]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
Merge remote-tracking branch 'asoc/topic/enum' into asoc-next
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv);
34
35 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
36 {
37         if (i915.enable_ppgtt == 0)
38                 return false;
39
40         if (i915.enable_ppgtt == 1 && full)
41                 return false;
42
43         return true;
44 }
45
46 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
47 {
48         if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
49                 return 0;
50
51         if (enable_ppgtt == 1)
52                 return 1;
53
54         if (enable_ppgtt == 2 && HAS_PPGTT(dev))
55                 return 2;
56
57 #ifdef CONFIG_INTEL_IOMMU
58         /* Disable ppgtt on SNB if VT-d is on. */
59         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
60                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
61                 return 0;
62         }
63 #endif
64
65         return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
66 }
67
68 #define GEN6_PPGTT_PD_ENTRIES 512
69 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
70 typedef uint64_t gen8_gtt_pte_t;
71 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
72
73 /* PPGTT stuff */
74 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
75 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
76
77 #define GEN6_PDE_VALID                  (1 << 0)
78 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
79 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
80
81 #define GEN6_PTE_VALID                  (1 << 0)
82 #define GEN6_PTE_UNCACHED               (1 << 1)
83 #define HSW_PTE_UNCACHED                (0)
84 #define GEN6_PTE_CACHE_LLC              (2 << 1)
85 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
86 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
87 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
88
89 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
90  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
91  */
92 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
93                                          (((bits) & 0x8) << (11 - 3)))
94 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
95 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
96 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
97 #define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
98 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
99 #define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
100
101 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
102 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
103
104 /* GEN8 legacy style addressis defined as a 3 level page table:
105  * 31:30 | 29:21 | 20:12 |  11:0
106  * PDPE  |  PDE  |  PTE  | offset
107  * The difference as compared to normal x86 3 level page table is the PDPEs are
108  * programmed via register.
109  */
110 #define GEN8_PDPE_SHIFT                 30
111 #define GEN8_PDPE_MASK                  0x3
112 #define GEN8_PDE_SHIFT                  21
113 #define GEN8_PDE_MASK                   0x1ff
114 #define GEN8_PTE_SHIFT                  12
115 #define GEN8_PTE_MASK                   0x1ff
116
117 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
118 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
119 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
120 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
121
122 static void ppgtt_bind_vma(struct i915_vma *vma,
123                            enum i915_cache_level cache_level,
124                            u32 flags);
125 static void ppgtt_unbind_vma(struct i915_vma *vma);
126 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
127
128 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
129                                              enum i915_cache_level level,
130                                              bool valid)
131 {
132         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
133         pte |= addr;
134         if (level != I915_CACHE_NONE)
135                 pte |= PPAT_CACHED_INDEX;
136         else
137                 pte |= PPAT_UNCACHED_INDEX;
138         return pte;
139 }
140
141 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
142                                              dma_addr_t addr,
143                                              enum i915_cache_level level)
144 {
145         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
146         pde |= addr;
147         if (level != I915_CACHE_NONE)
148                 pde |= PPAT_CACHED_PDE_INDEX;
149         else
150                 pde |= PPAT_UNCACHED_INDEX;
151         return pde;
152 }
153
154 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
155                                      enum i915_cache_level level,
156                                      bool valid)
157 {
158         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
159         pte |= GEN6_PTE_ADDR_ENCODE(addr);
160
161         switch (level) {
162         case I915_CACHE_L3_LLC:
163         case I915_CACHE_LLC:
164                 pte |= GEN6_PTE_CACHE_LLC;
165                 break;
166         case I915_CACHE_NONE:
167                 pte |= GEN6_PTE_UNCACHED;
168                 break;
169         default:
170                 WARN_ON(1);
171         }
172
173         return pte;
174 }
175
176 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
177                                      enum i915_cache_level level,
178                                      bool valid)
179 {
180         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
181         pte |= GEN6_PTE_ADDR_ENCODE(addr);
182
183         switch (level) {
184         case I915_CACHE_L3_LLC:
185                 pte |= GEN7_PTE_CACHE_L3_LLC;
186                 break;
187         case I915_CACHE_LLC:
188                 pte |= GEN6_PTE_CACHE_LLC;
189                 break;
190         case I915_CACHE_NONE:
191                 pte |= GEN6_PTE_UNCACHED;
192                 break;
193         default:
194                 WARN_ON(1);
195         }
196
197         return pte;
198 }
199
200 #define BYT_PTE_WRITEABLE               (1 << 1)
201 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
202
203 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
204                                      enum i915_cache_level level,
205                                      bool valid)
206 {
207         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
208         pte |= GEN6_PTE_ADDR_ENCODE(addr);
209
210         /* Mark the page as writeable.  Other platforms don't have a
211          * setting for read-only/writable, so this matches that behavior.
212          */
213         pte |= BYT_PTE_WRITEABLE;
214
215         if (level != I915_CACHE_NONE)
216                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
217
218         return pte;
219 }
220
221 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
222                                      enum i915_cache_level level,
223                                      bool valid)
224 {
225         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
226         pte |= HSW_PTE_ADDR_ENCODE(addr);
227
228         if (level != I915_CACHE_NONE)
229                 pte |= HSW_WB_LLC_AGE3;
230
231         return pte;
232 }
233
234 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
235                                       enum i915_cache_level level,
236                                       bool valid)
237 {
238         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
239         pte |= HSW_PTE_ADDR_ENCODE(addr);
240
241         switch (level) {
242         case I915_CACHE_NONE:
243                 break;
244         case I915_CACHE_WT:
245                 pte |= HSW_WT_ELLC_LLC_AGE3;
246                 break;
247         default:
248                 pte |= HSW_WB_ELLC_LLC_AGE3;
249                 break;
250         }
251
252         return pte;
253 }
254
255 /* Broadwell Page Directory Pointer Descriptors */
256 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
257                            uint64_t val, bool synchronous)
258 {
259         struct drm_i915_private *dev_priv = ring->dev->dev_private;
260         int ret;
261
262         BUG_ON(entry >= 4);
263
264         if (synchronous) {
265                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
266                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
267                 return 0;
268         }
269
270         ret = intel_ring_begin(ring, 6);
271         if (ret)
272                 return ret;
273
274         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
275         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
276         intel_ring_emit(ring, (u32)(val >> 32));
277         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
278         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
279         intel_ring_emit(ring, (u32)(val));
280         intel_ring_advance(ring);
281
282         return 0;
283 }
284
285 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
286                           struct intel_ring_buffer *ring,
287                           bool synchronous)
288 {
289         int i, ret;
290
291         /* bit of a hack to find the actual last used pd */
292         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
293
294         for (i = used_pd - 1; i >= 0; i--) {
295                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
296                 ret = gen8_write_pdp(ring, i, addr, synchronous);
297                 if (ret)
298                         return ret;
299         }
300
301         return 0;
302 }
303
304 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
305                                    uint64_t start,
306                                    uint64_t length,
307                                    bool use_scratch)
308 {
309         struct i915_hw_ppgtt *ppgtt =
310                 container_of(vm, struct i915_hw_ppgtt, base);
311         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
312         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
313         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
314         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
315         unsigned num_entries = length >> PAGE_SHIFT;
316         unsigned last_pte, i;
317
318         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
319                                       I915_CACHE_LLC, use_scratch);
320
321         while (num_entries) {
322                 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
323
