]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_guc_submission.c
Merge branch 'tee/initial-merge' into fixes
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_guc_submission.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 #include <linux/circ_buf.h>
25 #include "i915_drv.h"
26 #include "intel_uc.h"
27
28 #include <trace/events/dma_fence.h>
29
30 /**
31  * DOC: GuC-based command submission
32  *
33  * GuC client:
34  * A i915_guc_client refers to a submission path through GuC. Currently, there
35  * is only one of these (the execbuf_client) and this one is charged with all
36  * submissions to the GuC. This struct is the owner of a doorbell, a process
37  * descriptor and a workqueue (all of them inside a single gem object that
38  * contains all required pages for these elements).
39  *
40  * GuC stage descriptor:
41  * During initialization, the driver allocates a static pool of 1024 such
42  * descriptors, and shares them with the GuC.
43  * Currently, there exists a 1:1 mapping between a i915_guc_client and a
44  * guc_stage_desc (via the client's stage_id), so effectively only one
45  * gets used. This stage descriptor lets the GuC know about the doorbell,
46  * workqueue and process descriptor. Theoretically, it also lets the GuC
47  * know about our HW contexts (context ID, etc...), but we actually
48  * employ a kind of submission where the GuC uses the LRCA sent via the work
49  * item instead (the single guc_stage_desc associated to execbuf client
50  * contains information about the default kernel context only, but this is
51  * essentially unused). This is called a "proxy" submission.
52  *
53  * The Scratch registers:
54  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
55  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
56  * triggers an interrupt on the GuC via another register write (0xC4C8).
57  * Firmware writes a success/fail code back to the action register after
58  * processes the request. The kernel driver polls waiting for this update and
59  * then proceeds.
60  * See intel_guc_send()
61  *
62  * Doorbells:
63  * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
64  * mapped into process space.
65  *
66  * Work Items:
67  * There are several types of work items that the host may place into a
68  * workqueue, each with its own requirements and limitations. Currently only
69  * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
70  * represents in-order queue. The kernel driver packs ring tail pointer and an
71  * ELSP context descriptor dword into Work Item.
72  * See guc_wq_item_append()
73  *
74  * ADS:
75  * The Additional Data Struct (ADS) has pointers for different buffers used by
76  * the GuC. One single gem object contains the ADS struct itself (guc_ads), the
77  * scheduling policies (guc_policies), a structure describing a collection of
78  * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
79  * its internal state for sleep.
80  *
81  */
82
83 static inline bool is_high_priority(struct i915_guc_client* client)
84 {
85         return client->priority <= GUC_CLIENT_PRIORITY_HIGH;
86 }
87
88 static int __reserve_doorbell(struct i915_guc_client *client)
89 {
90         unsigned long offset;
91         unsigned long end;
92         u16 id;
93
94         GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
95
96         /*
97          * The bitmap tracks which doorbell registers are currently in use.
98          * It is split into two halves; the first half is used for normal
99          * priority contexts, the second half for high-priority ones.
100          */
101         offset = 0;
102         end = GUC_NUM_DOORBELLS/2;
103         if (is_high_priority(client)) {
104                 offset = end;
105                 end += offset;
106         }
107
108         id = find_next_zero_bit(client->guc->doorbell_bitmap, offset, end);
109         if (id == end)
110                 return -ENOSPC;
111
112         __set_bit(id, client->guc->doorbell_bitmap);
113         client->doorbell_id = id;
114         DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
115                          client->stage_id, yesno(is_high_priority(client)),
116                          id);
117         return 0;
118 }
119
120 static void __unreserve_doorbell(struct i915_guc_client *client)
121 {
122         GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);
123
124         __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
125         client->doorbell_id = GUC_DOORBELL_INVALID;
126 }
127
128 /*
129  * Tell the GuC to allocate or deallocate a specific doorbell
130  */
131
132 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
133 {
134         u32 action[] = {
135                 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
136                 stage_id
137         };
138
139         return intel_guc_send(guc, action, ARRAY_SIZE(action));
140 }
141
142 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
143 {
144         u32 action[] = {
145                 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
146                 stage_id
147         };
148
149         return intel_guc_send(guc, action, ARRAY_SIZE(action));
150 }
151
152 static struct guc_stage_desc *__get_stage_desc(struct i915_guc_client *client)
153 {
154         struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
155
156         return &base[client->stage_id];
157 }
158
159 /*
160  * Initialise, update, or clear doorbell data shared with the GuC
161  *
162  * These functions modify shared data and so need access to the mapped
163  * client object which contains the page being used for the doorbell
164  */
165
166 static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id)
167 {
168         struct guc_stage_desc *desc;
169
170         /* Update the GuC's idea of the doorbell ID */
171         desc = __get_stage_desc(client);
172         desc->db_id = new_id;
173 }
174
175 static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client)
176 {
177         return client->vaddr + client->doorbell_offset;
178 }
179
180 static bool has_doorbell(struct i915_guc_client *client)
181 {
182         if (client->doorbell_id == GUC_DOORBELL_INVALID)
183                 return false;
184
185         return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
186 }
187
188 static int __create_doorbell(struct i915_guc_client *client)
