]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_execbuffer.c
drm/i915: s/DRM_ERROR/DRM_DEBUG in i915_gem_execbuffer.c
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
36
37 struct change_domains {
38         uint32_t invalidate_domains;
39         uint32_t flush_domains;
40         uint32_t flush_rings;
41         uint32_t flips;
42 };
43
44 /*
45  * Set the next domain for the specified object. This
46  * may not actually perform the necessary flushing/invaliding though,
47  * as that may want to be batched with other set_domain operations
48  *
49  * This is (we hope) the only really tricky part of gem. The goal
50  * is fairly simple -- track which caches hold bits of the object
51  * and make sure they remain coherent. A few concrete examples may
52  * help to explain how it works. For shorthand, we use the notation
53  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54  * a pair of read and write domain masks.
55  *
56  * Case 1: the batch buffer
57  *
58  *      1. Allocated
59  *      2. Written by CPU
60  *      3. Mapped to GTT
61  *      4. Read by GPU
62  *      5. Unmapped from GTT
63  *      6. Freed
64  *
65  *      Let's take these a step at a time
66  *
67  *      1. Allocated
68  *              Pages allocated from the kernel may still have
69  *              cache contents, so we set them to (CPU, CPU) always.
70  *      2. Written by CPU (using pwrite)
71  *              The pwrite function calls set_domain (CPU, CPU) and
72  *              this function does nothing (as nothing changes)
73  *      3. Mapped by GTT
74  *              This function asserts that the object is not
75  *              currently in any GPU-based read or write domains
76  *      4. Read by GPU
77  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
78  *              As write_domain is zero, this function adds in the
79  *              current read domains (CPU+COMMAND, 0).
80  *              flush_domains is set to CPU.
81  *              invalidate_domains is set to COMMAND
82  *              clflush is run to get data out of the CPU caches
83  *              then i915_dev_set_domain calls i915_gem_flush to
84  *              emit an MI_FLUSH and drm_agp_chipset_flush
85  *      5. Unmapped from GTT
86  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
87  *              flush_domains and invalidate_domains end up both zero
88  *              so no flushing/invalidating happens
89  *      6. Freed
90  *              yay, done
91  *
92  * Case 2: The shared render buffer
93  *
94  *      1. Allocated
95  *      2. Mapped to GTT
96  *      3. Read/written by GPU
97  *      4. set_domain to (CPU,CPU)
98  *      5. Read/written by CPU
99  *      6. Read/written by GPU
100  *
101  *      1. Allocated
102  *              Same as last example, (CPU, CPU)
103  *      2. Mapped to GTT
104  *              Nothing changes (assertions find that it is not in the GPU)
105  *      3. Read/written by GPU
106  *              execbuffer calls set_domain (RENDER, RENDER)
107  *              flush_domains gets CPU
108  *              invalidate_domains gets GPU
109  *              clflush (obj)
110  *              MI_FLUSH and drm_agp_chipset_flush
111  *      4. set_domain (CPU, CPU)
112  *              flush_domains gets GPU
113  *              invalidate_domains gets CPU
114  *              wait_rendering (obj) to make sure all drawing is complete.
115  *              This will include an MI_FLUSH to get the data from GPU
116  *              to memory
117  *              clflush (obj) to invalidate the CPU cache
118  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119  *      5. Read/written by CPU
120  *              cache lines are loaded and dirtied
121  *      6. Read written by GPU
122  *              Same as last GPU access
123  *
124  * Case 3: The constant buffer
125  *
126  *      1. Allocated
127  *      2. Written by CPU
128  *      3. Read by GPU
129  *      4. Updated (written) by CPU again
130  *      5. Read by GPU
131  *
132  *      1. Allocated
133  *              (CPU, CPU)
134  *      2. Written by CPU
135  *              (CPU, CPU)
136  *      3. Read by GPU
137  *              (CPU+RENDER, 0)
138  *              flush_domains = CPU
139  *              invalidate_domains = RENDER
140  *              clflush (obj)
141  *              MI_FLUSH
142  *              drm_agp_chipset_flush
143  *      4. Updated (written) by CPU again
144  *              (CPU, CPU)
145  *              flush_domains = 0 (no previous write domain)
146  *              invalidate_domains = 0 (no new read domains)
147  *      5. Read by GPU
148  *              (CPU+RENDER, 0)
149  *              flush_domains = CPU
150  *              invalidate_domains = RENDER
151  *              clflush (obj)
152  *              MI_FLUSH
153  *              drm_agp_chipset_flush
154  */
155 static void
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157                                   struct intel_ring_buffer *ring,
158                                   struct change_domains *cd)
159 {
160         uint32_t invalidate_domains = 0, flush_domains = 0;
161
162         /*
163          * If the object isn't moving to a new write domain,
164          * let the object stay in multiple read domains
165          */
166         if (obj->base.pending_write_domain == 0)
167                 obj->base.pending_read_domains |= obj->base.read_domains;
168
169         /*
170          * Flush the current write domain if
171          * the new read domains don't match. Invalidate
172          * any read domains which differ from the old
173          * write domain
174          */
175         if (obj->base.write_domain &&
176             (((obj->base.write_domain != obj->base.pending_read_domains ||
177                obj->ring != ring)) ||
178              (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179                 flush_domains |= obj->base.write_domain;
180                 invalidate_domains |=
181                         obj->base.pending_read_domains & ~obj->base.write_domain;
182         }
183         /*
184          * Invalidate any read caches which may have
185          * stale data. That is, any new read domains.
