_period_seconds &&
2574             elapsed <= ctx->hang_stats.ban_period_seconds) {
2575                 if (!i915_gem_context_is_default(ctx)) {
2576                         DRM_DEBUG("context hanging too fast, banning!\n");
2577                         return true;
2578                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2579                         if (i915_stop_ring_allow_warn(dev_priv))
2580                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2581                         return true;
2582                 }
2583         }
2584
2585         return false;
2586 }
2587
2588 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2589                                   struct intel_context *ctx,
2590                                   const bool guilty)
2591 {
2592         struct i915_ctx_hang_stats *hs;
2593
2594         if (WARN_ON(!ctx))
2595                 return;
2596
2597         hs = &ctx->hang_stats;
2598
2599         if (guilty) {
2600                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2601                 hs->batch_active++;
2602                 hs->guilty_ts = get_seconds();
2603         } else {
2604                 hs->batch_pending++;
2605         }
2606 }
2607
2608 void i915_gem_request_free(struct kref *req_ref)
2609 {
2610         struct drm_i915_gem_request *req = container_of(req_ref,
2611                                                  typeof(*req), ref);
2612         struct intel_context *ctx = req->ctx;
2613
2614         if (req->file_priv)
2615                 i915_gem_request_remove_from_client(req);
2616
2617         if (ctx) {
2618                 if (i915.enable_execlists) {
2619                         if (ctx != req->ring->default_context)
2620                                 intel_lr_context_unpin(req);
2621                 }
2622
2623                 i915_gem_context_unreference(ctx);
2624         }
2625
2626         kmem_cache_free(req->i915->requests, req);
2627 }
2628
2629 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2630                            struct intel_context *ctx,
2631                            struct drm_i915_gem_request **req_out)
2632 {
2633         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2634         struct drm_i915_gem_request *req;
2635         int ret;
2636
2637         if (!req_out)
2638                 return -EINVAL;
2639
2640         *req_out = NULL;
2641
2642         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2643         if (req == NULL)
2644                 return -ENOMEM;
2645
2646         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2647         if (ret)
2648                 goto err;
2649
2650         kref_init(&req->ref);
2651         req->i915 = dev_priv;
2652         req->ring = ring;
2653         req->ctx  = ctx;
2654         i915_gem_context_reference(req->ctx);
2655
2656         if (i915.enable_execlists)
2657                 ret = intel_logical_ring_alloc_request_extras(req);
2658         else
2659                 ret = intel_ring_alloc_request_extras(req);
2660         if (ret) {
2661                 i915_gem_context_unreference(req->ctx);
2662                 goto err;
2663         }
2664
2665         /*
2666          * Reserve space in the ring buffer for all the commands required to
2667          * eventually emit this request. This is to guarantee that the
2668          * i915_add_request() call can't fail. Note that the reserve may need
2669          * to be redone if the request is not actually submitted straight
2670          * away, e.g. because a GPU scheduler has deferred it.
2671          */
2672         if (i915.enable_execlists)
2673                 ret = intel_logical_ring_reserve_space(req);
2674         else
2675                 ret = intel_ring_reserve_space(req);
2676         if (ret) {
2677                 /*
2678                  * At this point, the request is fully allocated even if not
2679                  * fully prepared. Thus it can be cleaned up using the proper
2680                  * free code.
2681                  */
2682                 i915_gem_request_cancel(req);
2683                 return ret;
2684         }
2685
2686         *req_out = req;
2687         return 0;
2688
2689 err:
2690         kmem_cache_free(dev_priv->requests, req);
2691         return ret;
2692 }
2693
2694 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2695 {
2696         intel_ring_reserved_space_cancel(req->ringbuf);
2697
2698         i915_gem_request_unreference(req);
2699 }
2700
2701 struct drm_i915_gem_request *
2702 i915_gem_find_active_request(struct intel_engine_cs *ring)
2703 {
2704         struct drm_i915_gem_request *request;
2705
2706         list_for_each_entry(request, &ring->request_list, list) {
2707                 if (i915_gem_request_completed(request, false))
2708                         continue;
2709
2710                 return request;
2711         }
2712
2713         return NULL;
2714 }
2715
2716 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2717                                        struct intel_engine_cs *ring)
2718 {
2719         struct drm_i915_gem_request *request;
2720         bool ring_hung;
2721
2722         request = i915_gem_find_active_request(ring);
2723
2724         if (request == NULL)
2725                 return;
2726
2727         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2728
2729         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2730
2731         list_for_each_entry_continue(request, &ring->request_list, list)
2732                 i915_set_reset_status(dev_priv, request->ctx, false);
2733 }
2734
2735 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2736                                         struct intel_engine_cs *ring)
2737 {
2738         while (!list_empty(&ring->active_list)) {
2739                 struct drm_i915_gem_object *obj;
2740
2741                 obj = list_first_entry(&ring->active_list,
2742                                        struct drm_i915_gem_object,
2743                                        ring_list[ring->id]);
2744
2745                 i915_gem_object_retire__read(obj, ring->id);
2746         }
2747
2748         /*
2749          * Clear the execlists queue up before freeing the requests, as those
2750          * are the ones that keep the context and ringbuffer backing objects
2751          * pinned in place.
2752          */
2753         while (!list_empty(&ring->execlist_queue)) {
2754                 struct drm_i915_gem_request *submit_req;
2755
2756                 submit_req = list_first_entry(&ring->execlist_queue,
2757                                 struct drm_i915_gem_request,
2758                                 execlist_link);
2759                 list_del(&submit_req->execlist_link);
2760
2761                 if (submit_req->ctx != ring->default_context)
2762                         intel_lr_context_unpin(submit_req);
2763
2764                 i915_gem_request_unreference(submit_req);
2765         }
2766
2767         /*
2768          * We must free the requests after all the corresponding objects have
2769          * been moved off active lists. Which is the same order as the normal
2770          * retire_requests function does. This is important if object hold
2771          * implicit references on things like e.g. ppgtt address spaces through
2772          * the request.
2773          */
2774         while (!list_empty(&ring->request_list)) {
2775                 struct drm_i915_gem_request *request;
2776
2777                 request = list_first_entry(&ring->request_list,
2778                                            struct drm_i915_gem_request,
2779                                            list);
2780
2781                 i915_gem_request_retire(request);
2782         }
2783 }
2784
2785 void i915_gem_reset(struct drm_device *dev)
2786 {
2787         struct drm_i915_private *dev_priv = dev->dev_private;
2788         struct intel_engine_cs *ring;
2789         int i;
2790
2791         /*
2792          * Before we free the objects from the requests, we need to inspect
2793          * them for finding the guilty party. As the requests only borrow
2794          * their reference to the objects, the inspection must be done first.
2795          */
2796         for_each_ring(ring, dev_priv, i)
2797                 i915_gem_reset_ring_status(dev_priv, ring);
2798
2799         for_each_ring(ring, dev_priv, i)
2800                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2801
2802         i915_gem_context_reset(dev);
2803
2804         i915_gem_restore_fences(dev);
2805
2806         WARN_ON(i915_verify_lists(dev));
2807 }
2808
2809 /**
2810  * This function clears the request list as sequence numbers are passed.
2811  */
2812 void
2813 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2814 {
2815         WARN_ON(i915_verify_lists(ring->dev));
2816
2817         /* Retire requests first as we use it above for the early return.
2818          * If we retire requests last, we may use a later seqno and so clear
2819          * the requests lists without clearing the active list, leading to
2820          * confusion.
2821          */
2822         while (!list_empty(&ring->request_list)) {
2823                 struct drm_i915_gem_request *request;
2824
2825                 request = list_first_entry(&ring->request_list,
2826                                            struct drm_i915_gem_request,
2827                                            list);
2828
2829                 if (!i915_gem_request_completed(request, true))
2830                         break;
2831
2832                 i915_gem_request_retire(request);
2833         }
2834
2835         /* Move any buffers on the active list that are no longer referenced
2836          * by the ringbuffer to the flushing/inactive lists as appropriate,
2837          * before we free the context associated with the requests.