324                 last_pte = pte + num_entries;
325                 if (last_pte > GEN8_PTES_PER_PAGE)
326                         last_pte = GEN8_PTES_PER_PAGE;
327
328                 pt_vaddr = kmap_atomic(page_table);
329
330                 for (i = pte; i < last_pte; i++) {
331                         pt_vaddr[i] = scratch_pte;
332                         num_entries--;
333                 }
334
335                 kunmap_atomic(pt_vaddr);
336
337                 pte = 0;
338                 if (++pde == GEN8_PDES_PER_PAGE) {
339                         pdpe++;
340                         pde = 0;
341                 }
342         }
343 }
344
345 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
346                                       struct sg_table *pages,
347                                       uint64_t start,
348                                       enum i915_cache_level cache_level)
349 {
350         struct i915_hw_ppgtt *ppgtt =
351                 container_of(vm, struct i915_hw_ppgtt, base);
352         gen8_gtt_pte_t *pt_vaddr;
353         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
354         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
355         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
356         struct sg_page_iter sg_iter;
357
358         pt_vaddr = NULL;
359
360         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
361                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
362                         break;
363
364                 if (pt_vaddr == NULL)
365                         pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
366
367                 pt_vaddr[pte] =
368                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
369                                         cache_level, true);
370                 if (++pte == GEN8_PTES_PER_PAGE) {
371                         kunmap_atomic(pt_vaddr);
372                         pt_vaddr = NULL;
373                         if (++pde == GEN8_PDES_PER_PAGE) {
374                                 pdpe++;
375                                 pde = 0;
376                         }
377                         pte = 0;
378                 }
379         }
380         if (pt_vaddr)
381                 kunmap_atomic(pt_vaddr);
382 }
383
384 static void gen8_free_page_tables(struct page **pt_pages)
385 {
386         int i;
387
388         if (pt_pages == NULL)
389                 return;
390
391         for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
392                 if (pt_pages[i])
393                         __free_pages(pt_pages[i], 0);
394 }
395
396 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
397 {
398         int i;
399
400         for (i = 0; i < ppgtt->num_pd_pages; i++) {
401                 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
402                 kfree(ppgtt->gen8_pt_pages[i]);
403                 kfree(ppgtt->gen8_pt_dma_addr[i]);
404         }
405
406         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
407 }
408
409 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
410 {
411         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
412         int i, j;
413
414         for (i = 0; i < ppgtt->num_pd_pages; i++) {
415                 /* TODO: In the future we'll support sparse mappings, so this
416                  * will have to change. */
417                 if (!ppgtt->pd_dma_addr[i])
418                         continue;
419
420                 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
421                                PCI_DMA_BIDIRECTIONAL);
422
423                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
424                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
425                         if (addr)
426                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
427                                                PCI_DMA_BIDIRECTIONAL);
428                 }
429         }
430 }
431
432 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
433 {
434         struct i915_hw_ppgtt *ppgtt =
435                 container_of(vm, struct i915_hw_ppgtt, base);
436
437         list_del(&vm->global_link);
438         drm_mm_takedown(&vm->mm);
439
440         gen8_ppgtt_unmap_pages(ppgtt);
441         gen8_ppgtt_free(ppgtt);
442 }
443
444 static struct page **__gen8_alloc_page_tables(void)
445 {
446         struct page **pt_pages;
447         int i;
448
449         pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
450         if (!pt_pages)
451                 return ERR_PTR(-ENOMEM);
452
453         for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
454                 pt_pages[i] = alloc_page(GFP_KERNEL);
455                 if (!pt_pages[i])
456                         goto bail;
457         }
458
459         return pt_pages;
460
461 bail:
462         gen8_free_page_tables(pt_pages);
463         kfree(pt_pages);
464         return ERR_PTR(-ENOMEM);
465 }
466
467 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
468                                            const int max_pdp)
469 {
470         struct page **pt_pages[GEN8_LEGACY_PDPS];
471         int i, ret;
472
473         for (i = 0; i < max_pdp; i++) {
474                 pt_pages[i] = __gen8_alloc_page_tables();
475                 if (IS_ERR(pt_pages[i])) {
476                         ret = PTR_ERR(pt_pages[i]);
477                         goto unwind_out;
478                 }
479         }
480
481         /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
482          * "atomic" - for cleanup purposes.
483          */
484         for (i = 0; i < max_pdp; i++)
485                 ppgtt->gen8_pt_pages[i] = pt_pages[i];
486
487         return 0;
488
489 unwind_out:
490         while (i--) {
491                 gen8_free_page_tables(pt_pages[i]);
492                 kfree(pt_pages[i]);
493         }
494
495         return ret;
496 }
497
498 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
499 {
500         int i;
501
502         for (i = 0; i < ppgtt->num_pd_pages; i++) {
503                 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
504                                                      sizeof(dma_addr_t),
505                                                      GFP_KERNEL);
506                 if (!ppgtt->gen8_pt_dma_addr[i])
507                         return -ENOMEM;
508         }
509
510         return 0;
511 }
512
513 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
514                                                 const int max_pdp)
515 {
516         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
517         if (!ppgtt->pd_pages)
518                 return -ENOMEM;
519
520         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
521         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
522
523         return 0;
524 }
525
526 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
527                             const int max_pdp)
528 {
529         int ret;
530
531         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
532         if (ret)
533                 return ret;
534
535         ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
536         if (ret) {
537                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
538                 return ret;
539         }
540
541         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
542
543         ret = gen8_ppgtt_allocate_dma(ppgtt);
544         if (ret)
545                 gen8_ppgtt_free(ppgtt);
546
547         return ret;
548 }
549
550 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
551                                              const int pd)
552 {
553         dma_addr_t pd_addr;
554         int ret;
555
556         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
557                                &ppgtt->pd_pages[pd], 0,
558                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
559
560         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
561         if (ret)
562                 return ret;
563
564         ppgtt->pd_dma_addr[pd] = pd_addr;
565
566         return 0;
567 }
568
569 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
570                                         const int pd,
571                                         const int pt)
572 {
573         dma_addr_t pt_addr;
574         struct page *p;
575         int ret;
576
577         p = ppgtt->gen8_pt_pages[pd][pt];
578         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
579                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
580         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
581         if (ret)
582                 return ret;
583
584         ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
585
586         return 0;
587 }
588
589 /**
590  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
591  * with a net effect resembling a 2-level page table in normal x86 terms. Each
592  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
593  * space.
594  *
595  * FIXME: split allocation into smaller pieces. For now we only ever do this
596  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
597  * TODO: Do something with the size parameter
598  */
599 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
600 {
601         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
602         const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
603         int i, j, ret;
604
605         if (size % (1<<30))
606                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
607
608         /* 1. Do all our allocations for page directories and page tables. */
609         ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
610         if (ret)
611                 return ret;
612
613         /*
614          * 2. Create DMA mappings for the page directories and page tables.
615          */
616         for (i = 0; i < max_pdp; i++) {
617                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
618                 if (ret)
619                         goto bail;
620
621                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
622                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
623                         if (ret)
624                                 goto bail;
625                 }
626         }
627
628         /*
629          * 3. Map all the page directory entires to point to the page tables
630          * we've allocated.
631          *
632          * For now, the PPGTT helper functions all require that the PDEs are
633          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
634          * will never need to touch the PDEs again.
