]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'iommu-updates-v3.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
45                            struct i915_address_space *vm,
46                            unsigned alignment,
47                            bool map_and_fenceable,
48                            bool nonblocking);
49 static int i915_gem_phys_pwrite(struct drm_device *dev,
50                                 struct drm_i915_gem_object *obj,
51                                 struct drm_i915_gem_pwrite *args,
52                                 struct drm_file *file);
53
54 static void i915_gem_write_fence(struct drm_device *dev, int reg,
55                                  struct drm_i915_gem_object *obj);
56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57                                          struct drm_i915_fence_reg *fence,
58                                          bool enable);
59
60 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
61                                     struct shrink_control *sc);
62 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
63 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67                                   enum i915_cache_level level)
68 {
69         return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75                 return true;
76
77         return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82         if (obj->tiling_mode)
83                 i915_gem_release_mmap(obj);
84
85         /* As we do not have an associated fence register, we will force
86          * a tiling change if we ever need to acquire one.
87          */
88         obj->fence_dirty = false;
89         obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94                                   size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count++;
98         dev_priv->mm.object_memory += size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103                                      size_t size)
104 {
105         spin_lock(&dev_priv->mm.object_stat_lock);
106         dev_priv->mm.object_count--;
107         dev_priv->mm.object_memory -= size;
108         spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114         int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117                    i915_terminally_wedged(error))
118         if (EXIT_COND)
119                 return 0;
120
121         /*
122          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123          * userspace. If it takes that long something really bad is going on and
124          * we should simply try to bail out and fail as gracefully as possible.
125          */
126         ret = wait_event_interruptible_timeout(error->reset_queue,
127                                                EXIT_COND,
128                                                10*HZ);
129         if (ret == 0) {
130                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131                 return -EIO;
132         } else if (ret < 0) {
133                 return ret;
134         }
135 #undef EXIT_COND
136
137         return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         int ret;
144
145         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146         if (ret)
147                 return ret;
148
149         ret = mutex_lock_interruptible(&dev->struct_mutex);
150         if (ret)
151                 return ret;
152
153         WARN_ON(i915_verify_lists(dev));
154         return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160         return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165                     struct drm_file *file)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168         struct drm_i915_gem_init *args = data;
169
170         if (drm_core_check_feature(dev, DRIVER_MODESET))
171                 return -ENODEV;
172
173         if (args->gtt_start >= args->gtt_end ||
174             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175                 return -EINVAL;
176
177         /* GEM with user mode setting was never supported on ilk and later. */
178         if (INTEL_INFO(dev)->gen >= 5)
179                 return -ENODEV;
180
181         mutex_lock(&dev->struct_mutex);
182         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183                                   args->gtt_end);
184         dev_priv->gtt.mappable_end = args->gtt_end;
185         mutex_unlock(&dev->struct_mutex);
186
187         return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192                             struct drm_file *file)
193 {
194         struct drm_i915_private *dev_priv = dev->dev_private;
195         struct drm_i915_gem_get_aperture *args = data;
196         struct drm_i915_gem_object *obj;
197         size_t pinned;
198
199         pinned = 0;
200         mutex_lock(&dev->struct_mutex);
201         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202                 if (obj->pin_count)
203                         pinned += i915_gem_obj_ggtt_size(obj);
204         mutex_unlock(&dev->struct_mutex);
205
206         args->aper_size = dev_priv->gtt.base.total;
207         args->aper_available_size = args->aper_size - pinned;
208
209         return 0;
210 }
211
212 void *i915_gem_object_alloc(struct drm_device *dev)
213 {
214         struct drm_i915_private *dev_priv = dev->dev_private;
215         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
216 }
217
218 void i915_gem_object_free(struct drm_i915_gem_object *obj)
219 {
220         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221         kmem_cache_free(dev_priv->slab, obj);
222 }
223
224 static int
225 i915_gem_create(struct drm_file *file,
226                 struct drm_device *dev,
227                 uint64_t size,
228                 uint32_t *handle_p)
229 {
230         struct drm_i915_gem_object *obj;
231         int ret;
232         u32 handle;
233
234         size = roundup(size, PAGE_SIZE);
235         if (size == 0)
236                 return -EINVAL;
237
238         /* Allocate the new object */
239         obj = i915_gem_alloc_object(dev, size);
240         if (obj == NULL)
241                 return -ENOMEM;
242
243         ret = drm_gem_handle_create(file, &obj->base, &handle);
244         /* drop reference from allocate - handle holds it now */
245         drm_gem_object_unreference_unlocked(&obj->base);
246         if (ret)
247                 return ret;
248
249         *handle_p = handle;
250         return 0;
251 }
252
253 int
254 i915_gem_dumb_create(struct drm_file *file,
255                      struct drm_device *dev,
256                      struct drm_mode_create_dumb *args)
257 {
258         /* have to work out size/pitch and return them */
259         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
260         args->size = args->pitch * args->height;
261         return i915_gem_create(file, dev,
262                                args->size, &args->handle);
263 }
264
265 /**
266  * Creates a new mm object and returns a handle to it.
267  */
268 int
269 i915_gem_create_ioctl(struct drm_device *dev, void *data,
270                       struct drm_file *file)
271 {
272         struct drm_i915_gem_create *args = data;
273
274         return i915_gem_create(file, dev,
275                                args->size, &args->handle);
276 }
277
278 static inline int
279 __copy_to_user_swizzled(char __user *cpu_vaddr,
280                         const char *gpu_vaddr, int gpu_offset,
281                         int length)
282 {
283         int ret, cpu_offset = 0;
284
285         while (length > 0) {
286                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287                 int this_length = min(cacheline_end - gpu_offset, length);
288                 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291                                      gpu_vaddr + swizzled_gpu_offset,
292                                      this_length);
293                 if (ret)
294                         return ret + length;
295
296                 cpu_offset += this_length;
297                 gpu_offset += this_length;
298                 length -= this_length;
299         }
300
301         return 0;
302 }
303
304 static inline int
305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306                           const char __user *cpu_vaddr,
307                           int length)
308 {
309         int ret, cpu_offset = 0;
310
311         while (length > 0) {
312                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313                 int this_length = min(cacheline_end - gpu_offset, length);
314                 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317                                        cpu_vaddr + cpu_offset,
318                                        this_length);
319                 if (ret)
320                         return ret + length;
321
322                 cpu_offset += this_length;
323                 gpu_offset += this_length;
324                 length -= this_length;
325         }
326
327         return 0;
328 }
329
330 /* Per-page copy function for the shmem pread fastpath.
331  * Flushes invalid cachelines before reading the target if
332  * needs_clflush is set. */
333 static int
334 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
335                  char __user *user_data,
336                  bool page_do_bit17_swizzling, bool needs_clflush)
337 {
338         char *vaddr;
339         int ret;
340
341         if (unlikely(page_do_bit17_swizzling))
342                 return -EINVAL;
343
344         vaddr = kmap_atomic(page);
345         if (needs_clflush)
346                 drm_clflush_virt_range(vaddr + shmem_page_offset,
347                                        page_length);
348         ret = __copy_to_user_inatomic(user_data,
349                                       vaddr + shmem_page_offset,
350                                       page_length);
351         kunmap_atomic(vaddr);
352
353         return ret ? -EFAULT : 0;
354 }
355
356 static void
357 shmem_clflush_swizzled_range(char *addr, unsigned long length,
358                              bool swizzled)
359 {
360         if (unlikely(swizzled)) {
361                 unsigned long start = (unsigned long) addr;
362                 unsigned long end = (unsigned long) addr + length;
363
364                 /* For swizzling simply ensure that we always flush both
365                  * channels. Lame, but simple and it works. Swizzled
366                  * pwrite/pread is far from a hotpath - current userspace
367                  * doesn't use it at all. */
368                 start = round_down(start, 128);
369                 end = round_up(end, 128);
370
371                 drm_clflush_virt_range((void *)start, end - start);
372         } else {
373                 drm_clflush_virt_range(addr, length);
374         }
375
376 }
377
378 /* Only difference to the fast-path function is that this can handle bit17
379  * and uses non-atomic copy and kmap functions. */
380 static int
381 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
382                  char __user *user_data,
383                  bool page_do_bit17_swizzling, bool needs_clflush)
384 {
385         char *vaddr;
386         int ret;
387
388         vaddr = kmap(page);
389         if (needs_clflush)
390                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
391                                              page_length,
392                                              page_do_bit17_swizzling);
393
394         if (page_do_bit17_swizzling)
395                 ret = __copy_to_user_swizzled(user_data,
396                                               vaddr, shmem_page_offset,
397                                               page_length);
398         else
399                 ret = __copy_to_user(user_data,
400                                      vaddr + shmem_page_offset,
401                                      page_length);
402         kunmap(page);
403
404         return ret ? - EFAULT : 0;
405 }
406
407 static int
408 i915_gem_shmem_pread(struct drm_device *dev,
409                      struct drm_i915_gem_object *obj,
410                      struct drm_i915_gem_pread *args,
411                      struct drm_file *file)
412 {
413         char __user *user_data;
414         ssize_t remain;
415         loff_t offset;
416         int shmem_page_offset, page_length, ret = 0;
417         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
418         int prefaulted = 0;
419         int needs_clflush = 0;
420         struct sg_page_iter sg_iter;
421
422         user_data = to_user_ptr(args->data_ptr);
423         remain = args->size;
424
425         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
426
427         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
428                 /* If we're not in the cpu read domain, set ourself into the gtt
429                  * read domain and manually flush cachelines (if required). This
430                  * optimizes for the case when the gpu will dirty the data
431                  * anyway again before the next pread happens. */
432                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
433                 if (i915_gem_obj_bound_any(obj)) {
434                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
435                         if (ret)
436                                 return ret;
437                 }
438         }
439
440         ret = i915_gem_object_get_pages(obj);
441         if (ret)
442                 return ret;
443
444         i915_gem_object_pin_pages(obj);
445
446         offset = args->offset;
447
448         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
449                          offset >> PAGE_SHIFT) {
450                 struct page *page = sg_page_iter_page(&sg_iter);
451
452                 if (remain <= 0)
453                         break;
454
455                 /* Operation in this page
456                  *
457                  * shmem_page_offset = offset within page in shmem file
458                  * page_length = bytes to copy for this page
459                  */
460                 shmem_page_offset = offset_in_page(offset);
461                 page_length = remain;
462                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463                         page_length = PAGE_SIZE - shmem_page_offset;
464
465                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
466                         (page_to_phys(page) & (1 << 17)) != 0;
467
468                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
469                                        user_data, page_do_bit17_swizzling,
470                                        needs_clflush);
471                 if (ret == 0)
472                         goto next_page;
473
474                 mutex_unlock(&dev->struct_mutex);
475
476                 if (likely(!i915_prefault_disable) && !prefaulted) {
477                         ret = fault_in_multipages_writeable(user_data, remain);
478                         /* Userspace is tricking us, but we've already clobbered
479                          * its pages with the prefault and promised to write the
480                          * data up to the first fault. Hence ignore any errors
481                          * and just continue. */
482                         (void)ret;
483                         prefaulted = 1;
484                 }
485
486                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487                                        user_data, page_do_bit17_swizzling,
488                                        needs_clflush);
489
490                 mutex_lock(&dev->struct_mutex);
491
492 next_page:
493                 mark_page_accessed(page);
494
495                 if (ret)
496                         goto out;
497
498                 remain -= page_length;
499                 user_data += page_length;
500                 offset += page_length;
501         }
502
503 out:
504         i915_gem_object_unpin_pages(obj);
505
506         return ret;
507 }
508
509 /**
510  * Reads data from the object referenced by handle.
511  *
512  * On error, the contents of *data are undefined.
513  */
514 int
515 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
516                      struct drm_file *file)
517 {
518         struct drm_i915_gem_pread *args = data;
519         struct drm_i915_gem_object *obj;
520         int ret = 0;
521
522         if (args->size == 0)
523                 return 0;
524
525         if (!access_ok(VERIFY_WRITE,
526                        to_user_ptr(args->data_ptr),
527                        args->size))
528                 return -EFAULT;
529
530         ret = i915_mutex_lock_interruptible(dev);
531         if (ret)
532                 return ret;
533
534         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
535         if (&obj->base == NULL) {
536                 ret = -ENOENT;
537                 goto unlock;
538         }
539
540         /* Bounds check source.  */
541         if (args->offset > obj->base.size ||
542             args->size > obj->base.size - args->offset) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         /* prime objects have no backing filp to GEM pread/pwrite
548          * pages from.
549          */
550         if (!obj->base.filp) {
551                 ret = -EINVAL;
552                 goto out;
553         }
554
555         trace_i915_gem_object_pread(obj, args->offset, args->size);
556
557         ret = i915_gem_shmem_pread(dev, obj, args, file);
558
559 out:
560         drm_gem_object_unreference(&obj->base);
561 unlock:
562         mutex_unlock(&dev->struct_mutex);
563         return ret;
564 }
565
566 /* This is the fast write path which cannot handle
567  * page faults in the source data
568  */
569
570 static inline int
571 fast_user_write(struct io_mapping *mapping,
572                 loff_t page_base, int page_offset,
573                 char __user *user_data,
574                 int length)
575 {
576         void __iomem *vaddr_atomic;
577         void *vaddr;
578         unsigned long unwritten;
579
580         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
581         /* We can use the cpu mem copy function because this is X86. */
582         vaddr = (void __force*)vaddr_atomic + page_offset;
583         unwritten = __copy_from_user_inatomic_nocache(vaddr,
584                                                       user_data, length);
585         io_mapping_unmap_atomic(vaddr_atomic);
586         return unwritten;
587 }
588
589 /**
590  * This is the fast pwrite path, where we copy the data directly from the
591  * user into the GTT, uncached.
592  */
593 static int
594 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
595                          struct drm_i915_gem_object *obj,
596                          struct drm_i915_gem_pwrite *args,
597                          struct drm_file *file)
598 {
599         drm_i915_private_t *dev_priv = dev->dev_private;
600         ssize_t remain;
601         loff_t offset, page_base;
602         char __user *user_data;
603         int page_offset, page_length, ret;
604
605         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
606         if (ret)
607                 goto out;
608
609         ret = i915_gem_object_set_to_gtt_domain(obj, true);
610         if (ret)
611                 goto out_unpin;
612
613         ret = i915_gem_object_put_fence(obj);
614         if (ret)
615                 goto out_unpin;
616
617         user_data = to_user_ptr(args->data_ptr);
618         remain = args->size;
619
620         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
621
622         while (remain > 0) {
623                 /* Operation in this page
624                  *
625                  * page_base = page offset within aperture
626                  * page_offset = offset within page
627                  * page_length = bytes to copy for this page
628                  */
629                 page_base = offset & PAGE_MASK;
630                 page_offset = offset_in_page(offset);
631                 page_length = remain;
632                 if ((page_offset + remain) > PAGE_SIZE)
633                         page_length = PAGE_SIZE - page_offset;
634
635                 /* If we get a fault while copying data, then (presumably) our
636                  * source page isn't available.  Return the error and we'll
637                  * retry in the slow path.
638                  */
639                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
640                                     page_offset, user_data, page_length)) {
641                         ret = -EFAULT;
642                         goto out_unpin;
643                 }
644
645                 remain -= page_length;
646                 user_data += page_length;
647                 offset += page_length;
648         }
649
650 out_unpin:
651         i915_gem_object_unpin(obj);
652 out:
653         return ret;
654 }
655
656 /* Per-page copy function for the shmem pwrite fastpath.
