]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
c0042471ad876a47dfaf80747f8e1a968cdecc0a
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include "intel_frontbuffer.h"
35
36 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
37
38 /**
39  * DOC: Global GTT views
40  *
41  * Background and previous state
42  *
43  * Historically objects could exists (be bound) in global GTT space only as
44  * singular instances with a view representing all of the object's backing pages
45  * in a linear fashion. This view will be called a normal view.
46  *
47  * To support multiple views of the same object, where the number of mapped
48  * pages is not equal to the backing store, or where the layout of the pages
49  * is not linear, concept of a GGTT view was added.
50  *
51  * One example of an alternative view is a stereo display driven by a single
52  * image. In this case we would have a framebuffer looking like this
53  * (2x2 pages):
54  *
55  *    12
56  *    34
57  *
58  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
59  * rendering. In contrast, fed to the display engine would be an alternative
60  * view which could look something like this:
61  *
62  *   1212
63  *   3434
64  *
65  * In this example both the size and layout of pages in the alternative view is
66  * different from the normal view.
67  *
68  * Implementation and usage
69  *
70  * GGTT views are implemented using VMAs and are distinguished via enum
71  * i915_ggtt_view_type and struct i915_ggtt_view.
72  *
73  * A new flavour of core GEM functions which work with GGTT bound objects were
74  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
75  * renaming  in large amounts of code. They take the struct i915_ggtt_view
76  * parameter encapsulating all metadata required to implement a view.
77  *
78  * As a helper for callers which are only interested in the normal view,
79  * globally const i915_ggtt_view_normal singleton instance exists. All old core
80  * GEM API functions, the ones not taking the view parameter, are operating on,
81  * or with the normal GGTT view.
82  *
83  * Code wanting to add or use a new GGTT view needs to:
84  *
85  * 1. Add a new enum with a suitable name.
86  * 2. Extend the metadata in the i915_ggtt_view structure if required.
87  * 3. Add support to i915_get_vma_pages().
88  *
89  * New views are required to build a scatter-gather table from within the
90  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
91  * exists for the lifetime of an VMA.
92  *
93  * Core API is designed to have copy semantics which means that passed in
94  * struct i915_ggtt_view does not need to be persistent (left around after
95  * calling the core API functions).
96  *
97  */
98
99 static int
100 i915_get_ggtt_vma_pages(struct i915_vma *vma);
101
102 const struct i915_ggtt_view i915_ggtt_view_normal = {
103         .type = I915_GGTT_VIEW_NORMAL,
104 };
105 const struct i915_ggtt_view i915_ggtt_view_rotated = {
106         .type = I915_GGTT_VIEW_ROTATED,
107 };
108
109 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
110                                 int enable_ppgtt)
111 {
112         bool has_aliasing_ppgtt;
113         bool has_full_ppgtt;
114         bool has_full_48bit_ppgtt;
115
116         has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
117         has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
118         has_full_48bit_ppgtt =
119                 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
120
121         if (intel_vgpu_active(dev_priv)) {
122                 /* emulation is too hard */
123                 has_full_ppgtt = false;
124                 has_full_48bit_ppgtt = false;
125         }
126
127         if (!has_aliasing_ppgtt)
128                 return 0;
129
130         /*
131          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
132          * execlists, the sole mechanism available to submit work.
133          */
134         if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
135                 return 0;
136
137         if (enable_ppgtt == 1)
138                 return 1;
139
140         if (enable_ppgtt == 2 && has_full_ppgtt)
141                 return 2;
142
143         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
144                 return 3;
145
146 #ifdef CONFIG_INTEL_IOMMU
147         /* Disable ppgtt on SNB if VT-d is on. */
148         if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
149                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
150                 return 0;
151         }
152 #endif
153
154         /* Early VLV doesn't have this */
155         if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
156                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
157                 return 0;
158         }
159
160         if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
161                 return has_full_48bit_ppgtt ? 3 : 2;
162         else
163                 return has_aliasing_ppgtt ? 1 : 0;
164 }
165
166 static int ppgtt_bind_vma(struct i915_vma *vma,
167                           enum i915_cache_level cache_level,
168                           u32 unused)
169 {
170         u32 pte_flags = 0;
171
172         vma->pages = vma->obj->mm.pages;
173
174         /* Currently applicable only to VLV */
175         if (vma->obj->gt_ro)
176                 pte_flags |= PTE_READ_ONLY;
177
178         vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
179                                 cache_level, pte_flags);
180
181         return 0;
182 }
183
184 static void ppgtt_unbind_vma(struct i915_vma *vma)
185 {
186         vma->vm->clear_range(vma->vm,
187                              vma->node.start,
188                              vma->size);
189 }
190
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192                                   enum i915_cache_level level)
193 {
194         gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
195         pte |= addr;
196
197         switch (level) {
198         case I915_CACHE_NONE:
199                 pte |= PPAT_UNCACHED_INDEX;
200                 break;
201         case I915_CACHE_WT:
202                 pte |= PPAT_DISPLAY_ELLC_INDEX;
203                 break;
204         default:
205                 pte |= PPAT_CACHED_INDEX;
206                 break;
207         }
208
209         return pte;
210 }
211
212 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
213                                   const enum i915_cache_level level)
214 {
215         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
216         pde |= addr;
217         if (level != I915_CACHE_NONE)
218                 pde |= PPAT_CACHED_PDE_INDEX;
219         else
220                 pde |= PPAT_UNCACHED_INDEX;
221         return pde;
222 }
223
224 #define gen8_pdpe_encode gen8_pde_encode
225 #define gen8_pml4e_encode gen8_pde_encode
226
227 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
228                                  enum i915_cache_level level,
229                                  u32 unused)
230 {
231         gen6_pte_t pte = GEN6_PTE_VALID;
232         pte |= GEN6_PTE_ADDR_ENCODE(addr);
233
234         switch (level) {
235         case I915_CACHE_L3_LLC:
236         case I915_CACHE_LLC:
237                 pte |= GEN6_PTE_CACHE_LLC;
238                 break;
239         case I915_CACHE_NONE:
240                 pte |= GEN6_PTE_UNCACHED;
241                 break;
242         default:
243                 MISSING_CASE(level);
244         }
245
246         return pte;
247 }
248
249 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
250                                  enum i915_cache_level level,
251                                  u32 unused)
252 {
253         gen6_pte_t pte = GEN6_PTE_VALID;
254         pte |= GEN6_PTE_ADDR_ENCODE(addr);
255
256         switch (level) {
257         case I915_CACHE_L3_LLC:
258                 pte |= GEN7_PTE_CACHE_L3_LLC;
259                 break;
260         case I915_CACHE_LLC:
261                 pte |= GEN6_PTE_CACHE_LLC;
262                 break;
263         case I915_CACHE_NONE:
264                 pte |= GEN6_PTE_UNCACHED;
265                 break;
266         default:
267                 MISSING_CASE(level);
268         }
269
270         return pte;
271 }
272
273 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
274                                  enum i915_cache_level level,
275                                  u32 flags)
276 {
277         gen6_pte_t pte = GEN6_PTE_VALID;
278         pte |= GEN6_PTE_ADDR_ENCODE(addr);
279
280         if (!(flags & PTE_READ_ONLY))
281                 pte |= BYT_PTE_WRITEABLE;
282
283         if (level != I915_CACHE_NONE)
284                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
285
286         return pte;
287 }
288
289 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
290                                  enum i915_cache_level level,
291                                  u32 unused)
292 {
293         gen6_pte_t pte = GEN6_PTE_VALID;
294         pte |= HSW_PTE_ADDR_ENCODE(addr);
295
296         if (level != I915_CACHE_NONE)
297                 pte |= HSW_WB_LLC_AGE3;
298
299         return pte;
300 }
301
302 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
303                                   enum i915_cache_level level,
304                                   u32 unused)
305 {
306         gen6_pte_t pte = GEN6_PTE_VALID;
307         pte |= HSW_PTE_ADDR_ENCODE(addr);
308
309         switch (level) {
310         case I915_CACHE_NONE:
311                 break;
312         case I915_CACHE_WT:
313                 pte |= HSW_WT_ELLC_LLC_AGE3;
314                 break;
315         default:
316                 pte |= HSW_WB_ELLC_LLC_AGE3;
317                 break;
318         }
319
320         return pte;
321 }
322
323 static int __setup_page_dma(struct drm_i915_private *dev_priv,
324                             struct i915_page_dma *p, gfp_t flags)
325 {
326         struct device *kdev = &dev_priv->drm.pdev->dev;
327
328         p->page = alloc_page(flags);
329         if (!p->page)
330                 return -ENOMEM;
331
332         p->daddr = dma_map_page(kdev,
333                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
334
335         if (dma_mapping_error(kdev, p->daddr)) {
336                 __free_page(p->page);
337                 return -EINVAL;
338         }
339
340         return 0;
341 }
342
343 static int setup_page_dma(struct drm_i915_private *dev_priv,
344                           struct i915_page_dma *p)
345 {
346         return __setup_page_dma(dev_priv, p, I915_GFP_DMA);
347 }
348
349 static void cleanup_page_dma(struct drm_i915_private *dev_priv,
350                              struct i915_page_dma *p)
351 {
352         struct pci_dev *pdev = dev_priv->drm.pdev;
353
354         if (WARN_ON(!p->page))
355                 return;
356
357         dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
358         __free_page(p->page);
359         memset(p, 0, sizeof(*p));
360 }
361
362 static void *kmap_page_dma(struct i915_page_dma *p)
363 {
364         return kmap_atomic(p->page);
365 }
366
367 /* We use the flushing unmap only with ppgtt structures:
368  * page directories, page tables and scratch pages.
369  */
370 static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr)
371 {
372         /* There are only few exceptions for gen >=6. chv and bxt.
373          * And we are not sure about the latter so play safe for now.