635          */
636         for (i = 0; i < max_pdp; i++) {
637                 gen8_ppgtt_pde_t *pd_vaddr;
638                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
639                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
640                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
641                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
642                                                       I915_CACHE_LLC);
643                 }
644                 kunmap_atomic(pd_vaddr);
645         }
646
647         ppgtt->enable = gen8_ppgtt_enable;
648         ppgtt->switch_mm = gen8_mm_switch;
649         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
650         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
651         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
652         ppgtt->base.start = 0;
653         ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
654
655         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
656
657         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
658                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
659         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
660                          ppgtt->num_pd_entries,
661                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
662         return 0;
663
664 bail:
665         gen8_ppgtt_unmap_pages(ppgtt);
666         gen8_ppgtt_free(ppgtt);
667         return ret;
668 }
669
670 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
671 {
672         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
673         struct i915_address_space *vm = &ppgtt->base;
674         gen6_gtt_pte_t __iomem *pd_addr;
675         gen6_gtt_pte_t scratch_pte;
676         uint32_t pd_entry;
677         int pte, pde;
678
679         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
680
681         pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
682                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
683
684         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
685                    ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
686         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
687                 u32 expected;
688                 gen6_gtt_pte_t *pt_vaddr;
689                 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
690                 pd_entry = readl(pd_addr + pde);
691                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
692
693                 if (pd_entry != expected)
694                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
695                                    pde,
696                                    pd_entry,
697                                    expected);
698                 seq_printf(m, "\tPDE: %x\n", pd_entry);
699
700                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
701                 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
702                         unsigned long va =
703                                 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
704                                 (pte * PAGE_SIZE);
705                         int i;
706                         bool found = false;
707                         for (i = 0; i < 4; i++)
708                                 if (pt_vaddr[pte + i] != scratch_pte)
709                                         found = true;
710                         if (!found)
711                                 continue;
712
713                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
714                         for (i = 0; i < 4; i++) {
715                                 if (pt_vaddr[pte + i] != scratch_pte)
716                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
717                                 else
718                                         seq_puts(m, "  SCRATCH ");
719                         }
720                         seq_puts(m, "\n");
721                 }
722                 kunmap_atomic(pt_vaddr);
723         }
724 }
725
726 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
727 {
728         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
729         gen6_gtt_pte_t __iomem *pd_addr;
730         uint32_t pd_entry;
731         int i;
732
733         WARN_ON(ppgtt->pd_offset & 0x3f);
734         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
735                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
736         for (i = 0; i < ppgtt->num_pd_entries; i++) {
737                 dma_addr_t pt_addr;
738
739                 pt_addr = ppgtt->pt_dma_addr[i];
740                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
741                 pd_entry |= GEN6_PDE_VALID;
742
743                 writel(pd_entry, pd_addr + i);
744         }
745         readl(pd_addr);
746 }
747
748 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
749 {
750         BUG_ON(ppgtt->pd_offset & 0x3f);
751
752         return (ppgtt->pd_offset / 64) << 16;
753 }
754
755 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
756                          struct intel_ring_buffer *ring,
757                          bool synchronous)
758 {
759         struct drm_device *dev = ppgtt->base.dev;
760         struct drm_i915_private *dev_priv = dev->dev_private;
761         int ret;
762
763         /* If we're in reset, we can assume the GPU is sufficiently idle to
764          * manually frob these bits. Ideally we could use the ring functions,
765          * except our error handling makes it quite difficult (can't use
766          * intel_ring_begin, ring->flush, or intel_ring_advance)
767          *
768          * FIXME: We should try not to special case reset
769          */
770         if (synchronous ||
771             i915_reset_in_progress(&dev_priv->gpu_error)) {
772                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
773                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
774                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
775                 POSTING_READ(RING_PP_DIR_BASE(ring));
776                 return 0;
777         }
778
779         /* NB: TLBs must be flushed and invalidated before a switch */
780         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
781         if (ret)
782                 return ret;
783
784         ret = intel_ring_begin(ring, 6);
785         if (ret)
786                 return ret;
787
788         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
789         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
790         intel_ring_emit(ring, PP_DIR_DCLV_2G);
791         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
792         intel_ring_emit(ring, get_pd_offset(ppgtt));
793         intel_ring_emit(ring, MI_NOOP);
794         intel_ring_advance(ring);
795
796         return 0;
797 }
798
799 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
800                           struct intel_ring_buffer *ring,
801                           bool synchronous)
802 {
803         struct drm_device *dev = ppgtt->base.dev;
804         struct drm_i915_private *dev_priv = dev->dev_private;
805         int ret;
806
807         /* If we're in reset, we can assume the GPU is sufficiently idle to
808          * manually frob these bits. Ideally we could use the ring functions,
809          * except our error handling makes it quite difficult (can't use
810          * intel_ring_begin, ring->flush, or intel_ring_advance)
811          *
812          * FIXME: We should try not to special case reset
813          */
814         if (synchronous ||
815             i915_reset_in_progress(&dev_priv->gpu_error)) {
816                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
817                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
818                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
819                 POSTING_READ(RING_PP_DIR_BASE(ring));
820                 return 0;
821         }
822
823         /* NB: TLBs must be flushed and invalidated before a switch */
824         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
825         if (ret)
826                 return ret;
827
828         ret = intel_ring_begin(ring, 6);
829         if (ret)
830                 return ret;
831
832         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
833         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
834         intel_ring_emit(ring, PP_DIR_DCLV_2G);
835         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
836         intel_ring_emit(ring, get_pd_offset(ppgtt));
837         intel_ring_emit(ring, MI_NOOP);
838         intel_ring_advance(ring);
839
840         /* XXX: RCS is the only one to auto invalidate the TLBs? */
841         if (ring->id != RCS) {
