]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
Merge branch 'tee/initial-merge' into fixes
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /* The timeline struct (as part of the ppgtt underneath a context)
41          * may be freed when the request is no longer in use by the GPU.
42          * We could extend the life of a context to beyond that of all
43          * fences, possibly keeping the hw resource around indefinitely,
44          * or we just give them a false name. Since
45          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46          * lie seems justifiable.
47          */
48         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49                 return "signaled";
50
51         return to_request(fence)->timeline->common->name;
52 }
53
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56         return i915_gem_request_completed(to_request(fence));
57 }
58
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61         if (i915_fence_signaled(fence))
62                 return false;
63
64         intel_engine_enable_signaling(to_request(fence));
65         return true;
66 }
67
68 static signed long i915_fence_wait(struct dma_fence *fence,
69                                    bool interruptible,
70                                    signed long timeout)
71 {
72         return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77         struct drm_i915_gem_request *req = to_request(fence);
78
79         /* The request is put onto a RCU freelist (i.e. the address
80          * is immediately reused), mark the fences as being freed now.
81          * Otherwise the debugobjects for the fences are only marked as
82          * freed when the slab cache itself is freed, and so we would get
83          * caught trying to reuse dead objects.
84          */
85         i915_sw_fence_fini(&req->submit);
86
87         kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91         .get_driver_name = i915_fence_get_driver_name,
92         .get_timeline_name = i915_fence_get_timeline_name,
93         .enable_signaling = i915_fence_enable_signaling,
94         .signaled = i915_fence_signaled,
95         .wait = i915_fence_wait,
96         .release = i915_fence_release,
97 };
98
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102         struct drm_i915_file_private *file_priv;
103
104         file_priv = request->file_priv;
105         if (!file_priv)
106                 return;
107
108         spin_lock(&file_priv->mm.lock);
109         if (request->file_priv) {
110                 list_del(&request->client_link);
111                 request->file_priv = NULL;
112         }
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124                      struct i915_dependency *dep)
125 {
126         kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131                                struct i915_priotree *signal,
132                                struct i915_dependency *dep,
133                                unsigned long flags)
134 {
135         INIT_LIST_HEAD(&dep->dfs_link);
136         list_add(&dep->wait_link, &signal->waiters_list);
137         list_add(&dep->signal_link, &pt->signalers_list);
138         dep->signaler = signal;
139         dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144                              struct i915_priotree *pt,
145                              struct i915_priotree *signal)
146 {
147         struct i915_dependency *dep;
148
149         dep = i915_dependency_alloc(i915);
150         if (!dep)
151                 return -ENOMEM;
152
153         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154         return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160         struct i915_dependency *dep, *next;
161
162         GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
163
164         /* Everyone we depended upon (the fences we wait to be signaled)
165          * should retire before us and remove themselves from our list.
166          * However, retirement is run independently on each timeline and
167          * so we may be called out-of-order.
168          */
169         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170                 list_del(&dep->wait_link);
171                 if (dep->flags & I915_DEPENDENCY_ALLOC)
172                         i915_dependency_free(i915, dep);
173         }
174
175         /* Remove ourselves from everyone who depends upon us */
176         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177                 list_del(&dep->signal_link);
178                 if (dep->flags & I915_DEPENDENCY_ALLOC)
179                         i915_dependency_free(i915, dep);
180         }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186         INIT_LIST_HEAD(&pt->signalers_list);
187         INIT_LIST_HEAD(&pt->waiters_list);
188         RB_CLEAR_NODE(&pt->node);
189         pt->priority = INT_MIN;
190 }
191
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194         struct intel_engine_cs *engine;
195         enum intel_engine_id id;
196         int ret;
197
198         /* Carefully retire all requests without writing to the rings */
199         ret = i915_gem_wait_for_idle(i915,
200                                      I915_WAIT_INTERRUPTIBLE |
201                                      I915_WAIT_LOCKED);
202         if (ret)
203                 return ret;
204
205         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206         for_each_engine(engine, i915, id) {
207                 struct i915_gem_timeline *timeline;
208                 struct intel_timeline *tl = engine->timeline;
209
210                 if (!i915_seqno_passed(seqno, tl->seqno)) {