186          */
187         invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189                 i915_gem_clflush_object(obj);
190
191         if (obj->base.pending_write_domain)
192                 cd->flips |= atomic_read(&obj->pending_flip);
193
194         /* The actual obj->write_domain will be updated with
195          * pending_write_domain after we emit the accumulated flush for all
196          * of our domain changes in execbuffers (which clears objects'
197          * write_domains).  So if we have a current write domain that we
198          * aren't changing, set pending_write_domain to that.
199          */
200         if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201                 obj->base.pending_write_domain = obj->base.write_domain;
202
203         cd->invalidate_domains |= invalidate_domains;
204         cd->flush_domains |= flush_domains;
205         if (flush_domains & I915_GEM_GPU_DOMAINS)
206                 cd->flush_rings |= intel_ring_flag(obj->ring);
207         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208                 cd->flush_rings |= intel_ring_flag(ring);
209 }
210
211 struct eb_objects {
212         int and;
213         struct hlist_head buckets[0];
214 };
215
216 static struct eb_objects *
217 eb_create(int size)
218 {
219         struct eb_objects *eb;
220         int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221         while (count > size)
222                 count >>= 1;
223         eb = kzalloc(count*sizeof(struct hlist_head) +
224                      sizeof(struct eb_objects),
225                      GFP_KERNEL);
226         if (eb == NULL)
227                 return eb;
228
229         eb->and = count - 1;
230         return eb;
231 }
232
233 static void
234 eb_reset(struct eb_objects *eb)
235 {
236         memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237 }
238
239 static void
240 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241 {
242         hlist_add_head(&obj->exec_node,
243                        &eb->buckets[obj->exec_handle & eb->and]);
244 }
245
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 {
249         struct hlist_head *head;
250         struct hlist_node *node;
251         struct drm_i915_gem_object *obj;
252
253         head = &eb->buckets[handle & eb->and];
254         hlist_for_each(node, head) {
255                 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256                 if (obj->exec_handle == handle)
257                         return obj;
258         }
259
260         return NULL;
261 }
262
263 static void
264 eb_destroy(struct eb_objects *eb)
265 {
266         kfree(eb);
267 }
268
269 static int
270 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
271                                    struct eb_objects *eb,
272                                    struct drm_i915_gem_relocation_entry *reloc)
273 {
274         struct drm_device *dev = obj->base.dev;
275         struct drm_gem_object *target_obj;
276         uint32_t target_offset;
277         int ret = -EINVAL;
278
279         /* we've already hold a reference to all valid objects */
280         target_obj = &eb_get_object(eb, reloc->target_handle)->base;
281         if (unlikely(target_obj == NULL))
282                 return -ENOENT;
283
284         target_offset = to_intel_bo(target_obj)->gtt_offset;
285
286         /* The target buffer should have appeared before us in the
287          * exec_object list, so it should have a GTT space bound by now.
288          */
289         if (unlikely(target_offset == 0)) {
290                 DRM_DEBUG("No GTT space found for object %d\n",
291                           reloc->target_handle);
292                 return ret;
293         }
294
295         /* Validate that the target is in a valid r/w GPU domain */
296         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
297                 DRM_DEBUG("reloc with multiple write domains: "
298                           "obj %p target %d offset %d "
299                           "read %08x write %08x",
300                           obj, reloc->target_handle,
301                           (int) reloc->offset,
302                           reloc->read_domains,
303                           reloc->write_domain);
304                 return ret;
305         }
306         if (unlikely((reloc->write_domain | reloc->read_domains)
307                      & ~I915_GEM_GPU_DOMAINS)) {
308                 DRM_DEBUG("reloc with read/write non-GPU domains: "
309                           "obj %p target %d offset %d "
310                           "read %08x write %08x",
311                           obj, reloc->target_handle,
312                           (int) reloc->offset,
313                           reloc->read_domains,
314                           reloc->write_domain);
315                 return ret;
316         }
317         if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
318                      reloc->write_domain != target_obj->pending_write_domain)) {
319                 DRM_DEBUG("Write domain conflict: "
320                           "obj %p target %d offset %d "
321                           "new %08x old %08x\n",
322                           obj, reloc->target_handle,
323                           (int) reloc->offset,
324                           reloc->write_domain,
325                           target_obj->pending_write_domain);
326                 return ret;
327         }
328
329         target_obj->pending_read_domains |= reloc->read_domains;
330         target_obj->pending_write_domain |= reloc->write_domain;
331
332         /* If the relocation already has the right value in it, no
333          * more work needs to be done.
