]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
drm/i915: Small display interrupt handlers tidy
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177                                      uint32_t mask,
178                                      uint32_t bits)
179 {
180         uint32_t val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183         WARN_ON(bits & ~mask);
184
185         val = I915_READ(PORT_HOTPLUG_EN);
186         val &= ~mask;
187         val |= bits;
188         I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204                                    uint32_t mask,
205                                    uint32_t bits)
206 {
207         spin_lock_irq(&dev_priv->irq_lock);
208         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209         spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219                             uint32_t interrupt_mask,
220                             uint32_t enabled_irq_mask)
221 {
222         uint32_t new_val;
223
224         assert_spin_locked(&dev_priv->irq_lock);
225
226         WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229                 return;
230
231         new_val = dev_priv->irq_mask;
232         new_val &= ~interrupt_mask;
233         new_val |= (~enabled_irq_mask & interrupt_mask);
234
235         if (new_val != dev_priv->irq_mask) {
236                 dev_priv->irq_mask = new_val;
237                 I915_WRITE(DEIMR, dev_priv->irq_mask);
238                 POSTING_READ(DEIMR);
239         }
240 }
241
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249                               uint32_t interrupt_mask,
250                               uint32_t enabled_irq_mask)
251 {
252         assert_spin_locked(&dev_priv->irq_lock);
253
254         WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257                 return;
258
259         dev_priv->gt_irq_mask &= ~interrupt_mask;
260         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262         POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272         ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297                               uint32_t interrupt_mask,
298                               uint32_t enabled_irq_mask)
299 {
300         uint32_t new_val;
301
302         WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304         assert_spin_locked(&dev_priv->irq_lock);
305
306         new_val = dev_priv->pm_irq_mask;
307         new_val &= ~interrupt_mask;
308         new_val |= (~enabled_irq_mask & interrupt_mask);
309
310         if (new_val != dev_priv->pm_irq_mask) {
311                 dev_priv->pm_irq_mask = new_val;
312                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313                 POSTING_READ(gen6_pm_imr(dev_priv));
314         }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320                 return;
321
322         snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326                                   uint32_t mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344         spin_lock_irq(&dev_priv->irq_lock);
345         I915_WRITE(reg, dev_priv->pm_rps_events);
346         I915_WRITE(reg, dev_priv->pm_rps_events);
347         POSTING_READ(reg);
348         dev_priv->rps.pm_iir = 0;
349         spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
353 {
354         spin_lock_irq(&dev_priv->irq_lock);
355
356         WARN_ON(dev_priv->rps.pm_iir);
357         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
358         dev_priv->rps.interrupts_enabled = true;
359         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
360                                 dev_priv->pm_rps_events);
361         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
362
363         spin_unlock_irq(&dev_priv->irq_lock);
364 }
365
366 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
367 {
368         /*
369          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
370          * if GEN6_PM_UP_EI_EXPIRED is masked.
371          *
372          * TODO: verify if this can be reproduced on VLV,CHV.
373          */
374         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
375                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
376
377         if (INTEL_INFO(dev_priv)->gen >= 8)
378                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
379
380         return mask;
381 }
382
383 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
384 {
385         spin_lock_irq(&dev_priv->irq_lock);
386         dev_priv->rps.interrupts_enabled = false;
387         spin_unlock_irq(&dev_priv->irq_lock);
388
389         cancel_work_sync(&dev_priv->rps.work);
390
391         spin_lock_irq(&dev_priv->irq_lock);
392
393         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
394
395         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
396         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
397                                 ~dev_priv->pm_rps_events);
398
399         spin_unlock_irq(&dev_priv->irq_lock);
400
401         synchronize_irq(dev_priv->dev->irq);
402 }
403
404 /**
405  * bdw_update_port_irq - update DE port interrupt
406  * @dev_priv: driver private
407  * @interrupt_mask: mask of interrupt bits to update
408  * @enabled_irq_mask: mask of interrupt bits to enable
409  */
410 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
411                                 uint32_t interrupt_mask,
412                                 uint32_t enabled_irq_mask)
413 {
414         uint32_t new_val;
415         uint32_t old_val;
416
417         assert_spin_locked(&dev_priv->irq_lock);
418
419         WARN_ON(enabled_irq_mask & ~interrupt_mask);
420
421         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
422                 return;
423
424         old_val = I915_READ(GEN8_DE_PORT_IMR);
425
426         new_val = old_val;
427         new_val &= ~interrupt_mask;
428         new_val |= (~enabled_irq_mask & interrupt_mask);
429
430         if (new_val != old_val) {
431                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
432                 POSTING_READ(GEN8_DE_PORT_IMR);
433         }
434 }
435
436 /**
437  * bdw_update_pipe_irq - update DE pipe interrupt
438  * @dev_priv: driver private
439  * @pipe: pipe whose interrupt to update
440  * @interrupt_mask: mask of interrupt bits to update
441  * @enabled_irq_mask: mask of interrupt bits to enable
442  */
443 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
444                          enum pipe pipe,
445                          uint32_t interrupt_mask,
446                          uint32_t enabled_irq_mask)
447 {
448         uint32_t new_val;
449
450         assert_spin_locked(&dev_priv->irq_lock);
451
452         WARN_ON(enabled_irq_mask & ~interrupt_mask);
453
454         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
455                 return;
456
457         new_val = dev_priv->de_irq_mask[pipe];
458         new_val &= ~interrupt_mask;
459         new_val |= (~enabled_irq_mask & interrupt_mask);
460
461         if (new_val != dev_priv->de_irq_mask[pipe]) {
462                 dev_priv->de_irq_mask[pipe] = new_val;
463                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
464                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
465         }
466 }
467
468 /**
469  * ibx_display_interrupt_update - update SDEIMR
470  * @dev_priv: driver private
471  * @interrupt_mask: mask of interrupt bits to update
472  * @enabled_irq_mask: mask of interrupt bits to enable
473  */
474 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
475                                   uint32_t interrupt_mask,
476                                   uint32_t enabled_irq_mask)
477 {
478         uint32_t sdeimr = I915_READ(SDEIMR);
479         sdeimr &= ~interrupt_mask;
480         sdeimr |= (~enabled_irq_mask & interrupt_mask);
481
482         WARN_ON(enabled_irq_mask & ~interrupt_mask);
483
484         assert_spin_locked(&dev_priv->irq_lock);
485
486         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
487                 return;
488
489         I915_WRITE(SDEIMR, sdeimr);
490         POSTING_READ(SDEIMR);
491 }
492
493 static void
494 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
495                        u32 enable_mask, u32 status_mask)
496 {
497         i915_reg_t reg = PIPESTAT(pipe);
498         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
499
500         assert_spin_locked(&dev_priv->irq_lock);
501         WARN_ON(!intel_irqs_enabled(dev_priv));
502
503         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
504                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
505                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
506                       pipe_name(pipe), enable_mask, status_mask))
507                 return;
508
509         if ((pipestat & enable_mask) == enable_mask)
510                 return;
511
512         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
513
514         /* Enable the interrupt, clear any pending status */
515         pipestat |= enable_mask | status_mask;
516         I915_WRITE(reg, pipestat);
517         POSTING_READ(reg);
518 }
519
520 static void
521 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
522                         u32 enable_mask, u32 status_mask)
523 {
524         i915_reg_t reg = PIPESTAT(pipe);
525         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
526
527         assert_spin_locked(&dev_priv->irq_lock);
528         WARN_ON(!intel_irqs_enabled(dev_priv));
529
530         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
531                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
532                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
533                       pipe_name(pipe), enable_mask, status_mask))
534                 return;
535
536         if ((pipestat & enable_mask) == 0)
537                 return;
538
539         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
540
541         pipestat &= ~enable_mask;
542         I915_WRITE(reg, pipestat);
543         POSTING_READ(reg);
544 }
545
546 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
547 {
548         u32 enable_mask = status_mask << 16;
549
550         /*
551          * On pipe A we don't support the PSR interrupt yet,
552          * on pipe B and C the same bit MBZ.
553          */
554         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
555                 return 0;
556         /*
557          * On pipe B and C we don't support the PSR interrupt yet, on pipe
558          * A the same bit is for perf counters which we don't use either.
559          */
560         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
561                 return 0;
562
563         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
564                          SPRITE0_FLIP_DONE_INT_EN_VLV |
565                          SPRITE1_FLIP_DONE_INT_EN_VLV);
566         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
567                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
568         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
569                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
570
571         return enable_mask;
572 }
573
574 void
575 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
576                      u32 status_mask)
577 {
578         u32 enable_mask;
579
580         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
581                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
582                                                            status_mask);
583         else
584                 enable_mask = status_mask << 16;
585         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
586 }
587
588 void
589 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
590                       u32 status_mask)
591 {
592         u32 enable_mask;
593
594         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
595                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
596                                                            status_mask);
597         else
598                 enable_mask = status_mask << 16;
599         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
600 }
601
602 /**
603  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
604  * @dev: drm device
605  */
606 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
607 {
608         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
609                 return;
610
611         spin_lock_irq(&dev_priv->irq_lock);
612
613         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
614         if (INTEL_GEN(dev_priv) >= 4)
615                 i915_enable_pipestat(dev_priv, PIPE_A,
616                                      PIPE_LEGACY_BLC_EVENT_STATUS);
617
618         spin_unlock_irq(&dev_priv->irq_lock);
619 }
620
621 /*
622  * This timing diagram depicts the video signal in and
623  * around the vertical blanking period.
624  *
625  * Assumptions about the fictitious mode used in this example:
626  *  vblank_start >= 3
627  *  vsync_start = vblank_start + 1
628  *  vsync_end = vblank_start + 2
629  *  vtotal = vblank_start + 3
630  *
631  *           start of vblank:
632  *           latch double buffered registers
633  *           increment frame counter (ctg+)
634  *           generate start of vblank interrupt (gen4+)
635  *           |
636  *           |          frame start:
637  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
638  *           |          may be shifted forward 1-3 extra lines via PIPECONF
639  *           |          |
640  *           |          |  start of vsync:
641  *           |          |  generate vsync interrupt
642  *           |          |  |
643  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
644  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
645  * ----va---> <-----------------vb--------------------> <--------va-------------
646  *       |          |       <----vs----->                     |
647  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
648  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
649  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
650  *       |          |                                         |
651  *       last visible pixel                                   first visible pixel
652  *                  |                                         increment frame counter (gen3/4)
653  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
654  *
655  * x  = horizontal active
656  * _  = horizontal blanking
657  * hs = horizontal sync
658  * va = vertical active
659  * vb = vertical blanking
660  * vs = vertical sync
661  * vbs = vblank_start (number)
662  *
663  * Summary:
664  * - most events happen at the start of horizontal sync
665  * - frame start happens at the start of horizontal blank, 1-4 lines
666  *   (depending on PIPECONF settings) after the start of vblank
667  * - gen3/4 pixel and frame counter are synchronized with the start
668  *   of horizontal active on the first line of vertical active
669  */
670
671 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
672 {
673         /* Gen2 doesn't have a hardware frame counter */
674         return 0;
675 }
676
677 /* Called from drm generic code, passed a 'crtc', which
678  * we use as a pipe index
679  */
680 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
681 {
682         struct drm_i915_private *dev_priv = dev->dev_private;
683         i915_reg_t high_frame, low_frame;
684         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
685         struct intel_crtc *intel_crtc =
686                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
687         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
688
689         htotal = mode->crtc_htotal;
690         hsync_start = mode->crtc_hsync_start;
691         vbl_start = mode->crtc_vblank_start;
692         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
693                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
694
695         /* Convert to pixel count */
696         vbl_start *= htotal;
697
698         /* Start of vblank event occurs at start of hsync */
699         vbl_start -= htotal - hsync_start;
700
701         high_frame = PIPEFRAME(pipe);
702         low_frame = PIPEFRAMEPIXEL(pipe);
703
704         /*
705          * High & low register fields aren't synchronized, so make sure
706          * we get a low value that's stable across two reads of the high
707          * register.