2838          */
2839         while (!list_empty(&ring->active_list)) {
2840                 struct drm_i915_gem_object *obj;
2841
2842                 obj = list_first_entry(&ring->active_list,
2843                                       struct drm_i915_gem_object,
2844                                       ring_list[ring->id]);
2845
2846                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2847                         break;
2848
2849                 i915_gem_object_retire__read(obj, ring->id);
2850         }
2851
2852         if (unlikely(ring->trace_irq_req &&
2853                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2854                 ring->irq_put(ring);
2855                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2856         }
2857
2858         WARN_ON(i915_verify_lists(ring->dev));
2859 }
2860
2861 bool
2862 i915_gem_retire_requests(struct drm_device *dev)
2863 {
2864         struct drm_i915_private *dev_priv = dev->dev_private;
2865         struct intel_engine_cs *ring;
2866         bool idle = true;
2867         int i;
2868
2869         for_each_ring(ring, dev_priv, i) {
2870                 i915_gem_retire_requests_ring(ring);
2871                 idle &= list_empty(&ring->request_list);
2872                 if (i915.enable_execlists) {
2873                         unsigned long flags;
2874
2875                         spin_lock_irqsave(&ring->execlist_lock, flags);
2876                         idle &= list_empty(&ring->execlist_queue);
2877                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2878
2879                         intel_execlists_retire_requests(ring);
2880                 }
2881         }
2882
2883         if (idle)
2884                 mod_delayed_work(dev_priv->wq,
2885                                    &dev_priv->mm.idle_work,
2886                                    msecs_to_jiffies(100));
2887
2888         return idle;
2889 }
2890
2891 static void
2892 i915_gem_retire_work_handler(struct work_struct *work)
2893 {
2894         struct drm_i915_private *dev_priv =
2895                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2896         struct drm_device *dev = dev_priv->dev;
2897         bool idle;
2898
2899         /* Come back later if the device is busy... */
2900         idle = false;
2901         if (mutex_trylock(&dev->struct_mutex)) {
2902                 idle = i915_gem_retire_requests(dev);
2903                 mutex_unlock(&dev->struct_mutex);
2904         }
2905         if (!idle)
2906                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2907                                    round_jiffies_up_relative(HZ));
2908 }
2909
2910 static void
2911 i915_gem_idle_work_handler(struct work_struct *work)
2912 {
2913         struct drm_i915_private *dev_priv =
2914                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2915         struct drm_device *dev = dev_priv->dev;
2916         struct intel_engine_cs *ring;
2917         int i;
2918
2919         for_each_ring(ring, dev_priv, i)
2920                 if (!list_empty(&ring->request_list))
2921                         return;
2922
2923         intel_mark_idle(dev);
2924
2925         if (mutex_trylock(&dev->struct_mutex)) {
2926                 struct intel_engine_cs *ring;
2927                 int i;
2928
2929                 for_each_ring(ring, dev_priv, i)
2930                         i915_gem_batch_pool_fini(&ring->batch_pool);
2931
2932                 mutex_unlock(&dev->struct_mutex);
2933         }
2934 }
2935
2936 /**
2937  * Ensures that an object will eventually get non-busy by flushing any required
2938  * write domains, emitting any outstanding lazy request and retiring and
2939  * completed requests.
2940  */
2941 static int
2942 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2943 {
2944         int i;
2945
2946         if (!obj->active)
2947                 return 0;
2948
2949         for (i = 0; i < I915_NUM_RINGS; i++) {
2950                 struct drm_i915_gem_request *req;
2951
2952                 req = obj->last_read_req[i];
2953                 if (req == NULL)
2954                         continue;
2955
2956                 if (list_empty(&req->list))
2957                         goto retire;
2958
2959                 if (i915_gem_request_completed(req, true)) {
2960                         __i915_gem_request_retire__upto(req);
2961 retire:
2962                         i915_gem_object_retire__read(obj, i);
2963                 }
2964         }
2965
2966         return 0;
2967 }
2968
2969 /**
2970  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2971  * @DRM_IOCTL_ARGS: standard ioctl arguments
2972  *
2973  * Returns 0 if successful, else an error is returned with the remaining time in
2974  * the timeout parameter.
2975  *  -ETIME: object is still busy after timeout
2976  *  -ERESTARTSYS: signal interrupted the wait
2977  *  -ENONENT: object doesn't exist
2978  * Also possible, but rare:
2979  *  -EAGAIN: GPU wedged
2980  *  -ENOMEM: damn
2981  *  -ENODEV: Internal IRQ fail
2982  *  -E?: The add request failed
2983  *
2984  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2985  * non-zero timeout parameter the wait ioctl will wait for the given number of
2986  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2987  * without holding struct_mutex the object may become re-busied before this
2988  * function completes. A similar but shorter * race condition exists in the busy
2989  * ioctl
2990  */
2991 int
2992 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2993 {
2994         struct drm_i915_private *dev_priv = dev->dev_private;
2995         struct drm_i915_gem_wait *args = data;
2996         struct drm_i915_gem_object *obj;
2997         struct drm_i915_gem_request *req[I915_NUM_RINGS];
2998         unsigned reset_counter;
2999         int i, n = 0;
3000         int ret;
3001
3002         if (args->flags != 0)
3003                 return -EINVAL;
3004
3005         ret = i915_mutex_lock_interruptible(dev);
3006         if (ret)
3007                 return ret;
3008
3009         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3010         if (&obj->base == NULL) {
3011                 mutex_unlock(&dev->struct_mutex);
3012                 return -ENOENT;
3013         }
3014
3015         /* Need to make sure the object gets inactive eventually. */
3016         ret = i915_gem_object_flush_active(obj);
3017         if (ret)
3018                 goto out;
3019
3020         if (!obj->active)
3021                 goto out;
3022
3023         /* Do this after OLR check to make sure we make forward progress polling
3024          * on this IOCTL with a timeout == 0 (like busy ioctl)
3025          */
3026         if (args->timeout_ns == 0) {
3027                 ret = -ETIME;
3028                 goto out;
3029         }
3030
3031         drm_gem_object_unreference(&obj->base);
3032         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3033
3034         for (i = 0; i < I915_NUM_RINGS; i++) {
3035                 if (obj->last_read_req[i] == NULL)
3036                         continue;
3037
3038                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3039         }
3040
3041         mutex_unlock(&dev->struct_mutex);
3042
3043         for (i = 0; i < n; i++) {
3044                 if (ret == 0)
3045                         ret = __i915_wait_request(req[i], reset_counter, true,
3046                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3047                                                   file->driver_priv);
3048                 i915_gem_request_unreference__unlocked(req[i]);
3049         }
3050         return ret;
3051
3052 out:
3053         drm_gem_object_unreference(&obj->base);
3054         mutex_unlock(&dev->struct_mutex);
3055         return ret;
3056 }
3057
3058 static int
3059 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3060                        struct intel_engine_cs *to,
3061                        struct drm_i915_gem_request *from_req,
3062                        struct drm_i915_gem_request **to_req)
3063 {
3064         struct intel_engine_cs *from;
3065         int ret;
3066
3067         from = i915_gem_request_get_ring(from_req);
3068         if (to == from)
3069                 return 0;
3070
3071         if (i915_gem_request_completed(from_req, true))
3072                 return 0;
3073
3074         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3075                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3076                 ret = __i915_wait_request(from_req,
3077                                           atomic_read(&i915->gpu_error.reset_counter),
3078                                           i915->mm.interruptible,
3079                                           NULL,
3080                                           &i915->rps.semaphores);
3081                 if (ret)
3082                         return ret;
3083
3084                 i915_gem_object_retire_request(obj, from_req);
3085         } else {
3086                 int idx = intel_ring_sync_index(from, to);
3087                 u32 seqno = i915_gem_request_get_seqno(from_req);
3088
3089                 WARN_ON(!to_req);
3090
3091                 if (seqno <= from->semaphore.sync_seqno[idx])
3092                         return 0;
3093
3094                 if (*to_req == NULL) {
3095                         ret = i915_gem_request_alloc(to, to->default_context, to_req);
3096                         if (ret)
3097                                 return ret;
3098                 }
3099
3100                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3101                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3102                 if (ret)
3103                         return ret;
3104
3105                 /* We use last_read_req because sync_to()
3106                  * might have just caused seqno wrap under
3107                  * the radar.
3108                  */
3109                 from->semaphore.sync_seqno[idx] =
3110                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3111         }
3112
3113         return 0;
3114 }
3115
3116 /**
3117  * i915_gem_object_sync - sync an object to a ring.
3118  *
3119  * @obj: object which may be in use on another ring.
3120  * @to: ring we wish to use the object on. May be NULL.
3121  * @to_req: request we wish to use the object for. See below.
3122  *          This will be allocated and returned if a request is
3123  *          required but not passed in.
3124  *
3125  * This code is meant to abstract object synchronization with the GPU.
3126  * Calling with NULL implies synchronizing the object with the CPU
3127  * rather than a particular GPU ring. Conceptually we serialise writes
3128  * between engines inside the GPU. We only allow one engine to write
3129  * into a buffer at any time, but multiple readers. To ensure each has
3130  * a coherent view of memory, we must:
3131  *
3132  * - If there is an outstanding write request to the object, the new
3133  *   request must wait for it to complete (either CPU or in hw, requests
3134  *   on the same ring will be naturally ordered).
3135  *
3136  * - If we are a write request (pending_write_domain is set), the new
3137  *   request must wait for outstanding read requests to complete.
3138  *
3139  * For CPU synchronisation (NULL to) no request is required. For syncing with
3140  * rings to_req must be non-NULL. However, a request does not have to be
3141  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3142  * request will be allocated automatically and returned through *to_req. Note
3143  * that it is not guaranteed that commands will be emitted (because the system
3144  * might already be idle). Hence there is no need to create a request that
3145  * might never have any work submitted. Note further that if a request is
3146  * returned in *to_req, it is the responsibility of the caller to submit
3147  * that request (after potentially adding more work to it).
3148  *
3149  * Returns 0 if successful, else propagates up the lower layer error.