657  * Flushes invalid cachelines before writing to the target if
658  * needs_clflush_before is set and flushes out any written cachelines after
659  * writing if needs_clflush is set. */
660 static int
661 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
662                   char __user *user_data,
663                   bool page_do_bit17_swizzling,
664                   bool needs_clflush_before,
665                   bool needs_clflush_after)
666 {
667         char *vaddr;
668         int ret;
669
670         if (unlikely(page_do_bit17_swizzling))
671                 return -EINVAL;
672
673         vaddr = kmap_atomic(page);
674         if (needs_clflush_before)
675                 drm_clflush_virt_range(vaddr + shmem_page_offset,
676                                        page_length);
677         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
678                                                 user_data,
679                                                 page_length);
680         if (needs_clflush_after)
681                 drm_clflush_virt_range(vaddr + shmem_page_offset,
682                                        page_length);
683         kunmap_atomic(vaddr);
684
685         return ret ? -EFAULT : 0;
686 }
687
688 /* Only difference to the fast-path function is that this can handle bit17
689  * and uses non-atomic copy and kmap functions. */
690 static int
691 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
692                   char __user *user_data,
693                   bool page_do_bit17_swizzling,
694                   bool needs_clflush_before,
695                   bool needs_clflush_after)
696 {
697         char *vaddr;
698         int ret;
699
700         vaddr = kmap(page);
701         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
702                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
703                                              page_length,
704                                              page_do_bit17_swizzling);
705         if (page_do_bit17_swizzling)
706                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
707                                                 user_data,
708                                                 page_length);
709         else
710                 ret = __copy_from_user(vaddr + shmem_page_offset,
711                                        user_data,
712                                        page_length);
713         if (needs_clflush_after)
714                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
715                                              page_length,
716                                              page_do_bit17_swizzling);
717         kunmap(page);
718
719         return ret ? -EFAULT : 0;
720 }
721
722 static int
723 i915_gem_shmem_pwrite(struct drm_device *dev,
724                       struct drm_i915_gem_object *obj,
725                       struct drm_i915_gem_pwrite *args,
726                       struct drm_file *file)
727 {
728         ssize_t remain;
729         loff_t offset;
730         char __user *user_data;
731         int shmem_page_offset, page_length, ret = 0;
732         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
733         int hit_slowpath = 0;
734         int needs_clflush_after = 0;
735         int needs_clflush_before = 0;
736         struct sg_page_iter sg_iter;
737
738         user_data = to_user_ptr(args->data_ptr);
739         remain = args->size;
740
741         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
742
743         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744                 /* If we're not in the cpu write domain, set ourself into the gtt
745                  * write domain and manually flush cachelines (if required). This
746                  * optimizes for the case when the gpu will use the data
747                  * right away and we therefore have to clflush anyway. */
748                 needs_clflush_after = cpu_write_needs_clflush(obj);
749                 if (i915_gem_obj_bound_any(obj)) {
750                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
751                         if (ret)
752                                 return ret;
753                 }
754         }
755         /* Same trick applies to invalidate partially written cachelines read
756          * before writing. */
757         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
758                 needs_clflush_before =
759                         !cpu_cache_is_coherent(dev, obj->cache_level);
760
761         ret = i915_gem_object_get_pages(obj);
762         if (ret)
763                 return ret;
764
765         i915_gem_object_pin_pages(obj);
766
767         offset = args->offset;
768         obj->dirty = 1;
769
770         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
771                          offset >> PAGE_SHIFT) {
772                 struct page *page = sg_page_iter_page(&sg_iter);
773                 int partial_cacheline_write;
774
775                 if (remain <= 0)
776                         break;
777
778                 /* Operation in this page
779                  *
780                  * shmem_page_offset = offset within page in shmem file
781                  * page_length = bytes to copy for this page
782                  */
783                 shmem_page_offset = offset_in_page(offset);
784
785                 page_length = remain;
786                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
787                         page_length = PAGE_SIZE - shmem_page_offset;
788
789                 /* If we don't overwrite a cacheline completely we need to be
790                  * careful to have up-to-date data by first clflushing. Don't
791                  * overcomplicate things and flush the entire patch. */
792                 partial_cacheline_write = needs_clflush_before &&
793                         ((shmem_page_offset | page_length)
794                                 & (boot_cpu_data.x86_clflush_size - 1));
795
796                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
797                         (page_to_phys(page) & (1 << 17)) != 0;
798
799                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
800                                         user_data, page_do_bit17_swizzling,
801                                         partial_cacheline_write,
802                                         needs_clflush_after);
803                 if (ret == 0)
804                         goto next_page;
805
806                 hit_slowpath = 1;
807                 mutex_unlock(&dev->struct_mutex);
808                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
809                                         user_data, page_do_bit17_swizzling,
810                                         partial_cacheline_write,
811                                         needs_clflush_after);
812
813                 mutex_lock(&dev->struct_mutex);
814
815 next_page:
816                 set_page_dirty(page);
817                 mark_page_accessed(page);
818
819                 if (ret)
820                         goto out;
821
822                 remain -= page_length;
823                 user_data += page_length;
824                 offset += page_length;
825         }
826
827 out:
828         i915_gem_object_unpin_pages(obj);
829
830         if (hit_slowpath) {
831                 /*
832                  * Fixup: Flush cpu caches in case we didn't flush the dirty
833                  * cachelines in-line while writing and the object moved
834                  * out of the cpu write domain while we've dropped the lock.
835                  */
836                 if (!needs_clflush_after &&
837                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
838                         if (i915_gem_clflush_object(obj, obj->pin_display))
839                                 i915_gem_chipset_flush(dev);
840                 }
841         }
842
843         if (needs_clflush_after)
844                 i915_gem_chipset_flush(dev);
845
846         return ret;
847 }
848
849 /**
850  * Writes data to the object referenced by handle.
851  *
852  * On error, the contents of the buffer that were to be modified are undefined.
853  */
854 int
855 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856                       struct drm_file *file)
857 {
858         struct drm_i915_gem_pwrite *args = data;
859         struct drm_i915_gem_object *obj;
860         int ret;
861
862         if (args->size == 0)
863                 return 0;
864
865         if (!access_ok(VERIFY_READ,
866                        to_user_ptr(args->data_ptr),
867                        args->size))
868                 return -EFAULT;
869
870         if (likely(!i915_prefault_disable)) {
871                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
872                                                    args->size);
873                 if (ret)
874                         return -EFAULT;
875         }
876
877         ret = i915_mutex_lock_interruptible(dev);
878         if (ret)
879                 return ret;
880
881         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
882         if (&obj->base == NULL) {
883                 ret = -ENOENT;
884                 goto unlock;
885         }
886
887         /* Bounds check destination. */
888         if (args->offset > obj->base.size ||
889             args->size > obj->base.size - args->offset) {
890                 ret = -EINVAL;
891                 goto out;
892         }
893
894         /* prime objects have no backing filp to GEM pread/pwrite
895          * pages from.
896          */
897         if (!obj->base.filp) {
898                 ret = -EINVAL;
899                 goto out;
900         }
901
902         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
903
904         ret = -EFAULT;
905         /* We can only do the GTT pwrite on untiled buffers, as otherwise
906          * it would end up going through the fenced access, and we'll get
907          * different detiling behavior between reading and writing.
908          * pread/pwrite currently are reading and writing from the CPU
909          * perspective, requiring manual detiling by the client.
910          */
911         if (obj->phys_obj) {
912                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
913                 goto out;
914         }
915
916         if (obj->tiling_mode == I915_TILING_NONE &&
917             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
918             cpu_write_needs_clflush(obj)) {
919                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
920                 /* Note that the gtt paths might fail with non-page-backed user
921                  * pointers (e.g. gtt mappings when moving data between
922                  * textures). Fallback to the shmem path in that case. */
923         }
924
925         if (ret == -EFAULT || ret == -ENOSPC)
926                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927
928 out:
929         drm_gem_object_unreference(&obj->base);
930 unlock:
931         mutex_unlock(&dev->struct_mutex);
932         return ret;
933 }
934
935 int
936 i915_gem_check_wedge(struct i915_gpu_error *error,
937                      bool interruptible)
938 {
939         if (i915_reset_in_progress(error)) {
940                 /* Non-interruptible callers can't handle -EAGAIN, hence return
941                  * -EIO unconditionally for these. */
942                 if (!interruptible)
943                         return -EIO;
944
945                 /* Recovery complete, but the reset failed ... */
946                 if (i915_terminally_wedged(error))
947                         return -EIO;
948
949                 return -EAGAIN;
950         }
951
952         return 0;
953 }
954
955 /*
956  * Compare seqno against outstanding lazy request. Emit a request if they are
957  * equal.
958  */
959 static int
960 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
961 {
962         int ret;
963
964         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
965
966         ret = 0;
967         if (seqno == ring->outstanding_lazy_request)
968                 ret = i915_add_request(ring, NULL);
969
970         return ret;
971 }
972
973 /**
974  * __wait_seqno - wait until execution of seqno has finished
975  * @ring: the ring expected to report seqno
976  * @seqno: duh!
977  * @reset_counter: reset sequence associated with the given seqno
978  * @interruptible: do an interruptible wait (normally yes)
979  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
980  *
981  * Note: It is of utmost importance that the passed in seqno and reset_counter
982  * values have been read by the caller in an smp safe manner. Where read-side
983  * locks are involved, it is sufficient to read the reset_counter before
984  * unlocking the lock that protects the seqno. For lockless tricks, the
985  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
986  * inserted.
987  *
988  * Returns 0 if the seqno was found within the alloted time. Else returns the
989  * errno with remaining time filled in timeout argument.
990  */
991 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
992                         unsigned reset_counter,
993                         bool interruptible, struct timespec *timeout)
994 {
995         drm_i915_private_t *dev_priv = ring->dev->dev_private;
996         struct timespec before, now, wait_time={1,0};
997         unsigned long timeout_jiffies;
998         long end;
999         bool wait_forever = true;
1000         int ret;
1001
1002         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1003
1004         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005                 return 0;
1006
1007         trace_i915_gem_request_wait_begin(ring, seqno);
1008
1009         if (timeout != NULL) {
1010                 wait_time = *timeout;
1011                 wait_forever = false;
1012         }
1013
1014         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1015
1016         if (WARN_ON(!ring->irq_get(ring)))
1017                 return -ENODEV;
1018
1019         /* Record current time in case interrupted by signal, or wedged * */
1020         getrawmonotonic(&before);
1021
1022 #define EXIT_COND \
1023         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1024          i915_reset_in_progress(&dev_priv->gpu_error) || \
1025          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1026         do {
1027                 if (interruptible)
1028                         end = wait_event_interruptible_timeout(ring->irq_queue,
1029                                                                EXIT_COND,
1030                                                                timeout_jiffies);
1031                 else
1032                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1033                                                  timeout_jiffies);
1034
1035                 /* We need to check whether any gpu reset happened in between
1036                  * the caller grabbing the seqno and now ... */
1037                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1038                         end = -EAGAIN;
1039
1040                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1041                  * gone. */
1042                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1043                 if (ret)
1044                         end = ret;
1045         } while (end == 0 && wait_forever);
1046
1047         getrawmonotonic(&now);
1048
1049         ring->irq_put(ring);
1050         trace_i915_gem_request_wait_end(ring, seqno);
1051 #undef EXIT_COND
1052
1053         if (timeout) {
1054                 struct timespec sleep_time = timespec_sub(now, before);
1055                 *timeout = timespec_sub(*timeout, sleep_time);
1056                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1057                         set_normalized_timespec(timeout, 0, 0);
1058         }
1059
1060         switch (end) {
1061         case -EIO:
1062         case -EAGAIN: /* Wedged */
1063         case -ERESTARTSYS: /* Signal */
1064                 return (int)end;
1065         case 0: /* Timeout */
1066                 return -ETIME;
1067         default: /* Completed */
1068                 WARN_ON(end < 0); /* We're not aware of other errors */
1069                 return 0;
1070         }
1071 }
1072
1073 /**
1074  * Waits for a sequence number to be signaled, and cleans up the
1075  * request and object lists appropriately for that event.
1076  */
1077 int
1078 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1079 {
1080         struct drm_device *dev = ring->dev;
1081         struct drm_i915_private *dev_priv = dev->dev_private;
1082         bool interruptible = dev_priv->mm.interruptible;
1083         int ret;
1084
1085         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1086         BUG_ON(seqno == 0);
1087
1088         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1089         if (ret)
1090                 return ret;
1091
1092         ret = i915_gem_check_olr(ring, seqno);
1093         if (ret)
1094                 return ret;
1095
1096         return __wait_seqno(ring, seqno,
1097                             atomic_read(&dev_priv->gpu_error.reset_counter),
1098                             interruptible, NULL);
1099 }
1100
1101 static int
1102 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1103                                      struct intel_ring_buffer *ring)
1104 {
1105         i915_gem_retire_requests_ring(ring);
1106
1107         /* Manually manage the write flush as we may have not yet
1108          * retired the buffer.
1109          *
1110          * Note that the last_write_seqno is always the earlier of
1111          * the two (read/write) seqno, so if we haved successfully waited,
1112          * we know we have passed the last write.
1113          */
1114         obj->last_write_seqno = 0;
1115         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1116
1117         return 0;
1118 }
1119
1120 /**
1121  * Ensures that all rendering to the object has completed and the object is
1122  * safe to unbind from the GTT or access from the CPU.
1123  */
1124 static __must_check int
1125 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1126                                bool readonly)
1127 {
1128         struct intel_ring_buffer *ring = obj->ring;
1129         u32 seqno;
1130         int ret;
1131
1132         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1133         if (seqno == 0)
1134                 return 0;
1135
1136         ret = i915_wait_seqno(ring, seqno);
1137         if (ret)
1138                 return ret;
1139
1140         return i915_gem_object_wait_rendering__tail(obj, ring);
1141 }
1142
1143 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1144  * as the object state may change during this call.
1145  */
1146 static __must_check int
1147 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1148                                             bool readonly)
1149 {
1150         struct drm_device *dev = obj->base.dev;
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         struct intel_ring_buffer *ring = obj->ring;
1153         unsigned reset_counter;
1154         u32 seqno;
1155         int ret;
1156
1157         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1158         BUG_ON(!dev_priv->mm.interruptible);
1159
1160         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1161         if (seqno == 0)
1162                 return 0;
1163
1164         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1165         if (ret)
1166                 return ret;
1167
1168         ret = i915_gem_check_olr(ring, seqno);
1169         if (ret)
1170                 return ret;
1171
1172         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1173         mutex_unlock(&dev->struct_mutex);
1174         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1175         mutex_lock(&dev->struct_mutex);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /**
1183  * Called when user space prepares to use an object with the CPU, either
1184  * through the mmap ioctl's mapping or a GTT mapping.
1185  */
1186 int
1187 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1188                           struct drm_file *file)
1189 {
1190         struct drm_i915_gem_set_domain *args = data;
1191         struct drm_i915_gem_object *obj;
1192         uint32_t read_domains = args->read_domains;
1193         uint32_t write_domain = args->write_domain;
1194         int ret;
1195
1196         /* Only handle setting domains to types used by the CPU. */
1197         if (write_domain & I915_GEM_GPU_DOMAINS)
1198                 return -EINVAL;
1199
1200         if (read_domains & I915_GEM_GPU_DOMAINS)
1201                 return -EINVAL;
1202
1203         /* Having something in the write domain implies it's in the read
1204          * domain, and only that read domain.  Enforce that in the request.
1205          */
1206         if (write_domain != 0 && read_domains != write_domain)
1207                 return -EINVAL;
1208
1209         ret = i915_mutex_lock_interruptible(dev);
1210         if (ret)
1211                 return ret;
1212
1213         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1214         if (&obj->base == NULL) {
1215                 ret = -ENOENT;
1216                 goto unlock;
1217         }
1218
1219         /* Try to flush the object off the GPU without holding the lock.
1220          * We will repeat the flush holding the lock in the normal manner
1221          * to catch cases where we are gazumped.
1222          */
1223         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1224         if (ret)
1225                 goto unref;
1226
1227         if (read_domains & I915_GEM_DOMAIN_GTT) {
1228                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1229
1230                 /* Silently promote "you're not bound, there was nothing to do"
1231                  * to success, since the client was just asking us to
1232                  * make sure everything was done.
1233                  */
1234                 if (ret == -EINVAL)
1235                         ret = 0;
1236         } else {
1237                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1238         }
1239
1240 unref:
1241         drm_gem_object_unreference(&obj->base);
1242 unlock:
1243         mutex_unlock(&dev->struct_mutex);
1244         return ret;
1245 }
1246
1247 /**
1248  * Called when user space has done writes to this buffer
1249  */
1250 int
1251 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1252                          struct drm_file *file)
1253 {
1254         struct drm_i915_gem_sw_finish *args = data;
1255         struct drm_i915_gem_object *obj;
1256         int ret = 0;
1257
1258         ret = i915_mutex_lock_interruptible(dev);
1259         if (ret)
1260                 return ret;
1261
1262         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1263         if (&obj->base == NULL) {
1264                 ret = -ENOENT;
1265                 goto unlock;
1266         }
1267
1268         /* Pinned buffers may be scanout, so flush the cache */
1269         if (obj->pin_display)
1270                 i915_gem_object_flush_cpu_write_domain(obj, true);
1271
1272         drm_gem_object_unreference(&obj->base);
1273 unlock:
1274         mutex_unlock(&dev->struct_mutex);
1275         return ret;
1276 }
1277
1278 /**
1279  * Maps the contents of an object, returning the address it is mapped
1280  * into.
1281  *
1282  * While the mapping holds a reference on the contents of the object, it doesn't
1283  * imply a ref on the object itself.
1284  */
1285 int
1286 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1287                     struct drm_file *file)
1288 {
1289         struct drm_i915_gem_mmap *args = data;
1290         struct drm_gem_object *obj;
1291         unsigned long addr;
1292
1293         obj = drm_gem_object_lookup(dev, file, args->handle);
1294         if (obj == NULL)
1295                 return -ENOENT;
1296
1297         /* prime objects have no backing filp to GEM mmap
1298          * pages from.
1299          */
1300         if (!obj->filp) {
1301                 drm_gem_object_unreference_unlocked(obj);
1302                 return -EINVAL;
1303         }
1304
1305         addr = vm_mmap(obj->filp, 0, args->size,
1306                        PROT_READ | PROT_WRITE, MAP_SHARED,
1307                        args->offset);
1308         drm_gem_object_unreference_unlocked(obj);
1309         if (IS_ERR((void *)addr))
1310                 return addr;
1311
1312         args->addr_ptr = (uint64_t) addr;
1313
1314         return 0;
1315 }
1316
1317 /**
1318  * i915_gem_fault - fault a page into the GTT
1319  * vma: VMA in question
1320  * vmf: fault info
1321  *
1322  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1323  * from userspace.  The fault handler takes care of binding the object to
1324  * the GTT (if needed), allocating and programming a fence register (again,
1325  * only if needed based on whether the old reg is still valid or the object
1326  * is tiled) and inserting a new PTE into the faulting process.
1327  *
1328  * Note that the faulting process may involve evicting existing objects
1329  * from the GTT and/or fence registers to make room.  So performance may
1330  * suffer if the GTT working set is large or there are few fence registers
1331  * left.