708          */
709         do {
710                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
711                 low   = I915_READ(low_frame);
712                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
713         } while (high1 != high2);
714
715         high1 >>= PIPE_FRAME_HIGH_SHIFT;
716         pixel = low & PIPE_PIXEL_MASK;
717         low >>= PIPE_FRAME_LOW_SHIFT;
718
719         /*
720          * The frame counter increments at beginning of active.
721          * Cook up a vblank counter by also checking the pixel
722          * counter against vblank start.
723          */
724         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
725 }
726
727 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
728 {
729         struct drm_i915_private *dev_priv = dev->dev_private;
730
731         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
732 }
733
734 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
735 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
736 {
737         struct drm_device *dev = crtc->base.dev;
738         struct drm_i915_private *dev_priv = dev->dev_private;
739         const struct drm_display_mode *mode = &crtc->base.hwmode;
740         enum pipe pipe = crtc->pipe;
741         int position, vtotal;
742
743         vtotal = mode->crtc_vtotal;
744         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
745                 vtotal /= 2;
746
747         if (IS_GEN2(dev_priv))
748                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
749         else
750                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
751
752         /*
753          * On HSW, the DSL reg (0x70000) appears to return 0 if we
754          * read it just before the start of vblank.  So try it again
755          * so we don't accidentally end up spanning a vblank frame
756          * increment, causing the pipe_update_end() code to squak at us.
757          *
758          * The nature of this problem means we can't simply check the ISR
759          * bit and return the vblank start value; nor can we use the scanline
760          * debug register in the transcoder as it appears to have the same
761          * problem.  We may need to extend this to include other platforms,
762          * but so far testing only shows the problem on HSW.
763          */
764         if (HAS_DDI(dev_priv) && !position) {
765                 int i, temp;
766
767                 for (i = 0; i < 100; i++) {
768                         udelay(1);
769                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
770                                 DSL_LINEMASK_GEN3;
771                         if (temp != position) {
772                                 position = temp;
773                                 break;
774                         }
775                 }
776         }
777
778         /*
779          * See update_scanline_offset() for the details on the
780          * scanline_offset adjustment.
781          */
782         return (position + crtc->scanline_offset) % vtotal;
783 }
784
785 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
786                                     unsigned int flags, int *vpos, int *hpos,
787                                     ktime_t *stime, ktime_t *etime,
788                                     const struct drm_display_mode *mode)
789 {
790         struct drm_i915_private *dev_priv = dev->dev_private;
791         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
793         int position;
794         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
795         bool in_vbl = true;
796         int ret = 0;
797         unsigned long irqflags;
798
799         if (WARN_ON(!mode->crtc_clock)) {
800                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
801                                  "pipe %c\n", pipe_name(pipe));
802                 return 0;
803         }
804
805         htotal = mode->crtc_htotal;
806         hsync_start = mode->crtc_hsync_start;
807         vtotal = mode->crtc_vtotal;
808         vbl_start = mode->crtc_vblank_start;
809         vbl_end = mode->crtc_vblank_end;
810
811         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
812                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
813                 vbl_end /= 2;
814                 vtotal /= 2;
815         }
816
817         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
818
819         /*
820          * Lock uncore.lock, as we will do multiple timing critical raw
821          * register reads, potentially with preemption disabled, so the
822          * following code must not block on uncore.lock.
823          */
824         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
825
826         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
827
828         /* Get optional system timestamp before query. */
829         if (stime)
830                 *stime = ktime_get();
831
832         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
833                 /* No obvious pixelcount register. Only query vertical
834                  * scanout position from Display scan line register.
835                  */
836                 position = __intel_get_crtc_scanline(intel_crtc);
837         } else {
838                 /* Have access to pixelcount since start of frame.
839                  * We can split this into vertical and horizontal
840                  * scanout position.
841                  */
842                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
843
844                 /* convert to pixel counts */
845                 vbl_start *= htotal;
846                 vbl_end *= htotal;
847                 vtotal *= htotal;
848
849                 /*
850                  * In interlaced modes, the pixel counter counts all pixels,
851                  * so one field will have htotal more pixels. In order to avoid
852                  * the reported position from jumping backwards when the pixel
853                  * counter is beyond the length of the shorter field, just
854                  * clamp the position the length of the shorter field. This
855                  * matches how the scanline counter based position works since
856                  * the scanline counter doesn't count the two half lines.
857                  */
858                 if (position >= vtotal)
859                         position = vtotal - 1;
860
861                 /*
862                  * Start of vblank interrupt is triggered at start of hsync,
863                  * just prior to the first active line of vblank. However we
864                  * consider lines to start at the leading edge of horizontal
865                  * active. So, should we get here before we've crossed into
866                  * the horizontal active of the first line in vblank, we would
867                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
868                  * always add htotal-hsync_start to the current pixel position.
869                  */
870                 position = (position + htotal - hsync_start) % vtotal;
871         }
872
873         /* Get optional system timestamp after query. */
874         if (etime)
875                 *etime = ktime_get();
876
877         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
878
879         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
880
881         in_vbl = position >= vbl_start && position < vbl_end;
882
883         /*
884          * While in vblank, position will be negative
885          * counting up towards 0 at vbl_end. And outside
886          * vblank, position will be positive counting
887          * up since vbl_end.
888          */
889         if (position >= vbl_start)
890                 position -= vbl_end;
891         else
892                 position += vtotal - vbl_end;
893
894         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
895                 *vpos = position;
896                 *hpos = 0;
897         } else {
898                 *vpos = position / htotal;
899                 *hpos = position - (*vpos * htotal);
900         }
901
902         /* In vblank? */
903         if (in_vbl)
904                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
905
906         return ret;
907 }
908
909 int intel_get_crtc_scanline(struct intel_crtc *crtc)
910 {
911         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
912         unsigned long irqflags;
913         int position;
914
915         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
916         position = __intel_get_crtc_scanline(crtc);
917         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
918
919         return position;
920 }
921
922 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
923                               int *max_error,
924                               struct timeval *vblank_time,
925                               unsigned flags)
926 {
927         struct drm_crtc *crtc;
928
929         if (pipe >= INTEL_INFO(dev)->num_pipes) {
930                 DRM_ERROR("Invalid crtc %u\n", pipe);
931                 return -EINVAL;
932         }
933
934         /* Get drm_crtc to timestamp: */
935         crtc = intel_get_crtc_for_pipe(dev, pipe);
936         if (crtc == NULL) {
937                 DRM_ERROR("Invalid crtc %u\n", pipe);
938                 return -EINVAL;
939         }
940
941         if (!crtc->hwmode.crtc_clock) {
942                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
943                 return -EBUSY;
944         }
945
946         /* Helper routine in DRM core does all the work: */
947         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
948                                                      vblank_time, flags,
949                                                      &crtc->hwmode);
950 }
951
952 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
953 {
954         u32 busy_up, busy_down, max_avg, min_avg;
955         u8 new_delay;
956
957         spin_lock(&mchdev_lock);
958
959         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
960
961         new_delay = dev_priv->ips.cur_delay;
962
963         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
964         busy_up = I915_READ(RCPREVBSYTUPAVG);
965         busy_down = I915_READ(RCPREVBSYTDNAVG);
966         max_avg = I915_READ(RCBMAXAVG);
967         min_avg = I915_READ(RCBMINAVG);
968
969         /* Handle RCS change request from hw */
970         if (busy_up > max_avg) {
971                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
972                         new_delay = dev_priv->ips.cur_delay - 1;
973                 if (new_delay < dev_priv->ips.max_delay)
974                         new_delay = dev_priv->ips.max_delay;
975         } else if (busy_down < min_avg) {
976                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
977                         new_delay = dev_priv->ips.cur_delay + 1;
978                 if (new_delay > dev_priv->ips.min_delay)
979                         new_delay = dev_priv->ips.min_delay;
980         }
981
982         if (ironlake_set_drps(dev_priv, new_delay))
983                 dev_priv->ips.cur_delay = new_delay;
984
985         spin_unlock(&mchdev_lock);
986
987         return;
988 }
989
990 static void notify_ring(struct intel_engine_cs *engine)
991 {
992         if (!intel_engine_initialized(engine))
993                 return;
994
995         trace_i915_gem_request_notify(engine);
996         engine->user_interrupts++;
997
998         wake_up_all(&engine->irq_queue);
999 }
1000
1001 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1002                         struct intel_rps_ei *ei)
1003 {
1004         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1005         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1006         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1007 }
1008
1009 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1010                          const struct intel_rps_ei *old,
1011                          const struct intel_rps_ei *now,
1012                          int threshold)
1013 {
1014         u64 time, c0;
1015         unsigned int mul = 100;
1016
1017         if (old->cz_clock == 0)
1018                 return false;
1019
1020         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1021                 mul <<= 8;
1022
1023         time = now->cz_clock - old->cz_clock;
1024         time *= threshold * dev_priv->czclk_freq;
1025
1026         /* Workload can be split between render + media, e.g. SwapBuffers
1027          * being blitted in X after being rendered in mesa. To account for
1028          * this we need to combine both engines into our activity counter.
1029          */
1030         c0 = now->render_c0 - old->render_c0;
1031         c0 += now->media_c0 - old->media_c0;
1032         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1033
1034         return c0 >= time;
1035 }
1036
1037 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1038 {
1039         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1040         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1041 }
1042
1043 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1044 {
1045         struct intel_rps_ei now;
1046         u32 events = 0;
1047
1048         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1049                 return 0;
1050
1051         vlv_c0_read(dev_priv, &now);
1052         if (now.cz_clock == 0)
1053                 return 0;
1054
1055         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1056                 if (!vlv_c0_above(dev_priv,
1057                                   &dev_priv->rps.down_ei, &now,
1058                                   dev_priv->rps.down_threshold))
1059                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1060                 dev_priv->rps.down_ei = now;
1061         }
1062
1063         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1064                 if (vlv_c0_above(dev_priv,
1065                                  &dev_priv->rps.up_ei, &now,
1066                                  dev_priv->rps.up_threshold))
1067                         events |= GEN6_PM_RP_UP_THRESHOLD;
1068                 dev_priv->rps.up_ei = now;
1069         }
1070
1071         return events;
1072 }
1073
1074 static bool any_waiters(struct drm_i915_private *dev_priv)
1075 {
1076         struct intel_engine_cs *engine;
1077
1078         for_each_engine(engine, dev_priv)
1079                 if (engine->irq_refcount)
1080                         return true;
1081
1082         return false;
1083 }
1084
1085 static void gen6_pm_rps_work(struct work_struct *work)
1086 {
1087         struct drm_i915_private *dev_priv =
1088                 container_of(work, struct drm_i915_private, rps.work);
1089         bool client_boost;
1090         int new_delay, adj, min, max;
1091         u32 pm_iir;
1092
1093         spin_lock_irq(&dev_priv->irq_lock);
1094         /* Speed up work cancelation during disabling rps interrupts. */
1095         if (!dev_priv->rps.interrupts_enabled) {
1096                 spin_unlock_irq(&dev_priv->irq_lock);
1097                 return;
1098         }
1099
1100         /*
1101          * The RPS work is synced during runtime suspend, we don't require a
1102          * wakeref. TODO: instead of disabling the asserts make sure that we
1103          * always hold an RPM reference while the work is running.
