]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
EDAC: Use edac_debugfs_remove_recursive() in edac_debugfs_exit()
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95
96 static int
97 i915_get_ggtt_vma_pages(struct i915_vma *vma);
98
99 const struct i915_ggtt_view i915_ggtt_view_normal;
100 const struct i915_ggtt_view i915_ggtt_view_rotated = {
101         .type = I915_GGTT_VIEW_ROTATED
102 };
103
104 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
105 {
106         bool has_aliasing_ppgtt;
107         bool has_full_ppgtt;
108         bool has_full_48bit_ppgtt;
109
110         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
111         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
112         has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
113
114         if (intel_vgpu_active(dev))
115                 has_full_ppgtt = false; /* emulation is too hard */
116
117         /*
118          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
119          * execlists, the sole mechanism available to submit work.
120          */
121         if (INTEL_INFO(dev)->gen < 9 &&
122             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
123                 return 0;
124
125         if (enable_ppgtt == 1)
126                 return 1;
127
128         if (enable_ppgtt == 2 && has_full_ppgtt)
129                 return 2;
130
131         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
132                 return 3;
133
134 #ifdef CONFIG_INTEL_IOMMU
135         /* Disable ppgtt on SNB if VT-d is on. */
136         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
137                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
138                 return 0;
139         }
140 #endif
141
142         /* Early VLV doesn't have this */
143         if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
144                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
145                 return 0;
146         }
147
148         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
149                 return has_full_48bit_ppgtt ? 3 : 2;
150         else
151                 return has_aliasing_ppgtt ? 1 : 0;
152 }
153
154 static int ppgtt_bind_vma(struct i915_vma *vma,
155                           enum i915_cache_level cache_level,
156                           u32 unused)
157 {
158         u32 pte_flags = 0;
159
160         /* Currently applicable only to VLV */
161         if (vma->obj->gt_ro)
162                 pte_flags |= PTE_READ_ONLY;
163
164         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
165                                 cache_level, pte_flags);
166
167         return 0;
168 }
169
170 static void ppgtt_unbind_vma(struct i915_vma *vma)
171 {
172         vma->vm->clear_range(vma->vm,
173                              vma->node.start,
174                              vma->obj->base.size,
175                              true);
176 }
177
178 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
179                                   enum i915_cache_level level,
180                                   bool valid)
181 {
182         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
183         pte |= addr;
184
185         switch (level) {
186         case I915_CACHE_NONE:
187                 pte |= PPAT_UNCACHED_INDEX;
188                 break;
189         case I915_CACHE_WT:
190                 pte |= PPAT_DISPLAY_ELLC_INDEX;
191                 break;
192         default:
193                 pte |= PPAT_CACHED_INDEX;
194                 break;
195         }
196
197         return pte;
198 }
199
200 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
201                                   const enum i915_cache_level level)
202 {
203         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
204         pde |= addr;
205         if (level != I915_CACHE_NONE)
206                 pde |= PPAT_CACHED_PDE_INDEX;
207         else
208                 pde |= PPAT_UNCACHED_INDEX;
209         return pde;
210 }
211
212 #define gen8_pdpe_encode gen8_pde_encode
213 #define gen8_pml4e_encode gen8_pde_encode
214
215 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
216                                  enum i915_cache_level level,
217                                  bool valid, u32 unused)
218 {
219         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
220         pte |= GEN6_PTE_ADDR_ENCODE(addr);
221
222         switch (level) {
223         case I915_CACHE_L3_LLC:
224         case I915_CACHE_LLC:
225                 pte |= GEN6_PTE_CACHE_LLC;
226                 break;
227         case I915_CACHE_NONE:
228                 pte |= GEN6_PTE_UNCACHED;
229                 break;
230         default:
231                 MISSING_CASE(level);
232         }
233
234         return pte;
235 }
236
237 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
238                                  enum i915_cache_level level,
239                                  bool valid, u32 unused)
240 {
241         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
242         pte |= GEN6_PTE_ADDR_ENCODE(addr);
243
244         switch (level) {
245         case I915_CACHE_L3_LLC:
246                 pte |= GEN7_PTE_CACHE_L3_LLC;
247                 break;
248         case I915_CACHE_LLC:
249                 pte |= GEN6_PTE_CACHE_LLC;
250                 break;
251         case I915_CACHE_NONE:
252                 pte |= GEN6_PTE_UNCACHED;
253                 break;
254         default:
255                 MISSING_CASE(level);
256         }
257
258         return pte;
259 }
260
261 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
262                                  enum i915_cache_level level,
263                                  bool valid, u32 flags)
264 {
265         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
266         pte |= GEN6_PTE_ADDR_ENCODE(addr);
267
268         if (!(flags & PTE_READ_ONLY))
269                 pte |= BYT_PTE_WRITEABLE;
270
271         if (level != I915_CACHE_NONE)
272                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
273
274         return pte;
275 }
276
277 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
278                                  enum i915_cache_level level,
279                                  bool valid, u32 unused)
280 {
281         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
282         pte |= HSW_PTE_ADDR_ENCODE(addr);
283
284         if (level != I915_CACHE_NONE)
285                 pte |= HSW_WB_LLC_AGE3;
286
287         return pte;
288 }
289
290 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
291                                   enum i915_cache_level level,
292                                   bool valid, u32 unused)
293 {
294         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295         pte |= HSW_PTE_ADDR_ENCODE(addr);
296
297         switch (level) {
298         case I915_CACHE_NONE:
299                 break;
300         case I915_CACHE_WT:
301                 pte |= HSW_WT_ELLC_LLC_AGE3;
302                 break;
303         default:
304                 pte |= HSW_WB_ELLC_LLC_AGE3;
305                 break;
306         }
307
308         return pte;
309 }
310
311 static int __setup_page_dma(struct drm_device *dev,
312                             struct i915_page_dma *p, gfp_t flags)
313 {
314         struct device *device = &dev->pdev->dev;
315
316         p->page = alloc_page(flags);
317         if (!p->page)
318                 return -ENOMEM;
319
320         p->daddr = dma_map_page(device,
321                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
322
323         if (dma_mapping_error(device, p->daddr)) {
324                 __free_page(p->page);
325                 return -EINVAL;
326         }
327
328         return 0;
329 }
330
331 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
332 {
333         return __setup_page_dma(dev, p, GFP_KERNEL);
334 }
335
336 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
337 {
338         if (WARN_ON(!p->page))
339                 return;
340
341         dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
342         __free_page(p->page);
343         memset(p, 0, sizeof(*p));
344 }
345
346 static void *kmap_page_dma(struct i915_page_dma *p)
347 {
348         return kmap_atomic(p->page);
349 }
350
351 /* We use the flushing unmap only with ppgtt structures:
352  * page directories, page tables and scratch pages.
353  */
354 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
355 {
356         /* There are only few exceptions for gen >=6. chv and bxt.
357          * And we are not sure about the latter so play safe for now.
358          */
359         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
360                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
361
362         kunmap_atomic(vaddr);
363 }
364
365 #define kmap_px(px) kmap_page_dma(px_base(px))
366 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
367
368 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
369 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
370 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
371 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
372
373 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
374                           const uint64_t val)
375 {
376         int i;
377         uint64_t * const vaddr = kmap_page_dma(p);
378
379         for (i = 0; i < 512; i++)
380                 vaddr[i] = val;
381
382         kunmap_page_dma(dev, vaddr);
383 }
384
385 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
386                              const uint32_t val32)
387 {
388         uint64_t v = val32;
389
390         v = v << 32 | val32;
391
392         fill_page_dma(dev, p, v);
393 }
394
395 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
396 {
397         struct i915_page_scratch *sp;
398         int ret;
399
400         sp = kzalloc(sizeof(*sp), GFP_KERNEL);
401         if (sp == NULL)
402                 return ERR_PTR(-ENOMEM);
403
404         ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
405         if (ret) {
406                 kfree(sp);
407                 return ERR_PTR(ret);
408         }
409
410         set_pages_uc(px_page(sp), 1);
411
412         return sp;
413 }
414
415 static void free_scratch_page(struct drm_device *dev,
416                               struct i915_page_scratch *sp)
417 {
418         set_pages_wb(px_page(sp), 1);
419
420         cleanup_px(dev, sp);
421         kfree(sp);
422 }
423
424 static struct i915_page_table *alloc_pt(struct drm_device *dev)
425 {
426         struct i915_page_table *pt;
427         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
428                 GEN8_PTES : GEN6_PTES;
429         int ret = -ENOMEM;
430
431         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
432         if (!pt)
433                 return ERR_PTR(-ENOMEM);
434
435         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
436                                 GFP_KERNEL);
437
438         if (!pt->used_ptes)
439                 goto fail_bitmap;
440
441         ret = setup_px(dev, pt);
442         if (ret)
443                 goto fail_page_m;
444
445         return pt;
446
447 fail_page_m:
448         kfree(pt->used_ptes);
449 fail_bitmap:
450         kfree(pt);
451
452         return ERR_PTR(ret);
453 }
454
455 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
456 {
457         cleanup_px(dev, pt);
458         kfree(pt->used_ptes);
459         kfree(pt);
460 }
461
462 static void gen8_initialize_pt(struct i915_address_space *vm,
463                                struct i915_page_table *pt)
464 {
465         gen8_pte_t scratch_pte;
466
467         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
468                                       I915_CACHE_LLC, true);
469
470         fill_px(vm->dev, pt, scratch_pte);
471 }
472
473 static void gen6_initialize_pt(struct i915_address_space *vm,
474                                struct i915_page_table *pt)
475 {
476         gen6_pte_t scratch_pte;
477
478         WARN_ON(px_dma(vm->scratch_page) == 0);
479
480         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
481                                      I915_CACHE_LLC, true, 0);
482
483         fill32_px(vm->dev, pt, scratch_pte);
484 }
485
486 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
487 {
488         struct i915_page_directory *pd;
489         int ret = -ENOMEM;
490
491         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
492         if (!pd)
493                 return ERR_PTR(-ENOMEM);
494
495         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
496                                 sizeof(*pd->used_pdes), GFP_KERNEL);
497         if (!pd->used_pdes)
498                 goto fail_bitmap;
499
500         ret = setup_px(dev, pd);
501         if (ret)
502                 goto fail_page_m;
503
504         return pd;
505
506 fail_page_m:
507         kfree(pd->used_pdes);
508 fail_bitmap:
509         kfree(pd);
510
511         return ERR_PTR(ret);
512 }
513
514 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
515 {
516         if (px_page(pd)) {
517                 cleanup_px(dev, pd);
518                 kfree(pd->used_pdes);
519                 kfree(pd);
520         }
521 }
522
523 static void gen8_initialize_pd(struct i915_address_space *vm,
524                                struct i915_page_directory *pd)
525 {
526         gen8_pde_t scratch_pde;
527
528         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
529
530         fill_px(vm->dev, pd, scratch_pde);
531 }
532
533 static int __pdp_init(struct drm_device *dev,
534                       struct i915_page_directory_pointer *pdp)
535 {
536         size_t pdpes = I915_PDPES_PER_PDP(dev);
537
538         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
539                                   sizeof(unsigned long),
540                                   GFP_KERNEL);
541         if (!pdp->used_pdpes)
542                 return -ENOMEM;
543
544         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
545                                       GFP_KERNEL);
546         if (!pdp->page_directory) {
547                 kfree(pdp->used_pdpes);
548                 /* the PDP might be the statically allocated top level. Keep it
549                  * as clean as possible */
550                 pdp->used_pdpes = NULL;
551                 return -ENOMEM;
552         }
553
554         return 0;
555 }
556
557 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
558 {
559         kfree(pdp->used_pdpes);
560         kfree(pdp->page_directory);
561         pdp->page_directory = NULL;
562 }
563
564 static struct
565 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
566 {
567         struct i915_page_directory_pointer *pdp;
568         int ret = -ENOMEM;
569
570         WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
571
572         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
573         if (!pdp)
574                 return ERR_PTR(-ENOMEM);
575
576         ret = __pdp_init(dev, pdp);
577         if (ret)
578                 goto fail_bitmap;
579
580         ret = setup_px(dev, pdp);
581         if (ret)
582                 goto fail_page_m;
583
584         return pdp;
585
586 fail_page_m:
587         __pdp_fini(pdp);
588 fail_bitmap:
589         kfree(pdp);
590
591         return ERR_PTR(ret);
592 }
593
594 static void free_pdp(struct drm_device *dev,
595                      struct i915_page_directory_pointer *pdp)
596 {
597         __pdp_fini(pdp);
598         if (USES_FULL_48BIT_PPGTT(dev)) {
599                 cleanup_px(dev, pdp);
600                 kfree(pdp);
601         }
602 }
603
604 static void gen8_initialize_pdp(struct i915_address_space *vm,
605                                 struct i915_page_directory_pointer *pdp)
606 {
607         gen8_ppgtt_pdpe_t scratch_pdpe;
608
609         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
610
611         fill_px(vm->dev, pdp, scratch_pdpe);
612 }
613
614 static void gen8_initialize_pml4(struct i915_address_space *vm,
615                                  struct i915_pml4 *pml4)
616 {
617         gen8_ppgtt_pml4e_t scratch_pml4e;
618
