]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
eebdb28acfa9964db7d1067cbdf671d9c1431007
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95
96 static int
97 i915_get_ggtt_vma_pages(struct i915_vma *vma);
98
99 const struct i915_ggtt_view i915_ggtt_view_normal = {
100         .type = I915_GGTT_VIEW_NORMAL,
101 };
102 const struct i915_ggtt_view i915_ggtt_view_rotated = {
103         .type = I915_GGTT_VIEW_ROTATED,
104 };
105
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108         bool has_aliasing_ppgtt;
109         bool has_full_ppgtt;
110         bool has_full_48bit_ppgtt;
111
112         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
113         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
114         has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
115
116         if (intel_vgpu_active(dev))
117                 has_full_ppgtt = false; /* emulation is too hard */
118
119         /*
120          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
121          * execlists, the sole mechanism available to submit work.
122          */
123         if (INTEL_INFO(dev)->gen < 9 &&
124             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
125                 return 0;
126
127         if (enable_ppgtt == 1)
128                 return 1;
129
130         if (enable_ppgtt == 2 && has_full_ppgtt)
131                 return 2;
132
133         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
134                 return 3;
135
136 #ifdef CONFIG_INTEL_IOMMU
137         /* Disable ppgtt on SNB if VT-d is on. */
138         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
139                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
140                 return 0;
141         }
142 #endif
143
144         /* Early VLV doesn't have this */
145         if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
146                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
147                 return 0;
148         }
149
150         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
151                 return has_full_48bit_ppgtt ? 3 : 2;
152         else
153                 return has_aliasing_ppgtt ? 1 : 0;
154 }
155
156 static int ppgtt_bind_vma(struct i915_vma *vma,
157                           enum i915_cache_level cache_level,
158                           u32 unused)
159 {
160         u32 pte_flags = 0;
161
162         /* Currently applicable only to VLV */
163         if (vma->obj->gt_ro)
164                 pte_flags |= PTE_READ_ONLY;
165
166         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
167                                 cache_level, pte_flags);
168
169         return 0;
170 }
171
172 static void ppgtt_unbind_vma(struct i915_vma *vma)
173 {
174         vma->vm->clear_range(vma->vm,
175                              vma->node.start,
176                              vma->obj->base.size,
177                              true);
178 }
179
180 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
181                                   enum i915_cache_level level,
182                                   bool valid)
183 {
184         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
185         pte |= addr;
186
187         switch (level) {
188         case I915_CACHE_NONE:
189                 pte |= PPAT_UNCACHED_INDEX;
190                 break;
191         case I915_CACHE_WT:
192                 pte |= PPAT_DISPLAY_ELLC_INDEX;
193                 break;
194         default:
195                 pte |= PPAT_CACHED_INDEX;
196                 break;
197         }
198
199         return pte;
200 }
201
202 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
203                                   const enum i915_cache_level level)
204 {
205         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
206         pde |= addr;
207         if (level != I915_CACHE_NONE)
208                 pde |= PPAT_CACHED_PDE_INDEX;
209         else
210                 pde |= PPAT_UNCACHED_INDEX;
211         return pde;
212 }
213
214 #define gen8_pdpe_encode gen8_pde_encode
215 #define gen8_pml4e_encode gen8_pde_encode
216
217 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
218                                  enum i915_cache_level level,
219                                  bool valid, u32 unused)
220 {
221         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
222         pte |= GEN6_PTE_ADDR_ENCODE(addr);
223
224         switch (level) {
225         case I915_CACHE_L3_LLC:
226         case I915_CACHE_LLC:
227                 pte |= GEN6_PTE_CACHE_LLC;
228                 break;
229         case I915_CACHE_NONE:
230                 pte |= GEN6_PTE_UNCACHED;
231                 break;
232         default:
233                 MISSING_CASE(level);
234         }
235
236         return pte;
237 }
238
239 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
240                                  enum i915_cache_level level,
241                                  bool valid, u32 unused)
242 {
243         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
244         pte |= GEN6_PTE_ADDR_ENCODE(addr);
245
246         switch (level) {
247         case I915_CACHE_L3_LLC:
248                 pte |= GEN7_PTE_CACHE_L3_LLC;
249                 break;
250         case I915_CACHE_LLC:
251                 pte |= GEN6_PTE_CACHE_LLC;
252                 break;
253         case I915_CACHE_NONE:
254                 pte |= GEN6_PTE_UNCACHED;
255                 break;
256         default:
257                 MISSING_CASE(level);
258         }
259
260         return pte;
261 }
262
263 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
264                                  enum i915_cache_level level,
265                                  bool valid, u32 flags)
266 {
267         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
268         pte |= GEN6_PTE_ADDR_ENCODE(addr);
269
270         if (!(flags & PTE_READ_ONLY))
271                 pte |= BYT_PTE_WRITEABLE;
272
273         if (level != I915_CACHE_NONE)
274                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
275
276         return pte;
277 }
278
279 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
280                                  enum i915_cache_level level,
281                                  bool valid, u32 unused)
282 {
283         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
284         pte |= HSW_PTE_ADDR_ENCODE(addr);
285
286         if (level != I915_CACHE_NONE)
287                 pte |= HSW_WB_LLC_AGE3;
288
289         return pte;
290 }
291
292 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
293                                   enum i915_cache_level level,
294                                   bool valid, u32 unused)
295 {
296         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
297         pte |= HSW_PTE_ADDR_ENCODE(addr);
298
299         switch (level) {
300         case I915_CACHE_NONE:
301                 break;
302         case I915_CACHE_WT:
303                 pte |= HSW_WT_ELLC_LLC_AGE3;
304                 break;
305         default:
306                 pte |= HSW_WB_ELLC_LLC_AGE3;
307                 break;
308         }
309
310         return pte;
311 }
312
313 static int __setup_page_dma(struct drm_device *dev,
314                             struct i915_page_dma *p, gfp_t flags)
315 {
316         struct device *device = &dev->pdev->dev;
317
318         p->page = alloc_page(flags);
319         if (!p->page)
320                 return -ENOMEM;
321
322         p->daddr = dma_map_page(device,
323                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
324
325         if (dma_mapping_error(device, p->daddr)) {
326                 __free_page(p->page);
327                 return -EINVAL;
328         }
329
330         return 0;
331 }
332
333 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
334 {
335         return __setup_page_dma(dev, p, GFP_KERNEL);
336 }
337
338 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
339 {
340         if (WARN_ON(!p->page))
341                 return;
342
343         dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
344         __free_page(p->page);
345         memset(p, 0, sizeof(*p));
346 }
347
348 static void *kmap_page_dma(struct i915_page_dma *p)
349 {
350         return kmap_atomic(p->page);
351 }
352
353 /* We use the flushing unmap only with ppgtt structures:
354  * page directories, page tables and scratch pages.
355  */
356 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
357 {
358         /* There are only few exceptions for gen >=6. chv and bxt.
359          * And we are not sure about the latter so play safe for now.
360          */
361         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
362                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
363
364         kunmap_atomic(vaddr);
365 }
366
367 #define kmap_px(px) kmap_page_dma(px_base(px))
368 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
369
370 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
371 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
372 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
373 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
374
375 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
376                           const uint64_t val)
377 {
378         int i;
379         uint64_t * const vaddr = kmap_page_dma(p);
380
381         for (i = 0; i < 512; i++)
382                 vaddr[i] = val;
383
384         kunmap_page_dma(dev, vaddr);
385 }
386
387 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
388                              const uint32_t val32)
389 {
390         uint64_t v = val32;
391
392         v = v << 32 | val32;
393
394         fill_page_dma(dev, p, v);
395 }
396
397 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
398 {
399         struct i915_page_scratch *sp;
400         int ret;
401
402         sp = kzalloc(sizeof(*sp), GFP_KERNEL);
403         if (sp == NULL)
404                 return ERR_PTR(-ENOMEM);
405
406         ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
407         if (ret) {
408                 kfree(sp);
409                 return ERR_PTR(ret);
410         }
411
412         set_pages_uc(px_page(sp), 1);
413
414         return sp;
415 }
416
417 static void free_scratch_page(struct drm_device *dev,
418                               struct i915_page_scratch *sp)
419 {
420         set_pages_wb(px_page(sp), 1);
421
422         cleanup_px(dev, sp);
423         kfree(sp);
424 }
425
426 static struct i915_page_table *alloc_pt(struct drm_device *dev)
427 {
428         struct i915_page_table *pt;
429         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
430                 GEN8_PTES : GEN6_PTES;
431         int ret = -ENOMEM;
432
433         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434         if (!pt)
435                 return ERR_PTR(-ENOMEM);
436
437         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438                                 GFP_KERNEL);
439
440         if (!pt->used_ptes)
441                 goto fail_bitmap;
442
443         ret = setup_px(dev, pt);
444         if (ret)
445                 goto fail_page_m;
446
447         return pt;
448
449 fail_page_m:
450         kfree(pt->used_ptes);
451 fail_bitmap:
452         kfree(pt);
453
454         return ERR_PTR(ret);
455 }
456
457 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
458 {
459         cleanup_px(dev, pt);
460         kfree(pt->used_ptes);
461         kfree(pt);
462 }
463
464 static void gen8_initialize_pt(struct i915_address_space *vm,
465                                struct i915_page_table *pt)
466 {
467         gen8_pte_t scratch_pte;
468
469         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
470                                       I915_CACHE_LLC, true);
471
472         fill_px(vm->dev, pt, scratch_pte);
473 }
474
475 static void gen6_initialize_pt(struct i915_address_space *vm,
476                                struct i915_page_table *pt)
477 {
478         gen6_pte_t scratch_pte;
479
480         WARN_ON(px_dma(vm->scratch_page) == 0);
481
482         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
483                                      I915_CACHE_LLC, true, 0);
484
485         fill32_px(vm->dev, pt, scratch_pte);
486 }
487
488 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
489 {
490         struct i915_page_directory *pd;
491         int ret = -ENOMEM;
492
493         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
494         if (!pd)
495                 return ERR_PTR(-ENOMEM);
496
497         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
498                                 sizeof(*pd->used_pdes), GFP_KERNEL);
499         if (!pd->used_pdes)
500                 goto fail_bitmap;
501
502         ret = setup_px(dev, pd);
503         if (ret)
504                 goto fail_page_m;
505
506         return pd;
507
508 fail_page_m:
509         kfree(pd->used_pdes);
510 fail_bitmap:
511         kfree(pd);
512
513         return ERR_PTR(ret);
514 }
515
516 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
517 {
518         if (px_page(pd)) {
519                 cleanup_px(dev, pd);
520                 kfree(pd->used_pdes);
521                 kfree(pd);
522         }
523 }
524
525 static void gen8_initialize_pd(struct i915_address_space *vm,
526                                struct i915_page_directory *pd)
527 {
528         gen8_pde_t scratch_pde;
529
530         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
531
532         fill_px(vm->dev, pd, scratch_pde);
533 }
534
535 static int __pdp_init(struct drm_device *dev,
536                       struct i915_page_directory_pointer *pdp)
537 {
538         size_t pdpes = I915_PDPES_PER_PDP(dev);
539
540         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
541                                   sizeof(unsigned long),
542                                   GFP_KERNEL);
543         if (!pdp->used_pdpes)
544                 return -ENOMEM;
545
546         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
547                                       GFP_KERNEL);
548         if (!pdp->page_directory) {
549                 kfree(pdp->used_pdpes);
550                 /* the PDP might be the statically allocated top level. Keep it
551                  * as clean as possible */
552                 pdp->used_pdpes = NULL;
553                 return -ENOMEM;
554         }
555
556         return 0;
557 }
558
559 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
560 {
561         kfree(pdp->used_pdpes);
562         kfree(pdp->page_directory);
563         pdp->page_directory = NULL;
564 }
565
566 static struct
567 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
568 {
569         struct i915_page_directory_pointer *pdp;
570         int ret = -ENOMEM;
571
572         WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
573
574         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
575         if (!pdp)
576                 return ERR_PTR(-ENOMEM);
577
578         ret = __pdp_init(dev, pdp);
579         if (ret)
580                 goto fail_bitmap;
581
582         ret = setup_px(dev, pdp);
583         if (ret)
584                 goto fail_page_m;
585
586         return pdp;
587
588 fail_page_m:
589         __pdp_fini(pdp);
590 fail_bitmap:
591         kfree(pdp);
592
593         return ERR_PTR(ret);
594 }
595
596 static void free_pdp(struct drm_device *dev,
597                      struct i915_page_directory_pointer *pdp)
598 {
599         __pdp_fini(pdp);
600         if (USES_FULL_48BIT_PPGTT(dev)) {
601                 cleanup_px(dev, pdp);
602                 kfree(pdp);
603         }
604 }
605
606 static void gen8_initialize_pdp(struct i915_address_space *vm,
607                                 struct i915_page_directory_pointer *pdp)
608 {
609         gen8_ppgtt_pdpe_t scratch_pdpe;
610
611         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
612
613         fill_px(vm->dev, pdp, scratch_pdpe);
614 }
615
616 static void gen8_initialize_pml4(struct i915_address_space *vm,
617                                  struct i915_pml4 *pml4)
618 {
619         gen8_ppgtt_pml4e_t scratch_pml4e;
620
621         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