334          */
335         if (target_offset == reloc->presumed_offset)
336                 return 0;
337
338         /* Check that the relocation address is valid... */
339         if (unlikely(reloc->offset > obj->base.size - 4)) {
340                 DRM_DEBUG("Relocation beyond object bounds: "
341                           "obj %p target %d offset %d size %d.\n",
342                           obj, reloc->target_handle,
343                           (int) reloc->offset,
344                           (int) obj->base.size);
345                 return ret;
346         }
347         if (unlikely(reloc->offset & 3)) {
348                 DRM_DEBUG("Relocation not 4-byte aligned: "
349                           "obj %p target %d offset %d.\n",
350                           obj, reloc->target_handle,
351                           (int) reloc->offset);
352                 return ret;
353         }
354
355         reloc->delta += target_offset;
356         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
357                 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
358                 char *vaddr;
359
360                 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
361                 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
362                 kunmap_atomic(vaddr);
363         } else {
364                 struct drm_i915_private *dev_priv = dev->dev_private;
365                 uint32_t __iomem *reloc_entry;
366                 void __iomem *reloc_page;
367
368                 /* We can't wait for rendering with pagefaults disabled */
369                 if (obj->active && in_atomic())
370                         return -EFAULT;
371
372                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
373                 if (ret)
374                         return ret;
375
376                 /* Map the page containing the relocation we're going to perform.  */
377                 reloc->offset += obj->gtt_offset;
378                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
379                                                       reloc->offset & PAGE_MASK);
380                 reloc_entry = (uint32_t __iomem *)
381                         (reloc_page + (reloc->offset & ~PAGE_MASK));
382                 iowrite32(reloc->delta, reloc_entry);
383                 io_mapping_unmap_atomic(reloc_page);
384         }
385
386         /* and update the user's relocation entry */
387         reloc->presumed_offset = target_offset;
388
389         return 0;
390 }
391
392 static int
393 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
394                                     struct eb_objects *eb)
395 {
396         struct drm_i915_gem_relocation_entry __user *user_relocs;
397         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
398         int i, ret;
399
400         user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
401         for (i = 0; i < entry->relocation_count; i++) {
402                 struct drm_i915_gem_relocation_entry reloc;
403
404                 if (__copy_from_user_inatomic(&reloc,
405                                               user_relocs+i,
406                                               sizeof(reloc)))
407                         return -EFAULT;
408
409                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
410                 if (ret)
411                         return ret;
412
413                 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
414                                             &reloc.presumed_offset,
415                                             sizeof(reloc.presumed_offset)))
416                         return -EFAULT;
417         }
418
419         return 0;
420 }
421
422 static int
423 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
424                                          struct eb_objects *eb,
425                                          struct drm_i915_gem_relocation_entry *relocs)
426 {
427         const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
428         int i, ret;
429
430         for (i = 0; i < entry->relocation_count; i++) {
431                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
432                 if (ret)
433                         return ret;
434         }
435
436         return 0;
437 }
438
439 static int
440 i915_gem_execbuffer_relocate(struct drm_device *dev,
441                              struct eb_objects *eb,
442                              struct list_head *objects)
443 {
444         struct drm_i915_gem_object *obj;
445         int ret = 0;
446
447         /* This is the fast path and we cannot handle a pagefault whilst
448          * holding the struct mutex lest the user pass in the relocations
449          * contained within a mmaped bo. For in such a case we, the page
450          * fault handler would call i915_gem_fault() and we would try to
451          * acquire the struct mutex again. Obviously this is bad and so
452          * lockdep complains vehemently.
453          */
454         pagefault_disable();
455         list_for_each_entry(obj, objects, exec_list) {
456                 ret = i915_gem_execbuffer_relocate_object(obj, eb);
457                 if (ret)
458                         break;
459         }
460         pagefault_enable();
461
462         return ret;
463 }
464
465 #define  __EXEC_OBJECT_HAS_FENCE (1<<31)
466
467 static int
468 pin_and_fence_object(struct drm_i915_gem_object *obj,
469                      struct intel_ring_buffer *ring)
470 {
471         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
472         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
473         bool need_fence, need_mappable;
474         int ret;
475
476         need_fence =
477                 has_fenced_gpu_access &&
478                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
479                 obj->tiling_mode != I915_TILING_NONE;
480         need_mappable =
481                 entry->relocation_count ? true : need_fence;
482
483         ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
484         if (ret)
485                 return ret;
486
487         if (has_fenced_gpu_access) {
488                 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
489                         if (obj->tiling_mode) {
490                                 ret = i915_gem_object_get_fence(obj, ring);
491                                 if (ret)
492                                         goto err_unpin;
493
494                                 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
495                                 i915_gem_object_pin_fence(obj);
496                         } else {
497                                 ret = i915_gem_object_put_fence(obj);
498                                 if (ret)
499                                         goto err_unpin;
500                         }
501                 }
502                 obj->pending_fenced_gpu_access = need_fence;
503         }
504
505         entry->offset = obj->gtt_offset;
506         return 0;
507
508 err_unpin:
509         i915_gem_object_unpin(obj);
510         return ret;
511 }
512
513 static int
514 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
515                             struct drm_file *file,
516                             struct list_head *objects)
517 {
518         struct drm_i915_gem_object *obj;
519         int ret, retry;
520         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
521         struct list_head ordered_objects;
522
523         INIT_LIST_HEAD(&ordered_objects);
524         while (!list_empty(objects)) {
525                 struct drm_i915_gem_exec_object2 *entry;
526                 bool need_fence, need_mappable;
527
528                 obj = list_first_entry(objects,
529                                        struct drm_i915_gem_object,
530                                        exec_list);
531                 entry = obj->exec_entry;
532
533                 need_fence =
534                         has_fenced_gpu_access &&
535                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
536                         obj->tiling_mode != I915_TILING_NONE;
537                 need_mappable =
538                         entry->relocation_count ? true : need_fence;
539
540                 if (need_mappable)
541                         list_move(&obj->exec_list, &ordered_objects);
542                 else
543                         list_move_tail(&obj->exec_list, &ordered_objects);
544
545                 obj->base.pending_read_domains = 0;
546                 obj->base.pending_write_domain = 0;
547         }
548         list_splice(&ordered_objects, objects);
549
550         /* Attempt to pin all of the buffers into the GTT.
551          * This is done in 3 phases:
552          *
553          * 1a. Unbind all objects that do not match the GTT constraints for
554          *     the execbuffer (fenceable, mappable, alignment etc).
555          * 1b. Increment pin count for already bound objects.
556          * 2.  Bind new objects.