619         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
620                                           I915_CACHE_LLC);
621
622         fill_px(vm->dev, pml4, scratch_pml4e);
623 }
624
625 static void
626 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
627                           struct i915_page_directory_pointer *pdp,
628                           struct i915_page_directory *pd,
629                           int index)
630 {
631         gen8_ppgtt_pdpe_t *page_directorypo;
632
633         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
634                 return;
635
636         page_directorypo = kmap_px(pdp);
637         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
638         kunmap_px(ppgtt, page_directorypo);
639 }
640
641 static void
642 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
643                                   struct i915_pml4 *pml4,
644                                   struct i915_page_directory_pointer *pdp,
645                                   int index)
646 {
647         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
648
649         WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
650         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
651         kunmap_px(ppgtt, pagemap);
652 }
653
654 /* Broadwell Page Directory Pointer Descriptors */
655 static int gen8_write_pdp(struct drm_i915_gem_request *req,
656                           unsigned entry,
657                           dma_addr_t addr)
658 {
659         struct intel_engine_cs *ring = req->ring;
660         int ret;
661
662         BUG_ON(entry >= 4);
663
664         ret = intel_ring_begin(req, 6);
665         if (ret)
666                 return ret;
667
668         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
669         intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(ring, entry));
670         intel_ring_emit(ring, upper_32_bits(addr));
671         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
672         intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(ring, entry));
673         intel_ring_emit(ring, lower_32_bits(addr));
674         intel_ring_advance(ring);
675
676         return 0;
677 }
678
679 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
680                                  struct drm_i915_gem_request *req)
681 {
682         int i, ret;
683
684         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
685                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
686
687                 ret = gen8_write_pdp(req, i, pd_daddr);
688                 if (ret)
689                         return ret;
690         }
691
692         return 0;
693 }
694
695 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
696                               struct drm_i915_gem_request *req)
697 {
698         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
699 }
700
701 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
702                                        struct i915_page_directory_pointer *pdp,
703                                        uint64_t start,
704                                        uint64_t length,
705                                        gen8_pte_t scratch_pte)
706 {
707         struct i915_hw_ppgtt *ppgtt =
708                 container_of(vm, struct i915_hw_ppgtt, base);
709         gen8_pte_t *pt_vaddr;
710         unsigned pdpe = gen8_pdpe_index(start);
711         unsigned pde = gen8_pde_index(start);
712         unsigned pte = gen8_pte_index(start);
713         unsigned num_entries = length >> PAGE_SHIFT;
714         unsigned last_pte, i;
715
716         if (WARN_ON(!pdp))
717                 return;
718
719         while (num_entries) {
720                 struct i915_page_directory *pd;
721                 struct i915_page_table *pt;
722
723                 if (WARN_ON(!pdp->page_directory[pdpe]))
724                         break;
725
726                 pd = pdp->page_directory[pdpe];
727
728                 if (WARN_ON(!pd->page_table[pde]))
729                         break;
730
731                 pt = pd->page_table[pde];
732
733                 if (WARN_ON(!px_page(pt)))
734                         break;
735
736                 last_pte = pte + num_entries;
737                 if (last_pte > GEN8_PTES)
738                         last_pte = GEN8_PTES;
739
740                 pt_vaddr = kmap_px(pt);
741
742                 for (i = pte; i < last_pte; i++) {
743                         pt_vaddr[i] = scratch_pte;
744                         num_entries--;
745                 }
746
747                 kunmap_px(ppgtt, pt);
748
749                 pte = 0;
750                 if (++pde == I915_PDES) {
751                         if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
752                                 break;
753                         pde = 0;
754                 }
755         }
756 }
757
758 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
759                                    uint64_t start,
760                                    uint64_t length,
761                                    bool use_scratch)
762 {
763         struct i915_hw_ppgtt *ppgtt =
764                 container_of(vm, struct i915_hw_ppgtt, base);
765         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
766                                                  I915_CACHE_LLC, use_scratch);
767
768         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
769                 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
770                                            scratch_pte);
771         } else {
772                 uint64_t pml4e;
773                 struct i915_page_directory_pointer *pdp;
774
775                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
776                         gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
777                                                    scratch_pte);
778                 }
779         }
780 }
781
782 static void
783 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
784                               struct i915_page_directory_pointer *pdp,
785                               struct sg_page_iter *sg_iter,
786                               uint64_t start,
787                               enum i915_cache_level cache_level)
788 {
789         struct i915_hw_ppgtt *ppgtt =
790                 container_of(vm, struct i915_hw_ppgtt, base);
791         gen8_pte_t *pt_vaddr;
792         unsigned pdpe = gen8_pdpe_index(start);
793         unsigned pde = gen8_pde_index(start);
794         unsigned pte = gen8_pte_index(start);
795
796         pt_vaddr = NULL;
797
798         while (__sg_page_iter_next(sg_iter)) {
799                 if (pt_vaddr == NULL) {
800                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
801                         struct i915_page_table *pt = pd->page_table[pde];
802                         pt_vaddr = kmap_px(pt);
803                 }
804
805                 pt_vaddr[pte] =
806                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
807                                         cache_level, true);
808                 if (++pte == GEN8_PTES) {
809                         kunmap_px(ppgtt, pt_vaddr);
810                         pt_vaddr = NULL;
811                         if (++pde == I915_PDES) {
812                                 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
813                                         break;
814                                 pde = 0;
815                         }
816                         pte = 0;
817                 }
818         }
819
820         if (pt_vaddr)
821                 kunmap_px(ppgtt, pt_vaddr);
822 }
823
824 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
825                                       struct sg_table *pages,
826                                       uint64_t start,
827                                       enum i915_cache_level cache_level,
828                                       u32 unused)
829 {
830         struct i915_hw_ppgtt *ppgtt =
831                 container_of(vm, struct i915_hw_ppgtt, base);
832         struct sg_page_iter sg_iter;
833
834         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
835
836         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
837                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
838                                               cache_level);
839         } else {
840                 struct i915_page_directory_pointer *pdp;
841                 uint64_t pml4e;
842                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
843
844                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
845                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
846                                                       start, cache_level);
847                 }
848         }
849 }
850
851 static void gen8_free_page_tables(struct drm_device *dev,
852                                   struct i915_page_directory *pd)
853 {
854         int i;
855
856         if (!px_page(pd))
857                 return;
858
859         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
860                 if (WARN_ON(!pd->page_table[i]))
861                         continue;
862
863                 free_pt(dev, pd->page_table[i]);
864                 pd->page_table[i] = NULL;
865         }
866 }
867
868 static int gen8_init_scratch(struct i915_address_space *vm)
869 {
870         struct drm_device *dev = vm->dev;
871
872         vm->scratch_page = alloc_scratch_page(dev);
873         if (IS_ERR(vm->scratch_page))
874                 return PTR_ERR(vm->scratch_page);
875
876         vm->scratch_pt = alloc_pt(dev);
877         if (IS_ERR(vm->scratch_pt)) {
878                 free_scratch_page(dev, vm->scratch_page);
879                 return PTR_ERR(vm->scratch_pt);
880         }
881
882         vm->scratch_pd = alloc_pd(dev);
883         if (IS_ERR(vm->scratch_pd)) {
884                 free_pt(dev, vm->scratch_pt);
885                 free_scratch_page(dev, vm->scratch_page);
886                 return PTR_ERR(vm->scratch_pd);
887         }
888
889         if (USES_FULL_48BIT_PPGTT(dev)) {
890                 vm->scratch_pdp = alloc_pdp(dev);
891                 if (IS_ERR(vm->scratch_pdp)) {
892                         free_pd(dev, vm->scratch_pd);
893                         free_pt(dev, vm->scratch_pt);
894                         free_scratch_page(dev, vm->scratch_page);
895                         return PTR_ERR(vm->scratch_pdp);
896                 }
897         }
898
899         gen8_initialize_pt(vm, vm->scratch_pt);
900         gen8_initialize_pd(vm, vm->scratch_pd);
901         if (USES_FULL_48BIT_PPGTT(dev))
902                 gen8_initialize_pdp(vm, vm->scratch_pdp);
903
904         return 0;
905 }
906
907 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
908 {
909         enum vgt_g2v_type msg;
910         struct drm_device *dev = ppgtt->base.dev;
911         struct drm_i915_private *dev_priv = dev->dev_private;
912         int i;
913
914         if (USES_FULL_48BIT_PPGTT(dev)) {
915                 u64 daddr = px_dma(&ppgtt->pml4);
916
917                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
918                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
919
920                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
921                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
922         } else {
923                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
924                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
925
926                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
927                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
928                 }
929
930                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
931                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
932         }
933
934         I915_WRITE(vgtif_reg(g2v_notify), msg);
935
936         return 0;
937 }
938
939 static void gen8_free_scratch(struct i915_address_space *vm)
940 {
941         struct drm_device *dev = vm->dev;
942
943         if (USES_FULL_48BIT_PPGTT(dev))
944                 free_pdp(dev, vm->scratch_pdp);
945         free_pd(dev, vm->scratch_pd);
946         free_pt(dev, vm->scratch_pt);
947         free_scratch_page(dev, vm->scratch_page);
948 }
949
950 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
951                                     struct i915_page_directory_pointer *pdp)
952 {
953         int i;
954
955         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
956                 if (WARN_ON(!pdp->page_directory[i]))
957                         continue;
958
959                 gen8_free_page_tables(dev, pdp->page_directory[i]);
960                 free_pd(dev, pdp->page_directory[i]);
961         }
962
963         free_pdp(dev, pdp);
964 }
965
966 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
967 {
968         int i;
969
970         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
971                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
972                         continue;
973
974                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
975         }
976
977         cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
978 }
979
980 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
981 {
982         struct i915_hw_ppgtt *ppgtt =
983                 container_of(vm, struct i915_hw_ppgtt, base);
984
985         if (intel_vgpu_active(vm->dev))
986                 gen8_ppgtt_notify_vgt(ppgtt, false);
987
988         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
989                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
990         else
991                 gen8_ppgtt_cleanup_4lvl(ppgtt);
992
993         gen8_free_scratch(vm);
994 }
995
996 /**
997  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
998  * @vm: Master vm structure.
999  * @pd: Page directory for this address range.
1000  * @start:      Starting virtual address to begin allocations.
1001  * @length:     Size of the allocations.
1002  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1003  *              caller to free on error.
1004  *
1005  * Allocate the required number of page tables. Extremely similar to
1006  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1007  * the page directory boundary (instead of the page directory pointer). That
1008  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1009  * possible, and likely that the caller will need to use multiple calls of this
1010  * function to achieve the appropriate allocation.
1011  *
1012  * Return: 0 if success; negative error code otherwise.
1013  */
1014 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1015                                      struct i915_page_directory *pd,
1016                                      uint64_t start,
1017                                      uint64_t length,
1018                                      unsigned long *new_pts)
1019 {
1020         struct drm_device *dev = vm->dev;
1021         struct i915_page_table *pt;
1022         uint32_t pde;
1023
1024         gen8_for_each_pde(pt, pd, start, length, pde) {
1025                 /* Don't reallocate page tables */
1026                 if (test_bit(pde, pd->used_pdes)) {
1027                         /* Scratch is never allocated this way */
1028                         WARN_ON(pt == vm->scratch_pt);
1029                         continue;
1030                 }
1031
1032                 pt = alloc_pt(dev);
1033                 if (IS_ERR(pt))
1034                         goto unwind_out;
1035
1036                 gen8_initialize_pt(vm, pt);
1037                 pd->page_table[pde] = pt;
1038                 __set_bit(pde, new_pts);
1039                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1040         }
1041
1042         return 0;
1043
1044 unwind_out:
1045         for_each_set_bit(pde, new_pts, I915_PDES)
1046                 free_pt(dev, pd->page_table[pde]);
1047
1048         return -ENOMEM;
1049 }
1050
1051 /**
1052  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1053  * @vm: Master vm structure.