3150  */
3151 int
3152 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3153                      struct intel_engine_cs *to,
3154                      struct drm_i915_gem_request **to_req)
3155 {
3156         const bool readonly = obj->base.pending_write_domain == 0;
3157         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3158         int ret, i, n;
3159
3160         if (!obj->active)
3161                 return 0;
3162
3163         if (to == NULL)
3164                 return i915_gem_object_wait_rendering(obj, readonly);
3165
3166         n = 0;
3167         if (readonly) {
3168                 if (obj->last_write_req)
3169                         req[n++] = obj->last_write_req;
3170         } else {
3171                 for (i = 0; i < I915_NUM_RINGS; i++)
3172                         if (obj->last_read_req[i])
3173                                 req[n++] = obj->last_read_req[i];
3174         }
3175         for (i = 0; i < n; i++) {
3176                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3177                 if (ret)
3178                         return ret;
3179         }
3180
3181         return 0;
3182 }
3183
3184 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3185 {
3186         u32 old_write_domain, old_read_domains;
3187
3188         /* Force a pagefault for domain tracking on next user access */
3189         i915_gem_release_mmap(obj);
3190
3191         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3192                 return;
3193
3194         /* Wait for any direct GTT access to complete */
3195         mb();
3196
3197         old_read_domains = obj->base.read_domains;
3198         old_write_domain = obj->base.write_domain;
3199
3200         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3201         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3202
3203         trace_i915_gem_object_change_domain(obj,
3204                                             old_read_domains,
3205                                             old_write_domain);
3206 }
3207
3208 int i915_vma_unbind(struct i915_vma *vma)
3209 {
3210         struct drm_i915_gem_object *obj = vma->obj;
3211         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3212         int ret;
3213
3214         if (list_empty(&vma->vma_link))
3215                 return 0;
3216
3217         if (!drm_mm_node_allocated(&vma->node)) {
3218                 i915_gem_vma_destroy(vma);
3219                 return 0;
3220         }
3221
3222         if (vma->pin_count)
3223                 return -EBUSY;
3224
3225         BUG_ON(obj->pages == NULL);
3226
3227         ret = i915_gem_object_wait_rendering(obj, false);
3228         if (ret)
3229                 return ret;
3230         /* Continue on if we fail due to EIO, the GPU is hung so we
3231          * should be safe and we need to cleanup or else we might
3232          * cause memory corruption through use-after-free.
3233          */
3234
3235         if (i915_is_ggtt(vma->vm) &&
3236             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3237                 i915_gem_object_finish_gtt(obj);
3238
3239                 /* release the fence reg _after_ flushing */
3240                 ret = i915_gem_object_put_fence(obj);
3241                 if (ret)
3242                         return ret;
3243         }
3244
3245         trace_i915_vma_unbind(vma);
3246
3247         vma->vm->unbind_vma(vma);
3248         vma->bound = 0;
3249
3250         list_del_init(&vma->mm_list);
3251         if (i915_is_ggtt(vma->vm)) {
3252                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3253                         obj->map_and_fenceable = false;
3254                 } else if (vma->ggtt_view.pages) {
3255                         sg_free_table(vma->ggtt_view.pages);
3256                         kfree(vma->ggtt_view.pages);
3257                 }
3258                 vma->ggtt_view.pages = NULL;
3259         }
3260
3261         drm_mm_remove_node(&vma->node);
3262         i915_gem_vma_destroy(vma);
3263
3264         /* Since the unbound list is global, only move to that list if
3265          * no more VMAs exist. */
3266         if (list_empty(&obj->vma_list))
3267                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3268
3269         /* And finally now the object is completely decoupled from this vma,
3270          * we can drop its hold on the backing storage and allow it to be
3271          * reaped by the shrinker.
3272          */
3273         i915_gem_object_unpin_pages(obj);
3274
3275         return 0;
3276 }
3277
3278 int i915_gpu_idle(struct drm_device *dev)
3279 {
3280         struct drm_i915_private *dev_priv = dev->dev_private;
3281         struct intel_engine_cs *ring;
3282         int ret, i;
3283
3284         /* Flush everything onto the inactive list. */
3285         for_each_ring(ring, dev_priv, i) {
3286                 if (!i915.enable_execlists) {
3287                         struct drm_i915_gem_request *req;
3288
3289                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3290                         if (ret)
3291                                 return ret;
3292
3293                         ret = i915_switch_context(req);
3294                         if (ret) {
3295                                 i915_gem_request_cancel(req);
3296                                 return ret;
3297                         }
3298
3299                         i915_add_request_no_flush(req);
3300                 }
3301
3302                 ret = intel_ring_idle(ring);
3303                 if (ret)
3304                         return ret;
3305         }
3306
3307         WARN_ON(i915_verify_lists(dev));
3308         return 0;
3309 }
3310
3311 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3312                                      unsigned long cache_level)
3313 {
3314         struct drm_mm_node *gtt_space = &vma->node;
3315         struct drm_mm_node *other;
3316
3317         /*
3318          * On some machines we have to be careful when putting differing types
3319          * of snoopable memory together to avoid the prefetcher crossing memory
3320          * domains and dying. During vm initialisation, we decide whether or not
3321          * these constraints apply and set the drm_mm.color_adjust
3322          * appropriately.
3323          */
3324         if (vma->vm->mm.color_adjust == NULL)
3325                 return true;
3326
3327         if (!drm_mm_node_allocated(gtt_space))
3328                 return true;
3329
3330         if (list_empty(&gtt_space->node_list))
3331                 return true;
3332
3333         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3334         if (other->allocated && !other->hole_follows && other->color != cache_level)
3335                 return false;
3336
3337         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3338         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3339                 return false;
3340
3341         return true;
3342 }
3343
3344 /**
3345  * Finds free space in the GTT aperture and binds the object or a view of it
3346  * there.
3347  */
3348 static struct i915_vma *
3349 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3350                            struct i915_address_space *vm,
3351                            const struct i915_ggtt_view *ggtt_view,
3352                            unsigned alignment,
3353                            uint64_t flags)
3354 {
3355         struct drm_device *dev = obj->base.dev;
3356         struct drm_i915_private *dev_priv = dev->dev_private;
3357         u32 size, fence_size, fence_alignment, unfenced_alignment;
3358         u64 start =
3359                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3360         u64 end =
3361                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3362         struct i915_vma *vma;
3363         int ret;
3364
3365         if (i915_is_ggtt(vm)) {
3366                 u32 view_size;
3367
3368                 if (WARN_ON(!ggtt_view))
3369                         return ERR_PTR(-EINVAL);
3370
3371                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3372
3373                 fence_size = i915_gem_get_gtt_size(dev,
3374                                                    view_size,
3375                                                    obj->tiling_mode);
3376                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3377                                                              view_size,
3378                                                              obj->tiling_mode,
3379                                                              true);
3380                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3381                                                                 view_size,
3382                                                                 obj->tiling_mode,
3383                                                                 false);
3384                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3385         } else {
3386                 fence_size = i915_gem_get_gtt_size(dev,
3387                                                    obj->base.size,
3388                                                    obj->tiling_mode);
3389                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3390                                                              obj->base.size,
3391                                                              obj->tiling_mode,
3392                                                              true);
3393                 unfenced_alignment =
3394                         i915_gem_get_gtt_alignment(dev,
3395                                                    obj->base.size,
3396                                                    obj->tiling_mode,
3397                                                    false);
3398                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3399         }
3400
3401         if (alignment == 0)
3402                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3403                                                 unfenced_alignment;
3404         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3405                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3406                           ggtt_view ? ggtt_view->type : 0,
3407                           alignment);
3408                 return ERR_PTR(-EINVAL);
3409         }
3410
3411         /* If binding the object/GGTT view requires more space than the entire
3412          * aperture has, reject it early before evicting everything in a vain
3413          * attempt to find space.
3414          */
3415         if (size > end) {
3416                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3417                           ggtt_view ? ggtt_view->type : 0,
3418                           size,
3419                           flags & PIN_MAPPABLE ? "mappable" : "total",
3420                           end);
3421                 return ERR_PTR(-E2BIG);
3422         }
3423
3424         ret = i915_gem_object_get_pages(obj);
3425         if (ret)
3426                 return ERR_PTR(ret);
3427
3428         i915_gem_object_pin_pages(obj);
3429
3430         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3431                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3432
3433         if (IS_ERR(vma))
3434                 goto err_unpin;
3435
3436 search_free:
3437         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3438                                                   size, alignment,
3439                                                   obj->cache_level,
3440                                                   start, end,
3441                                                   DRM_MM_SEARCH_DEFAULT,
3442                                                   DRM_MM_CREATE_DEFAULT);
3443         if (ret) {
3444                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3445                                                obj->cache_level,
3446                                                start, end,
3447                                                flags);
3448                 if (ret == 0)
3449                         goto search_free;
3450
3451                 goto err_free_vma;
3452         }
3453         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3454                 ret = -EINVAL;
3455                 goto err_remove_node;
3456         }
3457
3458         trace_i915_vma_bind(vma, flags);
3459         ret = i915_vma_bind(vma, obj->cache_level, flags);
3460         if (ret)
3461                 goto err_remove_node;
3462
3463         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3464         list_add_tail(&vma->mm_list, &vm->inactive_list);
3465
3466         return vma;
3467
3468 err_remove_node:
3469         drm_mm_remove_node(&vma->node);
3470 err_free_vma:
3471         i915_gem_vma_destroy(vma);
3472         vma = ERR_PTR(ret);
3473 err_unpin:
3474         i915_gem_object_unpin_pages(obj);
3475         return vma;
3476 }
3477
3478 bool
3479 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3480                         bool force)
3481 {
3482         /* If we don't have a page list set up, then we're not pinned
3483          * to GPU, and we can ignore the cache flush because it'll happen
3484          * again at bind time.
3485          */
3486         if (obj->pages == NULL)
3487                 return false;
3488
3489         /*
3490          * Stolen memory is always coherent with the GPU as it is explicitly
3491          * marked as wc by the system, or the system is cache-coherent.
3492          */
3493         if (obj->stolen || obj->phys_handle)
3494                 return false;
3495
3496         /* If the GPU is snooping the contents of the CPU cache,
3497          * we do not need to manually clear the CPU cache lines.  However,
3498          * the caches are only snooped when the render cache is
3499          * flushed/invalidated.  As we always have to emit invalidations
3500          * and flushes when moving into and out of the RENDER domain, correct
3501          * snooping behaviour occurs naturally as the result of our domain
3502          * tracking.