211                         /* spin until threads are complete */
212                         while (intel_breadcrumbs_busy(engine))
213                                 cond_resched();
214                 }
215
216                 /* Finally reset hw state */
217                 tl->seqno = seqno;
218                 intel_engine_init_global_seqno(engine, seqno);
219
220                 list_for_each_entry(timeline, &i915->gt.timelines, link)
221                         memset(timeline->engine[id].sync_seqno, 0,
222                                sizeof(timeline->engine[id].sync_seqno));
223         }
224
225         return 0;
226 }
227
228 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
229 {
230         struct drm_i915_private *dev_priv = to_i915(dev);
231
232         lockdep_assert_held(&dev_priv->drm.struct_mutex);
233
234         if (seqno == 0)
235                 return -EINVAL;
236
237         /* HWS page needs to be set less than what we
238          * will inject to ring
239          */
240         return reset_all_global_seqno(dev_priv, seqno - 1);
241 }
242
243 static int reserve_seqno(struct intel_engine_cs *engine)
244 {
245         u32 active = ++engine->timeline->inflight_seqnos;
246         u32 seqno = engine->timeline->seqno;
247         int ret;
248
249         /* Reservation is fine until we need to wrap around */
250         if (likely(!add_overflows(seqno, active)))
251                 return 0;
252
253         ret = reset_all_global_seqno(engine->i915, 0);
254         if (ret) {
255                 engine->timeline->inflight_seqnos--;
256                 return ret;
257         }
258
259         return 0;
260 }
261
262 static void unreserve_seqno(struct intel_engine_cs *engine)
263 {
264         GEM_BUG_ON(!engine->timeline->inflight_seqnos);
265         engine->timeline->inflight_seqnos--;
266 }
267
268 void i915_gem_retire_noop(struct i915_gem_active *active,
269                           struct drm_i915_gem_request *request)
270 {
271         /* Space left intentionally blank */
272 }
273
274 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
275 {
276         struct intel_engine_cs *engine = request->engine;
277         struct i915_gem_active *active, *next;
278
279         lockdep_assert_held(&request->i915->drm.struct_mutex);
280         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
281         GEM_BUG_ON(!i915_gem_request_completed(request));
282         GEM_BUG_ON(!request->i915->gt.active_requests);
283
284         trace_i915_gem_request_retire(request);
285
286         spin_lock_irq(&engine->timeline->lock);
287         list_del_init(&request->link);
288         spin_unlock_irq(&engine->timeline->lock);
289
290         /* We know the GPU must have read the request to have
291          * sent us the seqno + interrupt, so use the position
292          * of tail of the request to update the last known position
293          * of the GPU head.
294          *
295          * Note this requires that we are always called in request
296          * completion order.
297          */
298         list_del(&request->ring_link);
299         request->ring->head = request->postfix;
300         if (!--request->i915->gt.active_requests) {
301                 GEM_BUG_ON(!request->i915->gt.awake);
302                 mod_delayed_work(request->i915->wq,
303                                  &request->i915->gt.idle_work,
304                                  msecs_to_jiffies(100));
305         }
306         unreserve_seqno(request->engine);
307
308         /* Walk through the active list, calling retire on each. This allows
309          * objects to track their GPU activity and mark themselves as idle
310          * when their *last* active request is completed (updating state
311          * tracking lists for eviction, active references for GEM, etc).
312          *
313          * As the ->retire() may free the node, we decouple it first and
314          * pass along the auxiliary information (to avoid dereferencing
315          * the node after the callback).
316          */
317         list_for_each_entry_safe(active, next, &request->active_list, link) {
318                 /* In microbenchmarks or focusing upon time inside the kernel,
319                  * we may spend an inordinate amount of time simply handling
320                  * the retirement of requests and processing their callbacks.
321                  * Of which, this loop itself is particularly hot due to the
322                  * cache misses when jumping around the list of i915_gem_active.
323                  * So we try to keep this loop as streamlined as possible and
324                  * also prefetch the next i915_gem_active to try and hide
325                  * the likely cache miss.
326                  */
327                 prefetchw(next);
328
329                 INIT_LIST_HEAD(&active->link);
330                 RCU_INIT_POINTER(active->request, NULL);
331
332                 active->retire(active, request);
333         }
334
335         i915_gem_request_remove_from_client(request);
336
337         /* Retirement decays the ban score as it is a sign of ctx progress */
338         if (request->ctx->ban_score > 0)
339                 request->ctx->ban_score--;
340
341         /* The backing object for the context is done after switching to the
342          * *next* context. Therefore we cannot retire the previous context until
343          * the next context has already started running. However, since we
344          * cannot take the required locks at i915_gem_request_submit() we
345          * defer the unpinning of the active context to now, retirement of
346          * the subsequent request.
