]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
6348353b91ec9702827f3d50a1421518953755ca
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /* The timeline struct (as part of the ppgtt underneath a context)
41          * may be freed when the request is no longer in use by the GPU.
42          * We could extend the life of a context to beyond that of all
43          * fences, possibly keeping the hw resource around indefinitely,
44          * or we just give them a false name. Since
45          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46          * lie seems justifiable.
47          */
48         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49                 return "signaled";
50
51         return to_request(fence)->timeline->common->name;
52 }
53
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56         return i915_gem_request_completed(to_request(fence));
57 }
58
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61         if (i915_fence_signaled(fence))
62                 return false;
63
64         intel_engine_enable_signaling(to_request(fence));
65         return true;
66 }
67
68 static signed long i915_fence_wait(struct dma_fence *fence,
69                                    bool interruptible,
70                                    signed long timeout)
71 {
72         return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77         struct drm_i915_gem_request *req = to_request(fence);
78
79         /* The request is put onto a RCU freelist (i.e. the address
80          * is immediately reused), mark the fences as being freed now.
81          * Otherwise the debugobjects for the fences are only marked as
82          * freed when the slab cache itself is freed, and so we would get
83          * caught trying to reuse dead objects.
84          */
85         i915_sw_fence_fini(&req->submit);
86
87         kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91         .get_driver_name = i915_fence_get_driver_name,
92         .get_timeline_name = i915_fence_get_timeline_name,
93         .enable_signaling = i915_fence_enable_signaling,
94         .signaled = i915_fence_signaled,
95         .wait = i915_fence_wait,
96         .release = i915_fence_release,
97 };
98
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102         struct drm_i915_file_private *file_priv;
103
104         file_priv = request->file_priv;
105         if (!file_priv)
106                 return;
107
108         spin_lock(&file_priv->mm.lock);
109         if (request->file_priv) {
110                 list_del(&request->client_link);
111                 request->file_priv = NULL;
112         }
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124                      struct i915_dependency *dep)
125 {
126         kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131                                struct i915_priotree *signal,
132                                struct i915_dependency *dep,
133                                unsigned long flags)
134 {
135         INIT_LIST_HEAD(&dep->dfs_link);
136         list_add(&dep->wait_link, &signal->waiters_list);
137         list_add(&dep->signal_link, &pt->signalers_list);
138         dep->signaler = signal;
139         dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144                              struct i915_priotree *pt,
145                              struct i915_priotree *signal)
146 {
147         struct i915_dependency *dep;
148
149         dep = i915_dependency_alloc(i915);
150         if (!dep)
151                 return -ENOMEM;
152
153         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154         return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160         struct i915_dependency *dep, *next;
161
162         GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
163
164         /* Everyone we depended upon (the fences we wait to be signaled)
165          * should retire before us and remove themselves from our list.
166          * However, retirement is run independently on each timeline and
167          * so we may be called out-of-order.
168          */
169         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170                 list_del(&dep->wait_link);
171                 if (dep->flags & I915_DEPENDENCY_ALLOC)
172                         i915_dependency_free(i915, dep);
173         }
174
175         /* Remove ourselves from everyone who depends upon us */
176         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177                 list_del(&dep->signal_link);
178                 if (dep->flags & I915_DEPENDENCY_ALLOC)
179                         i915_dependency_free(i915, dep);
180         }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186         INIT_LIST_HEAD(&pt->signalers_list);
187         INIT_LIST_HEAD(&pt->waiters_list);
188         RB_CLEAR_NODE(&pt->node);
189         pt->priority = INT_MIN;
190 }
191
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194         struct intel_engine_cs *engine;
195         enum intel_engine_id id;
196         int ret;
197
198         /* Carefully retire all requests without writing to the rings */
199         ret = i915_gem_wait_for_idle(i915,
200                                      I915_WAIT_INTERRUPTIBLE |
201                                      I915_WAIT_LOCKED);
202         if (ret)
203                 return ret;
204
205         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206         for_each_engine(engine, i915, id) {
207                 struct i915_gem_timeline *timeline;
208                 struct intel_timeline *tl = engine->timeline;
209
210                 if (!i915_seqno_passed(seqno, tl->seqno)) {
