]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_execbuffer.c
PM / OPP: Documentation: Fix opp-microvolt in examples
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/uaccess.h>
32
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_frontbuffer.h"
40
41 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
42
43 #define  __EXEC_OBJECT_HAS_PIN          (1<<31)
44 #define  __EXEC_OBJECT_HAS_FENCE        (1<<30)
45 #define  __EXEC_OBJECT_NEEDS_MAP        (1<<29)
46 #define  __EXEC_OBJECT_NEEDS_BIAS       (1<<28)
47 #define  __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
48
49 #define BATCH_OFFSET_BIAS (256*1024)
50
51 struct i915_execbuffer_params {
52         struct drm_device               *dev;
53         struct drm_file                 *file;
54         struct i915_vma                 *batch;
55         u32                             dispatch_flags;
56         u32                             args_batch_start_offset;
57         struct intel_engine_cs          *engine;
58         struct i915_gem_context         *ctx;
59         struct drm_i915_gem_request     *request;
60 };
61
62 struct eb_vmas {
63         struct drm_i915_private *i915;
64         struct list_head vmas;
65         int and;
66         union {
67                 struct i915_vma *lut[0];
68                 struct hlist_head buckets[0];
69         };
70 };
71
72 static struct eb_vmas *
73 eb_create(struct drm_i915_private *i915,
74           struct drm_i915_gem_execbuffer2 *args)
75 {
76         struct eb_vmas *eb = NULL;
77
78         if (args->flags & I915_EXEC_HANDLE_LUT) {
79                 unsigned size = args->buffer_count;
80                 size *= sizeof(struct i915_vma *);
81                 size += sizeof(struct eb_vmas);
82                 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
83         }
84
85         if (eb == NULL) {
86                 unsigned size = args->buffer_count;
87                 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
88                 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
89                 while (count > 2*size)
90                         count >>= 1;
91                 eb = kzalloc(count*sizeof(struct hlist_head) +
92                              sizeof(struct eb_vmas),
93                              GFP_TEMPORARY);
94                 if (eb == NULL)
95                         return eb;
96
97                 eb->and = count - 1;
98         } else
99                 eb->and = -args->buffer_count;
100
101         eb->i915 = i915;
102         INIT_LIST_HEAD(&eb->vmas);
103         return eb;
104 }
105
106 static void
107 eb_reset(struct eb_vmas *eb)
108 {
109         if (eb->and >= 0)
110                 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
111 }
112
113 static struct i915_vma *
114 eb_get_batch(struct eb_vmas *eb)
115 {
116         struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
117
118         /*
119          * SNA is doing fancy tricks with compressing batch buffers, which leads
120          * to negative relocation deltas. Usually that works out ok since the
121          * relocate address is still positive, except when the batch is placed
122          * very low in the GTT. Ensure this doesn't happen.
123          *
124          * Note that actual hangs have only been observed on gen7, but for
125          * paranoia do it everywhere.
126          */
127         if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
128                 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
129
130         return vma;
131 }
132
133 static int
134 eb_lookup_vmas(struct eb_vmas *eb,
135                struct drm_i915_gem_exec_object2 *exec,
136                const struct drm_i915_gem_execbuffer2 *args,
137                struct i915_address_space *vm,
138                struct drm_file *file)
139 {
140         struct drm_i915_gem_object *obj;
141         struct list_head objects;
142         int i, ret;
143
144         INIT_LIST_HEAD(&objects);
145         spin_lock(&file->table_lock);
146         /* Grab a reference to the object and release the lock so we can lookup
147          * or create the VMA without using GFP_ATOMIC */
148         for (i = 0; i < args->buffer_count; i++) {
149                 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
150                 if (obj == NULL) {
151                         spin_unlock(&file->table_lock);
152                         DRM_DEBUG("Invalid object handle %d at index %d\n",
153                                    exec[i].handle, i);
154                         ret = -ENOENT;
155                         goto err;
156                 }
157
158                 if (!list_empty(&obj->obj_exec_link)) {
159                         spin_unlock(&file->table_lock);
160                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
161                                    obj, exec[i].handle, i);
162                         ret = -EINVAL;
163                         goto err;
164                 }
165
166                 i915_gem_object_get(obj);
167                 list_add_tail(&obj->obj_exec_link, &objects);
168         }
169         spin_unlock(&file->table_lock);
170
171         i = 0;
172         while (!list_empty(&objects)) {
173                 struct i915_vma *vma;
174
175                 obj = list_first_entry(&objects,
176                                        struct drm_i915_gem_object,
177                                        obj_exec_link);
178
179                 /*
180                  * NOTE: We can leak any vmas created here when something fails
181                  * later on. But that's no issue since vma_unbind can deal with
182                  * vmas which are not actually bound. And since only
183                  * lookup_or_create exists as an interface to get at the vma
184                  * from the (obj, vm) we don't run the risk of creating
185                  * duplicated vmas for the same vm.
186                  */
187                 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, NULL);
188                 if (unlikely(IS_ERR(vma))) {
189                         DRM_DEBUG("Failed to lookup VMA\n");
190                         ret = PTR_ERR(vma);
191                         goto err;
192                 }
193
194                 /* Transfer ownership from the objects list to the vmas list. */
195                 list_add_tail(&vma->exec_list, &eb->vmas);
196                 list_del_init(&obj->obj_exec_link);
197
198                 vma->exec_entry = &exec[i];
199                 if (eb->and < 0) {
200                         eb->lut[i] = vma;
201                 } else {
202                         uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
203                         vma->exec_handle = handle;
204                         hlist_add_head(&vma->exec_node,
205                                        &eb->buckets[handle & eb->and]);
206                 }
207                 ++i;
208         }
209
210         return 0;
211
212
213 err:
214         while (!list_empty(&objects)) {
215                 obj = list_first_entry(&objects,
216                                        struct drm_i915_gem_object,
217                                        obj_exec_link);
218                 list_del_init(&obj->obj_exec_link);
219                 i915_gem_object_put(obj);
220         }
221         /*
222          * Objects already transfered to the vmas list will be unreferenced by
223          * eb_destroy.
224          */
225
226         return ret;
227 }
228
229 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
230 {
231         if (eb->and < 0) {
232                 if (handle >= -eb->and)
233                         return NULL;
234                 return eb->lut[handle];
235         } else {
236                 struct hlist_head *head;
237                 struct i915_vma *vma;
238
239                 head = &eb->buckets[handle & eb->and];
240                 hlist_for_each_entry(vma, head, exec_node) {
241                         if (vma->exec_handle == handle)
242                                 return vma;
243                 }
244                 return NULL;
245         }
246 }
247
248 static void
249 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
250 {
251         struct drm_i915_gem_exec_object2 *entry;
252
253         if (!drm_mm_node_allocated(&vma->node))
254                 return;
255
256         entry = vma->exec_entry;
257
258         if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
259                 i915_vma_unpin_fence(vma);
260
261         if (entry->flags & __EXEC_OBJECT_HAS_PIN)
262                 __i915_vma_unpin(vma);
263
264         entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
265 }
266
267 static void eb_destroy(struct eb_vmas *eb)
268 {
269         while (!list_empty(&eb->vmas)) {
270                 struct i915_vma *vma;
271
272                 vma = list_first_entry(&eb->vmas,
273                                        struct i915_vma,
274                                        exec_list);
275                 list_del_init(&vma->exec_list);
276                 i915_gem_execbuffer_unreserve_vma(vma);
277                 i915_vma_put(vma);
278         }
279         kfree(eb);
280 }
281
282 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
283 {
284         if (!i915_gem_object_has_struct_page(obj))
285                 return false;
286
287         if (DBG_USE_CPU_RELOC)
288                 return DBG_USE_CPU_RELOC > 0;
289
290         return (HAS_LLC(to_i915(obj->base.dev)) ||
291                 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
292                 obj->cache_level != I915_CACHE_NONE);
293 }
294
295 /* Used to convert any address to canonical form.