1054  * @pdp:        Page directory pointer for this address range.
1055  * @start:      Starting virtual address to begin allocations.
1056  * @length:     Size of the allocations.
1057  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1058  *              caller to free on error.
1059  *
1060  * Allocate the required number of page directories starting at the pde index of
1061  * @start, and ending at the pde index @start + @length. This function will skip
1062  * over already allocated page directories within the range, and only allocate
1063  * new ones, setting the appropriate pointer within the pdp as well as the
1064  * correct position in the bitmap @new_pds.
1065  *
1066  * The function will only allocate the pages within the range for a give page
1067  * directory pointer. In other words, if @start + @length straddles a virtually
1068  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1069  * required by the caller, This is not currently possible, and the BUG in the
1070  * code will prevent it.
1071  *
1072  * Return: 0 if success; negative error code otherwise.
1073  */
1074 static int
1075 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1076                                   struct i915_page_directory_pointer *pdp,
1077                                   uint64_t start,
1078                                   uint64_t length,
1079                                   unsigned long *new_pds)
1080 {
1081         struct drm_device *dev = vm->dev;
1082         struct i915_page_directory *pd;
1083         uint32_t pdpe;
1084         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1085
1086         WARN_ON(!bitmap_empty(new_pds, pdpes));
1087
1088         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1089                 if (test_bit(pdpe, pdp->used_pdpes))
1090                         continue;
1091
1092                 pd = alloc_pd(dev);
1093                 if (IS_ERR(pd))
1094                         goto unwind_out;
1095
1096                 gen8_initialize_pd(vm, pd);
1097                 pdp->page_directory[pdpe] = pd;
1098                 __set_bit(pdpe, new_pds);
1099                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1100         }
1101
1102         return 0;
1103
1104 unwind_out:
1105         for_each_set_bit(pdpe, new_pds, pdpes)
1106                 free_pd(dev, pdp->page_directory[pdpe]);
1107
1108         return -ENOMEM;
1109 }
1110
1111 /**
1112  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1113  * @vm: Master vm structure.
1114  * @pml4:       Page map level 4 for this address range.
1115  * @start:      Starting virtual address to begin allocations.
1116  * @length:     Size of the allocations.
1117  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1118  *              caller to free on error.
1119  *
1120  * Allocate the required number of page directory pointers. Extremely similar to
1121  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1122  * The main difference is here we are limited by the pml4 boundary (instead of
1123  * the page directory pointer).
1124  *
1125  * Return: 0 if success; negative error code otherwise.
1126  */
1127 static int
1128 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1129                                   struct i915_pml4 *pml4,
1130                                   uint64_t start,
1131                                   uint64_t length,
1132                                   unsigned long *new_pdps)
1133 {
1134         struct drm_device *dev = vm->dev;
1135         struct i915_page_directory_pointer *pdp;
1136         uint32_t pml4e;
1137
1138         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1139
1140         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1141                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1142                         pdp = alloc_pdp(dev);
1143                         if (IS_ERR(pdp))
1144                                 goto unwind_out;
1145
1146                         gen8_initialize_pdp(vm, pdp);
1147                         pml4->pdps[pml4e] = pdp;
1148                         __set_bit(pml4e, new_pdps);
1149                         trace_i915_page_directory_pointer_entry_alloc(vm,
1150                                                                       pml4e,
1151                                                                       start,
1152                                                                       GEN8_PML4E_SHIFT);
1153                 }
1154         }
1155
1156         return 0;
1157
1158 unwind_out:
1159         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1160                 free_pdp(dev, pml4->pdps[pml4e]);
1161
1162         return -ENOMEM;
1163 }
1164
1165 static void
1166 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1167 {
1168         kfree(new_pts);
1169         kfree(new_pds);
1170 }
1171
1172 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1173  * of these are based on the number of PDPEs in the system.
1174  */
1175 static
1176 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1177                                          unsigned long **new_pts,
1178                                          uint32_t pdpes)
1179 {
1180         unsigned long *pds;
1181         unsigned long *pts;
1182
1183         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1184         if (!pds)
1185                 return -ENOMEM;
1186
1187         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1188                       GFP_TEMPORARY);
1189         if (!pts)
1190                 goto err_out;
1191
1192         *new_pds = pds;
1193         *new_pts = pts;
1194
1195         return 0;
1196
1197 err_out:
1198         free_gen8_temp_bitmaps(pds, pts);
1199         return -ENOMEM;
1200 }
1201
1202 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1203  * the page table structures, we mark them dirty so that
1204  * context switching/execlist queuing code takes extra steps
1205  * to ensure that tlbs are flushed.
1206  */
1207 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1208 {
1209         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1210 }
1211
1212 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1213                                     struct i915_page_directory_pointer *pdp,
1214                                     uint64_t start,
1215                                     uint64_t length)
1216 {
1217         struct i915_hw_ppgtt *ppgtt =
1218                 container_of(vm, struct i915_hw_ppgtt, base);
1219         unsigned long *new_page_dirs, *new_page_tables;
1220         struct drm_device *dev = vm->dev;
1221         struct i915_page_directory *pd;
1222         const uint64_t orig_start = start;
1223         const uint64_t orig_length = length;
1224         uint32_t pdpe;
1225         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1226         int ret;
1227
1228         /* Wrap is never okay since we can only represent 48b, and we don't
1229          * actually use the other side of the canonical address space.
1230          */
1231         if (WARN_ON(start + length < start))
1232                 return -ENODEV;
1233
1234         if (WARN_ON(start + length > vm->total))
1235                 return -ENODEV;
1236
1237         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1238         if (ret)
1239                 return ret;
1240
1241         /* Do the allocations first so we can easily bail out */
1242         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1243                                                 new_page_dirs);
1244         if (ret) {
1245                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1246                 return ret;
1247         }
1248
1249         /* For every page directory referenced, allocate page tables */
1250         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1251                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1252                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1253                 if (ret)
1254                         goto err_out;
1255         }
1256
1257         start = orig_start;
1258         length = orig_length;
1259
1260         /* Allocations have completed successfully, so set the bitmaps, and do
1261          * the mappings. */
1262         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1263                 gen8_pde_t *const page_directory = kmap_px(pd);
1264                 struct i915_page_table *pt;
1265                 uint64_t pd_len = length;
1266                 uint64_t pd_start = start;
1267                 uint32_t pde;
1268
1269                 /* Every pd should be allocated, we just did that above. */
1270                 WARN_ON(!pd);
1271
1272                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1273                         /* Same reasoning as pd */
1274                         WARN_ON(!pt);
1275                         WARN_ON(!pd_len);
1276                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1277
1278                         /* Set our used ptes within the page table */
1279                         bitmap_set(pt->used_ptes,
1280                                    gen8_pte_index(pd_start),
1281                                    gen8_pte_count(pd_start, pd_len));
1282
1283                         /* Our pde is now pointing to the pagetable, pt */
1284                         __set_bit(pde, pd->used_pdes);
1285
1286                         /* Map the PDE to the page table */
1287                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1288                                                               I915_CACHE_LLC);
1289                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1290                                                         gen8_pte_index(start),
1291                                                         gen8_pte_count(start, length),
1292                                                         GEN8_PTES);
1293
1294                         /* NB: We haven't yet mapped ptes to pages. At this
1295                          * point we're still relying on insert_entries() */
1296                 }
1297
1298                 kunmap_px(ppgtt, page_directory);
1299                 __set_bit(pdpe, pdp->used_pdpes);
1300                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1301         }
1302
1303         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1304         mark_tlbs_dirty(ppgtt);
1305         return 0;
1306
1307 err_out:
1308         while (pdpe--) {
1309                 unsigned long temp;
1310
1311                 for_each_set_bit(temp, new_page_tables + pdpe *
1312                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1313                         free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1314         }
1315
1316         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1317                 free_pd(dev, pdp->page_directory[pdpe]);
1318
1319         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1320         mark_tlbs_dirty(ppgtt);
1321         return ret;
1322 }
1323
1324 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1325                                     struct i915_pml4 *pml4,
1326                                     uint64_t start,
1327                                     uint64_t length)
1328 {
1329         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1330         struct i915_hw_ppgtt *ppgtt =
1331                         container_of(vm, struct i915_hw_ppgtt, base);
1332         struct i915_page_directory_pointer *pdp;
1333         uint64_t pml4e;
1334         int ret = 0;
1335
1336         /* Do the pml4 allocations first, so we don't need to track the newly
1337          * allocated tables below the pdp */
1338         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1339
1340         /* The pagedirectory and pagetable allocations are done in the shared 3
1341          * and 4 level code. Just allocate the pdps.
1342          */
1343         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1344                                                 new_pdps);
1345         if (ret)
1346                 return ret;
1347
1348         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1349              "The allocation has spanned more than 512GB. "
1350              "It is highly likely this is incorrect.");
1351
1352         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1353                 WARN_ON(!pdp);
1354
1355                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1356                 if (ret)
1357                         goto err_out;
1358
1359                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1360         }
1361
1362         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1363                   GEN8_PML4ES_PER_PML4);
1364
1365         return 0;
1366
1367 err_out:
1368         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1369                 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1370
1371         return ret;
1372 }
1373
1374 static int gen8_alloc_va_range(struct i915_address_space *vm,
1375                                uint64_t start, uint64_t length)
1376 {
1377         struct i915_hw_ppgtt *ppgtt =
1378                 container_of(vm, struct i915_hw_ppgtt, base);
1379
1380         if (USES_FULL_48BIT_PPGTT(vm->dev))
1381                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1382         else
1383                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1384 }
1385
1386 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1387                           uint64_t start, uint64_t length,
1388                           gen8_pte_t scratch_pte,
1389                           struct seq_file *m)
1390 {
1391         struct i915_page_directory *pd;
1392         uint32_t pdpe;
1393
1394         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1395                 struct i915_page_table *pt;
1396                 uint64_t pd_len = length;
1397                 uint64_t pd_start = start;
1398                 uint32_t pde;
1399
1400                 if (!test_bit(pdpe, pdp->used_pdpes))
1401                         continue;
1402
1403                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1404                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1405                         uint32_t  pte;
1406                         gen8_pte_t *pt_vaddr;
1407
1408                         if (!test_bit(pde, pd->used_pdes))
1409                                 continue;
1410
1411                         pt_vaddr = kmap_px(pt);
1412                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1413                                 uint64_t va =
1414                                         (pdpe << GEN8_PDPE_SHIFT) |
1415                                         (pde << GEN8_PDE_SHIFT) |
1416                                         (pte << GEN8_PTE_SHIFT);
1417                                 int i;
1418                                 bool found = false;
1419
1420                                 for (i = 0; i < 4; i++)
1421                                         if (pt_vaddr[pte + i] != scratch_pte)
1422                                                 found = true;
1423                                 if (!found)
1424                                         continue;
1425
1426                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1427                                 for (i = 0; i < 4; i++) {
1428                                         if (pt_vaddr[pte + i] != scratch_pte)
1429                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1430                                         else
1431                                                 seq_puts(m, "  SCRATCH ");
1432                                 }
1433                                 seq_puts(m, "\n");
1434                         }
1435                         /* don't use kunmap_px, it could trigger
1436                          * an unnecessary flush.
1437                          */
1438                         kunmap_atomic(pt_vaddr);
1439                 }
1440         }
1441 }
1442
1443 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1444 {
1445         struct i915_address_space *vm = &ppgtt->base;
1446         uint64_t start = ppgtt->base.start;
1447         uint64_t length = ppgtt->base.total;
1448         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1449                                                  I915_CACHE_LLC, true);
1450
1451         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1452                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1453         } else {
1454                 uint64_t pml4e;
1455                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1456                 struct i915_page_directory_pointer *pdp;
1457
1458                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1459                         if (!test_bit(pml4e, pml4->used_pml4es))
1460                                 continue;
1461
1462                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1463                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1464                 }
1465         }
1466 }
1467
1468 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1469 {
1470         unsigned long *new_page_dirs, *new_page_tables;
1471         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1472         int ret;
1473
1474         /* We allocate temp bitmap for page tables for no gain
1475          * but as this is for init only, lets keep the things simple
1476          */
1477         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1478         if (ret)
1479                 return ret;
1480
1481         /* Allocate for all pdps regardless of how the ppgtt
1482          * was defined.