1104          */
1105         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1106
1107         pm_iir = dev_priv->rps.pm_iir;
1108         dev_priv->rps.pm_iir = 0;
1109         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1110         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1111         client_boost = dev_priv->rps.client_boost;
1112         dev_priv->rps.client_boost = false;
1113         spin_unlock_irq(&dev_priv->irq_lock);
1114
1115         /* Make sure we didn't queue anything we're not going to process. */
1116         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1117
1118         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1119                 goto out;
1120
1121         mutex_lock(&dev_priv->rps.hw_lock);
1122
1123         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1124
1125         adj = dev_priv->rps.last_adj;
1126         new_delay = dev_priv->rps.cur_freq;
1127         min = dev_priv->rps.min_freq_softlimit;
1128         max = dev_priv->rps.max_freq_softlimit;
1129
1130         if (client_boost) {
1131                 new_delay = dev_priv->rps.max_freq_softlimit;
1132                 adj = 0;
1133         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1134                 if (adj > 0)
1135                         adj *= 2;
1136                 else /* CHV needs even encode values */
1137                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1138                 /*
1139                  * For better performance, jump directly
1140                  * to RPe if we're below it.
1141                  */
1142                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1143                         new_delay = dev_priv->rps.efficient_freq;
1144                         adj = 0;
1145                 }
1146         } else if (any_waiters(dev_priv)) {
1147                 adj = 0;
1148         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1149                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1150                         new_delay = dev_priv->rps.efficient_freq;
1151                 else
1152                         new_delay = dev_priv->rps.min_freq_softlimit;
1153                 adj = 0;
1154         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1155                 if (adj < 0)
1156                         adj *= 2;
1157                 else /* CHV needs even encode values */
1158                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1159         } else { /* unknown event */
1160                 adj = 0;
1161         }
1162
1163         dev_priv->rps.last_adj = adj;
1164
1165         /* sysfs frequency interfaces may have snuck in while servicing the
1166          * interrupt
1167          */
1168         new_delay += adj;
1169         new_delay = clamp_t(int, new_delay, min, max);
1170
1171         intel_set_rps(dev_priv->dev, new_delay);
1172
1173         mutex_unlock(&dev_priv->rps.hw_lock);
1174 out:
1175         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1176 }
1177
1178
1179 /**
1180  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1181  * occurred.
1182  * @work: workqueue struct
1183  *
1184  * Doesn't actually do anything except notify userspace. As a consequence of
1185  * this event, userspace should try to remap the bad rows since statistically
1186  * it is likely the same row is more likely to go bad again.
1187  */
1188 static void ivybridge_parity_work(struct work_struct *work)
1189 {
1190         struct drm_i915_private *dev_priv =
1191                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1192         u32 error_status, row, bank, subbank;
1193         char *parity_event[6];
1194         uint32_t misccpctl;
1195         uint8_t slice = 0;
1196
1197         /* We must turn off DOP level clock gating to access the L3 registers.
1198          * In order to prevent a get/put style interface, acquire struct mutex
1199          * any time we access those registers.
1200          */
1201         mutex_lock(&dev_priv->dev->struct_mutex);
1202
1203         /* If we've screwed up tracking, just let the interrupt fire again */
1204         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1205                 goto out;
1206
1207         misccpctl = I915_READ(GEN7_MISCCPCTL);
1208         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1209         POSTING_READ(GEN7_MISCCPCTL);
1210
1211         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1212                 i915_reg_t reg;
1213
1214                 slice--;
1215                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1216                         break;
1217
1218                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1219
1220                 reg = GEN7_L3CDERRST1(slice);
1221
1222                 error_status = I915_READ(reg);
1223                 row = GEN7_PARITY_ERROR_ROW(error_status);
1224                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1225                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1226
1227                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1228                 POSTING_READ(reg);
1229
1230                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1231                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1232                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1233                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1234                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1235                 parity_event[5] = NULL;
1236
1237                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1238                                    KOBJ_CHANGE, parity_event);
1239
1240                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1241                           slice, row, bank, subbank);
1242
1243                 kfree(parity_event[4]);
1244                 kfree(parity_event[3]);
1245                 kfree(parity_event[2]);
1246                 kfree(parity_event[1]);
1247         }
1248
1249         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1250
1251 out:
1252         WARN_ON(dev_priv->l3_parity.which_slice);
1253         spin_lock_irq(&dev_priv->irq_lock);
1254         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1255         spin_unlock_irq(&dev_priv->irq_lock);
1256
1257         mutex_unlock(&dev_priv->dev->struct_mutex);
1258 }
1259
1260 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1261                                                u32 iir)
1262 {
1263         if (!HAS_L3_DPF(dev_priv))
1264                 return;
1265
1266         spin_lock(&dev_priv->irq_lock);
1267         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1268         spin_unlock(&dev_priv->irq_lock);
1269
1270         iir &= GT_PARITY_ERROR(dev_priv);
1271         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1272                 dev_priv->l3_parity.which_slice |= 1 << 1;
1273
1274         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1275                 dev_priv->l3_parity.which_slice |= 1 << 0;
1276
1277         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1278 }
1279
1280 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1281                                u32 gt_iir)
1282 {
1283         if (gt_iir &
1284             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1285                 notify_ring(&dev_priv->engine[RCS]);
1286         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1287                 notify_ring(&dev_priv->engine[VCS]);
1288 }
1289
1290 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1291                                u32 gt_iir)
1292 {
1293
1294         if (gt_iir &
1295             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1296                 notify_ring(&dev_priv->engine[RCS]);
1297         if (gt_iir & GT_BSD_USER_INTERRUPT)
1298                 notify_ring(&dev_priv->engine[VCS]);
1299         if (gt_iir & GT_BLT_USER_INTERRUPT)
1300                 notify_ring(&dev_priv->engine[BCS]);
1301
1302         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1303                       GT_BSD_CS_ERROR_INTERRUPT |
1304                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1305                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1306
1307         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1308                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1309 }
1310
1311 static __always_inline void
1312 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1313 {
1314         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1315                 notify_ring(engine);
1316         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1317                 tasklet_schedule(&engine->irq_tasklet);
1318 }
1319
1320 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1321                                    u32 master_ctl,
1322                                    u32 gt_iir[4])
1323 {
1324         irqreturn_t ret = IRQ_NONE;
1325
1326         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1327                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1328                 if (gt_iir[0]) {
1329                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1330                         ret = IRQ_HANDLED;
1331                 } else
1332                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1333         }
1334
1335         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1336                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1337                 if (gt_iir[1]) {
1338                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1339                         ret = IRQ_HANDLED;
1340                 } else
1341                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1342         }
1343
1344         if (master_ctl & GEN8_GT_VECS_IRQ) {
1345                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1346                 if (gt_iir[3]) {
1347                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1348                         ret = IRQ_HANDLED;
1349                 } else
1350                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1351         }
1352
1353         if (master_ctl & GEN8_GT_PM_IRQ) {
1354                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1355                 if (gt_iir[2] & dev_priv->pm_rps_events) {
1356                         I915_WRITE_FW(GEN8_GT_IIR(2),
1357                                       gt_iir[2] & dev_priv->pm_rps_events);
1358                         ret = IRQ_HANDLED;
1359                 } else
1360                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1361         }
1362
1363         return ret;
1364 }
1365
1366 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1367                                 u32 gt_iir[4])
1368 {
1369         if (gt_iir[0]) {
1370                 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1371                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1372                 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1373                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1374         }
1375
1376         if (gt_iir[1]) {
1377                 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1378                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1379                 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1380                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1381         }
1382
1383         if (gt_iir[3])
1384                 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1385                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1386
1387         if (gt_iir[2] & dev_priv->pm_rps_events)
1388                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393         switch (port) {
1394         case PORT_A:
1395                 return val & PORTA_HOTPLUG_LONG_DETECT;
1396         case PORT_B:
1397                 return val & PORTB_HOTPLUG_LONG_DETECT;
1398         case PORT_C:
1399                 return val & PORTC_HOTPLUG_LONG_DETECT;
1400         default:
1401                 return false;
1402         }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407         switch (port) {
1408         case PORT_E:
1409                 return val & PORTE_HOTPLUG_LONG_DETECT;
1410         default:
1411                 return false;
1412         }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417         switch (port) {
1418         case PORT_A:
1419                 return val & PORTA_HOTPLUG_LONG_DETECT;
1420         case PORT_B:
1421                 return val & PORTB_HOTPLUG_LONG_DETECT;
1422         case PORT_C:
1423                 return val & PORTC_HOTPLUG_LONG_DETECT;
1424         case PORT_D:
1425                 return val & PORTD_HOTPLUG_LONG_DETECT;
1426         default:
1427                 return false;
1428         }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433         switch (port) {
1434         case PORT_A:
1435                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436         default:
1437                 return false;
1438         }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443         switch (port) {
1444         case PORT_B:
1445                 return val & PORTB_HOTPLUG_LONG_DETECT;
1446         case PORT_C:
1447                 return val & PORTC_HOTPLUG_LONG_DETECT;
1448         case PORT_D:
1449                 return val & PORTD_HOTPLUG_LONG_DETECT;
1450         default:
1451                 return false;
1452         }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457         switch (port) {
1458         case PORT_B:
1459                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460         case PORT_C:
1461                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462         case PORT_D:
1463                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464         default:
1465                 return false;
1466         }
1467 }
1468
1469 /*
1470  * Get a bit mask of pins that have triggered, and which ones may be long.
1471  * This can be called multiple times with the same masks to accumulate
1472  * hotplug detection results from several registers.
1473  *
1474  * Note that the caller is expected to zero out the masks initially.
1475  */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1478                              const u32 hpd[HPD_NUM_PINS],
1479                              bool long_pulse_detect(enum port port, u32 val))
1480 {
1481         enum port port;
1482         int i;
1483
1484         for_each_hpd_pin(i) {
1485                 if ((hpd[i] & hotplug_trigger) == 0)
1486                         continue;
1487
1488                 *pin_mask |= BIT(i);
1489
1490                 if (!intel_hpd_pin_to_port(i, &port))
1491                         continue;
1492
1493                 if (long_pulse_detect(port, dig_hotplug_reg))
1494                         *long_mask |= BIT(i);
1495         }
1496
1497         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1503 {
1504         wake_up_all(&dev_priv->gmbus_wait_queue);
1505 }
1506
1507 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1508 {
1509         wake_up_all(&dev_priv->gmbus_wait_queue);
1510 }
1511
1512 #if defined(CONFIG_DEBUG_FS)
1513 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1514                                          enum pipe pipe,
1515                                          uint32_t crc0, uint32_t crc1,
1516                                          uint32_t crc2, uint32_t crc3,
1517                                          uint32_t crc4)
1518 {
1519         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1520         struct intel_pipe_crc_entry *entry;
1521         int head, tail;
1522
1523         spin_lock(&pipe_crc->lock);
1524
1525         if (!pipe_crc->entries) {
1526                 spin_unlock(&pipe_crc->lock);
1527                 DRM_DEBUG_KMS("spurious interrupt\n");
1528                 return;
1529         }
1530
1531         head = pipe_crc->head;
1532         tail = pipe_crc->tail;
1533
1534         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1535                 spin_unlock(&pipe_crc->lock);
1536                 DRM_ERROR("CRC buffer overflowing\n");
1537                 return;
1538         }
1539
1540         entry = &pipe_crc->entries[head];
1541
1542         entry->frame = dev_priv->dev->driver->get_vblank_counter(dev_priv->dev,
1543                                                                  pipe);
1544         entry->crc[0] = crc0;
1545         entry->crc[1] = crc1;
1546         entry->crc[2] = crc2;
1547         entry->crc[3] = crc3;
1548         entry->crc[4] = crc4;
1549
1550         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1551         pipe_crc->head = head;
1552
1553         spin_unlock(&pipe_crc->lock);
1554
1555         wake_up_interruptible(&pipe_crc->wq);
1556 }
1557 #else
1558 static inline void
1559 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1560                              enum pipe pipe,
1561                              uint32_t crc0, uint32_t crc1,
1562                              uint32_t crc2, uint32_t crc3,
1563                              uint32_t crc4) {}
1564 #endif
1565
1566
1567 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1568                                      enum pipe pipe)
1569 {
1570         display_pipe_crc_irq_handler(dev_priv, pipe,
1571                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1572                                      0, 0, 0, 0);
1573 }
1574
1575 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1576                                      enum pipe pipe)
1577 {
1578         display_pipe_crc_irq_handler(dev_priv, pipe,
1579                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1580                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1581                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1582                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1583                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1584 }
1585
1586 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1587                                       enum pipe pipe)
1588 {
1589         uint32_t res1, res2;
1590
1591         if (INTEL_GEN(dev_priv) >= 3)
1592                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1593         else
1594                 res1 = 0;
1595
1596         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1597                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1598         else
1599                 res2 = 0;
1600
1601         display_pipe_crc_irq_handler(dev_priv, pipe,
1602                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1603                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1604                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1605                                      res1, res2);
1606 }
1607
1608 /* The RPS events need forcewake, so we add them to a work queue and mask their
1609  * IMR bits until the work is done. Other interrupts can be processed without
1610  * the work queue. */
1611 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1612 {
1613         if (pm_iir & dev_priv->pm_rps_events) {
1614                 spin_lock(&dev_priv->irq_lock);
1615                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1616                 if (dev_priv->rps.interrupts_enabled) {
1617                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1618                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1619                 }
1620                 spin_unlock(&dev_priv->irq_lock);
1621         }
1622
1623         if (INTEL_INFO(dev_priv)->gen >= 8)
1624                 return;
1625
1626         if (HAS_VEBOX(dev_priv)) {
1627                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1628                         notify_ring(&dev_priv->engine[VECS]);
1629
1630                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1631                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1632         }
1633 }
1634
1635 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1636                                      enum pipe pipe)
1637 {
1638         return drm_handle_vblank(dev_priv->dev, pipe);
1639 }
1640
1641 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1642                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1643 {
1644         int pipe;
1645
1646         spin_lock(&dev_priv->irq_lock);
1647
1648         if (!dev_priv->display_irqs_enabled) {
1649                 spin_unlock(&dev_priv->irq_lock);
1650                 return;
1651         }
1652
1653         for_each_pipe(dev_priv, pipe) {
1654                 i915_reg_t reg;
1655                 u32 mask, iir_bit = 0;
1656
1657                 /*
1658                  * PIPESTAT bits get signalled even when the interrupt is
1659                  * disabled with the mask bits, and some of the status bits do
1660                  * not generate interrupts at all (like the underrun bit). Hence
1661                  * we need to be careful that we only handle what we want to
1662                  * handle.
