]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_fence.c
drm/i915: Rearrange i915_wait_request() accounting with callers
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_fence.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interact with frontbuffer
38  * compression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
50  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57
58 #define pipelined 0
59
60 static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
61                                  struct i915_vma *vma)
62 {
63         i915_reg_t fence_reg_lo, fence_reg_hi;
64         int fence_pitch_shift;
65         u64 val;
66
67         if (INTEL_INFO(fence->i915)->gen >= 6) {
68                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
69                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
70                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
71
72         } else {
73                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
74                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
75                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
76         }
77
78         val = 0;
79         if (vma) {
80                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
81                 bool is_y_tiled = tiling == I915_TILING_Y;
82                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
83                 u32 row_size = stride * (is_y_tiled ? 32 : 8);
84                 u32 size = rounddown((u32)vma->node.size, row_size);
85
86                 val = ((vma->node.start + size - 4096) & 0xfffff000) << 32;
87                 val |= vma->node.start & 0xfffff000;
88                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
89                 if (is_y_tiled)
90                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
91                 val |= I965_FENCE_REG_VALID;
92         }
93
94         if (!pipelined) {
95                 struct drm_i915_private *dev_priv = fence->i915;
96
97                 /* To w/a incoherency with non-atomic 64-bit register updates,
98                  * we split the 64-bit update into two 32-bit writes. In order
99                  * for a partial fence not to be evaluated between writes, we
100                  * precede the update with write to turn off the fence register,
101                  * and only enable the fence as the last step.
102                  *
103                  * For extra levels of paranoia, we make sure each step lands
104                  * before applying the next step.
105                  */
106                 I915_WRITE(fence_reg_lo, 0);
107                 POSTING_READ(fence_reg_lo);
108
109                 I915_WRITE(fence_reg_hi, upper_32_bits(val));
110                 I915_WRITE(fence_reg_lo, lower_32_bits(val));
111                 POSTING_READ(fence_reg_lo);
112         }
113 }
114
115 static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
116                                  struct i915_vma *vma)
117 {
118         u32 val;
119
120         val = 0;
121         if (vma) {
122                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
123                 bool is_y_tiled = tiling == I915_TILING_Y;
124                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
125                 int pitch_val;
126                 int tile_width;
127
128                 WARN((vma->node.start & ~I915_FENCE_START_MASK) ||
129                      !is_power_of_2(vma->node.size) ||
130                      (vma->node.start & (vma->node.size - 1)),
131                      "object 0x%08llx [fenceable? %d] not 1M or pot-size (0x%08llx) aligned\n",
132                      vma->node.start,
133                      i915_vma_is_map_and_fenceable(vma),
134                      vma->node.size);
135
136                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
137                         tile_width = 128;
138                 else
139                         tile_width = 512;
140
141                 /* Note: pitch better be a power of two tile widths */
142                 pitch_val = stride / tile_width;
143                 pitch_val = ffs(pitch_val) - 1;
144
145                 val = vma->node.start;
146                 if (is_y_tiled)
147                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
148                 val |= I915_FENCE_SIZE_BITS(vma->node.size);
149                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
150                 val |= I830_FENCE_REG_VALID;
151         }
152
153         if (!pipelined) {
154                 struct drm_i915_private *dev_priv = fence->i915;
155                 i915_reg_t reg = FENCE_REG(fence->id);
156
157                 I915_WRITE(reg, val);
158                 POSTING_READ(reg);
159         }
160 }
161
162 static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
163                                  struct i915_vma *vma)
164 {
165         u32 val;
166
167         val = 0;
168         if (vma) {
169                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
170                 bool is_y_tiled = tiling == I915_TILING_Y;
171                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
172                 u32 pitch_val;
173
174                 WARN((vma->node.start & ~I830_FENCE_START_MASK) ||
175                      !is_power_of_2(vma->node.size) ||
176                      (vma->node.start & (vma->node.size - 1)),
177                      "object 0x%08llx not 512K or pot-size 0x%08llx aligned\n",
178                      vma->node.start, vma->node.size);
179
180                 pitch_val = stride / 128;
181                 pitch_val = ffs(pitch_val) - 1;
182
183                 val = vma->node.start;
184                 if (is_y_tiled)
185                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
186                 val |= I830_FENCE_SIZE_BITS(vma->node.size);
187                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
188                 val |= I830_FENCE_REG_VALID;
189         }
190
191         if (!pipelined) {
192                 struct drm_i915_private *dev_priv = fence->i915;
193                 i915_reg_t reg = FENCE_REG(fence->id);
194
195                 I915_WRITE(reg, val);
196                 POSTING_READ(reg);
197         }
198 }
199
200 static void fence_write(struct drm_i915_fence_reg *fence,
201                         struct i915_vma *vma)
202 {
203         /* Previous access through the fence register is marshalled by
204          * the mb() inside the fault handlers (i915_gem_release_mmaps)
205          * and explicitly managed for internal users.