211                         /* spin until threads are complete */
212                         while (intel_breadcrumbs_busy(engine))
213                                 cond_resched();
214                 }
215
216                 /* Finally reset hw state */
217                 tl->seqno = seqno;
218                 intel_engine_init_global_seqno(engine, seqno);
219
220                 list_for_each_entry(timeline, &i915->gt.timelines, link)
221                         memset(timeline->engine[id].sync_seqno, 0,
222                                sizeof(timeline->engine[id].sync_seqno));
223         }
224
225         return 0;
226 }
227
228 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
229 {
230         struct drm_i915_private *dev_priv = to_i915(dev);
231
232         lockdep_assert_held(&dev_priv->drm.struct_mutex);
233
234         if (seqno == 0)
235                 return -EINVAL;
236
237         /* HWS page needs to be set less than what we
238          * will inject to ring
239          */
240         return reset_all_global_seqno(dev_priv, seqno - 1);
241 }
242
243 static int reserve_seqno(struct intel_engine_cs *engine)
244 {
245         u32 active = ++engine->timeline->inflight_seqnos;
246         u32 seqno = engine->timeline->seqno;
247         int ret;
248
249         /* Reservation is fine until we need to wrap around */
250         if (likely(!add_overflows(seqno, active)))
251                 return 0;
252
253         ret = reset_all_global_seqno(engine->i915, 0);
254         if (ret) {
255                 engine->timeline->inflight_seqnos--;
256                 return ret;
257         }
258
259         return 0;
260 }
261
262 static void unreserve_seqno(struct intel_engine_cs *engine)
263 {
264         GEM_BUG_ON(!engine->timeline->inflight_seqnos);
265         engine->timeline->inflight_seqnos--;
266 }
267
268 void i915_gem_retire_noop(struct i915_gem_active *active,
269                           struct drm_i915_gem_request *request)
270 {
271         /* Space left intentionally blank */
272 }
273
274 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
275 {
276         struct intel_engine_cs *engine = request->engine;
277         struct i915_gem_active *active, *next;
278
279         lockdep_assert_held(&request->i915->drm.struct_mutex);
280         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
281         GEM_BUG_ON(!i915_gem_request_completed(request));
282         GEM_BUG_ON(!request->i915->gt.active_requests);
283
284         trace_i915_gem_request_retire(request);
285
286         spin_lock_irq(&engine->timeline->lock);
287         list_del_init(&request->link);
288         spin_unlock_irq(&engine->timeline->lock);
289
290         /* We know the GPU must have read the request to have
291          * sent us the seqno + interrupt, so use the position
292          * of tail of the request to update the last known position
293          * of the GPU head.
294          *
295          * Note this requires that we are always called in request
296          * completion order.
297          */
298         list_del(&request->ring_link);
299         request->ring->head = request->postfix;
300         if (!--request->i915->gt.active_requests) {
301                 GEM_BUG_ON(!request->i915->gt.awake);
302                 mod_delayed_work(request->i915->wq,
303                                  &request->i915->gt.idle_work,
304                                  msecs_to_jiffies(100));
305         }
306         unreserve_seqno(request->engine);
307
308         /* Walk through the active list, calling retire on each. This allows
309          * objects to track their GPU activity and mark themselves as idle
310          * when their *last* active request is completed (updating state
311          * tracking lists for eviction, active references for GEM, etc).
312          *
313          * As the ->retire() may free the node, we decouple it first and
314          * pass along the auxiliary information (to avoid dereferencing
315          * the node after the callback).
316          */
317         list_for_each_entry_safe(active, next, &request->active_list, link) {
318                 /* In microbenchmarks or focusing upon time inside the kernel,
319                  * we may spend an inordinate amount of time simply handling
320                  * the retirement of requests and processing their callbacks.
321                  * Of which, this loop itself is particularly hot due to the
322                  * cache misses when jumping around the list of i915_gem_active.
323                  * So we try to keep this loop as streamlined as possible and
324                  * also prefetch the next i915_gem_active to try and hide
325                  * the likely cache miss.
326                  */
327                 prefetchw(next);
328
329                 INIT_LIST_HEAD(&active->link);
330                 RCU_INIT_POINTER(active->request, NULL);
331
332                 active->retire(active, request);
333         }
334
335         i915_gem_request_remove_from_client(request);
336
337         /* Retirement decays the ban score as it is a sign of ctx progress */
338         if (request->ctx->ban_score > 0)
339                 request->ctx->ban_score--;
340
341         /* The backing object for the context is done after switching to the
342          * *next* context. Therefore we cannot retire the previous context until
343          * the next context has already started running. However, since we
344          * cannot take the required locks at i915_gem_request_submit() we
345          * defer the unpinning of the active context to now, retirement of
346          * the subsequent request.