374          */
375         if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
376                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
377
378         kunmap_atomic(vaddr);
379 }
380
381 #define kmap_px(px) kmap_page_dma(px_base(px))
382 #define kunmap_px(ppgtt, vaddr) \
383                 kunmap_page_dma((ppgtt)->base.i915, (vaddr))
384
385 #define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px))
386 #define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px))
387 #define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v))
388 #define fill32_px(dev_priv, px, v) \
389                 fill_page_dma_32((dev_priv), px_base(px), (v))
390
391 static void fill_page_dma(struct drm_i915_private *dev_priv,
392                           struct i915_page_dma *p, const uint64_t val)
393 {
394         int i;
395         uint64_t * const vaddr = kmap_page_dma(p);
396
397         for (i = 0; i < 512; i++)
398                 vaddr[i] = val;
399
400         kunmap_page_dma(dev_priv, vaddr);
401 }
402
403 static void fill_page_dma_32(struct drm_i915_private *dev_priv,
404                              struct i915_page_dma *p, const uint32_t val32)
405 {
406         uint64_t v = val32;
407
408         v = v << 32 | val32;
409
410         fill_page_dma(dev_priv, p, v);
411 }
412
413 static int
414 setup_scratch_page(struct drm_i915_private *dev_priv,
415                    struct i915_page_dma *scratch,
416                    gfp_t gfp)
417 {
418         return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO);
419 }
420
421 static void cleanup_scratch_page(struct drm_i915_private *dev_priv,
422                                  struct i915_page_dma *scratch)
423 {
424         cleanup_page_dma(dev_priv, scratch);
425 }
426
427 static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv)
428 {
429         struct i915_page_table *pt;
430         const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES;
431         int ret = -ENOMEM;
432
433         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434         if (!pt)
435                 return ERR_PTR(-ENOMEM);
436
437         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438                                 GFP_KERNEL);
439
440         if (!pt->used_ptes)
441                 goto fail_bitmap;
442
443         ret = setup_px(dev_priv, pt);
444         if (ret)
445                 goto fail_page_m;
446
447         return pt;
448
449 fail_page_m:
450         kfree(pt->used_ptes);
451 fail_bitmap:
452         kfree(pt);
453
454         return ERR_PTR(ret);
455 }
456
457 static void free_pt(struct drm_i915_private *dev_priv,
458                     struct i915_page_table *pt)
459 {
460         cleanup_px(dev_priv, pt);
461         kfree(pt->used_ptes);
462         kfree(pt);
463 }
464
465 static void gen8_initialize_pt(struct i915_address_space *vm,
466                                struct i915_page_table *pt)
467 {
468         gen8_pte_t scratch_pte;
469
470         scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
471                                       I915_CACHE_LLC);
472
473         fill_px(vm->i915, pt, scratch_pte);
474 }
475
476 static void gen6_initialize_pt(struct i915_address_space *vm,
477                                struct i915_page_table *pt)
478 {
479         gen6_pte_t scratch_pte;
480
481         WARN_ON(vm->scratch_page.daddr == 0);
482
483         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
484                                      I915_CACHE_LLC, 0);
485
486         fill32_px(vm->i915, pt, scratch_pte);
487 }
488
489 static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv)
490 {
491         struct i915_page_directory *pd;
492         int ret = -ENOMEM;
493
494         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
495         if (!pd)
496                 return ERR_PTR(-ENOMEM);
497
498         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
499                                 sizeof(*pd->used_pdes), GFP_KERNEL);
500         if (!pd->used_pdes)
501                 goto fail_bitmap;
502
503         ret = setup_px(dev_priv, pd);
504         if (ret)
505                 goto fail_page_m;
506
507         return pd;
508
509 fail_page_m:
510         kfree(pd->used_pdes);
511 fail_bitmap:
512         kfree(pd);
513
514         return ERR_PTR(ret);
515 }
516
517 static void free_pd(struct drm_i915_private *dev_priv,
518                     struct i915_page_directory *pd)
519 {
520         if (px_page(pd)) {
521                 cleanup_px(dev_priv, pd);
522                 kfree(pd->used_pdes);
523                 kfree(pd);
524         }
525 }
526
527 static void gen8_initialize_pd(struct i915_address_space *vm,
528                                struct i915_page_directory *pd)
529 {
530         gen8_pde_t scratch_pde;
531
532         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
533
534         fill_px(vm->i915, pd, scratch_pde);
535 }
536
537 static int __pdp_init(struct drm_i915_private *dev_priv,
538                       struct i915_page_directory_pointer *pdp)
539 {
540         size_t pdpes = I915_PDPES_PER_PDP(dev_priv);
541
542         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
543                                   sizeof(unsigned long),
544                                   GFP_KERNEL);
545         if (!pdp->used_pdpes)
546                 return -ENOMEM;
547
548         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
549                                       GFP_KERNEL);
550         if (!pdp->page_directory) {
551                 kfree(pdp->used_pdpes);
552                 /* the PDP might be the statically allocated top level. Keep it
553                  * as clean as possible */
554                 pdp->used_pdpes = NULL;
555                 return -ENOMEM;
556         }
557
558         return 0;
559 }
560
561 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
562 {
563         kfree(pdp->used_pdpes);
564         kfree(pdp->page_directory);
565         pdp->page_directory = NULL;
566 }
567
568 static struct
569 i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv)
570 {
571         struct i915_page_directory_pointer *pdp;
572         int ret = -ENOMEM;
573
574         WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv));
575
576         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
577         if (!pdp)
578                 return ERR_PTR(-ENOMEM);
579
580         ret = __pdp_init(dev_priv, pdp);
581         if (ret)
582                 goto fail_bitmap;
583
584         ret = setup_px(dev_priv, pdp);
585         if (ret)
586                 goto fail_page_m;
587
588         return pdp;
589
590 fail_page_m:
591         __pdp_fini(pdp);
592 fail_bitmap:
593         kfree(pdp);
594
595         return ERR_PTR(ret);
596 }
597
598 static void free_pdp(struct drm_i915_private *dev_priv,
599                      struct i915_page_directory_pointer *pdp)
600 {
601         __pdp_fini(pdp);
602         if (USES_FULL_48BIT_PPGTT(dev_priv)) {
603                 cleanup_px(dev_priv, pdp);
604                 kfree(pdp);
605         }
606 }
607
608 static void gen8_initialize_pdp(struct i915_address_space *vm,
609                                 struct i915_page_directory_pointer *pdp)
610 {
611         gen8_ppgtt_pdpe_t scratch_pdpe;
612
613         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
614
615         fill_px(vm->i915, pdp, scratch_pdpe);
616 }
617
618 static void gen8_initialize_pml4(struct i915_address_space *vm,
619                                  struct i915_pml4 *pml4)
620 {
621         gen8_ppgtt_pml4e_t scratch_pml4e;
622
623         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
624                                           I915_CACHE_LLC);
625
626         fill_px(vm->i915, pml4, scratch_pml4e);
627 }
628
629 static void
630 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
631                           struct i915_page_directory_pointer *pdp,
632                           struct i915_page_directory *pd,
633                           int index)
634 {
635         gen8_ppgtt_pdpe_t *page_directorypo;
636
637         if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)))
638                 return;
639
640         page_directorypo = kmap_px(pdp);
641         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
642         kunmap_px(ppgtt, page_directorypo);
643 }
644
645 static void
646 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
647                                   struct i915_pml4 *pml4,
648                                   struct i915_page_directory_pointer *pdp,
649                                   int index)
650 {
651         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
652
653         WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)));
654         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
655         kunmap_px(ppgtt, pagemap);
656 }
657
658 /* Broadwell Page Directory Pointer Descriptors */
659 static int gen8_write_pdp(struct drm_i915_gem_request *req,
660                           unsigned entry,
661                           dma_addr_t addr)
662 {
663         struct intel_ring *ring = req->ring;
664         struct intel_engine_cs *engine = req->engine;
665         int ret;
666
667         BUG_ON(entry >= 4);
668
669         ret = intel_ring_begin(req, 6);
670         if (ret)
671                 return ret;
672
673         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
674         intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
675         intel_ring_emit(ring, upper_32_bits(addr));
676         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677         intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
678         intel_ring_emit(ring, lower_32_bits(addr));
679         intel_ring_advance(ring);
680
681         return 0;
682 }
683
684 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
685                                  struct drm_i915_gem_request *req)
686 {
687         int i, ret;
688
689         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
690                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
691
692                 ret = gen8_write_pdp(req, i, pd_daddr);
693                 if (ret)
694                         return ret;
695         }
696
697         return 0;
698 }
699
700 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
701                               struct drm_i915_gem_request *req)
702 {
703         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
704 }
705
706 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
707  * the page table structures, we mark them dirty so that
708  * context switching/execlist queuing code takes extra steps
709  * to ensure that tlbs are flushed.
710  */
711 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
712 {
713         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
714 }
715
716 /* Removes entries from a single page table, releasing it if it's empty.
717  * Caller can use the return value to update higher-level entries.
718  */
719 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
720                                 struct i915_page_table *pt,
721                                 uint64_t start,
722                                 uint64_t length)
723 {
724         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
725         unsigned int num_entries = gen8_pte_count(start, length);
726         unsigned int pte = gen8_pte_index(start);
727         unsigned int pte_end = pte + num_entries;
728         gen8_pte_t *pt_vaddr;
729         gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
730                                                  I915_CACHE_LLC);
731
732         if (WARN_ON(!px_page(pt)))
733                 return false;
734
735         GEM_BUG_ON(pte_end > GEN8_PTES);
736
737         bitmap_clear(pt->used_ptes, pte, num_entries);
738
739         if (bitmap_empty(pt->used_ptes, GEN8_PTES))
740                 return true;
741
742         pt_vaddr = kmap_px(pt);
743
744         while (pte < pte_end)
745                 pt_vaddr[pte++] = scratch_pte;
746
747         kunmap_px(ppgtt, pt_vaddr);
748
749         return false;
750 }
751
752 /* Removes entries from a single page dir, releasing it if it's empty.
753  * Caller can use the return value to update higher-level entries
754  */
755 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
756                                 struct i915_page_directory *pd,
757                                 uint64_t start,
758                                 uint64_t length)
759 {
760         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
761         struct i915_page_table *pt;
762         uint64_t pde;
763         gen8_pde_t *pde_vaddr;
764         gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt),
765                                                  I915_CACHE_LLC);
766
767         gen8_for_each_pde(pt, pd, start, length, pde) {
768                 if (WARN_ON(!pd->page_table[pde]))
769                         break;
770
771                 if (gen8_ppgtt_clear_pt(vm, pt, start, length)) {
772                         __clear_bit(pde, pd->used_pdes);
773                         pde_vaddr = kmap_px(pd);
774                         pde_vaddr[pde] = scratch_pde;
775                         kunmap_px(ppgtt, pde_vaddr);
776                         free_pt(vm->i915, pt);
777                 }
778         }
779
780         if (bitmap_empty(pd->used_pdes, I915_PDES))
781                 return true;
782
783         return false;
784 }
785
786 /* Removes entries from a single page dir pointer, releasing it if it's empty.
787  * Caller can use the return value to update higher-level entries
788  */
789 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
790                                  struct i915_page_directory_pointer *pdp,
791                                  uint64_t start,
792                                  uint64_t length)
793 {
794         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
795         struct i915_page_directory *pd;
796         uint64_t pdpe;
797         gen8_ppgtt_pdpe_t *pdpe_vaddr;
798         gen8_ppgtt_pdpe_t scratch_pdpe =
799                 gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
800
801         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
802                 if (WARN_ON(!pdp->page_directory[pdpe]))
803                         break;
804
805                 if (gen8_ppgtt_clear_pd(vm, pd, start, length)) {
806                         __clear_bit(pdpe, pdp->used_pdpes);
807                         if (USES_FULL_48BIT_PPGTT(dev_priv)) {
808                                 pdpe_vaddr = kmap_px(pdp);
809                                 pdpe_vaddr[pdpe] = scratch_pdpe;
810                                 kunmap_px(ppgtt, pdpe_vaddr);
811                         }
812                         free_pd(vm->i915, pd);
813                 }
814         }
815
816         mark_tlbs_dirty(ppgtt);
817
818         if (bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)))
819                 return true;
820
821         return false;
822 }
823
824 /* Removes entries from a single pml4.
825  * This is the top-level structure in 4-level page tables used on gen8+.
826  * Empty entries are always scratch pml4e.