557          * 3.  Decrement pin count.
558          *
559          * This avoid unnecessary unbinding of later objects in order to makr
560          * room for the earlier objects *unless* we need to defragment.
561          */
562         retry = 0;
563         do {
564                 ret = 0;
565
566                 /* Unbind any ill-fitting objects or pin. */
567                 list_for_each_entry(obj, objects, exec_list) {
568                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
569                         bool need_fence, need_mappable;
570
571                         if (!obj->gtt_space)
572                                 continue;
573
574                         need_fence =
575                                 has_fenced_gpu_access &&
576                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
577                                 obj->tiling_mode != I915_TILING_NONE;
578                         need_mappable =
579                                 entry->relocation_count ? true : need_fence;
580
581                         if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
582                             (need_mappable && !obj->map_and_fenceable))
583                                 ret = i915_gem_object_unbind(obj);
584                         else
585                                 ret = pin_and_fence_object(obj, ring);
586                         if (ret)
587                                 goto err;
588                 }
589
590                 /* Bind fresh objects */
591                 list_for_each_entry(obj, objects, exec_list) {
592                         if (obj->gtt_space)
593                                 continue;
594
595                         ret = pin_and_fence_object(obj, ring);
596                         if (ret) {
597                                 int ret_ignore;
598
599                                 /* This can potentially raise a harmless
600                                  * -EINVAL if we failed to bind in the above
601                                  * call. It cannot raise -EINTR since we know
602                                  * that the bo is freshly bound and so will
603                                  * not need to be flushed or waited upon.
604                                  */
605                                 ret_ignore = i915_gem_object_unbind(obj);
606                                 (void)ret_ignore;
607                                 WARN_ON(obj->gtt_space);
608                                 break;
609                         }
610                 }
611
612                 /* Decrement pin count for bound objects */
613                 list_for_each_entry(obj, objects, exec_list) {
614                         struct drm_i915_gem_exec_object2 *entry;
615
616                         if (!obj->gtt_space)
617                                 continue;
618
619                         entry = obj->exec_entry;
620                         if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
621                                 i915_gem_object_unpin_fence(obj);
622                                 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
623                         }
624
625                         i915_gem_object_unpin(obj);
626                 }
627
628                 if (ret != -ENOSPC || retry > 1)
629                         return ret;
630
631                 /* First attempt, just clear anything that is purgeable.
632                  * Second attempt, clear the entire GTT.
633                  */
634                 ret = i915_gem_evict_everything(ring->dev, retry == 0);
635                 if (ret)
636                         return ret;
637
638                 retry++;
639         } while (1);
640
641 err:
642         list_for_each_entry_continue_reverse(obj, objects, exec_list) {
643                 struct drm_i915_gem_exec_object2 *entry;
644
645                 if (!obj->gtt_space)
646                         continue;
647
648                 entry = obj->exec_entry;
649                 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
650                         i915_gem_object_unpin_fence(obj);
651                         entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
652                 }
653
654                 i915_gem_object_unpin(obj);
655         }
656
657         return ret;
658 }
659
660 static int
661 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
662                                   struct drm_file *file,
663                                   struct intel_ring_buffer *ring,
664                                   struct list_head *objects,
665                                   struct eb_objects *eb,
666                                   struct drm_i915_gem_exec_object2 *exec,
667                                   int count)
668 {
669         struct drm_i915_gem_relocation_entry *reloc;
670         struct drm_i915_gem_object *obj;
671         int *reloc_offset;
672         int i, total, ret;
673
674         /* We may process another execbuffer during the unlock... */
675         while (!list_empty(objects)) {
676                 obj = list_first_entry(objects,
677                                        struct drm_i915_gem_object,
678                                        exec_list);
679                 list_del_init(&obj->exec_list);
680                 drm_gem_object_unreference(&obj->base);
681         }
682
683         mutex_unlock(&dev->struct_mutex);
684
685         total = 0;
686         for (i = 0; i < count; i++)
687                 total += exec[i].relocation_count;
688
689         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
690         reloc = drm_malloc_ab(total, sizeof(*reloc));
691         if (reloc == NULL || reloc_offset == NULL) {
692                 drm_free_large(reloc);
693                 drm_free_large(reloc_offset);
694                 mutex_lock(&dev->struct_mutex);
695                 return -ENOMEM;
696         }
697
698         total = 0;
699         for (i = 0; i < count; i++) {
700                 struct drm_i915_gem_relocation_entry __user *user_relocs;
701
702                 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
703
704                 if (copy_from_user(reloc+total, user_relocs,
705                                    exec[i].relocation_count * sizeof(*reloc))) {
706                         ret = -EFAULT;
707                         mutex_lock(&dev->struct_mutex);
708                         goto err;
709                 }
710
711                 reloc_offset[i] = total;
712                 total += exec[i].relocation_count;
713         }
714
715         ret = i915_mutex_lock_interruptible(dev);
716         if (ret) {
717                 mutex_lock(&dev->struct_mutex);
718                 goto err;
719         }
720
721         /* reacquire the objects */
722         eb_reset(eb);
723         for (i = 0; i < count; i++) {
724                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
725                                                         exec[i].handle));
726                 if (&obj->base == NULL) {
727                         DRM_DEBUG("Invalid object handle %d at index %d\n",
728                                    exec[i].handle, i);
729                         ret = -ENOENT;
730                         goto err;
731                 }
732
733                 list_add_tail(&obj->exec_list, objects);
734                 obj->exec_handle = exec[i].handle;
735                 obj->exec_entry = &exec[i];
736                 eb_add_object(eb, obj);
737         }
738
739         ret = i915_gem_execbuffer_reserve(ring, file, objects);
740         if (ret)
741                 goto err;
742
743         list_for_each_entry(obj, objects, exec_list) {
744                 int offset = obj->exec_entry - exec;
745                 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
746                                                                reloc + reloc_offset[offset]);
747                 if (ret)
748                         goto err;
749         }
750
751         /* Leave the user relocations as are, this is the painfully slow path,
752          * and we want to avoid the complication of dropping the lock whilst
753          * having buffers reserved in the aperture and so causing spurious
754          * ENOSPC for random operations.