296  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
297  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
298  * addresses to be in a canonical form:
299  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
300  * canonical form [63:48] == [47]."
301  */
302 #define GEN8_HIGH_ADDRESS_BIT 47
303 static inline uint64_t gen8_canonical_addr(uint64_t address)
304 {
305         return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
306 }
307
308 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
309 {
310         return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
311 }
312
313 static inline uint64_t
314 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
315                   uint64_t target_offset)
316 {
317         return gen8_canonical_addr((int)reloc->delta + target_offset);
318 }
319
320 struct reloc_cache {
321         struct drm_i915_private *i915;
322         struct drm_mm_node node;
323         unsigned long vaddr;
324         unsigned int page;
325         bool use_64bit_reloc;
326 };
327
328 static void reloc_cache_init(struct reloc_cache *cache,
329                              struct drm_i915_private *i915)
330 {
331         cache->page = -1;
332         cache->vaddr = 0;
333         cache->i915 = i915;
334         /* Must be a variable in the struct to allow GCC to unroll. */
335         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
336         cache->node.allocated = false;
337 }
338
339 static inline void *unmask_page(unsigned long p)
340 {
341         return (void *)(uintptr_t)(p & PAGE_MASK);
342 }
343
344 static inline unsigned int unmask_flags(unsigned long p)
345 {
346         return p & ~PAGE_MASK;
347 }
348
349 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
350
351 static void reloc_cache_fini(struct reloc_cache *cache)
352 {
353         void *vaddr;
354
355         if (!cache->vaddr)
356                 return;
357
358         vaddr = unmask_page(cache->vaddr);
359         if (cache->vaddr & KMAP) {
360                 if (cache->vaddr & CLFLUSH_AFTER)
361                         mb();
362
363                 kunmap_atomic(vaddr);
364                 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
365         } else {
366                 wmb();
367                 io_mapping_unmap_atomic((void __iomem *)vaddr);
368                 if (cache->node.allocated) {
369                         struct i915_ggtt *ggtt = &cache->i915->ggtt;
370
371                         ggtt->base.clear_range(&ggtt->base,
372                                                cache->node.start,
373                                                cache->node.size);
374                         drm_mm_remove_node(&cache->node);
375                 } else {
376                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
377                 }
378         }
379 }
380
381 static void *reloc_kmap(struct drm_i915_gem_object *obj,
382                         struct reloc_cache *cache,
383                         int page)
384 {
385         void *vaddr;
386
387         if (cache->vaddr) {
388                 kunmap_atomic(unmask_page(cache->vaddr));
389         } else {
390                 unsigned int flushes;
391                 int ret;
392
393                 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
394                 if (ret)
395                         return ERR_PTR(ret);
396
397                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
398                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
399
400                 cache->vaddr = flushes | KMAP;
401                 cache->node.mm = (void *)obj;
402                 if (flushes)
403                         mb();
404         }
405
406         vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
407         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
408         cache->page = page;
409
410         return vaddr;
411 }
412
413 static void *reloc_iomap(struct drm_i915_gem_object *obj,
414                          struct reloc_cache *cache,
415                          int page)
416 {
417         struct i915_ggtt *ggtt = &cache->i915->ggtt;
418         unsigned long offset;
419         void *vaddr;
420
421         if (cache->vaddr) {
422                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
423         } else {
424                 struct i915_vma *vma;
425                 int ret;
426
427                 if (use_cpu_reloc(obj))
428                         return NULL;
429
430                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
431                 if (ret)
432                         return ERR_PTR(ret);
433
434                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
435                                                PIN_MAPPABLE | PIN_NONBLOCK);
436                 if (IS_ERR(vma)) {
437                         memset(&cache->node, 0, sizeof(cache->node));
438                         ret = drm_mm_insert_node_in_range_generic
439                                 (&ggtt->base.mm, &cache->node,
440                                  4096, 0, 0,
441                                  0, ggtt->mappable_end,
442                                  DRM_MM_SEARCH_DEFAULT,
443                                  DRM_MM_CREATE_DEFAULT);
444                         if (ret) /* no inactive aperture space, use cpu reloc */
445                                 return NULL;
446                 } else {
447                         ret = i915_vma_put_fence(vma);
448                         if (ret) {
449                                 i915_vma_unpin(vma);
450                                 return ERR_PTR(ret);
451                         }
452
453                         cache->node.start = vma->node.start;
454                         cache->node.mm = (void *)vma;
455                 }
456         }
457
458         offset = cache->node.start;
459         if (cache->node.allocated) {
460                 wmb();
461                 ggtt->base.insert_page(&ggtt->base,
462                                        i915_gem_object_get_dma_address(obj, page),
463                                        offset, I915_CACHE_NONE, 0);
464         } else {
465                 offset += page << PAGE_SHIFT;
466         }
467
468         vaddr = (void __force *) io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
469         cache->page = page;
470         cache->vaddr = (unsigned long)vaddr;
471
472         return vaddr;
473 }
474
475 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
476                          struct reloc_cache *cache,
477                          int page)
478 {
479         void *vaddr;
480
481         if (cache->page == page) {
482                 vaddr = unmask_page(cache->vaddr);
483         } else {
484                 vaddr = NULL;
485                 if ((cache->vaddr & KMAP) == 0)
486                         vaddr = reloc_iomap(obj, cache, page);
487                 if (!vaddr)
488                         vaddr = reloc_kmap(obj, cache, page);
489         }
490
491         return vaddr;
492 }
493
494 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
495 {
496         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
497                 if (flushes & CLFLUSH_BEFORE) {
498                         clflushopt(addr);
499                         mb();
500                 }
501
502                 *addr = value;
503
504                 /* Writes to the same cacheline are serialised by the CPU
505                  * (including clflush). On the write path, we only require
506                  * that it hits memory in an orderly fashion and place
507                  * mb barriers at the start and end of the relocation phase
508                  * to ensure ordering of clflush wrt to the system.