1483          */
1484         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1485                                                 0, 1ULL << 32,
1486                                                 new_page_dirs);
1487         if (!ret)
1488                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1489
1490         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1491
1492         return ret;
1493 }
1494
1495 /*
1496  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1497  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1498  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1499  * space.
1500  *
1501  */
1502 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1503 {
1504         int ret;
1505
1506         ret = gen8_init_scratch(&ppgtt->base);
1507         if (ret)
1508                 return ret;
1509
1510         ppgtt->base.start = 0;
1511         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1512         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1513         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1514         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1515         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1516         ppgtt->base.bind_vma = ppgtt_bind_vma;
1517         ppgtt->debug_dump = gen8_dump_ppgtt;
1518
1519         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1520                 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1521                 if (ret)
1522                         goto free_scratch;
1523
1524                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1525
1526                 ppgtt->base.total = 1ULL << 48;
1527                 ppgtt->switch_mm = gen8_48b_mm_switch;
1528         } else {
1529                 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1530                 if (ret)
1531                         goto free_scratch;
1532
1533                 ppgtt->base.total = 1ULL << 32;
1534                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1535                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1536                                                               0, 0,
1537                                                               GEN8_PML4E_SHIFT);
1538
1539                 if (intel_vgpu_active(ppgtt->base.dev)) {
1540                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1541                         if (ret)
1542                                 goto free_scratch;
1543                 }
1544         }
1545
1546         if (intel_vgpu_active(ppgtt->base.dev))
1547                 gen8_ppgtt_notify_vgt(ppgtt, true);
1548
1549         return 0;
1550
1551 free_scratch:
1552         gen8_free_scratch(&ppgtt->base);
1553         return ret;
1554 }
1555
1556 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1557 {
1558         struct i915_address_space *vm = &ppgtt->base;
1559         struct i915_page_table *unused;
1560         gen6_pte_t scratch_pte;
1561         uint32_t pd_entry;
1562         uint32_t  pte, pde, temp;
1563         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1564
1565         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1566                                      I915_CACHE_LLC, true, 0);
1567
1568         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1569                 u32 expected;
1570                 gen6_pte_t *pt_vaddr;
1571                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1572                 pd_entry = readl(ppgtt->pd_addr + pde);
1573                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1574
1575                 if (pd_entry != expected)
1576                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1577                                    pde,
1578                                    pd_entry,
1579                                    expected);
1580                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1581
1582                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1583
1584                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1585                         unsigned long va =
1586                                 (pde * PAGE_SIZE * GEN6_PTES) +
1587                                 (pte * PAGE_SIZE);
1588                         int i;
1589                         bool found = false;
1590                         for (i = 0; i < 4; i++)
1591                                 if (pt_vaddr[pte + i] != scratch_pte)
1592                                         found = true;
1593                         if (!found)
1594                                 continue;
1595
1596                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1597                         for (i = 0; i < 4; i++) {
1598                                 if (pt_vaddr[pte + i] != scratch_pte)
1599                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1600                                 else
1601                                         seq_puts(m, "  SCRATCH ");
1602                         }
1603                         seq_puts(m, "\n");
1604                 }
1605                 kunmap_px(ppgtt, pt_vaddr);
1606         }
1607 }
1608
1609 /* Write pde (index) from the page directory @pd to the page table @pt */
1610 static void gen6_write_pde(struct i915_page_directory *pd,
1611                             const int pde, struct i915_page_table *pt)
1612 {
1613         /* Caller needs to make sure the write completes if necessary */
1614         struct i915_hw_ppgtt *ppgtt =
1615                 container_of(pd, struct i915_hw_ppgtt, pd);
1616         u32 pd_entry;
1617
1618         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1619         pd_entry |= GEN6_PDE_VALID;
1620
1621         writel(pd_entry, ppgtt->pd_addr + pde);
1622 }
1623
1624 /* Write all the page tables found in the ppgtt structure to incrementing page
1625  * directories. */
1626 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1627                                   struct i915_page_directory *pd,
1628                                   uint32_t start, uint32_t length)
1629 {
1630         struct i915_page_table *pt;
1631         uint32_t pde, temp;
1632
1633         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1634                 gen6_write_pde(pd, pde, pt);
1635
1636         /* Make sure write is complete before other code can use this page
1637          * table. Also require for WC mapped PTEs */
1638         readl(dev_priv->gtt.gsm);
1639 }
1640
1641 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1642 {
1643         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1644
1645         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1646 }
1647
1648 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1649                          struct drm_i915_gem_request *req)
1650 {
1651         struct intel_engine_cs *ring = req->ring;
1652         int ret;
1653
1654         /* NB: TLBs must be flushed and invalidated before a switch */
1655         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1656         if (ret)
1657                 return ret;
1658
1659         ret = intel_ring_begin(req, 6);
1660         if (ret)
1661                 return ret;
1662
1663         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1664         intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1665         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1666         intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1667         intel_ring_emit(ring, get_pd_offset(ppgtt));
1668         intel_ring_emit(ring, MI_NOOP);
1669         intel_ring_advance(ring);
1670
1671         return 0;
1672 }
1673
1674 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1675                           struct drm_i915_gem_request *req)
1676 {
1677         struct intel_engine_cs *ring = req->ring;
1678         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1679
1680         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1681         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1682         return 0;
1683 }
1684
1685 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1686                           struct drm_i915_gem_request *req)
1687 {
1688         struct intel_engine_cs *ring = req->ring;
1689         int ret;
1690
1691         /* NB: TLBs must be flushed and invalidated before a switch */
1692         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1693         if (ret)
1694                 return ret;
1695
1696         ret = intel_ring_begin(req, 6);
1697         if (ret)
1698                 return ret;
1699
1700         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1701         intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1702         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1703         intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1704         intel_ring_emit(ring, get_pd_offset(ppgtt));
1705         intel_ring_emit(ring, MI_NOOP);
1706         intel_ring_advance(ring);
1707
1708         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1709         if (ring->id != RCS) {
1710                 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1711                 if (ret)
1712                         return ret;
1713         }
1714
1715         return 0;
1716 }
1717
1718 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1719                           struct drm_i915_gem_request *req)
1720 {
1721         struct intel_engine_cs *ring = req->ring;
1722         struct drm_device *dev = ppgtt->base.dev;
1723         struct drm_i915_private *dev_priv = dev->dev_private;
1724
1725
1726         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1727         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1728
1729         POSTING_READ(RING_PP_DIR_DCLV(ring));
1730
1731         return 0;
1732 }
1733
1734 static void gen8_ppgtt_enable(struct drm_device *dev)
1735 {
1736         struct drm_i915_private *dev_priv = dev->dev_private;
1737         struct intel_engine_cs *ring;
1738         int j;
1739
1740         for_each_ring(ring, dev_priv, j) {
1741                 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1742                 I915_WRITE(RING_MODE_GEN7(ring),
1743                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1744         }
1745 }
1746
1747 static void gen7_ppgtt_enable(struct drm_device *dev)
1748 {
1749         struct drm_i915_private *dev_priv = dev->dev_private;
1750         struct intel_engine_cs *ring;
1751         uint32_t ecochk, ecobits;
1752         int i;
1753
1754         ecobits = I915_READ(GAC_ECO_BITS);
1755         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1756
1757         ecochk = I915_READ(GAM_ECOCHK);
1758         if (IS_HASWELL(dev)) {
1759                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1760         } else {
1761                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1762                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1763         }
1764         I915_WRITE(GAM_ECOCHK, ecochk);
1765
1766         for_each_ring(ring, dev_priv, i) {
1767                 /* GFX_MODE is per-ring on gen7+ */
1768                 I915_WRITE(RING_MODE_GEN7(ring),
1769                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1770         }
1771 }
1772
1773 static void gen6_ppgtt_enable(struct drm_device *dev)
1774 {
1775         struct drm_i915_private *dev_priv = dev->dev_private;
1776         uint32_t ecochk, gab_ctl, ecobits;
1777
1778         ecobits = I915_READ(GAC_ECO_BITS);
1779         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1780                    ECOBITS_PPGTT_CACHE64B);
1781
1782         gab_ctl = I915_READ(GAB_CTL);
1783         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1784
1785         ecochk = I915_READ(GAM_ECOCHK);
1786         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1787
1788         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1789 }
1790
1791 /* PPGTT support for Sandybdrige/Gen6 and later */
1792 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1793                                    uint64_t start,
1794                                    uint64_t length,
1795                                    bool use_scratch)
1796 {
1797         struct i915_hw_ppgtt *ppgtt =
1798                 container_of(vm, struct i915_hw_ppgtt, base);
1799         gen6_pte_t *pt_vaddr, scratch_pte;
1800         unsigned first_entry = start >> PAGE_SHIFT;
1801         unsigned num_entries = length >> PAGE_SHIFT;
1802         unsigned act_pt = first_entry / GEN6_PTES;
1803         unsigned first_pte = first_entry % GEN6_PTES;
1804         unsigned last_pte, i;
1805
1806         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1807                                      I915_CACHE_LLC, true, 0);
1808
1809         while (num_entries) {
1810                 last_pte = first_pte + num_entries;
1811                 if (last_pte > GEN6_PTES)
1812                         last_pte = GEN6_PTES;
1813
1814                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1815
1816                 for (i = first_pte; i < last_pte; i++)
1817                         pt_vaddr[i] = scratch_pte;
1818
1819                 kunmap_px(ppgtt, pt_vaddr);
1820
1821                 num_entries -= last_pte - first_pte;
1822                 first_pte = 0;
1823                 act_pt++;
1824         }
1825 }
1826
1827 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1828                                       struct sg_table *pages,
1829                                       uint64_t start,
1830                                       enum i915_cache_level cache_level, u32 flags)
1831 {
1832         struct i915_hw_ppgtt *ppgtt =
1833                 container_of(vm, struct i915_hw_ppgtt, base);
1834         gen6_pte_t *pt_vaddr;
1835         unsigned first_entry = start >> PAGE_SHIFT;
1836         unsigned act_pt = first_entry / GEN6_PTES;
1837         unsigned act_pte = first_entry % GEN6_PTES;
1838         struct sg_page_iter sg_iter;
1839
1840         pt_vaddr = NULL;
1841         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1842                 if (pt_vaddr == NULL)
1843                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1844
1845                 pt_vaddr[act_pte] =
1846                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1847                                        cache_level, true, flags);
1848
1849                 if (++act_pte == GEN6_PTES) {
1850                         kunmap_px(ppgtt, pt_vaddr);
1851                         pt_vaddr = NULL;
1852                         act_pt++;
1853                         act_pte = 0;
1854                 }
1855         }
1856         if (pt_vaddr)
1857                 kunmap_px(ppgtt, pt_vaddr);
1858 }
1859
1860 static int gen6_alloc_va_range(struct i915_address_space *vm,
1861                                uint64_t start_in, uint64_t length_in)
1862 {
1863         DECLARE_BITMAP(new_page_tables, I915_PDES);
1864         struct drm_device *dev = vm->dev;
1865         struct drm_i915_private *dev_priv = dev->dev_private;
1866         struct i915_hw_ppgtt *ppgtt =
1867                                 container_of(vm, struct i915_hw_ppgtt, base);
1868         struct i915_page_table *pt;
1869         uint32_t start, length, start_save, length_save;
1870         uint32_t pde, temp;
1871         int ret;
1872
1873         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1874                 return -ENODEV;
1875
1876         start = start_save = start_in;
1877         length = length_save = length_in;
1878
1879         bitmap_zero(new_page_tables, I915_PDES);
1880
1881         /* The allocation is done in two stages so that we can bail out with
1882          * minimal amount of pain. The first stage finds new page tables that
1883          * need allocation. The second stage marks use ptes within the page
1884          * tables.