1332  */
1333 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1334 {
1335         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1336         struct drm_device *dev = obj->base.dev;
1337         drm_i915_private_t *dev_priv = dev->dev_private;
1338         pgoff_t page_offset;
1339         unsigned long pfn;
1340         int ret = 0;
1341         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1342
1343         /* We don't use vmf->pgoff since that has the fake offset */
1344         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1345                 PAGE_SHIFT;
1346
1347         ret = i915_mutex_lock_interruptible(dev);
1348         if (ret)
1349                 goto out;
1350
1351         trace_i915_gem_object_fault(obj, page_offset, true, write);
1352
1353         /* Access to snoopable pages through the GTT is incoherent. */
1354         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1355                 ret = -EINVAL;
1356                 goto unlock;
1357         }
1358
1359         /* Now bind it into the GTT if needed */
1360         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1361         if (ret)
1362                 goto unlock;
1363
1364         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1365         if (ret)
1366                 goto unpin;
1367
1368         ret = i915_gem_object_get_fence(obj);
1369         if (ret)
1370                 goto unpin;
1371
1372         obj->fault_mappable = true;
1373
1374         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1375         pfn >>= PAGE_SHIFT;
1376         pfn += page_offset;
1377
1378         /* Finally, remap it using the new GTT offset */
1379         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unpin:
1381         i915_gem_object_unpin(obj);
1382 unlock:
1383         mutex_unlock(&dev->struct_mutex);
1384 out:
1385         switch (ret) {
1386         case -EIO:
1387                 /* If this -EIO is due to a gpu hang, give the reset code a
1388                  * chance to clean up the mess. Otherwise return the proper
1389                  * SIGBUS. */
1390                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1391                         return VM_FAULT_SIGBUS;
1392         case -EAGAIN:
1393                 /* Give the error handler a chance to run and move the
1394                  * objects off the GPU active list. Next time we service the
1395                  * fault, we should be able to transition the page into the
1396                  * GTT without touching the GPU (and so avoid further
1397                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1398                  * with coherency, just lost writes.
1399                  */
1400                 set_need_resched();
1401         case 0:
1402         case -ERESTARTSYS:
1403         case -EINTR:
1404         case -EBUSY:
1405                 /*
1406                  * EBUSY is ok: this just means that another thread
1407                  * already did the job.
1408                  */
1409                 return VM_FAULT_NOPAGE;
1410         case -ENOMEM:
1411                 return VM_FAULT_OOM;
1412         case -ENOSPC:
1413                 return VM_FAULT_SIGBUS;
1414         default:
1415                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1416                 return VM_FAULT_SIGBUS;
1417         }
1418 }
1419
1420 /**
1421  * i915_gem_release_mmap - remove physical page mappings
1422  * @obj: obj in question
1423  *
1424  * Preserve the reservation of the mmapping with the DRM core code, but
1425  * relinquish ownership of the pages back to the system.
1426  *
1427  * It is vital that we remove the page mapping if we have mapped a tiled
1428  * object through the GTT and then lose the fence register due to
1429  * resource pressure. Similarly if the object has been moved out of the
1430  * aperture, than pages mapped into userspace must be revoked. Removing the
1431  * mapping will then trigger a page fault on the next user access, allowing
1432  * fixup by i915_gem_fault().
1433  */
1434 void
1435 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1436 {
1437         if (!obj->fault_mappable)
1438                 return;
1439
1440         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1441         obj->fault_mappable = false;
1442 }
1443
1444 uint32_t
1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446 {
1447         uint32_t gtt_size;
1448
1449         if (INTEL_INFO(dev)->gen >= 4 ||
1450             tiling_mode == I915_TILING_NONE)
1451                 return size;
1452
1453         /* Previous chips need a power-of-two fence region when tiling */
1454         if (INTEL_INFO(dev)->gen == 3)
1455                 gtt_size = 1024*1024;
1456         else
1457                 gtt_size = 512*1024;
1458
1459         while (gtt_size < size)
1460                 gtt_size <<= 1;
1461
1462         return gtt_size;
1463 }
1464
1465 /**
1466  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467  * @obj: object to check
1468  *
1469  * Return the required GTT alignment for an object, taking into account
1470  * potential fence register mapping.
1471  */
1472 uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1474                            int tiling_mode, bool fenced)
1475 {
1476         /*
1477          * Minimum alignment is 4k (GTT page size), but might be greater
1478          * if a fence register is needed for the object.
1479          */
1480         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1481             tiling_mode == I915_TILING_NONE)
1482                 return 4096;
1483
1484         /*
1485          * Previous chips need to be aligned to the size of the smallest
1486          * fence register that can contain the object.
1487          */
1488         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1489 }
1490
1491 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1492 {
1493         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1494         int ret;
1495
1496         if (drm_vma_node_has_offset(&obj->base.vma_node))
1497                 return 0;
1498
1499         dev_priv->mm.shrinker_no_lock_stealing = true;
1500
1501         ret = drm_gem_create_mmap_offset(&obj->base);
1502         if (ret != -ENOSPC)
1503                 goto out;
1504
1505         /* Badly fragmented mmap space? The only way we can recover
1506          * space is by destroying unwanted objects. We can't randomly release
1507          * mmap_offsets as userspace expects them to be persistent for the
1508          * lifetime of the objects. The closest we can is to release the
1509          * offsets on purgeable objects by truncating it and marking it purged,
1510          * which prevents userspace from ever using that object again.
1511          */
1512         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1513         ret = drm_gem_create_mmap_offset(&obj->base);
1514         if (ret != -ENOSPC)
1515                 goto out;
1516
1517         i915_gem_shrink_all(dev_priv);
1518         ret = drm_gem_create_mmap_offset(&obj->base);
1519 out:
1520         dev_priv->mm.shrinker_no_lock_stealing = false;
1521
1522         return ret;
1523 }
1524
1525 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1526 {
1527         drm_gem_free_mmap_offset(&obj->base);
1528 }
1529
1530 int
1531 i915_gem_mmap_gtt(struct drm_file *file,
1532                   struct drm_device *dev,
1533                   uint32_t handle,
1534                   uint64_t *offset)
1535 {
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537         struct drm_i915_gem_object *obj;
1538         int ret;
1539
1540         ret = i915_mutex_lock_interruptible(dev);
1541         if (ret)
1542                 return ret;
1543
1544         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1545         if (&obj->base == NULL) {
1546                 ret = -ENOENT;
1547                 goto unlock;
1548         }
1549
1550         if (obj->base.size > dev_priv->gtt.mappable_end) {
1551                 ret = -E2BIG;
1552                 goto out;
1553         }
1554
1555         if (obj->madv != I915_MADV_WILLNEED) {
1556                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1557                 ret = -EINVAL;
1558                 goto out;
1559         }
1560
1561         ret = i915_gem_object_create_mmap_offset(obj);
1562         if (ret)
1563                 goto out;
1564
1565         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1566
1567 out:
1568         drm_gem_object_unreference(&obj->base);
1569 unlock:
1570         mutex_unlock(&dev->struct_mutex);
1571         return ret;
1572 }
1573
1574 /**
1575  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1576  * @dev: DRM device
1577  * @data: GTT mapping ioctl data
1578  * @file: GEM object info
1579  *
1580  * Simply returns the fake offset to userspace so it can mmap it.
1581  * The mmap call will end up in drm_gem_mmap(), which will set things
1582  * up so we can get faults in the handler above.
1583  *
1584  * The fault handler will take care of binding the object into the GTT
1585  * (since it may have been evicted to make room for something), allocating
1586  * a fence register, and mapping the appropriate aperture address into
1587  * userspace.
1588  */
1589 int
1590 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1591                         struct drm_file *file)
1592 {
1593         struct drm_i915_gem_mmap_gtt *args = data;
1594
1595         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1596 }
1597
1598 /* Immediately discard the backing storage */
1599 static void
1600 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1601 {
1602         struct inode *inode;
1603
1604         i915_gem_object_free_mmap_offset(obj);
1605
1606         if (obj->base.filp == NULL)
1607                 return;
1608
1609         /* Our goal here is to return as much of the memory as
1610          * is possible back to the system as we are called from OOM.
1611          * To do this we must instruct the shmfs to drop all of its
1612          * backing pages, *now*.
1613          */
1614         inode = file_inode(obj->base.filp);
1615         shmem_truncate_range(inode, 0, (loff_t)-1);
1616
1617         obj->madv = __I915_MADV_PURGED;
1618 }
1619
1620 static inline int
1621 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1622 {
1623         return obj->madv == I915_MADV_DONTNEED;
1624 }
1625
1626 static void
1627 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1628 {
1629         struct sg_page_iter sg_iter;
1630         int ret;
1631
1632         BUG_ON(obj->madv == __I915_MADV_PURGED);
1633
1634         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1635         if (ret) {
1636                 /* In the event of a disaster, abandon all caches and
1637                  * hope for the best.
1638                  */
1639                 WARN_ON(ret != -EIO);
1640                 i915_gem_clflush_object(obj, true);
1641                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1642         }
1643
1644         if (i915_gem_object_needs_bit17_swizzle(obj))
1645                 i915_gem_object_save_bit_17_swizzle(obj);
1646
1647         if (obj->madv == I915_MADV_DONTNEED)
1648                 obj->dirty = 0;
1649
1650         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1651                 struct page *page = sg_page_iter_page(&sg_iter);
1652
1653                 if (obj->dirty)
1654                         set_page_dirty(page);
1655
1656                 if (obj->madv == I915_MADV_WILLNEED)
1657                         mark_page_accessed(page);
1658
1659                 page_cache_release(page);
1660         }
1661         obj->dirty = 0;
1662
1663         sg_free_table(obj->pages);
1664         kfree(obj->pages);
1665 }
1666
1667 int
1668 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1669 {
1670         const struct drm_i915_gem_object_ops *ops = obj->ops;
1671
1672         if (obj->pages == NULL)
1673                 return 0;
1674
1675         if (obj->pages_pin_count)
1676                 return -EBUSY;
1677
1678         BUG_ON(i915_gem_obj_bound_any(obj));
1679
1680         /* ->put_pages might need to allocate memory for the bit17 swizzle
1681          * array, hence protect them from being reaped by removing them from gtt
1682          * lists early. */
1683         list_del(&obj->global_list);
1684
1685         ops->put_pages(obj);
1686         obj->pages = NULL;
1687
1688         if (i915_gem_object_is_purgeable(obj))
1689                 i915_gem_object_truncate(obj);
1690
1691         return 0;
1692 }
1693
1694 static long
1695 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1696                   bool purgeable_only)
1697 {
1698         struct list_head still_bound_list;
1699         struct drm_i915_gem_object *obj, *next;
1700         long count = 0;
1701
1702         list_for_each_entry_safe(obj, next,
1703                                  &dev_priv->mm.unbound_list,
1704                                  global_list) {
1705                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1706                     i915_gem_object_put_pages(obj) == 0) {
1707                         count += obj->base.size >> PAGE_SHIFT;
1708                         if (count >= target)
1709                                 return count;
1710                 }
1711         }
1712
1713         /*
1714          * As we may completely rewrite the bound list whilst unbinding
1715          * (due to retiring requests) we have to strictly process only
1716          * one element of the list at the time, and recheck the list
1717          * on every iteration.
1718          */
1719         INIT_LIST_HEAD(&still_bound_list);
1720         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1721                 struct i915_vma *vma, *v;
1722
1723                 obj = list_first_entry(&dev_priv->mm.bound_list,
1724                                        typeof(*obj), global_list);
1725                 list_move_tail(&obj->global_list, &still_bound_list);
1726
1727                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1728                         continue;
1729
1730                 /*
1731                  * Hold a reference whilst we unbind this object, as we may
1732                  * end up waiting for and retiring requests. This might
1733                  * release the final reference (held by the active list)
1734                  * and result in the object being freed from under us.
1735                  * in this object being freed.
1736                  *
1737                  * Note 1: Shrinking the bound list is special since only active
1738                  * (and hence bound objects) can contain such limbo objects, so
1739                  * we don't need special tricks for shrinking the unbound list.
1740                  * The only other place where we have to be careful with active
1741                  * objects suddenly disappearing due to retiring requests is the
1742                  * eviction code.
1743                  *
1744                  * Note 2: Even though the bound list doesn't hold a reference
1745                  * to the object we can safely grab one here: The final object
1746                  * unreferencing and the bound_list are both protected by the
1747                  * dev->struct_mutex and so we won't ever be able to observe an
1748                  * object on the bound_list with a reference count equals 0.
1749                  */
1750                 drm_gem_object_reference(&obj->base);
1751
1752                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1753                         if (i915_vma_unbind(vma))
1754                                 break;
1755
1756                 if (i915_gem_object_put_pages(obj) == 0)
1757                         count += obj->base.size >> PAGE_SHIFT;
1758
1759                 drm_gem_object_unreference(&obj->base);
1760         }
1761         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1762
1763         return count;
1764 }
1765
1766 static long
1767 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1768 {
1769         return __i915_gem_shrink(dev_priv, target, true);
1770 }
1771
1772 static void
1773 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1774 {
1775         struct drm_i915_gem_object *obj, *next;
1776
1777         i915_gem_evict_everything(dev_priv->dev);
1778
1779         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1780                                  global_list)
1781                 i915_gem_object_put_pages(obj);
1782 }
1783
1784 static int
1785 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1786 {
1787         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1788         int page_count, i;
1789         struct address_space *mapping;
1790         struct sg_table *st;
1791         struct scatterlist *sg;
1792         struct sg_page_iter sg_iter;
1793         struct page *page;
1794         unsigned long last_pfn = 0;     /* suppress gcc warning */
1795         gfp_t gfp;
1796
1797         /* Assert that the object is not currently in any GPU domain. As it
1798          * wasn't in the GTT, there shouldn't be any way it could have been in
1799          * a GPU cache
1800          */
1801         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1802         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1803
1804         st = kmalloc(sizeof(*st), GFP_KERNEL);
1805         if (st == NULL)
1806                 return -ENOMEM;
1807
1808         page_count = obj->base.size / PAGE_SIZE;
1809         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1810                 kfree(st);
1811                 return -ENOMEM;
1812         }
1813
1814         /* Get the list of pages out of our struct file.  They'll be pinned
1815          * at this point until we release them.
1816          *
1817          * Fail silently without starting the shrinker
1818          */
1819         mapping = file_inode(obj->base.filp)->i_mapping;
1820         gfp = mapping_gfp_mask(mapping);
1821         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1822         gfp &= ~(__GFP_IO | __GFP_WAIT);
1823         sg = st->sgl;
1824         st->nents = 0;
1825         for (i = 0; i < page_count; i++) {
1826                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1827                 if (IS_ERR(page)) {
1828                         i915_gem_purge(dev_priv, page_count);
1829                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1830                 }
1831                 if (IS_ERR(page)) {
1832                         /* We've tried hard to allocate the memory by reaping
1833                          * our own buffer, now let the real VM do its job and
1834                          * go down in flames if truly OOM.
1835                          */
1836                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1837                         gfp |= __GFP_IO | __GFP_WAIT;
1838
1839                         i915_gem_shrink_all(dev_priv);
1840                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1841                         if (IS_ERR(page))
1842                                 goto err_pages;
1843
1844                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1845                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1846                 }
1847 #ifdef CONFIG_SWIOTLB
1848                 if (swiotlb_nr_tbl()) {
1849                         st->nents++;
1850                         sg_set_page(sg, page, PAGE_SIZE, 0);
1851                         sg = sg_next(sg);
1852                         continue;
1853                 }
1854 #endif
1855                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1856                         if (i)
1857                                 sg = sg_next(sg);
1858                         st->nents++;
1859                         sg_set_page(sg, page, PAGE_SIZE, 0);
1860                 } else {
1861                         sg->length += PAGE_SIZE;
1862                 }
1863                 last_pfn = page_to_pfn(page);
1864         }
1865 #ifdef CONFIG_SWIOTLB
1866         if (!swiotlb_nr_tbl())
1867 #endif
1868                 sg_mark_end(sg);
1869         obj->pages = st;
1870
1871         if (i915_gem_object_needs_bit17_swizzle(obj))
1872                 i915_gem_object_do_bit_17_swizzle(obj);
1873
1874         return 0;
1875
1876 err_pages:
1877         sg_mark_end(sg);
1878         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1879                 page_cache_release(sg_page_iter_page(&sg_iter));
1880         sg_free_table(st);
1881         kfree(st);
1882         return PTR_ERR(page);
1883 }
1884
1885 /* Ensure that the associated pages are gathered from the backing storage
1886  * and pinned into our object. i915_gem_object_get_pages() may be called
1887  * multiple times before they are released by a single call to
1888  * i915_gem_object_put_pages() - once the pages are no longer referenced
1889  * either as a result of memory pressure (reaping pages under the shrinker)
1890  * or as the object is itself released.