509                  */
510                 if (flushes & CLFLUSH_AFTER)
511                         clflushopt(addr);
512         } else
513                 *addr = value;
514 }
515
516 static int
517 relocate_entry(struct drm_i915_gem_object *obj,
518                const struct drm_i915_gem_relocation_entry *reloc,
519                struct reloc_cache *cache,
520                u64 target_offset)
521 {
522         u64 offset = reloc->offset;
523         bool wide = cache->use_64bit_reloc;
524         void *vaddr;
525
526         target_offset = relocation_target(reloc, target_offset);
527 repeat:
528         vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
529         if (IS_ERR(vaddr))
530                 return PTR_ERR(vaddr);
531
532         clflush_write32(vaddr + offset_in_page(offset),
533                         lower_32_bits(target_offset),
534                         cache->vaddr);
535
536         if (wide) {
537                 offset += sizeof(u32);
538                 target_offset >>= 32;
539                 wide = false;
540                 goto repeat;
541         }
542
543         return 0;
544 }
545
546 static int
547 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
548                                    struct eb_vmas *eb,
549                                    struct drm_i915_gem_relocation_entry *reloc,
550                                    struct reloc_cache *cache)
551 {
552         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
553         struct drm_gem_object *target_obj;
554         struct drm_i915_gem_object *target_i915_obj;
555         struct i915_vma *target_vma;
556         uint64_t target_offset;
557         int ret;
558
559         /* we've already hold a reference to all valid objects */
560         target_vma = eb_get_vma(eb, reloc->target_handle);
561         if (unlikely(target_vma == NULL))
562                 return -ENOENT;
563         target_i915_obj = target_vma->obj;
564         target_obj = &target_vma->obj->base;
565
566         target_offset = gen8_canonical_addr(target_vma->node.start);
567
568         /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
569          * pipe_control writes because the gpu doesn't properly redirect them
570          * through the ppgtt for non_secure batchbuffers. */
571         if (unlikely(IS_GEN6(dev_priv) &&
572             reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
573                 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
574                                     PIN_GLOBAL);
575                 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
576                         return ret;
577         }
578
579         /* Validate that the target is in a valid r/w GPU domain */
580         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
581                 DRM_DEBUG("reloc with multiple write domains: "
582                           "obj %p target %d offset %d "
583                           "read %08x write %08x",
584                           obj, reloc->target_handle,
585                           (int) reloc->offset,
586                           reloc->read_domains,
587                           reloc->write_domain);
588                 return -EINVAL;
589         }
590         if (unlikely((reloc->write_domain | reloc->read_domains)
591                      & ~I915_GEM_GPU_DOMAINS)) {
592                 DRM_DEBUG("reloc with read/write non-GPU domains: "
593                           "obj %p target %d offset %d "
594                           "read %08x write %08x",
595                           obj, reloc->target_handle,
596                           (int) reloc->offset,
597                           reloc->read_domains,
598                           reloc->write_domain);
599                 return -EINVAL;
600         }
601
602         target_obj->pending_read_domains |= reloc->read_domains;
603         target_obj->pending_write_domain |= reloc->write_domain;
604
605         /* If the relocation already has the right value in it, no
606          * more work needs to be done.
607          */
608         if (target_offset == reloc->presumed_offset)
609                 return 0;
610
611         /* Check that the relocation address is valid... */
612         if (unlikely(reloc->offset >
613                      obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
614                 DRM_DEBUG("Relocation beyond object bounds: "
615                           "obj %p target %d offset %d size %d.\n",
616                           obj, reloc->target_handle,
617                           (int) reloc->offset,
618                           (int) obj->base.size);
619                 return -EINVAL;
620         }
621         if (unlikely(reloc->offset & 3)) {
622                 DRM_DEBUG("Relocation not 4-byte aligned: "
623                           "obj %p target %d offset %d.\n",
624                           obj, reloc->target_handle,
625                           (int) reloc->offset);
626                 return -EINVAL;
627         }
628
629         ret = relocate_entry(obj, reloc, cache, target_offset);
630         if (ret)
631                 return ret;
632
633         /* and update the user's relocation entry */
634         reloc->presumed_offset = target_offset;
635         return 0;
636 }
637
638 static int
639 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
640                                  struct eb_vmas *eb)
641 {
642 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
643         struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
644         struct drm_i915_gem_relocation_entry __user *user_relocs;
645         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
646         struct reloc_cache cache;
647         int remain, ret = 0;
648
649         user_relocs = u64_to_user_ptr(entry->relocs_ptr);
650         reloc_cache_init(&cache, eb->i915);
651
652         remain = entry->relocation_count;
653         while (remain) {
654                 struct drm_i915_gem_relocation_entry *r = stack_reloc;
655                 unsigned long unwritten;
656                 unsigned int count;
657
658                 count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc));
659                 remain -= count;
660
661                 /* This is the fast path and we cannot handle a pagefault
662                  * whilst holding the struct mutex lest the user pass in the
663                  * relocations contained within a mmaped bo. For in such a case
664                  * we, the page fault handler would call i915_gem_fault() and
665                  * we would try to acquire the struct mutex again. Obviously
666                  * this is bad and so lockdep complains vehemently.
667                  */
668                 pagefault_disable();
669                 unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]));
670                 pagefault_enable();
671                 if (unlikely(unwritten)) {
672                         ret = -EFAULT;
673                         goto out;
674                 }
675
676                 do {
677                         u64 offset = r->presumed_offset;
678
679                         ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
680                         if (ret)
681                                 goto out;
682
683                         if (r->presumed_offset != offset) {
684                                 pagefault_disable();
685                                 unwritten = __put_user(r->presumed_offset,
686                                                        &user_relocs->presumed_offset);
687                                 pagefault_enable();
688                                 if (unlikely(unwritten)) {
689                                         /* Note that reporting an error now
690                                          * leaves everything in an inconsistent
691                                          * state as we have *already* changed
692                                          * the relocation value inside the
693                                          * object. As we have not changed the
694                                          * reloc.presumed_offset or will not
695                                          * change the execobject.offset, on the
696                                          * call we may not rewrite the value
697                                          * inside the object, leaving it
698                                          * dangling and causing a GPU hang.
699                                          */
700                                         ret = -EFAULT;
701                                         goto out;
702                                 }
703                         }
704
705                         user_relocs++;
706                         r++;
707                 } while (--count);
708         }
709
710 out:
711         reloc_cache_fini(&cache);
712         return ret;
713 #undef N_RELOC
714 }
715
716 static int
717 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
718                                       struct eb_vmas *eb,
719                                       struct drm_i915_gem_relocation_entry *relocs)
720 {
721         const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
722         struct reloc_cache cache;
723         int i, ret = 0;
724
725         reloc_cache_init(&cache, eb->i915);
726         for (i = 0; i < entry->relocation_count; i++) {
727                 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
728                 if (ret)
729                         break;
730         }
731         reloc_cache_fini(&cache);
732
733         return ret;
734 }
735
736 static int
737 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
738 {
739         struct i915_vma *vma;
740         int ret = 0;
741
742         list_for_each_entry(vma, &eb->vmas, exec_list) {
743                 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
744                 if (ret)
745                         break;
746         }
747
748         return ret;
749 }
750
751 static bool only_mappable_for_reloc(unsigned int flags)
752 {
753         return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
754                 __EXEC_OBJECT_NEEDS_MAP;
755 }
756
757 static int
758 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
759                                 struct intel_engine_cs *engine,
760                                 bool *need_reloc)
761 {
762         struct drm_i915_gem_object *obj = vma->obj;
763         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
764         uint64_t flags;
765         int ret;
766
767         flags = PIN_USER;
768         if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
769                 flags |= PIN_GLOBAL;
770
771         if (!drm_mm_node_allocated(&vma->node)) {
772                 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
773                  * limit address to the first 4GBs for unflagged objects.