189 {
190         struct guc_doorbell_info *doorbell;
191         int err;
192
193         doorbell = __get_doorbell(client);
194         doorbell->db_status = GUC_DOORBELL_ENABLED;
195         doorbell->cookie = client->doorbell_cookie;
196
197         err = __guc_allocate_doorbell(client->guc, client->stage_id);
198         if (err) {
199                 doorbell->db_status = GUC_DOORBELL_DISABLED;
200                 doorbell->cookie = 0;
201         }
202         return err;
203 }
204
205 static int __destroy_doorbell(struct i915_guc_client *client)
206 {
207         struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
208         struct guc_doorbell_info *doorbell;
209         u16 db_id = client->doorbell_id;
210
211         GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
212
213         doorbell = __get_doorbell(client);
214         doorbell->db_status = GUC_DOORBELL_DISABLED;
215         doorbell->cookie = 0;
216
217         /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
218          * to go to zero after updating db_status before we call the GuC to
219          * release the doorbell */
220         if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
221                 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
222
223         return __guc_deallocate_doorbell(client->guc, client->stage_id);
224 }
225
226 static int create_doorbell(struct i915_guc_client *client)
227 {
228         int ret;
229
230         ret = __reserve_doorbell(client);
231         if (ret)
232                 return ret;
233
234         __update_doorbell_desc(client, client->doorbell_id);
235
236         ret = __create_doorbell(client);
237         if (ret)
238                 goto err;
239
240         return 0;
241
242 err:
243         __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
244         __unreserve_doorbell(client);
245         return ret;
246 }
247
248 static int destroy_doorbell(struct i915_guc_client *client)
249 {
250         int err;
251
252         GEM_BUG_ON(!has_doorbell(client));
253
254         /* XXX: wait for any interrupts */
255         /* XXX: wait for workqueue to drain */
256
257         err = __destroy_doorbell(client);
258         if (err)
259                 return err;
260
261         __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
262
263         __unreserve_doorbell(client);
264
265         return 0;
266 }
267
268 static unsigned long __select_cacheline(struct intel_guc* guc)
269 {
270         unsigned long offset;
271
272         /* Doorbell uses a single cache line within a page */
273         offset = offset_in_page(guc->db_cacheline);
274
275         /* Moving to next cache line to reduce contention */
276         guc->db_cacheline += cache_line_size();
277
278         DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
279                         offset, guc->db_cacheline, cache_line_size());
280         return offset;
281 }
282
283 static inline struct guc_process_desc *
284 __get_process_desc(struct i915_guc_client *client)
285 {
286         return client->vaddr + client->proc_desc_offset;
287 }
288
289 /*
290  * Initialise the process descriptor shared with the GuC firmware.
291  */
292 static void guc_proc_desc_init(struct intel_guc *guc,
293                                struct i915_guc_client *client)
294 {
295         struct guc_process_desc *desc;
296
297         desc = memset(__get_process_desc(client), 0, sizeof(*desc));
298
299         /*
300          * XXX: pDoorbell and WQVBaseAddress are pointers in process address
301          * space for ring3 clients (set them as in mmap_ioctl) or kernel
302          * space for kernel clients (map on demand instead? May make debug
303          * easier to have it mapped).
304          */
305         desc->wq_base_addr = 0;
306         desc->db_base_addr = 0;
307
308         desc->stage_id = client->stage_id;
309         desc->wq_size_bytes = client->wq_size;
310         desc->wq_status = WQ_STATUS_ACTIVE;
311         desc->priority = client->priority;
312 }
313
314 /*
315  * Initialise/clear the stage descriptor shared with the GuC firmware.
316  *
317  * This descriptor tells the GuC where (in GGTT space) to find the important
318  * data structures relating to this client (doorbell, process descriptor,
319  * write queue, etc).
320  */
321 static void guc_stage_desc_init(struct intel_guc *guc,
322                                 struct i915_guc_client *client)
323 {
324         struct drm_i915_private *dev_priv = guc_to_i915(guc);
325         struct intel_engine_cs *engine;
326         struct i915_gem_context *ctx = client->owner;
327         struct guc_stage_desc *desc;
328         unsigned int tmp;
329         u32 gfx_addr;
330
331         desc = __get_stage_desc(client);
332         memset(desc, 0, sizeof(*desc));
333
334         desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL;
335         desc->stage_id = client->stage_id;
336         desc->priority = client->priority;
337         desc->db_id = client->doorbell_id;
338
339         for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
340                 struct intel_context *ce = &ctx->engine[engine->id];
341                 uint32_t guc_engine_id = engine->guc_id;
342                 struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
343
344                 /* TODO: We have a design issue to be solved here. Only when we
345                  * receive the first batch, we know which engine is used by the
346                  * user. But here GuC expects the lrc and ring to be pinned. It
347                  * is not an issue for default context, which is the only one
348                  * for now who owns a GuC client. But for future owner of GuC
349                  * client, need to make sure lrc is pinned prior to enter here.
350                  */
351                 if (!ce->state)
352                         break;  /* XXX: continue? */
353
354                 /*
355                  * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
356                  * submission or, in other words, not using a direct submission
357                  * model) the KMD's LRCA is not used for any work submission.
358                  * Instead, the GuC uses the LRCA of the user mode context (see
359                  * guc_wq_item_append below).