827  */
828 static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm,
829                                   struct i915_pml4 *pml4,
830                                   uint64_t start,
831                                   uint64_t length)
832 {
833         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
834         struct i915_page_directory_pointer *pdp;
835         uint64_t pml4e;
836         gen8_ppgtt_pml4e_t *pml4e_vaddr;
837         gen8_ppgtt_pml4e_t scratch_pml4e =
838                 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC);
839
840         GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(vm->i915));
841
842         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
843                 if (WARN_ON(!pml4->pdps[pml4e]))
844                         break;
845
846                 if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) {
847                         __clear_bit(pml4e, pml4->used_pml4es);
848                         pml4e_vaddr = kmap_px(pml4);
849                         pml4e_vaddr[pml4e] = scratch_pml4e;
850                         kunmap_px(ppgtt, pml4e_vaddr);
851                         free_pdp(vm->i915, pdp);
852                 }
853         }
854 }
855
856 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
857                                    uint64_t start, uint64_t length)
858 {
859         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
860
861         if (USES_FULL_48BIT_PPGTT(vm->i915))
862                 gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length);
863         else
864                 gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length);
865 }
866
867 static void
868 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
869                               struct i915_page_directory_pointer *pdp,
870                               struct sg_page_iter *sg_iter,
871                               uint64_t start,
872                               enum i915_cache_level cache_level)
873 {
874         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
875         gen8_pte_t *pt_vaddr;
876         unsigned pdpe = gen8_pdpe_index(start);
877         unsigned pde = gen8_pde_index(start);
878         unsigned pte = gen8_pte_index(start);
879
880         pt_vaddr = NULL;
881
882         while (__sg_page_iter_next(sg_iter)) {
883                 if (pt_vaddr == NULL) {
884                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
885                         struct i915_page_table *pt = pd->page_table[pde];
886                         pt_vaddr = kmap_px(pt);
887                 }
888
889                 pt_vaddr[pte] =
890                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
891                                         cache_level);
892                 if (++pte == GEN8_PTES) {
893                         kunmap_px(ppgtt, pt_vaddr);
894                         pt_vaddr = NULL;
895                         if (++pde == I915_PDES) {
896                                 if (++pdpe == I915_PDPES_PER_PDP(vm->i915))
897                                         break;
898                                 pde = 0;
899                         }
900                         pte = 0;
901                 }
902         }
903
904         if (pt_vaddr)
905                 kunmap_px(ppgtt, pt_vaddr);
906 }
907
908 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
909                                       struct sg_table *pages,
910                                       uint64_t start,
911                                       enum i915_cache_level cache_level,
912                                       u32 unused)
913 {
914         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
915         struct sg_page_iter sg_iter;
916
917         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
918
919         if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
920                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
921                                               cache_level);
922         } else {
923                 struct i915_page_directory_pointer *pdp;
924                 uint64_t pml4e;
925                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
926
927                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
928                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
929                                                       start, cache_level);
930                 }
931         }
932 }
933
934 static void gen8_free_page_tables(struct drm_i915_private *dev_priv,
935                                   struct i915_page_directory *pd)
936 {
937         int i;
938
939         if (!px_page(pd))
940                 return;
941
942         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
943                 if (WARN_ON(!pd->page_table[i]))
944                         continue;
945
946                 free_pt(dev_priv, pd->page_table[i]);
947                 pd->page_table[i] = NULL;
948         }
949 }
950
951 static int gen8_init_scratch(struct i915_address_space *vm)
952 {
953         struct drm_i915_private *dev_priv = vm->i915;
954         int ret;
955
956         ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
957         if (ret)
958                 return ret;
959
960         vm->scratch_pt = alloc_pt(dev_priv);
961         if (IS_ERR(vm->scratch_pt)) {
962                 ret = PTR_ERR(vm->scratch_pt);
963                 goto free_scratch_page;
964         }
965
966         vm->scratch_pd = alloc_pd(dev_priv);
967         if (IS_ERR(vm->scratch_pd)) {
968                 ret = PTR_ERR(vm->scratch_pd);
969                 goto free_pt;
970         }
971
972         if (USES_FULL_48BIT_PPGTT(dev_priv)) {
973                 vm->scratch_pdp = alloc_pdp(dev_priv);
974                 if (IS_ERR(vm->scratch_pdp)) {
975                         ret = PTR_ERR(vm->scratch_pdp);
976                         goto free_pd;
977                 }
978         }
979
980         gen8_initialize_pt(vm, vm->scratch_pt);
981         gen8_initialize_pd(vm, vm->scratch_pd);
982         if (USES_FULL_48BIT_PPGTT(dev_priv))
983                 gen8_initialize_pdp(vm, vm->scratch_pdp);
984
985         return 0;
986
987 free_pd:
988         free_pd(dev_priv, vm->scratch_pd);
989 free_pt:
990         free_pt(dev_priv, vm->scratch_pt);
991 free_scratch_page:
992         cleanup_scratch_page(dev_priv, &vm->scratch_page);
993
994         return ret;
995 }
996
997 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
998 {
999         enum vgt_g2v_type msg;
1000         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1001         int i;
1002
1003         if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1004                 u64 daddr = px_dma(&ppgtt->pml4);
1005
1006                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1007                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1008
1009                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1010                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1011         } else {
1012                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
1013                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1014
1015                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1016                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1017                 }
1018
1019                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1020                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1021         }
1022
1023         I915_WRITE(vgtif_reg(g2v_notify), msg);
1024
1025         return 0;
1026 }
1027
1028 static void gen8_free_scratch(struct i915_address_space *vm)
1029 {
1030         struct drm_i915_private *dev_priv = vm->i915;
1031
1032         if (USES_FULL_48BIT_PPGTT(dev_priv))
1033                 free_pdp(dev_priv, vm->scratch_pdp);
1034         free_pd(dev_priv, vm->scratch_pd);
1035         free_pt(dev_priv, vm->scratch_pt);
1036         cleanup_scratch_page(dev_priv, &vm->scratch_page);
1037 }
1038
1039 static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv,
1040                                     struct i915_page_directory_pointer *pdp)
1041 {
1042         int i;
1043
1044         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) {
1045                 if (WARN_ON(!pdp->page_directory[i]))
1046                         continue;
1047
1048                 gen8_free_page_tables(dev_priv, pdp->page_directory[i]);
1049                 free_pd(dev_priv, pdp->page_directory[i]);
1050         }
1051
1052         free_pdp(dev_priv, pdp);
1053 }
1054
1055 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1056 {
1057         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1058         int i;
1059
1060         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
1061                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
1062                         continue;
1063
1064                 gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]);
1065         }
1066
1067         cleanup_px(dev_priv, &ppgtt->pml4);
1068 }
1069
1070 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1071 {
1072         struct drm_i915_private *dev_priv = vm->i915;
1073         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1074
1075         if (intel_vgpu_active(dev_priv))
1076                 gen8_ppgtt_notify_vgt(ppgtt, false);
1077
1078         if (!USES_FULL_48BIT_PPGTT(dev_priv))
1079                 gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp);
1080         else
1081                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1082
1083         gen8_free_scratch(vm);
1084 }
1085
1086 /**
1087  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1088  * @vm: Master vm structure.
1089  * @pd: Page directory for this address range.
1090  * @start:      Starting virtual address to begin allocations.
1091  * @length:     Size of the allocations.
1092  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1093  *              caller to free on error.
1094  *
1095  * Allocate the required number of page tables. Extremely similar to
1096  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1097  * the page directory boundary (instead of the page directory pointer). That
1098  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1099  * possible, and likely that the caller will need to use multiple calls of this
1100  * function to achieve the appropriate allocation.
1101  *
1102  * Return: 0 if success; negative error code otherwise.
1103  */
1104 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1105                                      struct i915_page_directory *pd,
1106                                      uint64_t start,
1107                                      uint64_t length,
1108                                      unsigned long *new_pts)
1109 {
1110         struct drm_i915_private *dev_priv = vm->i915;
1111         struct i915_page_table *pt;
1112         uint32_t pde;
1113
1114         gen8_for_each_pde(pt, pd, start, length, pde) {
1115                 /* Don't reallocate page tables */
1116                 if (test_bit(pde, pd->used_pdes)) {
1117                         /* Scratch is never allocated this way */
1118                         WARN_ON(pt == vm->scratch_pt);
1119                         continue;
1120                 }
1121
1122                 pt = alloc_pt(dev_priv);
1123                 if (IS_ERR(pt))
1124                         goto unwind_out;
1125
1126                 gen8_initialize_pt(vm, pt);
1127                 pd->page_table[pde] = pt;
1128                 __set_bit(pde, new_pts);
1129                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1130         }
1131
1132         return 0;
1133
1134 unwind_out:
1135         for_each_set_bit(pde, new_pts, I915_PDES)
1136                 free_pt(dev_priv, pd->page_table[pde]);
1137
1138         return -ENOMEM;
1139 }
1140
1141 /**
1142  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1143  * @vm: Master vm structure.
1144  * @pdp:        Page directory pointer for this address range.
1145  * @start:      Starting virtual address to begin allocations.
1146  * @length:     Size of the allocations.
1147  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1148  *              caller to free on error.
1149  *
1150  * Allocate the required number of page directories starting at the pde index of
1151  * @start, and ending at the pde index @start + @length. This function will skip
1152  * over already allocated page directories within the range, and only allocate
1153  * new ones, setting the appropriate pointer within the pdp as well as the
1154  * correct position in the bitmap @new_pds.
1155  *
1156  * The function will only allocate the pages within the range for a give page
1157  * directory pointer. In other words, if @start + @length straddles a virtually
1158  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1159  * required by the caller, This is not currently possible, and the BUG in the
1160  * code will prevent it.
1161  *
1162  * Return: 0 if success; negative error code otherwise.
1163  */
1164 static int
1165 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1166                                   struct i915_page_directory_pointer *pdp,
1167                                   uint64_t start,
1168                                   uint64_t length,
1169                                   unsigned long *new_pds)
1170 {
1171         struct drm_i915_private *dev_priv = vm->i915;
1172         struct i915_page_directory *pd;
1173         uint32_t pdpe;
1174         uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1175
1176         WARN_ON(!bitmap_empty(new_pds, pdpes));
1177
1178         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1179                 if (test_bit(pdpe, pdp->used_pdpes))
1180                         continue;
1181
1182                 pd = alloc_pd(dev_priv);
1183                 if (IS_ERR(pd))
1184                         goto unwind_out;
1185
1186                 gen8_initialize_pd(vm, pd);
1187                 pdp->page_directory[pdpe] = pd;
1188                 __set_bit(pdpe, new_pds);
1189                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1190         }
1191
1192         return 0;
1193
1194 unwind_out:
1195         for_each_set_bit(pdpe, new_pds, pdpes)
1196                 free_pd(dev_priv, pdp->page_directory[pdpe]);
1197
1198         return -ENOMEM;
1199 }
1200
1201 /**
1202  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1203  * @vm: Master vm structure.
1204  * @pml4:       Page map level 4 for this address range.
1205  * @start:      Starting virtual address to begin allocations.
1206  * @length:     Size of the allocations.
1207  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1208  *              caller to free on error.
1209  *
1210  * Allocate the required number of page directory pointers. Extremely similar to
1211  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1212  * The main difference is here we are limited by the pml4 boundary (instead of
1213  * the page directory pointer).
1214  *
1215  * Return: 0 if success; negative error code otherwise.
1216  */
1217 static int
1218 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1219                                   struct i915_pml4 *pml4,
1220                                   uint64_t start,
1221                                   uint64_t length,
1222                                   unsigned long *new_pdps)
1223 {
1224         struct drm_i915_private *dev_priv = vm->i915;
1225         struct i915_page_directory_pointer *pdp;
1226         uint32_t pml4e;
1227
1228         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1229
1230         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1231                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1232                         pdp = alloc_pdp(dev_priv);
1233                         if (IS_ERR(pdp))
1234                                 goto unwind_out;
1235
1236                         gen8_initialize_pdp(vm, pdp);
1237                         pml4->pdps[pml4e] = pdp;
1238                         __set_bit(pml4e, new_pdps);
1239                         trace_i915_page_directory_pointer_entry_alloc(vm,
1240                                                                       pml4e,
1241                                                                       start,
1242                                                                       GEN8_PML4E_SHIFT);
1243                 }
1244         }
1245
1246         return 0;
1247
1248 unwind_out:
1249         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1250                 free_pdp(dev_priv, pml4->pdps[pml4e]);
1251
1252         return -ENOMEM;
1253 }
1254
1255 static void
1256 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1257 {
1258         kfree(new_pts);
1259         kfree(new_pds);
1260 }
1261
1262 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1263  * of these are based on the number of PDPEs in the system.
1264  */
1265 static
1266 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1267                                          unsigned long **new_pts,
1268                                          uint32_t pdpes)
1269 {
1270         unsigned long *pds;
1271         unsigned long *pts;
1272
1273         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1274         if (!pds)
1275                 return -ENOMEM;
1276
1277         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1278                       GFP_TEMPORARY);
1279         if (!pts)
1280                 goto err_out;
1281
1282         *new_pds = pds;
1283         *new_pts = pts;
1284
1285         return 0;
1286
1287 err_out:
1288         free_gen8_temp_bitmaps(pds, pts);
1289         return -ENOMEM;
1290 }
1291
1292 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1293                                     struct i915_page_directory_pointer *pdp,
1294                                     uint64_t start,
1295                                     uint64_t length)
1296 {
1297         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1298         unsigned long *new_page_dirs, *new_page_tables;
1299         struct drm_i915_private *dev_priv = vm->i915;
1300         struct i915_page_directory *pd;
1301         const uint64_t orig_start = start;
1302         const uint64_t orig_length = length;
1303         uint32_t pdpe;
1304         uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1305         int ret;
1306
1307         /* Wrap is never okay since we can only represent 48b, and we don't
1308          * actually use the other side of the canonical address space.
1309          */
1310         if (WARN_ON(start + length < start))
1311                 return -ENODEV;
1312
1313         if (WARN_ON(start + length > vm->total))
1314                 return -ENODEV;
1315
1316         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1317         if (ret)
1318                 return ret;
1319
1320         /* Do the allocations first so we can easily bail out */
1321         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1322                                                 new_page_dirs);
1323         if (ret) {
1324                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1325                 return ret;
1326         }
1327
1328         /* For every page directory referenced, allocate page tables */
1329         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1330                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1331                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1332                 if (ret)
1333                         goto err_out;
1334         }
1335
1336         start = orig_start;
1337         length = orig_length;
1338
1339         /* Allocations have completed successfully, so set the bitmaps, and do
1340          * the mappings. */
1341         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1342                 gen8_pde_t *const page_directory = kmap_px(pd);
1343                 struct i915_page_table *pt;
1344                 uint64_t pd_len = length;
1345                 uint64_t pd_start = start;
1346                 uint32_t pde;
1347
1348                 /* Every pd should be allocated, we just did that above. */
1349                 WARN_ON(!pd);
1350
1351                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1352                         /* Same reasoning as pd */
1353                         WARN_ON(!pt);
1354                         WARN_ON(!pd_len);
1355                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1356
1357                         /* Set our used ptes within the page table */
1358                         bitmap_set(pt->used_ptes,
1359                                    gen8_pte_index(pd_start),
1360                                    gen8_pte_count(pd_start, pd_len));
1361
1362                         /* Our pde is now pointing to the pagetable, pt */
1363                         __set_bit(pde, pd->used_pdes);
1364
1365                         /* Map the PDE to the page table */
1366                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1367                                                               I915_CACHE_LLC);
1368                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1369                                                         gen8_pte_index(start),
1370                                                         gen8_pte_count(start, length),
1371                                                         GEN8_PTES);
1372
1373                         /* NB: We haven't yet mapped ptes to pages. At this
1374                          * point we're still relying on insert_entries() */
1375                 }
1376
1377                 kunmap_px(ppgtt, page_directory);
1378                 __set_bit(pdpe, pdp->used_pdpes);
1379                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1380         }
1381
1382         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1383         mark_tlbs_dirty(ppgtt);
1384         return 0;
1385
1386 err_out:
1387         while (pdpe--) {
1388                 unsigned long temp;
1389
1390                 for_each_set_bit(temp, new_page_tables + pdpe *
1391                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1392                         free_pt(dev_priv,
1393                                 pdp->page_directory[pdpe]->page_table[temp]);
1394         }
1395
1396         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1397                 free_pd(dev_priv, pdp->page_directory[pdpe]);
1398
1399         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1400         mark_tlbs_dirty(ppgtt);
1401         return ret;
1402 }
1403
1404 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1405                                     struct i915_pml4 *pml4,
1406                                     uint64_t start,
1407                                     uint64_t length)
1408 {
1409         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1410         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1411         struct i915_page_directory_pointer *pdp;
1412         uint64_t pml4e;
1413         int ret = 0;
1414
1415         /* Do the pml4 allocations first, so we don't need to track the newly
1416          * allocated tables below the pdp */
1417         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1418
1419         /* The pagedirectory and pagetable allocations are done in the shared 3
1420          * and 4 level code. Just allocate the pdps.