622                                           I915_CACHE_LLC);
623
624         fill_px(vm->dev, pml4, scratch_pml4e);
625 }
626
627 static void
628 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
629                           struct i915_page_directory_pointer *pdp,
630                           struct i915_page_directory *pd,
631                           int index)
632 {
633         gen8_ppgtt_pdpe_t *page_directorypo;
634
635         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
636                 return;
637
638         page_directorypo = kmap_px(pdp);
639         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
640         kunmap_px(ppgtt, page_directorypo);
641 }
642
643 static void
644 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
645                                   struct i915_pml4 *pml4,
646                                   struct i915_page_directory_pointer *pdp,
647                                   int index)
648 {
649         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
650
651         WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
652         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
653         kunmap_px(ppgtt, pagemap);
654 }
655
656 /* Broadwell Page Directory Pointer Descriptors */
657 static int gen8_write_pdp(struct drm_i915_gem_request *req,
658                           unsigned entry,
659                           dma_addr_t addr)
660 {
661         struct intel_engine_cs *engine = req->engine;
662         int ret;
663
664         BUG_ON(entry >= 4);
665
666         ret = intel_ring_begin(req, 6);
667         if (ret)
668                 return ret;
669
670         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
671         intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
672         intel_ring_emit(engine, upper_32_bits(addr));
673         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
674         intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
675         intel_ring_emit(engine, lower_32_bits(addr));
676         intel_ring_advance(engine);
677
678         return 0;
679 }
680
681 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
682                                  struct drm_i915_gem_request *req)
683 {
684         int i, ret;
685
686         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
687                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
688
689                 ret = gen8_write_pdp(req, i, pd_daddr);
690                 if (ret)
691                         return ret;
692         }
693
694         return 0;
695 }
696
697 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
698                               struct drm_i915_gem_request *req)
699 {
700         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
701 }
702
703 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
704                                        struct i915_page_directory_pointer *pdp,
705                                        uint64_t start,
706                                        uint64_t length,
707                                        gen8_pte_t scratch_pte)
708 {
709         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
710         gen8_pte_t *pt_vaddr;
711         unsigned pdpe = gen8_pdpe_index(start);
712         unsigned pde = gen8_pde_index(start);
713         unsigned pte = gen8_pte_index(start);
714         unsigned num_entries = length >> PAGE_SHIFT;
715         unsigned last_pte, i;
716
717         if (WARN_ON(!pdp))
718                 return;
719
720         while (num_entries) {
721                 struct i915_page_directory *pd;
722                 struct i915_page_table *pt;
723
724                 if (WARN_ON(!pdp->page_directory[pdpe]))
725                         break;
726
727                 pd = pdp->page_directory[pdpe];
728
729                 if (WARN_ON(!pd->page_table[pde]))
730                         break;
731
732                 pt = pd->page_table[pde];
733
734                 if (WARN_ON(!px_page(pt)))
735                         break;
736
737                 last_pte = pte + num_entries;
738                 if (last_pte > GEN8_PTES)
739                         last_pte = GEN8_PTES;
740
741                 pt_vaddr = kmap_px(pt);
742
743                 for (i = pte; i < last_pte; i++) {
744                         pt_vaddr[i] = scratch_pte;
745                         num_entries--;
746                 }
747
748                 kunmap_px(ppgtt, pt_vaddr);
749
750                 pte = 0;
751                 if (++pde == I915_PDES) {
752                         if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
753                                 break;
754                         pde = 0;
755                 }
756         }
757 }
758
759 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
760                                    uint64_t start,
761                                    uint64_t length,
762                                    bool use_scratch)
763 {
764         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
765         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
766                                                  I915_CACHE_LLC, use_scratch);
767
768         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
769                 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
770                                            scratch_pte);
771         } else {
772                 uint64_t pml4e;
773                 struct i915_page_directory_pointer *pdp;
774
775                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
776                         gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
777                                                    scratch_pte);
778                 }
779         }
780 }
781
782 static void
783 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
784                               struct i915_page_directory_pointer *pdp,
785                               struct sg_page_iter *sg_iter,
786                               uint64_t start,
787                               enum i915_cache_level cache_level)
788 {
789         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
790         gen8_pte_t *pt_vaddr;
791         unsigned pdpe = gen8_pdpe_index(start);
792         unsigned pde = gen8_pde_index(start);
793         unsigned pte = gen8_pte_index(start);
794
795         pt_vaddr = NULL;
796
797         while (__sg_page_iter_next(sg_iter)) {
798                 if (pt_vaddr == NULL) {
799                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
800                         struct i915_page_table *pt = pd->page_table[pde];
801                         pt_vaddr = kmap_px(pt);
802                 }
803
804                 pt_vaddr[pte] =
805                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
806                                         cache_level, true);
807                 if (++pte == GEN8_PTES) {
808                         kunmap_px(ppgtt, pt_vaddr);
809                         pt_vaddr = NULL;
810                         if (++pde == I915_PDES) {
811                                 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
812                                         break;
813                                 pde = 0;
814                         }
815                         pte = 0;
816                 }
817         }
818
819         if (pt_vaddr)
820                 kunmap_px(ppgtt, pt_vaddr);
821 }
822
823 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
824                                       struct sg_table *pages,
825                                       uint64_t start,
826                                       enum i915_cache_level cache_level,
827                                       u32 unused)
828 {
829         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
830         struct sg_page_iter sg_iter;
831
832         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
833
834         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
835                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
836                                               cache_level);
837         } else {
838                 struct i915_page_directory_pointer *pdp;
839                 uint64_t pml4e;
840                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
841
842                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
843                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
844                                                       start, cache_level);
845                 }
846         }
847 }
848
849 static void gen8_free_page_tables(struct drm_device *dev,
850                                   struct i915_page_directory *pd)
851 {
852         int i;
853
854         if (!px_page(pd))
855                 return;
856
857         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
858                 if (WARN_ON(!pd->page_table[i]))
859                         continue;
860
861                 free_pt(dev, pd->page_table[i]);
862                 pd->page_table[i] = NULL;
863         }
864 }
865
866 static int gen8_init_scratch(struct i915_address_space *vm)
867 {
868         struct drm_device *dev = vm->dev;
869
870         vm->scratch_page = alloc_scratch_page(dev);
871         if (IS_ERR(vm->scratch_page))
872                 return PTR_ERR(vm->scratch_page);
873
874         vm->scratch_pt = alloc_pt(dev);
875         if (IS_ERR(vm->scratch_pt)) {
876                 free_scratch_page(dev, vm->scratch_page);
877                 return PTR_ERR(vm->scratch_pt);
878         }
879
880         vm->scratch_pd = alloc_pd(dev);
881         if (IS_ERR(vm->scratch_pd)) {
882                 free_pt(dev, vm->scratch_pt);
883                 free_scratch_page(dev, vm->scratch_page);
884                 return PTR_ERR(vm->scratch_pd);
885         }
886
887         if (USES_FULL_48BIT_PPGTT(dev)) {
888                 vm->scratch_pdp = alloc_pdp(dev);
889                 if (IS_ERR(vm->scratch_pdp)) {
890                         free_pd(dev, vm->scratch_pd);
891                         free_pt(dev, vm->scratch_pt);
892                         free_scratch_page(dev, vm->scratch_page);
893                         return PTR_ERR(vm->scratch_pdp);
894                 }
895         }
896
897         gen8_initialize_pt(vm, vm->scratch_pt);
898         gen8_initialize_pd(vm, vm->scratch_pd);
899         if (USES_FULL_48BIT_PPGTT(dev))
900                 gen8_initialize_pdp(vm, vm->scratch_pdp);
901
902         return 0;
903 }
904
905 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
906 {
907         enum vgt_g2v_type msg;
908         struct drm_device *dev = ppgtt->base.dev;
909         struct drm_i915_private *dev_priv = dev->dev_private;
910         int i;
911
912         if (USES_FULL_48BIT_PPGTT(dev)) {
913                 u64 daddr = px_dma(&ppgtt->pml4);
914
915                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
916                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
917
918                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
919                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
920         } else {
921                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
922                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
923
924                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
925                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
926                 }
927
928                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
929                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
930         }
931
932         I915_WRITE(vgtif_reg(g2v_notify), msg);
933
934         return 0;
935 }
936
937 static void gen8_free_scratch(struct i915_address_space *vm)
938 {
939         struct drm_device *dev = vm->dev;
940
941         if (USES_FULL_48BIT_PPGTT(dev))
942                 free_pdp(dev, vm->scratch_pdp);
943         free_pd(dev, vm->scratch_pd);
944         free_pt(dev, vm->scratch_pt);
945         free_scratch_page(dev, vm->scratch_page);
946 }
947
948 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
949                                     struct i915_page_directory_pointer *pdp)
950 {
951         int i;
952
953         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
954                 if (WARN_ON(!pdp->page_directory[i]))
955                         continue;
956
957                 gen8_free_page_tables(dev, pdp->page_directory[i]);
958                 free_pd(dev, pdp->page_directory[i]);
959         }
960
961         free_pdp(dev, pdp);
962 }
963
964 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
965 {
966         int i;
967
968         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
969                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
970                         continue;
971
972                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
973         }
974
975         cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
976 }
977
978 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
979 {
980         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
981
982         if (intel_vgpu_active(vm->dev))
983                 gen8_ppgtt_notify_vgt(ppgtt, false);
984
985         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
986                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
987         else
988                 gen8_ppgtt_cleanup_4lvl(ppgtt);
989
990         gen8_free_scratch(vm);
991 }
992
993 /**
994  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
995  * @vm: Master vm structure.
996  * @pd: Page directory for this address range.
997  * @start:      Starting virtual address to begin allocations.
998  * @length:     Size of the allocations.
999  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1000  *              caller to free on error.
1001  *
1002  * Allocate the required number of page tables. Extremely similar to
1003  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1004  * the page directory boundary (instead of the page directory pointer). That
1005  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1006  * possible, and likely that the caller will need to use multiple calls of this
1007  * function to achieve the appropriate allocation.
1008  *
1009  * Return: 0 if success; negative error code otherwise.
1010  */
1011 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1012                                      struct i915_page_directory *pd,
1013                                      uint64_t start,
1014                                      uint64_t length,
1015                                      unsigned long *new_pts)
1016 {
1017         struct drm_device *dev = vm->dev;
1018         struct i915_page_table *pt;
1019         uint32_t pde;
1020
1021         gen8_for_each_pde(pt, pd, start, length, pde) {
1022                 /* Don't reallocate page tables */
1023                 if (test_bit(pde, pd->used_pdes)) {
1024                         /* Scratch is never allocated this way */
1025                         WARN_ON(pt == vm->scratch_pt);
1026                         continue;
1027                 }
1028
1029                 pt = alloc_pt(dev);
1030                 if (IS_ERR(pt))
1031                         goto unwind_out;
1032
1033                 gen8_initialize_pt(vm, pt);
1034                 pd->page_table[pde] = pt;
1035                 __set_bit(pde, new_pts);
1036                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1037         }
1038
1039         return 0;
1040
1041 unwind_out:
1042         for_each_set_bit(pde, new_pts, I915_PDES)
1043                 free_pt(dev, pd->page_table[pde]);
1044
1045         return -ENOMEM;
1046 }
1047
1048 /**
1049  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1050  * @vm: Master vm structure.
1051  * @pdp:        Page directory pointer for this address range.
1052  * @start:      Starting virtual address to begin allocations.
1053  * @length:     Size of the allocations.
1054  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1055  *              caller to free on error.