842                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
843                 if (ret)
844                         return ret;
845         }
846
847         return 0;
848 }
849
850 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
851                           struct intel_ring_buffer *ring,
852                           bool synchronous)
853 {
854         struct drm_device *dev = ppgtt->base.dev;
855         struct drm_i915_private *dev_priv = dev->dev_private;
856
857         if (!synchronous)
858                 return 0;
859
860         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
861         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
862
863         POSTING_READ(RING_PP_DIR_DCLV(ring));
864
865         return 0;
866 }
867
868 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
869 {
870         struct drm_device *dev = ppgtt->base.dev;
871         struct drm_i915_private *dev_priv = dev->dev_private;
872         struct intel_ring_buffer *ring;
873         int j, ret;
874
875         for_each_ring(ring, dev_priv, j) {
876                 I915_WRITE(RING_MODE_GEN7(ring),
877                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
878
879                 /* We promise to do a switch later with FULL PPGTT. If this is
880                  * aliasing, this is the one and only switch we'll do */
881                 if (USES_FULL_PPGTT(dev))
882                         continue;
883
884                 ret = ppgtt->switch_mm(ppgtt, ring, true);
885                 if (ret)
886                         goto err_out;
887         }
888
889         return 0;
890
891 err_out:
892         for_each_ring(ring, dev_priv, j)
893                 I915_WRITE(RING_MODE_GEN7(ring),
894                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
895         return ret;
896 }
897
898 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
899 {
900         struct drm_device *dev = ppgtt->base.dev;
901         struct drm_i915_private *dev_priv = dev->dev_private;
902         struct intel_ring_buffer *ring;
903         uint32_t ecochk, ecobits;
904         int i;
905
906         ecobits = I915_READ(GAC_ECO_BITS);
907         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
908
909         ecochk = I915_READ(GAM_ECOCHK);
910         if (IS_HASWELL(dev)) {
911                 ecochk |= ECOCHK_PPGTT_WB_HSW;
912         } else {
913                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
914                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
915         }
916         I915_WRITE(GAM_ECOCHK, ecochk);
917
918         for_each_ring(ring, dev_priv, i) {
919                 int ret;
920                 /* GFX_MODE is per-ring on gen7+ */
921                 I915_WRITE(RING_MODE_GEN7(ring),
922                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
923
924                 /* We promise to do a switch later with FULL PPGTT. If this is
925                  * aliasing, this is the one and only switch we'll do */
926                 if (USES_FULL_PPGTT(dev))
927                         continue;
928
929                 ret = ppgtt->switch_mm(ppgtt, ring, true);
930                 if (ret)
931                         return ret;
932         }
933
934         return 0;
935 }
936
937 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
938 {
939         struct drm_device *dev = ppgtt->base.dev;
940         struct drm_i915_private *dev_priv = dev->dev_private;
941         struct intel_ring_buffer *ring;
942         uint32_t ecochk, gab_ctl, ecobits;
943         int i;
944
945         ecobits = I915_READ(GAC_ECO_BITS);
946         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
947                    ECOBITS_PPGTT_CACHE64B);
948
949         gab_ctl = I915_READ(GAB_CTL);
950         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
951
952         ecochk = I915_READ(GAM_ECOCHK);
953         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
954
955         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
956
957         for_each_ring(ring, dev_priv, i) {
958                 int ret = ppgtt->switch_mm(ppgtt, ring, true);
959                 if (ret)
960                         return ret;
961         }
962
963         return 0;
964 }
965
966 /* PPGTT support for Sandybdrige/Gen6 and later */
967 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
968                                    uint64_t start,
969                                    uint64_t length,
970                                    bool use_scratch)
971 {
972         struct i915_hw_ppgtt *ppgtt =
973                 container_of(vm, struct i915_hw_ppgtt, base);
974         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
975         unsigned first_entry = start >> PAGE_SHIFT;
976         unsigned num_entries = length >> PAGE_SHIFT;
977         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
978         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
979         unsigned last_pte, i;
980
981         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
982
983         while (num_entries) {
984                 last_pte = first_pte + num_entries;
985                 if (last_pte > I915_PPGTT_PT_ENTRIES)
986                         last_pte = I915_PPGTT_PT_ENTRIES;
987
988                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
989
990                 for (i = first_pte; i < last_pte; i++)
991                         pt_vaddr[i] = scratch_pte;
992
993                 kunmap_atomic(pt_vaddr);
994
995                 num_entries -= last_pte - first_pte;
996                 first_pte = 0;
997                 act_pt++;
998         }
999 }
1000
1001 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1002                                       struct sg_table *pages,
1003                                       uint64_t start,
1004                                       enum i915_cache_level cache_level)
1005 {
1006         struct i915_hw_ppgtt *ppgtt =
1007                 container_of(vm, struct i915_hw_ppgtt, base);
1008         gen6_gtt_pte_t *pt_vaddr;
1009         unsigned first_entry = start >> PAGE_SHIFT;
1010         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
1011         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
1012         struct sg_page_iter sg_iter;
1013
1014         pt_vaddr = NULL;
1015         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1016                 if (pt_vaddr == NULL)
1017                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
1018
1019                 pt_vaddr[act_pte] =
1020                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1021                                        cache_level, true);
1022                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
1023                         kunmap_atomic(pt_vaddr);
1024                         pt_vaddr = NULL;
1025                         act_pt++;
1026                         act_pte = 0;
1027                 }
1028         }
1029         if (pt_vaddr)
1030                 kunmap_atomic(pt_vaddr);
1031 }
1032
1033 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
1034 {
1035         int i;
1036
1037         if (ppgtt->pt_dma_addr) {
1038                 for (i = 0; i < ppgtt->num_pd_entries; i++)
1039                         pci_unmap_page(ppgtt->base.dev->pdev,
1040                                        ppgtt->pt_dma_addr[i],
1041                                        4096, PCI_DMA_BIDIRECTIONAL);
1042         }
1043 }
1044
1045 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1046 {
1047         int i;
1048
1049         kfree(ppgtt->pt_dma_addr);
1050         for (i = 0; i < ppgtt->num_pd_entries; i++)
1051                 __free_page(ppgtt->pt_pages[i]);
1052         kfree(ppgtt->pt_pages);
1053 }
1054
1055 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1056 {
1057         struct i915_hw_ppgtt *ppgtt =
1058                 container_of(vm, struct i915_hw_ppgtt, base);
1059
1060         list_del(&vm->global_link);
1061         drm_mm_takedown(&ppgtt->base.mm);
1062         drm_mm_remove_node(&ppgtt->node);
1063
1064         gen6_ppgtt_unmap_pages(ppgtt);
1065         gen6_ppgtt_free(ppgtt);
1066 }
1067
1068 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1069 {
1070 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
1071 #define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
1072         struct drm_device *dev = ppgtt->base.dev;
1073         struct drm_i915_private *dev_priv = dev->dev_private;
1074         bool retried = false;
1075         int ret;
1076
1077         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1078          * allocator works in address space sizes, so it's multiplied by page
1079          * size. We allocate at the top of the GTT to avoid fragmentation.