1663                  */
1664
1665                 /* fifo underruns are filterered in the underrun handler. */
1666                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1667
1668                 switch (pipe) {
1669                 case PIPE_A:
1670                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1671                         break;
1672                 case PIPE_B:
1673                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1674                         break;
1675                 case PIPE_C:
1676                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1677                         break;
1678                 }
1679                 if (iir & iir_bit)
1680                         mask |= dev_priv->pipestat_irq_mask[pipe];
1681
1682                 if (!mask)
1683                         continue;
1684
1685                 reg = PIPESTAT(pipe);
1686                 mask |= PIPESTAT_INT_ENABLE_MASK;
1687                 pipe_stats[pipe] = I915_READ(reg) & mask;
1688
1689                 /*
1690                  * Clear the PIPE*STAT regs before the IIR
1691                  */
1692                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1693                                         PIPESTAT_INT_STATUS_MASK))
1694                         I915_WRITE(reg, pipe_stats[pipe]);
1695         }
1696         spin_unlock(&dev_priv->irq_lock);
1697 }
1698
1699 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1700                                             u32 pipe_stats[I915_MAX_PIPES])
1701 {
1702         enum pipe pipe;
1703
1704         for_each_pipe(dev_priv, pipe) {
1705                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1706                     intel_pipe_handle_vblank(dev_priv, pipe))
1707                         intel_check_page_flip(dev_priv, pipe);
1708
1709                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1710                         intel_prepare_page_flip(dev_priv, pipe);
1711                         intel_finish_page_flip(dev_priv, pipe);
1712                 }
1713
1714                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1715                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1716
1717                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1718                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1719         }
1720
1721         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1722                 gmbus_irq_handler(dev_priv);
1723 }
1724
1725 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1726 {
1727         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1728
1729         if (hotplug_status)
1730                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1731
1732         return hotplug_status;
1733 }
1734
1735 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1736                                  u32 hotplug_status)
1737 {
1738         u32 pin_mask = 0, long_mask = 0;
1739
1740         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1741             IS_CHERRYVIEW(dev_priv)) {
1742                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1743
1744                 if (hotplug_trigger) {
1745                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1746                                            hotplug_trigger, hpd_status_g4x,
1747                                            i9xx_port_hotplug_long_detect);
1748
1749                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1750                 }
1751
1752                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1753                         dp_aux_irq_handler(dev_priv);
1754         } else {
1755                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1756
1757                 if (hotplug_trigger) {
1758                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1759                                            hotplug_trigger, hpd_status_i915,
1760                                            i9xx_port_hotplug_long_detect);
1761                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1762                 }
1763         }
1764 }
1765
1766 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1767 {
1768         struct drm_device *dev = arg;
1769         struct drm_i915_private *dev_priv = dev->dev_private;
1770         irqreturn_t ret = IRQ_NONE;
1771
1772         if (!intel_irqs_enabled(dev_priv))
1773                 return IRQ_NONE;
1774
1775         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1776         disable_rpm_wakeref_asserts(dev_priv);
1777
1778         do {
1779                 u32 iir, gt_iir, pm_iir;
1780                 u32 pipe_stats[I915_MAX_PIPES] = {};
1781                 u32 hotplug_status = 0;
1782                 u32 ier = 0;
1783
1784                 gt_iir = I915_READ(GTIIR);
1785                 pm_iir = I915_READ(GEN6_PMIIR);
1786                 iir = I915_READ(VLV_IIR);
1787
1788                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1789                         break;
1790
1791                 ret = IRQ_HANDLED;
1792
1793                 /*
1794                  * Theory on interrupt generation, based on empirical evidence:
1795                  *
1796                  * x = ((VLV_IIR & VLV_IER) ||
1797                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1798                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1799                  *
1800                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1801                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1802                  * guarantee the CPU interrupt will be raised again even if we
1803                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1804                  * bits this time around.
1805                  */
1806                 I915_WRITE(VLV_MASTER_IER, 0);
1807                 ier = I915_READ(VLV_IER);
1808                 I915_WRITE(VLV_IER, 0);
1809
1810                 if (gt_iir)
1811                         I915_WRITE(GTIIR, gt_iir);
1812                 if (pm_iir)
1813                         I915_WRITE(GEN6_PMIIR, pm_iir);
1814
1815                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1816                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1817
1818                 /* Call regardless, as some status bits might not be
1819                  * signalled in iir */
1820                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1821
1822                 /*
1823                  * VLV_IIR is single buffered, and reflects the level
1824                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1825                  */
1826                 if (iir)
1827                         I915_WRITE(VLV_IIR, iir);
1828
1829                 I915_WRITE(VLV_IER, ier);
1830                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1831                 POSTING_READ(VLV_MASTER_IER);
1832
1833                 if (gt_iir)
1834                         snb_gt_irq_handler(dev_priv, gt_iir);
1835                 if (pm_iir)
1836                         gen6_rps_irq_handler(dev_priv, pm_iir);
1837
1838                 if (hotplug_status)
1839                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1840
1841                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1842         } while (0);
1843
1844         enable_rpm_wakeref_asserts(dev_priv);
1845
1846         return ret;
1847 }
1848
1849 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1850 {
1851         struct drm_device *dev = arg;
1852         struct drm_i915_private *dev_priv = dev->dev_private;
1853         irqreturn_t ret = IRQ_NONE;
1854
1855         if (!intel_irqs_enabled(dev_priv))
1856                 return IRQ_NONE;
1857
1858         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1859         disable_rpm_wakeref_asserts(dev_priv);
1860
1861         do {
1862                 u32 master_ctl, iir;
1863                 u32 gt_iir[4] = {};
1864                 u32 pipe_stats[I915_MAX_PIPES] = {};
1865                 u32 hotplug_status = 0;
1866                 u32 ier = 0;
1867
1868                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1869                 iir = I915_READ(VLV_IIR);
1870
1871                 if (master_ctl == 0 && iir == 0)
1872                         break;
1873
1874                 ret = IRQ_HANDLED;
1875
1876                 /*
1877                  * Theory on interrupt generation, based on empirical evidence:
1878                  *
1879                  * x = ((VLV_IIR & VLV_IER) ||
1880                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1881                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1882                  *
1883                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1884                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1885                  * guarantee the CPU interrupt will be raised again even if we
1886                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1887                  * bits this time around.
1888                  */
1889                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1890                 ier = I915_READ(VLV_IER);
1891                 I915_WRITE(VLV_IER, 0);
1892
1893                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1894
1895                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1896                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1897
1898                 /* Call regardless, as some status bits might not be
1899                  * signalled in iir */
1900                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1901
1902                 /*
1903                  * VLV_IIR is single buffered, and reflects the level
1904                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1905                  */
1906                 if (iir)
1907                         I915_WRITE(VLV_IIR, iir);
1908
1909                 I915_WRITE(VLV_IER, ier);
1910                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1911                 POSTING_READ(GEN8_MASTER_IRQ);
1912
1913                 gen8_gt_irq_handler(dev_priv, gt_iir);
1914
1915                 if (hotplug_status)
1916                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1917
1918                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1919         } while (0);
1920
1921         enable_rpm_wakeref_asserts(dev_priv);
1922
1923         return ret;
1924 }
1925
1926 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1927                                 u32 hotplug_trigger,
1928                                 const u32 hpd[HPD_NUM_PINS])
1929 {
1930         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1931
1932         /*
1933          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1934          * unless we touch the hotplug register, even if hotplug_trigger is
1935          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1936          * errors.