1056  *
1057  * Allocate the required number of page directories starting at the pde index of
1058  * @start, and ending at the pde index @start + @length. This function will skip
1059  * over already allocated page directories within the range, and only allocate
1060  * new ones, setting the appropriate pointer within the pdp as well as the
1061  * correct position in the bitmap @new_pds.
1062  *
1063  * The function will only allocate the pages within the range for a give page
1064  * directory pointer. In other words, if @start + @length straddles a virtually
1065  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1066  * required by the caller, This is not currently possible, and the BUG in the
1067  * code will prevent it.
1068  *
1069  * Return: 0 if success; negative error code otherwise.
1070  */
1071 static int
1072 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1073                                   struct i915_page_directory_pointer *pdp,
1074                                   uint64_t start,
1075                                   uint64_t length,
1076                                   unsigned long *new_pds)
1077 {
1078         struct drm_device *dev = vm->dev;
1079         struct i915_page_directory *pd;
1080         uint32_t pdpe;
1081         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1082
1083         WARN_ON(!bitmap_empty(new_pds, pdpes));
1084
1085         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1086                 if (test_bit(pdpe, pdp->used_pdpes))
1087                         continue;
1088
1089                 pd = alloc_pd(dev);
1090                 if (IS_ERR(pd))
1091                         goto unwind_out;
1092
1093                 gen8_initialize_pd(vm, pd);
1094                 pdp->page_directory[pdpe] = pd;
1095                 __set_bit(pdpe, new_pds);
1096                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1097         }
1098
1099         return 0;
1100
1101 unwind_out:
1102         for_each_set_bit(pdpe, new_pds, pdpes)
1103                 free_pd(dev, pdp->page_directory[pdpe]);
1104
1105         return -ENOMEM;
1106 }
1107
1108 /**
1109  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1110  * @vm: Master vm structure.
1111  * @pml4:       Page map level 4 for this address range.
1112  * @start:      Starting virtual address to begin allocations.
1113  * @length:     Size of the allocations.
1114  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1115  *              caller to free on error.
1116  *
1117  * Allocate the required number of page directory pointers. Extremely similar to
1118  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1119  * The main difference is here we are limited by the pml4 boundary (instead of
1120  * the page directory pointer).
1121  *
1122  * Return: 0 if success; negative error code otherwise.
1123  */
1124 static int
1125 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1126                                   struct i915_pml4 *pml4,
1127                                   uint64_t start,
1128                                   uint64_t length,
1129                                   unsigned long *new_pdps)
1130 {
1131         struct drm_device *dev = vm->dev;
1132         struct i915_page_directory_pointer *pdp;
1133         uint32_t pml4e;
1134
1135         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1136
1137         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1138                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1139                         pdp = alloc_pdp(dev);
1140                         if (IS_ERR(pdp))
1141                                 goto unwind_out;
1142
1143                         gen8_initialize_pdp(vm, pdp);
1144                         pml4->pdps[pml4e] = pdp;
1145                         __set_bit(pml4e, new_pdps);
1146                         trace_i915_page_directory_pointer_entry_alloc(vm,
1147                                                                       pml4e,
1148                                                                       start,
1149                                                                       GEN8_PML4E_SHIFT);
1150                 }
1151         }
1152
1153         return 0;
1154
1155 unwind_out:
1156         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1157                 free_pdp(dev, pml4->pdps[pml4e]);
1158
1159         return -ENOMEM;
1160 }
1161
1162 static void
1163 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1164 {
1165         kfree(new_pts);
1166         kfree(new_pds);
1167 }
1168
1169 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1170  * of these are based on the number of PDPEs in the system.
1171  */
1172 static
1173 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1174                                          unsigned long **new_pts,
1175                                          uint32_t pdpes)
1176 {
1177         unsigned long *pds;
1178         unsigned long *pts;
1179
1180         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1181         if (!pds)
1182                 return -ENOMEM;
1183
1184         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1185                       GFP_TEMPORARY);
1186         if (!pts)
1187                 goto err_out;
1188
1189         *new_pds = pds;
1190         *new_pts = pts;
1191
1192         return 0;
1193
1194 err_out:
1195         free_gen8_temp_bitmaps(pds, pts);
1196         return -ENOMEM;
1197 }
1198
1199 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1200  * the page table structures, we mark them dirty so that
1201  * context switching/execlist queuing code takes extra steps
1202  * to ensure that tlbs are flushed.
1203  */
1204 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1205 {
1206         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1207 }
1208
1209 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1210                                     struct i915_page_directory_pointer *pdp,
1211                                     uint64_t start,
1212                                     uint64_t length)
1213 {
1214         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1215         unsigned long *new_page_dirs, *new_page_tables;
1216         struct drm_device *dev = vm->dev;
1217         struct i915_page_directory *pd;
1218         const uint64_t orig_start = start;
1219         const uint64_t orig_length = length;
1220         uint32_t pdpe;
1221         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1222         int ret;
1223
1224         /* Wrap is never okay since we can only represent 48b, and we don't
1225          * actually use the other side of the canonical address space.
1226          */
1227         if (WARN_ON(start + length < start))
1228                 return -ENODEV;
1229
1230         if (WARN_ON(start + length > vm->total))
1231                 return -ENODEV;
1232
1233         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1234         if (ret)
1235                 return ret;
1236
1237         /* Do the allocations first so we can easily bail out */
1238         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1239                                                 new_page_dirs);
1240         if (ret) {
1241                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1242                 return ret;
1243         }
1244
1245         /* For every page directory referenced, allocate page tables */
1246         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1247                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1248                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1249                 if (ret)
1250                         goto err_out;
1251         }
1252
1253         start = orig_start;
1254         length = orig_length;
1255
1256         /* Allocations have completed successfully, so set the bitmaps, and do
1257          * the mappings. */
1258         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1259                 gen8_pde_t *const page_directory = kmap_px(pd);
1260                 struct i915_page_table *pt;
1261                 uint64_t pd_len = length;
1262                 uint64_t pd_start = start;
1263                 uint32_t pde;
1264
1265                 /* Every pd should be allocated, we just did that above. */
1266                 WARN_ON(!pd);
1267
1268                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1269                         /* Same reasoning as pd */
1270                         WARN_ON(!pt);
1271                         WARN_ON(!pd_len);
1272                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1273
1274                         /* Set our used ptes within the page table */
1275                         bitmap_set(pt->used_ptes,
1276                                    gen8_pte_index(pd_start),
1277                                    gen8_pte_count(pd_start, pd_len));
1278
1279                         /* Our pde is now pointing to the pagetable, pt */
1280                         __set_bit(pde, pd->used_pdes);
1281
1282                         /* Map the PDE to the page table */
1283                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1284                                                               I915_CACHE_LLC);
1285                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1286                                                         gen8_pte_index(start),
1287                                                         gen8_pte_count(start, length),
1288                                                         GEN8_PTES);
1289
1290                         /* NB: We haven't yet mapped ptes to pages. At this
1291                          * point we're still relying on insert_entries() */
1292                 }
1293
1294                 kunmap_px(ppgtt, page_directory);
1295                 __set_bit(pdpe, pdp->used_pdpes);
1296                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1297         }
1298
1299         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1300         mark_tlbs_dirty(ppgtt);
1301         return 0;
1302
1303 err_out:
1304         while (pdpe--) {
1305                 unsigned long temp;
1306
1307                 for_each_set_bit(temp, new_page_tables + pdpe *
1308                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1309                         free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1310         }
1311
1312         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1313                 free_pd(dev, pdp->page_directory[pdpe]);
1314
1315         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1316         mark_tlbs_dirty(ppgtt);
1317         return ret;
1318 }
1319
1320 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1321                                     struct i915_pml4 *pml4,
1322                                     uint64_t start,
1323                                     uint64_t length)
1324 {
1325         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1326         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1327         struct i915_page_directory_pointer *pdp;
1328         uint64_t pml4e;
1329         int ret = 0;
1330
1331         /* Do the pml4 allocations first, so we don't need to track the newly
1332          * allocated tables below the pdp */
1333         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1334
1335         /* The pagedirectory and pagetable allocations are done in the shared 3
1336          * and 4 level code. Just allocate the pdps.
1337          */
1338         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1339                                                 new_pdps);
1340         if (ret)
1341                 return ret;
1342
1343         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1344              "The allocation has spanned more than 512GB. "
1345              "It is highly likely this is incorrect.");
1346
1347         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1348                 WARN_ON(!pdp);
1349
1350                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1351                 if (ret)
1352                         goto err_out;
1353
1354                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1355         }
1356
1357         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1358                   GEN8_PML4ES_PER_PML4);
1359
1360         return 0;
1361
1362 err_out:
1363         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1364                 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1365
1366         return ret;
1367 }
1368
1369 static int gen8_alloc_va_range(struct i915_address_space *vm,
1370                                uint64_t start, uint64_t length)
1371 {
1372         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1373
1374         if (USES_FULL_48BIT_PPGTT(vm->dev))
1375                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1376         else
1377                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1378 }
1379
1380 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1381                           uint64_t start, uint64_t length,
1382                           gen8_pte_t scratch_pte,
1383                           struct seq_file *m)
1384 {
1385         struct i915_page_directory *pd;
1386         uint32_t pdpe;
1387
1388         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1389                 struct i915_page_table *pt;
1390                 uint64_t pd_len = length;
1391                 uint64_t pd_start = start;
1392                 uint32_t pde;
1393
1394                 if (!test_bit(pdpe, pdp->used_pdpes))
1395                         continue;
1396
1397                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1398                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1399                         uint32_t  pte;
1400                         gen8_pte_t *pt_vaddr;
1401
1402                         if (!test_bit(pde, pd->used_pdes))
1403                                 continue;
1404
1405                         pt_vaddr = kmap_px(pt);
1406                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1407                                 uint64_t va =
1408                                         (pdpe << GEN8_PDPE_SHIFT) |
1409                                         (pde << GEN8_PDE_SHIFT) |
1410                                         (pte << GEN8_PTE_SHIFT);
1411                                 int i;
1412                                 bool found = false;
1413
1414                                 for (i = 0; i < 4; i++)
1415                                         if (pt_vaddr[pte + i] != scratch_pte)
1416                                                 found = true;
1417                                 if (!found)
1418                                         continue;
1419
1420                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1421                                 for (i = 0; i < 4; i++) {
1422                                         if (pt_vaddr[pte + i] != scratch_pte)
1423                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1424                                         else
1425                                                 seq_puts(m, "  SCRATCH ");
1426                                 }
1427                                 seq_puts(m, "\n");
1428                         }
1429                         /* don't use kunmap_px, it could trigger
1430                          * an unnecessary flush.
1431                          */
1432                         kunmap_atomic(pt_vaddr);
1433                 }
1434         }
1435 }
1436
1437 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1438 {
1439         struct i915_address_space *vm = &ppgtt->base;
1440         uint64_t start = ppgtt->base.start;
1441         uint64_t length = ppgtt->base.total;
1442         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1443                                                  I915_CACHE_LLC, true);
1444
1445         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1446                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1447         } else {
1448                 uint64_t pml4e;
1449                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1450                 struct i915_page_directory_pointer *pdp;
1451
1452                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1453                         if (!test_bit(pml4e, pml4->used_pml4es))
1454                                 continue;
1455
1456                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1457                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1458                 }
1459         }
1460 }
1461
1462 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1463 {
1464         unsigned long *new_page_dirs, *new_page_tables;
1465         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1466         int ret;
1467
1468         /* We allocate temp bitmap for page tables for no gain
1469          * but as this is for init only, lets keep the things simple
1470          */
1471         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1472         if (ret)
1473                 return ret;
1474
1475         /* Allocate for all pdps regardless of how the ppgtt
1476          * was defined.
1477          */
1478         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1479                                                 0, 1ULL << 32,
1480                                                 new_page_dirs);
1481         if (!ret)
1482                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1483
1484         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1485
1486         return ret;
1487 }
1488
1489 /*
1490  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1491  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1492  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1493  * space.