1885          */
1886         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1887                 if (pt != vm->scratch_pt) {
1888                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1889                         continue;
1890                 }
1891
1892                 /* We've already allocated a page table */
1893                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1894
1895                 pt = alloc_pt(dev);
1896                 if (IS_ERR(pt)) {
1897                         ret = PTR_ERR(pt);
1898                         goto unwind_out;
1899                 }
1900
1901                 gen6_initialize_pt(vm, pt);
1902
1903                 ppgtt->pd.page_table[pde] = pt;
1904                 __set_bit(pde, new_page_tables);
1905                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1906         }
1907
1908         start = start_save;
1909         length = length_save;
1910
1911         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1912                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1913
1914                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1915                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1916                            gen6_pte_count(start, length));
1917
1918                 if (__test_and_clear_bit(pde, new_page_tables))
1919                         gen6_write_pde(&ppgtt->pd, pde, pt);
1920
1921                 trace_i915_page_table_entry_map(vm, pde, pt,
1922                                          gen6_pte_index(start),
1923                                          gen6_pte_count(start, length),
1924                                          GEN6_PTES);
1925                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1926                                 GEN6_PTES);
1927         }
1928
1929         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1930
1931         /* Make sure write is complete before other code can use this page
1932          * table. Also require for WC mapped PTEs */
1933         readl(dev_priv->gtt.gsm);
1934
1935         mark_tlbs_dirty(ppgtt);
1936         return 0;
1937
1938 unwind_out:
1939         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1940                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1941
1942                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1943                 free_pt(vm->dev, pt);
1944         }
1945
1946         mark_tlbs_dirty(ppgtt);
1947         return ret;
1948 }
1949
1950 static int gen6_init_scratch(struct i915_address_space *vm)
1951 {
1952         struct drm_device *dev = vm->dev;
1953
1954         vm->scratch_page = alloc_scratch_page(dev);
1955         if (IS_ERR(vm->scratch_page))
1956                 return PTR_ERR(vm->scratch_page);
1957
1958         vm->scratch_pt = alloc_pt(dev);
1959         if (IS_ERR(vm->scratch_pt)) {
1960                 free_scratch_page(dev, vm->scratch_page);
1961                 return PTR_ERR(vm->scratch_pt);
1962         }
1963
1964         gen6_initialize_pt(vm, vm->scratch_pt);
1965
1966         return 0;
1967 }
1968
1969 static void gen6_free_scratch(struct i915_address_space *vm)
1970 {
1971         struct drm_device *dev = vm->dev;
1972
1973         free_pt(dev, vm->scratch_pt);
1974         free_scratch_page(dev, vm->scratch_page);
1975 }
1976
1977 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1978 {
1979         struct i915_hw_ppgtt *ppgtt =
1980                 container_of(vm, struct i915_hw_ppgtt, base);
1981         struct i915_page_table *pt;
1982         uint32_t pde;
1983
1984         drm_mm_remove_node(&ppgtt->node);
1985
1986         gen6_for_all_pdes(pt, ppgtt, pde) {
1987                 if (pt != vm->scratch_pt)
1988                         free_pt(ppgtt->base.dev, pt);
1989         }
1990
1991         gen6_free_scratch(vm);
1992 }
1993
1994 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1995 {
1996         struct i915_address_space *vm = &ppgtt->base;
1997         struct drm_device *dev = ppgtt->base.dev;
1998         struct drm_i915_private *dev_priv = dev->dev_private;
1999         bool retried = false;
2000         int ret;
2001
2002         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2003          * allocator works in address space sizes, so it's multiplied by page
2004          * size. We allocate at the top of the GTT to avoid fragmentation.
2005          */
2006         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2007
2008         ret = gen6_init_scratch(vm);
2009         if (ret)
2010                 return ret;
2011
2012 alloc:
2013         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2014                                                   &ppgtt->node, GEN6_PD_SIZE,
2015                                                   GEN6_PD_ALIGN, 0,
2016                                                   0, dev_priv->gtt.base.total,
2017                                                   DRM_MM_TOPDOWN);
2018         if (ret == -ENOSPC && !retried) {
2019                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2020                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2021                                                I915_CACHE_NONE,
2022                                                0, dev_priv->gtt.base.total,
2023                                                0);
2024                 if (ret)
2025                         goto err_out;
2026
2027                 retried = true;
2028                 goto alloc;
2029         }
2030
2031         if (ret)
2032                 goto err_out;
2033
2034
2035         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2036                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2037
2038         return 0;
2039
2040 err_out:
2041         gen6_free_scratch(vm);
2042         return ret;
2043 }
2044
2045 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2046 {
2047         return gen6_ppgtt_allocate_page_directories(ppgtt);
2048 }
2049
2050 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2051                                   uint64_t start, uint64_t length)
2052 {
2053         struct i915_page_table *unused;
2054         uint32_t pde, temp;
2055
2056         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2057                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2058 }
2059
2060 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2061 {
2062         struct drm_device *dev = ppgtt->base.dev;
2063         struct drm_i915_private *dev_priv = dev->dev_private;
2064         int ret;
2065
2066         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2067         if (IS_GEN6(dev)) {
2068                 ppgtt->switch_mm = gen6_mm_switch;
2069         } else if (IS_HASWELL(dev)) {
2070                 ppgtt->switch_mm = hsw_mm_switch;
2071         } else if (IS_GEN7(dev)) {
2072                 ppgtt->switch_mm = gen7_mm_switch;
2073         } else
2074                 BUG();
2075
2076         if (intel_vgpu_active(dev))
2077                 ppgtt->switch_mm = vgpu_mm_switch;
2078
2079         ret = gen6_ppgtt_alloc(ppgtt);
2080         if (ret)
2081                 return ret;
2082
2083         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2084         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2085         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2086         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2087         ppgtt->base.bind_vma = ppgtt_bind_vma;
2088         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2089         ppgtt->base.start = 0;
2090         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2091         ppgtt->debug_dump = gen6_dump_ppgtt;
2092
2093         ppgtt->pd.base.ggtt_offset =
2094                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2095
2096         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2097                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2098
2099         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2100
2101         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2102
2103         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2104                          ppgtt->node.size >> 20,
2105                          ppgtt->node.start / PAGE_SIZE);
2106
2107         DRM_DEBUG("Adding PPGTT at offset %x\n",
2108                   ppgtt->pd.base.ggtt_offset << 10);
2109
2110         return 0;
2111 }
2112
2113 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2114 {
2115         ppgtt->base.dev = dev;
2116
2117         if (INTEL_INFO(dev)->gen < 8)
2118                 return gen6_ppgtt_init(ppgtt);
2119         else
2120                 return gen8_ppgtt_init(ppgtt);
2121 }
2122
2123 static void i915_address_space_init(struct i915_address_space *vm,
2124                                     struct drm_i915_private *dev_priv)
2125 {
2126         drm_mm_init(&vm->mm, vm->start, vm->total);
2127         vm->dev = dev_priv->dev;
2128         INIT_LIST_HEAD(&vm->active_list);
2129         INIT_LIST_HEAD(&vm->inactive_list);
2130         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2131 }
2132
2133 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2134 {
2135         struct drm_i915_private *dev_priv = dev->dev_private;
2136         int ret = 0;
2137
2138         ret = __hw_ppgtt_init(dev, ppgtt);
2139         if (ret == 0) {
2140                 kref_init(&ppgtt->ref);
2141                 i915_address_space_init(&ppgtt->base, dev_priv);
2142         }
2143
2144         return ret;
2145 }
2146
2147 int i915_ppgtt_init_hw(struct drm_device *dev)
2148 {
2149         /* In the case of execlists, PPGTT is enabled by the context descriptor
2150          * and the PDPs are contained within the context itself.  We don't
2151          * need to do anything here. */
2152         if (i915.enable_execlists)
2153                 return 0;
2154
2155         if (!USES_PPGTT(dev))
2156                 return 0;
2157
2158         if (IS_GEN6(dev))
2159                 gen6_ppgtt_enable(dev);
2160         else if (IS_GEN7(dev))
2161                 gen7_ppgtt_enable(dev);
2162         else if (INTEL_INFO(dev)->gen >= 8)
2163                 gen8_ppgtt_enable(dev);
2164         else
2165                 MISSING_CASE(INTEL_INFO(dev)->gen);
2166
2167         return 0;
2168 }
2169
2170 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2171 {
2172         struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2173         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2174
2175         if (i915.enable_execlists)
2176                 return 0;
2177
2178         if (!ppgtt)
2179                 return 0;
2180
2181         return ppgtt->switch_mm(ppgtt, req);
2182 }
2183
2184 struct i915_hw_ppgtt *
2185 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2186 {
2187         struct i915_hw_ppgtt *ppgtt;
2188         int ret;
2189
2190         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2191         if (!ppgtt)
2192                 return ERR_PTR(-ENOMEM);
2193
2194         ret = i915_ppgtt_init(dev, ppgtt);
2195         if (ret) {
2196                 kfree(ppgtt);
2197                 return ERR_PTR(ret);
2198         }
2199
2200         ppgtt->file_priv = fpriv;
2201
2202         trace_i915_ppgtt_create(&ppgtt->base);
2203
2204         return ppgtt;
2205 }
2206
2207 void  i915_ppgtt_release(struct kref *kref)
2208 {
2209         struct i915_hw_ppgtt *ppgtt =
2210                 container_of(kref, struct i915_hw_ppgtt, ref);
2211
2212         trace_i915_ppgtt_release(&ppgtt->base);
2213
2214         /* vmas should already be unbound */
2215         WARN_ON(!list_empty(&ppgtt->base.active_list));
2216         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2217
2218         list_del(&ppgtt->base.global_link);
2219         drm_mm_takedown(&ppgtt->base.mm);
2220
2221         ppgtt->base.cleanup(&ppgtt->base);
2222         kfree(ppgtt);
2223 }
2224
2225 extern int intel_iommu_gfx_mapped;
2226 /* Certain Gen5 chipsets require require idling the GPU before
2227  * unmapping anything from the GTT when VT-d is enabled.
2228  */
2229 static bool needs_idle_maps(struct drm_device *dev)
2230 {
2231 #ifdef CONFIG_INTEL_IOMMU
2232         /* Query intel_iommu to see if we need the workaround. Presumably that
2233          * was loaded first.
2234          */
2235         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2236                 return true;
2237 #endif
2238         return false;
2239 }
2240
2241 static bool do_idling(struct drm_i915_private *dev_priv)
2242 {
2243         bool ret = dev_priv->mm.interruptible;
2244
2245         if (unlikely(dev_priv->gtt.do_idle_maps)) {
2246                 dev_priv->mm.interruptible = false;
2247                 if (i915_gpu_idle(dev_priv->dev)) {
2248                         DRM_ERROR("Couldn't idle GPU\n");
2249                         /* Wait a bit, in hopes it avoids the hang */
2250                         udelay(10);
2251                 }
2252         }
2253
2254         return ret;
2255 }
2256
2257 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2258 {
2259         if (unlikely(dev_priv->gtt.do_idle_maps))
2260                 dev_priv->mm.interruptible = interruptible;
2261 }
2262
2263 void i915_check_and_clear_faults(struct drm_device *dev)
2264 {
2265         struct drm_i915_private *dev_priv = dev->dev_private;
2266         struct intel_engine_cs *ring;
2267         int i;
2268
2269         if (INTEL_INFO(dev)->gen < 6)
2270                 return;
2271
2272         for_each_ring(ring, dev_priv, i) {
2273                 u32 fault_reg;
2274                 fault_reg = I915_READ(RING_FAULT_REG(ring));
2275                 if (fault_reg & RING_FAULT_VALID) {
2276                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2277                                          "\tAddr: 0x%08lx\n"
2278                                          "\tAddress space: %s\n"
2279                                          "\tSource ID: %d\n"
2280                                          "\tType: %d\n",
2281                                          fault_reg & PAGE_MASK,
2282                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2283                                          RING_FAULT_SRCID(fault_reg),
2284                                          RING_FAULT_FAULT_TYPE(fault_reg));
2285                         I915_WRITE(RING_FAULT_REG(ring),
2286                                    fault_reg & ~RING_FAULT_VALID);
2287                 }
2288         }
2289         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2290 }
2291
2292 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2293 {
2294         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2295                 intel_gtt_chipset_flush();
2296         } else {
2297                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2298                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2299         }
2300 }
2301
2302 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2303 {
2304         struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306         /* Don't bother messing with faults pre GEN6 as we have little
2307          * documentation supporting that it's a good idea.