3503          */
3504         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3505                 obj->cache_dirty = true;
3506                 return false;
3507         }
3508
3509         trace_i915_gem_object_clflush(obj);
3510         drm_clflush_sg(obj->pages);
3511         obj->cache_dirty = false;
3512
3513         return true;
3514 }
3515
3516 /** Flushes the GTT write domain for the object if it's dirty. */
3517 static void
3518 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3519 {
3520         uint32_t old_write_domain;
3521
3522         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3523                 return;
3524
3525         /* No actual flushing is required for the GTT write domain.  Writes
3526          * to it immediately go to main memory as far as we know, so there's
3527          * no chipset flush.  It also doesn't land in render cache.
3528          *
3529          * However, we do have to enforce the order so that all writes through
3530          * the GTT land before any writes to the device, such as updates to
3531          * the GATT itself.
3532          */
3533         wmb();
3534
3535         old_write_domain = obj->base.write_domain;
3536         obj->base.write_domain = 0;
3537
3538         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3539
3540         trace_i915_gem_object_change_domain(obj,
3541                                             obj->base.read_domains,
3542                                             old_write_domain);
3543 }
3544
3545 /** Flushes the CPU write domain for the object if it's dirty. */
3546 static void
3547 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3548 {
3549         uint32_t old_write_domain;
3550
3551         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3552                 return;
3553
3554         if (i915_gem_clflush_object(obj, obj->pin_display))
3555                 i915_gem_chipset_flush(obj->base.dev);
3556
3557         old_write_domain = obj->base.write_domain;
3558         obj->base.write_domain = 0;
3559
3560         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3561
3562         trace_i915_gem_object_change_domain(obj,
3563                                             obj->base.read_domains,
3564                                             old_write_domain);
3565 }
3566
3567 /**
3568  * Moves a single object to the GTT read, and possibly write domain.
3569  *
3570  * This function returns when the move is complete, including waiting on
3571  * flushes to occur.
3572  */
3573 int
3574 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3575 {
3576         uint32_t old_write_domain, old_read_domains;
3577         struct i915_vma *vma;
3578         int ret;
3579
3580         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3581                 return 0;
3582
3583         ret = i915_gem_object_wait_rendering(obj, !write);
3584         if (ret)
3585                 return ret;
3586
3587         /* Flush and acquire obj->pages so that we are coherent through
3588          * direct access in memory with previous cached writes through
3589          * shmemfs and that our cache domain tracking remains valid.
3590          * For example, if the obj->filp was moved to swap without us
3591          * being notified and releasing the pages, we would mistakenly
3592          * continue to assume that the obj remained out of the CPU cached
3593          * domain.
3594          */
3595         ret = i915_gem_object_get_pages(obj);
3596         if (ret)
3597                 return ret;
3598
3599         i915_gem_object_flush_cpu_write_domain(obj);
3600
3601         /* Serialise direct access to this object with the barriers for
3602          * coherent writes from the GPU, by effectively invalidating the
3603          * GTT domain upon first access.
3604          */
3605         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3606                 mb();
3607
3608         old_write_domain = obj->base.write_domain;
3609         old_read_domains = obj->base.read_domains;
3610
3611         /* It should now be out of any other write domains, and we can update
3612          * the domain values for our changes.
3613          */
3614         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3615         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3616         if (write) {
3617                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3618                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3619                 obj->dirty = 1;
3620         }
3621
3622         trace_i915_gem_object_change_domain(obj,
3623                                             old_read_domains,
3624                                             old_write_domain);
3625
3626         /* And bump the LRU for this access */
3627         vma = i915_gem_obj_to_ggtt(obj);
3628         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3629                 list_move_tail(&vma->mm_list,
3630                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3631
3632         return 0;
3633 }
3634
3635 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3636                                     enum i915_cache_level cache_level)
3637 {
3638         struct drm_device *dev = obj->base.dev;
3639         struct i915_vma *vma, *next;
3640         int ret;
3641
3642         if (obj->cache_level == cache_level)
3643                 return 0;
3644
3645         if (i915_gem_obj_is_pinned(obj)) {
3646                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3647                 return -EBUSY;
3648         }
3649
3650         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3651                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3652                         ret = i915_vma_unbind(vma);
3653                         if (ret)
3654                                 return ret;
3655                 }
3656         }
3657
3658         if (i915_gem_obj_bound_any(obj)) {
3659                 ret = i915_gem_object_wait_rendering(obj, false);
3660                 if (ret)
3661                         return ret;
3662
3663                 i915_gem_object_finish_gtt(obj);
3664
3665                 /* Before SandyBridge, you could not use tiling or fence
3666                  * registers with snooped memory, so relinquish any fences
3667                  * currently pointing to our region in the aperture.
3668                  */
3669                 if (INTEL_INFO(dev)->gen < 6) {
3670                         ret = i915_gem_object_put_fence(obj);
3671                         if (ret)
3672                                 return ret;
3673                 }
3674
3675                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3676                         if (drm_mm_node_allocated(&vma->node)) {
3677                                 ret = i915_vma_bind(vma, cache_level,
3678                                                     PIN_UPDATE);
3679                                 if (ret)
3680                                         return ret;
3681                         }
3682         }
3683
3684         list_for_each_entry(vma, &obj->vma_list, vma_link)
3685                 vma->node.color = cache_level;
3686         obj->cache_level = cache_level;
3687
3688         if (obj->cache_dirty &&
3689             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3690             cpu_write_needs_clflush(obj)) {
3691                 if (i915_gem_clflush_object(obj, true))
3692                         i915_gem_chipset_flush(obj->base.dev);
3693         }
3694
3695         return 0;
3696 }
3697
3698 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3699                                struct drm_file *file)
3700 {
3701         struct drm_i915_gem_caching *args = data;
3702         struct drm_i915_gem_object *obj;
3703
3704         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3705         if (&obj->base == NULL)
3706                 return -ENOENT;
3707
3708         switch (obj->cache_level) {
3709         case I915_CACHE_LLC:
3710         case I915_CACHE_L3_LLC:
3711                 args->caching = I915_CACHING_CACHED;
3712                 break;
3713
3714         case I915_CACHE_WT:
3715                 args->caching = I915_CACHING_DISPLAY;
3716                 break;
3717
3718         default:
3719                 args->caching = I915_CACHING_NONE;
3720                 break;
3721         }
3722
3723         drm_gem_object_unreference_unlocked(&obj->base);
3724         return 0;
3725 }
3726
3727 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3728                                struct drm_file *file)
3729 {
3730         struct drm_i915_gem_caching *args = data;
3731         struct drm_i915_gem_object *obj;
3732         enum i915_cache_level level;
3733         int ret;
3734
3735         switch (args->caching) {
3736         case I915_CACHING_NONE:
3737                 level = I915_CACHE_NONE;
3738                 break;
3739         case I915_CACHING_CACHED:
3740                 level = I915_CACHE_LLC;
3741                 break;
3742         case I915_CACHING_DISPLAY:
3743                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3744                 break;
3745         default:
3746                 return -EINVAL;
3747         }
3748
3749         ret = i915_mutex_lock_interruptible(dev);
3750         if (ret)
3751                 return ret;
3752
3753         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3754         if (&obj->base == NULL) {
3755                 ret = -ENOENT;
3756                 goto unlock;
3757         }
3758
3759         ret = i915_gem_object_set_cache_level(obj, level);
3760
3761         drm_gem_object_unreference(&obj->base);
3762 unlock:
3763         mutex_unlock(&dev->struct_mutex);
3764         return ret;
3765 }
3766
3767 /*
3768  * Prepare buffer for display plane (scanout, cursors, etc).
3769  * Can be called from an uninterruptible phase (modesetting) and allows
3770  * any flushes to be pipelined (for pageflips).
3771  */
3772 int
3773 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3774                                      u32 alignment,
3775                                      struct intel_engine_cs *pipelined,
3776                                      struct drm_i915_gem_request **pipelined_request,
3777                                      const struct i915_ggtt_view *view)
3778 {
3779         u32 old_read_domains, old_write_domain;
3780         int ret;
3781
3782         ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3783         if (ret)
3784                 return ret;
3785
3786         /* Mark the pin_display early so that we account for the
3787          * display coherency whilst setting up the cache domains.
3788          */
3789         obj->pin_display++;
3790
3791         /* The display engine is not coherent with the LLC cache on gen6.  As
3792          * a result, we make sure that the pinning that is about to occur is
3793          * done with uncached PTEs. This is lowest common denominator for all
3794          * chipsets.
3795          *
3796          * However for gen6+, we could do better by using the GFDT bit instead
3797          * of uncaching, which would allow us to flush all the LLC-cached data
3798          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3799          */
3800         ret = i915_gem_object_set_cache_level(obj,
3801                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3802         if (ret)
3803                 goto err_unpin_display;
3804
3805         /* As the user may map the buffer once pinned in the display plane
3806          * (e.g. libkms for the bootup splash), we have to ensure that we
3807          * always use map_and_fenceable for all scanout buffers.
3808          */
3809         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3810                                        view->type == I915_GGTT_VIEW_NORMAL ?
3811                                        PIN_MAPPABLE : 0);
3812         if (ret)
3813                 goto err_unpin_display;
3814
3815         i915_gem_object_flush_cpu_write_domain(obj);
3816
3817         old_write_domain = obj->base.write_domain;
3818         old_read_domains = obj->base.read_domains;
3819
3820         /* It should now be out of any other write domains, and we can update
3821          * the domain values for our changes.