360                  */
361                 lrc->context_desc = lower_32_bits(ce->lrc_desc);
362
363                 /* The state page is after PPHWSP */
364                 lrc->ring_lrca =
365                         guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
366
367                 /* XXX: In direct submission, the GuC wants the HW context id
368                  * here. In proxy submission, it wants the stage id */
369                 lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
370                                 (guc_engine_id << GUC_ELC_ENGINE_OFFSET);
371
372                 lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
373                 lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
374                 lrc->ring_next_free_location = lrc->ring_begin;
375                 lrc->ring_current_tail_pointer_value = 0;
376
377                 desc->engines_used |= (1 << guc_engine_id);
378         }
379
380         DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
381                         client->engines, desc->engines_used);
382         WARN_ON(desc->engines_used == 0);
383
384         /*
385          * The doorbell, process descriptor, and workqueue are all parts
386          * of the client object, which the GuC will reference via the GGTT
387          */
388         gfx_addr = guc_ggtt_offset(client->vma);
389         desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
390                                 client->doorbell_offset;
391         desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client);
392         desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
393         desc->process_desc = gfx_addr + client->proc_desc_offset;
394         desc->wq_addr = gfx_addr + client->wq_offset;
395         desc->wq_size = client->wq_size;
396
397         desc->desc_private = (uintptr_t)client;
398 }
399
400 static void guc_stage_desc_fini(struct intel_guc *guc,
401                                 struct i915_guc_client *client)
402 {
403         struct guc_stage_desc *desc;
404
405         desc = __get_stage_desc(client);
406         memset(desc, 0, sizeof(*desc));
407 }
408
409 /**
410  * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
411  * @request:    request associated with the commands
412  *
413  * Return:      0 if space is available
414  *              -EAGAIN if space is not currently available
415  *
416  * This function must be called (and must return 0) before a request
417  * is submitted to the GuC via i915_guc_submit() below. Once a result
418  * of 0 has been returned, it must be balanced by a corresponding
419  * call to submit().
420  *
421  * Reservation allows the caller to determine in advance that space
422  * will be available for the next submission before committing resources
423  * to it, and helps avoid late failures with complicated recovery paths.
424  */
425 int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
426 {
427         const size_t wqi_size = sizeof(struct guc_wq_item);
428         struct i915_guc_client *client = request->i915->guc.execbuf_client;
429         struct guc_process_desc *desc = __get_process_desc(client);
430         u32 freespace;
431         int ret;
432
433         spin_lock_irq(&client->wq_lock);
434         freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
435         freespace -= client->wq_rsvd;
436         if (likely(freespace >= wqi_size)) {
437                 client->wq_rsvd += wqi_size;
438                 ret = 0;
439         } else {
440                 client->no_wq_space++;
441                 ret = -EAGAIN;
442         }
443         spin_unlock_irq(&client->wq_lock);
444
445         return ret;
446 }
447
448 static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size)
449 {
450         unsigned long flags;
451
452         spin_lock_irqsave(&client->wq_lock, flags);
453         client->wq_rsvd += size;
454         spin_unlock_irqrestore(&client->wq_lock, flags);
455 }
456
457 void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
458 {
459         const int wqi_size = sizeof(struct guc_wq_item);
460         struct i915_guc_client *client = request->i915->guc.execbuf_client;
461
462         GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size);
463         guc_client_update_wq_rsvd(client, -wqi_size);
464 }
465
466 /* Construct a Work Item and append it to the GuC's Work Queue */
467 static void guc_wq_item_append(struct i915_guc_client *client,
468                                struct drm_i915_gem_request *rq)
469 {
470         /* wqi_len is in DWords, and does not include the one-word header */
471         const size_t wqi_size = sizeof(struct guc_wq_item);
472         const u32 wqi_len = wqi_size/sizeof(u32) - 1;
473         struct intel_engine_cs *engine = rq->engine;
474         struct guc_process_desc *desc = __get_process_desc(client);
475         struct guc_wq_item *wqi;
476         u32 freespace, tail, wq_off;
477
478         /* Free space is guaranteed, see i915_guc_wq_reserve() above */
479         freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
480         GEM_BUG_ON(freespace < wqi_size);
481
482         /* The GuC firmware wants the tail index in QWords, not bytes */
483         tail = rq->tail;
484         assert_ring_tail_valid(rq->ring, rq->tail);
485         tail >>= 3;
486         GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
487
488         /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
489          * should not have the case where structure wqi is across page, neither
490          * wrapped to the beginning. This simplifies the implementation below.
491          *
492          * XXX: if not the case, we need save data to a temp wqi and copy it to
493          * workqueue buffer dw by dw.