1494  *
1495  */
1496 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1497 {
1498         int ret;
1499
1500         ret = gen8_init_scratch(&ppgtt->base);
1501         if (ret)
1502                 return ret;
1503
1504         ppgtt->base.start = 0;
1505         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1506         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1507         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1508         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1509         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1510         ppgtt->base.bind_vma = ppgtt_bind_vma;
1511         ppgtt->debug_dump = gen8_dump_ppgtt;
1512
1513         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1514                 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1515                 if (ret)
1516                         goto free_scratch;
1517
1518                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1519
1520                 ppgtt->base.total = 1ULL << 48;
1521                 ppgtt->switch_mm = gen8_48b_mm_switch;
1522         } else {
1523                 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1524                 if (ret)
1525                         goto free_scratch;
1526
1527                 ppgtt->base.total = 1ULL << 32;
1528                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1529                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1530                                                               0, 0,
1531                                                               GEN8_PML4E_SHIFT);
1532
1533                 if (intel_vgpu_active(ppgtt->base.dev)) {
1534                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1535                         if (ret)
1536                                 goto free_scratch;
1537                 }
1538         }
1539
1540         if (intel_vgpu_active(ppgtt->base.dev))
1541                 gen8_ppgtt_notify_vgt(ppgtt, true);
1542
1543         return 0;
1544
1545 free_scratch:
1546         gen8_free_scratch(&ppgtt->base);
1547         return ret;
1548 }
1549
1550 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1551 {
1552         struct i915_address_space *vm = &ppgtt->base;
1553         struct i915_page_table *unused;
1554         gen6_pte_t scratch_pte;
1555         uint32_t pd_entry;
1556         uint32_t  pte, pde, temp;
1557         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1558
1559         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1560                                      I915_CACHE_LLC, true, 0);
1561
1562         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1563                 u32 expected;
1564                 gen6_pte_t *pt_vaddr;
1565                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1566                 pd_entry = readl(ppgtt->pd_addr + pde);
1567                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1568
1569                 if (pd_entry != expected)
1570                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1571                                    pde,
1572                                    pd_entry,
1573                                    expected);
1574                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1575
1576                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1577
1578                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1579                         unsigned long va =
1580                                 (pde * PAGE_SIZE * GEN6_PTES) +
1581                                 (pte * PAGE_SIZE);
1582                         int i;
1583                         bool found = false;
1584                         for (i = 0; i < 4; i++)
1585                                 if (pt_vaddr[pte + i] != scratch_pte)
1586                                         found = true;
1587                         if (!found)
1588                                 continue;
1589
1590                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1591                         for (i = 0; i < 4; i++) {
1592                                 if (pt_vaddr[pte + i] != scratch_pte)
1593                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1594                                 else
1595                                         seq_puts(m, "  SCRATCH ");
1596                         }
1597                         seq_puts(m, "\n");
1598                 }
1599                 kunmap_px(ppgtt, pt_vaddr);
1600         }
1601 }
1602
1603 /* Write pde (index) from the page directory @pd to the page table @pt */
1604 static void gen6_write_pde(struct i915_page_directory *pd,
1605                             const int pde, struct i915_page_table *pt)
1606 {
1607         /* Caller needs to make sure the write completes if necessary */
1608         struct i915_hw_ppgtt *ppgtt =
1609                 container_of(pd, struct i915_hw_ppgtt, pd);
1610         u32 pd_entry;
1611
1612         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1613         pd_entry |= GEN6_PDE_VALID;
1614
1615         writel(pd_entry, ppgtt->pd_addr + pde);
1616 }
1617
1618 /* Write all the page tables found in the ppgtt structure to incrementing page
1619  * directories. */
1620 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1621                                   struct i915_page_directory *pd,
1622                                   uint32_t start, uint32_t length)
1623 {
1624         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1625         struct i915_page_table *pt;
1626         uint32_t pde, temp;
1627
1628         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1629                 gen6_write_pde(pd, pde, pt);
1630
1631         /* Make sure write is complete before other code can use this page
1632          * table. Also require for WC mapped PTEs */
1633         readl(ggtt->gsm);
1634 }
1635
1636 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1637 {
1638         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1639
1640         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1641 }
1642
1643 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1644                          struct drm_i915_gem_request *req)
1645 {
1646         struct intel_engine_cs *engine = req->engine;
1647         int ret;
1648
1649         /* NB: TLBs must be flushed and invalidated before a switch */
1650         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1651         if (ret)
1652                 return ret;
1653
1654         ret = intel_ring_begin(req, 6);
1655         if (ret)
1656                 return ret;
1657
1658         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1659         intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1660         intel_ring_emit(engine, PP_DIR_DCLV_2G);
1661         intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1662         intel_ring_emit(engine, get_pd_offset(ppgtt));
1663         intel_ring_emit(engine, MI_NOOP);
1664         intel_ring_advance(engine);
1665
1666         return 0;
1667 }
1668
1669 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1670                           struct drm_i915_gem_request *req)
1671 {
1672         struct intel_engine_cs *engine = req->engine;
1673         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1674
1675         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1676         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1677         return 0;
1678 }
1679
1680 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1681                           struct drm_i915_gem_request *req)
1682 {
1683         struct intel_engine_cs *engine = req->engine;
1684         int ret;
1685
1686         /* NB: TLBs must be flushed and invalidated before a switch */
1687         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1688         if (ret)
1689                 return ret;
1690
1691         ret = intel_ring_begin(req, 6);
1692         if (ret)
1693                 return ret;
1694
1695         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1696         intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1697         intel_ring_emit(engine, PP_DIR_DCLV_2G);
1698         intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1699         intel_ring_emit(engine, get_pd_offset(ppgtt));
1700         intel_ring_emit(engine, MI_NOOP);
1701         intel_ring_advance(engine);
1702
1703         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1704         if (engine->id != RCS) {
1705                 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1706                 if (ret)
1707                         return ret;
1708         }
1709
1710         return 0;
1711 }
1712
1713 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1714                           struct drm_i915_gem_request *req)
1715 {
1716         struct intel_engine_cs *engine = req->engine;
1717         struct drm_device *dev = ppgtt->base.dev;
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719
1720
1721         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1722         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1723
1724         POSTING_READ(RING_PP_DIR_DCLV(engine));
1725
1726         return 0;
1727 }
1728
1729 static void gen8_ppgtt_enable(struct drm_device *dev)
1730 {
1731         struct drm_i915_private *dev_priv = dev->dev_private;
1732         struct intel_engine_cs *engine;
1733
1734         for_each_engine(engine, dev_priv) {
1735                 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1736                 I915_WRITE(RING_MODE_GEN7(engine),
1737                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1738         }
1739 }
1740
1741 static void gen7_ppgtt_enable(struct drm_device *dev)
1742 {
1743         struct drm_i915_private *dev_priv = dev->dev_private;
1744         struct intel_engine_cs *engine;
1745         uint32_t ecochk, ecobits;
1746
1747         ecobits = I915_READ(GAC_ECO_BITS);
1748         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1749
1750         ecochk = I915_READ(GAM_ECOCHK);
1751         if (IS_HASWELL(dev)) {
1752                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1753         } else {
1754                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1755                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1756         }
1757         I915_WRITE(GAM_ECOCHK, ecochk);
1758
1759         for_each_engine(engine, dev_priv) {
1760                 /* GFX_MODE is per-ring on gen7+ */
1761                 I915_WRITE(RING_MODE_GEN7(engine),
1762                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1763         }
1764 }
1765
1766 static void gen6_ppgtt_enable(struct drm_device *dev)
1767 {
1768         struct drm_i915_private *dev_priv = dev->dev_private;
1769         uint32_t ecochk, gab_ctl, ecobits;
1770
1771         ecobits = I915_READ(GAC_ECO_BITS);
1772         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1773                    ECOBITS_PPGTT_CACHE64B);
1774
1775         gab_ctl = I915_READ(GAB_CTL);
1776         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1777
1778         ecochk = I915_READ(GAM_ECOCHK);
1779         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1780
1781         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1782 }
1783
1784 /* PPGTT support for Sandybdrige/Gen6 and later */
1785 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1786                                    uint64_t start,
1787                                    uint64_t length,
1788                                    bool use_scratch)
1789 {
1790         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1791         gen6_pte_t *pt_vaddr, scratch_pte;
1792         unsigned first_entry = start >> PAGE_SHIFT;
1793         unsigned num_entries = length >> PAGE_SHIFT;
1794         unsigned act_pt = first_entry / GEN6_PTES;
1795         unsigned first_pte = first_entry % GEN6_PTES;
1796         unsigned last_pte, i;
1797
1798         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1799                                      I915_CACHE_LLC, true, 0);
1800
1801         while (num_entries) {
1802                 last_pte = first_pte + num_entries;
1803                 if (last_pte > GEN6_PTES)
1804                         last_pte = GEN6_PTES;
1805
1806                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1807
1808                 for (i = first_pte; i < last_pte; i++)
1809                         pt_vaddr[i] = scratch_pte;
1810
1811                 kunmap_px(ppgtt, pt_vaddr);
1812
1813                 num_entries -= last_pte - first_pte;
1814                 first_pte = 0;
1815                 act_pt++;
1816         }
1817 }
1818
1819 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1820                                       struct sg_table *pages,
1821                                       uint64_t start,
1822                                       enum i915_cache_level cache_level, u32 flags)
1823 {
1824         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1825         gen6_pte_t *pt_vaddr;
1826         unsigned first_entry = start >> PAGE_SHIFT;
1827         unsigned act_pt = first_entry / GEN6_PTES;
1828         unsigned act_pte = first_entry % GEN6_PTES;
1829         struct sg_page_iter sg_iter;
1830
1831         pt_vaddr = NULL;
1832         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1833                 if (pt_vaddr == NULL)
1834                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1835
1836                 pt_vaddr[act_pte] =
1837                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1838                                        cache_level, true, flags);
1839
1840                 if (++act_pte == GEN6_PTES) {
1841                         kunmap_px(ppgtt, pt_vaddr);
1842                         pt_vaddr = NULL;
1843                         act_pt++;
1844                         act_pte = 0;
1845                 }
1846         }
1847         if (pt_vaddr)
1848                 kunmap_px(ppgtt, pt_vaddr);
1849 }
1850
1851 static int gen6_alloc_va_range(struct i915_address_space *vm,
1852                                uint64_t start_in, uint64_t length_in)
1853 {
1854         DECLARE_BITMAP(new_page_tables, I915_PDES);
1855         struct drm_device *dev = vm->dev;
1856         struct drm_i915_private *dev_priv = to_i915(dev);
1857         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1858         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1859         struct i915_page_table *pt;
1860         uint32_t start, length, start_save, length_save;
1861         uint32_t pde, temp;
1862         int ret;
1863
1864         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1865                 return -ENODEV;
1866
1867         start = start_save = start_in;
1868         length = length_save = length_in;
1869
1870         bitmap_zero(new_page_tables, I915_PDES);
1871
1872         /* The allocation is done in two stages so that we can bail out with
1873          * minimal amount of pain. The first stage finds new page tables that
1874          * need allocation. The second stage marks use ptes within the page
1875          * tables.