1421          */
1422         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1423                                                 new_pdps);
1424         if (ret)
1425                 return ret;
1426
1427         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1428              "The allocation has spanned more than 512GB. "
1429              "It is highly likely this is incorrect.");
1430
1431         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1432                 WARN_ON(!pdp);
1433
1434                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1435                 if (ret)
1436                         goto err_out;
1437
1438                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1439         }
1440
1441         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1442                   GEN8_PML4ES_PER_PML4);
1443
1444         return 0;
1445
1446 err_out:
1447         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1448                 gen8_ppgtt_cleanup_3lvl(vm->i915, pml4->pdps[pml4e]);
1449
1450         return ret;
1451 }
1452
1453 static int gen8_alloc_va_range(struct i915_address_space *vm,
1454                                uint64_t start, uint64_t length)
1455 {
1456         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1457
1458         if (USES_FULL_48BIT_PPGTT(vm->i915))
1459                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1460         else
1461                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1462 }
1463
1464 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1465                           uint64_t start, uint64_t length,
1466                           gen8_pte_t scratch_pte,
1467                           struct seq_file *m)
1468 {
1469         struct i915_page_directory *pd;
1470         uint32_t pdpe;
1471
1472         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1473                 struct i915_page_table *pt;
1474                 uint64_t pd_len = length;
1475                 uint64_t pd_start = start;
1476                 uint32_t pde;
1477
1478                 if (!test_bit(pdpe, pdp->used_pdpes))
1479                         continue;
1480
1481                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1482                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1483                         uint32_t  pte;
1484                         gen8_pte_t *pt_vaddr;
1485
1486                         if (!test_bit(pde, pd->used_pdes))
1487                                 continue;
1488
1489                         pt_vaddr = kmap_px(pt);
1490                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1491                                 uint64_t va =
1492                                         (pdpe << GEN8_PDPE_SHIFT) |
1493                                         (pde << GEN8_PDE_SHIFT) |
1494                                         (pte << GEN8_PTE_SHIFT);
1495                                 int i;
1496                                 bool found = false;
1497
1498                                 for (i = 0; i < 4; i++)
1499                                         if (pt_vaddr[pte + i] != scratch_pte)
1500                                                 found = true;
1501                                 if (!found)
1502                                         continue;
1503
1504                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1505                                 for (i = 0; i < 4; i++) {
1506                                         if (pt_vaddr[pte + i] != scratch_pte)
1507                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1508                                         else
1509                                                 seq_puts(m, "  SCRATCH ");
1510                                 }
1511                                 seq_puts(m, "\n");
1512                         }
1513                         /* don't use kunmap_px, it could trigger
1514                          * an unnecessary flush.
1515                          */
1516                         kunmap_atomic(pt_vaddr);
1517                 }
1518         }
1519 }
1520
1521 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1522 {
1523         struct i915_address_space *vm = &ppgtt->base;
1524         uint64_t start = ppgtt->base.start;
1525         uint64_t length = ppgtt->base.total;
1526         gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1527                                                  I915_CACHE_LLC);
1528
1529         if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
1530                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1531         } else {
1532                 uint64_t pml4e;
1533                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1534                 struct i915_page_directory_pointer *pdp;
1535
1536                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1537                         if (!test_bit(pml4e, pml4->used_pml4es))
1538                                 continue;
1539
1540                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1541                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1542                 }
1543         }
1544 }
1545
1546 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1547 {
1548         unsigned long *new_page_dirs, *new_page_tables;
1549         uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev));
1550         int ret;
1551
1552         /* We allocate temp bitmap for page tables for no gain
1553          * but as this is for init only, lets keep the things simple
1554          */
1555         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1556         if (ret)
1557                 return ret;
1558
1559         /* Allocate for all pdps regardless of how the ppgtt
1560          * was defined.
1561          */
1562         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1563                                                 0, 1ULL << 32,
1564                                                 new_page_dirs);
1565         if (!ret)
1566                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1567
1568         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1569
1570         return ret;
1571 }
1572
1573 /*
1574  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1575  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1576  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1577  * space.
1578  *
1579  */
1580 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1581 {
1582         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1583         int ret;
1584
1585         ret = gen8_init_scratch(&ppgtt->base);
1586         if (ret)
1587                 return ret;
1588
1589         ppgtt->base.start = 0;
1590         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1591         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1592         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1593         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1594         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1595         ppgtt->base.bind_vma = ppgtt_bind_vma;
1596         ppgtt->debug_dump = gen8_dump_ppgtt;
1597
1598         if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1599                 ret = setup_px(dev_priv, &ppgtt->pml4);
1600                 if (ret)
1601                         goto free_scratch;
1602
1603                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1604
1605                 ppgtt->base.total = 1ULL << 48;
1606                 ppgtt->switch_mm = gen8_48b_mm_switch;
1607         } else {
1608                 ret = __pdp_init(dev_priv, &ppgtt->pdp);
1609                 if (ret)
1610                         goto free_scratch;
1611
1612                 ppgtt->base.total = 1ULL << 32;
1613                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1614                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1615                                                               0, 0,
1616                                                               GEN8_PML4E_SHIFT);
1617
1618                 if (intel_vgpu_active(dev_priv)) {
1619                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1620                         if (ret)
1621                                 goto free_scratch;
1622                 }
1623         }
1624
1625         if (intel_vgpu_active(dev_priv))
1626                 gen8_ppgtt_notify_vgt(ppgtt, true);
1627
1628         return 0;
1629
1630 free_scratch:
1631         gen8_free_scratch(&ppgtt->base);
1632         return ret;
1633 }
1634
1635 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1636 {
1637         struct i915_address_space *vm = &ppgtt->base;
1638         struct i915_page_table *unused;
1639         gen6_pte_t scratch_pte;
1640         uint32_t pd_entry;
1641         uint32_t  pte, pde;
1642         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1643
1644         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1645                                      I915_CACHE_LLC, 0);
1646
1647         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1648                 u32 expected;
1649                 gen6_pte_t *pt_vaddr;
1650                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1651                 pd_entry = readl(ppgtt->pd_addr + pde);
1652                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1653
1654                 if (pd_entry != expected)
1655                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1656                                    pde,
1657                                    pd_entry,
1658                                    expected);
1659                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1660
1661                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1662
1663                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1664                         unsigned long va =
1665                                 (pde * PAGE_SIZE * GEN6_PTES) +
1666                                 (pte * PAGE_SIZE);
1667                         int i;
1668                         bool found = false;
1669                         for (i = 0; i < 4; i++)
1670                                 if (pt_vaddr[pte + i] != scratch_pte)
1671                                         found = true;
1672                         if (!found)
1673                                 continue;
1674
1675                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1676                         for (i = 0; i < 4; i++) {
1677                                 if (pt_vaddr[pte + i] != scratch_pte)
1678                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1679                                 else
1680                                         seq_puts(m, "  SCRATCH ");
1681                         }
1682                         seq_puts(m, "\n");
1683                 }
1684                 kunmap_px(ppgtt, pt_vaddr);
1685         }
1686 }
1687
1688 /* Write pde (index) from the page directory @pd to the page table @pt */
1689 static void gen6_write_pde(struct i915_page_directory *pd,
1690                             const int pde, struct i915_page_table *pt)
1691 {
1692         /* Caller needs to make sure the write completes if necessary */
1693         struct i915_hw_ppgtt *ppgtt =
1694                 container_of(pd, struct i915_hw_ppgtt, pd);
1695         u32 pd_entry;
1696
1697         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1698         pd_entry |= GEN6_PDE_VALID;
1699
1700         writel(pd_entry, ppgtt->pd_addr + pde);
1701 }
1702
1703 /* Write all the page tables found in the ppgtt structure to incrementing page
1704  * directories. */
1705 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1706                                   struct i915_page_directory *pd,
1707                                   uint32_t start, uint32_t length)
1708 {
1709         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1710         struct i915_page_table *pt;
1711         uint32_t pde;
1712
1713         gen6_for_each_pde(pt, pd, start, length, pde)
1714                 gen6_write_pde(pd, pde, pt);
1715
1716         /* Make sure write is complete before other code can use this page
1717          * table. Also require for WC mapped PTEs */
1718         readl(ggtt->gsm);
1719 }
1720
1721 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1722 {
1723         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1724
1725         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1726 }
1727
1728 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1729                          struct drm_i915_gem_request *req)
1730 {
1731         struct intel_ring *ring = req->ring;
1732         struct intel_engine_cs *engine = req->engine;
1733         int ret;
1734
1735         /* NB: TLBs must be flushed and invalidated before a switch */
1736         ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1737         if (ret)
1738                 return ret;
1739
1740         ret = intel_ring_begin(req, 6);
1741         if (ret)
1742                 return ret;
1743
1744         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1745         intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1746         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1747         intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1748         intel_ring_emit(ring, get_pd_offset(ppgtt));
1749         intel_ring_emit(ring, MI_NOOP);
1750         intel_ring_advance(ring);
1751
1752         return 0;
1753 }
1754
1755 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1756                           struct drm_i915_gem_request *req)
1757 {
1758         struct intel_ring *ring = req->ring;
1759         struct intel_engine_cs *engine = req->engine;
1760         int ret;
1761
1762         /* NB: TLBs must be flushed and invalidated before a switch */
1763         ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1764         if (ret)
1765                 return ret;
1766
1767         ret = intel_ring_begin(req, 6);
1768         if (ret)
1769                 return ret;
1770
1771         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1772         intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1773         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1774         intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1775         intel_ring_emit(ring, get_pd_offset(ppgtt));
1776         intel_ring_emit(ring, MI_NOOP);
1777         intel_ring_advance(ring);
1778
1779         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1780         if (engine->id != RCS) {
1781                 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1782                 if (ret)
1783                         return ret;
1784         }
1785
1786         return 0;
1787 }
1788
1789 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1790                           struct drm_i915_gem_request *req)
1791 {
1792         struct intel_engine_cs *engine = req->engine;
1793         struct drm_i915_private *dev_priv = req->i915;
1794
1795         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1796         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1797         return 0;
1798 }
1799
1800 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1801 {
1802         struct intel_engine_cs *engine;
1803         enum intel_engine_id id;
1804
1805         for_each_engine(engine, dev_priv, id) {
1806                 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1807                                  GEN8_GFX_PPGTT_48B : 0;
1808                 I915_WRITE(RING_MODE_GEN7(engine),
1809                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1810         }
1811 }
1812
1813 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1814 {
1815         struct intel_engine_cs *engine;
1816         uint32_t ecochk, ecobits;
1817         enum intel_engine_id id;
1818
1819         ecobits = I915_READ(GAC_ECO_BITS);
1820         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1821
1822         ecochk = I915_READ(GAM_ECOCHK);
1823         if (IS_HASWELL(dev_priv)) {
1824                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1825         } else {
1826                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1827                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1828         }
1829         I915_WRITE(GAM_ECOCHK, ecochk);
1830
1831         for_each_engine(engine, dev_priv, id) {
1832                 /* GFX_MODE is per-ring on gen7+ */
1833                 I915_WRITE(RING_MODE_GEN7(engine),
1834                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1835         }
1836 }
1837
1838 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1839 {
1840         uint32_t ecochk, gab_ctl, ecobits;
1841
1842         ecobits = I915_READ(GAC_ECO_BITS);
1843         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1844                    ECOBITS_PPGTT_CACHE64B);
1845
1846         gab_ctl = I915_READ(GAB_CTL);
1847         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1848
1849         ecochk = I915_READ(GAM_ECOCHK);
1850         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1851
1852         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1853 }
1854
1855 /* PPGTT support for Sandybdrige/Gen6 and later */
1856 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1857                                    uint64_t start,
1858                                    uint64_t length)
1859 {
1860         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1861         gen6_pte_t *pt_vaddr, scratch_pte;
1862         unsigned first_entry = start >> PAGE_SHIFT;
1863         unsigned num_entries = length >> PAGE_SHIFT;
1864         unsigned act_pt = first_entry / GEN6_PTES;
1865         unsigned first_pte = first_entry % GEN6_PTES;
1866         unsigned last_pte, i;
1867
1868         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1869                                      I915_CACHE_LLC, 0);
1870
1871         while (num_entries) {
1872                 last_pte = first_pte + num_entries;
1873                 if (last_pte > GEN6_PTES)
1874                         last_pte = GEN6_PTES;
1875
1876                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1877
1878                 for (i = first_pte; i < last_pte; i++)
1879                         pt_vaddr[i] = scratch_pte;
1880
1881                 kunmap_px(ppgtt, pt_vaddr);
1882
1883                 num_entries -= last_pte - first_pte;
1884                 first_pte = 0;
1885                 act_pt++;
1886         }
1887 }
1888
1889 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1890                                       struct sg_table *pages,
1891                                       uint64_t start,
1892                                       enum i915_cache_level cache_level, u32 flags)
1893 {
1894         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1895         unsigned first_entry = start >> PAGE_SHIFT;
1896         unsigned act_pt = first_entry / GEN6_PTES;
1897         unsigned act_pte = first_entry % GEN6_PTES;
1898         gen6_pte_t *pt_vaddr = NULL;
1899         struct sgt_iter sgt_iter;
1900         dma_addr_t addr;
1901
1902         for_each_sgt_dma(addr, sgt_iter, pages) {
1903                 if (pt_vaddr == NULL)
1904                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1905
1906                 pt_vaddr[act_pte] =
1907                         vm->pte_encode(addr, cache_level, flags);
1908
1909                 if (++act_pte == GEN6_PTES) {
1910                         kunmap_px(ppgtt, pt_vaddr);
1911                         pt_vaddr = NULL;
1912                         act_pt++;
1913                         act_pte = 0;
1914                 }
1915         }
1916
1917         if (pt_vaddr)
1918                 kunmap_px(ppgtt, pt_vaddr);
1919 }
1920
1921 static int gen6_alloc_va_range(struct i915_address_space *vm,
1922                                uint64_t start_in, uint64_t length_in)
1923 {
1924         DECLARE_BITMAP(new_page_tables, I915_PDES);
1925         struct drm_i915_private *dev_priv = vm->i915;
1926         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1927         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1928         struct i915_page_table *pt;
1929         uint32_t start, length, start_save, length_save;
1930         uint32_t pde;
1931         int ret;
1932
1933         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1934                 return -ENODEV;
1935
1936         start = start_save = start_in;
1937         length = length_save = length_in;
1938
1939         bitmap_zero(new_page_tables, I915_PDES);
1940
1941         /* The allocation is done in two stages so that we can bail out with
1942          * minimal amount of pain. The first stage finds new page tables that
1943          * need allocation. The second stage marks use ptes within the page
1944          * tables.