347          */
348         if (engine->last_retired_context)
349                 engine->context_unpin(engine, engine->last_retired_context);
350         engine->last_retired_context = request->ctx;
351
352         dma_fence_signal(&request->fence);
353
354         i915_priotree_fini(request->i915, &request->priotree);
355         i915_gem_request_put(request);
356 }
357
358 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
359 {
360         struct intel_engine_cs *engine = req->engine;
361         struct drm_i915_gem_request *tmp;
362
363         lockdep_assert_held(&req->i915->drm.struct_mutex);
364         GEM_BUG_ON(!i915_gem_request_completed(req));
365
366         if (list_empty(&req->link))
367                 return;
368
369         do {
370                 tmp = list_first_entry(&engine->timeline->requests,
371                                        typeof(*tmp), link);
372
373                 i915_gem_request_retire(tmp);
374         } while (tmp != req);
375 }
376
377 static u32 timeline_get_seqno(struct intel_timeline *tl)
378 {
379         return ++tl->seqno;
380 }
381
382 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
383 {
384         struct intel_engine_cs *engine = request->engine;
385         struct intel_timeline *timeline;
386         u32 seqno;
387
388         GEM_BUG_ON(!irqs_disabled());
389         lockdep_assert_held(&engine->timeline->lock);
390
391         trace_i915_gem_request_execute(request);
392
393         /* Transfer from per-context onto the global per-engine timeline */
394         timeline = engine->timeline;
395         GEM_BUG_ON(timeline == request->timeline);
396
397         seqno = timeline_get_seqno(timeline);
398         GEM_BUG_ON(!seqno);
399         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
400
401         /* We may be recursing from the signal callback of another i915 fence */
402         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
403         request->global_seqno = seqno;
404         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
405                 intel_engine_enable_signaling(request);
406         spin_unlock(&request->lock);
407
408         engine->emit_breadcrumb(request,
409                                 request->ring->vaddr + request->postfix);
410
411         spin_lock(&request->timeline->lock);
412         list_move_tail(&request->link, &timeline->requests);
413         spin_unlock(&request->timeline->lock);
414
415         wake_up_all(&request->execute);
416 }
417
418 void i915_gem_request_submit(struct drm_i915_gem_request *request)
419 {
420         struct intel_engine_cs *engine = request->engine;
421         unsigned long flags;
422
423         /* Will be called from irq-context when using foreign fences. */
424         spin_lock_irqsave(&engine->timeline->lock, flags);
425
426         __i915_gem_request_submit(request);
427
428         spin_unlock_irqrestore(&engine->timeline->lock, flags);
429 }
430
431 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
432 {
433         struct intel_engine_cs *engine = request->engine;
434         struct intel_timeline *timeline;
435
436         GEM_BUG_ON(!irqs_disabled());
437         lockdep_assert_held(&engine->timeline->lock);
438
439         /* Only unwind in reverse order, required so that the per-context list
440          * is kept in seqno/ring order.
441          */
442         GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
443         engine->timeline->seqno--;
444
445         /* We may be recursing from the signal callback of another i915 fence */
446         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
447         request->global_seqno = 0;
448         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
449                 intel_engine_cancel_signaling(request);
450         spin_unlock(&request->lock);
451
452         /* Transfer back from the global per-engine timeline to per-context */
453         timeline = request->timeline;
454         GEM_BUG_ON(timeline == engine->timeline);
455
456         spin_lock(&timeline->lock);
457         list_move(&request->link, &timeline->requests);
458         spin_unlock(&timeline->lock);
459
460         /* We don't need to wake_up any waiters on request->execute, they
461          * will get woken by any other event or us re-adding this request
462          * to the engine timeline (__i915_gem_request_submit()). The waiters
463          * should be quite adapt at finding that the request now has a new
464          * global_seqno to the one they went to sleep on.
465          */
466 }
467
468 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
469 {
470         struct intel_engine_cs *engine = request->engine;
471         unsigned long flags;
472
473         /* Will be called from irq-context when using foreign fences. */
474         spin_lock_irqsave(&engine->timeline->lock, flags);
475
476         __i915_gem_request_unsubmit(request);
477
478         spin_unlock_irqrestore(&engine->timeline->lock, flags);
479 }
480
481 static int __i915_sw_fence_call
482 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
483 {
484         struct drm_i915_gem_request *request =
485                 container_of(fence, typeof(*request), submit);
486
487         switch (state) {
488         case FENCE_COMPLETE:
489                 trace_i915_gem_request_submit(request);
490                 request->engine->submit_request(request);
491                 break;
492
493         case FENCE_FREE:
494                 i915_gem_request_put(request);
495                 break;
496         }
497
498         return NOTIFY_DONE;
499 }
500
501 /**
502  * i915_gem_request_alloc - allocate a request structure
503  *
504  * @engine: engine that we wish to issue the request on.
505  * @ctx: context that the request will be associated with.
506  *       This can be NULL if the request is not directly related to
507  *       any specific user context, in which case this function will
508  *       choose an appropriate context to use.
509  *
510  * Returns a pointer to the allocated request if successful,
511  * or an error code if not.