347          */
348         if (engine->last_retired_context)
349                 engine->context_unpin(engine, engine->last_retired_context);
350         engine->last_retired_context = request->ctx;
351
352         dma_fence_signal(&request->fence);
353
354         i915_priotree_fini(request->i915, &request->priotree);
355         i915_gem_request_put(request);
356 }
357
358 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
359 {
360         struct intel_engine_cs *engine = req->engine;
361         struct drm_i915_gem_request *tmp;
362
363         lockdep_assert_held(&req->i915->drm.struct_mutex);
364         GEM_BUG_ON(!i915_gem_request_completed(req));
365
366         if (list_empty(&req->link))
367                 return;
368
369         do {
370                 tmp = list_first_entry(&engine->timeline->requests,
371                                        typeof(*tmp), link);
372
373                 i915_gem_request_retire(tmp);
374         } while (tmp != req);
375 }
376
377 static u32 timeline_get_seqno(struct intel_timeline *tl)
378 {
379         return ++tl->seqno;
380 }
381
382 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
383 {
384         struct intel_engine_cs *engine = request->engine;
385         struct intel_timeline *timeline;
386         u32 seqno;
387
388         GEM_BUG_ON(!irqs_disabled());
389         lockdep_assert_held(&engine->timeline->lock);
390
391         trace_i915_gem_request_execute(request);
392
393         /* Transfer from per-context onto the global per-engine timeline */
394         timeline = engine->timeline;
395         GEM_BUG_ON(timeline == request->timeline);
396
397         seqno = timeline_get_seqno(timeline);
398         GEM_BUG_ON(!seqno);
399         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
400
401         /* We may be recursing from the signal callback of another i915 fence */
402         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
403         request->global_seqno = seqno;
404         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
405                 intel_engine_enable_signaling(request);
406         spin_unlock(&request->lock);
407
408         engine->emit_breadcrumb(request,
409                                 request->ring->vaddr + request->postfix);
410
411         spin_lock(&request->timeline->lock);
412         list_move_tail(&request->link, &timeline->requests);
413         spin_unlock(&request->timeline->lock);
414
415         wake_up_all(&request->execute);
416 }
417
418 void i915_gem_request_submit(struct drm_i915_gem_request *request)
419 {
420         struct intel_engine_cs *engine = request->engine;
421         unsigned long flags;
422
423         /* Will be called from irq-context when using foreign fences. */
424         spin_lock_irqsave(&engine->timeline->lock, flags);
425
426         __i915_gem_request_submit(request);
427
428         spin_unlock_irqrestore(&engine->timeline->lock, flags);
429 }
430
431 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
432 {
433         struct intel_engine_cs *engine = request->engine;
434         struct intel_timeline *timeline;
435
436         GEM_BUG_ON(!irqs_disabled());
437         lockdep_assert_held(&engine->timeline->lock);
438
439         /* Only unwind in reverse order, required so that the per-context list
440          * is kept in seqno/ring order.
441          */
442         GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
443         engine->timeline->seqno--;
444
445         /* We may be recursing from the signal callback of another i915 fence */
446         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
447         request->global_seqno = 0;
448         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
449                 intel_engine_cancel_signaling(request);
450         spin_unlock(&request->lock);
451
452         /* Transfer back from the global per-engine timeline to per-context */
453         timeline = request->timeline;
454         GEM_BUG_ON(timeline == engine->timeline);
455
456         spin_lock(&timeline->lock);
457         list_move(&request->link, &timeline->requests);
458         spin_unlock(&timeline->lock);
459
460         /* We don't need to wake_up any waiters on request->execute, they
461          * will get woken by any other event or us re-adding this request
462          * to the engine timeline (__i915_gem_request_submit()). The waiters
463          * should be quite adapt at finding that the request now has a new
464          * global_seqno to the one they went to sleep on.
465          */
466 }
467
468 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
469 {
470         struct intel_engine_cs *engine = request->engine;
471         unsigned long flags;
472
473         /* Will be called from irq-context when using foreign fences. */
474         spin_lock_irqsave(&engine->timeline->lock, flags);
475
476         __i915_gem_request_unsubmit(request);
477
478         spin_unlock_irqrestore(&engine->timeline->lock, flags);
479 }
480
481 static int __i915_sw_fence_call
482 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
483 {
484         struct drm_i915_gem_request *request =
485                 container_of(fence, typeof(*request), submit);
486
487         switch (state) {
488         case FENCE_COMPLETE:
489                 trace_i915_gem_request_submit(request);
490                 request->engine->submit_request(request);
491                 break;
492
493         case FENCE_FREE:
494                 i915_gem_request_put(request);
495                 break;
496         }
497
498         return NOTIFY_DONE;
499 }
500
501 /**
502  * i915_gem_request_alloc - allocate a request structure
503  *
504  * @engine: engine that we wish to issue the request on.
505  * @ctx: context that the request will be associated with.
506  *       This can be NULL if the request is not directly related to
507  *       any specific user context, in which case this function will
508  *       choose an appropriate context to use.