755          */
756
757 err:
758         drm_free_large(reloc);
759         drm_free_large(reloc_offset);
760         return ret;
761 }
762
763 static int
764 i915_gem_execbuffer_flush(struct drm_device *dev,
765                           uint32_t invalidate_domains,
766                           uint32_t flush_domains,
767                           uint32_t flush_rings)
768 {
769         drm_i915_private_t *dev_priv = dev->dev_private;
770         int i, ret;
771
772         if (flush_domains & I915_GEM_DOMAIN_CPU)
773                 intel_gtt_chipset_flush();
774
775         if (flush_domains & I915_GEM_DOMAIN_GTT)
776                 wmb();
777
778         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
779                 for (i = 0; i < I915_NUM_RINGS; i++)
780                         if (flush_rings & (1 << i)) {
781                                 ret = i915_gem_flush_ring(&dev_priv->ring[i],
782                                                           invalidate_domains,
783                                                           flush_domains);
784                                 if (ret)
785                                         return ret;
786                         }
787         }
788
789         return 0;
790 }
791
792 static bool
793 intel_enable_semaphores(struct drm_device *dev)
794 {
795         if (INTEL_INFO(dev)->gen < 6)
796                 return 0;
797
798         if (i915_semaphores >= 0)
799                 return i915_semaphores;
800
801         /* Enable semaphores on SNB when IO remapping is off */
802         if (INTEL_INFO(dev)->gen == 6)
803                 return !intel_iommu_enabled;
804
805         return 1;
806 }
807
808 static int
809 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
810                                struct intel_ring_buffer *to)
811 {
812         struct intel_ring_buffer *from = obj->ring;
813         u32 seqno;
814         int ret, idx;
815
816         if (from == NULL || to == from)
817                 return 0;
818
819         /* XXX gpu semaphores are implicated in various hard hangs on SNB */
820         if (!intel_enable_semaphores(obj->base.dev))
821                 return i915_gem_object_wait_rendering(obj);
822
823         idx = intel_ring_sync_index(from, to);
824
825         seqno = obj->last_rendering_seqno;
826         if (seqno <= from->sync_seqno[idx])
827                 return 0;
828
829         if (seqno == from->outstanding_lazy_request) {
830                 struct drm_i915_gem_request *request;
831
832                 request = kzalloc(sizeof(*request), GFP_KERNEL);
833                 if (request == NULL)
834                         return -ENOMEM;
835
836                 ret = i915_add_request(from, NULL, request);
837                 if (ret) {
838                         kfree(request);
839                         return ret;
840                 }
841
842                 seqno = request->seqno;
843         }
844
845         from->sync_seqno[idx] = seqno;
846
847         return to->sync_to(to, from, seqno - 1);
848 }
849
850 static int
851 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
852 {
853         u32 plane, flip_mask;
854         int ret;
855
856         /* Check for any pending flips. As we only maintain a flip queue depth
857          * of 1, we can simply insert a WAIT for the next display flip prior
858          * to executing the batch and avoid stalling the CPU.
859          */
860
861         for (plane = 0; flips >> plane; plane++) {
862                 if (((flips >> plane) & 1) == 0)
863                         continue;
864
865                 if (plane)
866                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
867                 else
868                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
869
870                 ret = intel_ring_begin(ring, 2);
871                 if (ret)
872                         return ret;
873
874                 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
875                 intel_ring_emit(ring, MI_NOOP);
876                 intel_ring_advance(ring);
877         }
878
879         return 0;
880 }
881
882
883 static int
884 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
885                                 struct list_head *objects)
886 {
887         struct drm_i915_gem_object *obj;
888         struct change_domains cd;
889         int ret;
890
891         memset(&cd, 0, sizeof(cd));
892         list_for_each_entry(obj, objects, exec_list)
893                 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
894
895         if (cd.invalidate_domains | cd.flush_domains) {
896                 ret = i915_gem_execbuffer_flush(ring->dev,
897                                                 cd.invalidate_domains,
898                                                 cd.flush_domains,
899                                                 cd.flush_rings);
900                 if (ret)
901                         return ret;
902         }
903
904         if (cd.flips) {
905                 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
906                 if (ret)
907                         return ret;
908         }
909
910         list_for_each_entry(obj, objects, exec_list) {
911                 ret = i915_gem_execbuffer_sync_rings(obj, ring);
912                 if (ret)
913                         return ret;
914         }
915
916         return 0;
917 }
918
919 static bool
920 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
921 {
922         return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
923 }
924
925 static int
926 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
927                    int count)
928 {
929         int i;
930
931         for (i = 0; i < count; i++) {
932                 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
933                 int length; /* limited by fault_in_pages_readable() */
934
935                 /* First check for malicious input causing overflow */
936                 if (exec[i].relocation_count >
937                     INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
938                         return -EINVAL;
939
940                 length = exec[i].relocation_count *
941                         sizeof(struct drm_i915_gem_relocation_entry);
942                 if (!access_ok(VERIFY_READ, ptr, length))
943                         return -EFAULT;
944
945                 /* we may also need to update the presumed offsets */
946                 if (!access_ok(VERIFY_WRITE, ptr, length))
947                         return -EFAULT;
948
949                 if (fault_in_pages_readable(ptr, length))
950                         return -EFAULT;
951         }
952
953         return 0;
954 }
955
956 static void
957 i915_gem_execbuffer_move_to_active(struct list_head *objects,
958                                    struct intel_ring_buffer *ring,
959                                    u32 seqno)
960 {
961         struct drm_i915_gem_object *obj;
962