512  */
513 struct drm_i915_gem_request *
514 i915_gem_request_alloc(struct intel_engine_cs *engine,
515                        struct i915_gem_context *ctx)
516 {
517         struct drm_i915_private *dev_priv = engine->i915;
518         struct drm_i915_gem_request *req;
519         int ret;
520
521         lockdep_assert_held(&dev_priv->drm.struct_mutex);
522
523         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
524          * EIO if the GPU is already wedged.
525          */
526         if (i915_terminally_wedged(&dev_priv->gpu_error))
527                 return ERR_PTR(-EIO);
528
529         /* Pinning the contexts may generate requests in order to acquire
530          * GGTT space, so do this first before we reserve a seqno for
531          * ourselves.
532          */
533         ret = engine->context_pin(engine, ctx);
534         if (ret)
535                 return ERR_PTR(ret);
536
537         ret = reserve_seqno(engine);
538         if (ret)
539                 goto err_unpin;
540
541         /* Move the oldest request to the slab-cache (if not in use!) */
542         req = list_first_entry_or_null(&engine->timeline->requests,
543                                        typeof(*req), link);
544         if (req && i915_gem_request_completed(req))
545                 i915_gem_request_retire(req);
546
547         /* Beware: Dragons be flying overhead.
548          *
549          * We use RCU to look up requests in flight. The lookups may
550          * race with the request being allocated from the slab freelist.
551          * That is the request we are writing to here, may be in the process
552          * of being read by __i915_gem_active_get_rcu(). As such,
553          * we have to be very careful when overwriting the contents. During
554          * the RCU lookup, we change chase the request->engine pointer,
555          * read the request->global_seqno and increment the reference count.
556          *
557          * The reference count is incremented atomically. If it is zero,
558          * the lookup knows the request is unallocated and complete. Otherwise,
559          * it is either still in use, or has been reallocated and reset
560          * with dma_fence_init(). This increment is safe for release as we
561          * check that the request we have a reference to and matches the active
562          * request.
563          *
564          * Before we increment the refcount, we chase the request->engine
565          * pointer. We must not call kmem_cache_zalloc() or else we set
566          * that pointer to NULL and cause a crash during the lookup. If
567          * we see the request is completed (based on the value of the
568          * old engine and seqno), the lookup is complete and reports NULL.
569          * If we decide the request is not completed (new engine or seqno),
570          * then we grab a reference and double check that it is still the
571          * active request - which it won't be and restart the lookup.
572          *
573          * Do not use kmem_cache_zalloc() here!
574          */
575         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
576         if (!req) {
577                 ret = -ENOMEM;
578                 goto err_unreserve;
579         }
580
581         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
582         GEM_BUG_ON(req->timeline == engine->timeline);
583
584         spin_lock_init(&req->lock);
585         dma_fence_init(&req->fence,
586                        &i915_fence_ops,
587                        &req->lock,
588                        req->timeline->fence_context,
589                        timeline_get_seqno(req->timeline));
590
591         /* We bump the ref for the fence chain */
592         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
593         init_waitqueue_head(&req->execute);
594
595         i915_priotree_init(&req->priotree);
596
597         INIT_LIST_HEAD(&req->active_list);
598         req->i915 = dev_priv;
599         req->engine = engine;
600         req->ctx = ctx;
601
602         /* No zalloc, must clear what we need by hand */
603         req->global_seqno = 0;
604         req->file_priv = NULL;
605         req->batch = NULL;
606
607         /*
608          * Reserve space in the ring buffer for all the commands required to
609          * eventually emit this request. This is to guarantee that the
610          * i915_add_request() call can't fail. Note that the reserve may need
611          * to be redone if the request is not actually submitted straight
612          * away, e.g. because a GPU scheduler has deferred it.
613          */
614         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
615         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
616
617         ret = engine->request_alloc(req);
618         if (ret)
619                 goto err_ctx;
620
621         /* Record the position of the start of the request so that
622          * should we detect the updated seqno part-way through the
623          * GPU processing the request, we never over-estimate the
624          * position of the head.