509  *
510  * Returns a pointer to the allocated request if successful,
511  * or an error code if not.
512  */
513 struct drm_i915_gem_request *
514 i915_gem_request_alloc(struct intel_engine_cs *engine,
515                        struct i915_gem_context *ctx)
516 {
517         struct drm_i915_private *dev_priv = engine->i915;
518         struct drm_i915_gem_request *req;
519         int ret;
520
521         lockdep_assert_held(&dev_priv->drm.struct_mutex);
522
523         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
524          * EIO if the GPU is already wedged.
525          */
526         if (i915_terminally_wedged(&dev_priv->gpu_error))
527                 return ERR_PTR(-EIO);
528
529         /* Pinning the contexts may generate requests in order to acquire
530          * GGTT space, so do this first before we reserve a seqno for
531          * ourselves.
532          */
533         ret = engine->context_pin(engine, ctx);
534         if (ret)
535                 return ERR_PTR(ret);
536
537         ret = reserve_seqno(engine);
538         if (ret)
539                 goto err_unpin;
540
541         /* Move the oldest request to the slab-cache (if not in use!) */
542         req = list_first_entry_or_null(&engine->timeline->requests,
543                                        typeof(*req), link);
544         if (req && i915_gem_request_completed(req))
545                 i915_gem_request_retire(req);
546
547         /* Beware: Dragons be flying overhead.
548          *
549          * We use RCU to look up requests in flight. The lookups may
550          * race with the request being allocated from the slab freelist.
551          * That is the request we are writing to here, may be in the process
552          * of being read by __i915_gem_active_get_rcu(). As such,
553          * we have to be very careful when overwriting the contents. During
554          * the RCU lookup, we change chase the request->engine pointer,
555          * read the request->global_seqno and increment the reference count.
556          *
557          * The reference count is incremented atomically. If it is zero,
558          * the lookup knows the request is unallocated and complete. Otherwise,
559          * it is either still in use, or has been reallocated and reset
560          * with dma_fence_init(). This increment is safe for release as we
561          * check that the request we have a reference to and matches the active
562          * request.
563          *
564          * Before we increment the refcount, we chase the request->engine
565          * pointer. We must not call kmem_cache_zalloc() or else we set
566          * that pointer to NULL and cause a crash during the lookup. If
567          * we see the request is completed (based on the value of the
568          * old engine and seqno), the lookup is complete and reports NULL.
569          * If we decide the request is not completed (new engine or seqno),
570          * then we grab a reference and double check that it is still the
571          * active request - which it won't be and restart the lookup.
572          *
573          * Do not use kmem_cache_zalloc() here!
574          */
575         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
576         if (!req) {
577                 ret = -ENOMEM;
578                 goto err_unreserve;
579         }
580
581         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
582         GEM_BUG_ON(req->timeline == engine->timeline);
583
584         spin_lock_init(&req->lock);
585         dma_fence_init(&req->fence,
586                        &i915_fence_ops,
587                        &req->lock,
588                        req->timeline->fence_context,
589                        timeline_get_seqno(req->timeline));
590
591         /* We bump the ref for the fence chain */
592         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
593         init_waitqueue_head(&req->execute);
594
595         i915_priotree_init(&req->priotree);
596
597         INIT_LIST_HEAD(&req->active_list);
598         req->i915 = dev_priv;
599         req->engine = engine;
600         req->ctx = ctx;
601
602         /* No zalloc, must clear what we need by hand */
603         req->global_seqno = 0;
604         req->file_priv = NULL;
605         req->batch = NULL;
606
607         /*
608          * Reserve space in the ring buffer for all the commands required to
609          * eventually emit this request. This is to guarantee that the
610          * i915_add_request() call can't fail. Note that the reserve may need
611          * to be redone if the request is not actually submitted straight
612          * away, e.g. because a GPU scheduler has deferred it.
613          */
614         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
615         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
616
617         ret = engine->request_alloc(req);
618         if (ret)
619                 goto err_ctx;
620
621         /* Record the position of the start of the request so that
622          * should we detect the updated seqno part-way through the
623          * GPU processing the request, we never over-estimate the
624          * position of the head.