2308          */
2309         if (INTEL_INFO(dev)->gen < 6)
2310                 return;
2311
2312         i915_check_and_clear_faults(dev);
2313
2314         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2315                                        dev_priv->gtt.base.start,
2316                                        dev_priv->gtt.base.total,
2317                                        true);
2318
2319         i915_ggtt_flush(dev_priv);
2320 }
2321
2322 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2323 {
2324         if (!dma_map_sg(&obj->base.dev->pdev->dev,
2325                         obj->pages->sgl, obj->pages->nents,
2326                         PCI_DMA_BIDIRECTIONAL))
2327                 return -ENOSPC;
2328
2329         return 0;
2330 }
2331
2332 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2333 {
2334 #ifdef writeq
2335         writeq(pte, addr);
2336 #else
2337         iowrite32((u32)pte, addr);
2338         iowrite32(pte >> 32, addr + 4);
2339 #endif
2340 }
2341
2342 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2343                                      struct sg_table *st,
2344                                      uint64_t start,
2345                                      enum i915_cache_level level, u32 unused)
2346 {
2347         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2348         unsigned first_entry = start >> PAGE_SHIFT;
2349         gen8_pte_t __iomem *gtt_entries =
2350                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2351         int i = 0;
2352         struct sg_page_iter sg_iter;
2353         dma_addr_t addr = 0; /* shut up gcc */
2354         int rpm_atomic_seq;
2355
2356         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2357
2358         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2359                 addr = sg_dma_address(sg_iter.sg) +
2360                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
2361                 gen8_set_pte(&gtt_entries[i],
2362                              gen8_pte_encode(addr, level, true));
2363                 i++;
2364         }
2365
2366         /*
2367          * XXX: This serves as a posting read to make sure that the PTE has
2368          * actually been updated. There is some concern that even though
2369          * registers and PTEs are within the same BAR that they are potentially
2370          * of NUMA access patterns. Therefore, even with the way we assume
2371          * hardware should work, we must keep this posting read for paranoia.
2372          */
2373         if (i != 0)
2374                 WARN_ON(readq(&gtt_entries[i-1])
2375                         != gen8_pte_encode(addr, level, true));
2376
2377         /* This next bit makes the above posting read even more important. We
2378          * want to flush the TLBs only after we're certain all the PTE updates
2379          * have finished.
2380          */
2381         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2382         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2383
2384         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2385 }
2386
2387 struct insert_entries {
2388         struct i915_address_space *vm;
2389         struct sg_table *st;
2390         uint64_t start;
2391         enum i915_cache_level level;
2392         u32 flags;
2393 };
2394
2395 static int gen8_ggtt_insert_entries__cb(void *_arg)
2396 {
2397         struct insert_entries *arg = _arg;
2398         gen8_ggtt_insert_entries(arg->vm, arg->st,
2399                                  arg->start, arg->level, arg->flags);
2400         return 0;
2401 }
2402
2403 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2404                                           struct sg_table *st,
2405                                           uint64_t start,
2406                                           enum i915_cache_level level,
2407                                           u32 flags)
2408 {
2409         struct insert_entries arg = { vm, st, start, level, flags };
2410         stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2411 }
2412
2413 /*
2414  * Binds an object into the global gtt with the specified cache level. The object
2415  * will be accessible to the GPU via commands whose operands reference offsets
2416  * within the global GTT as well as accessible by the GPU through the GMADR
2417  * mapped BAR (dev_priv->mm.gtt->gtt).
2418  */
2419 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2420                                      struct sg_table *st,
2421                                      uint64_t start,
2422                                      enum i915_cache_level level, u32 flags)
2423 {
2424         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2425         unsigned first_entry = start >> PAGE_SHIFT;
2426         gen6_pte_t __iomem *gtt_entries =
2427                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2428         int i = 0;
2429         struct sg_page_iter sg_iter;
2430         dma_addr_t addr = 0;
2431         int rpm_atomic_seq;
2432
2433         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2434
2435         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2436                 addr = sg_page_iter_dma_address(&sg_iter);
2437                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2438                 i++;
2439         }
2440
2441         /* XXX: This serves as a posting read to make sure that the PTE has
2442          * actually been updated. There is some concern that even though
2443          * registers and PTEs are within the same BAR that they are potentially
2444          * of NUMA access patterns. Therefore, even with the way we assume
2445          * hardware should work, we must keep this posting read for paranoia.
2446          */
2447         if (i != 0) {
2448                 unsigned long gtt = readl(&gtt_entries[i-1]);
2449                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2450         }
2451
2452         /* This next bit makes the above posting read even more important. We
2453          * want to flush the TLBs only after we're certain all the PTE updates
2454          * have finished.
2455          */
2456         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2457         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2458
2459         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2460 }
2461
2462 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2463                                   uint64_t start,
2464                                   uint64_t length,
2465                                   bool use_scratch)
2466 {
2467         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2468         unsigned first_entry = start >> PAGE_SHIFT;
2469         unsigned num_entries = length >> PAGE_SHIFT;
2470         gen8_pte_t scratch_pte, __iomem *gtt_base =
2471                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2472         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2473         int i;
2474         int rpm_atomic_seq;
2475
2476         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2477
2478         if (WARN(num_entries > max_entries,
2479                  "First entry = %d; Num entries = %d (max=%d)\n",
2480                  first_entry, num_entries, max_entries))
2481                 num_entries = max_entries;
2482
2483         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2484                                       I915_CACHE_LLC,
2485                                       use_scratch);
2486         for (i = 0; i < num_entries; i++)
2487                 gen8_set_pte(&gtt_base[i], scratch_pte);
2488         readl(gtt_base);
2489
2490         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2491 }
2492
2493 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2494                                   uint64_t start,
2495                                   uint64_t length,
2496                                   bool use_scratch)
2497 {
2498         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2499         unsigned first_entry = start >> PAGE_SHIFT;
2500         unsigned num_entries = length >> PAGE_SHIFT;
2501         gen6_pte_t scratch_pte, __iomem *gtt_base =
2502                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2503         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2504         int i;
2505         int rpm_atomic_seq;
2506
2507         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2508
2509         if (WARN(num_entries > max_entries,
2510                  "First entry = %d; Num entries = %d (max=%d)\n",
2511                  first_entry, num_entries, max_entries))
2512                 num_entries = max_entries;
2513
2514         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2515                                      I915_CACHE_LLC, use_scratch, 0);
2516
2517         for (i = 0; i < num_entries; i++)
2518                 iowrite32(scratch_pte, &gtt_base[i]);
2519         readl(gtt_base);
2520
2521         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2522 }
2523
2524 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2525                                      struct sg_table *pages,
2526                                      uint64_t start,
2527                                      enum i915_cache_level cache_level, u32 unused)
2528 {
2529         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2530         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2531                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2532         int rpm_atomic_seq;
2533
2534         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2535
2536         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2537
2538         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2539
2540 }
2541
2542 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2543                                   uint64_t start,
2544                                   uint64_t length,
2545                                   bool unused)
2546 {
2547         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2548         unsigned first_entry = start >> PAGE_SHIFT;
2549         unsigned num_entries = length >> PAGE_SHIFT;
2550         int rpm_atomic_seq;
2551
2552         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2553
2554         intel_gtt_clear_range(first_entry, num_entries);
2555
2556         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2557 }
2558
2559 static int ggtt_bind_vma(struct i915_vma *vma,
2560                          enum i915_cache_level cache_level,
2561                          u32 flags)
2562 {
2563         struct drm_i915_gem_object *obj = vma->obj;
2564         u32 pte_flags = 0;
2565         int ret;
2566
2567         ret = i915_get_ggtt_vma_pages(vma);
2568         if (ret)
2569                 return ret;
2570
2571         /* Currently applicable only to VLV */
2572         if (obj->gt_ro)
2573                 pte_flags |= PTE_READ_ONLY;
2574
2575         vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2576                                 vma->node.start,
2577                                 cache_level, pte_flags);
2578
2579         /*
2580          * Without aliasing PPGTT there's no difference between
2581          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2582          * upgrade to both bound if we bind either to avoid double-binding.
2583          */
2584         vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2585
2586         return 0;
2587 }
2588
2589 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2590                                  enum i915_cache_level cache_level,
2591                                  u32 flags)
2592 {
2593         struct drm_device *dev = vma->vm->dev;
2594         struct drm_i915_private *dev_priv = dev->dev_private;
2595         struct drm_i915_gem_object *obj = vma->obj;
2596         struct sg_table *pages = obj->pages;
2597         u32 pte_flags = 0;
2598         int ret;
2599
2600         ret = i915_get_ggtt_vma_pages(vma);
2601         if (ret)
2602                 return ret;
2603         pages = vma->ggtt_view.pages;
2604
2605         /* Currently applicable only to VLV */
2606         if (obj->gt_ro)
2607                 pte_flags |= PTE_READ_ONLY;
2608
2609
2610         if (flags & GLOBAL_BIND) {
2611                 vma->vm->insert_entries(vma->vm, pages,
2612                                         vma->node.start,
2613                                         cache_level, pte_flags);
2614         }
2615
2616         if (flags & LOCAL_BIND) {
2617                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2618                 appgtt->base.insert_entries(&appgtt->base, pages,
2619                                             vma->node.start,
2620                                             cache_level, pte_flags);
2621         }
2622
2623         return 0;
2624 }
2625
2626 static void ggtt_unbind_vma(struct i915_vma *vma)
2627 {
2628         struct drm_device *dev = vma->vm->dev;
2629         struct drm_i915_private *dev_priv = dev->dev_private;
2630         struct drm_i915_gem_object *obj = vma->obj;
2631         const uint64_t size = min_t(uint64_t,
2632                                     obj->base.size,
2633                                     vma->node.size);
2634
2635         if (vma->bound & GLOBAL_BIND) {
2636                 vma->vm->clear_range(vma->vm,
2637                                      vma->node.start,
2638                                      size,
2639                                      true);
2640         }
2641
2642         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2643                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2644
2645                 appgtt->base.clear_range(&appgtt->base,
2646                                          vma->node.start,
2647                                          size,
2648                                          true);
2649         }
2650 }
2651
2652 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2653 {
2654         struct drm_device *dev = obj->base.dev;
2655         struct drm_i915_private *dev_priv = dev->dev_private;
2656         bool interruptible;
2657
2658         interruptible = do_idling(dev_priv);
2659
2660         dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2661                      PCI_DMA_BIDIRECTIONAL);
2662
2663         undo_idling(dev_priv, interruptible);
2664 }
2665
2666 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2667                                   unsigned long color,
2668                                   u64 *start,
2669                                   u64 *end)
2670 {
2671         if (node->color != color)
2672                 *start += 4096;
2673
2674         if (!list_empty(&node->node_list)) {
2675                 node = list_entry(node->node_list.next,
2676                                   struct drm_mm_node,
2677                                   node_list);
2678                 if (node->allocated && node->color != color)
2679                         *end -= 4096;
2680         }
2681 }
2682
2683 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2684                                      u64 start,
2685                                      u64 mappable_end,
2686                                      u64 end)
2687 {
2688         /* Let GEM Manage all of the aperture.
2689          *
2690          * However, leave one page at the end still bound to the scratch page.
2691          * There are a number of places where the hardware apparently prefetches
2692          * past the end of the object, and we've seen multiple hangs with the
2693          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2694          * aperture.  One page should be enough to keep any prefetching inside
2695          * of the aperture.