1080          */
1081         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1082 alloc:
1083         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1084                                                   &ppgtt->node, GEN6_PD_SIZE,
1085                                                   GEN6_PD_ALIGN, 0,
1086                                                   0, dev_priv->gtt.base.total,
1087                                                   DRM_MM_SEARCH_DEFAULT,
1088                                                   DRM_MM_CREATE_DEFAULT);
1089         if (ret == -ENOSPC && !retried) {
1090                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1091                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1092                                                I915_CACHE_NONE, 0);
1093                 if (ret)
1094                         return ret;
1095
1096                 retried = true;
1097                 goto alloc;
1098         }
1099
1100         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1101                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1102
1103         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1104         return ret;
1105 }
1106
1107 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1108 {
1109         int i;
1110
1111         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1112                                   GFP_KERNEL);
1113
1114         if (!ppgtt->pt_pages)
1115                 return -ENOMEM;
1116
1117         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1118                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1119                 if (!ppgtt->pt_pages[i]) {
1120                         gen6_ppgtt_free(ppgtt);
1121                         return -ENOMEM;
1122                 }
1123         }
1124
1125         return 0;
1126 }
1127
1128 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1129 {
1130         int ret;
1131
1132         ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1133         if (ret)
1134                 return ret;
1135
1136         ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1137         if (ret) {
1138                 drm_mm_remove_node(&ppgtt->node);
1139                 return ret;
1140         }
1141
1142         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1143                                      GFP_KERNEL);
1144         if (!ppgtt->pt_dma_addr) {
1145                 drm_mm_remove_node(&ppgtt->node);
1146                 gen6_ppgtt_free(ppgtt);
1147                 return -ENOMEM;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1154 {
1155         struct drm_device *dev = ppgtt->base.dev;
1156         int i;
1157
1158         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1159                 dma_addr_t pt_addr;
1160
1161                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1162                                        PCI_DMA_BIDIRECTIONAL);
1163
1164                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1165                         gen6_ppgtt_unmap_pages(ppgtt);
1166                         return -EIO;
1167                 }
1168
1169                 ppgtt->pt_dma_addr[i] = pt_addr;
1170         }
1171
1172         return 0;
1173 }
1174
1175 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1176 {
1177         struct drm_device *dev = ppgtt->base.dev;
1178         struct drm_i915_private *dev_priv = dev->dev_private;
1179         int ret;
1180
1181         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1182         if (IS_GEN6(dev)) {
1183                 ppgtt->enable = gen6_ppgtt_enable;
1184                 ppgtt->switch_mm = gen6_mm_switch;
1185         } else if (IS_HASWELL(dev)) {
1186                 ppgtt->enable = gen7_ppgtt_enable;
1187                 ppgtt->switch_mm = hsw_mm_switch;
1188         } else if (IS_GEN7(dev)) {
1189                 ppgtt->enable = gen7_ppgtt_enable;
1190                 ppgtt->switch_mm = gen7_mm_switch;
1191         } else
1192                 BUG();
1193
1194         ret = gen6_ppgtt_alloc(ppgtt);
1195         if (ret)
1196                 return ret;
1197
1198         ret = gen6_ppgtt_setup_page_tables(ppgtt);
1199         if (ret) {
1200                 gen6_ppgtt_free(ppgtt);
1201                 return ret;
1202         }
1203
1204         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1205         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1206         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1207         ppgtt->base.start = 0;
1208         ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1209         ppgtt->debug_dump = gen6_dump_ppgtt;
1210
1211         ppgtt->pd_offset =
1212                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1213
1214         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1215
1216         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1217                          ppgtt->node.size >> 20,
1218                          ppgtt->node.start / PAGE_SIZE);
1219
1220         return 0;
1221 }
1222
1223 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1224 {
1225         struct drm_i915_private *dev_priv = dev->dev_private;
1226         int ret = 0;
1227
1228         ppgtt->base.dev = dev;
1229         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1230
1231         if (INTEL_INFO(dev)->gen < 8)
1232                 ret = gen6_ppgtt_init(ppgtt);
1233         else if (IS_GEN8(dev))
1234                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1235         else
1236                 BUG();
1237
1238         if (!ret) {
1239                 struct drm_i915_private *dev_priv = dev->dev_private;
1240                 kref_init(&ppgtt->ref);
1241                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1242                             ppgtt->base.total);
1243                 i915_init_vm(dev_priv, &ppgtt->base);
1244                 if (INTEL_INFO(dev)->gen < 8) {
1245                         gen6_write_pdes(ppgtt);
1246                         DRM_DEBUG("Adding PPGTT at offset %x\n",
1247                                   ppgtt->pd_offset << 10);
1248                 }
1249         }
1250
1251         return ret;
1252 }
1253
1254 static void
1255 ppgtt_bind_vma(struct i915_vma *vma,
1256                enum i915_cache_level cache_level,
1257                u32 flags)
1258 {
1259         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1260                                 cache_level);
1261 }
1262
1263 static void ppgtt_unbind_vma(struct i915_vma *vma)
1264 {
1265         vma->vm->clear_range(vma->vm,
1266                              vma->node.start,
1267                              vma->obj->base.size,
1268                              true);
1269 }
1270
1271 extern int intel_iommu_gfx_mapped;
1272 /* Certain Gen5 chipsets require require idling the GPU before
1273  * unmapping anything from the GTT when VT-d is enabled.
1274  */
1275 static inline bool needs_idle_maps(struct drm_device *dev)
1276 {
1277 #ifdef CONFIG_INTEL_IOMMU
1278         /* Query intel_iommu to see if we need the workaround. Presumably that
1279          * was loaded first.
1280          */
1281         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1282                 return true;
1283 #endif
1284         return false;
1285 }
1286
1287 static bool do_idling(struct drm_i915_private *dev_priv)
1288 {
1289         bool ret = dev_priv->mm.interruptible;
1290
1291         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1292                 dev_priv->mm.interruptible = false;
1293                 if (i915_gpu_idle(dev_priv->dev)) {
1294                         DRM_ERROR("Couldn't idle GPU\n");
1295                         /* Wait a bit, in hopes it avoids the hang */
1296                         udelay(10);
1297                 }
1298         }
1299
1300         return ret;
1301 }
1302
1303 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1304 {
1305         if (unlikely(dev_priv->gtt.do_idle_maps))
1306                 dev_priv->mm.interruptible = interruptible;
1307 }
1308
1309 void i915_check_and_clear_faults(struct drm_device *dev)
1310 {
1311         struct drm_i915_private *dev_priv = dev->dev_private;
1312         struct intel_ring_buffer *ring;
1313         int i;
1314
1315         if (INTEL_INFO(dev)->gen < 6)
1316                 return;
1317
1318         for_each_ring(ring, dev_priv, i) {
1319                 u32 fault_reg;
1320                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1321                 if (fault_reg & RING_FAULT_VALID) {
1322                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1323                                          "\tAddr: 0x%08lx\\n"
1324                                          "\tAddress space: %s\n"
1325                                          "\tSource ID: %d\n"
1326                                          "\tType: %d\n",
1327                                          fault_reg & PAGE_MASK,
1328                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1329                                          RING_FAULT_SRCID(fault_reg),
1330                                          RING_FAULT_FAULT_TYPE(fault_reg));
1331                         I915_WRITE(RING_FAULT_REG(ring),
1332                                    fault_reg & ~RING_FAULT_VALID);
1333                 }
1334         }
1335         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1336 }
1337
1338 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1339 {
1340         struct drm_i915_private *dev_priv = dev->dev_private;
1341
1342         /* Don't bother messing with faults pre GEN6 as we have little
1343          * documentation supporting that it's a good idea.
1344          */
1345         if (INTEL_INFO(dev)->gen < 6)
1346                 return;
1347
1348         i915_check_and_clear_faults(dev);
1349
1350         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1351                                        dev_priv->gtt.base.start,
1352                                        dev_priv->gtt.base.total,
1353                                        true);
1354 }
1355
1356 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1357 {
1358         struct drm_i915_private *dev_priv = dev->dev_private;
1359         struct drm_i915_gem_object *obj;
1360         struct i915_address_space *vm;
1361
1362         i915_check_and_clear_faults(dev);
1363
1364         /* First fill our portion of the GTT with scratch pages */
1365         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1366                                        dev_priv->gtt.base.start,
1367                                        dev_priv->gtt.base.total,
1368                                        true);
1369
1370         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1371                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1372                                                            &dev_priv->gtt.base);
1373                 if (!vma)
1374                         continue;
1375
1376                 i915_gem_clflush_object(obj, obj->pin_display);
1377                 /* The bind_vma code tries to be smart about tracking mappings.
1378                  * Unfortunately above, we've just wiped out the mappings
1379                  * without telling our object about it. So we need to fake it.