625          */
626         req->head = req->ring->tail;
627
628         /* Check that we didn't interrupt ourselves with a new request */
629         GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
630         return req;
631
632 err_ctx:
633         /* Make sure we didn't add ourselves to external state before freeing */
634         GEM_BUG_ON(!list_empty(&req->active_list));
635         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
636         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
637
638         kmem_cache_free(dev_priv->requests, req);
639 err_unreserve:
640         unreserve_seqno(engine);
641 err_unpin:
642         engine->context_unpin(engine, ctx);
643         return ERR_PTR(ret);
644 }
645
646 static int
647 i915_gem_request_await_request(struct drm_i915_gem_request *to,
648                                struct drm_i915_gem_request *from)
649 {
650         u32 seqno;
651         int ret;
652
653         GEM_BUG_ON(to == from);
654
655         if (to->engine->schedule) {
656                 ret = i915_priotree_add_dependency(to->i915,
657                                                    &to->priotree,
658                                                    &from->priotree);
659                 if (ret < 0)
660                         return ret;
661         }
662
663         if (to->timeline == from->timeline)
664                 return 0;
665
666         if (to->engine == from->engine) {
667                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
668                                                        &from->submit,
669                                                        GFP_KERNEL);
670                 return ret < 0 ? ret : 0;
671         }
672
673         seqno = i915_gem_request_global_seqno(from);
674         if (!seqno) {
675                 ret = i915_sw_fence_await_dma_fence(&to->submit,
676                                                     &from->fence, 0,
677                                                     GFP_KERNEL);
678                 return ret < 0 ? ret : 0;
679         }
680
681         if (seqno <= to->timeline->sync_seqno[from->engine->id])
682                 return 0;
683
684         trace_i915_gem_ring_sync_to(to, from);
685         if (!i915.semaphores) {
686                 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
687                         ret = i915_sw_fence_await_dma_fence(&to->submit,
688                                                             &from->fence, 0,
689                                                             GFP_KERNEL);
690                         if (ret < 0)
691                                 return ret;
692                 }
693         } else {
694                 ret = to->engine->semaphore.sync_to(to, from);
695                 if (ret)
696                         return ret;
697         }
698
699         to->timeline->sync_seqno[from->engine->id] = seqno;
700         return 0;
701 }
702
703 int
704 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
705                                  struct dma_fence *fence)
706 {
707         struct dma_fence_array *array;
708         int ret;
709         int i;
710
711         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
712                 return 0;
713
714         if (dma_fence_is_i915(fence))
715                 return i915_gem_request_await_request(req, to_request(fence));
716
717         if (!dma_fence_is_array(fence)) {
718                 ret = i915_sw_fence_await_dma_fence(&req->submit,
719                                                     fence, I915_FENCE_TIMEOUT,
720                                                     GFP_KERNEL);
721                 return ret < 0 ? ret : 0;
722         }
723
724         /* Note that if the fence-array was created in signal-on-any mode,
725          * we should *not* decompose it into its individual fences. However,
726          * we don't currently store which mode the fence-array is operating
727          * in. Fortunately, the only user of signal-on-any is private to
728          * amdgpu and we should not see any incoming fence-array from
729          * sync-file being in signal-on-any mode.
730          */
731
732         array = to_dma_fence_array(fence);
733         for (i = 0; i < array->num_fences; i++) {
734                 struct dma_fence *child = array->fences[i];
735
736                 if (dma_fence_is_i915(child))
737                         ret = i915_gem_request_await_request(req,
738                                                              to_request(child));
739                 else
740                         ret = i915_sw_fence_await_dma_fence(&req->submit,
741                                                             child, I915_FENCE_TIMEOUT,
742                                                             GFP_KERNEL);
743                 if (ret < 0)
744                         return ret;
745         }
746
747         return 0;
748 }
749
750 /**
751  * i915_gem_request_await_object - set this request to (async) wait upon a bo
752  *
753  * @to: request we are wishing to use
754  * @obj: object which may be in use on another ring.
755  *
756  * This code is meant to abstract object synchronization with the GPU.
757  * Conceptually we serialise writes between engines inside the GPU.
758  * We only allow one engine to write into a buffer at any time, but
759  * multiple readers. To ensure each has a coherent view of memory, we must:
760  *
761  * - If there is an outstanding write request to the object, the new
762  *   request must wait for it to complete (either CPU or in hw, requests
763  *   on the same ring will be naturally ordered).
764  *
765  * - If we are a write request (pending_write_domain is set), the new
766  *   request must wait for outstanding read requests to complete.
767  *
768  * Returns 0 if successful, else propagates up the lower layer error.