2696          */
2697         struct drm_i915_private *dev_priv = dev->dev_private;
2698         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2699         struct drm_mm_node *entry;
2700         struct drm_i915_gem_object *obj;
2701         unsigned long hole_start, hole_end;
2702         int ret;
2703
2704         BUG_ON(mappable_end > end);
2705
2706         ggtt_vm->start = start;
2707
2708         /* Subtract the guard page before address space initialization to
2709          * shrink the range used by drm_mm */
2710         ggtt_vm->total = end - start - PAGE_SIZE;
2711         i915_address_space_init(ggtt_vm, dev_priv);
2712         ggtt_vm->total += PAGE_SIZE;
2713
2714         if (intel_vgpu_active(dev)) {
2715                 ret = intel_vgt_balloon(dev);
2716                 if (ret)
2717                         return ret;
2718         }
2719
2720         if (!HAS_LLC(dev))
2721                 ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2722
2723         /* Mark any preallocated objects as occupied */
2724         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2725                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2726
2727                 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2728                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2729
2730                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2731                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2732                 if (ret) {
2733                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2734                         return ret;
2735                 }
2736                 vma->bound |= GLOBAL_BIND;
2737                 __i915_vma_set_map_and_fenceable(vma);
2738                 list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2739         }
2740
2741         /* Clear any non-preallocated blocks */
2742         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2743                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2744                               hole_start, hole_end);
2745                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2746                                      hole_end - hole_start, true);
2747         }
2748
2749         /* And finally clear the reserved guard page */
2750         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2751
2752         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2753                 struct i915_hw_ppgtt *ppgtt;
2754
2755                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2756                 if (!ppgtt)
2757                         return -ENOMEM;
2758
2759                 ret = __hw_ppgtt_init(dev, ppgtt);
2760                 if (ret) {
2761                         ppgtt->base.cleanup(&ppgtt->base);
2762                         kfree(ppgtt);
2763                         return ret;
2764                 }
2765
2766                 if (ppgtt->base.allocate_va_range)
2767                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2768                                                             ppgtt->base.total);
2769                 if (ret) {
2770                         ppgtt->base.cleanup(&ppgtt->base);
2771                         kfree(ppgtt);
2772                         return ret;
2773                 }
2774
2775                 ppgtt->base.clear_range(&ppgtt->base,
2776                                         ppgtt->base.start,
2777                                         ppgtt->base.total,
2778                                         true);
2779
2780                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2781                 WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2782                 dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2783         }
2784
2785         return 0;
2786 }
2787
2788 void i915_gem_init_global_gtt(struct drm_device *dev)
2789 {
2790         struct drm_i915_private *dev_priv = dev->dev_private;
2791         u64 gtt_size, mappable_size;
2792
2793         gtt_size = dev_priv->gtt.base.total;
2794         mappable_size = dev_priv->gtt.mappable_end;
2795
2796         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2797 }
2798
2799 void i915_global_gtt_cleanup(struct drm_device *dev)
2800 {
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         struct i915_address_space *vm = &dev_priv->gtt.base;
2803
2804         if (dev_priv->mm.aliasing_ppgtt) {
2805                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2806
2807                 ppgtt->base.cleanup(&ppgtt->base);
2808         }
2809
2810         if (drm_mm_initialized(&vm->mm)) {
2811                 if (intel_vgpu_active(dev))
2812                         intel_vgt_deballoon();
2813
2814                 drm_mm_takedown(&vm->mm);
2815                 list_del(&vm->global_link);
2816         }
2817
2818         vm->cleanup(vm);
2819 }
2820
2821 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2822 {
2823         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2824         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2825         return snb_gmch_ctl << 20;
2826 }
2827
2828 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2829 {
2830         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2831         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2832         if (bdw_gmch_ctl)
2833                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2834
2835 #ifdef CONFIG_X86_32
2836         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2837         if (bdw_gmch_ctl > 4)
2838                 bdw_gmch_ctl = 4;
2839 #endif
2840
2841         return bdw_gmch_ctl << 20;
2842 }
2843
2844 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2845 {
2846         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2847         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2848
2849         if (gmch_ctrl)
2850                 return 1 << (20 + gmch_ctrl);
2851
2852         return 0;
2853 }
2854
2855 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2856 {
2857         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2858         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2859         return snb_gmch_ctl << 25; /* 32 MB units */
2860 }
2861
2862 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2863 {
2864         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2865         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2866         return bdw_gmch_ctl << 25; /* 32 MB units */
2867 }
2868
2869 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2870 {
2871         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2872         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2873
2874         /*
2875          * 0x0  to 0x10: 32MB increments starting at 0MB
2876          * 0x11 to 0x16: 4MB increments starting at 8MB
2877          * 0x17 to 0x1d: 4MB increments start at 36MB
2878          */
2879         if (gmch_ctrl < 0x11)
2880                 return gmch_ctrl << 25;
2881         else if (gmch_ctrl < 0x17)
2882                 return (gmch_ctrl - 0x11 + 2) << 22;
2883         else
2884                 return (gmch_ctrl - 0x17 + 9) << 22;
2885 }
2886
2887 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2888 {
2889         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2890         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2891
2892         if (gen9_gmch_ctl < 0xf0)
2893                 return gen9_gmch_ctl << 25; /* 32 MB units */
2894         else
2895                 /* 4MB increments starting at 0xf0 for 4MB */
2896                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2897 }
2898
2899 static int ggtt_probe_common(struct drm_device *dev,
2900                              size_t gtt_size)
2901 {
2902         struct drm_i915_private *dev_priv = dev->dev_private;
2903         struct i915_page_scratch *scratch_page;
2904         phys_addr_t gtt_phys_addr;
2905
2906         /* For Modern GENs the PTEs and register space are split in the BAR */
2907         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2908                 (pci_resource_len(dev->pdev, 0) / 2);
2909
2910         /*
2911          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2912          * dropped. For WC mappings in general we have 64 byte burst writes
2913          * when the WC buffer is flushed, so we can't use it, but have to
2914          * resort to an uncached mapping. The WC issue is easily caught by the
2915          * readback check when writing GTT PTE entries.
2916          */
2917         if (IS_BROXTON(dev))
2918                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2919         else
2920                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2921         if (!dev_priv->gtt.gsm) {
2922                 DRM_ERROR("Failed to map the gtt page table\n");
2923                 return -ENOMEM;
2924         }
2925
2926         scratch_page = alloc_scratch_page(dev);
2927         if (IS_ERR(scratch_page)) {
2928                 DRM_ERROR("Scratch setup failed\n");
2929                 /* iounmap will also get called at remove, but meh */
2930                 iounmap(dev_priv->gtt.gsm);
2931                 return PTR_ERR(scratch_page);
2932         }
2933
2934         dev_priv->gtt.base.scratch_page = scratch_page;
2935
2936         return 0;
2937 }
2938
2939 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2940  * bits. When using advanced contexts each context stores its own PAT, but
2941  * writing this data shouldn't be harmful even in those cases. */
2942 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2943 {
2944         uint64_t pat;
2945
2946         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2947               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2948               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2949               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2950               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2951               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2952               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2953               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2954
2955         if (!USES_PPGTT(dev_priv->dev))
2956                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2957                  * so RTL will always use the value corresponding to
2958                  * pat_sel = 000".
2959                  * So let's disable cache for GGTT to avoid screen corruptions.
2960                  * MOCS still can be used though.
2961                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2962                  * before this patch, i.e. the same uncached + snooping access
2963                  * like on gen6/7 seems to be in effect.
2964                  * - So this just fixes blitter/render access. Again it looks
2965                  * like it's not just uncached access, but uncached + snooping.
2966                  * So we can still hold onto all our assumptions wrt cpu
2967                  * clflushing on LLC machines.
2968                  */
2969                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2970
2971         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2972          * write would work. */
2973         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2974         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2975 }
2976
2977 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2978 {
2979         uint64_t pat;
2980
2981         /*
2982          * Map WB on BDW to snooped on CHV.
2983          *
2984          * Only the snoop bit has meaning for CHV, the rest is
2985          * ignored.
2986          *
2987          * The hardware will never snoop for certain types of accesses:
2988          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2989          * - PPGTT page tables
2990          * - some other special cycles
2991          *
2992          * As with BDW, we also need to consider the following for GT accesses:
2993          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2994          * so RTL will always use the value corresponding to
2995          * pat_sel = 000".
2996          * Which means we must set the snoop bit in PAT entry 0
2997          * in order to keep the global status page working.
2998          */
2999         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3000               GEN8_PPAT(1, 0) |
3001               GEN8_PPAT(2, 0) |
3002               GEN8_PPAT(3, 0) |
3003               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3004               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3005               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3006               GEN8_PPAT(7, CHV_PPAT_SNOOP);
3007
3008         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3009         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3010 }
3011
3012 static int gen8_gmch_probe(struct drm_device *dev,
3013                            u64 *gtt_total,
3014                            size_t *stolen,
3015                            phys_addr_t *mappable_base,
3016                            u64 *mappable_end)
3017 {
3018         struct drm_i915_private *dev_priv = dev->dev_private;
3019         u64 gtt_size;
3020         u16 snb_gmch_ctl;
3021         int ret;
3022
3023         /* TODO: We're not aware of mappable constraints on gen8 yet */
3024         *mappable_base = pci_resource_start(dev->pdev, 2);
3025         *mappable_end = pci_resource_len(dev->pdev, 2);
3026
3027         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3028                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3029
3030         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3031
3032         if (INTEL_INFO(dev)->gen >= 9) {
3033                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
3034                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3035         } else if (IS_CHERRYVIEW(dev)) {
3036                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
3037                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3038         } else {
3039                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
3040                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3041         }
3042
3043         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3044
3045         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3046                 chv_setup_private_ppat(dev_priv);
3047         else
3048                 bdw_setup_private_ppat(dev_priv);
3049
3050         ret = ggtt_probe_common(dev, gtt_size);
3051
3052         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3053         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3054         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3055         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3056
3057         if (IS_CHERRYVIEW(dev_priv))
3058                 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries__BKL;
3059
3060         return ret;
3061 }
3062
3063 static int gen6_gmch_probe(struct drm_device *dev,
3064                            u64 *gtt_total,
3065                            size_t *stolen,
3066                            phys_addr_t *mappable_base,
3067                            u64 *mappable_end)
3068 {
3069         struct drm_i915_private *dev_priv = dev->dev_private;
3070         unsigned int gtt_size;
3071         u16 snb_gmch_ctl;
3072         int ret;
3073
3074         *mappable_base = pci_resource_start(dev->pdev, 2);
3075         *mappable_end = pci_resource_len(dev->pdev, 2);
3076
3077         /* 64/512MB is the current min/max we actually know of, but this is just
3078          * a coarse sanity check.
3079          */
3080         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3081                 DRM_ERROR("Unknown GMADR size (%llx)\n",
3082                           dev_priv->gtt.mappable_end);
3083                 return -ENXIO;
3084         }
3085
3086         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3087                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3088         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3089
3090         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
3091
3092         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3093         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3094
3095         ret = ggtt_probe_common(dev, gtt_size);
3096
3097         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3098         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3099         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3100         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3101
3102         return ret;
3103 }
3104
3105 static void gen6_gmch_remove(struct i915_address_space *vm)
3106 {
3107
3108         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3109
3110         iounmap(gtt->gsm);
3111         free_scratch_page(vm->dev, vm->scratch_page);
3112 }
3113
3114 static int i915_gmch_probe(struct drm_device *dev,
3115                            u64 *gtt_total,
3116                            size_t *stolen,
3117                            phys_addr_t *mappable_base,
3118                            u64 *mappable_end)
3119 {
3120         struct drm_i915_private *dev_priv = dev->dev_private;
3121         int ret;
3122
3123         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3124         if (!ret) {
3125                 DRM_ERROR("failed to set up gmch\n");
3126                 return -EIO;
3127         }
3128
3129         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3130
3131         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3132         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3133         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3134         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3135         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3136
3137         if (unlikely(dev_priv->gtt.do_idle_maps))
3138                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3139
3140         return 0;
3141 }
3142
3143 static void i915_gmch_remove(struct i915_address_space *vm)
3144 {
3145         intel_gmch_remove();
3146 }
3147
3148 int i915_gem_gtt_init(struct drm_device *dev)
3149 {
3150         struct drm_i915_private *dev_priv = dev->dev_private;
3151         struct i915_gtt *gtt = &dev_priv->gtt;
3152         int ret;
3153
3154         if (INTEL_INFO(dev)->gen <= 5) {
3155                 gtt->gtt_probe = i915_gmch_probe;
3156                 gtt->base.cleanup = i915_gmch_remove;
3157         } else if (INTEL_INFO(dev)->gen < 8) {
3158                 gtt->gtt_probe = gen6_gmch_probe;
3159                 gtt->base.cleanup = gen6_gmch_remove;
3160                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
3161                         gtt->base.pte_encode = iris_pte_encode;
3162                 else if (IS_HASWELL(dev))
3163                         gtt->base.pte_encode = hsw_pte_encode;
3164                 else if (IS_VALLEYVIEW(dev))
3165                         gtt->base.pte_encode = byt_pte_encode;
3166                 else if (INTEL_INFO(dev)->gen >= 7)
3167                         gtt->base.pte_encode = ivb_pte_encode;
3168                 else
3169                         gtt->base.pte_encode = snb_pte_encode;
3170         } else {
3171                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3172                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3173         }
3174
3175         gtt->base.dev = dev;
3176
3177         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3178                              &gtt->mappable_base, &gtt->mappable_end);
3179         if (ret)
3180                 return ret;
3181
3182         /* GMADR is the PCI mmio aperture into the global GTT. */
3183         DRM_INFO("Memory usable by graphics device = %lluM\n",
3184                  gtt->base.total >> 20);
3185         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3186         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3187 #ifdef CONFIG_INTEL_IOMMU
3188         if (intel_iommu_gfx_mapped)
3189                 DRM_INFO("VT-d active for gfx access\n");
3190 #endif
3191         /*
3192          * i915.enable_ppgtt is read-only, so do an early pass to validate the
3193          * user's requested state against the hardware/driver capabilities.  We
3194          * do this now so that we can print out any log messages once rather
3195          * than every time we check intel_enable_ppgtt().