774                  */
775                 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
776                         flags |= PIN_ZONE_4G;
777                 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
778                         flags |= PIN_GLOBAL | PIN_MAPPABLE;
779                 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
780                         flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
781                 if (entry->flags & EXEC_OBJECT_PINNED)
782                         flags |= entry->offset | PIN_OFFSET_FIXED;
783                 if ((flags & PIN_MAPPABLE) == 0)
784                         flags |= PIN_HIGH;
785         }
786
787         ret = i915_vma_pin(vma,
788                            entry->pad_to_size,
789                            entry->alignment,
790                            flags);
791         if ((ret == -ENOSPC || ret == -E2BIG) &&
792             only_mappable_for_reloc(entry->flags))
793                 ret = i915_vma_pin(vma,
794                                    entry->pad_to_size,
795                                    entry->alignment,
796                                    flags & ~PIN_MAPPABLE);
797         if (ret)
798                 return ret;
799
800         entry->flags |= __EXEC_OBJECT_HAS_PIN;
801
802         if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
803                 ret = i915_vma_get_fence(vma);
804                 if (ret)
805                         return ret;
806
807                 if (i915_vma_pin_fence(vma))
808                         entry->flags |= __EXEC_OBJECT_HAS_FENCE;
809         }
810
811         if (entry->offset != vma->node.start) {
812                 entry->offset = vma->node.start;
813                 *need_reloc = true;
814         }
815
816         if (entry->flags & EXEC_OBJECT_WRITE) {
817                 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
818                 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
819         }
820
821         return 0;
822 }
823
824 static bool
825 need_reloc_mappable(struct i915_vma *vma)
826 {
827         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
828
829         if (entry->relocation_count == 0)
830                 return false;
831
832         if (!i915_vma_is_ggtt(vma))
833                 return false;
834
835         /* See also use_cpu_reloc() */
836         if (HAS_LLC(to_i915(vma->obj->base.dev)))
837                 return false;
838
839         if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
840                 return false;
841
842         return true;
843 }
844
845 static bool
846 eb_vma_misplaced(struct i915_vma *vma)
847 {
848         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
849
850         WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
851                 !i915_vma_is_ggtt(vma));
852
853         if (entry->alignment &&
854             vma->node.start & (entry->alignment - 1))
855                 return true;
856
857         if (vma->node.size < entry->pad_to_size)
858                 return true;
859
860         if (entry->flags & EXEC_OBJECT_PINNED &&
861             vma->node.start != entry->offset)
862                 return true;
863
864         if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
865             vma->node.start < BATCH_OFFSET_BIAS)
866                 return true;
867
868         /* avoid costly ping-pong once a batch bo ended up non-mappable */
869         if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
870             !i915_vma_is_map_and_fenceable(vma))
871                 return !only_mappable_for_reloc(entry->flags);
872
873         if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
874             (vma->node.start + vma->node.size - 1) >> 32)
875                 return true;
876
877         return false;
878 }
879
880 static int
881 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
882                             struct list_head *vmas,
883                             struct i915_gem_context *ctx,
884                             bool *need_relocs)
885 {
886         struct drm_i915_gem_object *obj;
887         struct i915_vma *vma;
888         struct i915_address_space *vm;
889         struct list_head ordered_vmas;
890         struct list_head pinned_vmas;
891         bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
892         int retry;
893
894         vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
895
896         INIT_LIST_HEAD(&ordered_vmas);
897         INIT_LIST_HEAD(&pinned_vmas);
898         while (!list_empty(vmas)) {
899                 struct drm_i915_gem_exec_object2 *entry;
900                 bool need_fence, need_mappable;
901
902                 vma = list_first_entry(vmas, struct i915_vma, exec_list);
903                 obj = vma->obj;
904                 entry = vma->exec_entry;
905
906                 if (ctx->flags & CONTEXT_NO_ZEROMAP)
907                         entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
908
909                 if (!has_fenced_gpu_access)
910                         entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
911                 need_fence =
912                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
913                         i915_gem_object_is_tiled(obj);
914                 need_mappable = need_fence || need_reloc_mappable(vma);
915
916                 if (entry->flags & EXEC_OBJECT_PINNED)
917                         list_move_tail(&vma->exec_list, &pinned_vmas);
918                 else if (need_mappable) {
919                         entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
920                         list_move(&vma->exec_list, &ordered_vmas);
921                 } else
922                         list_move_tail(&vma->exec_list, &ordered_vmas);
923
924                 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
925                 obj->base.pending_write_domain = 0;
926         }
927         list_splice(&ordered_vmas, vmas);
928         list_splice(&pinned_vmas, vmas);
929
930         /* Attempt to pin all of the buffers into the GTT.
931          * This is done in 3 phases:
932          *
933          * 1a. Unbind all objects that do not match the GTT constraints for
934          *     the execbuffer (fenceable, mappable, alignment etc).
935          * 1b. Increment pin count for already bound objects.
936          * 2.  Bind new objects.
937          * 3.  Decrement pin count.
938          *
939          * This avoid unnecessary unbinding of later objects in order to make
940          * room for the earlier objects *unless* we need to defragment.
941          */
942         retry = 0;
943         do {
944                 int ret = 0;
945
946                 /* Unbind any ill-fitting objects or pin. */
947                 list_for_each_entry(vma, vmas, exec_list) {
948                         if (!drm_mm_node_allocated(&vma->node))
949                                 continue;
950
951                         if (eb_vma_misplaced(vma))
952                                 ret = i915_vma_unbind(vma);
953                         else
954                                 ret = i915_gem_execbuffer_reserve_vma(vma,
955                                                                       engine,
956                                                                       need_relocs);
957                         if (ret)
958                                 goto err;
959                 }
960
961                 /* Bind fresh objects */
962                 list_for_each_entry(vma, vmas, exec_list) {
963                         if (drm_mm_node_allocated(&vma->node))
964                                 continue;
965
966                         ret = i915_gem_execbuffer_reserve_vma(vma, engine,
967                                                               need_relocs);
968                         if (ret)
969                                 goto err;
970                 }
971
972 err:
973                 if (ret != -ENOSPC || retry++)
974                         return ret;
975
976                 /* Decrement pin count for bound objects */
977                 list_for_each_entry(vma, vmas, exec_list)
978                         i915_gem_execbuffer_unreserve_vma(vma);
979
980                 ret = i915_gem_evict_vm(vm, true);
981                 if (ret)
982                         return ret;
983         } while (1);
984 }
985
986 static int
987 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
988                                   struct drm_i915_gem_execbuffer2 *args,
989                                   struct drm_file *file,
990                                   struct intel_engine_cs *engine,
991                                   struct eb_vmas *eb,
992                                   struct drm_i915_gem_exec_object2 *exec,
993                                   struct i915_gem_context *ctx)
994 {
995         struct drm_i915_gem_relocation_entry *reloc;
996         struct i915_address_space *vm;
997         struct i915_vma *vma;
998         bool need_relocs;
999         int *reloc_offset;
1000         int i, total, ret;
1001         unsigned count = args->buffer_count;
1002
1003         vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1004
1005         /* We may process another execbuffer during the unlock... */
1006         while (!list_empty(&eb->vmas)) {
1007                 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1008                 list_del_init(&vma->exec_list);
1009                 i915_gem_execbuffer_unreserve_vma(vma);
1010                 i915_vma_put(vma);
1011         }
1012
1013         mutex_unlock(&dev->struct_mutex);
1014
1015         total = 0;
1016         for (i = 0; i < count; i++)
1017                 total += exec[i].relocation_count;
1018
1019         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1020         reloc = drm_malloc_ab(total, sizeof(*reloc));
1021         if (reloc == NULL || reloc_offset == NULL) {
1022                 drm_free_large(reloc);
1023                 drm_free_large(reloc_offset);
1024                 mutex_lock(&dev->struct_mutex);
1025                 return -ENOMEM;
1026         }
1027
1028         total = 0;
1029         for (i = 0; i < count; i++) {
1030                 struct drm_i915_gem_relocation_entry __user *user_relocs;
1031                 u64 invalid_offset = (u64)-1;
1032                 int j;
1033
1034                 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1035
1036                 if (copy_from_user(reloc+total, user_relocs,
1037                                    exec[i].relocation_count * sizeof(*reloc))) {
1038                         ret = -EFAULT;
1039                         mutex_lock(&dev->struct_mutex);
1040                         goto err;
1041                 }
1042
1043                 /* As we do not update the known relocation offsets after
1044                  * relocating (due to the complexities in lock handling),
1045                  * we need to mark them as invalid now so that we force the
1046                  * relocation processing next time. Just in case the target
1047                  * object is evicted and then rebound into its old
1048                  * presumed_offset before the next execbuffer - if that
1049                  * happened we would make the mistake of assuming that the
1050                  * relocations were valid.