1945          */
1946         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1947                 if (pt != vm->scratch_pt) {
1948                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1949                         continue;
1950                 }
1951
1952                 /* We've already allocated a page table */
1953                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1954
1955                 pt = alloc_pt(dev_priv);
1956                 if (IS_ERR(pt)) {
1957                         ret = PTR_ERR(pt);
1958                         goto unwind_out;
1959                 }
1960
1961                 gen6_initialize_pt(vm, pt);
1962
1963                 ppgtt->pd.page_table[pde] = pt;
1964                 __set_bit(pde, new_page_tables);
1965                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1966         }
1967
1968         start = start_save;
1969         length = length_save;
1970
1971         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1972                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1973
1974                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1975                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1976                            gen6_pte_count(start, length));
1977
1978                 if (__test_and_clear_bit(pde, new_page_tables))
1979                         gen6_write_pde(&ppgtt->pd, pde, pt);
1980
1981                 trace_i915_page_table_entry_map(vm, pde, pt,
1982                                          gen6_pte_index(start),
1983                                          gen6_pte_count(start, length),
1984                                          GEN6_PTES);
1985                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1986                                 GEN6_PTES);
1987         }
1988
1989         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1990
1991         /* Make sure write is complete before other code can use this page
1992          * table. Also require for WC mapped PTEs */
1993         readl(ggtt->gsm);
1994
1995         mark_tlbs_dirty(ppgtt);
1996         return 0;
1997
1998 unwind_out:
1999         for_each_set_bit(pde, new_page_tables, I915_PDES) {
2000                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
2001
2002                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
2003                 free_pt(dev_priv, pt);
2004         }
2005
2006         mark_tlbs_dirty(ppgtt);
2007         return ret;
2008 }
2009
2010 static int gen6_init_scratch(struct i915_address_space *vm)
2011 {
2012         struct drm_i915_private *dev_priv = vm->i915;
2013         int ret;
2014
2015         ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
2016         if (ret)
2017                 return ret;
2018
2019         vm->scratch_pt = alloc_pt(dev_priv);
2020         if (IS_ERR(vm->scratch_pt)) {
2021                 cleanup_scratch_page(dev_priv, &vm->scratch_page);
2022                 return PTR_ERR(vm->scratch_pt);
2023         }
2024
2025         gen6_initialize_pt(vm, vm->scratch_pt);
2026
2027         return 0;
2028 }
2029
2030 static void gen6_free_scratch(struct i915_address_space *vm)
2031 {
2032         struct drm_i915_private *dev_priv = vm->i915;
2033
2034         free_pt(dev_priv, vm->scratch_pt);
2035         cleanup_scratch_page(dev_priv, &vm->scratch_page);
2036 }
2037
2038 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2039 {
2040         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
2041         struct i915_page_directory *pd = &ppgtt->pd;
2042         struct drm_i915_private *dev_priv = vm->i915;
2043         struct i915_page_table *pt;
2044         uint32_t pde;
2045
2046         drm_mm_remove_node(&ppgtt->node);
2047
2048         gen6_for_all_pdes(pt, pd, pde)
2049                 if (pt != vm->scratch_pt)
2050                         free_pt(dev_priv, pt);
2051
2052         gen6_free_scratch(vm);
2053 }
2054
2055 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2056 {
2057         struct i915_address_space *vm = &ppgtt->base;
2058         struct drm_i915_private *dev_priv = ppgtt->base.i915;
2059         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2060         bool retried = false;
2061         int ret;
2062
2063         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2064          * allocator works in address space sizes, so it's multiplied by page
2065          * size. We allocate at the top of the GTT to avoid fragmentation.
2066          */
2067         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2068
2069         ret = gen6_init_scratch(vm);
2070         if (ret)
2071                 return ret;
2072
2073 alloc:
2074         ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2075                                                   &ppgtt->node, GEN6_PD_SIZE,
2076                                                   GEN6_PD_ALIGN, 0,
2077                                                   0, ggtt->base.total,
2078                                                   DRM_MM_TOPDOWN);
2079         if (ret == -ENOSPC && !retried) {
2080                 ret = i915_gem_evict_something(&ggtt->base,
2081                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2082                                                I915_CACHE_NONE,
2083                                                0, ggtt->base.total,
2084                                                0);
2085                 if (ret)
2086                         goto err_out;
2087
2088                 retried = true;
2089                 goto alloc;
2090         }
2091
2092         if (ret)
2093                 goto err_out;
2094
2095
2096         if (ppgtt->node.start < ggtt->mappable_end)
2097                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2098
2099         return 0;
2100
2101 err_out:
2102         gen6_free_scratch(vm);
2103         return ret;
2104 }
2105
2106 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2107 {
2108         return gen6_ppgtt_allocate_page_directories(ppgtt);
2109 }
2110
2111 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2112                                   uint64_t start, uint64_t length)
2113 {
2114         struct i915_page_table *unused;
2115         uint32_t pde;
2116
2117         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2118                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2119 }
2120
2121 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2122 {
2123         struct drm_i915_private *dev_priv = ppgtt->base.i915;
2124         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2125         int ret;
2126
2127         ppgtt->base.pte_encode = ggtt->base.pte_encode;
2128         if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2129                 ppgtt->switch_mm = gen6_mm_switch;
2130         else if (IS_HASWELL(dev_priv))
2131                 ppgtt->switch_mm = hsw_mm_switch;
2132         else if (IS_GEN7(dev_priv))
2133                 ppgtt->switch_mm = gen7_mm_switch;
2134         else
2135                 BUG();
2136
2137         ret = gen6_ppgtt_alloc(ppgtt);
2138         if (ret)
2139                 return ret;
2140
2141         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2142         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2143         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2144         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2145         ppgtt->base.bind_vma = ppgtt_bind_vma;
2146         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2147         ppgtt->base.start = 0;
2148         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2149         ppgtt->debug_dump = gen6_dump_ppgtt;
2150
2151         ppgtt->pd.base.ggtt_offset =
2152                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2153
2154         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2155                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2156
2157         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2158
2159         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2160
2161         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2162                          ppgtt->node.size >> 20,
2163                          ppgtt->node.start / PAGE_SIZE);
2164
2165         DRM_DEBUG("Adding PPGTT at offset %x\n",
2166                   ppgtt->pd.base.ggtt_offset << 10);
2167
2168         return 0;
2169 }
2170
2171 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2172                            struct drm_i915_private *dev_priv)
2173 {
2174         ppgtt->base.i915 = dev_priv;
2175
2176         if (INTEL_INFO(dev_priv)->gen < 8)
2177                 return gen6_ppgtt_init(ppgtt);
2178         else
2179                 return gen8_ppgtt_init(ppgtt);
2180 }
2181
2182 static void i915_address_space_init(struct i915_address_space *vm,
2183                                     struct drm_i915_private *dev_priv,
2184                                     const char *name)
2185 {
2186         i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2187         drm_mm_init(&vm->mm, vm->start, vm->total);
2188         INIT_LIST_HEAD(&vm->active_list);
2189         INIT_LIST_HEAD(&vm->inactive_list);
2190         INIT_LIST_HEAD(&vm->unbound_list);
2191         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2192 }
2193
2194 static void i915_address_space_fini(struct i915_address_space *vm)
2195 {
2196         i915_gem_timeline_fini(&vm->timeline);
2197         drm_mm_takedown(&vm->mm);
2198         list_del(&vm->global_link);
2199 }
2200
2201 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2202 {
2203         /* This function is for gtt related workarounds. This function is
2204          * called on driver load and after a GPU reset, so you can place
2205          * workarounds here even if they get overwritten by GPU reset.
2206          */
2207         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2208         if (IS_BROADWELL(dev_priv))
2209                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2210         else if (IS_CHERRYVIEW(dev_priv))
2211                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2212         else if (IS_SKYLAKE(dev_priv))
2213                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2214         else if (IS_BROXTON(dev_priv))
2215                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2216 }
2217
2218 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2219                            struct drm_i915_private *dev_priv,
2220                            struct drm_i915_file_private *file_priv,
2221                            const char *name)
2222 {
2223         int ret;
2224
2225         ret = __hw_ppgtt_init(ppgtt, dev_priv);
2226         if (ret == 0) {
2227                 kref_init(&ppgtt->ref);
2228                 i915_address_space_init(&ppgtt->base, dev_priv, name);
2229                 ppgtt->base.file = file_priv;
2230         }
2231
2232         return ret;
2233 }
2234
2235 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2236 {
2237         gtt_write_workarounds(dev_priv);
2238
2239         /* In the case of execlists, PPGTT is enabled by the context descriptor
2240          * and the PDPs are contained within the context itself.  We don't
2241          * need to do anything here. */
2242         if (i915.enable_execlists)
2243                 return 0;
2244
2245         if (!USES_PPGTT(dev_priv))
2246                 return 0;
2247
2248         if (IS_GEN6(dev_priv))
2249                 gen6_ppgtt_enable(dev_priv);
2250         else if (IS_GEN7(dev_priv))
2251                 gen7_ppgtt_enable(dev_priv);
2252         else if (INTEL_GEN(dev_priv) >= 8)
2253                 gen8_ppgtt_enable(dev_priv);
2254         else
2255                 MISSING_CASE(INTEL_GEN(dev_priv));
2256
2257         return 0;
2258 }
2259
2260 struct i915_hw_ppgtt *
2261 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2262                   struct drm_i915_file_private *fpriv,
2263                   const char *name)
2264 {
2265         struct i915_hw_ppgtt *ppgtt;
2266         int ret;
2267
2268         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2269         if (!ppgtt)
2270                 return ERR_PTR(-ENOMEM);
2271
2272         ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name);
2273         if (ret) {
2274                 kfree(ppgtt);
2275                 return ERR_PTR(ret);
2276         }
2277
2278         trace_i915_ppgtt_create(&ppgtt->base);
2279
2280         return ppgtt;
2281 }
2282
2283 void i915_ppgtt_release(struct kref *kref)
2284 {
2285         struct i915_hw_ppgtt *ppgtt =
2286                 container_of(kref, struct i915_hw_ppgtt, ref);
2287
2288         trace_i915_ppgtt_release(&ppgtt->base);
2289
2290         /* vmas should already be unbound and destroyed */
2291         WARN_ON(!list_empty(&ppgtt->base.active_list));
2292         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2293         WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2294
2295         i915_address_space_fini(&ppgtt->base);
2296
2297         ppgtt->base.cleanup(&ppgtt->base);
2298         kfree(ppgtt);
2299 }
2300
2301 /* Certain Gen5 chipsets require require idling the GPU before
2302  * unmapping anything from the GTT when VT-d is enabled.