1380                  */
1381                 obj->has_global_gtt_mapping = 0;
1382                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1383         }
1384
1385
1386         if (INTEL_INFO(dev)->gen >= 8) {
1387                 gen8_setup_private_ppat(dev_priv);
1388                 return;
1389         }
1390
1391         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1392                 /* TODO: Perhaps it shouldn't be gen6 specific */
1393                 if (i915_is_ggtt(vm)) {
1394                         if (dev_priv->mm.aliasing_ppgtt)
1395                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1396                         continue;
1397                 }
1398
1399                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1400         }
1401
1402         i915_gem_chipset_flush(dev);
1403 }
1404
1405 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1406 {
1407         if (obj->has_dma_mapping)
1408                 return 0;
1409
1410         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1411                         obj->pages->sgl, obj->pages->nents,
1412                         PCI_DMA_BIDIRECTIONAL))
1413                 return -ENOSPC;
1414
1415         return 0;
1416 }
1417
1418 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1419 {
1420 #ifdef writeq
1421         writeq(pte, addr);
1422 #else
1423         iowrite32((u32)pte, addr);
1424         iowrite32(pte >> 32, addr + 4);
1425 #endif
1426 }
1427
1428 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1429                                      struct sg_table *st,
1430                                      uint64_t start,
1431                                      enum i915_cache_level level)
1432 {
1433         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1434         unsigned first_entry = start >> PAGE_SHIFT;
1435         gen8_gtt_pte_t __iomem *gtt_entries =
1436                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1437         int i = 0;
1438         struct sg_page_iter sg_iter;
1439         dma_addr_t addr;
1440
1441         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1442                 addr = sg_dma_address(sg_iter.sg) +
1443                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1444                 gen8_set_pte(&gtt_entries[i],
1445                              gen8_pte_encode(addr, level, true));
1446                 i++;
1447         }
1448
1449         /*
1450          * XXX: This serves as a posting read to make sure that the PTE has
1451          * actually been updated. There is some concern that even though
1452          * registers and PTEs are within the same BAR that they are potentially
1453          * of NUMA access patterns. Therefore, even with the way we assume
1454          * hardware should work, we must keep this posting read for paranoia.
1455          */
1456         if (i != 0)
1457                 WARN_ON(readq(&gtt_entries[i-1])
1458                         != gen8_pte_encode(addr, level, true));
1459
1460         /* This next bit makes the above posting read even more important. We
1461          * want to flush the TLBs only after we're certain all the PTE updates
1462          * have finished.
1463          */
1464         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1465         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1466 }
1467
1468 /*
1469  * Binds an object into the global gtt with the specified cache level. The object
1470  * will be accessible to the GPU via commands whose operands reference offsets
1471  * within the global GTT as well as accessible by the GPU through the GMADR
1472  * mapped BAR (dev_priv->mm.gtt->gtt).
1473  */
1474 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1475                                      struct sg_table *st,
1476                                      uint64_t start,
1477                                      enum i915_cache_level level)
1478 {
1479         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1480         unsigned first_entry = start >> PAGE_SHIFT;
1481         gen6_gtt_pte_t __iomem *gtt_entries =
1482                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1483         int i = 0;
1484         struct sg_page_iter sg_iter;
1485         dma_addr_t addr;
1486
1487         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1488                 addr = sg_page_iter_dma_address(&sg_iter);
1489                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1490                 i++;
1491         }
1492
1493         /* XXX: This serves as a posting read to make sure that the PTE has
1494          * actually been updated. There is some concern that even though
1495          * registers and PTEs are within the same BAR that they are potentially
1496          * of NUMA access patterns. Therefore, even with the way we assume
1497          * hardware should work, we must keep this posting read for paranoia.
1498          */
1499         if (i != 0)
1500                 WARN_ON(readl(&gtt_entries[i-1]) !=
1501                         vm->pte_encode(addr, level, true));
1502
1503         /* This next bit makes the above posting read even more important. We
1504          * want to flush the TLBs only after we're certain all the PTE updates
1505          * have finished.
1506          */
1507         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1508         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1509 }
1510
1511 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1512                                   uint64_t start,
1513                                   uint64_t length,
1514                                   bool use_scratch)
1515 {
1516         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1517         unsigned first_entry = start >> PAGE_SHIFT;
1518         unsigned num_entries = length >> PAGE_SHIFT;
1519         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1520                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1521         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1522         int i;
1523
1524         if (WARN(num_entries > max_entries,
1525                  "First entry = %d; Num entries = %d (max=%d)\n",
1526                  first_entry, num_entries, max_entries))
1527                 num_entries = max_entries;
1528
1529         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1530                                       I915_CACHE_LLC,
1531                                       use_scratch);
1532         for (i = 0; i < num_entries; i++)
1533                 gen8_set_pte(&gtt_base[i], scratch_pte);
1534         readl(gtt_base);
1535 }
1536
1537 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1538                                   uint64_t start,
1539                                   uint64_t length,
1540                                   bool use_scratch)
1541 {
1542         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1543         unsigned first_entry = start >> PAGE_SHIFT;
1544         unsigned num_entries = length >> PAGE_SHIFT;
1545         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1546                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1547         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1548         int i;
1549
1550         if (WARN(num_entries > max_entries,
1551                  "First entry = %d; Num entries = %d (max=%d)\n",
1552                  first_entry, num_entries, max_entries))
1553                 num_entries = max_entries;
1554
1555         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1556
1557         for (i = 0; i < num_entries; i++)
1558                 iowrite32(scratch_pte, &gtt_base[i]);
1559         readl(gtt_base);
1560 }
1561
1562
1563 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1564                                enum i915_cache_level cache_level,
1565                                u32 unused)
1566 {
1567         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1568         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1569                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1570
1571         BUG_ON(!i915_is_ggtt(vma->vm));
1572         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1573         vma->obj->has_global_gtt_mapping = 1;
1574 }
1575
1576 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1577                                   uint64_t start,
1578                                   uint64_t length,
1579                                   bool unused)
1580 {
1581         unsigned first_entry = start >> PAGE_SHIFT;
1582         unsigned num_entries = length >> PAGE_SHIFT;
1583         intel_gtt_clear_range(first_entry, num_entries);
1584 }
1585
1586 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1587 {
1588         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1589         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1590
1591         BUG_ON(!i915_is_ggtt(vma->vm));
1592         vma->obj->has_global_gtt_mapping = 0;
1593         intel_gtt_clear_range(first, size);
1594 }
1595
1596 static void ggtt_bind_vma(struct i915_vma *vma,
1597                           enum i915_cache_level cache_level,
1598                           u32 flags)
1599 {
1600         struct drm_device *dev = vma->vm->dev;
1601         struct drm_i915_private *dev_priv = dev->dev_private;
1602         struct drm_i915_gem_object *obj = vma->obj;
1603
1604         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1605          * or we have a global mapping already but the cacheability flags have
1606          * changed, set the global PTEs.
1607          *
1608          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1609          * instead if none of the above hold true.
1610          *
1611          * NB: A global mapping should only be needed for special regions like
1612          * "gtt mappable", SNB errata, or if specified via special execbuf
1613          * flags. At all other times, the GPU will use the aliasing PPGTT.