625          */
626         req->head = req->ring->tail;
627
628         /* Check that we didn't interrupt ourselves with a new request */
629         GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
630         return req;
631
632 err_ctx:
633         /* Make sure we didn't add ourselves to external state before freeing */
634         GEM_BUG_ON(!list_empty(&req->active_list));
635         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
636         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
637
638         kmem_cache_free(dev_priv->requests, req);
639 err_unreserve:
640         unreserve_seqno(engine);
641 err_unpin:
642         engine->context_unpin(engine, ctx);
643         return ERR_PTR(ret);
644 }
645
646 static int
647 i915_gem_request_await_request(struct drm_i915_gem_request *to,
648                                struct drm_i915_gem_request *from)
649 {
650         u32 seqno;
651         int ret;
652
653         GEM_BUG_ON(to == from);
654
655         if (i915_gem_request_completed(from))
656                 return 0;
657
658         if (to->engine->schedule) {
659                 ret = i915_priotree_add_dependency(to->i915,
660                                                    &to->priotree,
661                                                    &from->priotree);
662                 if (ret < 0)
663                         return ret;
664         }
665
666         if (to->timeline == from->timeline)
667                 return 0;
668
669         if (to->engine == from->engine) {
670                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
671                                                        &from->submit,
672                                                        GFP_KERNEL);
673                 return ret < 0 ? ret : 0;
674         }
675
676         seqno = i915_gem_request_global_seqno(from);
677         if (!seqno) {
678                 ret = i915_sw_fence_await_dma_fence(&to->submit,
679                                                     &from->fence, 0,
680                                                     GFP_KERNEL);
681                 return ret < 0 ? ret : 0;
682         }
683
684         if (seqno <= to->timeline->sync_seqno[from->engine->id])
685                 return 0;
686
687         trace_i915_gem_ring_sync_to(to, from);
688         if (!i915.semaphores) {
689                 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
690                         ret = i915_sw_fence_await_dma_fence(&to->submit,
691                                                             &from->fence, 0,
692                                                             GFP_KERNEL);
693                         if (ret < 0)
694                                 return ret;
695                 }
696         } else {
697                 ret = to->engine->semaphore.sync_to(to, from);
698                 if (ret)
699                         return ret;
700         }
701
702         to->timeline->sync_seqno[from->engine->id] = seqno;
703         return 0;
704 }
705
706 int
707 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
708                                  struct dma_fence *fence)
709 {
710         struct dma_fence_array *array;
711         int ret;
712         int i;
713
714         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
715                 return 0;
716
717         if (dma_fence_is_i915(fence))
718                 return i915_gem_request_await_request(req, to_request(fence));
719
720         if (!dma_fence_is_array(fence)) {
721                 ret = i915_sw_fence_await_dma_fence(&req->submit,
722                                                     fence, I915_FENCE_TIMEOUT,
723                                                     GFP_KERNEL);
724                 return ret < 0 ? ret : 0;
725         }
726
727         /* Note that if the fence-array was created in signal-on-any mode,
728          * we should *not* decompose it into its individual fences. However,
729          * we don't currently store which mode the fence-array is operating
730          * in. Fortunately, the only user of signal-on-any is private to
731          * amdgpu and we should not see any incoming fence-array from
732          * sync-file being in signal-on-any mode.
733          */
734
735         array = to_dma_fence_array(fence);
736         for (i = 0; i < array->num_fences; i++) {
737                 struct dma_fence *child = array->fences[i];
738
739                 if (dma_fence_is_i915(child))
740                         ret = i915_gem_request_await_request(req,
741                                                              to_request(child));
742                 else
743                         ret = i915_sw_fence_await_dma_fence(&req->submit,
744                                                             child, I915_FENCE_TIMEOUT,
745                                                             GFP_KERNEL);
746                 if (ret < 0)
747                         return ret;
748         }
749
750         return 0;
751 }
752
753 /**
754  * i915_gem_request_await_object - set this request to (async) wait upon a bo
755  *
756  * @to: request we are wishing to use
757  * @obj: object which may be in use on another ring.
758  *
759  * This code is meant to abstract object synchronization with the GPU.
760  * Conceptually we serialise writes between engines inside the GPU.
761  * We only allow one engine to write into a buffer at any time, but
762  * multiple readers. To ensure each has a coherent view of memory, we must:
763  *
764  * - If there is an outstanding write request to the object, the new
765  *   request must wait for it to complete (either CPU or in hw, requests
766  *   on the same ring will be naturally ordered).
767  *
768  * - If we are a write request (pending_write_domain is set), the new
769  *   request must wait for outstanding read requests to complete.
770  *
771  * Returns 0 if successful, else propagates up the lower layer error.