206          */
207
208         if (IS_GEN2(fence->i915))
209                 i830_write_fence_reg(fence, vma);
210         else if (IS_GEN3(fence->i915))
211                 i915_write_fence_reg(fence, vma);
212         else
213                 i965_write_fence_reg(fence, vma);
214
215         /* Access through the fenced region afterwards is
216          * ordered by the posting reads whilst writing the registers.
217          */
218
219         fence->dirty = false;
220 }
221
222 static int fence_update(struct drm_i915_fence_reg *fence,
223                         struct i915_vma *vma)
224 {
225         int ret;
226
227         if (vma) {
228                 if (!i915_vma_is_map_and_fenceable(vma))
229                         return -EINVAL;
230
231                 if (WARN(!i915_gem_object_get_stride(vma->obj) ||
232                          !i915_gem_object_get_tiling(vma->obj),
233                          "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
234                          i915_gem_object_get_stride(vma->obj),
235                          i915_gem_object_get_tiling(vma->obj)))
236                         return -EINVAL;
237
238                 ret = i915_gem_active_retire(&vma->last_fence,
239                                              &vma->obj->base.dev->struct_mutex);
240                 if (ret)
241                         return ret;
242         }
243
244         if (fence->vma) {
245                 ret = i915_gem_active_retire(&fence->vma->last_fence,
246                                       &fence->vma->obj->base.dev->struct_mutex);
247                 if (ret)
248                         return ret;
249         }
250
251         if (fence->vma && fence->vma != vma) {
252                 /* Ensure that all userspace CPU access is completed before
253                  * stealing the fence.
254                  */
255                 i915_gem_release_mmap(fence->vma->obj);
256
257                 fence->vma->fence = NULL;
258                 fence->vma = NULL;
259
260                 list_move(&fence->link, &fence->i915->mm.fence_list);
261         }
262
263         fence_write(fence, vma);
264
265         if (vma) {
266                 if (fence->vma != vma) {
267                         vma->fence = fence;
268                         fence->vma = vma;
269                 }
270
271                 list_move_tail(&fence->link, &fence->i915->mm.fence_list);
272         }
273
274         return 0;
275 }
276
277 /**
278  * i915_vma_put_fence - force-remove fence for a VMA
279  * @vma: vma to map linearly (not through a fence reg)
280  *
281  * This function force-removes any fence from the given object, which is useful
282  * if the kernel wants to do untiled GTT access.
283  *
284  * Returns:
285  *
286  * 0 on success, negative error code on failure.
287  */
288 int
289 i915_vma_put_fence(struct i915_vma *vma)
290 {
291         struct drm_i915_fence_reg *fence = vma->fence;
292
293         assert_rpm_wakelock_held(to_i915(vma->vm->dev));
294
295         if (!fence)
296                 return 0;
297
298         if (fence->pin_count)
299                 return -EBUSY;
300
301         return fence_update(fence, NULL);
302 }
303
304 static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
305 {
306         struct drm_i915_fence_reg *fence;
307
308         list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
309                 if (fence->pin_count)
310                         continue;
311
312                 return fence;
313         }
314
315         /* Wait for completion of pending flips which consume fences */
316         if (intel_has_pending_fb_unpin(&dev_priv->drm))
317                 return ERR_PTR(-EAGAIN);
318
319         return ERR_PTR(-EDEADLK);
320 }
321
322 /**
323  * i915_vma_get_fence - set up fencing for a vma
324  * @vma: vma to map through a fence reg
325  *
326  * When mapping objects through the GTT, userspace wants to be able to write
327  * to them without having to worry about swizzling if the object is tiled.