769  */
770 int
771 i915_gem_request_await_object(struct drm_i915_gem_request *to,
772                               struct drm_i915_gem_object *obj,
773                               bool write)
774 {
775         struct dma_fence *excl;
776         int ret = 0;
777
778         if (write) {
779                 struct dma_fence **shared;
780                 unsigned int count, i;
781
782                 ret = reservation_object_get_fences_rcu(obj->resv,
783                                                         &excl, &count, &shared);
784                 if (ret)
785                         return ret;
786
787                 for (i = 0; i < count; i++) {
788                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
789                         if (ret)
790                                 break;
791
792                         dma_fence_put(shared[i]);
793                 }
794
795                 for (; i < count; i++)
796                         dma_fence_put(shared[i]);
797                 kfree(shared);
798         } else {
799                 excl = reservation_object_get_excl_rcu(obj->resv);
800         }
801
802         if (excl) {
803                 if (ret == 0)
804                         ret = i915_gem_request_await_dma_fence(to, excl);
805
806                 dma_fence_put(excl);
807         }
808
809         return ret;
810 }
811
812 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
813 {
814         struct drm_i915_private *dev_priv = engine->i915;
815
816         if (dev_priv->gt.awake)
817                 return;
818
819         GEM_BUG_ON(!dev_priv->gt.active_requests);
820
821         intel_runtime_pm_get_noresume(dev_priv);
822         dev_priv->gt.awake = true;
823
824         intel_enable_gt_powersave(dev_priv);
825         i915_update_gfx_val(dev_priv);
826         if (INTEL_GEN(dev_priv) >= 6)
827                 gen6_rps_busy(dev_priv);
828
829         queue_delayed_work(dev_priv->wq,
830                            &dev_priv->gt.retire_work,
831                            round_jiffies_up_relative(HZ));
832 }
833
834 /*
835  * NB: This function is not allowed to fail. Doing so would mean the the
836  * request is not being tracked for completion but the work itself is
837  * going to happen on the hardware. This would be a Bad Thing(tm).
838  */
839 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
840 {
841         struct intel_engine_cs *engine = request->engine;
842         struct intel_ring *ring = request->ring;
843         struct intel_timeline *timeline = request->timeline;
844         struct drm_i915_gem_request *prev;
845         u32 *cs;
846         int err;
847
848         lockdep_assert_held(&request->i915->drm.struct_mutex);
849         trace_i915_gem_request_add(request);
850
851         /* Make sure that no request gazumped us - if it was allocated after
852          * our i915_gem_request_alloc() and called __i915_add_request() before
853          * us, the timeline will hold its seqno which is later than ours.
854          */
855         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
856
857         /*
858          * To ensure that this call will not fail, space for its emissions
859          * should already have been reserved in the ring buffer. Let the ring
860          * know that it is time to use that space up.
861          */
862         request->reserved_space = 0;
863
864         /*
865          * Emit any outstanding flushes - execbuf can fail to emit the flush
866          * after having emitted the batchbuffer command. Hence we need to fix
867          * things up similar to emitting the lazy request. The difference here
868          * is that the flush _must_ happen before the next request, no matter
869          * what.
870          */
871         if (flush_caches) {
872                 err = engine->emit_flush(request, EMIT_FLUSH);
873
874                 /* Not allowed to fail! */
875                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
876         }
877
878         /* Record the position of the start of the breadcrumb so that
879          * should we detect the updated seqno part-way through the
880          * GPU processing the request, we never over-estimate the
881          * position of the ring's HEAD.
882          */
883         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
884         GEM_BUG_ON(IS_ERR(cs));
885         request->postfix = intel_ring_offset(request, cs);
886
887         /* Seal the request and mark it as pending execution. Note that
888          * we may inspect this state, without holding any locks, during
889          * hangcheck. Hence we apply the barrier to ensure that we do not
890          * see a more recent value in the hws than we are tracking.
891          */
892
893         prev = i915_gem_active_raw(&timeline->last_request,
894                                    &request->i915->drm.struct_mutex);
895         if (prev) {
896                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
897                                              &request->submitq);
898                 if (engine->schedule)
899                         __i915_priotree_add_dependency(&request->priotree,
900                                                        &prev->priotree,
901                                                        &request->dep,
902                                                        0);
903         }
904
905         spin_lock_irq(&timeline->lock);
906         list_add_tail(&request->link, &timeline->requests);
907         spin_unlock_irq(&timeline->lock);
908
909         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
910         i915_gem_active_set(&timeline->last_request, request);
911
912         list_add_tail(&request->ring_link, &ring->request_list);
913         request->emitted_jiffies = jiffies;
914
915         if (!request->i915->gt.active_requests++)
916                 i915_gem_mark_busy(engine);
917
918         /* Let the backend know a new request has arrived that may need
919          * to adjust the existing execution schedule due to a high priority
920          * request - i.e. we may want to preempt the current request in order
921          * to run a high priority dependency chain *before* we can execute this
922          * request.
923          *
924          * This is called before the request is ready to run so that we can
925          * decide whether to preempt the entire chain so that it is ready to
926          * run at the earliest possible convenience.