772  */
773 int
774 i915_gem_request_await_object(struct drm_i915_gem_request *to,
775                               struct drm_i915_gem_object *obj,
776                               bool write)
777 {
778         struct dma_fence *excl;
779         int ret = 0;
780
781         if (write) {
782                 struct dma_fence **shared;
783                 unsigned int count, i;
784
785                 ret = reservation_object_get_fences_rcu(obj->resv,
786                                                         &excl, &count, &shared);
787                 if (ret)
788                         return ret;
789
790                 for (i = 0; i < count; i++) {
791                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
792                         if (ret)
793                                 break;
794
795                         dma_fence_put(shared[i]);
796                 }
797
798                 for (; i < count; i++)
799                         dma_fence_put(shared[i]);
800                 kfree(shared);
801         } else {
802                 excl = reservation_object_get_excl_rcu(obj->resv);
803         }
804
805         if (excl) {
806                 if (ret == 0)
807                         ret = i915_gem_request_await_dma_fence(to, excl);
808
809                 dma_fence_put(excl);
810         }
811
812         return ret;
813 }
814
815 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
816 {
817         struct drm_i915_private *dev_priv = engine->i915;
818
819         if (dev_priv->gt.awake)
820                 return;
821
822         GEM_BUG_ON(!dev_priv->gt.active_requests);
823
824         intel_runtime_pm_get_noresume(dev_priv);
825         dev_priv->gt.awake = true;
826
827         intel_enable_gt_powersave(dev_priv);
828         i915_update_gfx_val(dev_priv);
829         if (INTEL_GEN(dev_priv) >= 6)
830                 gen6_rps_busy(dev_priv);
831
832         queue_delayed_work(dev_priv->wq,
833                            &dev_priv->gt.retire_work,
834                            round_jiffies_up_relative(HZ));
835 }
836
837 /*
838  * NB: This function is not allowed to fail. Doing so would mean the the
839  * request is not being tracked for completion but the work itself is
840  * going to happen on the hardware. This would be a Bad Thing(tm).
841  */
842 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
843 {
844         struct intel_engine_cs *engine = request->engine;
845         struct intel_ring *ring = request->ring;
846         struct intel_timeline *timeline = request->timeline;
847         struct drm_i915_gem_request *prev;
848         u32 *cs;
849         int err;
850
851         lockdep_assert_held(&request->i915->drm.struct_mutex);
852         trace_i915_gem_request_add(request);
853
854         /* Make sure that no request gazumped us - if it was allocated after
855          * our i915_gem_request_alloc() and called __i915_add_request() before
856          * us, the timeline will hold its seqno which is later than ours.
857          */
858         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
859
860         /*
861          * To ensure that this call will not fail, space for its emissions
862          * should already have been reserved in the ring buffer. Let the ring
863          * know that it is time to use that space up.
864          */
865         request->reserved_space = 0;
866
867         /*
868          * Emit any outstanding flushes - execbuf can fail to emit the flush
869          * after having emitted the batchbuffer command. Hence we need to fix
870          * things up similar to emitting the lazy request. The difference here
871          * is that the flush _must_ happen before the next request, no matter
872          * what.
873          */
874         if (flush_caches) {
875                 err = engine->emit_flush(request, EMIT_FLUSH);
876
877                 /* Not allowed to fail! */
878                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
879         }
880
881         /* Record the position of the start of the breadcrumb so that
882          * should we detect the updated seqno part-way through the
883          * GPU processing the request, we never over-estimate the
884          * position of the ring's HEAD.
885          */
886         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
887         GEM_BUG_ON(IS_ERR(cs));
888         request->postfix = intel_ring_offset(request, cs);
889
890         /* Seal the request and mark it as pending execution. Note that
891          * we may inspect this state, without holding any locks, during
892          * hangcheck. Hence we apply the barrier to ensure that we do not
893          * see a more recent value in the hws than we are tracking.
894          */
895
896         prev = i915_gem_active_raw(&timeline->last_request,
897                                    &request->i915->drm.struct_mutex);
898         if (prev) {
899                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
900                                              &request->submitq);
901                 if (engine->schedule)
902                         __i915_priotree_add_dependency(&request->priotree,
903                                                        &prev->priotree,
904                                                        &request->dep,
905                                                        0);
906         }
907
908         spin_lock_irq(&timeline->lock);
909         list_add_tail(&request->link, &timeline->requests);
910         spin_unlock_irq(&timeline->lock);
911
912         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
913         i915_gem_active_set(&timeline->last_request, request);
914
915         list_add_tail(&request->ring_link, &ring->request_list);
916         request->emitted_jiffies = jiffies;
917
918         if (!request->i915->gt.active_requests++)
919                 i915_gem_mark_busy(engine);
920
921         /* Let the backend know a new request has arrived that may need
922          * to adjust the existing execution schedule due to a high priority
923          * request - i.e. we may want to preempt the current request in order
924          * to run a high priority dependency chain *before* we can execute this
925          * request.
926          *
927          * This is called before the request is ready to run so that we can
928          * decide whether to preempt the entire chain so that it is ready to
929          * run at the earliest possible convenience.