3822          */
3823         obj->base.write_domain = 0;
3824         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3825
3826         trace_i915_gem_object_change_domain(obj,
3827                                             old_read_domains,
3828                                             old_write_domain);
3829
3830         return 0;
3831
3832 err_unpin_display:
3833         obj->pin_display--;
3834         return ret;
3835 }
3836
3837 void
3838 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3839                                          const struct i915_ggtt_view *view)
3840 {
3841         if (WARN_ON(obj->pin_display == 0))
3842                 return;
3843
3844         i915_gem_object_ggtt_unpin_view(obj, view);
3845
3846         obj->pin_display--;
3847 }
3848
3849 /**
3850  * Moves a single object to the CPU read, and possibly write domain.
3851  *
3852  * This function returns when the move is complete, including waiting on
3853  * flushes to occur.
3854  */
3855 int
3856 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3857 {
3858         uint32_t old_write_domain, old_read_domains;
3859         int ret;
3860
3861         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3862                 return 0;
3863
3864         ret = i915_gem_object_wait_rendering(obj, !write);
3865         if (ret)
3866                 return ret;
3867
3868         i915_gem_object_flush_gtt_write_domain(obj);
3869
3870         old_write_domain = obj->base.write_domain;
3871         old_read_domains = obj->base.read_domains;
3872
3873         /* Flush the CPU cache if it's still invalid. */
3874         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3875                 i915_gem_clflush_object(obj, false);
3876
3877                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3878         }
3879
3880         /* It should now be out of any other write domains, and we can update
3881          * the domain values for our changes.
3882          */
3883         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3884
3885         /* If we're writing through the CPU, then the GPU read domains will
3886          * need to be invalidated at next use.
3887          */
3888         if (write) {
3889                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3890                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3891         }
3892
3893         trace_i915_gem_object_change_domain(obj,
3894                                             old_read_domains,
3895                                             old_write_domain);
3896
3897         return 0;
3898 }
3899
3900 /* Throttle our rendering by waiting until the ring has completed our requests
3901  * emitted over 20 msec ago.
3902  *
3903  * Note that if we were to use the current jiffies each time around the loop,
3904  * we wouldn't escape the function with any frames outstanding if the time to
3905  * render a frame was over 20ms.
3906  *
3907  * This should get us reasonable parallelism between CPU and GPU but also
3908  * relatively low latency when blocking on a particular request to finish.
3909  */
3910 static int
3911 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3912 {
3913         struct drm_i915_private *dev_priv = dev->dev_private;
3914         struct drm_i915_file_private *file_priv = file->driver_priv;
3915         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3916         struct drm_i915_gem_request *request, *target = NULL;
3917         unsigned reset_counter;
3918         int ret;
3919
3920         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3921         if (ret)
3922                 return ret;
3923
3924         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3925         if (ret)
3926                 return ret;
3927
3928         spin_lock(&file_priv->mm.lock);
3929         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3930                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3931                         break;
3932
3933                 /*
3934                  * Note that the request might not have been submitted yet.
3935                  * In which case emitted_jiffies will be zero.
3936                  */
3937                 if (!request->emitted_jiffies)
3938                         continue;
3939
3940                 target = request;
3941         }
3942         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3943         if (target)
3944                 i915_gem_request_reference(target);
3945         spin_unlock(&file_priv->mm.lock);
3946
3947         if (target == NULL)
3948                 return 0;
3949
3950         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
3951         if (ret == 0)
3952                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3953
3954         i915_gem_request_unreference__unlocked(target);
3955
3956         return ret;
3957 }
3958
3959 static bool
3960 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3961 {
3962         struct drm_i915_gem_object *obj = vma->obj;
3963
3964         if (alignment &&
3965             vma->node.start & (alignment - 1))
3966                 return true;
3967
3968         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3969                 return true;
3970
3971         if (flags & PIN_OFFSET_BIAS &&
3972             vma->node.start < (flags & PIN_OFFSET_MASK))
3973                 return true;
3974
3975         return false;
3976 }
3977
3978 static int
3979 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
3980                        struct i915_address_space *vm,
3981                        const struct i915_ggtt_view *ggtt_view,
3982                        uint32_t alignment,
3983                        uint64_t flags)
3984 {
3985         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3986         struct i915_vma *vma;
3987         unsigned bound;
3988         int ret;
3989
3990         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3991                 return -ENODEV;
3992
3993         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3994                 return -EINVAL;
3995
3996         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3997                 return -EINVAL;
3998
3999         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4000                 return -EINVAL;
4001
4002         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4003                           i915_gem_obj_to_vma(obj, vm);
4004
4005         if (IS_ERR(vma))
4006                 return PTR_ERR(vma);
4007
4008         if (vma) {
4009                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4010                         return -EBUSY;
4011
4012                 if (i915_vma_misplaced(vma, alignment, flags)) {
4013                         unsigned long offset;
4014                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4015                                              i915_gem_obj_offset(obj, vm);
4016                         WARN(vma->pin_count,
4017                              "bo is already pinned in %s with incorrect alignment:"
4018                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4019                              " obj->map_and_fenceable=%d\n",
4020                              ggtt_view ? "ggtt" : "ppgtt",
4021                              offset,
4022                              alignment,
4023                              !!(flags & PIN_MAPPABLE),
4024                              obj->map_and_fenceable);
4025                         ret = i915_vma_unbind(vma);
4026                         if (ret)
4027                                 return ret;
4028
4029                         vma = NULL;
4030                 }
4031         }
4032
4033         bound = vma ? vma->bound : 0;
4034         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4035                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4036                                                  flags);
4037                 if (IS_ERR(vma))
4038                         return PTR_ERR(vma);
4039         } else {
4040                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4041                 if (ret)
4042                         return ret;
4043         }
4044
4045         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4046             (bound ^ vma->bound) & GLOBAL_BIND) {
4047                 bool mappable, fenceable;
4048                 u32 fence_size, fence_alignment;
4049
4050                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4051                                                    obj->base.size,
4052                                                    obj->tiling_mode);
4053                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4054                                                              obj->base.size,
4055                                                              obj->tiling_mode,
4056                                                              true);
4057
4058                 fenceable = (vma->node.size == fence_size &&
4059                              (vma->node.start & (fence_alignment - 1)) == 0);
4060
4061                 mappable = (vma->node.start + fence_size <=
4062                             dev_priv->gtt.mappable_end);
4063
4064                 obj->map_and_fenceable = mappable && fenceable;
4065
4066                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4067         }
4068
4069         vma->pin_count++;
4070         return 0;
4071 }
4072
4073 int
4074 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4075                     struct i915_address_space *vm,
4076                     uint32_t alignment,
4077                     uint64_t flags)
4078 {
4079         return i915_gem_object_do_pin(obj, vm,
4080                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4081                                       alignment, flags);
4082 }
4083
4084 int
4085 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4086                          const struct i915_ggtt_view *view,
4087                          uint32_t alignment,
4088                          uint64_t flags)
4089 {
4090         if (WARN_ONCE(!view, "no view specified"))
4091                 return -EINVAL;
4092
4093         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4094                                       alignment, flags | PIN_GLOBAL);
4095 }
4096
4097 void
4098 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4099                                 const struct i915_ggtt_view *view)
4100 {
4101         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4102
4103         BUG_ON(!vma);
4104         WARN_ON(vma->pin_count == 0);
4105         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4106
4107         --vma->pin_count;
4108 }
4109
4110 int
4111 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4112                     struct drm_file *file)
4113 {
4114         struct drm_i915_gem_busy *args = data;
4115         struct drm_i915_gem_object *obj;
4116         int ret;
4117
4118         ret = i915_mutex_lock_interruptible(dev);
4119         if (ret)
4120                 return ret;
4121
4122         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4123         if (&obj->base == NULL) {
4124                 ret = -ENOENT;
4125                 goto unlock;
4126         }
4127
4128         /* Count all active objects as busy, even if they are currently not used
4129          * by the gpu. Users of this interface expect objects to eventually
4130          * become non-busy without any further actions, therefore emit any
4131          * necessary flushes here.