2303  */
2304 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2305 {
2306 #ifdef CONFIG_INTEL_IOMMU
2307         /* Query intel_iommu to see if we need the workaround. Presumably that
2308          * was loaded first.
2309          */
2310         if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2311                 return true;
2312 #endif
2313         return false;
2314 }
2315
2316 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2317 {
2318         struct intel_engine_cs *engine;
2319         enum intel_engine_id id;
2320
2321         if (INTEL_INFO(dev_priv)->gen < 6)
2322                 return;
2323
2324         for_each_engine(engine, dev_priv, id) {
2325                 u32 fault_reg;
2326                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2327                 if (fault_reg & RING_FAULT_VALID) {
2328                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2329                                          "\tAddr: 0x%08lx\n"
2330                                          "\tAddress space: %s\n"
2331                                          "\tSource ID: %d\n"
2332                                          "\tType: %d\n",
2333                                          fault_reg & PAGE_MASK,
2334                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2335                                          RING_FAULT_SRCID(fault_reg),
2336                                          RING_FAULT_FAULT_TYPE(fault_reg));
2337                         I915_WRITE(RING_FAULT_REG(engine),
2338                                    fault_reg & ~RING_FAULT_VALID);
2339                 }
2340         }
2341
2342         /* Engine specific init may not have been done till this point. */
2343         if (dev_priv->engine[RCS])
2344                 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2345 }
2346
2347 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2348 {
2349         if (INTEL_INFO(dev_priv)->gen < 6) {
2350                 intel_gtt_chipset_flush();
2351         } else {
2352                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2353                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2354         }
2355 }
2356
2357 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2358 {
2359         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2360
2361         /* Don't bother messing with faults pre GEN6 as we have little
2362          * documentation supporting that it's a good idea.
2363          */
2364         if (INTEL_GEN(dev_priv) < 6)
2365                 return;
2366
2367         i915_check_and_clear_faults(dev_priv);
2368
2369         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
2370
2371         i915_ggtt_flush(dev_priv);
2372 }
2373
2374 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2375                                struct sg_table *pages)
2376 {
2377         if (dma_map_sg(&obj->base.dev->pdev->dev,
2378                        pages->sgl, pages->nents,
2379                        PCI_DMA_BIDIRECTIONAL))
2380                 return 0;
2381
2382         return -ENOSPC;
2383 }
2384
2385 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2386 {
2387         writeq(pte, addr);
2388 }
2389
2390 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2391                                   dma_addr_t addr,
2392                                   uint64_t offset,
2393                                   enum i915_cache_level level,
2394                                   u32 unused)
2395 {
2396         struct drm_i915_private *dev_priv = vm->i915;
2397         gen8_pte_t __iomem *pte =
2398                 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2399                 (offset >> PAGE_SHIFT);
2400
2401         gen8_set_pte(pte, gen8_pte_encode(addr, level));
2402
2403         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2404         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2405 }
2406
2407 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2408                                      struct sg_table *st,
2409                                      uint64_t start,
2410                                      enum i915_cache_level level, u32 unused)
2411 {
2412         struct drm_i915_private *dev_priv = vm->i915;
2413         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2414         struct sgt_iter sgt_iter;
2415         gen8_pte_t __iomem *gtt_entries;
2416         gen8_pte_t gtt_entry;
2417         dma_addr_t addr;
2418         int i = 0;
2419
2420         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2421
2422         for_each_sgt_dma(addr, sgt_iter, st) {
2423                 gtt_entry = gen8_pte_encode(addr, level);
2424                 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2425         }
2426
2427         /*
2428          * XXX: This serves as a posting read to make sure that the PTE has
2429          * actually been updated. There is some concern that even though
2430          * registers and PTEs are within the same BAR that they are potentially
2431          * of NUMA access patterns. Therefore, even with the way we assume
2432          * hardware should work, we must keep this posting read for paranoia.
2433          */
2434         if (i != 0)
2435                 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2436
2437         /* This next bit makes the above posting read even more important. We
2438          * want to flush the TLBs only after we're certain all the PTE updates
2439          * have finished.
2440          */
2441         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2442         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2443 }
2444
2445 struct insert_entries {
2446         struct i915_address_space *vm;
2447         struct sg_table *st;
2448         uint64_t start;
2449         enum i915_cache_level level;
2450         u32 flags;
2451 };
2452
2453 static int gen8_ggtt_insert_entries__cb(void *_arg)
2454 {
2455         struct insert_entries *arg = _arg;
2456         gen8_ggtt_insert_entries(arg->vm, arg->st,
2457                                  arg->start, arg->level, arg->flags);
2458         return 0;
2459 }
2460
2461 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2462                                           struct sg_table *st,
2463                                           uint64_t start,
2464                                           enum i915_cache_level level,
2465                                           u32 flags)
2466 {
2467         struct insert_entries arg = { vm, st, start, level, flags };
2468         stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2469 }
2470
2471 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2472                                   dma_addr_t addr,
2473                                   uint64_t offset,
2474                                   enum i915_cache_level level,
2475                                   u32 flags)
2476 {
2477         struct drm_i915_private *dev_priv = vm->i915;
2478         gen6_pte_t __iomem *pte =
2479                 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2480                 (offset >> PAGE_SHIFT);
2481
2482         iowrite32(vm->pte_encode(addr, level, flags), pte);
2483
2484         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2485         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2486 }
2487
2488 /*
2489  * Binds an object into the global gtt with the specified cache level. The object
2490  * will be accessible to the GPU via commands whose operands reference offsets
2491  * within the global GTT as well as accessible by the GPU through the GMADR
2492  * mapped BAR (dev_priv->mm.gtt->gtt).
2493  */
2494 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2495                                      struct sg_table *st,
2496                                      uint64_t start,
2497                                      enum i915_cache_level level, u32 flags)
2498 {
2499         struct drm_i915_private *dev_priv = vm->i915;
2500         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2501         struct sgt_iter sgt_iter;
2502         gen6_pte_t __iomem *gtt_entries;
2503         gen6_pte_t gtt_entry;
2504         dma_addr_t addr;
2505         int i = 0;
2506
2507         gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2508
2509         for_each_sgt_dma(addr, sgt_iter, st) {
2510                 gtt_entry = vm->pte_encode(addr, level, flags);
2511                 iowrite32(gtt_entry, &gtt_entries[i++]);
2512         }
2513
2514         /* XXX: This serves as a posting read to make sure that the PTE has
2515          * actually been updated. There is some concern that even though
2516          * registers and PTEs are within the same BAR that they are potentially
2517          * of NUMA access patterns. Therefore, even with the way we assume
2518          * hardware should work, we must keep this posting read for paranoia.
2519          */
2520         if (i != 0)
2521                 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2522
2523         /* This next bit makes the above posting read even more important. We
2524          * want to flush the TLBs only after we're certain all the PTE updates
2525          * have finished.
2526          */
2527         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2528         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2529 }
2530
2531 static void nop_clear_range(struct i915_address_space *vm,
2532                             uint64_t start, uint64_t length)
2533 {
2534 }
2535
2536 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2537                                   uint64_t start, uint64_t length)
2538 {
2539         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2540         unsigned first_entry = start >> PAGE_SHIFT;
2541         unsigned num_entries = length >> PAGE_SHIFT;
2542         gen8_pte_t scratch_pte, __iomem *gtt_base =
2543                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2544         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2545         int i;
2546
2547         if (WARN(num_entries > max_entries,
2548                  "First entry = %d; Num entries = %d (max=%d)\n",
2549                  first_entry, num_entries, max_entries))
2550                 num_entries = max_entries;
2551
2552         scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2553                                       I915_CACHE_LLC);
2554         for (i = 0; i < num_entries; i++)
2555                 gen8_set_pte(&gtt_base[i], scratch_pte);
2556         readl(gtt_base);
2557 }
2558
2559 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2560                                   uint64_t start,
2561                                   uint64_t length)
2562 {
2563         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2564         unsigned first_entry = start >> PAGE_SHIFT;
2565         unsigned num_entries = length >> PAGE_SHIFT;
2566         gen6_pte_t scratch_pte, __iomem *gtt_base =
2567                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2568         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2569         int i;
2570
2571         if (WARN(num_entries > max_entries,
2572                  "First entry = %d; Num entries = %d (max=%d)\n",
2573                  first_entry, num_entries, max_entries))
2574                 num_entries = max_entries;
2575
2576         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2577                                      I915_CACHE_LLC, 0);
2578
2579         for (i = 0; i < num_entries; i++)
2580                 iowrite32(scratch_pte, &gtt_base[i]);
2581         readl(gtt_base);
2582 }
2583
2584 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2585                                   dma_addr_t addr,
2586                                   uint64_t offset,
2587                                   enum i915_cache_level cache_level,
2588                                   u32 unused)
2589 {
2590         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2591                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2592
2593         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2594 }
2595
2596 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2597                                      struct sg_table *pages,
2598                                      uint64_t start,
2599                                      enum i915_cache_level cache_level, u32 unused)
2600 {
2601         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2602                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2603
2604         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2605
2606 }
2607
2608 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2609                                   uint64_t start,
2610                                   uint64_t length)
2611 {
2612         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2613 }
2614
2615 static int ggtt_bind_vma(struct i915_vma *vma,
2616                          enum i915_cache_level cache_level,
2617                          u32 flags)
2618 {
2619         struct drm_i915_private *i915 = vma->vm->i915;
2620         struct drm_i915_gem_object *obj = vma->obj;
2621         u32 pte_flags = 0;
2622         int ret;
2623
2624         ret = i915_get_ggtt_vma_pages(vma);
2625         if (ret)
2626                 return ret;
2627
2628         /* Currently applicable only to VLV */
2629         if (obj->gt_ro)
2630                 pte_flags |= PTE_READ_ONLY;
2631
2632         intel_runtime_pm_get(i915);
2633         vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2634                                 cache_level, pte_flags);
2635         intel_runtime_pm_put(i915);
2636
2637         /*
2638          * Without aliasing PPGTT there's no difference between
2639          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2640          * upgrade to both bound if we bind either to avoid double-binding.
2641          */
2642         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2643
2644         return 0;
2645 }
2646
2647 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2648                                  enum i915_cache_level cache_level,
2649                                  u32 flags)
2650 {
2651         struct drm_i915_private *i915 = vma->vm->i915;
2652         u32 pte_flags;
2653         int ret;
2654
2655         ret = i915_get_ggtt_vma_pages(vma);
2656         if (ret)
2657                 return ret;
2658
2659         /* Currently applicable only to VLV */
2660         pte_flags = 0;
2661         if (vma->obj->gt_ro)
2662                 pte_flags |= PTE_READ_ONLY;
2663
2664
2665         if (flags & I915_VMA_GLOBAL_BIND) {
2666                 intel_runtime_pm_get(i915);
2667                 vma->vm->insert_entries(vma->vm,
2668                                         vma->pages, vma->node.start,
2669                                         cache_level, pte_flags);
2670                 intel_runtime_pm_put(i915);
2671         }
2672
2673         if (flags & I915_VMA_LOCAL_BIND) {
2674                 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2675                 appgtt->base.insert_entries(&appgtt->base,
2676                                             vma->pages, vma->node.start,
2677                                             cache_level, pte_flags);
2678         }
2679
2680         return 0;
2681 }
2682
2683 static void ggtt_unbind_vma(struct i915_vma *vma)
2684 {
2685         struct drm_i915_private *i915 = vma->vm->i915;
2686         struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2687         const u64 size = min(vma->size, vma->node.size);
2688
2689         if (vma->flags & I915_VMA_GLOBAL_BIND) {
2690                 intel_runtime_pm_get(i915);
2691                 vma->vm->clear_range(vma->vm,
2692                                      vma->node.start, size);
2693                 intel_runtime_pm_put(i915);
2694         }
2695
2696         if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2697                 appgtt->base.clear_range(&appgtt->base,
2698                                          vma->node.start, size);
2699 }
2700
2701 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2702                                struct sg_table *pages)
2703 {
2704         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2705         struct device *kdev = &dev_priv->drm.pdev->dev;
2706         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2707
2708         if (unlikely(ggtt->do_idle_maps)) {
2709                 if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2710                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2711                         /* Wait a bit, in hopes it avoids the hang */
2712                         udelay(10);
2713                 }
2714         }
2715
2716         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2717 }
2718
2719 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2720                                   unsigned long color,
2721                                   u64 *start,
2722                                   u64 *end)
2723 {
2724         if (node->color != color)
2725                 *start += 4096;
2726
2727         node = list_first_entry_or_null(&node->node_list,
2728                                         struct drm_mm_node,
2729                                         node_list);
2730         if (node && node->allocated && node->color != color)
2731                 *end -= 4096;
2732 }
2733
2734 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2735 {
2736         /* Let GEM Manage all of the aperture.