963         list_for_each_entry(obj, objects, exec_list) {
964                   u32 old_read = obj->base.read_domains;
965                   u32 old_write = obj->base.write_domain;
966
967
968                 obj->base.read_domains = obj->base.pending_read_domains;
969                 obj->base.write_domain = obj->base.pending_write_domain;
970                 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
971
972                 i915_gem_object_move_to_active(obj, ring, seqno);
973                 if (obj->base.write_domain) {
974                         obj->dirty = 1;
975                         obj->pending_gpu_write = true;
976                         list_move_tail(&obj->gpu_write_list,
977                                        &ring->gpu_write_list);
978                         intel_mark_busy(ring->dev, obj);
979                 }
980
981                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
982         }
983 }
984
985 static void
986 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
987                                     struct drm_file *file,
988                                     struct intel_ring_buffer *ring)
989 {
990         struct drm_i915_gem_request *request;
991         u32 invalidate;
992
993         /*
994          * Ensure that the commands in the batch buffer are
995          * finished before the interrupt fires.
996          *
997          * The sampler always gets flushed on i965 (sigh).
998          */
999         invalidate = I915_GEM_DOMAIN_COMMAND;
1000         if (INTEL_INFO(dev)->gen >= 4)
1001                 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1002         if (ring->flush(ring, invalidate, 0)) {
1003                 i915_gem_next_request_seqno(ring);
1004                 return;
1005         }
1006
1007         /* Add a breadcrumb for the completion of the batch buffer */
1008         request = kzalloc(sizeof(*request), GFP_KERNEL);
1009         if (request == NULL || i915_add_request(ring, file, request)) {
1010                 i915_gem_next_request_seqno(ring);
1011                 kfree(request);
1012         }
1013 }
1014
1015 static int
1016 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1017                             struct intel_ring_buffer *ring)
1018 {
1019         drm_i915_private_t *dev_priv = dev->dev_private;
1020         int ret, i;
1021
1022         if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1023                 return 0;
1024
1025         ret = intel_ring_begin(ring, 4 * 3);
1026         if (ret)
1027                 return ret;
1028
1029         for (i = 0; i < 4; i++) {
1030                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1031                 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1032                 intel_ring_emit(ring, 0);
1033         }
1034
1035         intel_ring_advance(ring);
1036
1037         return 0;
1038 }
1039
1040 static int
1041 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1042                        struct drm_file *file,
1043                        struct drm_i915_gem_execbuffer2 *args,
1044                        struct drm_i915_gem_exec_object2 *exec)
1045 {
1046         drm_i915_private_t *dev_priv = dev->dev_private;
1047         struct list_head objects;
1048         struct eb_objects *eb;
1049         struct drm_i915_gem_object *batch_obj;
1050         struct drm_clip_rect *cliprects = NULL;
1051         struct intel_ring_buffer *ring;
1052         u32 exec_start, exec_len;
1053         u32 seqno;
1054         u32 mask;
1055         int ret, mode, i;
1056
1057         if (!i915_gem_check_execbuffer(args)) {
1058                 DRM_DEBUG("execbuf with invalid offset/length\n");
1059                 return -EINVAL;
1060         }
1061
1062         ret = validate_exec_list(exec, args->buffer_count);
1063         if (ret)
1064                 return ret;
1065
1066         switch (args->flags & I915_EXEC_RING_MASK) {
1067         case I915_EXEC_DEFAULT:
1068         case I915_EXEC_RENDER:
1069                 ring = &dev_priv->ring[RCS];
1070                 break;
1071         case I915_EXEC_BSD:
1072                 if (!HAS_BSD(dev)) {
1073                         DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1074                         return -EINVAL;
1075                 }
1076                 ring = &dev_priv->ring[VCS];
1077                 break;
1078         case I915_EXEC_BLT:
1079                 if (!HAS_BLT(dev)) {
1080                         DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1081                         return -EINVAL;
1082                 }
1083                 ring = &dev_priv->ring[BCS];
1084                 break;
1085         default:
1086                 DRM_DEBUG("execbuf with unknown ring: %d\n",
1087                           (int)(args->flags & I915_EXEC_RING_MASK));
1088                 return -EINVAL;
1089         }
1090
1091         mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1092         mask = I915_EXEC_CONSTANTS_MASK;
1093         switch (mode) {
1094         case I915_EXEC_CONSTANTS_REL_GENERAL:
1095         case I915_EXEC_CONSTANTS_ABSOLUTE:
1096         case I915_EXEC_CONSTANTS_REL_SURFACE:
1097                 if (ring == &dev_priv->ring[RCS] &&
1098                     mode != dev_priv->relative_constants_mode) {
1099                         if (INTEL_INFO(dev)->gen < 4)
1100                                 return -EINVAL;
1101
1102                         if (INTEL_INFO(dev)->gen > 5 &&
1103                             mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1104                                 return -EINVAL;
1105
1106                         /* The HW changed the meaning on this bit on gen6 */
1107                         if (INTEL_INFO(dev)->gen >= 6)
1108                                 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1109                 }
1110                 break;
1111         default:
1112                 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1113                 return -EINVAL;
1114         }
1115
1116         if (args->buffer_count < 1) {
1117                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1118                 return -EINVAL;
1119         }
1120
1121         if (args->num_cliprects != 0) {
1122                 if (ring != &dev_priv->ring[RCS]) {
1123                         DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1124                         return -EINVAL;
1125                 }
1126
1127                 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1128                                     GFP_KERNEL);
1129                 if (cliprects == NULL) {
1130                         ret = -ENOMEM;
1131                         goto pre_mutex_err;
1132                 }
1133
1134                 if (copy_from_user(cliprects,
1135                                      (struct drm_clip_rect __user *)(uintptr_t)
1136                                      args->cliprects_ptr,