1614          */
1615         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1616                 if (!obj->has_global_gtt_mapping ||
1617                     (cache_level != obj->cache_level)) {
1618                         vma->vm->insert_entries(vma->vm, obj->pages,
1619                                                 vma->node.start,
1620                                                 cache_level);
1621                         obj->has_global_gtt_mapping = 1;
1622                 }
1623         }
1624
1625         if (dev_priv->mm.aliasing_ppgtt &&
1626             (!obj->has_aliasing_ppgtt_mapping ||
1627              (cache_level != obj->cache_level))) {
1628                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1629                 appgtt->base.insert_entries(&appgtt->base,
1630                                             vma->obj->pages,
1631                                             vma->node.start,
1632                                             cache_level);
1633                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1634         }
1635 }
1636
1637 static void ggtt_unbind_vma(struct i915_vma *vma)
1638 {
1639         struct drm_device *dev = vma->vm->dev;
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         struct drm_i915_gem_object *obj = vma->obj;
1642
1643         if (obj->has_global_gtt_mapping) {
1644                 vma->vm->clear_range(vma->vm,
1645                                      vma->node.start,
1646                                      obj->base.size,
1647                                      true);
1648                 obj->has_global_gtt_mapping = 0;
1649         }
1650
1651         if (obj->has_aliasing_ppgtt_mapping) {
1652                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1653                 appgtt->base.clear_range(&appgtt->base,
1654                                          vma->node.start,
1655                                          obj->base.size,
1656                                          true);
1657                 obj->has_aliasing_ppgtt_mapping = 0;
1658         }
1659 }
1660
1661 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1662 {
1663         struct drm_device *dev = obj->base.dev;
1664         struct drm_i915_private *dev_priv = dev->dev_private;
1665         bool interruptible;
1666
1667         interruptible = do_idling(dev_priv);
1668
1669         if (!obj->has_dma_mapping)
1670                 dma_unmap_sg(&dev->pdev->dev,
1671                              obj->pages->sgl, obj->pages->nents,
1672                              PCI_DMA_BIDIRECTIONAL);
1673
1674         undo_idling(dev_priv, interruptible);
1675 }
1676
1677 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1678                                   unsigned long color,
1679                                   unsigned long *start,
1680                                   unsigned long *end)
1681 {
1682         if (node->color != color)
1683                 *start += 4096;
1684
1685         if (!list_empty(&node->node_list)) {
1686                 node = list_entry(node->node_list.next,
1687                                   struct drm_mm_node,
1688                                   node_list);
1689                 if (node->allocated && node->color != color)
1690                         *end -= 4096;
1691         }
1692 }
1693
1694 void i915_gem_setup_global_gtt(struct drm_device *dev,
1695                                unsigned long start,
1696                                unsigned long mappable_end,
1697                                unsigned long end)
1698 {
1699         /* Let GEM Manage all of the aperture.
1700          *
1701          * However, leave one page at the end still bound to the scratch page.
1702          * There are a number of places where the hardware apparently prefetches
1703          * past the end of the object, and we've seen multiple hangs with the
1704          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1705          * aperture.  One page should be enough to keep any prefetching inside
1706          * of the aperture.
1707          */
1708         struct drm_i915_private *dev_priv = dev->dev_private;
1709         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1710         struct drm_mm_node *entry;
1711         struct drm_i915_gem_object *obj;
1712         unsigned long hole_start, hole_end;
1713
1714         BUG_ON(mappable_end > end);
1715
1716         /* Subtract the guard page ... */
1717         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1718         if (!HAS_LLC(dev))
1719                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1720
1721         /* Mark any preallocated objects as occupied */
1722         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1723                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1724                 int ret;
1725                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1726                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1727
1728                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1729                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1730                 if (ret)
1731                         DRM_DEBUG_KMS("Reservation failed\n");
1732                 obj->has_global_gtt_mapping = 1;
1733         }
1734
1735         dev_priv->gtt.base.start = start;
1736         dev_priv->gtt.base.total = end - start;
1737
1738         /* Clear any non-preallocated blocks */
1739         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1740                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1741                               hole_start, hole_end);
1742                 ggtt_vm->clear_range(ggtt_vm, hole_start,
1743                                      hole_end - hole_start, true);
1744         }
1745
1746         /* And finally clear the reserved guard page */
1747         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1748 }
1749
1750 void i915_gem_init_global_gtt(struct drm_device *dev)
1751 {
1752         struct drm_i915_private *dev_priv = dev->dev_private;
1753         unsigned long gtt_size, mappable_size;
1754
1755         gtt_size = dev_priv->gtt.base.total;
1756         mappable_size = dev_priv->gtt.mappable_end;
1757
1758         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1759 }
1760
1761 static int setup_scratch_page(struct drm_device *dev)
1762 {
1763         struct drm_i915_private *dev_priv = dev->dev_private;
1764         struct page *page;
1765         dma_addr_t dma_addr;
1766
1767         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1768         if (page == NULL)
1769                 return -ENOMEM;
1770         get_page(page);
1771         set_pages_uc(page, 1);
1772
1773 #ifdef CONFIG_INTEL_IOMMU
1774         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1775                                 PCI_DMA_BIDIRECTIONAL);
1776         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1777                 return -EINVAL;
1778 #else
1779         dma_addr = page_to_phys(page);
1780 #endif
1781         dev_priv->gtt.base.scratch.page = page;
1782         dev_priv->gtt.base.scratch.addr = dma_addr;
1783
1784         return 0;
1785 }
1786
1787 static void teardown_scratch_page(struct drm_device *dev)
1788 {
1789         struct drm_i915_private *dev_priv = dev->dev_private;
1790         struct page *page = dev_priv->gtt.base.scratch.page;
1791
1792         set_pages_wb(page, 1);
1793         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1794                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1795         put_page(page);
1796         __free_page(page);
1797 }
1798
1799 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1800 {
1801         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1802         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1803         return snb_gmch_ctl << 20;
1804 }
1805
1806 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1807 {
1808         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1809         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1810         if (bdw_gmch_ctl)
1811                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1812         return bdw_gmch_ctl << 20;
1813 }
1814
1815 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1816 {
1817         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1818         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1819         return snb_gmch_ctl << 25; /* 32 MB units */
1820 }
1821
1822 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1823 {
1824         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1825         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1826         return bdw_gmch_ctl << 25; /* 32 MB units */
1827 }
1828
1829 static int ggtt_probe_common(struct drm_device *dev,
1830                              size_t gtt_size)
1831 {
1832         struct drm_i915_private *dev_priv = dev->dev_private;
1833         phys_addr_t gtt_phys_addr;
1834         int ret;
1835
1836         /* For Modern GENs the PTEs and register space are split in the BAR */
1837         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1838                 (pci_resource_len(dev->pdev, 0) / 2);
1839
1840         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1841         if (!dev_priv->gtt.gsm) {
1842                 DRM_ERROR("Failed to map the gtt page table\n");
1843                 return -ENOMEM;
1844         }
1845
1846         ret = setup_scratch_page(dev);
1847         if (ret) {
1848                 DRM_ERROR("Scratch setup failed\n");
1849                 /* iounmap will also get called at remove, but meh */
1850                 iounmap(dev_priv->gtt.gsm);
1851         }
1852
1853         return ret;
1854 }
1855
1856 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1857  * bits. When using advanced contexts each context stores its own PAT, but
1858  * writing this data shouldn't be harmful even in those cases. */
1859 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1860 {
1861 #define GEN8_PPAT_UC            (0<<0)
1862 #define GEN8_PPAT_WC            (1<<0)
1863 #define GEN8_PPAT_WT            (2<<0)
1864 #define GEN8_PPAT_WB            (3<<0)
1865 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1866 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1867 #define GEN8_PPAT_LLC           (1<<2)
1868 #define GEN8_PPAT_LLCELLC       (2<<2)
1869 #define GEN8_PPAT_LLCeLLC       (3<<2)
1870 #define GEN8_PPAT_AGE(x)        (x<<4)
1871 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1872         uint64_t pat;
1873
1874         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1875               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1876               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1877               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1878               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1879               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1880               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1881               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1882
1883         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1884          * write would work. */
1885         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1886         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1887 }
1888
1889 static int gen8_gmch_probe(struct drm_device *dev,
1890                            size_t *gtt_total,
1891                            size_t *stolen,
1892                            phys_addr_t *mappable_base,
1893                            unsigned long *mappable_end)
1894 {
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         unsigned int gtt_size;
1897         u16 snb_gmch_ctl;
1898         int ret;
1899
1900         /* TODO: We're not aware of mappable constraints on gen8 yet */
1901         *mappable_base = pci_resource_start(dev->pdev, 2);
1902         *mappable_end = pci_resource_len(dev->pdev, 2);
1903
1904         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1905                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1906
1907         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1908
1909         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1910
1911         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1912         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1913
1914         gen8_setup_private_ppat(dev_priv);
1915
1916         ret = ggtt_probe_common(dev, gtt_size);
1917
1918         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1919         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1920
1921         return ret;
1922 }
1923
1924 static int gen6_gmch_probe(struct drm_device *dev,
1925                            size_t *gtt_total,
1926                            size_t *stolen,
1927                            phys_addr_t *mappable_base,
1928                            unsigned long *mappable_end)
1929 {
1930         struct drm_i915_private *dev_priv = dev->dev_private;
1931         unsigned int gtt_size;
1932         u16 snb_gmch_ctl;
1933         int ret;
1934
1935         *mappable_base = pci_resource_start(dev->pdev, 2);
1936         *mappable_end = pci_resource_len(dev->pdev, 2);
1937
1938         /* 64/512MB is the current min/max we actually know of, but this is just
1939          * a coarse sanity check.