328  * This function walks the fence regs looking for a free one for @obj,
329  * stealing one if it can't find any.
330  *
331  * It then sets up the reg based on the object's properties: address, pitch
332  * and tiling format.
333  *
334  * For an untiled surface, this removes any existing fence.
335  *
336  * Returns:
337  *
338  * 0 on success, negative error code on failure.
339  */
340 int
341 i915_vma_get_fence(struct i915_vma *vma)
342 {
343         struct drm_i915_fence_reg *fence;
344         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
345
346         /* Note that we revoke fences on runtime suspend. Therefore the user
347          * must keep the device awake whilst using the fence.
348          */
349         assert_rpm_wakelock_held(to_i915(vma->vm->dev));
350
351         /* Just update our place in the LRU if our fence is getting reused. */
352         if (vma->fence) {
353                 fence = vma->fence;
354                 if (!fence->dirty) {
355                         list_move_tail(&fence->link,
356                                        &fence->i915->mm.fence_list);
357                         return 0;
358                 }
359         } else if (set) {
360                 fence = fence_find(to_i915(vma->vm->dev));
361                 if (IS_ERR(fence))
362                         return PTR_ERR(fence);
363         } else
364                 return 0;
365
366         return fence_update(fence, set);
367 }
368
369 /**
370  * i915_gem_restore_fences - restore fence state
371  * @dev: DRM device
372  *
373  * Restore the hw fence state to match the software tracking again, to be called
374  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
375  * the fences, to be reacquired by the user later.
376  */
377 void i915_gem_restore_fences(struct drm_device *dev)
378 {
379         struct drm_i915_private *dev_priv = to_i915(dev);
380         int i;
381
382         for (i = 0; i < dev_priv->num_fence_regs; i++) {
383                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
384                 struct i915_vma *vma = reg->vma;
385
386                 /*
387                  * Commit delayed tiling changes if we have an object still
388                  * attached to the fence, otherwise just clear the fence.
389                  */
390                 if (vma && !i915_gem_object_is_tiled(vma->obj)) {
391                         GEM_BUG_ON(!reg->dirty);
392                         GEM_BUG_ON(!list_empty(&vma->obj->userfault_link));
393
394                         list_move(&reg->link, &dev_priv->mm.fence_list);
395                         vma->fence = NULL;
396                         vma = NULL;
397                 }
398
399                 fence_write(reg, vma);
400                 reg->vma = vma;
401         }
402 }
403
404 /**
405  * DOC: tiling swizzling details
406  *
407  * The idea behind tiling is to increase cache hit rates by rearranging
408  * pixel data so that a group of pixel accesses are in the same cacheline.
409  * Performance improvement from doing this on the back/depth buffer are on
410  * the order of 30%.
411  *
412  * Intel architectures make this somewhat more complicated, though, by
413  * adjustments made to addressing of data when the memory is in interleaved
414  * mode (matched pairs of DIMMS) to improve memory bandwidth.
415  * For interleaved memory, the CPU sends every sequential 64 bytes
416  * to an alternate memory channel so it can get the bandwidth from both.
417  *
418  * The GPU also rearranges its accesses for increased bandwidth to interleaved
419  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
420  * it does it a little differently, since one walks addresses not just in the
421  * X direction but also Y.  So, along with alternating channels when bit
422  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
423  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
424  * are common to both the 915 and 965-class hardware.
425  *
426  * The CPU also sometimes XORs in higher bits as well, to improve
427  * bandwidth doing strided access like we do so frequently in graphics.  This
428  * is called "Channel XOR Randomization" in the MCH documentation.  The result
429  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
430  * decode.
431  *
432  * All of this bit 6 XORing has an effect on our memory management,
433  * as we need to make sure that the 3d driver can correctly address object
434  * contents.
435  *
436  * If we don't have interleaved memory, all tiling is safe and no swizzling is
437  * required.