1876          */
1877         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1878                 if (pt != vm->scratch_pt) {
1879                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1880                         continue;
1881                 }
1882
1883                 /* We've already allocated a page table */
1884                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1885
1886                 pt = alloc_pt(dev);
1887                 if (IS_ERR(pt)) {
1888                         ret = PTR_ERR(pt);
1889                         goto unwind_out;
1890                 }
1891
1892                 gen6_initialize_pt(vm, pt);
1893
1894                 ppgtt->pd.page_table[pde] = pt;
1895                 __set_bit(pde, new_page_tables);
1896                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1897         }
1898
1899         start = start_save;
1900         length = length_save;
1901
1902         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1903                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1904
1905                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1906                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1907                            gen6_pte_count(start, length));
1908
1909                 if (__test_and_clear_bit(pde, new_page_tables))
1910                         gen6_write_pde(&ppgtt->pd, pde, pt);
1911
1912                 trace_i915_page_table_entry_map(vm, pde, pt,
1913                                          gen6_pte_index(start),
1914                                          gen6_pte_count(start, length),
1915                                          GEN6_PTES);
1916                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1917                                 GEN6_PTES);
1918         }
1919
1920         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1921
1922         /* Make sure write is complete before other code can use this page
1923          * table. Also require for WC mapped PTEs */
1924         readl(ggtt->gsm);
1925
1926         mark_tlbs_dirty(ppgtt);
1927         return 0;
1928
1929 unwind_out:
1930         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1931                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1932
1933                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1934                 free_pt(vm->dev, pt);
1935         }
1936
1937         mark_tlbs_dirty(ppgtt);
1938         return ret;
1939 }
1940
1941 static int gen6_init_scratch(struct i915_address_space *vm)
1942 {
1943         struct drm_device *dev = vm->dev;
1944
1945         vm->scratch_page = alloc_scratch_page(dev);
1946         if (IS_ERR(vm->scratch_page))
1947                 return PTR_ERR(vm->scratch_page);
1948
1949         vm->scratch_pt = alloc_pt(dev);
1950         if (IS_ERR(vm->scratch_pt)) {
1951                 free_scratch_page(dev, vm->scratch_page);
1952                 return PTR_ERR(vm->scratch_pt);
1953         }
1954
1955         gen6_initialize_pt(vm, vm->scratch_pt);
1956
1957         return 0;
1958 }
1959
1960 static void gen6_free_scratch(struct i915_address_space *vm)
1961 {
1962         struct drm_device *dev = vm->dev;
1963
1964         free_pt(dev, vm->scratch_pt);
1965         free_scratch_page(dev, vm->scratch_page);
1966 }
1967
1968 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1969 {
1970         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1971         struct i915_page_table *pt;
1972         uint32_t pde;
1973
1974         drm_mm_remove_node(&ppgtt->node);
1975
1976         gen6_for_all_pdes(pt, ppgtt, pde) {
1977                 if (pt != vm->scratch_pt)
1978                         free_pt(ppgtt->base.dev, pt);
1979         }
1980
1981         gen6_free_scratch(vm);
1982 }
1983
1984 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1985 {
1986         struct i915_address_space *vm = &ppgtt->base;
1987         struct drm_device *dev = ppgtt->base.dev;
1988         struct drm_i915_private *dev_priv = to_i915(dev);
1989         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1990         bool retried = false;
1991         int ret;
1992
1993         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1994          * allocator works in address space sizes, so it's multiplied by page
1995          * size. We allocate at the top of the GTT to avoid fragmentation.
1996          */
1997         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1998
1999         ret = gen6_init_scratch(vm);
2000         if (ret)
2001                 return ret;
2002
2003 alloc:
2004         ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2005                                                   &ppgtt->node, GEN6_PD_SIZE,
2006                                                   GEN6_PD_ALIGN, 0,
2007                                                   0, ggtt->base.total,
2008                                                   DRM_MM_TOPDOWN);
2009         if (ret == -ENOSPC && !retried) {
2010                 ret = i915_gem_evict_something(dev, &ggtt->base,
2011                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2012                                                I915_CACHE_NONE,
2013                                                0, ggtt->base.total,
2014                                                0);
2015                 if (ret)
2016                         goto err_out;
2017
2018                 retried = true;
2019                 goto alloc;
2020         }
2021
2022         if (ret)
2023                 goto err_out;
2024
2025
2026         if (ppgtt->node.start < ggtt->mappable_end)
2027                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2028
2029         return 0;
2030
2031 err_out:
2032         gen6_free_scratch(vm);
2033         return ret;
2034 }
2035
2036 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2037 {
2038         return gen6_ppgtt_allocate_page_directories(ppgtt);
2039 }
2040
2041 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2042                                   uint64_t start, uint64_t length)
2043 {
2044         struct i915_page_table *unused;
2045         uint32_t pde, temp;
2046
2047         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2048                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2049 }
2050
2051 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2052 {
2053         struct drm_device *dev = ppgtt->base.dev;
2054         struct drm_i915_private *dev_priv = to_i915(dev);
2055         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2056         int ret;
2057
2058         ppgtt->base.pte_encode = ggtt->base.pte_encode;
2059         if (IS_GEN6(dev)) {
2060                 ppgtt->switch_mm = gen6_mm_switch;
2061         } else if (IS_HASWELL(dev)) {
2062                 ppgtt->switch_mm = hsw_mm_switch;
2063         } else if (IS_GEN7(dev)) {
2064                 ppgtt->switch_mm = gen7_mm_switch;
2065         } else
2066                 BUG();
2067
2068         if (intel_vgpu_active(dev))
2069                 ppgtt->switch_mm = vgpu_mm_switch;
2070
2071         ret = gen6_ppgtt_alloc(ppgtt);
2072         if (ret)
2073                 return ret;
2074
2075         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2076         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2077         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2078         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2079         ppgtt->base.bind_vma = ppgtt_bind_vma;
2080         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2081         ppgtt->base.start = 0;
2082         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2083         ppgtt->debug_dump = gen6_dump_ppgtt;
2084
2085         ppgtt->pd.base.ggtt_offset =
2086                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2087
2088         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2089                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2090
2091         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2092
2093         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2094
2095         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2096                          ppgtt->node.size >> 20,
2097                          ppgtt->node.start / PAGE_SIZE);
2098
2099         DRM_DEBUG("Adding PPGTT at offset %x\n",
2100                   ppgtt->pd.base.ggtt_offset << 10);
2101
2102         return 0;
2103 }
2104
2105 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2106 {
2107         ppgtt->base.dev = dev;
2108
2109         if (INTEL_INFO(dev)->gen < 8)
2110                 return gen6_ppgtt_init(ppgtt);
2111         else
2112                 return gen8_ppgtt_init(ppgtt);
2113 }
2114
2115 static void i915_address_space_init(struct i915_address_space *vm,
2116                                     struct drm_i915_private *dev_priv)
2117 {
2118         drm_mm_init(&vm->mm, vm->start, vm->total);
2119         vm->dev = dev_priv->dev;
2120         INIT_LIST_HEAD(&vm->active_list);
2121         INIT_LIST_HEAD(&vm->inactive_list);
2122         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2123 }
2124
2125 static void gtt_write_workarounds(struct drm_device *dev)
2126 {
2127         struct drm_i915_private *dev_priv = dev->dev_private;
2128
2129         /* This function is for gtt related workarounds. This function is
2130          * called on driver load and after a GPU reset, so you can place
2131          * workarounds here even if they get overwritten by GPU reset.
2132          */
2133         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2134         if (IS_BROADWELL(dev))
2135                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2136         else if (IS_CHERRYVIEW(dev))
2137                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2138         else if (IS_SKYLAKE(dev))
2139                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2140         else if (IS_BROXTON(dev))
2141                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2142 }
2143
2144 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2145 {
2146         struct drm_i915_private *dev_priv = dev->dev_private;
2147         int ret = 0;
2148
2149         ret = __hw_ppgtt_init(dev, ppgtt);
2150         if (ret == 0) {
2151                 kref_init(&ppgtt->ref);
2152                 i915_address_space_init(&ppgtt->base, dev_priv);
2153         }
2154
2155         return ret;
2156 }
2157
2158 int i915_ppgtt_init_hw(struct drm_device *dev)
2159 {
2160         gtt_write_workarounds(dev);
2161
2162         /* In the case of execlists, PPGTT is enabled by the context descriptor
2163          * and the PDPs are contained within the context itself.  We don't
2164          * need to do anything here. */
2165         if (i915.enable_execlists)
2166                 return 0;
2167
2168         if (!USES_PPGTT(dev))
2169                 return 0;
2170
2171         if (IS_GEN6(dev))
2172                 gen6_ppgtt_enable(dev);
2173         else if (IS_GEN7(dev))
2174                 gen7_ppgtt_enable(dev);
2175         else if (INTEL_INFO(dev)->gen >= 8)
2176                 gen8_ppgtt_enable(dev);
2177         else
2178                 MISSING_CASE(INTEL_INFO(dev)->gen);
2179
2180         return 0;
2181 }
2182
2183 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2184 {
2185         struct drm_i915_private *dev_priv = req->i915;
2186         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2187
2188         if (i915.enable_execlists)
2189                 return 0;
2190
2191         if (!ppgtt)
2192                 return 0;
2193
2194         return ppgtt->switch_mm(ppgtt, req);
2195 }
2196
2197 struct i915_hw_ppgtt *
2198 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2199 {
2200         struct i915_hw_ppgtt *ppgtt;
2201         int ret;
2202
2203         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2204         if (!ppgtt)
2205                 return ERR_PTR(-ENOMEM);
2206
2207         ret = i915_ppgtt_init(dev, ppgtt);
2208         if (ret) {
2209                 kfree(ppgtt);
2210                 return ERR_PTR(ret);
2211         }
2212
2213         ppgtt->file_priv = fpriv;
2214
2215         trace_i915_ppgtt_create(&ppgtt->base);
2216
2217         return ppgtt;
2218 }
2219
2220 void  i915_ppgtt_release(struct kref *kref)
2221 {
2222         struct i915_hw_ppgtt *ppgtt =
2223                 container_of(kref, struct i915_hw_ppgtt, ref);
2224
2225         trace_i915_ppgtt_release(&ppgtt->base);
2226
2227         /* vmas should already be unbound */
2228         WARN_ON(!list_empty(&ppgtt->base.active_list));
2229         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2230
2231         list_del(&ppgtt->base.global_link);
2232         drm_mm_takedown(&ppgtt->base.mm);
2233
2234         ppgtt->base.cleanup(&ppgtt->base);
2235         kfree(ppgtt);
2236 }
2237
2238 extern int intel_iommu_gfx_mapped;
2239 /* Certain Gen5 chipsets require require idling the GPU before
2240  * unmapping anything from the GTT when VT-d is enabled.
2241  */
2242 static bool needs_idle_maps(struct drm_device *dev)
2243 {
2244 #ifdef CONFIG_INTEL_IOMMU
2245         /* Query intel_iommu to see if we need the workaround. Presumably that
2246          * was loaded first.
2247          */
2248         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2249                 return true;
2250 #endif
2251         return false;
2252 }
2253
2254 static bool do_idling(struct drm_i915_private *dev_priv)
2255 {
2256         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2257         bool ret = dev_priv->mm.interruptible;
2258
2259         if (unlikely(ggtt->do_idle_maps)) {
2260                 dev_priv->mm.interruptible = false;
2261                 if (i915_gpu_idle(dev_priv->dev)) {
2262                         DRM_ERROR("Couldn't idle GPU\n");
2263                         /* Wait a bit, in hopes it avoids the hang */
2264                         udelay(10);
2265                 }
2266         }
2267
2268         return ret;
2269 }
2270
2271 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2272 {
2273         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2274
2275         if (unlikely(ggtt->do_idle_maps))
2276                 dev_priv->mm.interruptible = interruptible;
2277 }
2278
2279 void i915_check_and_clear_faults(struct drm_device *dev)
2280 {
2281         struct drm_i915_private *dev_priv = dev->dev_private;
2282         struct intel_engine_cs *engine;
2283
2284         if (INTEL_INFO(dev)->gen < 6)
2285                 return;
2286
2287         for_each_engine(engine, dev_priv) {
2288                 u32 fault_reg;
2289                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2290                 if (fault_reg & RING_FAULT_VALID) {
2291                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2292                                          "\tAddr: 0x%08lx\n"
2293                                          "\tAddress space: %s\n"
2294                                          "\tSource ID: %d\n"
2295                                          "\tType: %d\n",
2296                                          fault_reg & PAGE_MASK,
2297                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2298                                          RING_FAULT_SRCID(fault_reg),
2299                                          RING_FAULT_FAULT_TYPE(fault_reg));
2300                         I915_WRITE(RING_FAULT_REG(engine),
2301                                    fault_reg & ~RING_FAULT_VALID);
2302                 }
2303         }
2304         POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2305 }
2306
2307 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2308 {
2309         if (INTEL_INFO(dev_priv)->gen < 6) {
2310                 intel_gtt_chipset_flush();
2311         } else {
2312                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2313                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2314         }
2315 }
2316
2317 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2318 {
2319         struct drm_i915_private *dev_priv = to_i915(dev);
2320         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2321
2322         /* Don't bother messing with faults pre GEN6 as we have little
2323          * documentation supporting that it's a good idea.