3196          */
3197         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3198         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3199
3200         return 0;
3201 }
3202
3203 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3204 {
3205         struct drm_i915_private *dev_priv = dev->dev_private;
3206         struct drm_i915_gem_object *obj;
3207         struct i915_address_space *vm;
3208         struct i915_vma *vma;
3209         bool flush;
3210
3211         i915_check_and_clear_faults(dev);
3212
3213         /* First fill our portion of the GTT with scratch pages */
3214         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3215                                        dev_priv->gtt.base.start,
3216                                        dev_priv->gtt.base.total,
3217                                        true);
3218
3219         /* Cache flush objects bound into GGTT and rebind them. */
3220         vm = &dev_priv->gtt.base;
3221         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3222                 flush = false;
3223                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3224                         if (vma->vm != vm)
3225                                 continue;
3226
3227                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3228                                               PIN_UPDATE));
3229
3230                         flush = true;
3231                 }
3232
3233                 if (flush)
3234                         i915_gem_clflush_object(obj, obj->pin_display);
3235         }
3236
3237         if (INTEL_INFO(dev)->gen >= 8) {
3238                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3239                         chv_setup_private_ppat(dev_priv);
3240                 else
3241                         bdw_setup_private_ppat(dev_priv);
3242
3243                 return;
3244         }
3245
3246         if (USES_PPGTT(dev)) {
3247                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3248                         /* TODO: Perhaps it shouldn't be gen6 specific */
3249
3250                         struct i915_hw_ppgtt *ppgtt =
3251                                         container_of(vm, struct i915_hw_ppgtt,
3252                                                      base);
3253
3254                         if (i915_is_ggtt(vm))
3255                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3256
3257                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3258                                               0, ppgtt->base.total);
3259                 }
3260         }
3261
3262         i915_ggtt_flush(dev_priv);
3263 }
3264
3265 static struct i915_vma *
3266 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3267                       struct i915_address_space *vm,
3268                       const struct i915_ggtt_view *ggtt_view)
3269 {
3270         struct i915_vma *vma;
3271
3272         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3273                 return ERR_PTR(-EINVAL);
3274
3275         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3276         if (vma == NULL)
3277                 return ERR_PTR(-ENOMEM);
3278
3279         INIT_LIST_HEAD(&vma->vma_link);
3280         INIT_LIST_HEAD(&vma->mm_list);
3281         INIT_LIST_HEAD(&vma->exec_list);
3282         vma->vm = vm;
3283         vma->obj = obj;
3284
3285         if (i915_is_ggtt(vm))
3286                 vma->ggtt_view = *ggtt_view;
3287
3288         list_add_tail(&vma->vma_link, &obj->vma_list);
3289         if (!i915_is_ggtt(vm))
3290                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3291
3292         return vma;
3293 }
3294
3295 struct i915_vma *
3296 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3297                                   struct i915_address_space *vm)
3298 {
3299         struct i915_vma *vma;
3300
3301         vma = i915_gem_obj_to_vma(obj, vm);
3302         if (!vma)
3303                 vma = __i915_gem_vma_create(obj, vm,
3304                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3305
3306         return vma;
3307 }
3308
3309 struct i915_vma *
3310 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3311                                        const struct i915_ggtt_view *view)
3312 {
3313         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3314         struct i915_vma *vma;
3315
3316         if (WARN_ON(!view))
3317                 return ERR_PTR(-EINVAL);
3318
3319         vma = i915_gem_obj_to_ggtt_view(obj, view);
3320
3321         if (IS_ERR(vma))
3322                 return vma;
3323
3324         if (!vma)
3325                 vma = __i915_gem_vma_create(obj, ggtt, view);
3326
3327         return vma;
3328
3329 }
3330
3331 static struct scatterlist *
3332 rotate_pages(dma_addr_t *in, unsigned int offset,
3333              unsigned int width, unsigned int height,
3334              struct sg_table *st, struct scatterlist *sg)
3335 {
3336         unsigned int column, row;
3337         unsigned int src_idx;
3338
3339         if (!sg) {
3340                 st->nents = 0;
3341                 sg = st->sgl;
3342         }
3343
3344         for (column = 0; column < width; column++) {
3345                 src_idx = width * (height - 1) + column;
3346                 for (row = 0; row < height; row++) {
3347                         st->nents++;
3348                         /* We don't need the pages, but need to initialize
3349                          * the entries so the sg list can be happily traversed.
3350                          * The only thing we need are DMA addresses.
3351                          */
3352                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3353                         sg_dma_address(sg) = in[offset + src_idx];
3354                         sg_dma_len(sg) = PAGE_SIZE;
3355                         sg = sg_next(sg);
3356                         src_idx -= width;
3357                 }
3358         }
3359
3360         return sg;
3361 }
3362
3363 static struct sg_table *
3364 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3365                           struct drm_i915_gem_object *obj)
3366 {
3367         struct intel_rotation_info *rot_info = &ggtt_view->params.rotation_info;
3368         unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3369         unsigned int size_pages_uv;
3370         struct sg_page_iter sg_iter;
3371         unsigned long i;
3372         dma_addr_t *page_addr_list;
3373         struct sg_table *st;
3374         unsigned int uv_start_page;
3375         struct scatterlist *sg;
3376         int ret = -ENOMEM;
3377
3378         /* Allocate a temporary list of source pages for random access. */
3379         page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3380                                        sizeof(dma_addr_t));
3381         if (!page_addr_list)
3382                 return ERR_PTR(ret);
3383
3384         /* Account for UV plane with NV12. */
3385         if (rot_info->pixel_format == DRM_FORMAT_NV12)
3386                 size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3387         else
3388                 size_pages_uv = 0;
3389
3390         /* Allocate target SG list. */
3391         st = kmalloc(sizeof(*st), GFP_KERNEL);
3392         if (!st)
3393                 goto err_st_alloc;
3394
3395         ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3396         if (ret)
3397                 goto err_sg_alloc;
3398
3399         /* Populate source page list from the object. */
3400         i = 0;
3401         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3402                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3403                 i++;
3404         }
3405
3406         /* Rotate the pages. */
3407         sg = rotate_pages(page_addr_list, 0,
3408                      rot_info->width_pages, rot_info->height_pages,
3409                      st, NULL);
3410
3411         /* Append the UV plane if NV12. */
3412         if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3413                 uv_start_page = size_pages;
3414
3415                 /* Check for tile-row un-alignment. */
3416                 if (offset_in_page(rot_info->uv_offset))
3417                         uv_start_page--;
3418
3419                 rot_info->uv_start_page = uv_start_page;
3420
3421                 rotate_pages(page_addr_list, uv_start_page,
3422                              rot_info->width_pages_uv,
3423                              rot_info->height_pages_uv,
3424                              st, sg);
3425         }
3426
3427         DRM_DEBUG_KMS(
3428                       "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3429                       obj->base.size, rot_info->pitch, rot_info->height,
3430                       rot_info->pixel_format, rot_info->width_pages,
3431                       rot_info->height_pages, size_pages + size_pages_uv,
3432                       size_pages);
3433
3434         drm_free_large(page_addr_list);
3435
3436         return st;
3437
3438 err_sg_alloc:
3439         kfree(st);
3440 err_st_alloc:
3441         drm_free_large(page_addr_list);
3442
3443         DRM_DEBUG_KMS(
3444                       "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3445                       obj->base.size, ret, rot_info->pitch, rot_info->height,
3446                       rot_info->pixel_format, rot_info->width_pages,
3447                       rot_info->height_pages, size_pages + size_pages_uv,
3448                       size_pages);
3449         return ERR_PTR(ret);
3450 }
3451
3452 static struct sg_table *
3453 intel_partial_pages(const struct i915_ggtt_view *view,
3454                     struct drm_i915_gem_object *obj)
3455 {
3456         struct sg_table *st;
3457         struct scatterlist *sg;
3458         struct sg_page_iter obj_sg_iter;
3459         int ret = -ENOMEM;
3460
3461         st = kmalloc(sizeof(*st), GFP_KERNEL);
3462         if (!st)
3463                 goto err_st_alloc;
3464
3465         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3466         if (ret)
3467                 goto err_sg_alloc;
3468
3469         sg = st->sgl;
3470         st->nents = 0;
3471         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3472                 view->params.partial.offset)
3473         {
3474                 if (st->nents >= view->params.partial.size)
3475                         break;
3476
3477                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3478                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3479                 sg_dma_len(sg) = PAGE_SIZE;
3480
3481                 sg = sg_next(sg);
3482                 st->nents++;
3483         }
3484
3485         return st;
3486
3487 err_sg_alloc:
3488         kfree(st);
3489 err_st_alloc:
3490         return ERR_PTR(ret);
3491 }
3492
3493 static int
3494 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3495 {
3496         int ret = 0;
3497
3498         if (vma->ggtt_view.pages)
3499                 return 0;
3500
3501         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3502                 vma->ggtt_view.pages = vma->obj->pages;
3503         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3504                 vma->ggtt_view.pages =
3505                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3506         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3507                 vma->ggtt_view.pages =
3508                         intel_partial_pages(&vma->ggtt_view, vma->obj);
3509         else
3510                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3511                           vma->ggtt_view.type);
3512
3513         if (!vma->ggtt_view.pages) {
3514                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3515                           vma->ggtt_view.type);
3516                 ret = -EINVAL;
3517         } else if (IS_ERR(vma->ggtt_view.pages)) {
3518                 ret = PTR_ERR(vma->ggtt_view.pages);
3519                 vma->ggtt_view.pages = NULL;
3520                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3521                           vma->ggtt_view.type, ret);
3522         }
3523
3524         return ret;
3525 }
3526
3527 /**
3528  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3529  * @vma: VMA to map
3530  * @cache_level: mapping cache level
3531  * @flags: flags like global or local mapping
3532  *
3533  * DMA addresses are taken from the scatter-gather table of this object (or of
3534  * this VMA in case of non-default GGTT views) and PTE entries set up.
3535  * Note that DMA addresses are also the only part of the SG table we care about.
3536  */
3537 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3538                   u32 flags)
3539 {
3540         int ret;
3541         u32 bind_flags;
3542
3543         if (WARN_ON(flags == 0))
3544                 return -EINVAL;
3545
3546         bind_flags = 0;
3547         if (flags & PIN_GLOBAL)
3548                 bind_flags |= GLOBAL_BIND;
3549         if (flags & PIN_USER)
3550                 bind_flags |= LOCAL_BIND;
3551
3552         if (flags & PIN_UPDATE)
3553                 bind_flags |= vma->bound;
3554         else
3555                 bind_flags &= ~vma->bound;
3556
3557         if (bind_flags == 0)
3558                 return 0;
3559
3560         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3561                 trace_i915_va_alloc(vma->vm,
3562                                     vma->node.start,
3563                                     vma->node.size,
3564                                     VM_TO_TRACE_NAME(vma->vm));
3565
3566                 /* XXX: i915_vma_pin() will fix this +- hack */
3567                 vma->pin_count++;
3568                 ret = vma->vm->allocate_va_range(vma->vm,
3569                                                  vma->node.start,
3570                                                  vma->node.size);
3571                 vma->pin_count--;
3572                 if (ret)
3573                         return ret;
3574         }
3575
3576         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3577         if (ret)
3578                 return ret;
3579
3580         vma->bound |= bind_flags;
3581
3582         return 0;
3583 }
3584
3585 /**
3586  * i915_ggtt_view_size - Get the size of a GGTT view.
3587  * @obj: Object the view is of.
3588  * @view: The view in question.
3589  *
3590  * @return The size of the GGTT view in bytes.
3591  */
3592 size_t
3593 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3594                     const struct i915_ggtt_view *view)
3595 {
3596         if (view->type == I915_GGTT_VIEW_NORMAL) {
3597                 return obj->base.size;
3598         } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3599                 return view->params.rotation_info.size;
3600         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3601                 return view->params.partial.size << PAGE_SHIFT;
3602         } else {
3603                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3604                 return obj->base.size;
3605         }
3606 }