927          */
928         if (engine->schedule)
929                 engine->schedule(request, request->ctx->priority);
930
931         local_bh_disable();
932         i915_sw_fence_commit(&request->submit);
933         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
934 }
935
936 static unsigned long local_clock_us(unsigned int *cpu)
937 {
938         unsigned long t;
939
940         /* Cheaply and approximately convert from nanoseconds to microseconds.
941          * The result and subsequent calculations are also defined in the same
942          * approximate microseconds units. The principal source of timing
943          * error here is from the simple truncation.
944          *
945          * Note that local_clock() is only defined wrt to the current CPU;
946          * the comparisons are no longer valid if we switch CPUs. Instead of
947          * blocking preemption for the entire busywait, we can detect the CPU
948          * switch and use that as indicator of system load and a reason to
949          * stop busywaiting, see busywait_stop().
950          */
951         *cpu = get_cpu();
952         t = local_clock() >> 10;
953         put_cpu();
954
955         return t;
956 }
957
958 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
959 {
960         unsigned int this_cpu;
961
962         if (time_after(local_clock_us(&this_cpu), timeout))
963                 return true;
964
965         return this_cpu != cpu;
966 }
967
968 bool __i915_spin_request(const struct drm_i915_gem_request *req,
969                          u32 seqno, int state, unsigned long timeout_us)
970 {
971         struct intel_engine_cs *engine = req->engine;
972         unsigned int irq, cpu;
973
974         /* When waiting for high frequency requests, e.g. during synchronous
975          * rendering split between the CPU and GPU, the finite amount of time
976          * required to set up the irq and wait upon it limits the response
977          * rate. By busywaiting on the request completion for a short while we
978          * can service the high frequency waits as quick as possible. However,
979          * if it is a slow request, we want to sleep as quickly as possible.
980          * The tradeoff between waiting and sleeping is roughly the time it
981          * takes to sleep on a request, on the order of a microsecond.
982          */
983
984         irq = atomic_read(&engine->irq_count);
985         timeout_us += local_clock_us(&cpu);
986         do {
987                 if (seqno != i915_gem_request_global_seqno(req))
988                         break;
989
990                 if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
991                                       seqno))
992                         return true;
993
994                 /* Seqno are meant to be ordered *before* the interrupt. If
995                  * we see an interrupt without a corresponding seqno advance,
996                  * assume we won't see one in the near future but require
997                  * the engine->seqno_barrier() to fixup coherency.
998                  */
999                 if (atomic_read(&engine->irq_count) != irq)
1000                         break;
1001
1002                 if (signal_pending_state(state, current))
1003                         break;
1004
1005                 if (busywait_stop(timeout_us, cpu))
1006                         break;
1007
1008                 cpu_relax();
1009         } while (!need_resched());
1010
1011         return false;
1012 }
1013
1014 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1015 {
1016         if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1017                 return false;
1018
1019         __set_current_state(TASK_RUNNING);
1020         i915_reset(request->i915);
1021         return true;
1022 }
1023
1024 /**
1025  * i915_wait_request - wait until execution of request has finished
1026  * @req: the request to wait upon
1027  * @flags: how to wait
1028  * @timeout: how long to wait in jiffies
1029  *
1030  * i915_wait_request() waits for the request to be completed, for a
1031  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1032  * unbounded wait).
1033  *
1034  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1035  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1036  * must not specify that the wait is locked.
1037  *
1038  * Returns the remaining time (in jiffies) if the request completed, which may
1039  * be zero or -ETIME if the request is unfinished after the timeout expires.
1040  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1041  * pending before the request completes.
1042  */
1043 long i915_wait_request(struct drm_i915_gem_request *req,
1044                        unsigned int flags,
1045                        long timeout)
1046 {
1047         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1048                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1049         wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1050         DEFINE_WAIT_FUNC(reset, default_wake_function);
1051         DEFINE_WAIT_FUNC(exec, default_wake_function);
1052         struct intel_wait wait;
1053
1054         might_sleep();
1055 #if IS_ENABLED(CONFIG_LOCKDEP)
1056         GEM_BUG_ON(debug_locks &&
1057                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1058                    !!(flags & I915_WAIT_LOCKED));
1059 #endif
1060         GEM_BUG_ON(timeout < 0);
1061
1062         if (i915_gem_request_completed(req))
1063                 return timeout;
1064
1065         if (!timeout)
1066                 return -ETIME;
1067
1068         trace_i915_gem_request_wait_begin(req, flags);
1069
1070         add_wait_queue(&req->execute, &exec);
1071         if (flags & I915_WAIT_LOCKED)
1072                 add_wait_queue(errq, &reset);
1073
1074         intel_wait_init(&wait, req);
1075
1076 restart:
1077         do {
1078                 set_current_state(state);
1079                 if (intel_wait_update_request(&wait, req))
1080                         break;
1081
1082                 if (flags & I915_WAIT_LOCKED &&
1083                     __i915_wait_request_check_and_reset(req))
1084                         continue;
1085
1086                 if (signal_pending_state(state, current)) {
1087                         timeout = -ERESTARTSYS;
1088                         goto complete;
1089                 }
1090
1091                 if (!timeout) {
1092                         timeout = -ETIME;
1093                         goto complete;
1094                 }
1095
1096                 timeout = io_schedule_timeout(timeout);
1097         } while (1);
1098
1099         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1100         GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1101
1102         /* Optimistic short spin before touching IRQs */
1103         if (i915_spin_request(req, state, 5))
1104                 goto complete;
1105
1106         set_current_state(state);
1107         if (intel_engine_add_wait(req->engine, &wait))
1108                 /* In order to check that we haven't missed the interrupt
1109                  * as we enabled it, we need to kick ourselves to do a
1110                  * coherent check on the seqno before we sleep.