1137                                      sizeof(*cliprects)*args->num_cliprects)) {
1138                         ret = -EFAULT;
1139                         goto pre_mutex_err;
1140                 }
1141         }
1142
1143         ret = i915_mutex_lock_interruptible(dev);
1144         if (ret)
1145                 goto pre_mutex_err;
1146
1147         if (dev_priv->mm.suspended) {
1148                 mutex_unlock(&dev->struct_mutex);
1149                 ret = -EBUSY;
1150                 goto pre_mutex_err;
1151         }
1152
1153         eb = eb_create(args->buffer_count);
1154         if (eb == NULL) {
1155                 mutex_unlock(&dev->struct_mutex);
1156                 ret = -ENOMEM;
1157                 goto pre_mutex_err;
1158         }
1159
1160         /* Look up object handles */
1161         INIT_LIST_HEAD(&objects);
1162         for (i = 0; i < args->buffer_count; i++) {
1163                 struct drm_i915_gem_object *obj;
1164
1165                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1166                                                         exec[i].handle));
1167                 if (&obj->base == NULL) {
1168                         DRM_DEBUG("Invalid object handle %d at index %d\n",
1169                                    exec[i].handle, i);
1170                         /* prevent error path from reading uninitialized data */
1171                         ret = -ENOENT;
1172                         goto err;
1173                 }
1174
1175                 if (!list_empty(&obj->exec_list)) {
1176                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1177                                    obj, exec[i].handle, i);
1178                         ret = -EINVAL;
1179                         goto err;
1180                 }
1181
1182                 list_add_tail(&obj->exec_list, &objects);
1183                 obj->exec_handle = exec[i].handle;
1184                 obj->exec_entry = &exec[i];
1185                 eb_add_object(eb, obj);
1186         }
1187
1188         /* take note of the batch buffer before we might reorder the lists */
1189         batch_obj = list_entry(objects.prev,
1190                                struct drm_i915_gem_object,
1191                                exec_list);
1192
1193         /* Move the objects en-masse into the GTT, evicting if necessary. */
1194         ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1195         if (ret)
1196                 goto err;
1197
1198         /* The objects are in their final locations, apply the relocations. */
1199         ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1200         if (ret) {
1201                 if (ret == -EFAULT) {
1202                         ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1203                                                                 &objects, eb,
1204                                                                 exec,
1205                                                                 args->buffer_count);
1206                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1207                 }
1208                 if (ret)
1209                         goto err;
1210         }
1211
1212         /* Set the pending read domains for the batch buffer to COMMAND */
1213         if (batch_obj->base.pending_write_domain) {
1214                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1215                 ret = -EINVAL;
1216                 goto err;
1217         }
1218         batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1219
1220         ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1221         if (ret)
1222                 goto err;
1223
1224         seqno = i915_gem_next_request_seqno(ring);
1225         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1226                 if (seqno < ring->sync_seqno[i]) {
1227                         /* The GPU can not handle its semaphore value wrapping,
1228                          * so every billion or so execbuffers, we need to stall
1229                          * the GPU in order to reset the counters.
1230                          */
1231                         ret = i915_gpu_idle(dev, true);
1232                         if (ret)
1233                                 goto err;
1234
1235                         BUG_ON(ring->sync_seqno[i]);
1236                 }
1237         }
1238
1239         if (ring == &dev_priv->ring[RCS] &&
1240             mode != dev_priv->relative_constants_mode) {
1241                 ret = intel_ring_begin(ring, 4);
1242                 if (ret)
1243                                 goto err;
1244
1245                 intel_ring_emit(ring, MI_NOOP);
1246                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1247                 intel_ring_emit(ring, INSTPM);
1248                 intel_ring_emit(ring, mask << 16 | mode);
1249                 intel_ring_advance(ring);
1250
1251                 dev_priv->relative_constants_mode = mode;
1252         }
1253
1254         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1255                 ret = i915_reset_gen7_sol_offsets(dev, ring);
1256                 if (ret)
1257                         goto err;
1258         }
1259
1260         trace_i915_gem_ring_dispatch(ring, seqno);
1261
1262         exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1263         exec_len = args->batch_len;
1264         if (cliprects) {
1265                 for (i = 0; i < args->num_cliprects; i++) {
1266                         ret = i915_emit_box(dev, &cliprects[i],
1267                                             args->DR1, args->DR4);
1268                         if (ret)
1269                                 goto err;
1270
1271                         ret = ring->dispatch_execbuffer(ring,
1272                                                         exec_start, exec_len);
1273                         if (ret)
1274                                 goto err;
1275                 }
1276         } else {
1277                 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1278                 if (ret)
1279                         goto err;
1280         }
1281
1282         i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1283         i915_gem_execbuffer_retire_commands(dev, file, ring);
1284
1285 err:
1286         eb_destroy(eb);
1287         while (!list_empty(&objects)) {
1288                 struct drm_i915_gem_object *obj;
1289
1290                 obj = list_first_entry(&objects,
1291                                        struct drm_i915_gem_object,
1292                                        exec_list);
1293                 list_del_init(&obj->exec_list);
1294                 drm_gem_object_unreference(&obj->base);
1295         }
1296
1297         mutex_unlock(&dev->struct_mutex);
1298
1299 pre_mutex_err:
1300         kfree(cliprects);
1301         return ret;
1302 }
1303
1304 /*
1305  * Legacy execbuffer just creates an exec2 list from the original exec object
1306  * list array and passes it to the real function.