930          */
931         if (engine->schedule)
932                 engine->schedule(request, request->ctx->priority);
933
934         local_bh_disable();
935         i915_sw_fence_commit(&request->submit);
936         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
937 }
938
939 static unsigned long local_clock_us(unsigned int *cpu)
940 {
941         unsigned long t;
942
943         /* Cheaply and approximately convert from nanoseconds to microseconds.
944          * The result and subsequent calculations are also defined in the same
945          * approximate microseconds units. The principal source of timing
946          * error here is from the simple truncation.
947          *
948          * Note that local_clock() is only defined wrt to the current CPU;
949          * the comparisons are no longer valid if we switch CPUs. Instead of
950          * blocking preemption for the entire busywait, we can detect the CPU
951          * switch and use that as indicator of system load and a reason to
952          * stop busywaiting, see busywait_stop().
953          */
954         *cpu = get_cpu();
955         t = local_clock() >> 10;
956         put_cpu();
957
958         return t;
959 }
960
961 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
962 {
963         unsigned int this_cpu;
964
965         if (time_after(local_clock_us(&this_cpu), timeout))
966                 return true;
967
968         return this_cpu != cpu;
969 }
970
971 bool __i915_spin_request(const struct drm_i915_gem_request *req,
972                          u32 seqno, int state, unsigned long timeout_us)
973 {
974         struct intel_engine_cs *engine = req->engine;
975         unsigned int irq, cpu;
976
977         /* When waiting for high frequency requests, e.g. during synchronous
978          * rendering split between the CPU and GPU, the finite amount of time
979          * required to set up the irq and wait upon it limits the response
980          * rate. By busywaiting on the request completion for a short while we
981          * can service the high frequency waits as quick as possible. However,
982          * if it is a slow request, we want to sleep as quickly as possible.
983          * The tradeoff between waiting and sleeping is roughly the time it
984          * takes to sleep on a request, on the order of a microsecond.
985          */
986
987         irq = atomic_read(&engine->irq_count);
988         timeout_us += local_clock_us(&cpu);
989         do {
990                 if (seqno != i915_gem_request_global_seqno(req))
991                         break;
992
993                 if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
994                                       seqno))
995                         return true;
996
997                 /* Seqno are meant to be ordered *before* the interrupt. If
998                  * we see an interrupt without a corresponding seqno advance,
999                  * assume we won't see one in the near future but require
1000                  * the engine->seqno_barrier() to fixup coherency.
1001                  */
1002                 if (atomic_read(&engine->irq_count) != irq)
1003                         break;
1004
1005                 if (signal_pending_state(state, current))
1006                         break;
1007
1008                 if (busywait_stop(timeout_us, cpu))
1009                         break;
1010
1011                 cpu_relax();
1012         } while (!need_resched());
1013
1014         return false;
1015 }
1016
1017 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1018 {
1019         if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1020                 return false;
1021
1022         __set_current_state(TASK_RUNNING);
1023         i915_reset(request->i915);
1024         return true;
1025 }
1026
1027 /**
1028  * i915_wait_request - wait until execution of request has finished
1029  * @req: the request to wait upon
1030  * @flags: how to wait
1031  * @timeout: how long to wait in jiffies
1032  *
1033  * i915_wait_request() waits for the request to be completed, for a
1034  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1035  * unbounded wait).
1036  *
1037  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1038  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1039  * must not specify that the wait is locked.
1040  *
1041  * Returns the remaining time (in jiffies) if the request completed, which may
1042  * be zero or -ETIME if the request is unfinished after the timeout expires.
1043  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1044  * pending before the request completes.
1045  */
1046 long i915_wait_request(struct drm_i915_gem_request *req,
1047                        unsigned int flags,
1048                        long timeout)
1049 {
1050         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1051                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1052         wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1053         DEFINE_WAIT_FUNC(reset, default_wake_function);
1054         DEFINE_WAIT_FUNC(exec, default_wake_function);
1055         struct intel_wait wait;
1056
1057         might_sleep();
1058 #if IS_ENABLED(CONFIG_LOCKDEP)
1059         GEM_BUG_ON(debug_locks &&
1060                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1061                    !!(flags & I915_WAIT_LOCKED));
1062 #endif
1063         GEM_BUG_ON(timeout < 0);
1064
1065         if (i915_gem_request_completed(req))
1066                 return timeout;
1067
1068         if (!timeout)
1069                 return -ETIME;
1070
1071         trace_i915_gem_request_wait_begin(req, flags);
1072
1073         add_wait_queue(&req->execute, &exec);
1074         if (flags & I915_WAIT_LOCKED)
1075                 add_wait_queue(errq, &reset);
1076
1077         intel_wait_init(&wait, req);
1078
1079 restart:
1080         do {
1081                 set_current_state(state);
1082                 if (intel_wait_update_request(&wait, req))
1083                         break;
1084
1085                 if (flags & I915_WAIT_LOCKED &&
1086                     __i915_wait_request_check_and_reset(req))
1087                         continue;
1088
1089                 if (signal_pending_state(state, current)) {
1090                         timeout = -ERESTARTSYS;
1091                         goto complete;
1092                 }
1093
1094                 if (!timeout) {
1095                         timeout = -ETIME;
1096                         goto complete;
1097                 }
1098
1099                 timeout = io_schedule_timeout(timeout);
1100         } while (1);
1101
1102         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1103         GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1104
1105         /* Optimistic short spin before touching IRQs */
1106         if (i915_spin_request(req, state, 5))
1107                 goto complete;
1108
1109         set_current_state(state);
1110         if (intel_engine_add_wait(req->engine, &wait))
1111                 /* In order to check that we haven't missed the interrupt
1112                  * as we enabled it, we need to kick ourselves to do a
1113                  * coherent check on the seqno before we sleep.