1051                  */
1052                 for (j = 0; j < exec[i].relocation_count; j++) {
1053                         if (__copy_to_user(&user_relocs[j].presumed_offset,
1054                                            &invalid_offset,
1055                                            sizeof(invalid_offset))) {
1056                                 ret = -EFAULT;
1057                                 mutex_lock(&dev->struct_mutex);
1058                                 goto err;
1059                         }
1060                 }
1061
1062                 reloc_offset[i] = total;
1063                 total += exec[i].relocation_count;
1064         }
1065
1066         ret = i915_mutex_lock_interruptible(dev);
1067         if (ret) {
1068                 mutex_lock(&dev->struct_mutex);
1069                 goto err;
1070         }
1071
1072         /* reacquire the objects */
1073         eb_reset(eb);
1074         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1075         if (ret)
1076                 goto err;
1077
1078         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1079         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1080                                           &need_relocs);
1081         if (ret)
1082                 goto err;
1083
1084         list_for_each_entry(vma, &eb->vmas, exec_list) {
1085                 int offset = vma->exec_entry - exec;
1086                 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1087                                                             reloc + reloc_offset[offset]);
1088                 if (ret)
1089                         goto err;
1090         }
1091
1092         /* Leave the user relocations as are, this is the painfully slow path,
1093          * and we want to avoid the complication of dropping the lock whilst
1094          * having buffers reserved in the aperture and so causing spurious
1095          * ENOSPC for random operations.
1096          */
1097
1098 err:
1099         drm_free_large(reloc);
1100         drm_free_large(reloc_offset);
1101         return ret;
1102 }
1103
1104 static int
1105 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1106                                 struct list_head *vmas)
1107 {
1108         struct i915_vma *vma;
1109         int ret;
1110
1111         list_for_each_entry(vma, vmas, exec_list) {
1112                 struct drm_i915_gem_object *obj = vma->obj;
1113
1114                 ret = i915_gem_request_await_object
1115                         (req, obj, obj->base.pending_write_domain);
1116                 if (ret)
1117                         return ret;
1118
1119                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
1120                         i915_gem_clflush_object(obj, false);
1121         }
1122
1123         /* Unconditionally flush any chipset caches (for streaming writes). */
1124         i915_gem_chipset_flush(req->engine->i915);
1125
1126         /* Unconditionally invalidate GPU caches and TLBs. */
1127         return req->engine->emit_flush(req, EMIT_INVALIDATE);
1128 }
1129
1130 static bool
1131 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1132 {
1133         if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1134                 return false;
1135
1136         /* Kernel clipping was a DRI1 misfeature */
1137         if (exec->num_cliprects || exec->cliprects_ptr)
1138                 return false;
1139
1140         if (exec->DR4 == 0xffffffff) {
1141                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1142                 exec->DR4 = 0;
1143         }
1144         if (exec->DR1 || exec->DR4)
1145                 return false;
1146
1147         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1148                 return false;
1149
1150         return true;
1151 }
1152
1153 static int
1154 validate_exec_list(struct drm_device *dev,
1155                    struct drm_i915_gem_exec_object2 *exec,
1156                    int count)
1157 {
1158         unsigned relocs_total = 0;
1159         unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1160         unsigned invalid_flags;
1161         int i;
1162
1163         /* INTERNAL flags must not overlap with external ones */
1164         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1165
1166         invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1167         if (USES_FULL_PPGTT(dev))
1168                 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1169
1170         for (i = 0; i < count; i++) {
1171                 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1172                 int length; /* limited by fault_in_pages_readable() */
1173
1174                 if (exec[i].flags & invalid_flags)
1175                         return -EINVAL;
1176
1177                 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1178                  * any non-page-aligned or non-canonical addresses.
1179                  */
1180                 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1181                         if (exec[i].offset !=
1182                             gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1183                                 return -EINVAL;
1184
1185                         /* From drm_mm perspective address space is continuous,
1186                          * so from this point we're always using non-canonical
1187                          * form internally.
1188                          */
1189                         exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1190                 }
1191
1192                 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1193                         return -EINVAL;
1194
1195                 /* pad_to_size was once a reserved field, so sanitize it */
1196                 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1197                         if (offset_in_page(exec[i].pad_to_size))
1198                                 return -EINVAL;
1199                 } else {
1200                         exec[i].pad_to_size = 0;
1201                 }
1202
1203                 /* First check for malicious input causing overflow in
1204                  * the worst case where we need to allocate the entire
1205                  * relocation tree as a single array.
1206                  */
1207                 if (exec[i].relocation_count > relocs_max - relocs_total)
1208                         return -EINVAL;
1209                 relocs_total += exec[i].relocation_count;
1210
1211                 length = exec[i].relocation_count *
1212                         sizeof(struct drm_i915_gem_relocation_entry);
1213                 /*
1214                  * We must check that the entire relocation array is safe
1215                  * to read, but since we may need to update the presumed
1216                  * offsets during execution, check for full write access.
1217                  */
1218                 if (!access_ok(VERIFY_WRITE, ptr, length))
1219                         return -EFAULT;
1220
1221                 if (likely(!i915.prefault_disable)) {
1222                         if (fault_in_pages_readable(ptr, length))
1223                                 return -EFAULT;
1224                 }
1225         }
1226
1227         return 0;
1228 }
1229
1230 static struct i915_gem_context *
1231 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1232                           struct intel_engine_cs *engine, const u32 ctx_id)
1233 {
1234         struct i915_gem_context *ctx;
1235         struct i915_ctx_hang_stats *hs;
1236
1237         ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1238         if (IS_ERR(ctx))
1239                 return ctx;
1240
1241         hs = &ctx->hang_stats;
1242         if (hs->banned) {
1243                 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1244                 return ERR_PTR(-EIO);
1245         }
1246
1247         return ctx;
1248 }
1249
1250 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
1251 {
1252         return !(obj->cache_level == I915_CACHE_NONE ||
1253                  obj->cache_level == I915_CACHE_WT);
1254 }
1255
1256 void i915_vma_move_to_active(struct i915_vma *vma,
1257                              struct drm_i915_gem_request *req,
1258                              unsigned int flags)
1259 {
1260         struct drm_i915_gem_object *obj = vma->obj;
1261         const unsigned int idx = req->engine->id;
1262
1263         GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1264
1265         /* Add a reference if we're newly entering the active list.
1266          * The order in which we add operations to the retirement queue is
1267          * vital here: mark_active adds to the start of the callback list,
1268          * such that subsequent callbacks are called first. Therefore we
1269          * add the active reference first and queue for it to be dropped
1270          * *last*.
1271          */
1272         if (!i915_vma_is_active(vma))
1273                 obj->active_count++;
1274         i915_vma_set_active(vma, idx);
1275         i915_gem_active_set(&vma->last_read[idx], req);
1276         list_move_tail(&vma->vm_link, &vma->vm->active_list);
1277
1278         if (flags & EXEC_OBJECT_WRITE) {
1279                 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1280                         i915_gem_active_set(&obj->frontbuffer_write, req);
1281
1282                 /* update for the implicit flush after a batch */
1283                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1284                 if (!obj->cache_dirty && gpu_write_needs_clflush(obj))
1285                         obj->cache_dirty = true;
1286         }
1287
1288         if (flags & EXEC_OBJECT_NEEDS_FENCE)
1289                 i915_gem_active_set(&vma->last_fence, req);
1290 }
1291
1292 static void eb_export_fence(struct drm_i915_gem_object *obj,
1293                             struct drm_i915_gem_request *req,
1294                             unsigned int flags)
1295 {
1296         struct reservation_object *resv = obj->resv;
1297
1298         /* Ignore errors from failing to allocate the new fence, we can't
1299          * handle an error right now. Worst case should be missed
1300          * synchronisation leading to rendering corruption.