1891  */
1892 int
1893 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1894 {
1895         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1896         const struct drm_i915_gem_object_ops *ops = obj->ops;
1897         int ret;
1898
1899         if (obj->pages)
1900                 return 0;
1901
1902         if (obj->madv != I915_MADV_WILLNEED) {
1903                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1904                 return -EINVAL;
1905         }
1906
1907         BUG_ON(obj->pages_pin_count);
1908
1909         ret = ops->get_pages(obj);
1910         if (ret)
1911                 return ret;
1912
1913         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1914         return 0;
1915 }
1916
1917 void
1918 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1919                                struct intel_ring_buffer *ring)
1920 {
1921         struct drm_device *dev = obj->base.dev;
1922         struct drm_i915_private *dev_priv = dev->dev_private;
1923         u32 seqno = intel_ring_get_seqno(ring);
1924
1925         BUG_ON(ring == NULL);
1926         if (obj->ring != ring && obj->last_write_seqno) {
1927                 /* Keep the seqno relative to the current ring */
1928                 obj->last_write_seqno = seqno;
1929         }
1930         obj->ring = ring;
1931
1932         /* Add a reference if we're newly entering the active list. */
1933         if (!obj->active) {
1934                 drm_gem_object_reference(&obj->base);
1935                 obj->active = 1;
1936         }
1937
1938         list_move_tail(&obj->ring_list, &ring->active_list);
1939
1940         obj->last_read_seqno = seqno;
1941
1942         if (obj->fenced_gpu_access) {
1943                 obj->last_fenced_seqno = seqno;
1944
1945                 /* Bump MRU to take account of the delayed flush */
1946                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1947                         struct drm_i915_fence_reg *reg;
1948
1949                         reg = &dev_priv->fence_regs[obj->fence_reg];
1950                         list_move_tail(&reg->lru_list,
1951                                        &dev_priv->mm.fence_list);
1952                 }
1953         }
1954 }
1955
1956 static void
1957 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1958 {
1959         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1960         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1961         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1962
1963         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1964         BUG_ON(!obj->active);
1965
1966         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1967
1968         list_del_init(&obj->ring_list);
1969         obj->ring = NULL;
1970
1971         obj->last_read_seqno = 0;
1972         obj->last_write_seqno = 0;
1973         obj->base.write_domain = 0;
1974
1975         obj->last_fenced_seqno = 0;
1976         obj->fenced_gpu_access = false;
1977
1978         obj->active = 0;
1979         drm_gem_object_unreference(&obj->base);
1980
1981         WARN_ON(i915_verify_lists(dev));
1982 }
1983
1984 static int
1985 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         struct intel_ring_buffer *ring;
1989         int ret, i, j;
1990
1991         /* Carefully retire all requests without writing to the rings */
1992         for_each_ring(ring, dev_priv, i) {
1993                 ret = intel_ring_idle(ring);
1994                 if (ret)
1995                         return ret;
1996         }
1997         i915_gem_retire_requests(dev);
1998
1999         /* Finally reset hw state */
2000         for_each_ring(ring, dev_priv, i) {
2001                 intel_ring_init_seqno(ring, seqno);
2002
2003                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2004                         ring->sync_seqno[j] = 0;
2005         }
2006
2007         return 0;
2008 }
2009
2010 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2011 {
2012         struct drm_i915_private *dev_priv = dev->dev_private;
2013         int ret;
2014
2015         if (seqno == 0)
2016                 return -EINVAL;
2017
2018         /* HWS page needs to be set less than what we
2019          * will inject to ring
2020          */
2021         ret = i915_gem_init_seqno(dev, seqno - 1);
2022         if (ret)
2023                 return ret;
2024
2025         /* Carefully set the last_seqno value so that wrap
2026          * detection still works
2027          */
2028         dev_priv->next_seqno = seqno;
2029         dev_priv->last_seqno = seqno - 1;
2030         if (dev_priv->last_seqno == 0)
2031                 dev_priv->last_seqno--;
2032
2033         return 0;
2034 }
2035
2036 int
2037 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2038 {
2039         struct drm_i915_private *dev_priv = dev->dev_private;
2040
2041         /* reserve 0 for non-seqno */
2042         if (dev_priv->next_seqno == 0) {
2043                 int ret = i915_gem_init_seqno(dev, 0);
2044                 if (ret)
2045                         return ret;
2046
2047                 dev_priv->next_seqno = 1;
2048         }
2049
2050         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2051         return 0;
2052 }
2053
2054 int __i915_add_request(struct intel_ring_buffer *ring,
2055                        struct drm_file *file,
2056                        struct drm_i915_gem_object *obj,
2057                        u32 *out_seqno)
2058 {
2059         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2060         struct drm_i915_gem_request *request;
2061         u32 request_ring_position, request_start;
2062         int was_empty;
2063         int ret;
2064
2065         request_start = intel_ring_get_tail(ring);
2066         /*
2067          * Emit any outstanding flushes - execbuf can fail to emit the flush
2068          * after having emitted the batchbuffer command. Hence we need to fix
2069          * things up similar to emitting the lazy request. The difference here
2070          * is that the flush _must_ happen before the next request, no matter
2071          * what.
2072          */
2073         ret = intel_ring_flush_all_caches(ring);
2074         if (ret)
2075                 return ret;
2076
2077         request = kmalloc(sizeof(*request), GFP_KERNEL);
2078         if (request == NULL)
2079                 return -ENOMEM;
2080
2081
2082         /* Record the position of the start of the request so that
2083          * should we detect the updated seqno part-way through the
2084          * GPU processing the request, we never over-estimate the
2085          * position of the head.
2086          */
2087         request_ring_position = intel_ring_get_tail(ring);
2088
2089         ret = ring->add_request(ring);
2090         if (ret) {
2091                 kfree(request);
2092                 return ret;
2093         }
2094
2095         request->seqno = intel_ring_get_seqno(ring);
2096         request->ring = ring;
2097         request->head = request_start;
2098         request->tail = request_ring_position;
2099         request->ctx = ring->last_context;
2100         request->batch_obj = obj;
2101
2102         /* Whilst this request exists, batch_obj will be on the
2103          * active_list, and so will hold the active reference. Only when this
2104          * request is retired will the the batch_obj be moved onto the
2105          * inactive_list and lose its active reference. Hence we do not need
2106          * to explicitly hold another reference here.
2107          */
2108
2109         if (request->ctx)
2110                 i915_gem_context_reference(request->ctx);
2111
2112         request->emitted_jiffies = jiffies;
2113         was_empty = list_empty(&ring->request_list);
2114         list_add_tail(&request->list, &ring->request_list);
2115         request->file_priv = NULL;
2116
2117         if (file) {
2118                 struct drm_i915_file_private *file_priv = file->driver_priv;
2119
2120                 spin_lock(&file_priv->mm.lock);
2121                 request->file_priv = file_priv;
2122                 list_add_tail(&request->client_list,
2123                               &file_priv->mm.request_list);
2124                 spin_unlock(&file_priv->mm.lock);
2125         }
2126
2127         trace_i915_gem_request_add(ring, request->seqno);
2128         ring->outstanding_lazy_request = 0;
2129
2130         if (!dev_priv->ums.mm_suspended) {
2131                 i915_queue_hangcheck(ring->dev);
2132
2133                 if (was_empty) {
2134                         queue_delayed_work(dev_priv->wq,
2135                                            &dev_priv->mm.retire_work,
2136                                            round_jiffies_up_relative(HZ));
2137                         intel_mark_busy(dev_priv->dev);
2138                 }
2139         }
2140
2141         if (out_seqno)
2142                 *out_seqno = request->seqno;
2143         return 0;
2144 }
2145
2146 static inline void
2147 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2148 {
2149         struct drm_i915_file_private *file_priv = request->file_priv;
2150
2151         if (!file_priv)
2152                 return;
2153
2154         spin_lock(&file_priv->mm.lock);
2155         if (request->file_priv) {
2156                 list_del(&request->client_list);
2157                 request->file_priv = NULL;
2158         }
2159         spin_unlock(&file_priv->mm.lock);
2160 }
2161
2162 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2163                                     struct i915_address_space *vm)
2164 {
2165         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2166             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2167                 return true;
2168
2169         return false;
2170 }
2171
2172 static bool i915_head_inside_request(const u32 acthd_unmasked,
2173                                      const u32 request_start,
2174                                      const u32 request_end)
2175 {
2176         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2177
2178         if (request_start < request_end) {
2179                 if (acthd >= request_start && acthd < request_end)
2180                         return true;
2181         } else if (request_start > request_end) {
2182                 if (acthd >= request_start || acthd < request_end)
2183                         return true;
2184         }
2185
2186         return false;
2187 }
2188
2189 static struct i915_address_space *
2190 request_to_vm(struct drm_i915_gem_request *request)
2191 {
2192         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2193         struct i915_address_space *vm;
2194
2195         vm = &dev_priv->gtt.base;
2196
2197         return vm;
2198 }
2199
2200 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2201                                 const u32 acthd, bool *inside)
2202 {
2203         /* There is a possibility that unmasked head address
2204          * pointing inside the ring, matches the batch_obj address range.
2205          * However this is extremely unlikely.
2206          */
2207         if (request->batch_obj) {
2208                 if (i915_head_inside_object(acthd, request->batch_obj,
2209                                             request_to_vm(request))) {
2210                         *inside = true;
2211                         return true;
2212                 }
2213         }
2214
2215         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2216                 *inside = false;
2217                 return true;
2218         }
2219
2220         return false;
2221 }
2222
2223 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2224                                   struct drm_i915_gem_request *request,
2225                                   u32 acthd)
2226 {
2227         struct i915_ctx_hang_stats *hs = NULL;
2228         bool inside, guilty;
2229         unsigned long offset = 0;
2230
2231         /* Innocent until proven guilty */
2232         guilty = false;
2233
2234         if (request->batch_obj)
2235                 offset = i915_gem_obj_offset(request->batch_obj,
2236                                              request_to_vm(request));
2237
2238         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2239             i915_request_guilty(request, acthd, &inside)) {
2240                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2241                           ring->name,
2242                           inside ? "inside" : "flushing",
2243                           offset,
2244                           request->ctx ? request->ctx->id : 0,
2245                           acthd);
2246
2247                 guilty = true;
2248         }
2249
2250         /* If contexts are disabled or this is the default context, use
2251          * file_priv->reset_state
2252          */
2253         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2254                 hs = &request->ctx->hang_stats;
2255         else if (request->file_priv)
2256                 hs = &request->file_priv->hang_stats;
2257
2258         if (hs) {
2259                 if (guilty)
2260                         hs->batch_active++;
2261                 else
2262                         hs->batch_pending++;
2263         }
2264 }
2265
2266 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2267 {
2268         list_del(&request->list);
2269         i915_gem_request_remove_from_client(request);
2270
2271         if (request->ctx)
2272                 i915_gem_context_unreference(request->ctx);
2273
2274         kfree(request);
2275 }
2276
2277 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2278                                       struct intel_ring_buffer *ring)
2279 {
2280         u32 completed_seqno;
2281         u32 acthd;
2282
2283         acthd = intel_ring_get_active_head(ring);
2284         completed_seqno = ring->get_seqno(ring, false);
2285
2286         while (!list_empty(&ring->request_list)) {
2287                 struct drm_i915_gem_request *request;
2288
2289                 request = list_first_entry(&ring->request_list,
2290                                            struct drm_i915_gem_request,
2291                                            list);
2292
2293                 if (request->seqno > completed_seqno)
2294                         i915_set_reset_status(ring, request, acthd);
2295
2296                 i915_gem_free_request(request);
2297         }
2298
2299         while (!list_empty(&ring->active_list)) {
2300                 struct drm_i915_gem_object *obj;
2301
2302                 obj = list_first_entry(&ring->active_list,
2303                                        struct drm_i915_gem_object,
2304                                        ring_list);
2305
2306                 i915_gem_object_move_to_inactive(obj);
2307         }
2308 }
2309
2310 void i915_gem_restore_fences(struct drm_device *dev)
2311 {
2312         struct drm_i915_private *dev_priv = dev->dev_private;
2313         int i;
2314
2315         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2316                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2317
2318                 /*
2319                  * Commit delayed tiling changes if we have an object still
2320                  * attached to the fence, otherwise just clear the fence.
2321                  */
2322                 if (reg->obj) {
2323                         i915_gem_object_update_fence(reg->obj, reg,
2324                                                      reg->obj->tiling_mode);
2325                 } else {
2326                         i915_gem_write_fence(dev, i, NULL);
2327                 }
2328         }
2329 }
2330
2331 void i915_gem_reset(struct drm_device *dev)
2332 {
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_ring_buffer *ring;
2335         int i;
2336
2337         for_each_ring(ring, dev_priv, i)
2338                 i915_gem_reset_ring_lists(dev_priv, ring);
2339
2340         i915_gem_restore_fences(dev);
2341 }
2342
2343 /**
2344  * This function clears the request list as sequence numbers are passed.
2345  */
2346 void
2347 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2348 {
2349         uint32_t seqno;
2350
2351         if (list_empty(&ring->request_list))
2352                 return;
2353
2354         WARN_ON(i915_verify_lists(ring->dev));
2355
2356         seqno = ring->get_seqno(ring, true);
2357
2358         while (!list_empty(&ring->request_list)) {
2359                 struct drm_i915_gem_request *request;
2360
2361                 request = list_first_entry(&ring->request_list,
2362                                            struct drm_i915_gem_request,
2363                                            list);
2364
2365                 if (!i915_seqno_passed(seqno, request->seqno))
2366                         break;
2367
2368                 trace_i915_gem_request_retire(ring, request->seqno);
2369                 /* We know the GPU must have read the request to have
2370                  * sent us the seqno + interrupt, so use the position
2371                  * of tail of the request to update the last known position
2372                  * of the GPU head.
2373                  */
2374                 ring->last_retired_head = request->tail;
2375
2376                 i915_gem_free_request(request);
2377         }
2378
2379         /* Move any buffers on the active list that are no longer referenced
2380          * by the ringbuffer to the flushing/inactive lists as appropriate.
2381          */
2382         while (!list_empty(&ring->active_list)) {
2383                 struct drm_i915_gem_object *obj;
2384
2385                 obj = list_first_entry(&ring->active_list,
2386                                       struct drm_i915_gem_object,
2387                                       ring_list);
2388
2389                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2390                         break;
2391
2392                 i915_gem_object_move_to_inactive(obj);
2393         }
2394
2395         if (unlikely(ring->trace_irq_seqno &&
2396                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2397                 ring->irq_put(ring);
2398                 ring->trace_irq_seqno = 0;
2399         }
2400
2401         WARN_ON(i915_verify_lists(ring->dev));
2402 }
2403
2404 void
2405 i915_gem_retire_requests(struct drm_device *dev)
2406 {
2407         drm_i915_private_t *dev_priv = dev->dev_private;
2408         struct intel_ring_buffer *ring;
2409         int i;
2410
2411         for_each_ring(ring, dev_priv, i)
2412                 i915_gem_retire_requests_ring(ring);
2413 }
2414
2415 static void
2416 i915_gem_retire_work_handler(struct work_struct *work)
2417 {
2418         drm_i915_private_t *dev_priv;
2419         struct drm_device *dev;
2420         struct intel_ring_buffer *ring;
2421         bool idle;
2422         int i;
2423
2424         dev_priv = container_of(work, drm_i915_private_t,
2425                                 mm.retire_work.work);
2426         dev = dev_priv->dev;
2427
2428         /* Come back later if the device is busy... */
2429         if (!mutex_trylock(&dev->struct_mutex)) {
2430                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2431                                    round_jiffies_up_relative(HZ));
2432                 return;
2433         }
2434
2435         i915_gem_retire_requests(dev);
2436
2437         /* Send a periodic flush down the ring so we don't hold onto GEM
2438          * objects indefinitely.
2439          */
2440         idle = true;
2441         for_each_ring(ring, dev_priv, i) {
2442                 if (ring->gpu_caches_dirty)
2443                         i915_add_request(ring, NULL);
2444
2445                 idle &= list_empty(&ring->request_list);
2446         }
2447
2448         if (!dev_priv->ums.mm_suspended && !idle)
2449                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2450                                    round_jiffies_up_relative(HZ));
2451         if (idle)
2452                 intel_mark_idle(dev);
2453
2454         mutex_unlock(&dev->struct_mutex);
2455 }
2456
2457 /**
2458  * Ensures that an object will eventually get non-busy by flushing any required
2459  * write domains, emitting any outstanding lazy request and retiring and
2460  * completed requests.
2461  */
2462 static int
2463 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2464 {
2465         int ret;
2466
2467         if (obj->active) {
2468                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2469                 if (ret)
2470                         return ret;
2471
2472                 i915_gem_retire_requests_ring(obj->ring);
2473         }
2474
2475         return 0;
2476 }
2477
2478 /**
2479  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2480  * @DRM_IOCTL_ARGS: standard ioctl arguments
2481  *
2482  * Returns 0 if successful, else an error is returned with the remaining time in
2483  * the timeout parameter.