1114                  */
1115                 goto wakeup;
1116
1117         if (flags & I915_WAIT_LOCKED)
1118                 __i915_wait_request_check_and_reset(req);
1119
1120         for (;;) {
1121                 if (signal_pending_state(state, current)) {
1122                         timeout = -ERESTARTSYS;
1123                         break;
1124                 }
1125
1126                 if (!timeout) {
1127                         timeout = -ETIME;
1128                         break;
1129                 }
1130
1131                 timeout = io_schedule_timeout(timeout);
1132
1133                 if (intel_wait_complete(&wait) &&
1134                     intel_wait_check_request(&wait, req))
1135                         break;
1136
1137                 set_current_state(state);
1138
1139 wakeup:
1140                 /* Carefully check if the request is complete, giving time
1141                  * for the seqno to be visible following the interrupt.
1142                  * We also have to check in case we are kicked by the GPU
1143                  * reset in order to drop the struct_mutex.
1144                  */
1145                 if (__i915_request_irq_complete(req))
1146                         break;
1147
1148                 /* If the GPU is hung, and we hold the lock, reset the GPU
1149                  * and then check for completion. On a full reset, the engine's
1150                  * HW seqno will be advanced passed us and we are complete.
1151                  * If we do a partial reset, we have to wait for the GPU to
1152                  * resume and update the breadcrumb.
1153                  *
1154                  * If we don't hold the mutex, we can just wait for the worker
1155                  * to come along and update the breadcrumb (either directly
1156                  * itself, or indirectly by recovering the GPU).
1157                  */
1158                 if (flags & I915_WAIT_LOCKED &&
1159                     __i915_wait_request_check_and_reset(req))
1160                         continue;
1161
1162                 /* Only spin if we know the GPU is processing this request */
1163                 if (i915_spin_request(req, state, 2))
1164                         break;
1165
1166                 if (!intel_wait_check_request(&wait, req)) {
1167                         intel_engine_remove_wait(req->engine, &wait);
1168                         goto restart;
1169                 }
1170         }
1171
1172         intel_engine_remove_wait(req->engine, &wait);
1173 complete:
1174         __set_current_state(TASK_RUNNING);
1175         if (flags & I915_WAIT_LOCKED)
1176                 remove_wait_queue(errq, &reset);
1177         remove_wait_queue(&req->execute, &exec);
1178         trace_i915_gem_request_wait_end(req);
1179
1180         return timeout;
1181 }
1182
1183 static void engine_retire_requests(struct intel_engine_cs *engine)
1184 {
1185         struct drm_i915_gem_request *request, *next;
1186         u32 seqno = intel_engine_get_seqno(engine);
1187         LIST_HEAD(retire);
1188
1189         spin_lock_irq(&engine->timeline->lock);
1190         list_for_each_entry_safe(request, next,
1191                                  &engine->timeline->requests, link) {
1192                 if (!i915_seqno_passed(seqno, request->global_seqno))
1193                         break;
1194
1195                 list_move_tail(&request->link, &retire);
1196         }
1197         spin_unlock_irq(&engine->timeline->lock);
1198
1199         list_for_each_entry_safe(request, next, &retire, link)
1200                 i915_gem_request_retire(request);
1201 }
1202
1203 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1204 {
1205         struct intel_engine_cs *engine;
1206         enum intel_engine_id id;
1207
1208         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1209
1210         if (!dev_priv->gt.active_requests)
1211                 return;
1212
1213         for_each_engine(engine, dev_priv, id)
1214                 engine_retire_requests(engine);
1215 }
1216
1217 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1218 #include "selftests/mock_request.c"
1219 #include "selftests/i915_gem_request.c"
1220 #endif