1301          */
1302         ww_mutex_lock(&resv->lock, NULL);
1303         if (flags & EXEC_OBJECT_WRITE)
1304                 reservation_object_add_excl_fence(resv, &req->fence);
1305         else if (reservation_object_reserve_shared(resv) == 0)
1306                 reservation_object_add_shared_fence(resv, &req->fence);
1307         ww_mutex_unlock(&resv->lock);
1308 }
1309
1310 static void
1311 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1312                                    struct drm_i915_gem_request *req)
1313 {
1314         struct i915_vma *vma;
1315
1316         list_for_each_entry(vma, vmas, exec_list) {
1317                 struct drm_i915_gem_object *obj = vma->obj;
1318                 u32 old_read = obj->base.read_domains;
1319                 u32 old_write = obj->base.write_domain;
1320
1321                 obj->base.write_domain = obj->base.pending_write_domain;
1322                 if (obj->base.write_domain)
1323                         vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1324                 else
1325                         obj->base.pending_read_domains |= obj->base.read_domains;
1326                 obj->base.read_domains = obj->base.pending_read_domains;
1327
1328                 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1329                 eb_export_fence(obj, req, vma->exec_entry->flags);
1330                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1331         }
1332 }
1333
1334 static int
1335 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1336 {
1337         struct intel_ring *ring = req->ring;
1338         int ret, i;
1339
1340         if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1341                 DRM_DEBUG("sol reset is gen7/rcs only\n");
1342                 return -EINVAL;
1343         }
1344
1345         ret = intel_ring_begin(req, 4 * 3);
1346         if (ret)
1347                 return ret;
1348
1349         for (i = 0; i < 4; i++) {
1350                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1351                 intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
1352                 intel_ring_emit(ring, 0);
1353         }
1354
1355         intel_ring_advance(ring);
1356
1357         return 0;
1358 }
1359
1360 static struct i915_vma *
1361 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1362                           struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1363                           struct drm_i915_gem_object *batch_obj,
1364                           struct eb_vmas *eb,
1365                           u32 batch_start_offset,
1366                           u32 batch_len,
1367                           bool is_master)
1368 {
1369         struct drm_i915_gem_object *shadow_batch_obj;
1370         struct i915_vma *vma;
1371         int ret;
1372
1373         shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1374                                                    PAGE_ALIGN(batch_len));
1375         if (IS_ERR(shadow_batch_obj))
1376                 return ERR_CAST(shadow_batch_obj);
1377
1378         ret = intel_engine_cmd_parser(engine,
1379                                       batch_obj,
1380                                       shadow_batch_obj,
1381                                       batch_start_offset,
1382                                       batch_len,
1383                                       is_master);
1384         if (ret) {
1385                 if (ret == -EACCES) /* unhandled chained batch */
1386                         vma = NULL;
1387                 else
1388                         vma = ERR_PTR(ret);
1389                 goto out;
1390         }
1391
1392         vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1393         if (IS_ERR(vma))
1394                 goto out;
1395
1396         memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1397
1398         vma->exec_entry = shadow_exec_entry;
1399         vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1400         i915_gem_object_get(shadow_batch_obj);
1401         list_add_tail(&vma->exec_list, &eb->vmas);
1402
1403 out:
1404         i915_gem_object_unpin_pages(shadow_batch_obj);
1405         return vma;
1406 }
1407
1408 static int
1409 execbuf_submit(struct i915_execbuffer_params *params,
1410                struct drm_i915_gem_execbuffer2 *args,
1411                struct list_head *vmas)
1412 {
1413         struct drm_i915_private *dev_priv = params->request->i915;
1414         u64 exec_start, exec_len;
1415         int instp_mode;
1416         u32 instp_mask;
1417         int ret;
1418
1419         ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1420         if (ret)
1421                 return ret;
1422
1423         ret = i915_switch_context(params->request);
1424         if (ret)
1425                 return ret;
1426
1427         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1428         instp_mask = I915_EXEC_CONSTANTS_MASK;
1429         switch (instp_mode) {
1430         case I915_EXEC_CONSTANTS_REL_GENERAL:
1431         case I915_EXEC_CONSTANTS_ABSOLUTE:
1432         case I915_EXEC_CONSTANTS_REL_SURFACE:
1433                 if (instp_mode != 0 && params->engine->id != RCS) {
1434                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
1435                         return -EINVAL;
1436                 }
1437
1438                 if (instp_mode != dev_priv->relative_constants_mode) {
1439                         if (INTEL_INFO(dev_priv)->gen < 4) {
1440                                 DRM_DEBUG("no rel constants on pre-gen4\n");
1441                                 return -EINVAL;
1442                         }
1443
1444                         if (INTEL_INFO(dev_priv)->gen > 5 &&
1445                             instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1446                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
1447                                 return -EINVAL;
1448                         }
1449
1450                         /* The HW changed the meaning on this bit on gen6 */
1451                         if (INTEL_INFO(dev_priv)->gen >= 6)
1452                                 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1453                 }
1454                 break;
1455         default:
1456                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
1457                 return -EINVAL;
1458         }
1459
1460         if (params->engine->id == RCS &&
1461             instp_mode != dev_priv->relative_constants_mode) {
1462                 struct intel_ring *ring = params->request->ring;
1463
1464                 ret = intel_ring_begin(params->request, 4);
1465                 if (ret)
1466                         return ret;
1467
1468                 intel_ring_emit(ring, MI_NOOP);
1469                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1470                 intel_ring_emit_reg(ring, INSTPM);
1471                 intel_ring_emit(ring, instp_mask << 16 | instp_mode);
1472                 intel_ring_advance(ring);
1473
1474                 dev_priv->relative_constants_mode = instp_mode;
1475         }
1476
1477         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1478                 ret = i915_reset_gen7_sol_offsets(params->request);
1479                 if (ret)
1480                         return ret;
1481         }
1482
1483         exec_len   = args->batch_len;
1484         exec_start = params->batch->node.start +
1485                      params->args_batch_start_offset;
1486
1487         if (exec_len == 0)
1488                 exec_len = params->batch->size - params->args_batch_start_offset;
1489
1490         ret = params->engine->emit_bb_start(params->request,
1491                                             exec_start, exec_len,
1492                                             params->dispatch_flags);
1493         if (ret)
1494                 return ret;
1495
1496         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1497
1498         i915_gem_execbuffer_move_to_active(vmas, params->request);
1499
1500         return 0;
1501 }
1502
1503 /**
1504  * Find one BSD ring to dispatch the corresponding BSD command.
1505  * The engine index is returned.