494          */
495         BUILD_BUG_ON(wqi_size != 16);
496         GEM_BUG_ON(client->wq_rsvd < wqi_size);
497
498         /* postincrement WQ tail for next time */
499         wq_off = client->wq_tail;
500         GEM_BUG_ON(wq_off & (wqi_size - 1));
501         client->wq_tail += wqi_size;
502         client->wq_tail &= client->wq_size - 1;
503         client->wq_rsvd -= wqi_size;
504
505         /* WQ starts from the page after doorbell / process_desc */
506         wqi = client->vaddr + wq_off + GUC_DB_SIZE;
507
508         /* Now fill in the 4-word work queue item */
509         wqi->header = WQ_TYPE_INORDER |
510                         (wqi_len << WQ_LEN_SHIFT) |
511                         (engine->guc_id << WQ_TARGET_SHIFT) |
512                         WQ_NO_WCFLUSH_WAIT;
513
514         /* The GuC wants only the low-order word of the context descriptor */
515         wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
516
517         wqi->submit_element_info = tail << WQ_RING_TAIL_SHIFT;
518         wqi->fence_id = rq->global_seqno;
519 }
520
521 static void guc_reset_wq(struct i915_guc_client *client)
522 {
523         struct guc_process_desc *desc = __get_process_desc(client);
524
525         desc->head = 0;
526         desc->tail = 0;
527
528         client->wq_tail = 0;
529 }
530
531 static int guc_ring_doorbell(struct i915_guc_client *client)
532 {
533         struct guc_process_desc *desc = __get_process_desc(client);
534         union guc_doorbell_qw db_cmp, db_exc, db_ret;
535         union guc_doorbell_qw *db;
536         int attempt = 2, ret = -EAGAIN;
537
538         /* Update the tail so it is visible to GuC */
539         desc->tail = client->wq_tail;
540
541         /* current cookie */
542         db_cmp.db_status = GUC_DOORBELL_ENABLED;
543         db_cmp.cookie = client->doorbell_cookie;
544
545         /* cookie to be updated */
546         db_exc.db_status = GUC_DOORBELL_ENABLED;
547         db_exc.cookie = client->doorbell_cookie + 1;
548         if (db_exc.cookie == 0)
549                 db_exc.cookie = 1;
550
551         /* pointer of current doorbell cacheline */
552         db = (union guc_doorbell_qw *)__get_doorbell(client);
553
554         while (attempt--) {
555                 /* lets ring the doorbell */
556                 db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
557                         db_cmp.value_qw, db_exc.value_qw);
558
559                 /* if the exchange was successfully executed */
560                 if (db_ret.value_qw == db_cmp.value_qw) {
561                         /* db was successfully rung */
562                         client->doorbell_cookie = db_exc.cookie;
563                         ret = 0;
564                         break;
565                 }
566
567                 /* XXX: doorbell was lost and need to acquire it again */
568                 if (db_ret.db_status == GUC_DOORBELL_DISABLED)
569                         break;
570
571                 DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
572                          db_cmp.cookie, db_ret.cookie);
573
574                 /* update the cookie to newly read cookie from GuC */
575                 db_cmp.cookie = db_ret.cookie;
576                 db_exc.cookie = db_ret.cookie + 1;
577                 if (db_exc.cookie == 0)
578                         db_exc.cookie = 1;
579         }
580
581         return ret;
582 }
583
584 /**
585  * __i915_guc_submit() - Submit commands through GuC
586  * @rq:         request associated with the commands
587  *
588  * The caller must have already called i915_guc_wq_reserve() above with
589  * a result of 0 (success), guaranteeing that there is space in the work
590  * queue for the new request, so enqueuing the item cannot fail.
591  *
592  * Bad Things Will Happen if the caller violates this protocol e.g. calls
593  * submit() when _reserve() says there's no space, or calls _submit()
594  * a different number of times from (successful) calls to _reserve().
595  *
596  * The only error here arises if the doorbell hardware isn't functioning
597  * as expected, which really shouln't happen.
598  */
599 static void __i915_guc_submit(struct drm_i915_gem_request *rq)
600 {
601         struct drm_i915_private *dev_priv = rq->i915;
602         struct intel_engine_cs *engine = rq->engine;
603         unsigned int engine_id = engine->id;
604         struct intel_guc *guc = &rq->i915->guc;
605         struct i915_guc_client *client = guc->execbuf_client;
606         unsigned long flags;
607         int b_ret;
608
609         /* WA to flush out the pending GMADR writes to ring buffer. */
610         if (i915_vma_is_map_and_fenceable(rq->ring->vma))
611                 POSTING_READ_FW(GUC_STATUS);
612
613         spin_lock_irqsave(&client->wq_lock, flags);
614
615         guc_wq_item_append(client, rq);
616         b_ret = guc_ring_doorbell(client);
617
618         client->submissions[engine_id] += 1;
619         client->retcode = b_ret;
620         if (b_ret)
621                 client->b_fail += 1;
622
623         guc->submissions[engine_id] += 1;
624         guc->last_seqno[engine_id] = rq->global_seqno;
625
626         spin_unlock_irqrestore(&client->wq_lock, flags);
627 }
628
629 static void i915_guc_submit(struct drm_i915_gem_request *rq)
630 {
631         __i915_gem_request_submit(rq);
632         __i915_guc_submit(rq);
633 }
634
635 static void nested_enable_signaling(struct drm_i915_gem_request *rq)
636 {
637         /* If we use dma_fence_enable_sw_signaling() directly, lockdep
638          * detects an ordering issue between the fence lockclass and the
639          * global_timeline. This circular dependency can only occur via 2
640          * different fences (but same fence lockclass), so we use the nesting
641          * annotation here to prevent the warn, equivalent to the nesting
642          * inside i915_gem_request_submit() for when we also enable the
643          * signaler.