438  *
439  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
440  * 17 is not just a page offset, so as we page an object out and back in,
441  * individual pages in it will have different bit 17 addresses, resulting in
442  * each 64 bytes being swapped with its neighbor!
443  *
444  * Otherwise, if interleaved, we have to tell the 3d driver what the address
445  * swizzling it needs to do is, since it's writing with the CPU to the pages
446  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
447  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
448  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
449  * to match what the GPU expects.
450  */
451
452 /**
453  * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
454  * @dev: DRM device
455  *
456  * Detects bit 6 swizzling of address lookup between IGD access and CPU
457  * access through main memory.
458  */
459 void
460 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
461 {
462         struct drm_i915_private *dev_priv = to_i915(dev);
463         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
464         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
465
466         if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
467                 /*
468                  * On BDW+, swizzling is not used. We leave the CPU memory
469                  * controller in charge of optimizing memory accesses without
470                  * the extra address manipulation GPU side.
471                  *
472                  * VLV and CHV don't have GPU swizzling.
473                  */
474                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
475                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
476         } else if (INTEL_INFO(dev)->gen >= 6) {
477                 if (dev_priv->preserve_bios_swizzle) {
478                         if (I915_READ(DISP_ARB_CTL) &
479                             DISP_TILE_SURFACE_SWIZZLING) {
480                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
481                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
482                         } else {
483                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
484                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
485                         }
486                 } else {
487                         uint32_t dimm_c0, dimm_c1;
488                         dimm_c0 = I915_READ(MAD_DIMM_C0);
489                         dimm_c1 = I915_READ(MAD_DIMM_C1);
490                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
491                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
492                         /* Enable swizzling when the channels are populated
493                          * with identically sized dimms. We don't need to check
494                          * the 3rd channel because no cpu with gpu attached
495                          * ships in that configuration. Also, swizzling only
496                          * makes sense for 2 channels anyway. */
497                         if (dimm_c0 == dimm_c1) {
498                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
499                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
500                         } else {
501                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
502                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
503                         }
504                 }
505         } else if (IS_GEN5(dev_priv)) {
506                 /* On Ironlake whatever DRAM config, GPU always do
507                  * same swizzling setup.
508                  */
509                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
510                 swizzle_y = I915_BIT_6_SWIZZLE_9;
511         } else if (IS_GEN2(dev_priv)) {
512                 /* As far as we know, the 865 doesn't have these bit 6
513                  * swizzling issues.
514                  */
515                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
516                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
517         } else if (IS_MOBILE(dev_priv) || (IS_GEN3(dev_priv) &&
518                    !IS_G33(dev_priv))) {
519                 uint32_t dcc;
520
521                 /* On 9xx chipsets, channel interleave by the CPU is
522                  * determined by DCC.  For single-channel, neither the CPU
523                  * nor the GPU do swizzling.  For dual channel interleaved,
524                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
525                  * 9 for Y tiled.  The CPU's interleave is independent, and
526                  * can be based on either bit 11 (haven't seen this yet) or
527                  * bit 17 (common).
528                  */
529                 dcc = I915_READ(DCC);
530                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
531                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
532                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
533                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
534                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
535                         break;
536                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
537                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
538                                 /* This is the base swizzling by the GPU for
539                                  * tiled buffers.
540                                  */
541                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
542                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
543                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
544                                 /* Bit 11 swizzling by the CPU in addition. */
545                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
546                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
547                         } else {
548                                 /* Bit 17 swizzling by the CPU in addition. */
549                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
550                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
551                         }
552                         break;
553                 }
554
555                 /* check for L-shaped memory aka modified enhanced addressing */
556                 if (IS_GEN4(dev_priv) &&
557                     !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
558                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
559                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
560                 }
561
562                 if (dcc == 0xffffffff) {
563                         DRM_ERROR("Couldn't read from MCHBAR.  "
564                                   "Disabling tiling.\n");
565                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
566                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
567                 }
568         } else {
569                 /* The 965, G33, and newer, have a very flexible memory
570                  * configuration.  It will enable dual-channel mode
571                  * (interleaving) on as much memory as it can, and the GPU
572                  * will additionally sometimes enable different bit 6
573                  * swizzling for tiled objects from the CPU.