2324          */
2325         if (INTEL_INFO(dev)->gen < 6)
2326                 return;
2327
2328         i915_check_and_clear_faults(dev);
2329
2330         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2331                              true);
2332
2333         i915_ggtt_flush(dev_priv);
2334 }
2335
2336 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2337 {
2338         if (!dma_map_sg(&obj->base.dev->pdev->dev,
2339                         obj->pages->sgl, obj->pages->nents,
2340                         PCI_DMA_BIDIRECTIONAL))
2341                 return -ENOSPC;
2342
2343         return 0;
2344 }
2345
2346 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2347 {
2348 #ifdef writeq
2349         writeq(pte, addr);
2350 #else
2351         iowrite32((u32)pte, addr);
2352         iowrite32(pte >> 32, addr + 4);
2353 #endif
2354 }
2355
2356 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2357                                      struct sg_table *st,
2358                                      uint64_t start,
2359                                      enum i915_cache_level level, u32 unused)
2360 {
2361         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2362         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2363         unsigned first_entry = start >> PAGE_SHIFT;
2364         gen8_pte_t __iomem *gtt_entries =
2365                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2366         int i = 0;
2367         struct sg_page_iter sg_iter;
2368         dma_addr_t addr = 0; /* shut up gcc */
2369         int rpm_atomic_seq;
2370
2371         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2372
2373         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2374                 addr = sg_dma_address(sg_iter.sg) +
2375                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
2376                 gen8_set_pte(&gtt_entries[i],
2377                              gen8_pte_encode(addr, level, true));
2378                 i++;
2379         }
2380
2381         /*
2382          * XXX: This serves as a posting read to make sure that the PTE has
2383          * actually been updated. There is some concern that even though
2384          * registers and PTEs are within the same BAR that they are potentially
2385          * of NUMA access patterns. Therefore, even with the way we assume
2386          * hardware should work, we must keep this posting read for paranoia.
2387          */
2388         if (i != 0)
2389                 WARN_ON(readq(&gtt_entries[i-1])
2390                         != gen8_pte_encode(addr, level, true));
2391
2392         /* This next bit makes the above posting read even more important. We
2393          * want to flush the TLBs only after we're certain all the PTE updates
2394          * have finished.
2395          */
2396         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2397         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2398
2399         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2400 }
2401
2402 struct insert_entries {
2403         struct i915_address_space *vm;
2404         struct sg_table *st;
2405         uint64_t start;
2406         enum i915_cache_level level;
2407         u32 flags;
2408 };
2409
2410 static int gen8_ggtt_insert_entries__cb(void *_arg)
2411 {
2412         struct insert_entries *arg = _arg;
2413         gen8_ggtt_insert_entries(arg->vm, arg->st,
2414                                  arg->start, arg->level, arg->flags);
2415         return 0;
2416 }
2417
2418 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2419                                           struct sg_table *st,
2420                                           uint64_t start,
2421                                           enum i915_cache_level level,
2422                                           u32 flags)
2423 {
2424         struct insert_entries arg = { vm, st, start, level, flags };
2425         stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2426 }
2427
2428 /*
2429  * Binds an object into the global gtt with the specified cache level. The object
2430  * will be accessible to the GPU via commands whose operands reference offsets
2431  * within the global GTT as well as accessible by the GPU through the GMADR
2432  * mapped BAR (dev_priv->mm.gtt->gtt).
2433  */
2434 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2435                                      struct sg_table *st,
2436                                      uint64_t start,
2437                                      enum i915_cache_level level, u32 flags)
2438 {
2439         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2440         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2441         unsigned first_entry = start >> PAGE_SHIFT;
2442         gen6_pte_t __iomem *gtt_entries =
2443                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2444         int i = 0;
2445         struct sg_page_iter sg_iter;
2446         dma_addr_t addr = 0;
2447         int rpm_atomic_seq;
2448
2449         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2450
2451         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2452                 addr = sg_page_iter_dma_address(&sg_iter);
2453                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2454                 i++;
2455         }
2456
2457         /* XXX: This serves as a posting read to make sure that the PTE has
2458          * actually been updated. There is some concern that even though
2459          * registers and PTEs are within the same BAR that they are potentially
2460          * of NUMA access patterns. Therefore, even with the way we assume
2461          * hardware should work, we must keep this posting read for paranoia.
2462          */
2463         if (i != 0) {
2464                 unsigned long gtt = readl(&gtt_entries[i-1]);
2465                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2466         }
2467
2468         /* This next bit makes the above posting read even more important. We
2469          * want to flush the TLBs only after we're certain all the PTE updates
2470          * have finished.
2471          */
2472         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2473         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2474
2475         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2476 }
2477
2478 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2479                                   uint64_t start,
2480                                   uint64_t length,
2481                                   bool use_scratch)
2482 {
2483         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2484         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2485         unsigned first_entry = start >> PAGE_SHIFT;
2486         unsigned num_entries = length >> PAGE_SHIFT;
2487         gen8_pte_t scratch_pte, __iomem *gtt_base =
2488                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2489         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2490         int i;
2491         int rpm_atomic_seq;
2492
2493         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2494
2495         if (WARN(num_entries > max_entries,
2496                  "First entry = %d; Num entries = %d (max=%d)\n",
2497                  first_entry, num_entries, max_entries))
2498                 num_entries = max_entries;
2499
2500         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2501                                       I915_CACHE_LLC,
2502                                       use_scratch);
2503         for (i = 0; i < num_entries; i++)
2504                 gen8_set_pte(&gtt_base[i], scratch_pte);
2505         readl(gtt_base);
2506
2507         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2508 }
2509
2510 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2511                                   uint64_t start,
2512                                   uint64_t length,
2513                                   bool use_scratch)
2514 {
2515         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2516         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2517         unsigned first_entry = start >> PAGE_SHIFT;
2518         unsigned num_entries = length >> PAGE_SHIFT;
2519         gen6_pte_t scratch_pte, __iomem *gtt_base =
2520                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2521         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2522         int i;
2523         int rpm_atomic_seq;
2524
2525         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2526
2527         if (WARN(num_entries > max_entries,
2528                  "First entry = %d; Num entries = %d (max=%d)\n",
2529                  first_entry, num_entries, max_entries))
2530                 num_entries = max_entries;
2531
2532         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2533                                      I915_CACHE_LLC, use_scratch, 0);
2534
2535         for (i = 0; i < num_entries; i++)
2536                 iowrite32(scratch_pte, &gtt_base[i]);
2537         readl(gtt_base);
2538
2539         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2540 }
2541
2542 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2543                                      struct sg_table *pages,
2544                                      uint64_t start,
2545                                      enum i915_cache_level cache_level, u32 unused)
2546 {
2547         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2548         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2549                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2550         int rpm_atomic_seq;
2551
2552         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2553
2554         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2555
2556         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2557
2558 }
2559
2560 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2561                                   uint64_t start,
2562                                   uint64_t length,
2563                                   bool unused)
2564 {
2565         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2566         unsigned first_entry = start >> PAGE_SHIFT;
2567         unsigned num_entries = length >> PAGE_SHIFT;
2568         int rpm_atomic_seq;
2569
2570         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2571
2572         intel_gtt_clear_range(first_entry, num_entries);
2573
2574         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2575 }
2576
2577 static int ggtt_bind_vma(struct i915_vma *vma,
2578                          enum i915_cache_level cache_level,
2579                          u32 flags)
2580 {
2581         struct drm_i915_gem_object *obj = vma->obj;
2582         u32 pte_flags = 0;
2583         int ret;
2584
2585         ret = i915_get_ggtt_vma_pages(vma);
2586         if (ret)
2587                 return ret;
2588
2589         /* Currently applicable only to VLV */
2590         if (obj->gt_ro)
2591                 pte_flags |= PTE_READ_ONLY;
2592
2593         vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2594                                 vma->node.start,
2595                                 cache_level, pte_flags);
2596
2597         /*
2598          * Without aliasing PPGTT there's no difference between
2599          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2600          * upgrade to both bound if we bind either to avoid double-binding.
2601          */
2602         vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2603
2604         return 0;
2605 }
2606
2607 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2608                                  enum i915_cache_level cache_level,
2609                                  u32 flags)
2610 {
2611         u32 pte_flags;
2612         int ret;
2613
2614         ret = i915_get_ggtt_vma_pages(vma);
2615         if (ret)
2616                 return ret;
2617
2618         /* Currently applicable only to VLV */
2619         pte_flags = 0;
2620         if (vma->obj->gt_ro)
2621                 pte_flags |= PTE_READ_ONLY;
2622
2623
2624         if (flags & GLOBAL_BIND) {
2625                 vma->vm->insert_entries(vma->vm,
2626                                         vma->ggtt_view.pages,
2627                                         vma->node.start,
2628                                         cache_level, pte_flags);
2629         }
2630
2631         if (flags & LOCAL_BIND) {
2632                 struct i915_hw_ppgtt *appgtt =
2633                         to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2634                 appgtt->base.insert_entries(&appgtt->base,
2635                                             vma->ggtt_view.pages,
2636                                             vma->node.start,
2637                                             cache_level, pte_flags);
2638         }
2639
2640         return 0;
2641 }
2642
2643 static void ggtt_unbind_vma(struct i915_vma *vma)
2644 {
2645         struct drm_device *dev = vma->vm->dev;
2646         struct drm_i915_private *dev_priv = dev->dev_private;
2647         struct drm_i915_gem_object *obj = vma->obj;
2648         const uint64_t size = min_t(uint64_t,
2649                                     obj->base.size,
2650                                     vma->node.size);
2651
2652         if (vma->bound & GLOBAL_BIND) {
2653                 vma->vm->clear_range(vma->vm,
2654                                      vma->node.start,
2655                                      size,
2656                                      true);
2657         }
2658
2659         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2660                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2661
2662                 appgtt->base.clear_range(&appgtt->base,
2663                                          vma->node.start,
2664                                          size,
2665                                          true);
2666         }
2667 }
2668
2669 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2670 {
2671         struct drm_device *dev = obj->base.dev;
2672         struct drm_i915_private *dev_priv = dev->dev_private;
2673         bool interruptible;
2674
2675         interruptible = do_idling(dev_priv);
2676
2677         dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2678                      PCI_DMA_BIDIRECTIONAL);
2679
2680         undo_idling(dev_priv, interruptible);
2681 }
2682
2683 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2684                                   unsigned long color,
2685                                   u64 *start,
2686                                   u64 *end)
2687 {
2688         if (node->color != color)
2689                 *start += 4096;
2690
2691         if (!list_empty(&node->node_list)) {
2692                 node = list_entry(node->node_list.next,
2693                                   struct drm_mm_node,
2694                                   node_list);
2695                 if (node->allocated && node->color != color)
2696                         *end -= 4096;
2697         }
2698 }
2699
2700 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2701                                      u64 start,
2702                                      u64 mappable_end,
2703                                      u64 end)
2704 {
2705         /* Let GEM Manage all of the aperture.
2706          *
2707          * However, leave one page at the end still bound to the scratch page.
2708          * There are a number of places where the hardware apparently prefetches
2709          * past the end of the object, and we've seen multiple hangs with the
2710          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2711          * aperture.  One page should be enough to keep any prefetching inside
2712          * of the aperture.