644          */
645
646         if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
647                              &rq->fence.flags))
648                 return;
649
650         GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
651         trace_dma_fence_enable_signal(&rq->fence);
652
653         spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
654         intel_engine_enable_signaling(rq);
655         spin_unlock(&rq->lock);
656 }
657
658 static bool i915_guc_dequeue(struct intel_engine_cs *engine)
659 {
660         struct execlist_port *port = engine->execlist_port;
661         struct drm_i915_gem_request *last = port[0].request;
662         struct rb_node *rb;
663         bool submit = false;
664
665         spin_lock_irq(&engine->timeline->lock);
666         rb = engine->execlist_first;
667         while (rb) {
668                 struct drm_i915_gem_request *rq =
669                         rb_entry(rb, typeof(*rq), priotree.node);
670
671                 if (last && rq->ctx != last->ctx) {
672                         if (port != engine->execlist_port)
673                                 break;
674
675                         i915_gem_request_assign(&port->request, last);
676                         nested_enable_signaling(last);
677                         port++;
678                 }
679
680                 rb = rb_next(rb);
681                 rb_erase(&rq->priotree.node, &engine->execlist_queue);
682                 RB_CLEAR_NODE(&rq->priotree.node);
683                 rq->priotree.priority = INT_MAX;
684
685                 i915_guc_submit(rq);
686                 trace_i915_gem_request_in(rq, port - engine->execlist_port);
687                 last = rq;
688                 submit = true;
689         }
690         if (submit) {
691                 i915_gem_request_assign(&port->request, last);
692                 nested_enable_signaling(last);
693                 engine->execlist_first = rb;
694         }
695         spin_unlock_irq(&engine->timeline->lock);
696
697         return submit;
698 }
699
700 static void i915_guc_irq_handler(unsigned long data)
701 {
702         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
703         struct execlist_port *port = engine->execlist_port;
704         struct drm_i915_gem_request *rq;
705         bool submit;
706
707         do {
708                 rq = port[0].request;
709                 while (rq && i915_gem_request_completed(rq)) {
710                         trace_i915_gem_request_out(rq);
711                         i915_gem_request_put(rq);
712                         port[0].request = port[1].request;
713                         port[1].request = NULL;
714                         rq = port[0].request;
715                 }
716
717                 submit = false;
718                 if (!port[1].request)
719                         submit = i915_guc_dequeue(engine);
720         } while (submit);
721 }
722
723 /*
724  * Everything below here is concerned with setup & teardown, and is
725  * therefore not part of the somewhat time-critical batch-submission
726  * path of i915_guc_submit() above.
727  */
728
729 /**
730  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
731  * @guc:        the guc
732  * @size:       size of area to allocate (both virtual space and memory)
733  *
734  * This is a wrapper to create an object for use with the GuC. In order to
735  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
736  * both some backing storage and a range inside the Global GTT. We must pin
737  * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
738  * range is reserved inside GuC.
739  *
740  * Return:      A i915_vma if successful, otherwise an ERR_PTR.
741  */
742 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
743 {
744         struct drm_i915_private *dev_priv = guc_to_i915(guc);
745         struct drm_i915_gem_object *obj;
746         struct i915_vma *vma;
747         int ret;
748
749         obj = i915_gem_object_create(dev_priv, size);
750         if (IS_ERR(obj))
751                 return ERR_CAST(obj);
752
753         vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
754         if (IS_ERR(vma))
755                 goto err;
756
757         ret = i915_vma_pin(vma, 0, PAGE_SIZE,
758                            PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
759         if (ret) {
760                 vma = ERR_PTR(ret);
761                 goto err;
762         }
763
764         return vma;
765
766 err:
767         i915_gem_object_put(obj);
768         return vma;
769 }
770
771 /* Check that a doorbell register is in the expected state */
772 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
773 {
774         struct drm_i915_private *dev_priv = guc_to_i915(guc);
775         u32 drbregl;
776         bool valid;
777
778         GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
779
780         drbregl = I915_READ(GEN8_DRBREGL(db_id));
781         valid = drbregl & GEN8_DRB_VALID;
782
783         if (test_bit(db_id, guc->doorbell_bitmap) == valid)
784                 return true;
785
786         DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
787                          db_id, drbregl, yesno(valid));
788
789         return false;
790 }
791
792 /*
793  * If the GuC thinks that the doorbell is unassigned (e.g. because we reset and
794  * reloaded the GuC FW) we can use this function to tell the GuC to reassign the
795  * doorbell to the rightful owner.
796  */
797 static int __reset_doorbell(struct i915_guc_client* client, u16 db_id)
798 {
799         int err;
800
801         __update_doorbell_desc(client, db_id);
802         err = __create_doorbell(client);
803         if (!err)
804                 err = __destroy_doorbell(client);
805
806         return err;
807 }
808
809 /*
810  * Set up & tear down each unused doorbell in turn, to ensure that all doorbell
811  * HW is (re)initialised. For that end, we might have to borrow the first
812  * client. Also, tell GuC about all the doorbells in use by all clients.
813  * We do this because the KMD, the GuC and the doorbell HW can easily go out of
814  * sync (e.g. we can reset the GuC, but not the doorbel HW).