1506  */
1507 static unsigned int
1508 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1509                          struct drm_file *file)
1510 {
1511         struct drm_i915_file_private *file_priv = file->driver_priv;
1512
1513         /* Check whether the file_priv has already selected one ring. */
1514         if ((int)file_priv->bsd_engine < 0)
1515                 file_priv->bsd_engine = atomic_fetch_xor(1,
1516                          &dev_priv->mm.bsd_engine_dispatch_index);
1517
1518         return file_priv->bsd_engine;
1519 }
1520
1521 #define I915_USER_RINGS (4)
1522
1523 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1524         [I915_EXEC_DEFAULT]     = RCS,
1525         [I915_EXEC_RENDER]      = RCS,
1526         [I915_EXEC_BLT]         = BCS,
1527         [I915_EXEC_BSD]         = VCS,
1528         [I915_EXEC_VEBOX]       = VECS
1529 };
1530
1531 static struct intel_engine_cs *
1532 eb_select_engine(struct drm_i915_private *dev_priv,
1533                  struct drm_file *file,
1534                  struct drm_i915_gem_execbuffer2 *args)
1535 {
1536         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1537         struct intel_engine_cs *engine;
1538
1539         if (user_ring_id > I915_USER_RINGS) {
1540                 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1541                 return NULL;
1542         }
1543
1544         if ((user_ring_id != I915_EXEC_BSD) &&
1545             ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1546                 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1547                           "bsd dispatch flags: %d\n", (int)(args->flags));
1548                 return NULL;
1549         }
1550
1551         if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1552                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1553
1554                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1555                         bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1556                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1557                            bsd_idx <= I915_EXEC_BSD_RING2) {
1558                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
1559                         bsd_idx--;
1560                 } else {
1561                         DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1562                                   bsd_idx);
1563                         return NULL;
1564                 }
1565
1566                 engine = dev_priv->engine[_VCS(bsd_idx)];
1567         } else {
1568                 engine = dev_priv->engine[user_ring_map[user_ring_id]];
1569         }
1570
1571         if (!engine) {
1572                 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1573                 return NULL;
1574         }
1575
1576         return engine;
1577 }
1578
1579 static int
1580 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1581                        struct drm_file *file,
1582                        struct drm_i915_gem_execbuffer2 *args,
1583                        struct drm_i915_gem_exec_object2 *exec)
1584 {
1585         struct drm_i915_private *dev_priv = to_i915(dev);
1586         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1587         struct eb_vmas *eb;
1588         struct drm_i915_gem_exec_object2 shadow_exec_entry;
1589         struct intel_engine_cs *engine;
1590         struct i915_gem_context *ctx;
1591         struct i915_address_space *vm;
1592         struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1593         struct i915_execbuffer_params *params = &params_master;
1594         const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1595         u32 dispatch_flags;
1596         int ret;
1597         bool need_relocs;
1598
1599         if (!i915_gem_check_execbuffer(args))
1600                 return -EINVAL;
1601
1602         ret = validate_exec_list(dev, exec, args->buffer_count);
1603         if (ret)
1604                 return ret;
1605
1606         dispatch_flags = 0;
1607         if (args->flags & I915_EXEC_SECURE) {
1608                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1609                     return -EPERM;
1610
1611                 dispatch_flags |= I915_DISPATCH_SECURE;
1612         }
1613         if (args->flags & I915_EXEC_IS_PINNED)
1614                 dispatch_flags |= I915_DISPATCH_PINNED;
1615
1616         engine = eb_select_engine(dev_priv, file, args);
1617         if (!engine)
1618                 return -EINVAL;
1619
1620         if (args->buffer_count < 1) {
1621                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1622                 return -EINVAL;
1623         }
1624
1625         if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1626                 if (!HAS_RESOURCE_STREAMER(dev_priv)) {
1627                         DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1628                         return -EINVAL;
1629                 }
1630                 if (engine->id != RCS) {
1631                         DRM_DEBUG("RS is not available on %s\n",
1632                                  engine->name);
1633                         return -EINVAL;
1634                 }
1635
1636                 dispatch_flags |= I915_DISPATCH_RS;
1637         }
1638
1639         /* Take a local wakeref for preparing to dispatch the execbuf as
1640          * we expect to access the hardware fairly frequently in the
1641          * process. Upon first dispatch, we acquire another prolonged
1642          * wakeref that we hold until the GPU has been idle for at least
1643          * 100ms.
1644          */
1645         intel_runtime_pm_get(dev_priv);
1646
1647         ret = i915_mutex_lock_interruptible(dev);
1648         if (ret)
1649                 goto pre_mutex_err;
1650
1651         ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1652         if (IS_ERR(ctx)) {
1653                 mutex_unlock(&dev->struct_mutex);
1654                 ret = PTR_ERR(ctx);
1655                 goto pre_mutex_err;
1656         }
1657
1658         i915_gem_context_get(ctx);
1659
1660         if (ctx->ppgtt)
1661                 vm = &ctx->ppgtt->base;
1662         else
1663                 vm = &ggtt->base;
1664
1665         memset(&params_master, 0x00, sizeof(params_master));
1666
1667         eb = eb_create(dev_priv, args);
1668         if (eb == NULL) {
1669                 i915_gem_context_put(ctx);
1670                 mutex_unlock(&dev->struct_mutex);
1671                 ret = -ENOMEM;
1672                 goto pre_mutex_err;
1673         }
1674
1675         /* Look up object handles */
1676         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1677         if (ret)
1678                 goto err;
1679
1680         /* take note of the batch buffer before we might reorder the lists */
1681         params->batch = eb_get_batch(eb);
1682
1683         /* Move the objects en-masse into the GTT, evicting if necessary. */
1684         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1685         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1686                                           &need_relocs);
1687         if (ret)
1688                 goto err;
1689
1690         /* The objects are in their final locations, apply the relocations. */
1691         if (need_relocs)
1692                 ret = i915_gem_execbuffer_relocate(eb);
1693         if (ret) {
1694                 if (ret == -EFAULT) {
1695                         ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1696                                                                 engine,
1697                                                                 eb, exec, ctx);
1698                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1699                 }
1700                 if (ret)
1701                         goto err;
1702         }
1703
1704         /* Set the pending read domains for the batch buffer to COMMAND */
1705         if (params->batch->obj->base.pending_write_domain) {
1706                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1707                 ret = -EINVAL;
1708                 goto err;
1709         }
1710         if (args->batch_start_offset > params->batch->size ||
1711             args->batch_len > params->batch->size - args->batch_start_offset) {
1712                 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1713                 ret = -EINVAL;
1714                 goto err;
1715         }
1716
1717         params->args_batch_start_offset = args->batch_start_offset;
1718         if (intel_engine_needs_cmd_parser(engine) && args->batch_len) {
1719                 struct i915_vma *vma;
1720
1721                 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1722                                                 params->batch->obj,
1723                                                 eb,
1724                                                 args->batch_start_offset,
1725                                                 args->batch_len,
1726                                                 drm_is_current_master(file));
1727                 if (IS_ERR(vma)) {
1728                         ret = PTR_ERR(vma);
1729                         goto err;
1730                 }
1731
1732                 if (vma) {
1733                         /*
1734                          * Batch parsed and accepted:
1735                          *
1736                          * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1737                          * bit from MI_BATCH_BUFFER_START commands issued in
1738                          * the dispatch_execbuffer implementations. We
1739                          * specifically don't want that set on batches the
1740                          * command parser has accepted.
1741                          */
1742                         dispatch_flags |= I915_DISPATCH_SECURE;
1743                         params->args_batch_start_offset = 0;
1744                         params->batch = vma;
1745                 }
1746         }
1747
1748         params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1749
1750         /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1751          * batch" bit. Hence we need to pin secure batches into the global gtt.
1752          * hsw should have this fixed, but bdw mucks it up again. */
1753         if (dispatch_flags & I915_DISPATCH_SECURE) {
1754                 struct drm_i915_gem_object *obj = params->batch->obj;
1755                 struct i915_vma *vma;
1756
1757                 /*
1758                  * So on first glance it looks freaky that we pin the batch here
1759                  * outside of the reservation loop. But:
1760                  * - The batch is already pinned into the relevant ppgtt, so we
1761                  *   already have the backing storage fully allocated.
1762                  * - No other BO uses the global gtt (well contexts, but meh),
1763                  *   so we don't really have issues with multiple objects not
1764                  *   fitting due to fragmentation.
1765                  * So this is actually safe.