574                  *
575                  * Here's what I found on the G965:
576                  *    slot fill         memory size  swizzling
577                  * 0A   0B   1A   1B    1-ch   2-ch
578                  * 512  0    0    0     512    0     O
579                  * 512  0    512  0     16     1008  X
580                  * 512  0    0    512   16     1008  X
581                  * 0    512  0    512   16     1008  X
582                  * 1024 1024 1024 0     2048   1024  O
583                  *
584                  * We could probably detect this based on either the DRB
585                  * matching, which was the case for the swizzling required in
586                  * the table above, or from the 1-ch value being less than
587                  * the minimum size of a rank.
588                  *
589                  * Reports indicate that the swizzling actually
590                  * varies depending upon page placement inside the
591                  * channels, i.e. we see swizzled pages where the
592                  * banks of memory are paired and unswizzled on the
593                  * uneven portion, so leave that as unknown.
594                  */
595                 if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
596                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
597                         swizzle_y = I915_BIT_6_SWIZZLE_9;
598                 }
599         }
600
601         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
602             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
603                 /* Userspace likes to explode if it sees unknown swizzling,
604                  * so lie. We will finish the lie when reporting through
605                  * the get-tiling-ioctl by reporting the physical swizzle
606                  * mode as unknown instead.
607                  *
608                  * As we don't strictly know what the swizzling is, it may be
609                  * bit17 dependent, and so we need to also prevent the pages
610                  * from being moved.
611                  */
612                 dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
613                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
614                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
615         }
616
617         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
618         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
619 }
620
621 /*
622  * Swap every 64 bytes of this page around, to account for it having a new
623  * bit 17 of its physical address and therefore being interpreted differently
624  * by the GPU.
625  */
626 static void
627 i915_gem_swizzle_page(struct page *page)
628 {
629         char temp[64];
630         char *vaddr;
631         int i;
632
633         vaddr = kmap(page);
634
635         for (i = 0; i < PAGE_SIZE; i += 128) {
636                 memcpy(temp, &vaddr[i], 64);
637                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
638                 memcpy(&vaddr[i + 64], temp, 64);
639         }
640
641         kunmap(page);
642 }
643
644 /**
645  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
646  * @obj: i915 GEM buffer object
647  *
648  * This function fixes up the swizzling in case any page frame number for this
649  * object has changed in bit 17 since that state has been saved with
650  * i915_gem_object_save_bit_17_swizzle().
651  *
652  * This is called when pinning backing storage again, since the kernel is free
653  * to move unpinned backing storage around (either by directly moving pages or
654  * by swapping them out and back in again).
655  */
656 void
657 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
658 {
659         struct sgt_iter sgt_iter;
660         struct page *page;
661         int i;
662
663         if (obj->bit_17 == NULL)
664                 return;
665
666         i = 0;
667         for_each_sgt_page(page, sgt_iter, obj->pages) {
668                 char new_bit_17 = page_to_phys(page) >> 17;
669                 if ((new_bit_17 & 0x1) !=
670                     (test_bit(i, obj->bit_17) != 0)) {
671                         i915_gem_swizzle_page(page);
672                         set_page_dirty(page);
673                 }
674                 i++;
675         }
676 }
677
678 /**
679  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
680  * @obj: i915 GEM buffer object
681  *
682  * This function saves the bit 17 of each page frame number so that swizzling
683  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
684  * be called before the backing storage can be unpinned.
685  */
686 void
687 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
688 {
689         struct sgt_iter sgt_iter;
690         struct page *page;
691         int page_count = obj->base.size >> PAGE_SHIFT;
692         int i;
693
694         if (obj->bit_17 == NULL) {
695                 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
696                                       sizeof(long), GFP_KERNEL);
697                 if (obj->bit_17 == NULL) {
698                         DRM_ERROR("Failed to allocate memory for bit 17 "
699                                   "record\n");
700                         return;
701                 }
702         }
703
704         i = 0;
705
706         for_each_sgt_page(page, sgt_iter, obj->pages) {
707                 if (page_to_phys(page) & (1 << 17))
708                         __set_bit(i, obj->bit_17);
709                 else
710                         __clear_bit(i, obj->bit_17);
711                 i++;
712         }
713 }