815  */
816 static int guc_init_doorbell_hw(struct intel_guc *guc)
817 {
818         struct i915_guc_client *client = guc->execbuf_client;
819         bool recreate_first_client = false;
820         u16 db_id;
821         int ret;
822
823         /* For unused doorbells, make sure they are disabled */
824         for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) {
825                 if (doorbell_ok(guc, db_id))
826                         continue;
827
828                 if (has_doorbell(client)) {
829                         /* Borrow execbuf_client (we will recreate it later) */
830                         destroy_doorbell(client);
831                         recreate_first_client = true;
832                 }
833
834                 ret = __reset_doorbell(client, db_id);
835                 WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret);
836         }
837
838         if (recreate_first_client) {
839                 ret = __reserve_doorbell(client);
840                 if (unlikely(ret)) {
841                         DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret);
842                         return ret;
843                 }
844
845                 __update_doorbell_desc(client, client->doorbell_id);
846         }
847
848         /* Now for every client (and not only execbuf_client) make sure their
849          * doorbells are known by the GuC */
850         //for (client = client_list; client != NULL; client = client->next)
851         {
852                 ret = __create_doorbell(client);
853                 if (ret) {
854                         DRM_ERROR("Couldn't recreate client %u doorbell: %d\n",
855                                 client->stage_id, ret);
856                         return ret;
857                 }
858         }
859
860         /* Read back & verify all (used & unused) doorbell registers */
861         for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
862                 WARN_ON(!doorbell_ok(guc, db_id));
863
864         return 0;
865 }
866
867 /**
868  * guc_client_alloc() - Allocate an i915_guc_client
869  * @dev_priv:   driver private data structure
870  * @engines:    The set of engines to enable for this client
871  * @priority:   four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
872  *              The kernel client to replace ExecList submission is created with
873  *              NORMAL priority. Priority of a client for scheduler can be HIGH,
874  *              while a preemption context can use CRITICAL.
875  * @ctx:        the context that owns the client (we use the default render
876  *              context)
877  *
878  * Return:      An i915_guc_client object if success, else NULL.
879  */
880 static struct i915_guc_client *
881 guc_client_alloc(struct drm_i915_private *dev_priv,
882                  uint32_t engines,
883                  uint32_t priority,
884                  struct i915_gem_context *ctx)
885 {
886         struct i915_guc_client *client;
887         struct intel_guc *guc = &dev_priv->guc;
888         struct i915_vma *vma;
889         void *vaddr;
890         int ret;
891
892         client = kzalloc(sizeof(*client), GFP_KERNEL);
893         if (!client)
894                 return ERR_PTR(-ENOMEM);
895
896         client->guc = guc;
897         client->owner = ctx;
898         client->engines = engines;
899         client->priority = priority;
900         client->doorbell_id = GUC_DOORBELL_INVALID;
901         client->wq_offset = GUC_DB_SIZE;
902         client->wq_size = GUC_WQ_SIZE;
903         spin_lock_init(&client->wq_lock);
904
905         ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
906                                 GFP_KERNEL);
907         if (ret < 0)
908                 goto err_client;
909
910         client->stage_id = ret;
911
912         /* The first page is doorbell/proc_desc. Two followed pages are wq. */
913         vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
914         if (IS_ERR(vma)) {
915                 ret = PTR_ERR(vma);
916                 goto err_id;
917         }
918
919         /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
920         client->vma = vma;
921
922         vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
923         if (IS_ERR(vaddr)) {
924                 ret = PTR_ERR(vaddr);
925                 goto err_vma;
926         }
927         client->vaddr = vaddr;
928
929         client->doorbell_offset = __select_cacheline(guc);
930
931         /*
932          * Since the doorbell only requires a single cacheline, we can save
933          * space by putting the application process descriptor in the same
934          * page. Use the half of the page that doesn't include the doorbell.
935          */
936         if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
937                 client->proc_desc_offset = 0;
938         else
939                 client->proc_desc_offset = (GUC_DB_SIZE / 2);
940
941         guc_proc_desc_init(guc, client);
942         guc_stage_desc_init(guc, client);
943
944         ret = create_doorbell(client);
945         if (ret)
946                 goto err_vaddr;
947
948         DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
949                          priority, client, client->engines, client->stage_id);
950         DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
951                          client->doorbell_id, client->doorbell_offset);
952
953         return client;
954
955 err_vaddr:
956         i915_gem_object_unpin_map(client->vma->obj);
957 err_vma:
958         i915_vma_unpin_and_release(&client->vma);
959 err_id:
960         ida_simple_remove(&guc->stage_ids, client->stage_id);
961 err_client:
962         kfree(client);
963         return ERR_PTR(ret);
964 }
965
966 static void guc_client_free(struct i915_guc_client *client)
967 {
968         /*
969          * XXX: wait for any outstanding submissions before freeing memory.