1766                  */
1767                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1768                 if (IS_ERR(vma)) {
1769                         ret = PTR_ERR(vma);
1770                         goto err;
1771                 }
1772
1773                 params->batch = vma;
1774         }
1775
1776         /* Allocate a request for this batch buffer nice and early. */
1777         params->request = i915_gem_request_alloc(engine, ctx);
1778         if (IS_ERR(params->request)) {
1779                 ret = PTR_ERR(params->request);
1780                 goto err_batch_unpin;
1781         }
1782
1783         /* Whilst this request exists, batch_obj will be on the
1784          * active_list, and so will hold the active reference. Only when this
1785          * request is retired will the the batch_obj be moved onto the
1786          * inactive_list and lose its active reference. Hence we do not need
1787          * to explicitly hold another reference here.
1788          */
1789         params->request->batch = params->batch;
1790
1791         ret = i915_gem_request_add_to_client(params->request, file);
1792         if (ret)
1793                 goto err_request;
1794
1795         /*
1796          * Save assorted stuff away to pass through to *_submission().
1797          * NB: This data should be 'persistent' and not local as it will
1798          * kept around beyond the duration of the IOCTL once the GPU
1799          * scheduler arrives.
1800          */
1801         params->dev                     = dev;
1802         params->file                    = file;
1803         params->engine                    = engine;
1804         params->dispatch_flags          = dispatch_flags;
1805         params->ctx                     = ctx;
1806
1807         ret = execbuf_submit(params, args, &eb->vmas);
1808 err_request:
1809         __i915_add_request(params->request, ret == 0);
1810
1811 err_batch_unpin:
1812         /*
1813          * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1814          * batch vma for correctness. For less ugly and less fragility this
1815          * needs to be adjusted to also track the ggtt batch vma properly as
1816          * active.
1817          */
1818         if (dispatch_flags & I915_DISPATCH_SECURE)
1819                 i915_vma_unpin(params->batch);
1820 err:
1821         /* the request owns the ref now */
1822         i915_gem_context_put(ctx);
1823         eb_destroy(eb);
1824
1825         mutex_unlock(&dev->struct_mutex);
1826
1827 pre_mutex_err:
1828         /* intel_gpu_busy should also get a ref, so it will free when the device
1829          * is really idle. */
1830         intel_runtime_pm_put(dev_priv);
1831         return ret;
1832 }
1833
1834 /*
1835  * Legacy execbuffer just creates an exec2 list from the original exec object
1836  * list array and passes it to the real function.
1837  */
1838 int
1839 i915_gem_execbuffer(struct drm_device *dev, void *data,
1840                     struct drm_file *file)
1841 {
1842         struct drm_i915_gem_execbuffer *args = data;
1843         struct drm_i915_gem_execbuffer2 exec2;
1844         struct drm_i915_gem_exec_object *exec_list = NULL;
1845         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1846         int ret, i;
1847
1848         if (args->buffer_count < 1) {
1849                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1850                 return -EINVAL;
1851         }
1852
1853         /* Copy in the exec list from userland */
1854         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1855         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1856         if (exec_list == NULL || exec2_list == NULL) {
1857                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1858                           args->buffer_count);
1859                 drm_free_large(exec_list);
1860                 drm_free_large(exec2_list);
1861                 return -ENOMEM;
1862         }
1863         ret = copy_from_user(exec_list,
1864                              u64_to_user_ptr(args->buffers_ptr),
1865                              sizeof(*exec_list) * args->buffer_count);
1866         if (ret != 0) {
1867                 DRM_DEBUG("copy %d exec entries failed %d\n",
1868                           args->buffer_count, ret);
1869                 drm_free_large(exec_list);
1870                 drm_free_large(exec2_list);
1871                 return -EFAULT;
1872         }
1873
1874         for (i = 0; i < args->buffer_count; i++) {
1875                 exec2_list[i].handle = exec_list[i].handle;
1876                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1877                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1878                 exec2_list[i].alignment = exec_list[i].alignment;
1879                 exec2_list[i].offset = exec_list[i].offset;
1880                 if (INTEL_GEN(to_i915(dev)) < 4)
1881                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1882                 else
1883                         exec2_list[i].flags = 0;
1884         }
1885
1886         exec2.buffers_ptr = args->buffers_ptr;
1887         exec2.buffer_count = args->buffer_count;
1888         exec2.batch_start_offset = args->batch_start_offset;
1889         exec2.batch_len = args->batch_len;
1890         exec2.DR1 = args->DR1;
1891         exec2.DR4 = args->DR4;
1892         exec2.num_cliprects = args->num_cliprects;
1893         exec2.cliprects_ptr = args->cliprects_ptr;
1894         exec2.flags = I915_EXEC_RENDER;
1895         i915_execbuffer2_set_context_id(exec2, 0);
1896
1897         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1898         if (!ret) {
1899                 struct drm_i915_gem_exec_object __user *user_exec_list =
1900                         u64_to_user_ptr(args->buffers_ptr);
1901
1902                 /* Copy the new buffer offsets back to the user's exec list. */
1903                 for (i = 0; i < args->buffer_count; i++) {
1904                         exec2_list[i].offset =
1905                                 gen8_canonical_addr(exec2_list[i].offset);
1906                         ret = __copy_to_user(&user_exec_list[i].offset,
1907                                              &exec2_list[i].offset,
1908                                              sizeof(user_exec_list[i].offset));
1909                         if (ret) {
1910                                 ret = -EFAULT;
1911                                 DRM_DEBUG("failed to copy %d exec entries "
1912                                           "back to user (%d)\n",
1913                                           args->buffer_count, ret);
1914                                 break;
1915                         }
1916                 }
1917         }
1918
1919         drm_free_large(exec_list);
1920         drm_free_large(exec2_list);
1921         return ret;
1922 }
1923
1924 int
1925 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1926                      struct drm_file *file)
1927 {
1928         struct drm_i915_gem_execbuffer2 *args = data;
1929         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1930         int ret;
1931
1932         if (args->buffer_count < 1 ||
1933             args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1934                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1935                 return -EINVAL;
1936         }
1937
1938         if (args->rsvd2 != 0) {
1939                 DRM_DEBUG("dirty rvsd2 field\n");
1940                 return -EINVAL;
1941         }
1942
1943         exec2_list = drm_malloc_gfp(args->buffer_count,
1944                                     sizeof(*exec2_list),
1945                                     GFP_TEMPORARY);
1946         if (exec2_list == NULL) {
1947                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1948                           args->buffer_count);
1949                 return -ENOMEM;
1950         }
1951         ret = copy_from_user(exec2_list,
1952                              u64_to_user_ptr(args->buffers_ptr),
1953                              sizeof(*exec2_list) * args->buffer_count);
1954         if (ret != 0) {
1955                 DRM_DEBUG("copy %d exec entries failed %d\n",
1956                           args->buffer_count, ret);
1957                 drm_free_large(exec2_list);
1958                 return -EFAULT;
1959         }
1960
1961         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1962         if (!ret) {
1963                 /* Copy the new buffer offsets back to the user's exec list. */
1964                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
1965                                    u64_to_user_ptr(args->buffers_ptr);
1966                 int i;
1967
1968                 for (i = 0; i < args->buffer_count; i++) {
1969                         exec2_list[i].offset =
1970                                 gen8_canonical_addr(exec2_list[i].offset);
1971                         ret = __copy_to_user(&user_exec_list[i].offset,
1972                                              &exec2_list[i].offset,
1973                                              sizeof(user_exec_list[i].offset));
1974                         if (ret) {
1975                                 ret = -EFAULT;
1976                                 DRM_DEBUG("failed to copy %d exec entries "
1977                                           "back to user\n",
1978                                           args->buffer_count);
1979                                 break;
1980                         }
1981                 }
1982         }
1983
1984         drm_free_large(exec2_list);
1985         return ret;
1986 }