4132          */
4133         ret = i915_gem_object_flush_active(obj);
4134         if (ret)
4135                 goto unref;
4136
4137         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4138         args->busy = obj->active << 16;
4139         if (obj->last_write_req)
4140                 args->busy |= obj->last_write_req->ring->id;
4141
4142 unref:
4143         drm_gem_object_unreference(&obj->base);
4144 unlock:
4145         mutex_unlock(&dev->struct_mutex);
4146         return ret;
4147 }
4148
4149 int
4150 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4151                         struct drm_file *file_priv)
4152 {
4153         return i915_gem_ring_throttle(dev, file_priv);
4154 }
4155
4156 int
4157 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4158                        struct drm_file *file_priv)
4159 {
4160         struct drm_i915_private *dev_priv = dev->dev_private;
4161         struct drm_i915_gem_madvise *args = data;
4162         struct drm_i915_gem_object *obj;
4163         int ret;
4164
4165         switch (args->madv) {
4166         case I915_MADV_DONTNEED:
4167         case I915_MADV_WILLNEED:
4168             break;
4169         default:
4170             return -EINVAL;
4171         }
4172
4173         ret = i915_mutex_lock_interruptible(dev);
4174         if (ret)
4175                 return ret;
4176
4177         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4178         if (&obj->base == NULL) {
4179                 ret = -ENOENT;
4180                 goto unlock;
4181         }
4182
4183         if (i915_gem_obj_is_pinned(obj)) {
4184                 ret = -EINVAL;
4185                 goto out;
4186         }
4187
4188         if (obj->pages &&
4189             obj->tiling_mode != I915_TILING_NONE &&
4190             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4191                 if (obj->madv == I915_MADV_WILLNEED)
4192                         i915_gem_object_unpin_pages(obj);
4193                 if (args->madv == I915_MADV_WILLNEED)
4194                         i915_gem_object_pin_pages(obj);
4195         }
4196
4197         if (obj->madv != __I915_MADV_PURGED)
4198                 obj->madv = args->madv;
4199
4200         /* if the object is no longer attached, discard its backing storage */
4201         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4202                 i915_gem_object_truncate(obj);
4203
4204         args->retained = obj->madv != __I915_MADV_PURGED;
4205
4206 out:
4207         drm_gem_object_unreference(&obj->base);
4208 unlock:
4209         mutex_unlock(&dev->struct_mutex);
4210         return ret;
4211 }
4212
4213 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4214                           const struct drm_i915_gem_object_ops *ops)
4215 {
4216         int i;
4217
4218         INIT_LIST_HEAD(&obj->global_list);
4219         for (i = 0; i < I915_NUM_RINGS; i++)
4220                 INIT_LIST_HEAD(&obj->ring_list[i]);
4221         INIT_LIST_HEAD(&obj->obj_exec_link);
4222         INIT_LIST_HEAD(&obj->vma_list);
4223         INIT_LIST_HEAD(&obj->batch_pool_link);
4224
4225         obj->ops = ops;
4226
4227         obj->fence_reg = I915_FENCE_REG_NONE;
4228         obj->madv = I915_MADV_WILLNEED;
4229
4230         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4231 }
4232
4233 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4234         .get_pages = i915_gem_object_get_pages_gtt,
4235         .put_pages = i915_gem_object_put_pages_gtt,
4236 };
4237
4238 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4239                                                   size_t size)
4240 {
4241         struct drm_i915_gem_object *obj;
4242         struct address_space *mapping;
4243         gfp_t mask;
4244
4245         obj = i915_gem_object_alloc(dev);
4246         if (obj == NULL)
4247                 return NULL;
4248
4249         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4250                 i915_gem_object_free(obj);
4251                 return NULL;
4252         }
4253
4254         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4255         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4256                 /* 965gm cannot relocate objects above 4GiB. */
4257                 mask &= ~__GFP_HIGHMEM;
4258                 mask |= __GFP_DMA32;
4259         }
4260
4261         mapping = file_inode(obj->base.filp)->i_mapping;
4262         mapping_set_gfp_mask(mapping, mask);
4263
4264         i915_gem_object_init(obj, &i915_gem_object_ops);
4265
4266         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4267         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4268
4269         if (HAS_LLC(dev)) {
4270                 /* On some devices, we can have the GPU use the LLC (the CPU
4271                  * cache) for about a 10% performance improvement
4272                  * compared to uncached.  Graphics requests other than
4273                  * display scanout are coherent with the CPU in
4274                  * accessing this cache.  This means in this mode we
4275                  * don't need to clflush on the CPU side, and on the
4276                  * GPU side we only need to flush internal caches to
4277                  * get data visible to the CPU.
4278                  *
4279                  * However, we maintain the display planes as UC, and so
4280                  * need to rebind when first used as such.
4281                  */
4282                 obj->cache_level = I915_CACHE_LLC;
4283         } else
4284                 obj->cache_level = I915_CACHE_NONE;
4285
4286         trace_i915_gem_object_create(obj);
4287
4288         return obj;
4289 }
4290
4291 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4292 {
4293         /* If we are the last user of the backing storage (be it shmemfs
4294          * pages or stolen etc), we know that the pages are going to be
4295          * immediately released. In this case, we can then skip copying
4296          * back the contents from the GPU.
4297          */
4298
4299         if (obj->madv != I915_MADV_WILLNEED)
4300                 return false;
4301
4302         if (obj->base.filp == NULL)
4303                 return true;
4304
4305         /* At first glance, this looks racy, but then again so would be
4306          * userspace racing mmap against close. However, the first external
4307          * reference to the filp can only be obtained through the
4308          * i915_gem_mmap_ioctl() which safeguards us against the user
4309          * acquiring such a reference whilst we are in the middle of
4310          * freeing the object.
4311          */
4312         return atomic_long_read(&obj->base.filp->f_count) == 1;
4313 }
4314
4315 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4316 {
4317         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4318         struct drm_device *dev = obj->base.dev;
4319         struct drm_i915_private *dev_priv = dev->dev_private;
4320         struct i915_vma *vma, *next;
4321
4322         intel_runtime_pm_get(dev_priv);
4323
4324         trace_i915_gem_object_destroy(obj);
4325
4326         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4327                 int ret;
4328
4329                 vma->pin_count = 0;
4330                 ret = i915_vma_unbind(vma);
4331                 if (WARN_ON(ret == -ERESTARTSYS)) {
4332                         bool was_interruptible;
4333
4334                         was_interruptible = dev_priv->mm.interruptible;
4335                         dev_priv->mm.interruptible = false;
4336
4337                         WARN_ON(i915_vma_unbind(vma));
4338
4339                         dev_priv->mm.interruptible = was_interruptible;
4340                 }
4341         }
4342
4343         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4344          * before progressing. */
4345         if (obj->stolen)
4346                 i915_gem_object_unpin_pages(obj);
4347
4348         WARN_ON(obj->frontbuffer_bits);
4349
4350         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4351             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4352             obj->tiling_mode != I915_TILING_NONE)
4353                 i915_gem_object_unpin_pages(obj);
4354
4355         if (WARN_ON(obj->pages_pin_count))
4356                 obj->pages_pin_count = 0;
4357         if (discard_backing_storage(obj))
4358                 obj->madv = I915_MADV_DONTNEED;
4359         i915_gem_object_put_pages(obj);
4360         i915_gem_object_free_mmap_offset(obj);
4361
4362         BUG_ON(obj->pages);
4363
4364         if (obj->base.import_attach)
4365                 drm_prime_gem_destroy(&obj->base, NULL);
4366
4367         if (obj->ops->release)
4368                 obj->ops->release(obj);
4369
4370         drm_gem_object_release(&obj->base);
4371         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4372
4373         kfree(obj->bit_17);
4374         i915_gem_object_free(obj);
4375
4376         intel_runtime_pm_put(dev_priv);
4377 }
4378
4379 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4380                                      struct i915_address_space *vm)
4381 {
4382         struct i915_vma *vma;
4383         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4384                 if (i915_is_ggtt(vma->vm) &&
4385                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4386                         continue;
4387                 if (vma->vm == vm)
4388                         return vma;
4389         }
4390         return NULL;
4391 }
4392
4393 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4394                                            const struct i915_ggtt_view *view)
4395 {
4396         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4397         struct i915_vma *vma;
4398
4399         if (WARN_ONCE(!view, "no view specified"))
4400                 return ERR_PTR(-EINVAL);
4401
4402         list_for_each_entry(vma, &obj->vma_list, vma_link)
4403                 if (vma->vm == ggtt &&
4404                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4405                         return vma;
4406         return NULL;
4407 }
4408
4409 void i915_gem_vma_destroy(struct i915_vma *vma)
4410 {
4411         struct i915_address_space *vm = NULL;
4412         WARN_ON(vma->node.allocated);
4413
4414         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4415         if (!list_empty(&vma->exec_list))
4416                 return;
4417
4418         vm = vma->vm;
4419
4420         if (!i915_is_ggtt(vm))
4421                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4422
4423         list_del(&vma->vma_link);
4424
4425         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4426 }
4427
4428 static void
4429 i915_gem_stop_ringbuffers(struct drm_device *dev)
4430 {
4431         struct drm_i915_private *dev_priv = dev->dev_private;
4432         struct intel_engine_cs *ring;
4433         int i;
4434
4435         for_each_ring(ring, dev_priv, i)
4436                 dev_priv->gt.stop_ring(ring);
4437 }
4438
4439 int
4440 i915_gem_suspend(struct drm_device *dev)
4441 {
4442         struct drm_i915_private *dev_priv = dev->dev_private;
4443         int ret = 0;
4444
4445         mutex_lock(&dev->struct_mutex);
4446         ret = i915_gpu_idle(dev);
4447         if (ret)
4448                 goto err;
4449
4450         i915_gem_retire_requests(dev);
4451
4452         i915_gem_stop_ringbuffers(dev);
4453         mutex_unlock(&dev->struct_mutex);
4454
4455         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4456         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4457         flush_delayed_work(&dev_priv->mm.idle_work);
4458
4459         /* Assert that we sucessfully flushed all the work and
4460          * reset the GPU back to its idle, low power state.
4461          */
4462         WARN_ON(dev_priv->mm.busy);
4463
4464         return 0;
4465
4466 err:
4467         mutex_unlock(&dev->struct_mutex);
4468         return ret;
4469 }
4470
4471 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4472 {
4473         struct intel_engine_cs *ring = req->ring;
4474         struct drm_device *dev = ring->dev;
4475         struct drm_i915_private *dev_priv = dev->dev_private;
4476         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4477         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4478         int i, ret;
4479
4480         if (!HAS_L3_DPF(dev) || !remap_info)
4481                 return 0;
4482
4483         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4484         if (ret)
4485                 return ret;
4486
4487         /*
4488          * Note: We do not worry about the concurrent register cacheline hang
4489          * here because no other code should access these registers other than
4490          * at initialization time.