2484  *  -ETIME: object is still busy after timeout
2485  *  -ERESTARTSYS: signal interrupted the wait
2486  *  -ENONENT: object doesn't exist
2487  * Also possible, but rare:
2488  *  -EAGAIN: GPU wedged
2489  *  -ENOMEM: damn
2490  *  -ENODEV: Internal IRQ fail
2491  *  -E?: The add request failed
2492  *
2493  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2494  * non-zero timeout parameter the wait ioctl will wait for the given number of
2495  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2496  * without holding struct_mutex the object may become re-busied before this
2497  * function completes. A similar but shorter * race condition exists in the busy
2498  * ioctl
2499  */
2500 int
2501 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2502 {
2503         drm_i915_private_t *dev_priv = dev->dev_private;
2504         struct drm_i915_gem_wait *args = data;
2505         struct drm_i915_gem_object *obj;
2506         struct intel_ring_buffer *ring = NULL;
2507         struct timespec timeout_stack, *timeout = NULL;
2508         unsigned reset_counter;
2509         u32 seqno = 0;
2510         int ret = 0;
2511
2512         if (args->timeout_ns >= 0) {
2513                 timeout_stack = ns_to_timespec(args->timeout_ns);
2514                 timeout = &timeout_stack;
2515         }
2516
2517         ret = i915_mutex_lock_interruptible(dev);
2518         if (ret)
2519                 return ret;
2520
2521         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2522         if (&obj->base == NULL) {
2523                 mutex_unlock(&dev->struct_mutex);
2524                 return -ENOENT;
2525         }
2526
2527         /* Need to make sure the object gets inactive eventually. */
2528         ret = i915_gem_object_flush_active(obj);
2529         if (ret)
2530                 goto out;
2531
2532         if (obj->active) {
2533                 seqno = obj->last_read_seqno;
2534                 ring = obj->ring;
2535         }
2536
2537         if (seqno == 0)
2538                  goto out;
2539
2540         /* Do this after OLR check to make sure we make forward progress polling
2541          * on this IOCTL with a 0 timeout (like busy ioctl)
2542          */
2543         if (!args->timeout_ns) {
2544                 ret = -ETIME;
2545                 goto out;
2546         }
2547
2548         drm_gem_object_unreference(&obj->base);
2549         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2550         mutex_unlock(&dev->struct_mutex);
2551
2552         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2553         if (timeout)
2554                 args->timeout_ns = timespec_to_ns(timeout);
2555         return ret;
2556
2557 out:
2558         drm_gem_object_unreference(&obj->base);
2559         mutex_unlock(&dev->struct_mutex);
2560         return ret;
2561 }
2562
2563 /**
2564  * i915_gem_object_sync - sync an object to a ring.
2565  *
2566  * @obj: object which may be in use on another ring.
2567  * @to: ring we wish to use the object on. May be NULL.
2568  *
2569  * This code is meant to abstract object synchronization with the GPU.
2570  * Calling with NULL implies synchronizing the object with the CPU
2571  * rather than a particular GPU ring.
2572  *
2573  * Returns 0 if successful, else propagates up the lower layer error.
2574  */
2575 int
2576 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2577                      struct intel_ring_buffer *to)
2578 {
2579         struct intel_ring_buffer *from = obj->ring;
2580         u32 seqno;
2581         int ret, idx;
2582
2583         if (from == NULL || to == from)
2584                 return 0;
2585
2586         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2587                 return i915_gem_object_wait_rendering(obj, false);
2588
2589         idx = intel_ring_sync_index(from, to);
2590
2591         seqno = obj->last_read_seqno;
2592         if (seqno <= from->sync_seqno[idx])
2593                 return 0;
2594
2595         ret = i915_gem_check_olr(obj->ring, seqno);
2596         if (ret)
2597                 return ret;
2598
2599         ret = to->sync_to(to, from, seqno);
2600         if (!ret)
2601                 /* We use last_read_seqno because sync_to()
2602                  * might have just caused seqno wrap under
2603                  * the radar.
2604                  */
2605                 from->sync_seqno[idx] = obj->last_read_seqno;
2606
2607         return ret;
2608 }
2609
2610 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2611 {
2612         u32 old_write_domain, old_read_domains;
2613
2614         /* Force a pagefault for domain tracking on next user access */
2615         i915_gem_release_mmap(obj);
2616
2617         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2618                 return;
2619
2620         /* Wait for any direct GTT access to complete */
2621         mb();
2622
2623         old_read_domains = obj->base.read_domains;
2624         old_write_domain = obj->base.write_domain;
2625
2626         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2627         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2628
2629         trace_i915_gem_object_change_domain(obj,
2630                                             old_read_domains,
2631                                             old_write_domain);
2632 }
2633
2634 int i915_vma_unbind(struct i915_vma *vma)
2635 {
2636         struct drm_i915_gem_object *obj = vma->obj;
2637         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2638         int ret;
2639
2640         if (list_empty(&vma->vma_link))
2641                 return 0;
2642
2643         if (!drm_mm_node_allocated(&vma->node))
2644                 goto destroy;
2645
2646         if (obj->pin_count)
2647                 return -EBUSY;
2648
2649         BUG_ON(obj->pages == NULL);
2650
2651         ret = i915_gem_object_finish_gpu(obj);
2652         if (ret)
2653                 return ret;
2654         /* Continue on if we fail due to EIO, the GPU is hung so we
2655          * should be safe and we need to cleanup or else we might
2656          * cause memory corruption through use-after-free.
2657          */
2658
2659         i915_gem_object_finish_gtt(obj);
2660
2661         /* release the fence reg _after_ flushing */
2662         ret = i915_gem_object_put_fence(obj);
2663         if (ret)
2664                 return ret;
2665
2666         trace_i915_vma_unbind(vma);
2667
2668         if (obj->has_global_gtt_mapping)
2669                 i915_gem_gtt_unbind_object(obj);
2670         if (obj->has_aliasing_ppgtt_mapping) {
2671                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2672                 obj->has_aliasing_ppgtt_mapping = 0;
2673         }
2674         i915_gem_gtt_finish_object(obj);
2675         i915_gem_object_unpin_pages(obj);
2676
2677         list_del(&vma->mm_list);
2678         /* Avoid an unnecessary call to unbind on rebind. */
2679         if (i915_is_ggtt(vma->vm))
2680                 obj->map_and_fenceable = true;
2681
2682         drm_mm_remove_node(&vma->node);
2683
2684 destroy:
2685         i915_gem_vma_destroy(vma);
2686
2687         /* Since the unbound list is global, only move to that list if
2688          * no more VMAs exist.
2689          * NB: Until we have real VMAs there will only ever be one */
2690         WARN_ON(!list_empty(&obj->vma_list));
2691         if (list_empty(&obj->vma_list))
2692                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2693
2694         return 0;
2695 }
2696
2697 /**
2698  * Unbinds an object from the global GTT aperture.
2699  */
2700 int
2701 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2702 {
2703         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2704         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2705
2706         if (!i915_gem_obj_ggtt_bound(obj))
2707                 return 0;
2708
2709         if (obj->pin_count)
2710                 return -EBUSY;
2711
2712         BUG_ON(obj->pages == NULL);
2713
2714         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2715 }
2716
2717 int i915_gpu_idle(struct drm_device *dev)
2718 {
2719         drm_i915_private_t *dev_priv = dev->dev_private;
2720         struct intel_ring_buffer *ring;
2721         int ret, i;
2722
2723         /* Flush everything onto the inactive list. */
2724         for_each_ring(ring, dev_priv, i) {
2725                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2726                 if (ret)
2727                         return ret;
2728
2729                 ret = intel_ring_idle(ring);
2730                 if (ret)
2731                         return ret;
2732         }
2733
2734         return 0;
2735 }
2736
2737 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2738                                  struct drm_i915_gem_object *obj)
2739 {
2740         drm_i915_private_t *dev_priv = dev->dev_private;
2741         int fence_reg;
2742         int fence_pitch_shift;
2743
2744         if (INTEL_INFO(dev)->gen >= 6) {
2745                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2746                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2747         } else {
2748                 fence_reg = FENCE_REG_965_0;
2749                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2750         }
2751
2752         fence_reg += reg * 8;
2753
2754         /* To w/a incoherency with non-atomic 64-bit register updates,
2755          * we split the 64-bit update into two 32-bit writes. In order
2756          * for a partial fence not to be evaluated between writes, we
2757          * precede the update with write to turn off the fence register,
2758          * and only enable the fence as the last step.
2759          *
2760          * For extra levels of paranoia, we make sure each step lands
2761          * before applying the next step.
2762          */
2763         I915_WRITE(fence_reg, 0);
2764         POSTING_READ(fence_reg);
2765
2766         if (obj) {
2767                 u32 size = i915_gem_obj_ggtt_size(obj);
2768                 uint64_t val;
2769
2770                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2771                                  0xfffff000) << 32;
2772                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2773                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2774                 if (obj->tiling_mode == I915_TILING_Y)
2775                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2776                 val |= I965_FENCE_REG_VALID;
2777
2778                 I915_WRITE(fence_reg + 4, val >> 32);
2779                 POSTING_READ(fence_reg + 4);
2780
2781                 I915_WRITE(fence_reg + 0, val);
2782                 POSTING_READ(fence_reg);
2783         } else {
2784                 I915_WRITE(fence_reg + 4, 0);
2785                 POSTING_READ(fence_reg + 4);
2786         }
2787 }
2788
2789 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2790                                  struct drm_i915_gem_object *obj)
2791 {
2792         drm_i915_private_t *dev_priv = dev->dev_private;
2793         u32 val;
2794
2795         if (obj) {
2796                 u32 size = i915_gem_obj_ggtt_size(obj);
2797                 int pitch_val;
2798                 int tile_width;
2799
2800                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2801                      (size & -size) != size ||
2802                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2803                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2804                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2805
2806                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2807                         tile_width = 128;
2808                 else
2809                         tile_width = 512;
2810
2811                 /* Note: pitch better be a power of two tile widths */
2812                 pitch_val = obj->stride / tile_width;
2813                 pitch_val = ffs(pitch_val) - 1;
2814
2815                 val = i915_gem_obj_ggtt_offset(obj);
2816                 if (obj->tiling_mode == I915_TILING_Y)
2817                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2818                 val |= I915_FENCE_SIZE_BITS(size);
2819                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2820                 val |= I830_FENCE_REG_VALID;
2821         } else
2822                 val = 0;
2823
2824         if (reg < 8)
2825                 reg = FENCE_REG_830_0 + reg * 4;
2826         else
2827                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2828
2829         I915_WRITE(reg, val);
2830         POSTING_READ(reg);
2831 }
2832
2833 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2834                                 struct drm_i915_gem_object *obj)
2835 {
2836         drm_i915_private_t *dev_priv = dev->dev_private;
2837         uint32_t val;
2838
2839         if (obj) {
2840                 u32 size = i915_gem_obj_ggtt_size(obj);
2841                 uint32_t pitch_val;
2842
2843                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2844                      (size & -size) != size ||
2845                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2846                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2847                      i915_gem_obj_ggtt_offset(obj), size);
2848
2849                 pitch_val = obj->stride / 128;
2850                 pitch_val = ffs(pitch_val) - 1;
2851
2852                 val = i915_gem_obj_ggtt_offset(obj);
2853                 if (obj->tiling_mode == I915_TILING_Y)
2854                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2855                 val |= I830_FENCE_SIZE_BITS(size);
2856                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2857                 val |= I830_FENCE_REG_VALID;
2858         } else
2859                 val = 0;
2860
2861         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2862         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2863 }
2864
2865 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2866 {
2867         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2868 }
2869
2870 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2871                                  struct drm_i915_gem_object *obj)
2872 {
2873         struct drm_i915_private *dev_priv = dev->dev_private;
2874
2875         /* Ensure that all CPU reads are completed before installing a fence
2876          * and all writes before removing the fence.
2877          */
2878         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2879                 mb();
2880
2881         WARN(obj && (!obj->stride || !obj->tiling_mode),
2882              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2883              obj->stride, obj->tiling_mode);
2884
2885         switch (INTEL_INFO(dev)->gen) {
2886         case 7:
2887         case 6:
2888         case 5:
2889         case 4: i965_write_fence_reg(dev, reg, obj); break;
2890         case 3: i915_write_fence_reg(dev, reg, obj); break;
2891         case 2: i830_write_fence_reg(dev, reg, obj); break;
2892         default: BUG();
2893         }
2894
2895         /* And similarly be paranoid that no direct access to this region
2896          * is reordered to before the fence is installed.
2897          */
2898         if (i915_gem_object_needs_mb(obj))
2899                 mb();
2900 }
2901
2902 static inline int fence_number(struct drm_i915_private *dev_priv,
2903                                struct drm_i915_fence_reg *fence)
2904 {
2905         return fence - dev_priv->fence_regs;
2906 }
2907
2908 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2909                                          struct drm_i915_fence_reg *fence,
2910                                          bool enable)
2911 {
2912         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2913         int reg = fence_number(dev_priv, fence);
2914
2915         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2916
2917         if (enable) {
2918                 obj->fence_reg = reg;
2919                 fence->obj = obj;
2920                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2921         } else {
2922                 obj->fence_reg = I915_FENCE_REG_NONE;
2923                 fence->obj = NULL;
2924                 list_del_init(&fence->lru_list);
2925         }
2926         obj->fence_dirty = false;
2927 }
2928
2929 static int
2930 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2931 {
2932         if (obj->last_fenced_seqno) {
2933                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2934                 if (ret)
2935                         return ret;
2936
2937                 obj->last_fenced_seqno = 0;
2938         }
2939
2940         obj->fenced_gpu_access = false;
2941         return 0;
2942 }
2943
2944 int
2945 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2946 {
2947         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2948         struct drm_i915_fence_reg *fence;
2949         int ret;
2950
2951         ret = i915_gem_object_wait_fence(obj);
2952         if (ret)
2953                 return ret;
2954
2955         if (obj->fence_reg == I915_FENCE_REG_NONE)
2956                 return 0;
2957
2958         fence = &dev_priv->fence_regs[obj->fence_reg];
2959
2960         i915_gem_object_fence_lost(obj);
2961         i915_gem_object_update_fence(obj, fence, false);
2962
2963         return 0;
2964 }
2965
2966 static struct drm_i915_fence_reg *
2967 i915_find_fence_reg(struct drm_device *dev)
2968 {
2969         struct drm_i915_private *dev_priv = dev->dev_private;
2970         struct drm_i915_fence_reg *reg, *avail;
2971         int i;
2972
2973         /* First try to find a free reg */
2974         avail = NULL;
2975         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2976                 reg = &dev_priv->fence_regs[i];
2977                 if (!reg->obj)
2978                         return reg;
2979
2980                 if (!reg->pin_count)
2981                         avail = reg;
2982         }
2983
2984         if (avail == NULL)
2985                 return NULL;
2986
2987         /* None available, try to steal one or wait for a user to finish */
2988         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2989                 if (reg->pin_count)
2990                         continue;
2991
2992                 return reg;
2993         }
2994
2995         return NULL;
2996 }
2997
2998 /**
2999  * i915_gem_object_get_fence - set up fencing for an object
3000  * @obj: object to map through a fence reg
3001  *
3002  * When mapping objects through the GTT, userspace wants to be able to write
3003  * to them without having to worry about swizzling if the object is tiled.
3004  * This function walks the fence regs looking for a free one for @obj,
3005  * stealing one if it can't find any.
3006  *
3007  * It then sets up the reg based on the object's properties: address, pitch
3008  * and tiling format.
3009  *
3010  * For an untiled surface, this removes any existing fence.
3011  */
3012 int
3013 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3014 {
3015         struct drm_device *dev = obj->base.dev;
3016         struct drm_i915_private *dev_priv = dev->dev_private;
3017         bool enable = obj->tiling_mode != I915_TILING_NONE;
3018         struct drm_i915_fence_reg *reg;
3019         int ret;
3020
3021         /* Have we updated the tiling parameters upon the object and so
3022          * will need to serialise the write to the associated fence register?
3023          */
3024         if (obj->fence_dirty) {
3025                 ret = i915_gem_object_wait_fence(obj);
3026                 if (ret)
3027                         return ret;
3028         }
3029
3030         /* Just update our place in the LRU if our fence is getting reused. */
3031         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3032                 reg = &dev_priv->fence_regs[obj->fence_reg];
3033                 if (!obj->fence_dirty) {
3034                         list_move_tail(&reg->lru_list,
3035                                        &dev_priv->mm.fence_list);
3036                         return 0;
3037                 }
3038         } else if (enable) {
3039                 reg = i915_find_fence_reg(dev);
3040                 if (reg == NULL)
3041                         return -EDEADLK;
3042
3043                 if (reg->obj) {
3044                         struct drm_i915_gem_object *old = reg->obj;
3045
3046                         ret = i915_gem_object_wait_fence(old);
3047                         if (ret)
3048                                 return ret;
3049
3050                         i915_gem_object_fence_lost(old);
3051                 }
3052         } else
3053                 return 0;
3054
3055         i915_gem_object_update_fence(obj, reg, enable);
3056
3057         return 0;
3058 }
3059
3060 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3061                                      struct drm_mm_node *gtt_space,
3062                                      unsigned long cache_level)
3063 {
3064         struct drm_mm_node *other;
3065
3066         /* On non-LLC machines we have to be careful when putting differing
3067          * types of snoopable memory together to avoid the prefetcher
3068          * crossing memory domains and dying.