1937          */
1938         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1939         if (!hotplug_trigger) {
1940                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1941                         PORTD_HOTPLUG_STATUS_MASK |
1942                         PORTC_HOTPLUG_STATUS_MASK |
1943                         PORTB_HOTPLUG_STATUS_MASK;
1944                 dig_hotplug_reg &= ~mask;
1945         }
1946
1947         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1948         if (!hotplug_trigger)
1949                 return;
1950
1951         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1952                            dig_hotplug_reg, hpd,
1953                            pch_port_hotplug_long_detect);
1954
1955         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1956 }
1957
1958 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1959 {
1960         int pipe;
1961         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1962
1963         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1964
1965         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1966                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1967                                SDE_AUDIO_POWER_SHIFT);
1968                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1969                                  port_name(port));
1970         }
1971
1972         if (pch_iir & SDE_AUX_MASK)
1973                 dp_aux_irq_handler(dev_priv);
1974
1975         if (pch_iir & SDE_GMBUS)
1976                 gmbus_irq_handler(dev_priv);
1977
1978         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1979                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1980
1981         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1982                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1983
1984         if (pch_iir & SDE_POISON)
1985                 DRM_ERROR("PCH poison interrupt\n");
1986
1987         if (pch_iir & SDE_FDI_MASK)
1988                 for_each_pipe(dev_priv, pipe)
1989                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1990                                          pipe_name(pipe),
1991                                          I915_READ(FDI_RX_IIR(pipe)));
1992
1993         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1994                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1995
1996         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1997                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1998
1999         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2000                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2001
2002         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2003                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2004 }
2005
2006 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2007 {
2008         u32 err_int = I915_READ(GEN7_ERR_INT);
2009         enum pipe pipe;
2010
2011         if (err_int & ERR_INT_POISON)
2012                 DRM_ERROR("Poison interrupt\n");
2013
2014         for_each_pipe(dev_priv, pipe) {
2015                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2016                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2017
2018                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2019                         if (IS_IVYBRIDGE(dev_priv))
2020                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2021                         else
2022                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2023                 }
2024         }
2025
2026         I915_WRITE(GEN7_ERR_INT, err_int);
2027 }
2028
2029 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2030 {
2031         u32 serr_int = I915_READ(SERR_INT);
2032
2033         if (serr_int & SERR_INT_POISON)
2034                 DRM_ERROR("PCH poison interrupt\n");
2035
2036         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2037                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2038
2039         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2040                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2041
2042         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2043                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2044
2045         I915_WRITE(SERR_INT, serr_int);
2046 }
2047
2048 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2049 {
2050         int pipe;
2051         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2052
2053         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2054
2055         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2056                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2057                                SDE_AUDIO_POWER_SHIFT_CPT);
2058                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2059                                  port_name(port));
2060         }
2061
2062         if (pch_iir & SDE_AUX_MASK_CPT)
2063                 dp_aux_irq_handler(dev_priv);
2064
2065         if (pch_iir & SDE_GMBUS_CPT)
2066                 gmbus_irq_handler(dev_priv);
2067
2068         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2069                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2070
2071         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2072                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2073
2074         if (pch_iir & SDE_FDI_MASK_CPT)
2075                 for_each_pipe(dev_priv, pipe)
2076                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2077                                          pipe_name(pipe),
2078                                          I915_READ(FDI_RX_IIR(pipe)));
2079
2080         if (pch_iir & SDE_ERROR_CPT)
2081                 cpt_serr_int_handler(dev_priv);
2082 }
2083
2084 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2085 {
2086         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2087                 ~SDE_PORTE_HOTPLUG_SPT;
2088         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2089         u32 pin_mask = 0, long_mask = 0;
2090
2091         if (hotplug_trigger) {
2092                 u32 dig_hotplug_reg;
2093
2094                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2095                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2096
2097                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2098                                    dig_hotplug_reg, hpd_spt,
2099                                    spt_port_hotplug_long_detect);
2100         }
2101
2102         if (hotplug2_trigger) {
2103                 u32 dig_hotplug_reg;
2104
2105                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2106                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2107
2108                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2109                                    dig_hotplug_reg, hpd_spt,
2110                                    spt_port_hotplug2_long_detect);
2111         }
2112
2113         if (pin_mask)
2114                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2115
2116         if (pch_iir & SDE_GMBUS_CPT)
2117                 gmbus_irq_handler(dev_priv);
2118 }
2119
2120 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2121                                 u32 hotplug_trigger,
2122                                 const u32 hpd[HPD_NUM_PINS])
2123 {
2124         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2125
2126         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2127         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2128
2129         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2130                            dig_hotplug_reg, hpd,
2131                            ilk_port_hotplug_long_detect);
2132
2133         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2134 }
2135
2136 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2137                                     u32 de_iir)
2138 {
2139         enum pipe pipe;
2140         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2141
2142         if (hotplug_trigger)
2143                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2144
2145         if (de_iir & DE_AUX_CHANNEL_A)
2146                 dp_aux_irq_handler(dev_priv);
2147
2148         if (de_iir & DE_GSE)
2149                 intel_opregion_asle_intr(dev_priv);
2150
2151         if (de_iir & DE_POISON)
2152                 DRM_ERROR("Poison interrupt\n");
2153
2154         for_each_pipe(dev_priv, pipe) {
2155                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2156                     intel_pipe_handle_vblank(dev_priv, pipe))
2157                         intel_check_page_flip(dev_priv, pipe);
2158
2159                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2160                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2161
2162                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2163                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2164
2165                 /* plane/pipes map 1:1 on ilk+ */
2166                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2167                         intel_prepare_page_flip(dev_priv, pipe);
2168                         intel_finish_page_flip_plane(dev_priv, pipe);
2169                 }
2170         }
2171
2172         /* check event from PCH */
2173         if (de_iir & DE_PCH_EVENT) {
2174                 u32 pch_iir = I915_READ(SDEIIR);
2175
2176                 if (HAS_PCH_CPT(dev_priv))
2177                         cpt_irq_handler(dev_priv, pch_iir);
2178                 else
2179                         ibx_irq_handler(dev_priv, pch_iir);
2180
2181                 /* should clear PCH hotplug event before clear CPU irq */
2182                 I915_WRITE(SDEIIR, pch_iir);
2183         }
2184
2185         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2186                 ironlake_rps_change_irq_handler(dev_priv);
2187 }
2188
2189 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2190                                     u32 de_iir)
2191 {
2192         enum pipe pipe;
2193         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2194
2195         if (hotplug_trigger)
2196                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2197
2198         if (de_iir & DE_ERR_INT_IVB)
2199                 ivb_err_int_handler(dev_priv);
2200
2201         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2202                 dp_aux_irq_handler(dev_priv);
2203
2204         if (de_iir & DE_GSE_IVB)
2205                 intel_opregion_asle_intr(dev_priv);
2206
2207         for_each_pipe(dev_priv, pipe) {
2208                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2209                     intel_pipe_handle_vblank(dev_priv, pipe))
2210                         intel_check_page_flip(dev_priv, pipe);
2211
2212                 /* plane/pipes map 1:1 on ilk+ */
2213                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2214                         intel_prepare_page_flip(dev_priv, pipe);
2215                         intel_finish_page_flip_plane(dev_priv, pipe);
2216                 }
2217         }
2218
2219         /* check event from PCH */
2220         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2221                 u32 pch_iir = I915_READ(SDEIIR);
2222
2223                 cpt_irq_handler(dev_priv, pch_iir);
2224
2225                 /* clear PCH hotplug event before clear CPU irq */
2226                 I915_WRITE(SDEIIR, pch_iir);
2227         }
2228 }
2229
2230 /*
2231  * To handle irqs with the minimum potential races with fresh interrupts, we:
2232  * 1 - Disable Master Interrupt Control.
2233  * 2 - Find the source(s) of the interrupt.
2234  * 3 - Clear the Interrupt Identity bits (IIR).
2235  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2236  * 5 - Re-enable Master Interrupt Control.
2237  */
2238 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2239 {
2240         struct drm_device *dev = arg;
2241         struct drm_i915_private *dev_priv = dev->dev_private;
2242         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2243         irqreturn_t ret = IRQ_NONE;
2244
2245         if (!intel_irqs_enabled(dev_priv))
2246                 return IRQ_NONE;
2247
2248         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2249         disable_rpm_wakeref_asserts(dev_priv);
2250
2251         /* disable master interrupt before clearing iir  */
2252         de_ier = I915_READ(DEIER);
2253         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2254         POSTING_READ(DEIER);
2255
2256         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2257          * interrupts will will be stored on its back queue, and then we'll be
2258          * able to process them after we restore SDEIER (as soon as we restore
2259          * it, we'll get an interrupt if SDEIIR still has something to process
2260          * due to its back queue). */
2261         if (!HAS_PCH_NOP(dev_priv)) {
2262                 sde_ier = I915_READ(SDEIER);
2263                 I915_WRITE(SDEIER, 0);
2264                 POSTING_READ(SDEIER);
2265         }
2266
2267         /* Find, clear, then process each source of interrupt */
2268
2269         gt_iir = I915_READ(GTIIR);
2270         if (gt_iir) {
2271                 I915_WRITE(GTIIR, gt_iir);
2272                 ret = IRQ_HANDLED;
2273                 if (INTEL_GEN(dev_priv) >= 6)
2274                         snb_gt_irq_handler(dev_priv, gt_iir);
2275                 else
2276                         ilk_gt_irq_handler(dev_priv, gt_iir);
2277         }
2278
2279         de_iir = I915_READ(DEIIR);
2280         if (de_iir) {
2281                 I915_WRITE(DEIIR, de_iir);
2282                 ret = IRQ_HANDLED;
2283                 if (INTEL_GEN(dev_priv) >= 7)
2284                         ivb_display_irq_handler(dev_priv, de_iir);
2285                 else
2286                         ilk_display_irq_handler(dev_priv, de_iir);
2287         }
2288
2289         if (INTEL_GEN(dev_priv) >= 6) {
2290                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2291                 if (pm_iir) {
2292                         I915_WRITE(GEN6_PMIIR, pm_iir);
2293                         ret = IRQ_HANDLED;
2294                         gen6_rps_irq_handler(dev_priv, pm_iir);
2295                 }
2296         }
2297
2298         I915_WRITE(DEIER, de_ier);
2299         POSTING_READ(DEIER);
2300         if (!HAS_PCH_NOP(dev_priv)) {
2301                 I915_WRITE(SDEIER, sde_ier);
2302                 POSTING_READ(SDEIER);
2303         }
2304
2305         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2306         enable_rpm_wakeref_asserts(dev_priv);
2307
2308         return ret;
2309 }
2310
2311 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2312                                 u32 hotplug_trigger,
2313                                 const u32 hpd[HPD_NUM_PINS])
2314 {
2315         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2316
2317         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2318         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2319
2320         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2321                            dig_hotplug_reg, hpd,
2322                            bxt_port_hotplug_long_detect);
2323
2324         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2325 }
2326
2327 static irqreturn_t
2328 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2329 {
2330         irqreturn_t ret = IRQ_NONE;
2331         u32 iir;
2332         enum pipe pipe;
2333
2334         if (master_ctl & GEN8_DE_MISC_IRQ) {
2335                 iir = I915_READ(GEN8_DE_MISC_IIR);
2336                 if (iir) {
2337                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2338                         ret = IRQ_HANDLED;
2339                         if (iir & GEN8_DE_MISC_GSE)
2340                                 intel_opregion_asle_intr(dev_priv);
2341                         else
2342                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2343                 }
2344                 else
2345                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2346         }
2347
2348         if (master_ctl & GEN8_DE_PORT_IRQ) {
2349                 iir = I915_READ(GEN8_DE_PORT_IIR);
2350                 if (iir) {
2351                         u32 tmp_mask;
2352                         bool found = false;
2353
2354                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2355                         ret = IRQ_HANDLED;
2356
2357                         tmp_mask = GEN8_AUX_CHANNEL_A;
2358                         if (INTEL_INFO(dev_priv)->gen >= 9)
2359                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2360                                             GEN9_AUX_CHANNEL_C |
2361                                             GEN9_AUX_CHANNEL_D;
2362
2363                         if (iir & tmp_mask) {
2364                                 dp_aux_irq_handler(dev_priv);
2365                                 found = true;
2366                         }
2367
2368                         if (IS_BROXTON(dev_priv)) {
2369                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2370                                 if (tmp_mask) {
2371                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2372                                                             hpd_bxt);
2373                                         found = true;
2374                                 }
2375                         } else if (IS_BROADWELL(dev_priv)) {
2376                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2377                                 if (tmp_mask) {
2378                                         ilk_hpd_irq_handler(dev_priv,
2379                                                             tmp_mask, hpd_bdw);
2380                                         found = true;
2381                                 }
2382                         }
2383
2384                         if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2385                                 gmbus_irq_handler(dev_priv);
2386                                 found = true;
2387                         }
2388
2389                         if (!found)
2390                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2391                 }
2392                 else
2393                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2394         }
2395
2396         for_each_pipe(dev_priv, pipe) {
2397                 u32 flip_done, fault_errors;
2398
2399                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2400                         continue;
2401
2402                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2403                 if (!iir) {
2404                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2405                         continue;
2406                 }
2407
2408                 ret = IRQ_HANDLED;
2409                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2410
2411                 if (iir & GEN8_PIPE_VBLANK &&
2412                     intel_pipe_handle_vblank(dev_priv, pipe))
2413                         intel_check_page_flip(dev_priv, pipe);
2414
2415                 flip_done = iir;
2416                 if (INTEL_INFO(dev_priv)->gen >= 9)
2417                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2418                 else
2419                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2420
2421                 if (flip_done) {
2422                         intel_prepare_page_flip(dev_priv, pipe);
2423                         intel_finish_page_flip_plane(dev_priv, pipe);
2424                 }
2425
2426                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2427                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2428
2429                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2430                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2431
2432                 fault_errors = iir;
2433                 if (INTEL_INFO(dev_priv)->gen >= 9)
2434                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2435                 else
2436                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2437
2438                 if (fault_errors)
2439                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2440                                   pipe_name(pipe),
2441                                   fault_errors);
2442         }
2443
2444         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2445             master_ctl & GEN8_DE_PCH_IRQ) {
2446                 /*
2447                  * FIXME(BDW): Assume for now that the new interrupt handling
2448                  * scheme also closed the SDE interrupt handling race we've seen
2449                  * on older pch-split platforms. But this needs testing.