4491          */
4492         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4493                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4494                 intel_ring_emit(ring, reg_base + i);
4495                 intel_ring_emit(ring, remap_info[i/4]);
4496         }
4497
4498         intel_ring_advance(ring);
4499
4500         return ret;
4501 }
4502
4503 void i915_gem_init_swizzling(struct drm_device *dev)
4504 {
4505         struct drm_i915_private *dev_priv = dev->dev_private;
4506
4507         if (INTEL_INFO(dev)->gen < 5 ||
4508             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4509                 return;
4510
4511         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4512                                  DISP_TILE_SURFACE_SWIZZLING);
4513
4514         if (IS_GEN5(dev))
4515                 return;
4516
4517         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4518         if (IS_GEN6(dev))
4519                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4520         else if (IS_GEN7(dev))
4521                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4522         else if (IS_GEN8(dev))
4523                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4524         else
4525                 BUG();
4526 }
4527
4528 static bool
4529 intel_enable_blt(struct drm_device *dev)
4530 {
4531         if (!HAS_BLT(dev))
4532                 return false;
4533
4534         /* The blitter was dysfunctional on early prototypes */
4535         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4536                 DRM_INFO("BLT not supported on this pre-production hardware;"
4537                          " graphics performance will be degraded.\n");
4538                 return false;
4539         }
4540
4541         return true;
4542 }
4543
4544 static void init_unused_ring(struct drm_device *dev, u32 base)
4545 {
4546         struct drm_i915_private *dev_priv = dev->dev_private;
4547
4548         I915_WRITE(RING_CTL(base), 0);
4549         I915_WRITE(RING_HEAD(base), 0);
4550         I915_WRITE(RING_TAIL(base), 0);
4551         I915_WRITE(RING_START(base), 0);
4552 }
4553
4554 static void init_unused_rings(struct drm_device *dev)
4555 {
4556         if (IS_I830(dev)) {
4557                 init_unused_ring(dev, PRB1_BASE);
4558                 init_unused_ring(dev, SRB0_BASE);
4559                 init_unused_ring(dev, SRB1_BASE);
4560                 init_unused_ring(dev, SRB2_BASE);
4561                 init_unused_ring(dev, SRB3_BASE);
4562         } else if (IS_GEN2(dev)) {
4563                 init_unused_ring(dev, SRB0_BASE);
4564                 init_unused_ring(dev, SRB1_BASE);
4565         } else if (IS_GEN3(dev)) {
4566                 init_unused_ring(dev, PRB1_BASE);
4567                 init_unused_ring(dev, PRB2_BASE);
4568         }
4569 }
4570
4571 int i915_gem_init_rings(struct drm_device *dev)
4572 {
4573         struct drm_i915_private *dev_priv = dev->dev_private;
4574         int ret;
4575
4576         ret = intel_init_render_ring_buffer(dev);
4577         if (ret)
4578                 return ret;
4579
4580         if (HAS_BSD(dev)) {
4581                 ret = intel_init_bsd_ring_buffer(dev);
4582                 if (ret)
4583                         goto cleanup_render_ring;
4584         }
4585
4586         if (intel_enable_blt(dev)) {
4587                 ret = intel_init_blt_ring_buffer(dev);
4588                 if (ret)
4589                         goto cleanup_bsd_ring;
4590         }
4591
4592         if (HAS_VEBOX(dev)) {
4593                 ret = intel_init_vebox_ring_buffer(dev);
4594                 if (ret)
4595                         goto cleanup_blt_ring;
4596         }
4597
4598         if (HAS_BSD2(dev)) {
4599                 ret = intel_init_bsd2_ring_buffer(dev);
4600                 if (ret)
4601                         goto cleanup_vebox_ring;
4602         }
4603
4604         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4605         if (ret)
4606                 goto cleanup_bsd2_ring;
4607
4608         return 0;
4609
4610 cleanup_bsd2_ring:
4611         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4612 cleanup_vebox_ring:
4613         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4614 cleanup_blt_ring:
4615         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4616 cleanup_bsd_ring:
4617         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4618 cleanup_render_ring:
4619         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4620
4621         return ret;
4622 }
4623
4624 int
4625 i915_gem_init_hw(struct drm_device *dev)
4626 {
4627         struct drm_i915_private *dev_priv = dev->dev_private;
4628         struct intel_engine_cs *ring;
4629         int ret, i, j;
4630
4631         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4632                 return -EIO;
4633
4634         /* Double layer security blanket, see i915_gem_init() */
4635         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4636
4637         if (dev_priv->ellc_size)
4638                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4639
4640         if (IS_HASWELL(dev))
4641                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4642                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4643
4644         if (HAS_PCH_NOP(dev)) {
4645                 if (IS_IVYBRIDGE(dev)) {
4646                         u32 temp = I915_READ(GEN7_MSG_CTL);
4647                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4648                         I915_WRITE(GEN7_MSG_CTL, temp);
4649                 } else if (INTEL_INFO(dev)->gen >= 7) {
4650                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4651                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4652                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4653                 }
4654         }
4655
4656         i915_gem_init_swizzling(dev);
4657
4658         /*
4659          * At least 830 can leave some of the unused rings
4660          * "active" (ie. head != tail) after resume which
4661          * will prevent c3 entry. Makes sure all unused rings
4662          * are totally idle.
4663          */
4664         init_unused_rings(dev);
4665
4666         BUG_ON(!dev_priv->ring[RCS].default_context);
4667
4668         ret = i915_ppgtt_init_hw(dev);
4669         if (ret) {
4670                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4671                 goto out;
4672         }
4673
4674         /* Need to do basic initialisation of all rings first: */
4675         for_each_ring(ring, dev_priv, i) {
4676                 ret = ring->init_hw(ring);
4677                 if (ret)
4678                         goto out;
4679         }
4680
4681         /* Now it is safe to go back round and do everything else: */
4682         for_each_ring(ring, dev_priv, i) {
4683                 struct drm_i915_gem_request *req;
4684
4685                 WARN_ON(!ring->default_context);
4686
4687                 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4688                 if (ret) {
4689                         i915_gem_cleanup_ringbuffer(dev);
4690                         goto out;
4691                 }
4692
4693                 if (ring->id == RCS) {
4694                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4695                                 i915_gem_l3_remap(req, j);
4696                 }
4697
4698                 ret = i915_ppgtt_init_ring(req);
4699                 if (ret && ret != -EIO) {
4700                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4701                         i915_gem_request_cancel(req);
4702                         i915_gem_cleanup_ringbuffer(dev);
4703                         goto out;
4704                 }
4705
4706                 ret = i915_gem_context_enable(req);
4707                 if (ret && ret != -EIO) {
4708                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4709                         i915_gem_request_cancel(req);
4710                         i915_gem_cleanup_ringbuffer(dev);
4711                         goto out;
4712                 }
4713
4714                 i915_add_request_no_flush(req);
4715         }
4716
4717 out:
4718         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4719         return ret;
4720 }
4721
4722 int i915_gem_init(struct drm_device *dev)
4723 {
4724         struct drm_i915_private *dev_priv = dev->dev_private;
4725         int ret;
4726
4727         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4728                         i915.enable_execlists);
4729
4730         mutex_lock(&dev->struct_mutex);
4731
4732         if (IS_VALLEYVIEW(dev)) {
4733                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4734                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4735                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4736                               VLV_GTLC_ALLOWWAKEACK), 10))
4737                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4738         }
4739
4740         if (!i915.enable_execlists) {
4741                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4742                 dev_priv->gt.init_rings = i915_gem_init_rings;
4743                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4744                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4745         } else {
4746                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4747                 dev_priv->gt.init_rings = intel_logical_rings_init;
4748                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4749                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4750         }
4751
4752         /* This is just a security blanket to placate dragons.
4753          * On some systems, we very sporadically observe that the first TLBs
4754          * used by the CS may be stale, despite us poking the TLB reset. If
4755          * we hold the forcewake during initialisation these problems
4756          * just magically go away.
4757          */
4758         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4759
4760         ret = i915_gem_init_userptr(dev);
4761         if (ret)
4762                 goto out_unlock;
4763
4764         i915_gem_init_global_gtt(dev);
4765
4766         ret = i915_gem_context_init(dev);
4767         if (ret)
4768                 goto out_unlock;
4769
4770         ret = dev_priv->gt.init_rings(dev);
4771         if (ret)
4772                 goto out_unlock;
4773
4774         ret = i915_gem_init_hw(dev);
4775         if (ret == -EIO) {
4776                 /* Allow ring initialisation to fail by marking the GPU as
4777                  * wedged. But we only want to do this where the GPU is angry,
4778                  * for all other failure, such as an allocation failure, bail.
4779                  */
4780                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4781                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4782                 ret = 0;
4783         }
4784
4785 out_unlock:
4786         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4787         mutex_unlock(&dev->struct_mutex);
4788
4789         return ret;
4790 }
4791
4792 void
4793 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4794 {
4795         struct drm_i915_private *dev_priv = dev->dev_private;
4796         struct intel_engine_cs *ring;
4797         int i;
4798
4799         for_each_ring(ring, dev_priv, i)
4800                 dev_priv->gt.cleanup_ring(ring);
4801
4802     if (i915.enable_execlists)
4803             /*
4804              * Neither the BIOS, ourselves or any other kernel
4805              * expects the system to be in execlists mode on startup,
4806              * so we need to reset the GPU back to legacy mode.