2737          *
2738          * However, leave one page at the end still bound to the scratch page.
2739          * There are a number of places where the hardware apparently prefetches
2740          * past the end of the object, and we've seen multiple hangs with the
2741          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2742          * aperture.  One page should be enough to keep any prefetching inside
2743          * of the aperture.
2744          */
2745         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2746         unsigned long hole_start, hole_end;
2747         struct i915_hw_ppgtt *ppgtt;
2748         struct drm_mm_node *entry;
2749         int ret;
2750
2751         ret = intel_vgt_balloon(dev_priv);
2752         if (ret)
2753                 return ret;
2754
2755         /* Reserve a mappable slot for our lockless error capture */
2756         ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2757                                                   &ggtt->error_capture,
2758                                                   4096, 0, -1,
2759                                                   0, ggtt->mappable_end,
2760                                                   0, 0);
2761         if (ret)
2762                 return ret;
2763
2764         /* Clear any non-preallocated blocks */
2765         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2766                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2767                               hole_start, hole_end);
2768                 ggtt->base.clear_range(&ggtt->base, hole_start,
2769                                        hole_end - hole_start);
2770         }
2771
2772         /* And finally clear the reserved guard page */
2773         ggtt->base.clear_range(&ggtt->base,
2774                                ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2775
2776         if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2777                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2778                 if (!ppgtt) {
2779                         ret = -ENOMEM;
2780                         goto err;
2781                 }
2782
2783                 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2784                 if (ret)
2785                         goto err_ppgtt;
2786
2787                 if (ppgtt->base.allocate_va_range) {
2788                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2789                                                             ppgtt->base.total);
2790                         if (ret)
2791                                 goto err_ppgtt_cleanup;
2792                 }
2793
2794                 ppgtt->base.clear_range(&ppgtt->base,
2795                                         ppgtt->base.start,
2796                                         ppgtt->base.total);
2797
2798                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2799                 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2800                 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2801         }
2802
2803         return 0;
2804
2805 err_ppgtt_cleanup:
2806         ppgtt->base.cleanup(&ppgtt->base);
2807 err_ppgtt:
2808         kfree(ppgtt);
2809 err:
2810         drm_mm_remove_node(&ggtt->error_capture);
2811         return ret;
2812 }
2813
2814 /**
2815  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2816  * @dev_priv: i915 device
2817  */
2818 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2819 {
2820         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2821
2822         if (dev_priv->mm.aliasing_ppgtt) {
2823                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2824                 ppgtt->base.cleanup(&ppgtt->base);
2825                 kfree(ppgtt);
2826         }
2827
2828         i915_gem_cleanup_stolen(&dev_priv->drm);
2829
2830         if (drm_mm_node_allocated(&ggtt->error_capture))
2831                 drm_mm_remove_node(&ggtt->error_capture);
2832
2833         if (drm_mm_initialized(&ggtt->base.mm)) {
2834                 intel_vgt_deballoon(dev_priv);
2835
2836                 mutex_lock(&dev_priv->drm.struct_mutex);
2837                 i915_address_space_fini(&ggtt->base);
2838                 mutex_unlock(&dev_priv->drm.struct_mutex);
2839         }
2840
2841         ggtt->base.cleanup(&ggtt->base);
2842
2843         arch_phys_wc_del(ggtt->mtrr);
2844         io_mapping_fini(&ggtt->mappable);
2845 }
2846
2847 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2848 {
2849         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2850         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2851         return snb_gmch_ctl << 20;
2852 }
2853
2854 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2855 {
2856         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2857         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2858         if (bdw_gmch_ctl)
2859                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2860
2861 #ifdef CONFIG_X86_32
2862         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2863         if (bdw_gmch_ctl > 4)
2864                 bdw_gmch_ctl = 4;
2865 #endif
2866
2867         return bdw_gmch_ctl << 20;
2868 }
2869
2870 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2871 {
2872         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2873         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2874
2875         if (gmch_ctrl)
2876                 return 1 << (20 + gmch_ctrl);
2877
2878         return 0;
2879 }
2880
2881 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2882 {
2883         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2884         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2885         return snb_gmch_ctl << 25; /* 32 MB units */
2886 }
2887
2888 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2889 {
2890         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2891         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2892         return bdw_gmch_ctl << 25; /* 32 MB units */
2893 }
2894
2895 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2896 {
2897         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2898         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2899
2900         /*
2901          * 0x0  to 0x10: 32MB increments starting at 0MB
2902          * 0x11 to 0x16: 4MB increments starting at 8MB
2903          * 0x17 to 0x1d: 4MB increments start at 36MB
2904          */
2905         if (gmch_ctrl < 0x11)
2906                 return gmch_ctrl << 25;
2907         else if (gmch_ctrl < 0x17)
2908                 return (gmch_ctrl - 0x11 + 2) << 22;
2909         else
2910                 return (gmch_ctrl - 0x17 + 9) << 22;
2911 }
2912
2913 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2914 {
2915         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2916         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2917
2918         if (gen9_gmch_ctl < 0xf0)
2919                 return gen9_gmch_ctl << 25; /* 32 MB units */
2920         else
2921                 /* 4MB increments starting at 0xf0 for 4MB */
2922                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2923 }
2924
2925 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2926 {
2927         struct drm_i915_private *dev_priv = ggtt->base.i915;
2928         struct pci_dev *pdev = dev_priv->drm.pdev;
2929         phys_addr_t phys_addr;
2930         int ret;
2931
2932         /* For Modern GENs the PTEs and register space are split in the BAR */
2933         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2934
2935         /*
2936          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2937          * dropped. For WC mappings in general we have 64 byte burst writes
2938          * when the WC buffer is flushed, so we can't use it, but have to
2939          * resort to an uncached mapping. The WC issue is easily caught by the
2940          * readback check when writing GTT PTE entries.
2941          */
2942         if (IS_GEN9_LP(dev_priv))
2943                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2944         else
2945                 ggtt->gsm = ioremap_wc(phys_addr, size);
2946         if (!ggtt->gsm) {
2947                 DRM_ERROR("Failed to map the ggtt page table\n");
2948                 return -ENOMEM;
2949         }
2950
2951         ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32);
2952         if (ret) {
2953                 DRM_ERROR("Scratch setup failed\n");
2954                 /* iounmap will also get called at remove, but meh */
2955                 iounmap(ggtt->gsm);
2956                 return ret;
2957         }
2958
2959         return 0;
2960 }
2961
2962 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2963  * bits. When using advanced contexts each context stores its own PAT, but
2964  * writing this data shouldn't be harmful even in those cases. */
2965 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2966 {
2967         uint64_t pat;
2968
2969         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2970               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2971               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2972               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2973               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2974               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2975               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2976               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2977
2978         if (!USES_PPGTT(dev_priv))
2979                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2980                  * so RTL will always use the value corresponding to
2981                  * pat_sel = 000".
2982                  * So let's disable cache for GGTT to avoid screen corruptions.
2983                  * MOCS still can be used though.
2984                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2985                  * before this patch, i.e. the same uncached + snooping access
2986                  * like on gen6/7 seems to be in effect.
2987                  * - So this just fixes blitter/render access. Again it looks
2988                  * like it's not just uncached access, but uncached + snooping.
2989                  * So we can still hold onto all our assumptions wrt cpu
2990                  * clflushing on LLC machines.
2991                  */
2992                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2993
2994         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2995          * write would work. */
2996         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2997         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2998 }
2999
3000 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3001 {
3002         uint64_t pat;
3003
3004         /*
3005          * Map WB on BDW to snooped on CHV.
3006          *
3007          * Only the snoop bit has meaning for CHV, the rest is
3008          * ignored.
3009          *
3010          * The hardware will never snoop for certain types of accesses:
3011          * - CPU GTT (GMADR->GGTT->no snoop->memory)
3012          * - PPGTT page tables
3013          * - some other special cycles
3014          *
3015          * As with BDW, we also need to consider the following for GT accesses:
3016          * "For GGTT, there is NO pat_sel[2:0] from the entry,
3017          * so RTL will always use the value corresponding to
3018          * pat_sel = 000".
3019          * Which means we must set the snoop bit in PAT entry 0
3020          * in order to keep the global status page working.
3021          */
3022         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3023               GEN8_PPAT(1, 0) |
3024               GEN8_PPAT(2, 0) |
3025               GEN8_PPAT(3, 0) |
3026               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3027               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3028               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3029               GEN8_PPAT(7, CHV_PPAT_SNOOP);
3030
3031         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3032         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3033 }
3034
3035 static void gen6_gmch_remove(struct i915_address_space *vm)
3036 {
3037         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3038
3039         iounmap(ggtt->gsm);
3040         cleanup_scratch_page(vm->i915, &vm->scratch_page);
3041 }
3042
3043 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3044 {
3045         struct drm_i915_private *dev_priv = ggtt->base.i915;
3046         struct pci_dev *pdev = dev_priv->drm.pdev;
3047         unsigned int size;
3048         u16 snb_gmch_ctl;
3049
3050         /* TODO: We're not aware of mappable constraints on gen8 yet */
3051         ggtt->mappable_base = pci_resource_start(pdev, 2);
3052         ggtt->mappable_end = pci_resource_len(pdev, 2);
3053
3054         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3055                 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3056
3057         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3058
3059         if (INTEL_GEN(dev_priv) >= 9) {
3060                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3061                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3062         } else if (IS_CHERRYVIEW(dev_priv)) {
3063                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3064                 size = chv_get_total_gtt_size(snb_gmch_ctl);
3065         } else {
3066                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3067                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3068         }
3069
3070         ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3071
3072         if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3073                 chv_setup_private_ppat(dev_priv);
3074         else
3075                 bdw_setup_private_ppat(dev_priv);
3076
3077         ggtt->base.cleanup = gen6_gmch_remove;
3078         ggtt->base.bind_vma = ggtt_bind_vma;
3079         ggtt->base.unbind_vma = ggtt_unbind_vma;
3080         ggtt->base.insert_page = gen8_ggtt_insert_page;
3081         ggtt->base.clear_range = nop_clear_range;
3082         if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3083                 ggtt->base.clear_range = gen8_ggtt_clear_range;
3084
3085         ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3086         if (IS_CHERRYVIEW(dev_priv))
3087                 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3088
3089         return ggtt_probe_common(ggtt, size);
3090 }
3091
3092 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3093 {
3094         struct drm_i915_private *dev_priv = ggtt->base.i915;
3095         struct pci_dev *pdev = dev_priv->drm.pdev;
3096         unsigned int size;
3097         u16 snb_gmch_ctl;
3098
3099         ggtt->mappable_base = pci_resource_start(pdev, 2);
3100         ggtt->mappable_end = pci_resource_len(pdev, 2);
3101
3102         /* 64/512MB is the current min/max we actually know of, but this is just
3103          * a coarse sanity check.