2450                  */
2451                 iir = I915_READ(SDEIIR);
2452                 if (iir) {
2453                         I915_WRITE(SDEIIR, iir);
2454                         ret = IRQ_HANDLED;
2455
2456                         if (HAS_PCH_SPT(dev_priv))
2457                                 spt_irq_handler(dev_priv, iir);
2458                         else
2459                                 cpt_irq_handler(dev_priv, iir);
2460                 } else {
2461                         /*
2462                          * Like on previous PCH there seems to be something
2463                          * fishy going on with forwarding PCH interrupts.
2464                          */
2465                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2466                 }
2467         }
2468
2469         return ret;
2470 }
2471
2472 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2473 {
2474         struct drm_device *dev = arg;
2475         struct drm_i915_private *dev_priv = dev->dev_private;
2476         u32 master_ctl;
2477         u32 gt_iir[4] = {};
2478         irqreturn_t ret;
2479
2480         if (!intel_irqs_enabled(dev_priv))
2481                 return IRQ_NONE;
2482
2483         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2484         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2485         if (!master_ctl)
2486                 return IRQ_NONE;
2487
2488         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2489
2490         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2491         disable_rpm_wakeref_asserts(dev_priv);
2492
2493         /* Find, clear, then process each source of interrupt */
2494         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2495         gen8_gt_irq_handler(dev_priv, gt_iir);
2496         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2497
2498         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2499         POSTING_READ_FW(GEN8_MASTER_IRQ);
2500
2501         enable_rpm_wakeref_asserts(dev_priv);
2502
2503         return ret;
2504 }
2505
2506 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2507                                bool reset_completed)
2508 {
2509         struct intel_engine_cs *engine;
2510
2511         /*
2512          * Notify all waiters for GPU completion events that reset state has
2513          * been changed, and that they need to restart their wait after
2514          * checking for potential errors (and bail out to drop locks if there is
2515          * a gpu reset pending so that i915_error_work_func can acquire them).
2516          */
2517
2518         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2519         for_each_engine(engine, dev_priv)
2520                 wake_up_all(&engine->irq_queue);
2521
2522         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2523         wake_up_all(&dev_priv->pending_flip_queue);
2524
2525         /*
2526          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2527          * reset state is cleared.
2528          */
2529         if (reset_completed)
2530                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2531 }
2532
2533 /**
2534  * i915_reset_and_wakeup - do process context error handling work
2535  * @dev: drm device
2536  *
2537  * Fire an error uevent so userspace can see that a hang or error
2538  * was detected.
2539  */
2540 static void i915_reset_and_wakeup(struct drm_device *dev)
2541 {
2542         struct drm_i915_private *dev_priv = to_i915(dev);
2543         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2544         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2545         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2546         int ret;
2547
2548         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2549
2550         /*
2551          * Note that there's only one work item which does gpu resets, so we
2552          * need not worry about concurrent gpu resets potentially incrementing
2553          * error->reset_counter twice. We only need to take care of another
2554          * racing irq/hangcheck declaring the gpu dead for a second time. A
2555          * quick check for that is good enough: schedule_work ensures the
2556          * correct ordering between hang detection and this work item, and since
2557          * the reset in-progress bit is only ever set by code outside of this
2558          * work we don't need to worry about any other races.
2559          */
2560         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2561                 DRM_DEBUG_DRIVER("resetting chip\n");
2562                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2563                                    reset_event);
2564
2565                 /*
2566                  * In most cases it's guaranteed that we get here with an RPM
2567                  * reference held, for example because there is a pending GPU
2568                  * request that won't finish until the reset is done. This
2569                  * isn't the case at least when we get here by doing a
2570                  * simulated reset via debugs, so get an RPM reference.
2571                  */
2572                 intel_runtime_pm_get(dev_priv);
2573
2574                 intel_prepare_reset(dev);
2575
2576                 /*
2577                  * All state reset _must_ be completed before we update the
2578                  * reset counter, for otherwise waiters might miss the reset
2579                  * pending state and not properly drop locks, resulting in
2580                  * deadlocks with the reset work.
2581                  */
2582                 ret = i915_reset(dev);
2583
2584                 intel_finish_reset(dev);
2585
2586                 intel_runtime_pm_put(dev_priv);
2587
2588                 if (ret == 0)
2589                         kobject_uevent_env(&dev->primary->kdev->kobj,
2590                                            KOBJ_CHANGE, reset_done_event);
2591
2592                 /*
2593                  * Note: The wake_up also serves as a memory barrier so that
2594                  * waiters see the update value of the reset counter atomic_t.
2595                  */
2596                 i915_error_wake_up(dev_priv, true);
2597         }
2598 }
2599
2600 static void i915_report_and_clear_eir(struct drm_device *dev)
2601 {
2602         struct drm_i915_private *dev_priv = dev->dev_private;
2603         uint32_t instdone[I915_NUM_INSTDONE_REG];
2604         u32 eir = I915_READ(EIR);
2605         int pipe, i;
2606
2607         if (!eir)
2608                 return;
2609
2610         pr_err("render error detected, EIR: 0x%08x\n", eir);
2611
2612         i915_get_extra_instdone(dev, instdone);
2613
2614         if (IS_G4X(dev)) {
2615                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2616                         u32 ipeir = I915_READ(IPEIR_I965);
2617
2618                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2619                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2620                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2621                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2622                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2623                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2624                         I915_WRITE(IPEIR_I965, ipeir);
2625                         POSTING_READ(IPEIR_I965);
2626                 }
2627                 if (eir & GM45_ERROR_PAGE_TABLE) {
2628                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2629                         pr_err("page table error\n");
2630                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2631                         I915_WRITE(PGTBL_ER, pgtbl_err);
2632                         POSTING_READ(PGTBL_ER);
2633                 }
2634         }
2635
2636         if (!IS_GEN2(dev)) {
2637                 if (eir & I915_ERROR_PAGE_TABLE) {
2638                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2639                         pr_err("page table error\n");
2640                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2641                         I915_WRITE(PGTBL_ER, pgtbl_err);
2642                         POSTING_READ(PGTBL_ER);
2643                 }
2644         }
2645
2646         if (eir & I915_ERROR_MEMORY_REFRESH) {
2647                 pr_err("memory refresh error:\n");
2648                 for_each_pipe(dev_priv, pipe)
2649                         pr_err("pipe %c stat: 0x%08x\n",
2650                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2651                 /* pipestat has already been acked */
2652         }
2653         if (eir & I915_ERROR_INSTRUCTION) {
2654                 pr_err("instruction error\n");
2655                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2656                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2657                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2658                 if (INTEL_INFO(dev)->gen < 4) {
2659                         u32 ipeir = I915_READ(IPEIR);
2660
2661                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2662                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2663                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2664                         I915_WRITE(IPEIR, ipeir);
2665                         POSTING_READ(IPEIR);
2666                 } else {
2667                         u32 ipeir = I915_READ(IPEIR_I965);
2668
2669                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2670                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2671                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2672                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2673                         I915_WRITE(IPEIR_I965, ipeir);
2674                         POSTING_READ(IPEIR_I965);
2675                 }
2676         }
2677
2678         I915_WRITE(EIR, eir);
2679         POSTING_READ(EIR);
2680         eir = I915_READ(EIR);
2681         if (eir) {
2682                 /*
2683                  * some errors might have become stuck,
2684                  * mask them.
2685                  */
2686                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2687                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2688                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2689         }
2690 }
2691
2692 /**
2693  * i915_handle_error - handle a gpu error
2694  * @dev: drm device
2695  * @engine_mask: mask representing engines that are hung
2696  * Do some basic checking of register state at error time and
2697  * dump it to the syslog.  Also call i915_capture_error_state() to make
2698  * sure we get a record and make it available in debugfs.  Fire a uevent
2699  * so userspace knows something bad happened (should trigger collection
2700  * of a ring dump etc.).
2701  */
2702 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2703                        const char *fmt, ...)
2704 {
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         va_list args;
2707         char error_msg[80];
2708
2709         va_start(args, fmt);
2710         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2711         va_end(args);
2712
2713         i915_capture_error_state(dev, engine_mask, error_msg);
2714         i915_report_and_clear_eir(dev);
2715
2716         if (engine_mask) {
2717                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2718                                 &dev_priv->gpu_error.reset_counter);
2719
2720                 /*
2721                  * Wakeup waiting processes so that the reset function
2722                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2723                  * various locks. By bumping the reset counter first, the woken
2724                  * processes will see a reset in progress and back off,
2725                  * releasing their locks and then wait for the reset completion.
2726                  * We must do this for _all_ gpu waiters that might hold locks
2727                  * that the reset work needs to acquire.
2728                  *
2729                  * Note: The wake_up serves as the required memory barrier to
2730                  * ensure that the waiters see the updated value of the reset
2731                  * counter atomic_t.
2732                  */
2733                 i915_error_wake_up(dev_priv, false);
2734         }
2735
2736         i915_reset_and_wakeup(dev);
2737 }
2738
2739 /* Called from drm generic code, passed 'crtc' which
2740  * we use as a pipe index
2741  */
2742 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2743 {
2744         struct drm_i915_private *dev_priv = dev->dev_private;
2745         unsigned long irqflags;
2746
2747         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2748         if (INTEL_INFO(dev)->gen >= 4)
2749                 i915_enable_pipestat(dev_priv, pipe,
2750                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2751         else
2752                 i915_enable_pipestat(dev_priv, pipe,
2753                                      PIPE_VBLANK_INTERRUPT_STATUS);
2754         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756         return 0;
2757 }
2758
2759 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2760 {
2761         struct drm_i915_private *dev_priv = dev->dev_private;
2762         unsigned long irqflags;
2763         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2764                                                      DE_PIPE_VBLANK(pipe);
2765
2766         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2767         ilk_enable_display_irq(dev_priv, bit);
2768         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2769
2770         return 0;
2771 }
2772
2773 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2774 {
2775         struct drm_i915_private *dev_priv = dev->dev_private;
2776         unsigned long irqflags;
2777
2778         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2779         i915_enable_pipestat(dev_priv, pipe,
2780                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2781         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2782
2783         return 0;
2784 }
2785
2786 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2787 {
2788         struct drm_i915_private *dev_priv = dev->dev_private;
2789         unsigned long irqflags;
2790
2791         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2793         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2794
2795         return 0;
2796 }
2797
2798 /* Called from drm generic code, passed 'crtc' which
2799  * we use as a pipe index
2800  */
2801 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2802 {
2803         struct drm_i915_private *dev_priv = dev->dev_private;
2804         unsigned long irqflags;
2805
2806         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2807         i915_disable_pipestat(dev_priv, pipe,
2808                               PIPE_VBLANK_INTERRUPT_STATUS |
2809                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2810         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2811 }
2812
2813 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2814 {
2815         struct drm_i915_private *dev_priv = dev->dev_private;
2816         unsigned long irqflags;
2817         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2818                                                      DE_PIPE_VBLANK(pipe);
2819
2820         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2821         ilk_disable_display_irq(dev_priv, bit);
2822         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2823 }
2824
2825 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2826 {
2827         struct drm_i915_private *dev_priv = dev->dev_private;
2828         unsigned long irqflags;
2829
2830         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2831         i915_disable_pipestat(dev_priv, pipe,
2832                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2833         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2834 }
2835
2836 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2837 {
2838         struct drm_i915_private *dev_priv = dev->dev_private;
2839         unsigned long irqflags;
2840
2841         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2842         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2843         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2844 }
2845
2846 static bool
2847 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2848 {
2849         return i915_seqno_passed(seqno,
2850                                  READ_ONCE(engine->last_submitted_seqno));
2851 }
2852
2853 static bool
2854 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2855 {
2856         if (INTEL_INFO(dev)->gen >= 8) {
2857                 return (ipehr >> 23) == 0x1c;
2858         } else {
2859                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2860                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2861                                  MI_SEMAPHORE_REGISTER);
2862         }
2863 }
2864
2865 static struct intel_engine_cs *
2866 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2867                                  u64 offset)
2868 {
2869         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2870         struct intel_engine_cs *signaller;
2871
2872         if (INTEL_INFO(dev_priv)->gen >= 8) {
2873                 for_each_engine(signaller, dev_priv) {
2874                         if (engine == signaller)
2875                                 continue;
2876
2877                         if (offset == signaller->semaphore.signal_ggtt[engine->id])
2878                                 return signaller;
2879                 }
2880         } else {
2881                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2882
2883                 for_each_engine(signaller, dev_priv) {
2884                         if(engine == signaller)
2885                                 continue;
2886
2887                         if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2888                                 return signaller;
2889                 }
2890         }
2891
2892         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2893                   engine->id, ipehr, offset);
2894
2895         return NULL;
2896 }
2897
2898 static struct intel_engine_cs *
2899 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2900 {
2901         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2902         u32 cmd, ipehr, head;
2903         u64 offset = 0;
2904         int i, backwards;
2905
2906         /*
2907          * This function does not support execlist mode - any attempt to
2908          * proceed further into this function will result in a kernel panic
2909          * when dereferencing ring->buffer, which is not set up in execlist
2910          * mode.