4807              */
4808             intel_gpu_reset(dev);
4809 }
4810
4811 static void
4812 init_ring_lists(struct intel_engine_cs *ring)
4813 {
4814         INIT_LIST_HEAD(&ring->active_list);
4815         INIT_LIST_HEAD(&ring->request_list);
4816 }
4817
4818 void i915_init_vm(struct drm_i915_private *dev_priv,
4819                   struct i915_address_space *vm)
4820 {
4821         if (!i915_is_ggtt(vm))
4822                 drm_mm_init(&vm->mm, vm->start, vm->total);
4823         vm->dev = dev_priv->dev;
4824         INIT_LIST_HEAD(&vm->active_list);
4825         INIT_LIST_HEAD(&vm->inactive_list);
4826         INIT_LIST_HEAD(&vm->global_link);
4827         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4828 }
4829
4830 void
4831 i915_gem_load(struct drm_device *dev)
4832 {
4833         struct drm_i915_private *dev_priv = dev->dev_private;
4834         int i;
4835
4836         dev_priv->objects =
4837                 kmem_cache_create("i915_gem_object",
4838                                   sizeof(struct drm_i915_gem_object), 0,
4839                                   SLAB_HWCACHE_ALIGN,
4840                                   NULL);
4841         dev_priv->vmas =
4842                 kmem_cache_create("i915_gem_vma",
4843                                   sizeof(struct i915_vma), 0,
4844                                   SLAB_HWCACHE_ALIGN,
4845                                   NULL);
4846         dev_priv->requests =
4847                 kmem_cache_create("i915_gem_request",
4848                                   sizeof(struct drm_i915_gem_request), 0,
4849                                   SLAB_HWCACHE_ALIGN,
4850                                   NULL);
4851
4852         INIT_LIST_HEAD(&dev_priv->vm_list);
4853         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4854
4855         INIT_LIST_HEAD(&dev_priv->context_list);
4856         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4857         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4858         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4859         for (i = 0; i < I915_NUM_RINGS; i++)
4860                 init_ring_lists(&dev_priv->ring[i]);
4861         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4862                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4863         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4864                           i915_gem_retire_work_handler);
4865         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4866                           i915_gem_idle_work_handler);
4867         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4868
4869         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4870
4871         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4872                 dev_priv->num_fence_regs = 32;
4873         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4874                 dev_priv->num_fence_regs = 16;
4875         else
4876                 dev_priv->num_fence_regs = 8;
4877
4878         if (intel_vgpu_active(dev))
4879                 dev_priv->num_fence_regs =
4880                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4881
4882         /* Initialize fence registers to zero */
4883         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4884         i915_gem_restore_fences(dev);
4885
4886         i915_gem_detect_bit_6_swizzle(dev);
4887         init_waitqueue_head(&dev_priv->pending_flip_queue);
4888
4889         dev_priv->mm.interruptible = true;
4890
4891         i915_gem_shrinker_init(dev_priv);
4892
4893         mutex_init(&dev_priv->fb_tracking.lock);
4894 }
4895
4896 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4897 {
4898         struct drm_i915_file_private *file_priv = file->driver_priv;
4899
4900         /* Clean up our request list when the client is going away, so that
4901          * later retire_requests won't dereference our soon-to-be-gone
4902          * file_priv.
4903          */
4904         spin_lock(&file_priv->mm.lock);
4905         while (!list_empty(&file_priv->mm.request_list)) {
4906                 struct drm_i915_gem_request *request;
4907
4908                 request = list_first_entry(&file_priv->mm.request_list,
4909                                            struct drm_i915_gem_request,
4910                                            client_list);
4911                 list_del(&request->client_list);
4912                 request->file_priv = NULL;
4913         }
4914         spin_unlock(&file_priv->mm.lock);
4915
4916         if (!list_empty(&file_priv->rps.link)) {
4917                 spin_lock(&to_i915(dev)->rps.client_lock);
4918                 list_del(&file_priv->rps.link);
4919                 spin_unlock(&to_i915(dev)->rps.client_lock);
4920         }
4921 }
4922
4923 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4924 {
4925         struct drm_i915_file_private *file_priv;
4926         int ret;
4927
4928         DRM_DEBUG_DRIVER("\n");
4929
4930         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4931         if (!file_priv)
4932                 return -ENOMEM;
4933
4934         file->driver_priv = file_priv;
4935         file_priv->dev_priv = dev->dev_private;
4936         file_priv->file = file;
4937         INIT_LIST_HEAD(&file_priv->rps.link);
4938
4939         spin_lock_init(&file_priv->mm.lock);
4940         INIT_LIST_HEAD(&file_priv->mm.request_list);
4941
4942         ret = i915_gem_context_open(dev, file);
4943         if (ret)
4944                 kfree(file_priv);
4945
4946         return ret;
4947 }
4948
4949 /**
4950  * i915_gem_track_fb - update frontbuffer tracking
4951  * old: current GEM buffer for the frontbuffer slots
4952  * new: new GEM buffer for the frontbuffer slots
4953  * frontbuffer_bits: bitmask of frontbuffer slots
4954  *
4955  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4956  * from @old and setting them in @new. Both @old and @new can be NULL.
4957  */
4958 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4959                        struct drm_i915_gem_object *new,
4960                        unsigned frontbuffer_bits)
4961 {
4962         if (old) {
4963                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4964                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4965                 old->frontbuffer_bits &= ~frontbuffer_bits;
4966         }
4967
4968         if (new) {
4969                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4970                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4971                 new->frontbuffer_bits |= frontbuffer_bits;
4972         }
4973 }
4974
4975 /* All the new VM stuff */
4976 unsigned long
4977 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4978                     struct i915_address_space *vm)
4979 {
4980         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4981         struct i915_vma *vma;
4982
4983         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4984
4985         list_for_each_entry(vma, &o->vma_list, vma_link) {
4986                 if (i915_is_ggtt(vma->vm) &&
4987                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4988                         continue;
4989                 if (vma->vm == vm)
4990                         return vma->node.start;
4991         }
4992
4993         WARN(1, "%s vma for this object not found.\n",
4994              i915_is_ggtt(vm) ? "global" : "ppgtt");
4995         return -1;
4996 }
4997
4998 unsigned long
4999 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5000                               const struct i915_ggtt_view *view)
5001 {
5002         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5003         struct i915_vma *vma;
5004
5005         list_for_each_entry(vma, &o->vma_list, vma_link)
5006                 if (vma->vm == ggtt &&
5007                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5008                         return vma->node.start;
5009
5010         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5011         return -1;
5012 }
5013
5014 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5015                         struct i915_address_space *vm)
5016 {
5017         struct i915_vma *vma;
5018
5019         list_for_each_entry(vma, &o->vma_list, vma_link) {
5020                 if (i915_is_ggtt(vma->vm) &&
5021                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5022                         continue;
5023                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5024                         return true;
5025         }
5026
5027         return false;
5028 }
5029
5030 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5031                                   const struct i915_ggtt_view *view)
5032 {
5033         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5034         struct i915_vma *vma;
5035
5036         list_for_each_entry(vma, &o->vma_list, vma_link)
5037                 if (vma->vm == ggtt &&
5038                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5039                     drm_mm_node_allocated(&vma->node))
5040                         return true;
5041
5042         return false;
5043 }
5044
5045 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5046 {
5047         struct i915_vma *vma;
5048
5049         list_for_each_entry(vma, &o->vma_list, vma_link)
5050                 if (drm_mm_node_allocated(&vma->node))
5051                         return true;
5052
5053         return false;
5054 }
5055
5056 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5057                                 struct i915_address_space *vm)
5058 {
5059         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5060         struct i915_vma *vma;
5061
5062         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5063
5064         BUG_ON(list_empty(&o->vma_list));
5065
5066         list_for_each_entry(vma, &o->vma_list, vma_link) {
5067                 if (i915_is_ggtt(vma->vm) &&
5068                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5069                         continue;
5070                 if (vma->vm == vm)
5071                         return vma->node.size;
5072         }
5073         return 0;
5074 }
5075
5076 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5077 {
5078         struct i915_vma *vma;
5079         list_for_each_entry(vma, &obj->vma_list, vma_link)
5080                 if (vma->pin_count > 0)
5081                         return true;
5082
5083         return false;
5084 }
5085
5086 /* Allocate a new GEM object and fill it with the supplied data */
5087 struct drm_i915_gem_object *
5088 i915_gem_object_create_from_data(struct drm_device *dev,
5089                                  const void *data, size_t size)
5090 {
5091         struct drm_i915_gem_object *obj;
5092         struct sg_table *sg;
5093         size_t bytes;
5094         int ret;
5095
5096         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5097         if (IS_ERR_OR_NULL(obj))
5098                 return obj;
5099
5100         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5101         if (ret)
5102                 goto fail;
5103
5104         ret = i915_gem_object_get_pages(obj);
5105         if (ret)
5106                 goto fail;
5107
5108         i915_gem_object_pin_pages(obj);
5109         sg = obj->pages;
5110         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5111         i915_gem_object_unpin_pages(obj);
5112
5113         if (WARN_ON(bytes != size)) {
5114                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5115                 ret = -EFAULT;
5116                 goto fail;
5117         }
5118
5119         return obj;
5120
5121 fail:
5122         drm_gem_object_unreference(&obj->base);
5123         return ERR_PTR(ret);
5124 }