1307  */
1308 int
1309 i915_gem_execbuffer(struct drm_device *dev, void *data,
1310                     struct drm_file *file)
1311 {
1312         struct drm_i915_gem_execbuffer *args = data;
1313         struct drm_i915_gem_execbuffer2 exec2;
1314         struct drm_i915_gem_exec_object *exec_list = NULL;
1315         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1316         int ret, i;
1317
1318         if (args->buffer_count < 1) {
1319                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1320                 return -EINVAL;
1321         }
1322
1323         /* Copy in the exec list from userland */
1324         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1325         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1326         if (exec_list == NULL || exec2_list == NULL) {
1327                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1328                           args->buffer_count);
1329                 drm_free_large(exec_list);
1330                 drm_free_large(exec2_list);
1331                 return -ENOMEM;
1332         }
1333         ret = copy_from_user(exec_list,
1334                              (struct drm_i915_relocation_entry __user *)
1335                              (uintptr_t) args->buffers_ptr,
1336                              sizeof(*exec_list) * args->buffer_count);
1337         if (ret != 0) {
1338                 DRM_DEBUG("copy %d exec entries failed %d\n",
1339                           args->buffer_count, ret);
1340                 drm_free_large(exec_list);
1341                 drm_free_large(exec2_list);
1342                 return -EFAULT;
1343         }
1344
1345         for (i = 0; i < args->buffer_count; i++) {
1346                 exec2_list[i].handle = exec_list[i].handle;
1347                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1348                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1349                 exec2_list[i].alignment = exec_list[i].alignment;
1350                 exec2_list[i].offset = exec_list[i].offset;
1351                 if (INTEL_INFO(dev)->gen < 4)
1352                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1353                 else
1354                         exec2_list[i].flags = 0;
1355         }
1356
1357         exec2.buffers_ptr = args->buffers_ptr;
1358         exec2.buffer_count = args->buffer_count;
1359         exec2.batch_start_offset = args->batch_start_offset;
1360         exec2.batch_len = args->batch_len;
1361         exec2.DR1 = args->DR1;
1362         exec2.DR4 = args->DR4;
1363         exec2.num_cliprects = args->num_cliprects;
1364         exec2.cliprects_ptr = args->cliprects_ptr;
1365         exec2.flags = I915_EXEC_RENDER;
1366
1367         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1368         if (!ret) {
1369                 /* Copy the new buffer offsets back to the user's exec list. */
1370                 for (i = 0; i < args->buffer_count; i++)
1371                         exec_list[i].offset = exec2_list[i].offset;
1372                 /* ... and back out to userspace */
1373                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1374                                    (uintptr_t) args->buffers_ptr,
1375                                    exec_list,
1376                                    sizeof(*exec_list) * args->buffer_count);
1377                 if (ret) {
1378                         ret = -EFAULT;
1379                         DRM_DEBUG("failed to copy %d exec entries "
1380                                   "back to user (%d)\n",
1381                                   args->buffer_count, ret);
1382                 }
1383         }
1384
1385         drm_free_large(exec_list);
1386         drm_free_large(exec2_list);
1387         return ret;
1388 }
1389
1390 int
1391 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1392                      struct drm_file *file)
1393 {
1394         struct drm_i915_gem_execbuffer2 *args = data;
1395         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1396         int ret;
1397
1398         if (args->buffer_count < 1) {
1399                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1400                 return -EINVAL;
1401         }
1402
1403         exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1404                              GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1405         if (exec2_list == NULL)
1406                 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1407                                            args->buffer_count);
1408         if (exec2_list == NULL) {
1409                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1410                           args->buffer_count);
1411                 return -ENOMEM;
1412         }
1413         ret = copy_from_user(exec2_list,
1414                              (struct drm_i915_relocation_entry __user *)
1415                              (uintptr_t) args->buffers_ptr,
1416                              sizeof(*exec2_list) * args->buffer_count);
1417         if (ret != 0) {
1418                 DRM_DEBUG("copy %d exec entries failed %d\n",
1419                           args->buffer_count, ret);
1420                 drm_free_large(exec2_list);
1421                 return -EFAULT;
1422         }
1423
1424         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1425         if (!ret) {
1426                 /* Copy the new buffer offsets back to the user's exec list. */
1427                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1428                                    (uintptr_t) args->buffers_ptr,
1429                                    exec2_list,
1430                                    sizeof(*exec2_list) * args->buffer_count);
1431                 if (ret) {
1432                         ret = -EFAULT;
1433                         DRM_DEBUG("failed to copy %d exec entries "
1434                                   "back to user (%d)\n",
1435                                   args->buffer_count, ret);
1436                 }
1437         }
1438
1439         drm_free_large(exec2_list);
1440         return ret;
1441 }