3069          */
3070         if (HAS_LLC(dev))
3071                 return true;
3072
3073         if (!drm_mm_node_allocated(gtt_space))
3074                 return true;
3075
3076         if (list_empty(&gtt_space->node_list))
3077                 return true;
3078
3079         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3080         if (other->allocated && !other->hole_follows && other->color != cache_level)
3081                 return false;
3082
3083         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3084         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3085                 return false;
3086
3087         return true;
3088 }
3089
3090 static void i915_gem_verify_gtt(struct drm_device *dev)
3091 {
3092 #if WATCH_GTT
3093         struct drm_i915_private *dev_priv = dev->dev_private;
3094         struct drm_i915_gem_object *obj;
3095         int err = 0;
3096
3097         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3098                 if (obj->gtt_space == NULL) {
3099                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3100                         err++;
3101                         continue;
3102                 }
3103
3104                 if (obj->cache_level != obj->gtt_space->color) {
3105                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3106                                i915_gem_obj_ggtt_offset(obj),
3107                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3108                                obj->cache_level,
3109                                obj->gtt_space->color);
3110                         err++;
3111                         continue;
3112                 }
3113
3114                 if (!i915_gem_valid_gtt_space(dev,
3115                                               obj->gtt_space,
3116                                               obj->cache_level)) {
3117                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3118                                i915_gem_obj_ggtt_offset(obj),
3119                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3120                                obj->cache_level);
3121                         err++;
3122                         continue;
3123                 }
3124         }
3125
3126         WARN_ON(err);
3127 #endif
3128 }
3129
3130 /**
3131  * Finds free space in the GTT aperture and binds the object there.
3132  */
3133 static int
3134 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3135                            struct i915_address_space *vm,
3136                            unsigned alignment,
3137                            bool map_and_fenceable,
3138                            bool nonblocking)
3139 {
3140         struct drm_device *dev = obj->base.dev;
3141         drm_i915_private_t *dev_priv = dev->dev_private;
3142         u32 size, fence_size, fence_alignment, unfenced_alignment;
3143         size_t gtt_max =
3144                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3145         struct i915_vma *vma;
3146         int ret;
3147
3148         fence_size = i915_gem_get_gtt_size(dev,
3149                                            obj->base.size,
3150                                            obj->tiling_mode);
3151         fence_alignment = i915_gem_get_gtt_alignment(dev,
3152                                                      obj->base.size,
3153                                                      obj->tiling_mode, true);
3154         unfenced_alignment =
3155                 i915_gem_get_gtt_alignment(dev,
3156                                                     obj->base.size,
3157                                                     obj->tiling_mode, false);
3158
3159         if (alignment == 0)
3160                 alignment = map_and_fenceable ? fence_alignment :
3161                                                 unfenced_alignment;
3162         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3163                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3164                 return -EINVAL;
3165         }
3166
3167         size = map_and_fenceable ? fence_size : obj->base.size;
3168
3169         /* If the object is bigger than the entire aperture, reject it early
3170          * before evicting everything in a vain attempt to find space.
3171          */
3172         if (obj->base.size > gtt_max) {
3173                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3174                           obj->base.size,
3175                           map_and_fenceable ? "mappable" : "total",
3176                           gtt_max);
3177                 return -E2BIG;
3178         }
3179
3180         ret = i915_gem_object_get_pages(obj);
3181         if (ret)
3182                 return ret;
3183
3184         i915_gem_object_pin_pages(obj);
3185
3186         BUG_ON(!i915_is_ggtt(vm));
3187
3188         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3189         if (IS_ERR(vma)) {
3190                 ret = PTR_ERR(vma);
3191                 goto err_unpin;
3192         }
3193
3194         /* For now we only ever use 1 vma per object */
3195         WARN_ON(!list_is_singular(&obj->vma_list));
3196
3197 search_free:
3198         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3199                                                   size, alignment,
3200                                                   obj->cache_level, 0, gtt_max,
3201                                                   DRM_MM_SEARCH_DEFAULT);
3202         if (ret) {
3203                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3204                                                obj->cache_level,
3205                                                map_and_fenceable,
3206                                                nonblocking);
3207                 if (ret == 0)
3208                         goto search_free;
3209
3210                 goto err_free_vma;
3211         }
3212         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3213                                               obj->cache_level))) {
3214                 ret = -EINVAL;
3215                 goto err_remove_node;
3216         }
3217
3218         ret = i915_gem_gtt_prepare_object(obj);
3219         if (ret)
3220                 goto err_remove_node;
3221
3222         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3223         list_add_tail(&vma->mm_list, &vm->inactive_list);
3224
3225         if (i915_is_ggtt(vm)) {
3226                 bool mappable, fenceable;
3227
3228                 fenceable = (vma->node.size == fence_size &&
3229                              (vma->node.start & (fence_alignment - 1)) == 0);
3230
3231                 mappable = (vma->node.start + obj->base.size <=
3232                             dev_priv->gtt.mappable_end);
3233
3234                 obj->map_and_fenceable = mappable && fenceable;
3235         }
3236
3237         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3238
3239         trace_i915_vma_bind(vma, map_and_fenceable);
3240         i915_gem_verify_gtt(dev);
3241         return 0;
3242
3243 err_remove_node:
3244         drm_mm_remove_node(&vma->node);
3245 err_free_vma:
3246         i915_gem_vma_destroy(vma);
3247 err_unpin:
3248         i915_gem_object_unpin_pages(obj);
3249         return ret;
3250 }
3251
3252 bool
3253 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3254                         bool force)
3255 {
3256         /* If we don't have a page list set up, then we're not pinned
3257          * to GPU, and we can ignore the cache flush because it'll happen
3258          * again at bind time.
3259          */
3260         if (obj->pages == NULL)
3261                 return false;
3262
3263         /*
3264          * Stolen memory is always coherent with the GPU as it is explicitly
3265          * marked as wc by the system, or the system is cache-coherent.
3266          */
3267         if (obj->stolen)
3268                 return false;
3269
3270         /* If the GPU is snooping the contents of the CPU cache,
3271          * we do not need to manually clear the CPU cache lines.  However,
3272          * the caches are only snooped when the render cache is
3273          * flushed/invalidated.  As we always have to emit invalidations
3274          * and flushes when moving into and out of the RENDER domain, correct
3275          * snooping behaviour occurs naturally as the result of our domain
3276          * tracking.
3277          */
3278         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3279                 return false;
3280
3281         trace_i915_gem_object_clflush(obj);
3282         drm_clflush_sg(obj->pages);
3283
3284         return true;
3285 }
3286
3287 /** Flushes the GTT write domain for the object if it's dirty. */
3288 static void
3289 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3290 {
3291         uint32_t old_write_domain;
3292
3293         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3294                 return;
3295
3296         /* No actual flushing is required for the GTT write domain.  Writes
3297          * to it immediately go to main memory as far as we know, so there's
3298          * no chipset flush.  It also doesn't land in render cache.
3299          *
3300          * However, we do have to enforce the order so that all writes through
3301          * the GTT land before any writes to the device, such as updates to
3302          * the GATT itself.
3303          */
3304         wmb();
3305
3306         old_write_domain = obj->base.write_domain;
3307         obj->base.write_domain = 0;
3308
3309         trace_i915_gem_object_change_domain(obj,
3310                                             obj->base.read_domains,
3311                                             old_write_domain);
3312 }
3313
3314 /** Flushes the CPU write domain for the object if it's dirty. */
3315 static void
3316 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3317                                        bool force)
3318 {
3319         uint32_t old_write_domain;
3320
3321         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3322                 return;
3323
3324         if (i915_gem_clflush_object(obj, force))
3325                 i915_gem_chipset_flush(obj->base.dev);
3326
3327         old_write_domain = obj->base.write_domain;
3328         obj->base.write_domain = 0;
3329
3330         trace_i915_gem_object_change_domain(obj,
3331                                             obj->base.read_domains,
3332                                             old_write_domain);
3333 }
3334
3335 /**
3336  * Moves a single object to the GTT read, and possibly write domain.
3337  *
3338  * This function returns when the move is complete, including waiting on
3339  * flushes to occur.
3340  */
3341 int
3342 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3343 {
3344         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3345         uint32_t old_write_domain, old_read_domains;
3346         int ret;
3347
3348         /* Not valid to be called on unbound objects. */
3349         if (!i915_gem_obj_bound_any(obj))
3350                 return -EINVAL;
3351
3352         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3353                 return 0;
3354
3355         ret = i915_gem_object_wait_rendering(obj, !write);
3356         if (ret)
3357                 return ret;
3358
3359         i915_gem_object_flush_cpu_write_domain(obj, false);
3360
3361         /* Serialise direct access to this object with the barriers for
3362          * coherent writes from the GPU, by effectively invalidating the
3363          * GTT domain upon first access.
3364          */
3365         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3366                 mb();
3367
3368         old_write_domain = obj->base.write_domain;
3369         old_read_domains = obj->base.read_domains;
3370
3371         /* It should now be out of any other write domains, and we can update
3372          * the domain values for our changes.
3373          */
3374         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3375         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3376         if (write) {
3377                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3378                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3379                 obj->dirty = 1;
3380         }
3381
3382         trace_i915_gem_object_change_domain(obj,
3383                                             old_read_domains,
3384                                             old_write_domain);
3385
3386         /* And bump the LRU for this access */
3387         if (i915_gem_object_is_inactive(obj)) {
3388                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3389                                                            &dev_priv->gtt.base);
3390                 if (vma)
3391                         list_move_tail(&vma->mm_list,
3392                                        &dev_priv->gtt.base.inactive_list);
3393
3394         }
3395
3396         return 0;
3397 }
3398
3399 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3400                                     enum i915_cache_level cache_level)
3401 {
3402         struct drm_device *dev = obj->base.dev;
3403         drm_i915_private_t *dev_priv = dev->dev_private;
3404         struct i915_vma *vma;
3405         int ret;
3406
3407         if (obj->cache_level == cache_level)
3408                 return 0;
3409
3410         if (obj->pin_count) {
3411                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3412                 return -EBUSY;
3413         }
3414
3415         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3416                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3417                         ret = i915_vma_unbind(vma);
3418                         if (ret)
3419                                 return ret;
3420
3421                         break;
3422                 }
3423         }
3424
3425         if (i915_gem_obj_bound_any(obj)) {
3426                 ret = i915_gem_object_finish_gpu(obj);
3427                 if (ret)
3428                         return ret;
3429
3430                 i915_gem_object_finish_gtt(obj);
3431
3432                 /* Before SandyBridge, you could not use tiling or fence
3433                  * registers with snooped memory, so relinquish any fences
3434                  * currently pointing to our region in the aperture.
3435                  */
3436                 if (INTEL_INFO(dev)->gen < 6) {
3437                         ret = i915_gem_object_put_fence(obj);
3438                         if (ret)
3439                                 return ret;
3440                 }
3441
3442                 if (obj->has_global_gtt_mapping)
3443                         i915_gem_gtt_bind_object(obj, cache_level);
3444                 if (obj->has_aliasing_ppgtt_mapping)
3445                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3446                                                obj, cache_level);
3447         }
3448
3449         list_for_each_entry(vma, &obj->vma_list, vma_link)
3450                 vma->node.color = cache_level;
3451         obj->cache_level = cache_level;
3452
3453         if (cpu_write_needs_clflush(obj)) {
3454                 u32 old_read_domains, old_write_domain;
3455
3456                 /* If we're coming from LLC cached, then we haven't
3457                  * actually been tracking whether the data is in the
3458                  * CPU cache or not, since we only allow one bit set
3459                  * in obj->write_domain and have been skipping the clflushes.
3460                  * Just set it to the CPU cache for now.
3461                  */
3462                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3463
3464                 old_read_domains = obj->base.read_domains;
3465                 old_write_domain = obj->base.write_domain;
3466
3467                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3468                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3469
3470                 trace_i915_gem_object_change_domain(obj,
3471                                                     old_read_domains,
3472                                                     old_write_domain);
3473         }
3474
3475         i915_gem_verify_gtt(dev);
3476         return 0;
3477 }
3478
3479 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3480                                struct drm_file *file)
3481 {
3482         struct drm_i915_gem_caching *args = data;
3483         struct drm_i915_gem_object *obj;
3484         int ret;
3485
3486         ret = i915_mutex_lock_interruptible(dev);
3487         if (ret)
3488                 return ret;
3489
3490         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3491         if (&obj->base == NULL) {
3492                 ret = -ENOENT;
3493                 goto unlock;
3494         }
3495
3496         switch (obj->cache_level) {
3497         case I915_CACHE_LLC:
3498         case I915_CACHE_L3_LLC:
3499                 args->caching = I915_CACHING_CACHED;
3500                 break;
3501
3502         case I915_CACHE_WT:
3503                 args->caching = I915_CACHING_DISPLAY;
3504                 break;
3505
3506         default:
3507                 args->caching = I915_CACHING_NONE;
3508                 break;
3509         }
3510
3511         drm_gem_object_unreference(&obj->base);
3512 unlock:
3513         mutex_unlock(&dev->struct_mutex);
3514         return ret;
3515 }
3516
3517 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3518                                struct drm_file *file)
3519 {
3520         struct drm_i915_gem_caching *args = data;
3521         struct drm_i915_gem_object *obj;
3522         enum i915_cache_level level;
3523         int ret;
3524
3525         switch (args->caching) {
3526         case I915_CACHING_NONE:
3527                 level = I915_CACHE_NONE;
3528                 break;
3529         case I915_CACHING_CACHED:
3530                 level = I915_CACHE_LLC;
3531                 break;
3532         case I915_CACHING_DISPLAY:
3533                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3534                 break;
3535         default:
3536                 return -EINVAL;
3537         }
3538
3539         ret = i915_mutex_lock_interruptible(dev);
3540         if (ret)
3541                 return ret;
3542
3543         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3544         if (&obj->base == NULL) {
3545                 ret = -ENOENT;
3546                 goto unlock;
3547         }
3548
3549         ret = i915_gem_object_set_cache_level(obj, level);
3550
3551         drm_gem_object_unreference(&obj->base);
3552 unlock:
3553         mutex_unlock(&dev->struct_mutex);
3554         return ret;
3555 }
3556
3557 static bool is_pin_display(struct drm_i915_gem_object *obj)
3558 {
3559         /* There are 3 sources that pin objects:
3560          *   1. The display engine (scanouts, sprites, cursors);
3561          *   2. Reservations for execbuffer;
3562          *   3. The user.
3563          *
3564          * We can ignore reservations as we hold the struct_mutex and
3565          * are only called outside of the reservation path.  The user
3566          * can only increment pin_count once, and so if after
3567          * subtracting the potential reference by the user, any pin_count
3568          * remains, it must be due to another use by the display engine.
3569          */
3570         return obj->pin_count - !!obj->user_pin_count;
3571 }
3572
3573 /*
3574  * Prepare buffer for display plane (scanout, cursors, etc).
3575  * Can be called from an uninterruptible phase (modesetting) and allows
3576  * any flushes to be pipelined (for pageflips).
3577  */
3578 int
3579 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3580                                      u32 alignment,
3581                                      struct intel_ring_buffer *pipelined)
3582 {
3583         u32 old_read_domains, old_write_domain;
3584         int ret;
3585
3586         if (pipelined != obj->ring) {
3587                 ret = i915_gem_object_sync(obj, pipelined);
3588                 if (ret)
3589                         return ret;
3590         }
3591
3592         /* Mark the pin_display early so that we account for the
3593          * display coherency whilst setting up the cache domains.
3594          */
3595         obj->pin_display = true;
3596
3597         /* The display engine is not coherent with the LLC cache on gen6.  As
3598          * a result, we make sure that the pinning that is about to occur is
3599          * done with uncached PTEs. This is lowest common denominator for all
3600          * chipsets.
3601          *
3602          * However for gen6+, we could do better by using the GFDT bit instead
3603          * of uncaching, which would allow us to flush all the LLC-cached data
3604          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3605          */
3606         ret = i915_gem_object_set_cache_level(obj,
3607                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3608         if (ret)
3609                 goto err_unpin_display;
3610
3611         /* As the user may map the buffer once pinned in the display plane
3612          * (e.g. libkms for the bootup splash), we have to ensure that we
3613          * always use map_and_fenceable for all scanout buffers.
3614          */
3615         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3616         if (ret)
3617                 goto err_unpin_display;
3618
3619         i915_gem_object_flush_cpu_write_domain(obj, true);
3620
3621         old_write_domain = obj->base.write_domain;
3622         old_read_domains = obj->base.read_domains;
3623
3624         /* It should now be out of any other write domains, and we can update
3625          * the domain values for our changes.
3626          */
3627         obj->base.write_domain = 0;
3628         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3629
3630         trace_i915_gem_object_change_domain(obj,
3631                                             old_read_domains,
3632                                             old_write_domain);
3633
3634         return 0;
3635
3636 err_unpin_display:
3637         obj->pin_display = is_pin_display(obj);
3638         return ret;
3639 }
3640
3641 void
3642 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3643 {
3644         i915_gem_object_unpin(obj);
3645         obj->pin_display = is_pin_display(obj);
3646 }
3647
3648 int
3649 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3650 {
3651         int ret;
3652
3653         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3654                 return 0;
3655
3656         ret = i915_gem_object_wait_rendering(obj, false);
3657         if (ret)
3658                 return ret;
3659
3660         /* Ensure that we invalidate the GPU's caches and TLBs. */
3661         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3662         return 0;
3663 }
3664
3665 /**
3666  * Moves a single object to the CPU read, and possibly write domain.
3667  *
3668  * This function returns when the move is complete, including waiting on
3669  * flushes to occur.
3670  */
3671 int
3672 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3673 {
3674         uint32_t old_write_domain, old_read_domains;
3675         int ret;
3676
3677         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3678                 return 0;
3679
3680         ret = i915_gem_object_wait_rendering(obj, !write);
3681         if (ret)
3682                 return ret;
3683
3684         i915_gem_object_flush_gtt_write_domain(obj);
3685
3686         old_write_domain = obj->base.write_domain;
3687         old_read_domains = obj->base.read_domains;
3688
3689         /* Flush the CPU cache if it's still invalid. */
3690         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3691                 i915_gem_clflush_object(obj, false);
3692
3693                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3694         }
3695
3696         /* It should now be out of any other write domains, and we can update
3697          * the domain values for our changes.