2713          */
2714         struct drm_i915_private *dev_priv = to_i915(dev);
2715         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2716         struct drm_mm_node *entry;
2717         struct drm_i915_gem_object *obj;
2718         unsigned long hole_start, hole_end;
2719         int ret;
2720
2721         BUG_ON(mappable_end > end);
2722
2723         ggtt->base.start = start;
2724
2725         /* Subtract the guard page before address space initialization to
2726          * shrink the range used by drm_mm */
2727         ggtt->base.total = end - start - PAGE_SIZE;
2728         i915_address_space_init(&ggtt->base, dev_priv);
2729         ggtt->base.total += PAGE_SIZE;
2730
2731         if (intel_vgpu_active(dev)) {
2732                 ret = intel_vgt_balloon(dev);
2733                 if (ret)
2734                         return ret;
2735         }
2736
2737         if (!HAS_LLC(dev))
2738                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2739
2740         /* Mark any preallocated objects as occupied */
2741         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2742                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2743
2744                 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2745                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2746
2747                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2748                 ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2749                 if (ret) {
2750                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2751                         return ret;
2752                 }
2753                 vma->bound |= GLOBAL_BIND;
2754                 __i915_vma_set_map_and_fenceable(vma);
2755                 list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2756         }
2757
2758         /* Clear any non-preallocated blocks */
2759         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2760                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2761                               hole_start, hole_end);
2762                 ggtt->base.clear_range(&ggtt->base, hole_start,
2763                                      hole_end - hole_start, true);
2764         }
2765
2766         /* And finally clear the reserved guard page */
2767         ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2768
2769         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2770                 struct i915_hw_ppgtt *ppgtt;
2771
2772                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2773                 if (!ppgtt)
2774                         return -ENOMEM;
2775
2776                 ret = __hw_ppgtt_init(dev, ppgtt);
2777                 if (ret) {
2778                         ppgtt->base.cleanup(&ppgtt->base);
2779                         kfree(ppgtt);
2780                         return ret;
2781                 }
2782
2783                 if (ppgtt->base.allocate_va_range)
2784                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2785                                                             ppgtt->base.total);
2786                 if (ret) {
2787                         ppgtt->base.cleanup(&ppgtt->base);
2788                         kfree(ppgtt);
2789                         return ret;
2790                 }
2791
2792                 ppgtt->base.clear_range(&ppgtt->base,
2793                                         ppgtt->base.start,
2794                                         ppgtt->base.total,
2795                                         true);
2796
2797                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2798                 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2799                 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2800         }
2801
2802         return 0;
2803 }
2804
2805 /**
2806  * i915_gem_init_ggtt - Initialize GEM for Global GTT
2807  * @dev: DRM device
2808  */
2809 void i915_gem_init_ggtt(struct drm_device *dev)
2810 {
2811         struct drm_i915_private *dev_priv = to_i915(dev);
2812         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2813
2814         i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2815 }
2816
2817 /**
2818  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2819  * @dev: DRM device
2820  */
2821 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2822 {
2823         struct drm_i915_private *dev_priv = to_i915(dev);
2824         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2825
2826         if (dev_priv->mm.aliasing_ppgtt) {
2827                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2828
2829                 ppgtt->base.cleanup(&ppgtt->base);
2830         }
2831
2832         i915_gem_cleanup_stolen(dev);
2833
2834         if (drm_mm_initialized(&ggtt->base.mm)) {
2835                 if (intel_vgpu_active(dev))
2836                         intel_vgt_deballoon();
2837
2838                 drm_mm_takedown(&ggtt->base.mm);
2839                 list_del(&ggtt->base.global_link);
2840         }
2841
2842         ggtt->base.cleanup(&ggtt->base);
2843 }
2844
2845 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2846 {
2847         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2848         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2849         return snb_gmch_ctl << 20;
2850 }
2851
2852 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2853 {
2854         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2855         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2856         if (bdw_gmch_ctl)
2857                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2858
2859 #ifdef CONFIG_X86_32
2860         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2861         if (bdw_gmch_ctl > 4)
2862                 bdw_gmch_ctl = 4;
2863 #endif
2864
2865         return bdw_gmch_ctl << 20;
2866 }
2867
2868 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2869 {
2870         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2871         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2872
2873         if (gmch_ctrl)
2874                 return 1 << (20 + gmch_ctrl);
2875
2876         return 0;
2877 }
2878
2879 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2880 {
2881         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2882         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2883         return snb_gmch_ctl << 25; /* 32 MB units */
2884 }
2885
2886 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2887 {
2888         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2889         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2890         return bdw_gmch_ctl << 25; /* 32 MB units */
2891 }
2892
2893 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2894 {
2895         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2896         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2897
2898         /*
2899          * 0x0  to 0x10: 32MB increments starting at 0MB
2900          * 0x11 to 0x16: 4MB increments starting at 8MB
2901          * 0x17 to 0x1d: 4MB increments start at 36MB
2902          */
2903         if (gmch_ctrl < 0x11)
2904                 return gmch_ctrl << 25;
2905         else if (gmch_ctrl < 0x17)
2906                 return (gmch_ctrl - 0x11 + 2) << 22;
2907         else
2908                 return (gmch_ctrl - 0x17 + 9) << 22;
2909 }
2910
2911 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2912 {
2913         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2914         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2915
2916         if (gen9_gmch_ctl < 0xf0)
2917                 return gen9_gmch_ctl << 25; /* 32 MB units */
2918         else
2919                 /* 4MB increments starting at 0xf0 for 4MB */
2920                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2921 }
2922
2923 static int ggtt_probe_common(struct drm_device *dev,
2924                              size_t gtt_size)
2925 {
2926         struct drm_i915_private *dev_priv = to_i915(dev);
2927         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2928         struct i915_page_scratch *scratch_page;
2929         phys_addr_t ggtt_phys_addr;
2930
2931         /* For Modern GENs the PTEs and register space are split in the BAR */
2932         ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2933                          (pci_resource_len(dev->pdev, 0) / 2);
2934
2935         /*
2936          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2937          * dropped. For WC mappings in general we have 64 byte burst writes
2938          * when the WC buffer is flushed, so we can't use it, but have to
2939          * resort to an uncached mapping. The WC issue is easily caught by the
2940          * readback check when writing GTT PTE entries.
2941          */
2942         if (IS_BROXTON(dev))
2943                 ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
2944         else
2945                 ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
2946         if (!ggtt->gsm) {
2947                 DRM_ERROR("Failed to map the gtt page table\n");
2948                 return -ENOMEM;
2949         }
2950
2951         scratch_page = alloc_scratch_page(dev);
2952         if (IS_ERR(scratch_page)) {
2953                 DRM_ERROR("Scratch setup failed\n");
2954                 /* iounmap will also get called at remove, but meh */
2955                 iounmap(ggtt->gsm);
2956                 return PTR_ERR(scratch_page);
2957         }
2958
2959         ggtt->base.scratch_page = scratch_page;
2960
2961         return 0;
2962 }
2963
2964 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2965  * bits. When using advanced contexts each context stores its own PAT, but
2966  * writing this data shouldn't be harmful even in those cases. */
2967 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2968 {
2969         uint64_t pat;
2970
2971         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2972               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2973               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2974               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2975               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2976               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2977               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2978               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2979
2980         if (!USES_PPGTT(dev_priv))
2981                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2982                  * so RTL will always use the value corresponding to
2983                  * pat_sel = 000".
2984                  * So let's disable cache for GGTT to avoid screen corruptions.
2985                  * MOCS still can be used though.
2986                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2987                  * before this patch, i.e. the same uncached + snooping access
2988                  * like on gen6/7 seems to be in effect.
2989                  * - So this just fixes blitter/render access. Again it looks
2990                  * like it's not just uncached access, but uncached + snooping.
2991                  * So we can still hold onto all our assumptions wrt cpu
2992                  * clflushing on LLC machines.
2993                  */
2994                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2995
2996         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2997          * write would work. */
2998         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2999         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3000 }
3001
3002 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3003 {
3004         uint64_t pat;
3005
3006         /*
3007          * Map WB on BDW to snooped on CHV.
3008          *
3009          * Only the snoop bit has meaning for CHV, the rest is
3010          * ignored.
3011          *
3012          * The hardware will never snoop for certain types of accesses:
3013          * - CPU GTT (GMADR->GGTT->no snoop->memory)
3014          * - PPGTT page tables
3015          * - some other special cycles
3016          *
3017          * As with BDW, we also need to consider the following for GT accesses:
3018          * "For GGTT, there is NO pat_sel[2:0] from the entry,
3019          * so RTL will always use the value corresponding to
3020          * pat_sel = 000".
3021          * Which means we must set the snoop bit in PAT entry 0
3022          * in order to keep the global status page working.
3023          */
3024         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3025               GEN8_PPAT(1, 0) |
3026               GEN8_PPAT(2, 0) |
3027               GEN8_PPAT(3, 0) |
3028               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3029               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3030               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3031               GEN8_PPAT(7, CHV_PPAT_SNOOP);
3032
3033         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3034         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3035 }
3036
3037 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3038 {
3039         struct drm_device *dev = ggtt->base.dev;
3040         struct drm_i915_private *dev_priv = to_i915(dev);
3041         u16 snb_gmch_ctl;
3042         int ret;
3043
3044         /* TODO: We're not aware of mappable constraints on gen8 yet */
3045         ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3046         ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3047
3048         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3049                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3050
3051         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3052
3053         if (INTEL_INFO(dev)->gen >= 9) {
3054                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3055                 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3056         } else if (IS_CHERRYVIEW(dev)) {
3057                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3058                 ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3059         } else {
3060                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3061                 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3062         }
3063
3064         ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3065
3066         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3067                 chv_setup_private_ppat(dev_priv);
3068         else
3069                 bdw_setup_private_ppat(dev_priv);
3070
3071         ret = ggtt_probe_common(dev, ggtt->size);
3072
3073         ggtt->base.clear_range = gen8_ggtt_clear_range;
3074         if (IS_CHERRYVIEW(dev_priv))
3075                 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3076         else
3077                 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3078         ggtt->base.bind_vma = ggtt_bind_vma;
3079         ggtt->base.unbind_vma = ggtt_unbind_vma;
3080
3081         return ret;
3082 }
3083
3084 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3085 {
3086         struct drm_device *dev = ggtt->base.dev;
3087         u16 snb_gmch_ctl;
3088         int ret;
3089
3090         ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3091         ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3092
3093         /* 64/512MB is the current min/max we actually know of, but this is just
3094          * a coarse sanity check.
3095          */
3096         if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3097                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3098                 return -ENXIO;
3099         }
3100
3101         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3102                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3103         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3104
3105         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3106         ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3107         ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3108
3109         ret = ggtt_probe_common(dev, ggtt->size);
3110
3111         ggtt->base.clear_range = gen6_ggtt_clear_range;
3112         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3113         ggtt->base.bind_vma = ggtt_bind_vma;
3114         ggtt->base.unbind_vma = ggtt_unbind_vma;
3115
3116         return ret;
3117 }
3118
3119 static void gen6_gmch_remove(struct i915_address_space *vm)
3120 {
3121         struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3122
3123         iounmap(ggtt->gsm);
3124         free_scratch_page(vm->dev, vm->scratch_page);
3125 }
3126
3127 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3128 {
3129         struct drm_device *dev = ggtt->base.dev;
3130         struct drm_i915_private *dev_priv = to_i915(dev);
3131         int ret;
3132
3133         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3134         if (!ret) {
3135                 DRM_ERROR("failed to set up gmch\n");
3136                 return -EIO;
3137         }
3138
3139         intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3140                       &ggtt->mappable_base, &ggtt->mappable_end);
3141
3142         ggtt->do_idle_maps = needs_idle_maps(dev_priv->dev);
3143         ggtt->base.insert_entries = i915_ggtt_insert_entries;
3144         ggtt->base.clear_range = i915_ggtt_clear_range;
3145         ggtt->base.bind_vma = ggtt_bind_vma;
3146         ggtt->base.unbind_vma = ggtt_unbind_vma;
3147
3148         if (unlikely(ggtt->do_idle_maps))
3149                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3150
3151         return 0;
3152 }
3153
3154 static void i915_gmch_remove(struct i915_address_space *vm)
3155 {
3156         intel_gmch_remove();
3157 }
3158
3159 /**
3160  * i915_ggtt_init_hw - Initialize GGTT hardware
3161  * @dev: DRM device
3162  */
3163 int i915_ggtt_init_hw(struct drm_device *dev)
3164 {
3165         struct drm_i915_private *dev_priv = to_i915(dev);
3166         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3167         int ret;
3168
3169         if (INTEL_INFO(dev)->gen <= 5) {
3170                 ggtt->probe = i915_gmch_probe;
3171                 ggtt->base.cleanup = i915_gmch_remove;
3172         } else if (INTEL_INFO(dev)->gen < 8) {
3173                 ggtt->probe = gen6_gmch_probe;
3174                 ggtt->base.cleanup = gen6_gmch_remove;
3175
3176                 if (HAS_EDRAM(dev))
3177                         ggtt->base.pte_encode = iris_pte_encode;
3178                 else if (IS_HASWELL(dev))
3179                         ggtt->base.pte_encode = hsw_pte_encode;
3180                 else if (IS_VALLEYVIEW(dev))
3181                         ggtt->base.pte_encode = byt_pte_encode;
3182                 else if (INTEL_INFO(dev)->gen >= 7)
3183                         ggtt->base.pte_encode = ivb_pte_encode;
3184                 else
3185                         ggtt->base.pte_encode = snb_pte_encode;
3186         } else {
3187                 ggtt->probe = gen8_gmch_probe;
3188                 ggtt->base.cleanup = gen6_gmch_remove;
3189         }
3190
3191         ggtt->base.dev = dev;
3192         ggtt->base.is_ggtt = true;
3193
3194         ret = ggtt->probe(ggtt);
3195         if (ret)
3196                 return ret;
3197
3198         if ((ggtt->base.total - 1) >> 32) {
3199                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3200                           "of address space! Found %lldM!\n",
3201                           ggtt->base.total >> 20);
3202                 ggtt->base.total = 1ULL << 32;
3203                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3204         }
3205
3206         /*
3207          * Initialise stolen early so that we may reserve preallocated
3208          * objects for the BIOS to KMS transition.