970          * Be sure to drop any locks
971          */
972
973         /* FIXME: in many cases, by the time we get here the GuC has been
974          * reset, so we cannot destroy the doorbell properly. Ignore the
975          * error message for now */
976         destroy_doorbell(client);
977         guc_stage_desc_fini(client->guc, client);
978         i915_gem_object_unpin_map(client->vma->obj);
979         i915_vma_unpin_and_release(&client->vma);
980         ida_simple_remove(&client->guc->stage_ids, client->stage_id);
981         kfree(client);
982 }
983
984 static void guc_policies_init(struct guc_policies *policies)
985 {
986         struct guc_policy *policy;
987         u32 p, i;
988
989         policies->dpc_promote_time = 500000;
990         policies->max_num_work_items = POLICY_MAX_NUM_WI;
991
992         for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
993                 for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
994                         policy = &policies->policy[p][i];
995
996                         policy->execution_quantum = 1000000;
997                         policy->preemption_time = 500000;
998                         policy->fault_time = 250000;
999                         policy->policy_flags = 0;
1000                 }
1001         }
1002
1003         policies->is_valid = 1;
1004 }
1005
1006 static int guc_ads_create(struct intel_guc *guc)
1007 {
1008         struct drm_i915_private *dev_priv = guc_to_i915(guc);
1009         struct i915_vma *vma;
1010         struct page *page;
1011         /* The ads obj includes the struct itself and buffers passed to GuC */
1012         struct {
1013                 struct guc_ads ads;
1014                 struct guc_policies policies;
1015                 struct guc_mmio_reg_state reg_state;
1016                 u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
1017         } __packed *blob;
1018         struct intel_engine_cs *engine;
1019         enum intel_engine_id id;
1020         u32 base;
1021
1022         GEM_BUG_ON(guc->ads_vma);
1023
1024         vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
1025         if (IS_ERR(vma))
1026                 return PTR_ERR(vma);
1027
1028         guc->ads_vma = vma;
1029
1030         page = i915_vma_first_page(vma);
1031         blob = kmap(page);
1032
1033         /* GuC scheduling policies */
1034         guc_policies_init(&blob->policies);
1035
1036         /* MMIO reg state */
1037         for_each_engine(engine, dev_priv, id) {
1038                 blob->reg_state.white_list[engine->guc_id].mmio_start =
1039                         engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1040
1041                 /* Nothing to be saved or restored for now. */
1042                 blob->reg_state.white_list[engine->guc_id].count = 0;
1043         }
1044
1045         /*
1046          * The GuC requires a "Golden Context" when it reinitialises
1047          * engines after a reset. Here we use the Render ring default
1048          * context, which must already exist and be pinned in the GGTT,
1049          * so its address won't change after we've told the GuC where
1050          * to find it.
1051          */
1052         blob->ads.golden_context_lrca =
1053                 dev_priv->engine[RCS]->status_page.ggtt_offset;
1054
1055         for_each_engine(engine, dev_priv, id)
1056                 blob->ads.eng_state_size[engine->guc_id] =
1057                         intel_lr_context_size(engine);
1058
1059         base = guc_ggtt_offset(vma);
1060         blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
1061         blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
1062         blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
1063
1064         kunmap(page);
1065
1066         return 0;
1067 }
1068
1069 static void guc_ads_destroy(struct intel_guc *guc)
1070 {
1071         i915_vma_unpin_and_release(&guc->ads_vma);
1072 }
1073
1074 /*
1075  * Set up the memory resources to be shared with the GuC (via the GGTT)
1076  * at firmware loading time.
1077  */
1078 int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1079 {
1080         struct intel_guc *guc = &dev_priv->guc;
1081         struct i915_vma *vma;
1082         void *vaddr;
1083         int ret;
1084
1085         if (guc->stage_desc_pool)
1086                 return 0;
1087
1088         vma = intel_guc_allocate_vma(guc,
1089                                 PAGE_ALIGN(sizeof(struct guc_stage_desc) *
1090                                         GUC_MAX_STAGE_DESCRIPTORS));
1091         if (IS_ERR(vma))
1092                 return PTR_ERR(vma);
1093
1094         guc->stage_desc_pool = vma;
1095
1096         vaddr = i915_gem_object_pin_map(guc->stage_desc_pool->obj, I915_MAP_WB);
1097         if (IS_ERR(vaddr)) {
1098                 ret = PTR_ERR(vaddr);
1099                 goto err_vma;
1100         }
1101
1102         guc->stage_desc_pool_vaddr = vaddr;
1103
1104         ret = intel_guc_log_create(guc);
1105         if (ret < 0)
1106                 goto err_vaddr;
1107
1108         ret = guc_ads_create(guc);
1109         if (ret < 0)
1110                 goto err_log;
1111
1112         ida_init(&guc->stage_ids);
1113
1114         return 0;
1115
1116 err_log:
1117         intel_guc_log_destroy(guc);
1118 err_vaddr:
1119         i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1120 err_vma:
1121         i915_vma_unpin_and_release(&guc->stage_desc_pool);
1122         return ret;
1123 }
1124
1125 void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1126 {
1127         struct intel_guc *guc = &dev_priv->guc;
1128
1129         ida_destroy(&guc->stage_ids);
1130         guc_ads_destroy(guc);
1131         intel_guc_log_destroy(guc);
1132         i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1133         i915_vma_unpin_and_release(&guc->stage_desc_pool);
1134 }
1135
1136 static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
1137 {
1138         struct intel_engine_cs *engine;
1139         enum intel_engine_id id;
1140         int irqs;
1141
1142         /* tell all command streamers to forward interrupts (but not vblank) to GuC */
1143         irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1144         for_each_engine(engine, dev_priv, id)
1145                 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1146
1147         /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1148         irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1149                GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1150         /* These three registers have the same bit definitions */
1151         I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
1152         I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
1153         I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1154
1155         /*
1156          * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1157          * (unmasked) PM interrupts to the GuC. All other bits of this
1158          * register *disable* generation of a specific interrupt.
1159          *
1160          * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1161          * writing to the PM interrupt mask register, i.e. interrupts
1162          * that must not be disabled.
1163          *
1164          * If the GuC is handling these interrupts, then we must not let
1165          * the PM code disable ANY interrupt that the GuC is expecting.