3698          */
3699         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3700
3701         /* If we're writing through the CPU, then the GPU read domains will
3702          * need to be invalidated at next use.
3703          */
3704         if (write) {
3705                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3706                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3707         }
3708
3709         trace_i915_gem_object_change_domain(obj,
3710                                             old_read_domains,
3711                                             old_write_domain);
3712
3713         return 0;
3714 }
3715
3716 /* Throttle our rendering by waiting until the ring has completed our requests
3717  * emitted over 20 msec ago.
3718  *
3719  * Note that if we were to use the current jiffies each time around the loop,
3720  * we wouldn't escape the function with any frames outstanding if the time to
3721  * render a frame was over 20ms.
3722  *
3723  * This should get us reasonable parallelism between CPU and GPU but also
3724  * relatively low latency when blocking on a particular request to finish.
3725  */
3726 static int
3727 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3728 {
3729         struct drm_i915_private *dev_priv = dev->dev_private;
3730         struct drm_i915_file_private *file_priv = file->driver_priv;
3731         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3732         struct drm_i915_gem_request *request;
3733         struct intel_ring_buffer *ring = NULL;
3734         unsigned reset_counter;
3735         u32 seqno = 0;
3736         int ret;
3737
3738         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3739         if (ret)
3740                 return ret;
3741
3742         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3743         if (ret)
3744                 return ret;
3745
3746         spin_lock(&file_priv->mm.lock);
3747         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3748                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3749                         break;
3750
3751                 ring = request->ring;
3752                 seqno = request->seqno;
3753         }
3754         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3755         spin_unlock(&file_priv->mm.lock);
3756
3757         if (seqno == 0)
3758                 return 0;
3759
3760         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3761         if (ret == 0)
3762                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3763
3764         return ret;
3765 }
3766
3767 int
3768 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3769                     struct i915_address_space *vm,
3770                     uint32_t alignment,
3771                     bool map_and_fenceable,
3772                     bool nonblocking)
3773 {
3774         struct i915_vma *vma;
3775         int ret;
3776
3777         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3778                 return -EBUSY;
3779
3780         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3781
3782         vma = i915_gem_obj_to_vma(obj, vm);
3783
3784         if (vma) {
3785                 if ((alignment &&
3786                      vma->node.start & (alignment - 1)) ||
3787                     (map_and_fenceable && !obj->map_and_fenceable)) {
3788                         WARN(obj->pin_count,
3789                              "bo is already pinned with incorrect alignment:"
3790                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3791                              " obj->map_and_fenceable=%d\n",
3792                              i915_gem_obj_offset(obj, vm), alignment,
3793                              map_and_fenceable,
3794                              obj->map_and_fenceable);
3795                         ret = i915_vma_unbind(vma);
3796                         if (ret)
3797                                 return ret;
3798                 }
3799         }
3800
3801         if (!i915_gem_obj_bound(obj, vm)) {
3802                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3803
3804                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3805                                                  map_and_fenceable,
3806                                                  nonblocking);
3807                 if (ret)
3808                         return ret;
3809
3810                 if (!dev_priv->mm.aliasing_ppgtt)
3811                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3812         }
3813
3814         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3815                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3816
3817         obj->pin_count++;
3818         obj->pin_mappable |= map_and_fenceable;
3819
3820         return 0;
3821 }
3822
3823 void
3824 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3825 {
3826         BUG_ON(obj->pin_count == 0);
3827         BUG_ON(!i915_gem_obj_bound_any(obj));
3828
3829         if (--obj->pin_count == 0)
3830                 obj->pin_mappable = false;
3831 }
3832
3833 int
3834 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3835                    struct drm_file *file)
3836 {
3837         struct drm_i915_gem_pin *args = data;
3838         struct drm_i915_gem_object *obj;
3839         int ret;
3840
3841         ret = i915_mutex_lock_interruptible(dev);
3842         if (ret)
3843                 return ret;
3844
3845         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3846         if (&obj->base == NULL) {
3847                 ret = -ENOENT;
3848                 goto unlock;
3849         }
3850
3851         if (obj->madv != I915_MADV_WILLNEED) {
3852                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3853                 ret = -EINVAL;
3854                 goto out;
3855         }
3856
3857         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3858                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3859                           args->handle);
3860                 ret = -EINVAL;
3861                 goto out;
3862         }
3863
3864         if (obj->user_pin_count == 0) {
3865                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3866                 if (ret)
3867                         goto out;
3868         }
3869
3870         obj->user_pin_count++;
3871         obj->pin_filp = file;
3872
3873         args->offset = i915_gem_obj_ggtt_offset(obj);
3874 out:
3875         drm_gem_object_unreference(&obj->base);
3876 unlock:
3877         mutex_unlock(&dev->struct_mutex);
3878         return ret;
3879 }
3880
3881 int
3882 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3883                      struct drm_file *file)
3884 {
3885         struct drm_i915_gem_pin *args = data;
3886         struct drm_i915_gem_object *obj;
3887         int ret;
3888
3889         ret = i915_mutex_lock_interruptible(dev);
3890         if (ret)
3891                 return ret;
3892
3893         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3894         if (&obj->base == NULL) {
3895                 ret = -ENOENT;
3896                 goto unlock;
3897         }
3898
3899         if (obj->pin_filp != file) {
3900                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3901                           args->handle);
3902                 ret = -EINVAL;
3903                 goto out;
3904         }
3905         obj->user_pin_count--;
3906         if (obj->user_pin_count == 0) {
3907                 obj->pin_filp = NULL;
3908                 i915_gem_object_unpin(obj);
3909         }
3910
3911 out:
3912         drm_gem_object_unreference(&obj->base);
3913 unlock:
3914         mutex_unlock(&dev->struct_mutex);
3915         return ret;
3916 }
3917
3918 int
3919 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3920                     struct drm_file *file)
3921 {
3922         struct drm_i915_gem_busy *args = data;
3923         struct drm_i915_gem_object *obj;
3924         int ret;
3925
3926         ret = i915_mutex_lock_interruptible(dev);
3927         if (ret)
3928                 return ret;
3929
3930         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3931         if (&obj->base == NULL) {
3932                 ret = -ENOENT;
3933                 goto unlock;
3934         }
3935
3936         /* Count all active objects as busy, even if they are currently not used
3937          * by the gpu. Users of this interface expect objects to eventually
3938          * become non-busy without any further actions, therefore emit any
3939          * necessary flushes here.
3940          */
3941         ret = i915_gem_object_flush_active(obj);
3942
3943         args->busy = obj->active;
3944         if (obj->ring) {
3945                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3946                 args->busy |= intel_ring_flag(obj->ring) << 16;
3947         }
3948
3949         drm_gem_object_unreference(&obj->base);
3950 unlock:
3951         mutex_unlock(&dev->struct_mutex);
3952         return ret;
3953 }
3954
3955 int
3956 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3957                         struct drm_file *file_priv)
3958 {
3959         return i915_gem_ring_throttle(dev, file_priv);
3960 }
3961
3962 int
3963 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3964                        struct drm_file *file_priv)
3965 {
3966         struct drm_i915_gem_madvise *args = data;
3967         struct drm_i915_gem_object *obj;
3968         int ret;
3969
3970         switch (args->madv) {
3971         case I915_MADV_DONTNEED:
3972         case I915_MADV_WILLNEED:
3973             break;
3974         default:
3975             return -EINVAL;
3976         }
3977
3978         ret = i915_mutex_lock_interruptible(dev);
3979         if (ret)
3980                 return ret;
3981
3982         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3983         if (&obj->base == NULL) {
3984                 ret = -ENOENT;
3985                 goto unlock;
3986         }
3987
3988         if (obj->pin_count) {
3989                 ret = -EINVAL;
3990                 goto out;
3991         }
3992
3993         if (obj->madv != __I915_MADV_PURGED)
3994                 obj->madv = args->madv;
3995
3996         /* if the object is no longer attached, discard its backing storage */
3997         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3998                 i915_gem_object_truncate(obj);
3999
4000         args->retained = obj->madv != __I915_MADV_PURGED;
4001
4002 out:
4003         drm_gem_object_unreference(&obj->base);
4004 unlock:
4005         mutex_unlock(&dev->struct_mutex);
4006         return ret;
4007 }
4008
4009 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4010                           const struct drm_i915_gem_object_ops *ops)
4011 {
4012         INIT_LIST_HEAD(&obj->global_list);
4013         INIT_LIST_HEAD(&obj->ring_list);
4014         INIT_LIST_HEAD(&obj->exec_list);
4015         INIT_LIST_HEAD(&obj->obj_exec_link);
4016         INIT_LIST_HEAD(&obj->vma_list);
4017
4018         obj->ops = ops;
4019
4020         obj->fence_reg = I915_FENCE_REG_NONE;
4021         obj->madv = I915_MADV_WILLNEED;
4022         /* Avoid an unnecessary call to unbind on the first bind. */
4023         obj->map_and_fenceable = true;
4024
4025         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4026 }
4027
4028 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4029         .get_pages = i915_gem_object_get_pages_gtt,
4030         .put_pages = i915_gem_object_put_pages_gtt,
4031 };
4032
4033 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4034                                                   size_t size)
4035 {
4036         struct drm_i915_gem_object *obj;
4037         struct address_space *mapping;
4038         gfp_t mask;
4039
4040         obj = i915_gem_object_alloc(dev);
4041         if (obj == NULL)
4042                 return NULL;
4043
4044         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4045                 i915_gem_object_free(obj);
4046                 return NULL;
4047         }
4048
4049         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4050         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4051                 /* 965gm cannot relocate objects above 4GiB. */
4052                 mask &= ~__GFP_HIGHMEM;
4053                 mask |= __GFP_DMA32;
4054         }
4055
4056         mapping = file_inode(obj->base.filp)->i_mapping;
4057         mapping_set_gfp_mask(mapping, mask);
4058
4059         i915_gem_object_init(obj, &i915_gem_object_ops);
4060
4061         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4062         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4063
4064         if (HAS_LLC(dev)) {
4065                 /* On some devices, we can have the GPU use the LLC (the CPU
4066                  * cache) for about a 10% performance improvement
4067                  * compared to uncached.  Graphics requests other than
4068                  * display scanout are coherent with the CPU in
4069                  * accessing this cache.  This means in this mode we
4070                  * don't need to clflush on the CPU side, and on the
4071                  * GPU side we only need to flush internal caches to
4072                  * get data visible to the CPU.
4073                  *
4074                  * However, we maintain the display planes as UC, and so
4075                  * need to rebind when first used as such.
4076                  */
4077                 obj->cache_level = I915_CACHE_LLC;
4078         } else
4079                 obj->cache_level = I915_CACHE_NONE;
4080
4081         trace_i915_gem_object_create(obj);
4082
4083         return obj;
4084 }
4085
4086 int i915_gem_init_object(struct drm_gem_object *obj)
4087 {
4088         BUG();
4089
4090         return 0;
4091 }
4092
4093 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4094 {
4095         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4096         struct drm_device *dev = obj->base.dev;
4097         drm_i915_private_t *dev_priv = dev->dev_private;
4098         struct i915_vma *vma, *next;
4099
4100         trace_i915_gem_object_destroy(obj);
4101
4102         if (obj->phys_obj)
4103                 i915_gem_detach_phys_object(dev, obj);
4104
4105         obj->pin_count = 0;
4106         /* NB: 0 or 1 elements */
4107         WARN_ON(!list_empty(&obj->vma_list) &&
4108                 !list_is_singular(&obj->vma_list));
4109         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4110                 int ret = i915_vma_unbind(vma);
4111                 if (WARN_ON(ret == -ERESTARTSYS)) {
4112                         bool was_interruptible;
4113
4114                         was_interruptible = dev_priv->mm.interruptible;
4115                         dev_priv->mm.interruptible = false;
4116
4117                         WARN_ON(i915_vma_unbind(vma));
4118
4119                         dev_priv->mm.interruptible = was_interruptible;
4120                 }
4121         }
4122
4123         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4124          * before progressing. */
4125         if (obj->stolen)
4126                 i915_gem_object_unpin_pages(obj);
4127
4128         if (WARN_ON(obj->pages_pin_count))
4129                 obj->pages_pin_count = 0;
4130         i915_gem_object_put_pages(obj);
4131         i915_gem_object_free_mmap_offset(obj);
4132         i915_gem_object_release_stolen(obj);
4133
4134         BUG_ON(obj->pages);
4135
4136         if (obj->base.import_attach)
4137                 drm_prime_gem_destroy(&obj->base, NULL);
4138
4139         drm_gem_object_release(&obj->base);
4140         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4141
4142         kfree(obj->bit_17);
4143         i915_gem_object_free(obj);
4144 }
4145
4146 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4147                                      struct i915_address_space *vm)
4148 {
4149         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4150         if (vma == NULL)
4151                 return ERR_PTR(-ENOMEM);
4152
4153         INIT_LIST_HEAD(&vma->vma_link);
4154         INIT_LIST_HEAD(&vma->mm_list);
4155         INIT_LIST_HEAD(&vma->exec_list);
4156         vma->vm = vm;
4157         vma->obj = obj;
4158
4159         /* Keep GGTT vmas first to make debug easier */
4160         if (i915_is_ggtt(vm))
4161                 list_add(&vma->vma_link, &obj->vma_list);
4162         else
4163                 list_add_tail(&vma->vma_link, &obj->vma_list);
4164
4165         return vma;
4166 }
4167
4168 void i915_gem_vma_destroy(struct i915_vma *vma)
4169 {
4170         WARN_ON(vma->node.allocated);
4171         list_del(&vma->vma_link);
4172         kfree(vma);
4173 }
4174
4175 int
4176 i915_gem_idle(struct drm_device *dev)
4177 {
4178         drm_i915_private_t *dev_priv = dev->dev_private;
4179         int ret;
4180
4181         if (dev_priv->ums.mm_suspended) {
4182                 mutex_unlock(&dev->struct_mutex);
4183                 return 0;
4184         }
4185
4186         ret = i915_gpu_idle(dev);
4187         if (ret) {
4188                 mutex_unlock(&dev->struct_mutex);
4189                 return ret;
4190         }
4191         i915_gem_retire_requests(dev);
4192
4193         /* Under UMS, be paranoid and evict. */
4194         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4195                 i915_gem_evict_everything(dev);
4196
4197         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4198
4199         i915_kernel_lost_context(dev);
4200         i915_gem_cleanup_ringbuffer(dev);
4201
4202         /* Cancel the retire work handler, which should be idle now. */
4203         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4204
4205         return 0;
4206 }
4207
4208 void i915_gem_l3_remap(struct drm_device *dev)
4209 {
4210         drm_i915_private_t *dev_priv = dev->dev_private;
4211         u32 misccpctl;
4212         int i;
4213
4214         if (!HAS_L3_GPU_CACHE(dev))
4215                 return;
4216
4217         if (!dev_priv->l3_parity.remap_info)
4218                 return;
4219
4220         misccpctl = I915_READ(GEN7_MISCCPCTL);
4221         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4222         POSTING_READ(GEN7_MISCCPCTL);
4223
4224         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4225                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4226                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4227                         DRM_DEBUG("0x%x was already programmed to %x\n",
4228                                   GEN7_L3LOG_BASE + i, remap);
4229                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4230                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4231                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4232         }
4233
4234         /* Make sure all the writes land before disabling dop clock gating */
4235         POSTING_READ(GEN7_L3LOG_BASE);
4236
4237         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4238 }
4239
4240 void i915_gem_init_swizzling(struct drm_device *dev)
4241 {
4242         drm_i915_private_t *dev_priv = dev->dev_private;
4243
4244         if (INTEL_INFO(dev)->gen < 5 ||
4245             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4246                 return;
4247
4248         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4249                                  DISP_TILE_SURFACE_SWIZZLING);
4250
4251         if (IS_GEN5(dev))
4252                 return;
4253
4254         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4255         if (IS_GEN6(dev))
4256                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4257         else if (IS_GEN7(dev))
4258                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4259         else
4260                 BUG();
4261 }
4262
4263 static bool
4264 intel_enable_blt(struct drm_device *dev)
4265 {
4266         if (!HAS_BLT(dev))
4267                 return false;
4268
4269         /* The blitter was dysfunctional on early prototypes */
4270         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4271                 DRM_INFO("BLT not supported on this pre-production hardware;"
4272                          " graphics performance will be degraded.\n");
4273                 return false;
4274         }
4275
4276         return true;
4277 }
4278
4279 static int i915_gem_init_rings(struct drm_device *dev)
4280 {
4281         struct drm_i915_private *dev_priv = dev->dev_private;
4282         int ret;
4283
4284         ret = intel_init_render_ring_buffer(dev);
4285         if (ret)
4286                 return ret;
4287
4288         if (HAS_BSD(dev)) {
4289                 ret = intel_init_bsd_ring_buffer(dev);
4290                 if (ret)
4291                         goto cleanup_render_ring;
4292         }
4293
4294         if (intel_enable_blt(dev)) {
4295                 ret = intel_init_blt_ring_buffer(dev);
4296                 if (ret)
4297                         goto cleanup_bsd_ring;
4298         }
4299
4300         if (HAS_VEBOX(dev)) {
4301                 ret = intel_init_vebox_ring_buffer(dev);
4302                 if (ret)
4303                         goto cleanup_blt_ring;
4304         }
4305
4306
4307         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4308         if (ret)
4309                 goto cleanup_vebox_ring;
4310
4311         return 0;
4312
4313 cleanup_vebox_ring:
4314         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4315 cleanup_blt_ring:
4316         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4317 cleanup_bsd_ring:
4318         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4319 cleanup_render_ring:
4320         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4321
4322         return ret;
4323 }
4324
4325 int
4326 i915_gem_init_hw(struct drm_device *dev)
4327 {
4328         drm_i915_private_t *dev_priv = dev->dev_private;
4329         int ret;
4330
4331         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4332                 return -EIO;
4333
4334         if (dev_priv->ellc_size)
4335                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4336
4337         if (HAS_PCH_NOP(dev)) {
4338                 u32 temp = I915_READ(GEN7_MSG_CTL);
4339                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4340                 I915_WRITE(GEN7_MSG_CTL, temp);
4341         }
4342
4343         i915_gem_l3_remap(dev);
4344
4345         i915_gem_init_swizzling(dev);
4346
4347         ret = i915_gem_init_rings(dev);
4348         if (ret)
4349                 return ret;
4350
4351         /*
4352          * XXX: There was some w/a described somewhere suggesting loading
4353          * contexts before PPGTT.