1111                  */
1112                 goto wakeup;
1113
1114         if (flags & I915_WAIT_LOCKED)
1115                 __i915_wait_request_check_and_reset(req);
1116
1117         for (;;) {
1118                 if (signal_pending_state(state, current)) {
1119                         timeout = -ERESTARTSYS;
1120                         break;
1121                 }
1122
1123                 if (!timeout) {
1124                         timeout = -ETIME;
1125                         break;
1126                 }
1127
1128                 timeout = io_schedule_timeout(timeout);
1129
1130                 if (intel_wait_complete(&wait) &&
1131                     intel_wait_check_request(&wait, req))
1132                         break;
1133
1134                 set_current_state(state);
1135
1136 wakeup:
1137                 /* Carefully check if the request is complete, giving time
1138                  * for the seqno to be visible following the interrupt.
1139                  * We also have to check in case we are kicked by the GPU
1140                  * reset in order to drop the struct_mutex.
1141                  */
1142                 if (__i915_request_irq_complete(req))
1143                         break;
1144
1145                 /* If the GPU is hung, and we hold the lock, reset the GPU
1146                  * and then check for completion. On a full reset, the engine's
1147                  * HW seqno will be advanced passed us and we are complete.
1148                  * If we do a partial reset, we have to wait for the GPU to
1149                  * resume and update the breadcrumb.
1150                  *
1151                  * If we don't hold the mutex, we can just wait for the worker
1152                  * to come along and update the breadcrumb (either directly
1153                  * itself, or indirectly by recovering the GPU).
1154                  */
1155                 if (flags & I915_WAIT_LOCKED &&
1156                     __i915_wait_request_check_and_reset(req))
1157                         continue;
1158
1159                 /* Only spin if we know the GPU is processing this request */
1160                 if (i915_spin_request(req, state, 2))
1161                         break;
1162
1163                 if (!intel_wait_check_request(&wait, req)) {
1164                         intel_engine_remove_wait(req->engine, &wait);
1165                         goto restart;
1166                 }
1167         }
1168
1169         intel_engine_remove_wait(req->engine, &wait);
1170 complete:
1171         __set_current_state(TASK_RUNNING);
1172         if (flags & I915_WAIT_LOCKED)
1173                 remove_wait_queue(errq, &reset);
1174         remove_wait_queue(&req->execute, &exec);
1175         trace_i915_gem_request_wait_end(req);
1176
1177         return timeout;
1178 }
1179
1180 static void engine_retire_requests(struct intel_engine_cs *engine)
1181 {
1182         struct drm_i915_gem_request *request, *next;
1183         u32 seqno = intel_engine_get_seqno(engine);
1184         LIST_HEAD(retire);
1185
1186         spin_lock_irq(&engine->timeline->lock);
1187         list_for_each_entry_safe(request, next,
1188                                  &engine->timeline->requests, link) {
1189                 if (!i915_seqno_passed(seqno, request->global_seqno))
1190                         break;
1191
1192                 list_move_tail(&request->link, &retire);
1193         }
1194         spin_unlock_irq(&engine->timeline->lock);
1195
1196         list_for_each_entry_safe(request, next, &retire, link)
1197                 i915_gem_request_retire(request);
1198 }
1199
1200 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1201 {
1202         struct intel_engine_cs *engine;
1203         enum intel_engine_id id;
1204
1205         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1206
1207         if (!dev_priv->gt.active_requests)
1208                 return;
1209
1210         for_each_engine(engine, dev_priv, id)
1211                 engine_retire_requests(engine);
1212 }
1213
1214 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1215 #include "selftests/mock_request.c"
1216 #include "selftests/i915_gem_request.c"
1217 #endif