1166          * So for each ENABLED (0) bit in this register, we must SET the
1167          * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1168          * GuC needs ARAT expired interrupt unmasked hence it is set in
1169          * pm_intrmsk_mbz.
1170          *
1171          * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1172          * result in the register bit being left SET!
1173          */
1174         dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1175         dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1176 }
1177
1178 static void guc_interrupts_release(struct drm_i915_private *dev_priv)
1179 {
1180         struct intel_engine_cs *engine;
1181         enum intel_engine_id id;
1182         int irqs;
1183
1184         /*
1185          * tell all command streamers NOT to forward interrupts or vblank
1186          * to GuC.
1187          */
1188         irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1189         irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1190         for_each_engine(engine, dev_priv, id)
1191                 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1192
1193         /* route all GT interrupts to the host */
1194         I915_WRITE(GUC_BCS_RCS_IER, 0);
1195         I915_WRITE(GUC_VCS2_VCS1_IER, 0);
1196         I915_WRITE(GUC_WD_VECS_IER, 0);
1197
1198         dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1199         dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1200 }
1201
1202 int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1203 {
1204         struct intel_guc *guc = &dev_priv->guc;
1205         struct i915_guc_client *client = guc->execbuf_client;
1206         struct intel_engine_cs *engine;
1207         enum intel_engine_id id;
1208         int err;
1209
1210         if (!client) {
1211                 client = guc_client_alloc(dev_priv,
1212                                           INTEL_INFO(dev_priv)->ring_mask,
1213                                           GUC_CLIENT_PRIORITY_KMD_NORMAL,
1214                                           dev_priv->kernel_context);
1215                 if (IS_ERR(client)) {
1216                         DRM_ERROR("Failed to create GuC client for execbuf!\n");
1217                         return PTR_ERR(client);
1218                 }
1219
1220                 guc->execbuf_client = client;
1221         }
1222
1223         err = intel_guc_sample_forcewake(guc);
1224         if (err)
1225                 goto err_execbuf_client;
1226
1227         guc_reset_wq(client);
1228
1229         err = guc_init_doorbell_hw(guc);
1230         if (err)
1231                 goto err_execbuf_client;
1232
1233         /* Take over from manual control of ELSP (execlists) */
1234         guc_interrupts_capture(dev_priv);
1235
1236         for_each_engine(engine, dev_priv, id) {
1237                 const int wqi_size = sizeof(struct guc_wq_item);
1238                 struct drm_i915_gem_request *rq;
1239
1240                 /* The tasklet was initialised by execlists, and may be in
1241                  * a state of flux (across a reset) and so we just want to
1242                  * take over the callback without changing any other state
1243                  * in the tasklet.
1244                  */
1245                 engine->irq_tasklet.func = i915_guc_irq_handler;
1246                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1247
1248                 /* Replay the current set of previously submitted requests */
1249                 spin_lock_irq(&engine->timeline->lock);
1250                 list_for_each_entry(rq, &engine->timeline->requests, link) {
1251                         guc_client_update_wq_rsvd(client, wqi_size);
1252                         __i915_guc_submit(rq);
1253                 }
1254                 spin_unlock_irq(&engine->timeline->lock);
1255         }
1256
1257         return 0;
1258
1259 err_execbuf_client:
1260         guc_client_free(guc->execbuf_client);
1261         guc->execbuf_client = NULL;
1262         return err;
1263 }
1264
1265 void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1266 {
1267         struct intel_guc *guc = &dev_priv->guc;
1268
1269         guc_interrupts_release(dev_priv);
1270
1271         /* Revert back to manual ELSP submission */
1272         intel_engines_reset_default_submission(dev_priv);
1273
1274         guc_client_free(guc->execbuf_client);
1275         guc->execbuf_client = NULL;
1276 }
1277
1278 /**
1279  * intel_guc_suspend() - notify GuC entering suspend state
1280  * @dev_priv:   i915 device private
1281  */
1282 int intel_guc_suspend(struct drm_i915_private *dev_priv)
1283 {
1284         struct intel_guc *guc = &dev_priv->guc;
1285         struct i915_gem_context *ctx;
1286         u32 data[3];
1287
1288         if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1289                 return 0;
1290
1291         gen9_disable_guc_interrupts(dev_priv);
1292
1293         ctx = dev_priv->kernel_context;
1294
1295         data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1296         /* any value greater than GUC_POWER_D0 */
1297         data[1] = GUC_POWER_D1;
1298         /* first page is shared data with GuC */
1299         data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1300
1301         return intel_guc_send(guc, data, ARRAY_SIZE(data));
1302 }
1303
1304 /**
1305  * intel_guc_resume() - notify GuC resuming from suspend state
1306  * @dev_priv:   i915 device private
1307  */
1308 int intel_guc_resume(struct drm_i915_private *dev_priv)
1309 {
1310         struct intel_guc *guc = &dev_priv->guc;
1311         struct i915_gem_context *ctx;
1312         u32 data[3];
1313
1314         if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1315                 return 0;
1316
1317         if (i915.guc_log_level >= 0)
1318                 gen9_enable_guc_interrupts(dev_priv);
1319
1320         ctx = dev_priv->kernel_context;
1321
1322         data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1323         data[1] = GUC_POWER_D0;
1324         /* first page is shared data with GuC */
1325         data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1326
1327         return intel_guc_send(guc, data, ARRAY_SIZE(data));
1328 }