2911          *
2912          * The correct way of doing it would be to derive the currently
2913          * executing ring buffer from the current context, which is derived
2914          * from the currently running request. Unfortunately, to get the
2915          * current request we would have to grab the struct_mutex before doing
2916          * anything else, which would be ill-advised since some other thread
2917          * might have grabbed it already and managed to hang itself, causing
2918          * the hang checker to deadlock.
2919          *
2920          * Therefore, this function does not support execlist mode in its
2921          * current form. Just return NULL and move on.
2922          */
2923         if (engine->buffer == NULL)
2924                 return NULL;
2925
2926         ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2927         if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2928                 return NULL;
2929
2930         /*
2931          * HEAD is likely pointing to the dword after the actual command,
2932          * so scan backwards until we find the MBOX. But limit it to just 3
2933          * or 4 dwords depending on the semaphore wait command size.
2934          * Note that we don't care about ACTHD here since that might
2935          * point at at batch, and semaphores are always emitted into the
2936          * ringbuffer itself.
2937          */
2938         head = I915_READ_HEAD(engine) & HEAD_ADDR;
2939         backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2940
2941         for (i = backwards; i; --i) {
2942                 /*
2943                  * Be paranoid and presume the hw has gone off into the wild -
2944                  * our ring is smaller than what the hardware (and hence
2945                  * HEAD_ADDR) allows. Also handles wrap-around.
2946                  */
2947                 head &= engine->buffer->size - 1;
2948
2949                 /* This here seems to blow up */
2950                 cmd = ioread32(engine->buffer->virtual_start + head);
2951                 if (cmd == ipehr)
2952                         break;
2953
2954                 head -= 4;
2955         }
2956
2957         if (!i)
2958                 return NULL;
2959
2960         *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2961         if (INTEL_INFO(engine->dev)->gen >= 8) {
2962                 offset = ioread32(engine->buffer->virtual_start + head + 12);
2963                 offset <<= 32;
2964                 offset = ioread32(engine->buffer->virtual_start + head + 8);
2965         }
2966         return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2967 }
2968
2969 static int semaphore_passed(struct intel_engine_cs *engine)
2970 {
2971         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2972         struct intel_engine_cs *signaller;
2973         u32 seqno;
2974
2975         engine->hangcheck.deadlock++;
2976
2977         signaller = semaphore_waits_for(engine, &seqno);
2978         if (signaller == NULL)
2979                 return -1;
2980
2981         /* Prevent pathological recursion due to driver bugs */
2982         if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2983                 return -1;
2984
2985         if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
2986                 return 1;
2987
2988         /* cursory check for an unkickable deadlock */
2989         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2990             semaphore_passed(signaller) < 0)
2991                 return -1;
2992
2993         return 0;
2994 }
2995
2996 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2997 {
2998         struct intel_engine_cs *engine;
2999
3000         for_each_engine(engine, dev_priv)
3001                 engine->hangcheck.deadlock = 0;
3002 }
3003
3004 static bool subunits_stuck(struct intel_engine_cs *engine)
3005 {
3006         u32 instdone[I915_NUM_INSTDONE_REG];
3007         bool stuck;
3008         int i;
3009
3010         if (engine->id != RCS)
3011                 return true;
3012
3013         i915_get_extra_instdone(engine->dev, instdone);
3014
3015         /* There might be unstable subunit states even when
3016          * actual head is not moving. Filter out the unstable ones by
3017          * accumulating the undone -> done transitions and only
3018          * consider those as progress.
3019          */
3020         stuck = true;
3021         for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
3022                 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
3023
3024                 if (tmp != engine->hangcheck.instdone[i])
3025                         stuck = false;
3026
3027                 engine->hangcheck.instdone[i] |= tmp;
3028         }
3029
3030         return stuck;
3031 }
3032
3033 static enum intel_ring_hangcheck_action
3034 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3035 {
3036         if (acthd != engine->hangcheck.acthd) {
3037
3038                 /* Clear subunit states on head movement */
3039                 memset(engine->hangcheck.instdone, 0,
3040                        sizeof(engine->hangcheck.instdone));
3041
3042                 return HANGCHECK_ACTIVE;
3043         }
3044
3045         if (!subunits_stuck(engine))
3046                 return HANGCHECK_ACTIVE;
3047
3048         return HANGCHECK_HUNG;
3049 }
3050
3051 static enum intel_ring_hangcheck_action
3052 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3053 {
3054         struct drm_device *dev = engine->dev;
3055         struct drm_i915_private *dev_priv = dev->dev_private;
3056         enum intel_ring_hangcheck_action ha;
3057         u32 tmp;
3058
3059         ha = head_stuck(engine, acthd);
3060         if (ha != HANGCHECK_HUNG)
3061                 return ha;
3062
3063         if (IS_GEN2(dev))
3064                 return HANGCHECK_HUNG;
3065
3066         /* Is the chip hanging on a WAIT_FOR_EVENT?
3067          * If so we can simply poke the RB_WAIT bit
3068          * and break the hang. This should work on
3069          * all but the second generation chipsets.
3070          */
3071         tmp = I915_READ_CTL(engine);
3072         if (tmp & RING_WAIT) {
3073                 i915_handle_error(dev, 0,
3074                                   "Kicking stuck wait on %s",
3075                                   engine->name);
3076                 I915_WRITE_CTL(engine, tmp);
3077                 return HANGCHECK_KICK;
3078         }
3079
3080         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3081                 switch (semaphore_passed(engine)) {
3082                 default:
3083                         return HANGCHECK_HUNG;
3084                 case 1:
3085                         i915_handle_error(dev, 0,
3086                                           "Kicking stuck semaphore on %s",
3087                                           engine->name);
3088                         I915_WRITE_CTL(engine, tmp);
3089                         return HANGCHECK_KICK;
3090                 case 0:
3091                         return HANGCHECK_WAIT;
3092                 }
3093         }
3094
3095         return HANGCHECK_HUNG;
3096 }
3097
3098 static unsigned kick_waiters(struct intel_engine_cs *engine)
3099 {
3100         struct drm_i915_private *i915 = to_i915(engine->dev);
3101         unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3102
3103         if (engine->hangcheck.user_interrupts == user_interrupts &&
3104             !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3105                 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3106                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3107                                   engine->name);
3108                 else
3109                         DRM_INFO("Fake missed irq on %s\n",
3110                                  engine->name);
3111                 wake_up_all(&engine->irq_queue);
3112         }
3113
3114         return user_interrupts;
3115 }
3116 /*
3117  * This is called when the chip hasn't reported back with completed
3118  * batchbuffers in a long time. We keep track per ring seqno progress and
3119  * if there are no progress, hangcheck score for that ring is increased.
3120  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3121  * we kick the ring. If we see no progress on three subsequent calls
3122  * we assume chip is wedged and try to fix it by resetting the chip.
3123  */
3124 static void i915_hangcheck_elapsed(struct work_struct *work)
3125 {
3126         struct drm_i915_private *dev_priv =
3127                 container_of(work, typeof(*dev_priv),
3128                              gpu_error.hangcheck_work.work);
3129         struct drm_device *dev = dev_priv->dev;
3130         struct intel_engine_cs *engine;
3131         enum intel_engine_id id;
3132         int busy_count = 0, rings_hung = 0;
3133         bool stuck[I915_NUM_ENGINES] = { 0 };
3134 #define BUSY 1
3135 #define KICK 5
3136 #define HUNG 20
3137 #define ACTIVE_DECAY 15
3138
3139         if (!i915.enable_hangcheck)
3140                 return;
3141
3142         /*
3143          * The hangcheck work is synced during runtime suspend, we don't
3144          * require a wakeref. TODO: instead of disabling the asserts make
3145          * sure that we hold a reference when this work is running.
3146          */
3147         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3148
3149         /* As enabling the GPU requires fairly extensive mmio access,
3150          * periodically arm the mmio checker to see if we are triggering
3151          * any invalid access.
3152          */
3153         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3154
3155         for_each_engine_id(engine, dev_priv, id) {
3156                 u64 acthd;
3157                 u32 seqno;
3158                 unsigned user_interrupts;
3159                 bool busy = true;
3160
3161                 semaphore_clear_deadlocks(dev_priv);
3162
3163                 /* We don't strictly need an irq-barrier here, as we are not
3164                  * serving an interrupt request, be paranoid in case the
3165                  * barrier has side-effects (such as preventing a broken
3166                  * cacheline snoop) and so be sure that we can see the seqno
3167                  * advance. If the seqno should stick, due to a stale
3168                  * cacheline, we would erroneously declare the GPU hung.
3169                  */
3170                 if (engine->irq_seqno_barrier)
3171                         engine->irq_seqno_barrier(engine);
3172
3173                 acthd = intel_ring_get_active_head(engine);
3174                 seqno = engine->get_seqno(engine);
3175
3176                 /* Reset stuck interrupts between batch advances */
3177                 user_interrupts = 0;
3178
3179                 if (engine->hangcheck.seqno == seqno) {
3180                         if (ring_idle(engine, seqno)) {
3181                                 engine->hangcheck.action = HANGCHECK_IDLE;
3182                                 if (waitqueue_active(&engine->irq_queue)) {
3183                                         /* Safeguard against driver failure */
3184                                         user_interrupts = kick_waiters(engine);
3185                                         engine->hangcheck.score += BUSY;
3186                                 } else
3187                                         busy = false;
3188                         } else {
3189                                 /* We always increment the hangcheck score
3190                                  * if the ring is busy and still processing
3191                                  * the same request, so that no single request
3192                                  * can run indefinitely (such as a chain of
3193                                  * batches). The only time we do not increment
3194                                  * the hangcheck score on this ring, if this
3195                                  * ring is in a legitimate wait for another
3196                                  * ring. In that case the waiting ring is a
3197                                  * victim and we want to be sure we catch the
3198                                  * right culprit. Then every time we do kick
3199                                  * the ring, add a small increment to the
3200                                  * score so that we can catch a batch that is
3201                                  * being repeatedly kicked and so responsible
3202                                  * for stalling the machine.