1940          */
1941         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1942                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1943                           dev_priv->gtt.mappable_end);
1944                 return -ENXIO;
1945         }
1946
1947         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1948                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1949         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1950
1951         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1952
1953         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1954         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1955
1956         ret = ggtt_probe_common(dev, gtt_size);
1957
1958         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1959         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1960
1961         return ret;
1962 }
1963
1964 static void gen6_gmch_remove(struct i915_address_space *vm)
1965 {
1966
1967         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1968
1969         drm_mm_takedown(&vm->mm);
1970         iounmap(gtt->gsm);
1971         teardown_scratch_page(vm->dev);
1972 }
1973
1974 static int i915_gmch_probe(struct drm_device *dev,
1975                            size_t *gtt_total,
1976                            size_t *stolen,
1977                            phys_addr_t *mappable_base,
1978                            unsigned long *mappable_end)
1979 {
1980         struct drm_i915_private *dev_priv = dev->dev_private;
1981         int ret;
1982
1983         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1984         if (!ret) {
1985                 DRM_ERROR("failed to set up gmch\n");
1986                 return -EIO;
1987         }
1988
1989         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1990
1991         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1992         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1993
1994         if (unlikely(dev_priv->gtt.do_idle_maps))
1995                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1996
1997         return 0;
1998 }
1999
2000 static void i915_gmch_remove(struct i915_address_space *vm)
2001 {
2002         intel_gmch_remove();
2003 }
2004
2005 int i915_gem_gtt_init(struct drm_device *dev)
2006 {
2007         struct drm_i915_private *dev_priv = dev->dev_private;
2008         struct i915_gtt *gtt = &dev_priv->gtt;
2009         int ret;
2010
2011         if (INTEL_INFO(dev)->gen <= 5) {
2012                 gtt->gtt_probe = i915_gmch_probe;
2013                 gtt->base.cleanup = i915_gmch_remove;
2014         } else if (INTEL_INFO(dev)->gen < 8) {
2015                 gtt->gtt_probe = gen6_gmch_probe;
2016                 gtt->base.cleanup = gen6_gmch_remove;
2017                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2018                         gtt->base.pte_encode = iris_pte_encode;
2019                 else if (IS_HASWELL(dev))
2020                         gtt->base.pte_encode = hsw_pte_encode;
2021                 else if (IS_VALLEYVIEW(dev))
2022                         gtt->base.pte_encode = byt_pte_encode;
2023                 else if (INTEL_INFO(dev)->gen >= 7)
2024                         gtt->base.pte_encode = ivb_pte_encode;
2025                 else
2026                         gtt->base.pte_encode = snb_pte_encode;
2027         } else {
2028                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2029                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2030         }
2031
2032         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2033                              &gtt->mappable_base, &gtt->mappable_end);
2034         if (ret)
2035                 return ret;
2036
2037         gtt->base.dev = dev;
2038
2039         /* GMADR is the PCI mmio aperture into the global GTT. */
2040         DRM_INFO("Memory usable by graphics device = %zdM\n",
2041                  gtt->base.total >> 20);
2042         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2043         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2044         /*
2045          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2046          * user's requested state against the hardware/driver capabilities.  We
2047          * do this now so that we can print out any log messages once rather
2048          * than every time we check intel_enable_ppgtt().
2049          */
2050         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2051         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2052
2053         return 0;
2054 }
2055
2056 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2057                                               struct i915_address_space *vm)
2058 {
2059         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2060         if (vma == NULL)
2061                 return ERR_PTR(-ENOMEM);
2062
2063         INIT_LIST_HEAD(&vma->vma_link);
2064         INIT_LIST_HEAD(&vma->mm_list);
2065         INIT_LIST_HEAD(&vma->exec_list);
2066         vma->vm = vm;
2067         vma->obj = obj;
2068
2069         switch (INTEL_INFO(vm->dev)->gen) {
2070         case 8:
2071         case 7:
2072         case 6:
2073                 if (i915_is_ggtt(vm)) {
2074                         vma->unbind_vma = ggtt_unbind_vma;
2075                         vma->bind_vma = ggtt_bind_vma;
2076                 } else {
2077                         vma->unbind_vma = ppgtt_unbind_vma;
2078                         vma->bind_vma = ppgtt_bind_vma;
2079                 }
2080                 break;
2081         case 5:
2082         case 4:
2083         case 3:
2084         case 2:
2085                 BUG_ON(!i915_is_ggtt(vm));
2086                 vma->unbind_vma = i915_ggtt_unbind_vma;
2087                 vma->bind_vma = i915_ggtt_bind_vma;
2088                 break;
2089         default:
2090                 BUG();
2091         }
2092
2093         /* Keep GGTT vmas first to make debug easier */
2094         if (i915_is_ggtt(vm))
2095                 list_add(&vma->vma_link, &obj->vma_list);
2096         else
2097                 list_add_tail(&vma->vma_link, &obj->vma_list);
2098
2099         return vma;
2100 }
2101
2102 struct i915_vma *
2103 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2104                                   struct i915_address_space *vm)
2105 {
2106         struct i915_vma *vma;
2107
2108         vma = i915_gem_obj_to_vma(obj, vm);
2109         if (!vma)
2110                 vma = __i915_gem_vma_create(obj, vm);
2111
2112         return vma;
2113 }