3104          */
3105         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3106                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3107                 return -ENXIO;
3108         }
3109
3110         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3111                 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3112         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3113
3114         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3115
3116         size = gen6_get_total_gtt_size(snb_gmch_ctl);
3117         ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3118
3119         ggtt->base.clear_range = gen6_ggtt_clear_range;
3120         ggtt->base.insert_page = gen6_ggtt_insert_page;
3121         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3122         ggtt->base.bind_vma = ggtt_bind_vma;
3123         ggtt->base.unbind_vma = ggtt_unbind_vma;
3124         ggtt->base.cleanup = gen6_gmch_remove;
3125
3126         if (HAS_EDRAM(dev_priv))
3127                 ggtt->base.pte_encode = iris_pte_encode;
3128         else if (IS_HASWELL(dev_priv))
3129                 ggtt->base.pte_encode = hsw_pte_encode;
3130         else if (IS_VALLEYVIEW(dev_priv))
3131                 ggtt->base.pte_encode = byt_pte_encode;
3132         else if (INTEL_GEN(dev_priv) >= 7)
3133                 ggtt->base.pte_encode = ivb_pte_encode;
3134         else
3135                 ggtt->base.pte_encode = snb_pte_encode;
3136
3137         return ggtt_probe_common(ggtt, size);
3138 }
3139
3140 static void i915_gmch_remove(struct i915_address_space *vm)
3141 {
3142         intel_gmch_remove();
3143 }
3144
3145 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3146 {
3147         struct drm_i915_private *dev_priv = ggtt->base.i915;
3148         int ret;
3149
3150         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3151         if (!ret) {
3152                 DRM_ERROR("failed to set up gmch\n");
3153                 return -EIO;
3154         }
3155
3156         intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3157                       &ggtt->mappable_base, &ggtt->mappable_end);
3158
3159         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3160         ggtt->base.insert_page = i915_ggtt_insert_page;
3161         ggtt->base.insert_entries = i915_ggtt_insert_entries;
3162         ggtt->base.clear_range = i915_ggtt_clear_range;
3163         ggtt->base.bind_vma = ggtt_bind_vma;
3164         ggtt->base.unbind_vma = ggtt_unbind_vma;
3165         ggtt->base.cleanup = i915_gmch_remove;
3166
3167         if (unlikely(ggtt->do_idle_maps))
3168                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3169
3170         return 0;
3171 }
3172
3173 /**
3174  * i915_ggtt_probe_hw - Probe GGTT hardware location
3175  * @dev_priv: i915 device
3176  */
3177 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3178 {
3179         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3180         int ret;
3181
3182         ggtt->base.i915 = dev_priv;
3183
3184         if (INTEL_GEN(dev_priv) <= 5)
3185                 ret = i915_gmch_probe(ggtt);
3186         else if (INTEL_GEN(dev_priv) < 8)
3187                 ret = gen6_gmch_probe(ggtt);
3188         else
3189                 ret = gen8_gmch_probe(ggtt);
3190         if (ret)
3191                 return ret;
3192
3193         if ((ggtt->base.total - 1) >> 32) {
3194                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3195                           " of address space! Found %lldM!\n",
3196                           ggtt->base.total >> 20);
3197                 ggtt->base.total = 1ULL << 32;
3198                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3199         }
3200
3201         if (ggtt->mappable_end > ggtt->base.total) {
3202                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3203                           " aperture=%llx, total=%llx\n",
3204                           ggtt->mappable_end, ggtt->base.total);
3205                 ggtt->mappable_end = ggtt->base.total;
3206         }
3207
3208         /* GMADR is the PCI mmio aperture into the global GTT. */
3209         DRM_INFO("Memory usable by graphics device = %lluM\n",
3210                  ggtt->base.total >> 20);
3211         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3212         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3213 #ifdef CONFIG_INTEL_IOMMU
3214         if (intel_iommu_gfx_mapped)
3215                 DRM_INFO("VT-d active for gfx access\n");
3216 #endif
3217
3218         return 0;
3219 }
3220
3221 /**
3222  * i915_ggtt_init_hw - Initialize GGTT hardware
3223  * @dev_priv: i915 device
3224  */
3225 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3226 {
3227         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3228         int ret;
3229
3230         INIT_LIST_HEAD(&dev_priv->vm_list);
3231
3232         /* Subtract the guard page before address space initialization to
3233          * shrink the range used by drm_mm.
3234          */
3235         mutex_lock(&dev_priv->drm.struct_mutex);
3236         ggtt->base.total -= PAGE_SIZE;
3237         i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3238         ggtt->base.total += PAGE_SIZE;
3239         if (!HAS_LLC(dev_priv))
3240                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3241         mutex_unlock(&dev_priv->drm.struct_mutex);
3242
3243         if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3244                                 dev_priv->ggtt.mappable_base,
3245                                 dev_priv->ggtt.mappable_end)) {
3246                 ret = -EIO;
3247                 goto out_gtt_cleanup;
3248         }
3249
3250         ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3251
3252         /*
3253          * Initialise stolen early so that we may reserve preallocated
3254          * objects for the BIOS to KMS transition.
3255          */
3256         ret = i915_gem_init_stolen(dev_priv);
3257         if (ret)
3258                 goto out_gtt_cleanup;
3259
3260         return 0;
3261
3262 out_gtt_cleanup:
3263         ggtt->base.cleanup(&ggtt->base);
3264         return ret;
3265 }
3266
3267 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3268 {
3269         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3270                 return -EIO;
3271
3272         return 0;
3273 }
3274
3275 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3276 {
3277         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3278         struct drm_i915_gem_object *obj, *on;
3279
3280         i915_check_and_clear_faults(dev_priv);
3281
3282         /* First fill our portion of the GTT with scratch pages */
3283         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
3284
3285         ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3286
3287         /* clflush objects bound into the GGTT and rebind them. */
3288         list_for_each_entry_safe(obj, on,
3289                                  &dev_priv->mm.bound_list, global_link) {
3290                 bool ggtt_bound = false;
3291                 struct i915_vma *vma;
3292
3293                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3294                         if (vma->vm != &ggtt->base)
3295                                 continue;
3296
3297                         if (!i915_vma_unbind(vma))
3298                                 continue;
3299
3300                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3301                                               PIN_UPDATE));
3302                         ggtt_bound = true;
3303                 }
3304
3305                 if (ggtt_bound)
3306                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3307         }
3308
3309         ggtt->base.closed = false;
3310
3311         if (INTEL_GEN(dev_priv) >= 8) {
3312                 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3313                         chv_setup_private_ppat(dev_priv);
3314                 else
3315                         bdw_setup_private_ppat(dev_priv);
3316
3317                 return;
3318         }
3319
3320         if (USES_PPGTT(dev_priv)) {
3321                 struct i915_address_space *vm;
3322
3323                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3324                         /* TODO: Perhaps it shouldn't be gen6 specific */
3325
3326                         struct i915_hw_ppgtt *ppgtt;
3327
3328                         if (i915_is_ggtt(vm))
3329                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3330                         else
3331                                 ppgtt = i915_vm_to_ppgtt(vm);
3332
3333                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3334                                               0, ppgtt->base.total);
3335                 }
3336         }
3337
3338         i915_ggtt_flush(dev_priv);
3339 }
3340
3341 struct i915_vma *
3342 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3343                     struct i915_address_space *vm,
3344                     const struct i915_ggtt_view *view)
3345 {
3346         struct rb_node *rb;
3347
3348         rb = obj->vma_tree.rb_node;
3349         while (rb) {
3350                 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
3351                 long cmp;
3352
3353                 cmp = i915_vma_compare(vma, vm, view);
3354                 if (cmp == 0)
3355                         return vma;
3356
3357                 if (cmp < 0)
3358                         rb = rb->rb_right;
3359                 else
3360                         rb = rb->rb_left;
3361         }
3362
3363         return NULL;
3364 }
3365
3366 struct i915_vma *
3367 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3368                                   struct i915_address_space *vm,
3369                                   const struct i915_ggtt_view *view)
3370 {
3371         struct i915_vma *vma;
3372
3373         lockdep_assert_held(&obj->base.dev->struct_mutex);
3374         GEM_BUG_ON(view && !i915_is_ggtt(vm));
3375
3376         vma = i915_gem_obj_to_vma(obj, vm, view);
3377         if (!vma) {
3378                 vma = i915_vma_create(obj, vm, view);
3379                 GEM_BUG_ON(vma != i915_gem_obj_to_vma(obj, vm, view));
3380         }
3381
3382         GEM_BUG_ON(i915_vma_is_closed(vma));
3383         return vma;
3384 }
3385
3386 static struct scatterlist *
3387 rotate_pages(const dma_addr_t *in, unsigned int offset,
3388              unsigned int width, unsigned int height,
3389              unsigned int stride,
3390              struct sg_table *st, struct scatterlist *sg)
3391 {
3392         unsigned int column, row;
3393         unsigned int src_idx;
3394
3395         for (column = 0; column < width; column++) {
3396                 src_idx = stride * (height - 1) + column;
3397                 for (row = 0; row < height; row++) {
3398                         st->nents++;
3399                         /* We don't need the pages, but need to initialize
3400                          * the entries so the sg list can be happily traversed.
3401                          * The only thing we need are DMA addresses.
3402                          */
3403                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3404                         sg_dma_address(sg) = in[offset + src_idx];
3405                         sg_dma_len(sg) = PAGE_SIZE;
3406                         sg = sg_next(sg);
3407                         src_idx -= stride;
3408                 }
3409         }
3410
3411         return sg;
3412 }
3413
3414 static struct sg_table *
3415 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3416                           struct drm_i915_gem_object *obj)
3417 {
3418         const size_t n_pages = obj->base.size / PAGE_SIZE;
3419         unsigned int size = intel_rotation_info_size(rot_info);
3420         struct sgt_iter sgt_iter;
3421         dma_addr_t dma_addr;
3422         unsigned long i;
3423         dma_addr_t *page_addr_list;
3424         struct sg_table *st;
3425         struct scatterlist *sg;
3426         int ret = -ENOMEM;
3427
3428         /* Allocate a temporary list of source pages for random access. */
3429         page_addr_list = drm_malloc_gfp(n_pages,
3430                                         sizeof(dma_addr_t),
3431                                         GFP_TEMPORARY);
3432         if (!page_addr_list)
3433                 return ERR_PTR(ret);
3434
3435         /* Allocate target SG list. */
3436         st = kmalloc(sizeof(*st), GFP_KERNEL);
3437         if (!st)
3438                 goto err_st_alloc;
3439
3440         ret = sg_alloc_table(st, size, GFP_KERNEL);
3441         if (ret)
3442                 goto err_sg_alloc;
3443
3444         /* Populate source page list from the object. */
3445         i = 0;
3446         for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3447                 page_addr_list[i++] = dma_addr;
3448
3449         GEM_BUG_ON(i != n_pages);
3450         st->nents = 0;
3451         sg = st->sgl;
3452
3453         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3454                 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3455                                   rot_info->plane[i].width, rot_info->plane[i].height,
3456                                   rot_info->plane[i].stride, st, sg);
3457         }
3458
3459         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3460                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3461
3462         drm_free_large(page_addr_list);
3463
3464         return st;
3465
3466 err_sg_alloc:
3467         kfree(st);
3468 err_st_alloc:
3469         drm_free_large(page_addr_list);
3470
3471         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3472                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3473
3474         return ERR_PTR(ret);
3475 }
3476
3477 static struct sg_table *
3478 intel_partial_pages(const struct i915_ggtt_view *view,
3479                     struct drm_i915_gem_object *obj)
3480 {
3481         struct sg_table *st;
3482         struct scatterlist *sg, *iter;
3483         unsigned int count = view->params.partial.size;
3484         unsigned int offset;
3485         int ret = -ENOMEM;
3486
3487         st = kmalloc(sizeof(*st), GFP_KERNEL);
3488         if (!st)
3489                 goto err_st_alloc;
3490
3491         ret = sg_alloc_table(st, count, GFP_KERNEL);
3492         if (ret)
3493                 goto err_sg_alloc;
3494
3495         iter = i915_gem_object_get_sg(obj,
3496                                       view->params.partial.offset,
3497                                       &offset);
3498         GEM_BUG_ON(!iter);
3499
3500         sg = st->sgl;
3501         st->nents = 0;
3502         do {
3503                 unsigned int len;
3504
3505                 len = min(iter->length - (offset << PAGE_SHIFT),
3506                           count << PAGE_SHIFT);
3507                 sg_set_page(sg, NULL, len, 0);
3508                 sg_dma_address(sg) =
3509                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3510                 sg_dma_len(sg) = len;
3511
3512                 st->nents++;
3513                 count -= len >> PAGE_SHIFT;
3514                 if (count == 0) {
3515                         sg_mark_end(sg);
3516                         return st;
3517                 }
3518
3519                 sg = __sg_next(sg);
3520                 iter = __sg_next(iter);
3521                 offset = 0;
3522         } while (1);
3523
3524 err_sg_alloc:
3525         kfree(st);
3526 err_st_alloc:
3527         return ERR_PTR(ret);
3528 }
3529
3530 static int
3531 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3532 {
3533         int ret = 0;
3534
3535         /* The vma->pages are only valid within the lifespan of the borrowed
3536          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3537          * must be the vma->pages. A simple rule is that vma->pages must only
3538          * be accessed when the obj->mm.pages are pinned.
3539          */
3540         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3541
3542         if (vma->pages)
3543                 return 0;
3544
3545         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3546                 vma->pages = vma->obj->mm.pages;
3547         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3548                 vma->pages =
3549                         intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3550         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3551                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3552         else
3553                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3554                           vma->ggtt_view.type);
3555
3556         if (!vma->pages) {
3557                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3558                           vma->ggtt_view.type);
3559                 ret = -EINVAL;
3560         } else if (IS_ERR(vma->pages)) {
3561                 ret = PTR_ERR(vma->pages);
3562                 vma->pages = NULL;
3563                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3564                           vma->ggtt_view.type, ret);
3565         }
3566
3567         return ret;
3568 }
3569