3209          */
3210         ret = i915_gem_init_stolen(dev);
3211         if (ret)
3212                 goto out_gtt_cleanup;
3213
3214         /* GMADR is the PCI mmio aperture into the global GTT. */
3215         DRM_INFO("Memory usable by graphics device = %lluM\n",
3216                  ggtt->base.total >> 20);
3217         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3218         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3219 #ifdef CONFIG_INTEL_IOMMU
3220         if (intel_iommu_gfx_mapped)
3221                 DRM_INFO("VT-d active for gfx access\n");
3222 #endif
3223         /*
3224          * i915.enable_ppgtt is read-only, so do an early pass to validate the
3225          * user's requested state against the hardware/driver capabilities.  We
3226          * do this now so that we can print out any log messages once rather
3227          * than every time we check intel_enable_ppgtt().
3228          */
3229         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3230         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3231
3232         return 0;
3233
3234 out_gtt_cleanup:
3235         ggtt->base.cleanup(&ggtt->base);
3236
3237         return ret;
3238 }
3239
3240 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3241 {
3242         struct drm_i915_private *dev_priv = to_i915(dev);
3243         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3244         struct drm_i915_gem_object *obj;
3245         struct i915_vma *vma;
3246         bool flush;
3247
3248         i915_check_and_clear_faults(dev);
3249
3250         /* First fill our portion of the GTT with scratch pages */
3251         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3252                                true);
3253
3254         /* Cache flush objects bound into GGTT and rebind them. */
3255         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3256                 flush = false;
3257                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3258                         if (vma->vm != &ggtt->base)
3259                                 continue;
3260
3261                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3262                                               PIN_UPDATE));
3263
3264                         flush = true;
3265                 }
3266
3267                 if (flush)
3268                         i915_gem_clflush_object(obj, obj->pin_display);
3269         }
3270
3271         if (INTEL_INFO(dev)->gen >= 8) {
3272                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3273                         chv_setup_private_ppat(dev_priv);
3274                 else
3275                         bdw_setup_private_ppat(dev_priv);
3276
3277                 return;
3278         }
3279
3280         if (USES_PPGTT(dev)) {
3281                 struct i915_address_space *vm;
3282
3283                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3284                         /* TODO: Perhaps it shouldn't be gen6 specific */
3285
3286                         struct i915_hw_ppgtt *ppgtt;
3287
3288                         if (vm->is_ggtt)
3289                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3290                         else
3291                                 ppgtt = i915_vm_to_ppgtt(vm);
3292
3293                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3294                                               0, ppgtt->base.total);
3295                 }
3296         }
3297
3298         i915_ggtt_flush(dev_priv);
3299 }
3300
3301 static struct i915_vma *
3302 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3303                       struct i915_address_space *vm,
3304                       const struct i915_ggtt_view *ggtt_view)
3305 {
3306         struct i915_vma *vma;
3307
3308         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3309                 return ERR_PTR(-EINVAL);
3310
3311         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3312         if (vma == NULL)
3313                 return ERR_PTR(-ENOMEM);
3314
3315         INIT_LIST_HEAD(&vma->vm_link);
3316         INIT_LIST_HEAD(&vma->obj_link);
3317         INIT_LIST_HEAD(&vma->exec_list);
3318         vma->vm = vm;
3319         vma->obj = obj;
3320         vma->is_ggtt = i915_is_ggtt(vm);
3321
3322         if (i915_is_ggtt(vm))
3323                 vma->ggtt_view = *ggtt_view;
3324         else
3325                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3326
3327         list_add_tail(&vma->obj_link, &obj->vma_list);
3328
3329         return vma;
3330 }
3331
3332 struct i915_vma *
3333 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3334                                   struct i915_address_space *vm)
3335 {
3336         struct i915_vma *vma;
3337
3338         vma = i915_gem_obj_to_vma(obj, vm);
3339         if (!vma)
3340                 vma = __i915_gem_vma_create(obj, vm,
3341                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3342
3343         return vma;
3344 }
3345
3346 struct i915_vma *
3347 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3348                                        const struct i915_ggtt_view *view)
3349 {
3350         struct drm_device *dev = obj->base.dev;
3351         struct drm_i915_private *dev_priv = to_i915(dev);
3352         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3353         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3354
3355         if (!vma)
3356                 vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3357
3358         return vma;
3359
3360 }
3361
3362 static struct scatterlist *
3363 rotate_pages(const dma_addr_t *in, unsigned int offset,
3364              unsigned int width, unsigned int height,
3365              unsigned int stride,
3366              struct sg_table *st, struct scatterlist *sg)
3367 {
3368         unsigned int column, row;
3369         unsigned int src_idx;
3370
3371         for (column = 0; column < width; column++) {
3372                 src_idx = stride * (height - 1) + column;
3373                 for (row = 0; row < height; row++) {
3374                         st->nents++;
3375                         /* We don't need the pages, but need to initialize
3376                          * the entries so the sg list can be happily traversed.
3377                          * The only thing we need are DMA addresses.
3378                          */
3379                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3380                         sg_dma_address(sg) = in[offset + src_idx];
3381                         sg_dma_len(sg) = PAGE_SIZE;
3382                         sg = sg_next(sg);
3383                         src_idx -= stride;
3384                 }
3385         }
3386
3387         return sg;
3388 }
3389
3390 static struct sg_table *
3391 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3392                           struct drm_i915_gem_object *obj)
3393 {
3394         unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3395         unsigned int size_pages_uv;
3396         struct sg_page_iter sg_iter;
3397         unsigned long i;
3398         dma_addr_t *page_addr_list;
3399         struct sg_table *st;
3400         unsigned int uv_start_page;
3401         struct scatterlist *sg;
3402         int ret = -ENOMEM;
3403
3404         /* Allocate a temporary list of source pages for random access. */
3405         page_addr_list = drm_malloc_gfp(obj->base.size / PAGE_SIZE,
3406                                         sizeof(dma_addr_t),
3407                                         GFP_TEMPORARY);
3408         if (!page_addr_list)
3409                 return ERR_PTR(ret);
3410
3411         /* Account for UV plane with NV12. */
3412         if (rot_info->pixel_format == DRM_FORMAT_NV12)
3413                 size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3414         else
3415                 size_pages_uv = 0;
3416
3417         /* Allocate target SG list. */
3418         st = kmalloc(sizeof(*st), GFP_KERNEL);
3419         if (!st)
3420                 goto err_st_alloc;
3421
3422         ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3423         if (ret)
3424                 goto err_sg_alloc;
3425
3426         /* Populate source page list from the object. */
3427         i = 0;
3428         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3429                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3430                 i++;
3431         }
3432
3433         st->nents = 0;
3434         sg = st->sgl;
3435
3436         /* Rotate the pages. */
3437         sg = rotate_pages(page_addr_list, 0,
3438                           rot_info->plane[0].width, rot_info->plane[0].height,
3439                           rot_info->plane[0].width,
3440                           st, sg);
3441
3442         /* Append the UV plane if NV12. */
3443         if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3444                 uv_start_page = size_pages;
3445
3446                 /* Check for tile-row un-alignment. */
3447                 if (offset_in_page(rot_info->uv_offset))
3448                         uv_start_page--;
3449
3450                 rot_info->uv_start_page = uv_start_page;
3451
3452                 sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3453                                   rot_info->plane[1].width, rot_info->plane[1].height,
3454                                   rot_info->plane[1].width,
3455                                   st, sg);
3456         }
3457
3458         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3459                       obj->base.size, rot_info->plane[0].width,
3460                       rot_info->plane[0].height, size_pages + size_pages_uv,
3461                       size_pages);
3462
3463         drm_free_large(page_addr_list);
3464
3465         return st;
3466
3467 err_sg_alloc:
3468         kfree(st);
3469 err_st_alloc:
3470         drm_free_large(page_addr_list);
3471
3472         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3473                       obj->base.size, ret, rot_info->plane[0].width,
3474                       rot_info->plane[0].height, size_pages + size_pages_uv,
3475                       size_pages);
3476         return ERR_PTR(ret);
3477 }
3478
3479 static struct sg_table *
3480 intel_partial_pages(const struct i915_ggtt_view *view,
3481                     struct drm_i915_gem_object *obj)
3482 {
3483         struct sg_table *st;
3484         struct scatterlist *sg;
3485         struct sg_page_iter obj_sg_iter;
3486         int ret = -ENOMEM;
3487
3488         st = kmalloc(sizeof(*st), GFP_KERNEL);
3489         if (!st)
3490                 goto err_st_alloc;
3491
3492         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3493         if (ret)
3494                 goto err_sg_alloc;
3495
3496         sg = st->sgl;
3497         st->nents = 0;
3498         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3499                 view->params.partial.offset)
3500         {
3501                 if (st->nents >= view->params.partial.size)
3502                         break;
3503
3504                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3505                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3506                 sg_dma_len(sg) = PAGE_SIZE;
3507
3508                 sg = sg_next(sg);
3509                 st->nents++;
3510         }
3511
3512         return st;
3513
3514 err_sg_alloc:
3515         kfree(st);
3516 err_st_alloc:
3517         return ERR_PTR(ret);
3518 }
3519
3520 static int
3521 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3522 {
3523         int ret = 0;
3524
3525         if (vma->ggtt_view.pages)
3526                 return 0;
3527
3528         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3529                 vma->ggtt_view.pages = vma->obj->pages;
3530         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3531                 vma->ggtt_view.pages =
3532                         intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3533         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3534                 vma->ggtt_view.pages =
3535                         intel_partial_pages(&vma->ggtt_view, vma->obj);
3536         else
3537                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3538                           vma->ggtt_view.type);
3539
3540         if (!vma->ggtt_view.pages) {
3541                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3542                           vma->ggtt_view.type);
3543                 ret = -EINVAL;
3544         } else if (IS_ERR(vma->ggtt_view.pages)) {
3545                 ret = PTR_ERR(vma->ggtt_view.pages);
3546                 vma->ggtt_view.pages = NULL;
3547                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3548                           vma->ggtt_view.type, ret);
3549         }
3550
3551         return ret;
3552 }
3553
3554 /**
3555  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3556  * @vma: VMA to map
3557  * @cache_level: mapping cache level
3558  * @flags: flags like global or local mapping
3559  *
3560  * DMA addresses are taken from the scatter-gather table of this object (or of
3561  * this VMA in case of non-default GGTT views) and PTE entries set up.
3562  * Note that DMA addresses are also the only part of the SG table we care about.
3563  */
3564 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3565                   u32 flags)
3566 {
3567         int ret;
3568         u32 bind_flags;
3569
3570         if (WARN_ON(flags == 0))
3571                 return -EINVAL;
3572
3573         bind_flags = 0;
3574         if (flags & PIN_GLOBAL)
3575                 bind_flags |= GLOBAL_BIND;
3576         if (flags & PIN_USER)
3577                 bind_flags |= LOCAL_BIND;
3578
3579         if (flags & PIN_UPDATE)
3580                 bind_flags |= vma->bound;
3581         else
3582                 bind_flags &= ~vma->bound;
3583
3584         if (bind_flags == 0)
3585                 return 0;
3586
3587         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3588                 /* XXX: i915_vma_pin() will fix this +- hack */
3589                 vma->pin_count++;
3590                 trace_i915_va_alloc(vma);
3591                 ret = vma->vm->allocate_va_range(vma->vm,
3592                                                  vma->node.start,
3593                                                  vma->node.size);
3594                 vma->pin_count--;
3595                 if (ret)
3596                         return ret;
3597         }
3598
3599         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3600         if (ret)
3601                 return ret;
3602
3603         vma->bound |= bind_flags;
3604
3605         return 0;
3606 }
3607
3608 /**
3609  * i915_ggtt_view_size - Get the size of a GGTT view.
3610  * @obj: Object the view is of.
3611  * @view: The view in question.
3612  *
3613  * @return The size of the GGTT view in bytes.
3614  */
3615 size_t
3616 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3617                     const struct i915_ggtt_view *view)
3618 {
3619         if (view->type == I915_GGTT_VIEW_NORMAL) {
3620                 return obj->base.size;
3621         } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3622                 return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3623         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3624                 return view->params.partial.size << PAGE_SHIFT;
3625         } else {
3626                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3627                 return obj->base.size;
3628         }
3629 }