4354          */
4355         i915_gem_context_init(dev);
4356         if (dev_priv->mm.aliasing_ppgtt) {
4357                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4358                 if (ret) {
4359                         i915_gem_cleanup_aliasing_ppgtt(dev);
4360                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4361                 }
4362         }
4363
4364         return 0;
4365 }
4366
4367 int i915_gem_init(struct drm_device *dev)
4368 {
4369         struct drm_i915_private *dev_priv = dev->dev_private;
4370         int ret;
4371
4372         mutex_lock(&dev->struct_mutex);
4373
4374         if (IS_VALLEYVIEW(dev)) {
4375                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4376                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4377                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4378                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4379         }
4380
4381         i915_gem_init_global_gtt(dev);
4382
4383         ret = i915_gem_init_hw(dev);
4384         mutex_unlock(&dev->struct_mutex);
4385         if (ret) {
4386                 i915_gem_cleanup_aliasing_ppgtt(dev);
4387                 return ret;
4388         }
4389
4390         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4391         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4392                 dev_priv->dri1.allow_batchbuffer = 1;
4393         return 0;
4394 }
4395
4396 void
4397 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4398 {
4399         drm_i915_private_t *dev_priv = dev->dev_private;
4400         struct intel_ring_buffer *ring;
4401         int i;
4402
4403         for_each_ring(ring, dev_priv, i)
4404                 intel_cleanup_ring_buffer(ring);
4405 }
4406
4407 int
4408 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4409                        struct drm_file *file_priv)
4410 {
4411         struct drm_i915_private *dev_priv = dev->dev_private;
4412         int ret;
4413
4414         if (drm_core_check_feature(dev, DRIVER_MODESET))
4415                 return 0;
4416
4417         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4418                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4419                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4420         }
4421
4422         mutex_lock(&dev->struct_mutex);
4423         dev_priv->ums.mm_suspended = 0;
4424
4425         ret = i915_gem_init_hw(dev);
4426         if (ret != 0) {
4427                 mutex_unlock(&dev->struct_mutex);
4428                 return ret;
4429         }
4430
4431         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4432         mutex_unlock(&dev->struct_mutex);
4433
4434         ret = drm_irq_install(dev);
4435         if (ret)
4436                 goto cleanup_ringbuffer;
4437
4438         return 0;
4439
4440 cleanup_ringbuffer:
4441         mutex_lock(&dev->struct_mutex);
4442         i915_gem_cleanup_ringbuffer(dev);
4443         dev_priv->ums.mm_suspended = 1;
4444         mutex_unlock(&dev->struct_mutex);
4445
4446         return ret;
4447 }
4448
4449 int
4450 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4451                        struct drm_file *file_priv)
4452 {
4453         struct drm_i915_private *dev_priv = dev->dev_private;
4454         int ret;
4455
4456         if (drm_core_check_feature(dev, DRIVER_MODESET))
4457                 return 0;
4458
4459         drm_irq_uninstall(dev);
4460
4461         mutex_lock(&dev->struct_mutex);
4462         ret =  i915_gem_idle(dev);
4463
4464         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4465          * We need to replace this with a semaphore, or something.
4466          * And not confound ums.mm_suspended!
4467          */
4468         if (ret != 0)
4469                 dev_priv->ums.mm_suspended = 1;
4470         mutex_unlock(&dev->struct_mutex);
4471
4472         return ret;
4473 }
4474
4475 void
4476 i915_gem_lastclose(struct drm_device *dev)
4477 {
4478         int ret;
4479
4480         if (drm_core_check_feature(dev, DRIVER_MODESET))
4481                 return;
4482
4483         mutex_lock(&dev->struct_mutex);
4484         ret = i915_gem_idle(dev);
4485         if (ret)
4486                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4487         mutex_unlock(&dev->struct_mutex);
4488 }
4489
4490 static void
4491 init_ring_lists(struct intel_ring_buffer *ring)
4492 {
4493         INIT_LIST_HEAD(&ring->active_list);
4494         INIT_LIST_HEAD(&ring->request_list);
4495 }
4496
4497 static void i915_init_vm(struct drm_i915_private *dev_priv,
4498                          struct i915_address_space *vm)
4499 {
4500         vm->dev = dev_priv->dev;
4501         INIT_LIST_HEAD(&vm->active_list);
4502         INIT_LIST_HEAD(&vm->inactive_list);
4503         INIT_LIST_HEAD(&vm->global_link);
4504         list_add(&vm->global_link, &dev_priv->vm_list);
4505 }
4506
4507 void
4508 i915_gem_load(struct drm_device *dev)
4509 {
4510         drm_i915_private_t *dev_priv = dev->dev_private;
4511         int i;
4512
4513         dev_priv->slab =
4514                 kmem_cache_create("i915_gem_object",
4515                                   sizeof(struct drm_i915_gem_object), 0,
4516                                   SLAB_HWCACHE_ALIGN,
4517                                   NULL);
4518
4519         INIT_LIST_HEAD(&dev_priv->vm_list);
4520         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4521
4522         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4523         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4524         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4525         for (i = 0; i < I915_NUM_RINGS; i++)
4526                 init_ring_lists(&dev_priv->ring[i]);
4527         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4528                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4529         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4530                           i915_gem_retire_work_handler);
4531         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4532
4533         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4534         if (IS_GEN3(dev)) {
4535                 I915_WRITE(MI_ARB_STATE,
4536                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4537         }
4538
4539         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4540
4541         /* Old X drivers will take 0-2 for front, back, depth buffers */
4542         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4543                 dev_priv->fence_reg_start = 3;
4544
4545         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4546                 dev_priv->num_fence_regs = 32;
4547         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4548                 dev_priv->num_fence_regs = 16;
4549         else
4550                 dev_priv->num_fence_regs = 8;
4551
4552         /* Initialize fence registers to zero */
4553         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4554         i915_gem_restore_fences(dev);
4555
4556         i915_gem_detect_bit_6_swizzle(dev);
4557         init_waitqueue_head(&dev_priv->pending_flip_queue);
4558
4559         dev_priv->mm.interruptible = true;
4560
4561         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4562         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4563         register_shrinker(&dev_priv->mm.inactive_shrinker);
4564 }
4565
4566 /*
4567  * Create a physically contiguous memory object for this object
4568  * e.g. for cursor + overlay regs
4569  */
4570 static int i915_gem_init_phys_object(struct drm_device *dev,
4571                                      int id, int size, int align)
4572 {
4573         drm_i915_private_t *dev_priv = dev->dev_private;
4574         struct drm_i915_gem_phys_object *phys_obj;
4575         int ret;
4576
4577         if (dev_priv->mm.phys_objs[id - 1] || !size)
4578                 return 0;
4579
4580         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4581         if (!phys_obj)
4582                 return -ENOMEM;
4583
4584         phys_obj->id = id;
4585
4586         phys_obj->handle = drm_pci_alloc(dev, size, align);
4587         if (!phys_obj->handle) {
4588                 ret = -ENOMEM;
4589                 goto kfree_obj;
4590         }
4591 #ifdef CONFIG_X86
4592         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4593 #endif
4594
4595         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4596
4597         return 0;
4598 kfree_obj:
4599         kfree(phys_obj);
4600         return ret;
4601 }
4602
4603 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4604 {
4605         drm_i915_private_t *dev_priv = dev->dev_private;
4606         struct drm_i915_gem_phys_object *phys_obj;
4607
4608         if (!dev_priv->mm.phys_objs[id - 1])
4609                 return;
4610
4611         phys_obj = dev_priv->mm.phys_objs[id - 1];
4612         if (phys_obj->cur_obj) {
4613                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4614         }
4615
4616 #ifdef CONFIG_X86
4617         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4618 #endif
4619         drm_pci_free(dev, phys_obj->handle);
4620         kfree(phys_obj);
4621         dev_priv->mm.phys_objs[id - 1] = NULL;
4622 }
4623
4624 void i915_gem_free_all_phys_object(struct drm_device *dev)
4625 {
4626         int i;
4627
4628         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4629                 i915_gem_free_phys_object(dev, i);
4630 }
4631
4632 void i915_gem_detach_phys_object(struct drm_device *dev,
4633                                  struct drm_i915_gem_object *obj)
4634 {
4635         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4636         char *vaddr;
4637         int i;
4638         int page_count;
4639
4640         if (!obj->phys_obj)
4641                 return;
4642         vaddr = obj->phys_obj->handle->vaddr;
4643
4644         page_count = obj->base.size / PAGE_SIZE;
4645         for (i = 0; i < page_count; i++) {
4646                 struct page *page = shmem_read_mapping_page(mapping, i);
4647                 if (!IS_ERR(page)) {
4648                         char *dst = kmap_atomic(page);
4649                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4650                         kunmap_atomic(dst);
4651
4652                         drm_clflush_pages(&page, 1);
4653
4654                         set_page_dirty(page);
4655                         mark_page_accessed(page);
4656                         page_cache_release(page);
4657                 }
4658         }
4659         i915_gem_chipset_flush(dev);
4660
4661         obj->phys_obj->cur_obj = NULL;
4662         obj->phys_obj = NULL;
4663 }
4664
4665 int
4666 i915_gem_attach_phys_object(struct drm_device *dev,
4667                             struct drm_i915_gem_object *obj,
4668                             int id,
4669                             int align)
4670 {
4671         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4672         drm_i915_private_t *dev_priv = dev->dev_private;
4673         int ret = 0;
4674         int page_count;
4675         int i;
4676
4677         if (id > I915_MAX_PHYS_OBJECT)
4678                 return -EINVAL;
4679
4680         if (obj->phys_obj) {
4681                 if (obj->phys_obj->id == id)
4682                         return 0;
4683                 i915_gem_detach_phys_object(dev, obj);
4684         }
4685
4686         /* create a new object */
4687         if (!dev_priv->mm.phys_objs[id - 1]) {
4688                 ret = i915_gem_init_phys_object(dev, id,
4689                                                 obj->base.size, align);
4690                 if (ret) {
4691                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4692                                   id, obj->base.size);
4693                         return ret;
4694                 }
4695         }
4696
4697         /* bind to the object */
4698         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4699         obj->phys_obj->cur_obj = obj;
4700
4701         page_count = obj->base.size / PAGE_SIZE;
4702
4703         for (i = 0; i < page_count; i++) {
4704                 struct page *page;
4705                 char *dst, *src;
4706
4707                 page = shmem_read_mapping_page(mapping, i);
4708                 if (IS_ERR(page))
4709                         return PTR_ERR(page);
4710
4711                 src = kmap_atomic(page);
4712                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4713                 memcpy(dst, src, PAGE_SIZE);
4714                 kunmap_atomic(src);
4715
4716                 mark_page_accessed(page);
4717                 page_cache_release(page);
4718         }
4719
4720         return 0;
4721 }
4722
4723 static int
4724 i915_gem_phys_pwrite(struct drm_device *dev,
4725                      struct drm_i915_gem_object *obj,
4726                      struct drm_i915_gem_pwrite *args,
4727                      struct drm_file *file_priv)
4728 {
4729         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4730         char __user *user_data = to_user_ptr(args->data_ptr);
4731
4732         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4733                 unsigned long unwritten;
4734
4735                 /* The physical object once assigned is fixed for the lifetime
4736                  * of the obj, so we can safely drop the lock and continue
4737                  * to access vaddr.
4738                  */
4739                 mutex_unlock(&dev->struct_mutex);
4740                 unwritten = copy_from_user(vaddr, user_data, args->size);
4741                 mutex_lock(&dev->struct_mutex);
4742                 if (unwritten)
4743                         return -EFAULT;
4744         }
4745
4746         i915_gem_chipset_flush(dev);
4747         return 0;
4748 }
4749
4750 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4751 {
4752         struct drm_i915_file_private *file_priv = file->driver_priv;
4753
4754         /* Clean up our request list when the client is going away, so that
4755          * later retire_requests won't dereference our soon-to-be-gone
4756          * file_priv.
4757          */
4758         spin_lock(&file_priv->mm.lock);
4759         while (!list_empty(&file_priv->mm.request_list)) {
4760                 struct drm_i915_gem_request *request;
4761
4762                 request = list_first_entry(&file_priv->mm.request_list,
4763                                            struct drm_i915_gem_request,
4764                                            client_list);
4765                 list_del(&request->client_list);
4766                 request->file_priv = NULL;
4767         }
4768         spin_unlock(&file_priv->mm.lock);
4769 }
4770
4771 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4772 {
4773         if (!mutex_is_locked(mutex))
4774                 return false;
4775
4776 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4777         return mutex->owner == task;
4778 #else
4779         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4780         return false;
4781 #endif
4782 }
4783
4784 static int
4785 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4786 {
4787         struct drm_i915_private *dev_priv =
4788                 container_of(shrinker,
4789                              struct drm_i915_private,
4790                              mm.inactive_shrinker);
4791         struct drm_device *dev = dev_priv->dev;
4792         struct drm_i915_gem_object *obj;
4793         int nr_to_scan = sc->nr_to_scan;
4794         bool unlock = true;
4795         int cnt;
4796
4797         if (!mutex_trylock(&dev->struct_mutex)) {
4798                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4799                         return 0;
4800
4801                 if (dev_priv->mm.shrinker_no_lock_stealing)
4802                         return 0;
4803
4804                 unlock = false;
4805         }
4806
4807         if (nr_to_scan) {
4808                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4809                 if (nr_to_scan > 0)
4810                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4811                                                         false);
4812                 if (nr_to_scan > 0)
4813                         i915_gem_shrink_all(dev_priv);
4814         }
4815
4816         cnt = 0;
4817         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4818                 if (obj->pages_pin_count == 0)
4819                         cnt += obj->base.size >> PAGE_SHIFT;
4820
4821         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4822                 if (obj->active)
4823                         continue;
4824
4825                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4826                         cnt += obj->base.size >> PAGE_SHIFT;
4827         }
4828
4829         if (unlock)
4830                 mutex_unlock(&dev->struct_mutex);
4831         return cnt;
4832 }
4833
4834 /* All the new VM stuff */
4835 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4836                                   struct i915_address_space *vm)
4837 {
4838         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4839         struct i915_vma *vma;
4840
4841         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4842                 vm = &dev_priv->gtt.base;
4843
4844         BUG_ON(list_empty(&o->vma_list));
4845         list_for_each_entry(vma, &o->vma_list, vma_link) {
4846                 if (vma->vm == vm)
4847                         return vma->node.start;
4848
4849         }
4850         return -1;
4851 }
4852
4853 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4854                         struct i915_address_space *vm)
4855 {
4856         struct i915_vma *vma;
4857
4858         list_for_each_entry(vma, &o->vma_list, vma_link)
4859                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4860                         return true;
4861
4862         return false;
4863 }
4864
4865 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4866 {
4867         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4868         struct i915_address_space *vm;
4869
4870         list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4871                 if (i915_gem_obj_bound(o, vm))
4872                         return true;
4873
4874         return false;
4875 }
4876
4877 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4878                                 struct i915_address_space *vm)
4879 {
4880         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4881         struct i915_vma *vma;
4882
4883         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4884                 vm = &dev_priv->gtt.base;
4885
4886         BUG_ON(list_empty(&o->vma_list));
4887
4888         list_for_each_entry(vma, &o->vma_list, vma_link)
4889                 if (vma->vm == vm)
4890                         return vma->node.size;
4891
4892         return 0;
4893 }
4894
4895 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4896                                      struct i915_address_space *vm)
4897 {
4898         struct i915_vma *vma;
4899         list_for_each_entry(vma, &obj->vma_list, vma_link)
4900                 if (vma->vm == vm)
4901                         return vma;
4902
4903         return NULL;
4904 }
4905
4906 struct i915_vma *
4907 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4908                                   struct i915_address_space *vm)
4909 {
4910         struct i915_vma *vma;
4911
4912         vma = i915_gem_obj_to_vma(obj, vm);
4913         if (!vma)
4914                 vma = i915_gem_vma_create(obj, vm);
4915
4916         return vma;
4917 }