3203                                  */
3204                                 engine->hangcheck.action = ring_stuck(engine,
3205                                                                       acthd);
3206
3207                                 switch (engine->hangcheck.action) {
3208                                 case HANGCHECK_IDLE:
3209                                 case HANGCHECK_WAIT:
3210                                         break;
3211                                 case HANGCHECK_ACTIVE:
3212                                         engine->hangcheck.score += BUSY;
3213                                         break;
3214                                 case HANGCHECK_KICK:
3215                                         engine->hangcheck.score += KICK;
3216                                         break;
3217                                 case HANGCHECK_HUNG:
3218                                         engine->hangcheck.score += HUNG;
3219                                         stuck[id] = true;
3220                                         break;
3221                                 }
3222                         }
3223                 } else {
3224                         engine->hangcheck.action = HANGCHECK_ACTIVE;
3225
3226                         /* Gradually reduce the count so that we catch DoS
3227                          * attempts across multiple batches.
3228                          */
3229                         if (engine->hangcheck.score > 0)
3230                                 engine->hangcheck.score -= ACTIVE_DECAY;
3231                         if (engine->hangcheck.score < 0)
3232                                 engine->hangcheck.score = 0;
3233
3234                         /* Clear head and subunit states on seqno movement */
3235                         acthd = 0;
3236
3237                         memset(engine->hangcheck.instdone, 0,
3238                                sizeof(engine->hangcheck.instdone));
3239                 }
3240
3241                 engine->hangcheck.seqno = seqno;
3242                 engine->hangcheck.acthd = acthd;
3243                 engine->hangcheck.user_interrupts = user_interrupts;
3244                 busy_count += busy;
3245         }
3246
3247         for_each_engine_id(engine, dev_priv, id) {
3248                 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3249                         DRM_INFO("%s on %s\n",
3250                                  stuck[id] ? "stuck" : "no progress",
3251                                  engine->name);
3252                         rings_hung |= intel_engine_flag(engine);
3253                 }
3254         }
3255
3256         if (rings_hung) {
3257                 i915_handle_error(dev, rings_hung, "Engine(s) hung");
3258                 goto out;
3259         }
3260
3261         if (busy_count)
3262                 /* Reset timer case chip hangs without another request
3263                  * being added */
3264                 i915_queue_hangcheck(dev);
3265
3266 out:
3267         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3268 }
3269
3270 void i915_queue_hangcheck(struct drm_device *dev)
3271 {
3272         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3273
3274         if (!i915.enable_hangcheck)
3275                 return;
3276
3277         /* Don't continually defer the hangcheck so that it is always run at
3278          * least once after work has been scheduled on any ring. Otherwise,
3279          * we will ignore a hung ring if a second ring is kept busy.
3280          */
3281
3282         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3283                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3284 }
3285
3286 static void ibx_irq_reset(struct drm_device *dev)
3287 {
3288         struct drm_i915_private *dev_priv = dev->dev_private;
3289
3290         if (HAS_PCH_NOP(dev))
3291                 return;
3292
3293         GEN5_IRQ_RESET(SDE);
3294
3295         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3296                 I915_WRITE(SERR_INT, 0xffffffff);
3297 }
3298
3299 /*
3300  * SDEIER is also touched by the interrupt handler to work around missed PCH
3301  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3302  * instead we unconditionally enable all PCH interrupt sources here, but then
3303  * only unmask them as needed with SDEIMR.
3304  *
3305  * This function needs to be called before interrupts are enabled.
3306  */
3307 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3308 {
3309         struct drm_i915_private *dev_priv = dev->dev_private;
3310
3311         if (HAS_PCH_NOP(dev))
3312                 return;
3313
3314         WARN_ON(I915_READ(SDEIER) != 0);
3315         I915_WRITE(SDEIER, 0xffffffff);
3316         POSTING_READ(SDEIER);
3317 }
3318
3319 static void gen5_gt_irq_reset(struct drm_device *dev)
3320 {
3321         struct drm_i915_private *dev_priv = dev->dev_private;
3322
3323         GEN5_IRQ_RESET(GT);
3324         if (INTEL_INFO(dev)->gen >= 6)
3325                 GEN5_IRQ_RESET(GEN6_PM);
3326 }
3327
3328 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3329 {
3330         enum pipe pipe;
3331
3332         if (IS_CHERRYVIEW(dev_priv))
3333                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3334         else
3335                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3336
3337         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3338         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3339
3340         for_each_pipe(dev_priv, pipe) {
3341                 I915_WRITE(PIPESTAT(pipe),
3342                            PIPE_FIFO_UNDERRUN_STATUS |
3343                            PIPESTAT_INT_STATUS_MASK);
3344                 dev_priv->pipestat_irq_mask[pipe] = 0;
3345         }
3346
3347         GEN5_IRQ_RESET(VLV_);
3348         dev_priv->irq_mask = ~0;
3349 }
3350
3351 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3352 {
3353         u32 pipestat_mask;
3354         u32 enable_mask;
3355         enum pipe pipe;
3356
3357         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3358                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3359
3360         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3361         for_each_pipe(dev_priv, pipe)
3362                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3363
3364         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3365                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3366                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3367         if (IS_CHERRYVIEW(dev_priv))
3368                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3369
3370         WARN_ON(dev_priv->irq_mask != ~0);
3371
3372         dev_priv->irq_mask = ~enable_mask;
3373
3374         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3375 }
3376
3377 /* drm_dma.h hooks
3378 */
3379 static void ironlake_irq_reset(struct drm_device *dev)
3380 {
3381         struct drm_i915_private *dev_priv = dev->dev_private;
3382
3383         I915_WRITE(HWSTAM, 0xffffffff);
3384
3385         GEN5_IRQ_RESET(DE);
3386         if (IS_GEN7(dev))
3387                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3388
3389         gen5_gt_irq_reset(dev);
3390
3391         ibx_irq_reset(dev);
3392 }
3393
3394 static void valleyview_irq_preinstall(struct drm_device *dev)
3395 {
3396         struct drm_i915_private *dev_priv = dev->dev_private;
3397
3398         I915_WRITE(VLV_MASTER_IER, 0);
3399         POSTING_READ(VLV_MASTER_IER);
3400
3401         gen5_gt_irq_reset(dev);
3402
3403         spin_lock_irq(&dev_priv->irq_lock);
3404         if (dev_priv->display_irqs_enabled)
3405                 vlv_display_irq_reset(dev_priv);
3406         spin_unlock_irq(&dev_priv->irq_lock);
3407 }
3408
3409 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3410 {
3411         GEN8_IRQ_RESET_NDX(GT, 0);
3412         GEN8_IRQ_RESET_NDX(GT, 1);
3413         GEN8_IRQ_RESET_NDX(GT, 2);
3414         GEN8_IRQ_RESET_NDX(GT, 3);
3415 }
3416
3417 static void gen8_irq_reset(struct drm_device *dev)
3418 {
3419         struct drm_i915_private *dev_priv = dev->dev_private;
3420         int pipe;
3421
3422         I915_WRITE(GEN8_MASTER_IRQ, 0);
3423         POSTING_READ(GEN8_MASTER_IRQ);
3424
3425         gen8_gt_irq_reset(dev_priv);
3426
3427         for_each_pipe(dev_priv, pipe)
3428                 if (intel_display_power_is_enabled(dev_priv,
3429                                                    POWER_DOMAIN_PIPE(pipe)))
3430                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3431
3432         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3433         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3434         GEN5_IRQ_RESET(GEN8_PCU_);
3435
3436         if (HAS_PCH_SPLIT(dev))
3437                 ibx_irq_reset(dev);
3438 }
3439
3440 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3441                                      unsigned int pipe_mask)
3442 {
3443         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3444         enum pipe pipe;
3445
3446         spin_lock_irq(&dev_priv->irq_lock);
3447         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3448                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3449                                   dev_priv->de_irq_mask[pipe],
3450                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3451         spin_unlock_irq(&dev_priv->irq_lock);
3452 }
3453
3454 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3455                                      unsigned int pipe_mask)
3456 {
3457         enum pipe pipe;
3458
3459         spin_lock_irq(&dev_priv->irq_lock);
3460         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3461                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3462         spin_unlock_irq(&dev_priv->irq_lock);
3463
3464         /* make sure we're done processing display irqs */
3465         synchronize_irq(dev_priv->dev->irq);
3466 }
3467
3468 static void cherryview_irq_preinstall(struct drm_device *dev)
3469 {
3470         struct drm_i915_private *dev_priv = dev->dev_private;
3471
3472         I915_WRITE(GEN8_MASTER_IRQ, 0);
3473         POSTING_READ(GEN8_MASTER_IRQ);
3474
3475         gen8_gt_irq_reset(dev_priv);
3476
3477         GEN5_IRQ_RESET(GEN8_PCU_);
3478
3479         spin_lock_irq(&dev_priv->irq_lock);
3480         if (dev_priv->display_irqs_enabled)
3481                 vlv_display_irq_reset(dev_priv);
3482         spin_unlock_irq(&dev_priv->irq_lock);
3483 }
3484
3485 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3486                                   const u32 hpd[HPD_NUM_PINS])
3487 {
3488         struct intel_encoder *encoder;
3489         u32 enabled_irqs = 0;
3490
3491         for_each_intel_encoder(dev_priv->dev, encoder)
3492                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3493                         enabled_irqs |= hpd[encoder->hpd_pin];
3494
3495         return enabled_irqs;
3496 }
3497
3498 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3499 {
3500         u32 hotplug_irqs, hotplug, enabled_irqs;
3501
3502         if (HAS_PCH_IBX(dev_priv)) {
3503                 hotplug_irqs = SDE_HOTPLUG_MASK;
3504                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3505         } else {
3506                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3507                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3508         }
3509
3510         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3511
3512         /*
3513          * Enable digital hotplug on the PCH, and configure the DP short pulse
3514          * duration to 2ms (which is the minimum in the Display Port spec).
3515          * The pulse duration bits are reserved on LPT+.
3516          */
3517         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3518         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3519         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3520         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3521         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3522         /*
3523          * When CPU and PCH are on the same package, port A
3524          * HPD must be enabled in both north and south.
3525          */
3526         if (HAS_PCH_LPT_LP(dev_priv))
3527                 hotplug |= PORTA_HOTPLUG_ENABLE;
3528         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3529 }
3530
3531 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3532 {
3533         u32 hotplug_irqs, hotplug, enabled_irqs;
3534
3535         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3536         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3537
3538         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3539
3540         /* Enable digital hotplug on the PCH */
3541         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3542         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3543                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3544         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3545
3546         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3547         hotplug |= PORTE_HOTPLUG_ENABLE;
3548         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3549 }
3550
3551 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3552 {
3553         u32 hotplug_irqs, hotplug, enabled_irqs;
3554
3555         if (INTEL_GEN(dev_priv) >= 8) {
3556                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3557                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3558
3559                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3560         } else if (INTEL_GEN(dev_priv) >= 7) {
3561                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3562                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3563
3564                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3565         } else {
3566                 hotplug_irqs = DE_DP_A_HOTPLUG;
3567                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3568
3569                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3570         }
3571
3572         /*
3573          * Enable digital hotplug on the CPU, and configure the DP short pulse
3574          * duration to 2ms (which is the minimum in the Display Port spec)
3575          * The pulse duration bits are reserved on HSW+.
3576          */
3577         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3578         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3579         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3580         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3581
3582         ibx_hpd_irq_setup(dev_priv);
3583 }
3584
3585 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3586 {
3587         u32 hotplug_irqs, hotplug, enabled_irqs;
3588
3589         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3590         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3591
3592         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3593
3594         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3595         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3596                 PORTA_HOTPLUG_ENABLE;
3597
3598         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3599                       hotplug, enabled_irqs);
3600         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3601
3602         /*
3603          * For BXT invert bit has to be set based on AOB design
3604          * for HPD detection logic, update it based on VBT fields.
3605          */
3606
3607         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3608             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3609                 hotplug |= BXT_DDIA_HPD_INVERT;
3610         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3611             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3612                 hotplug |= BXT_DDIB_HPD_INVERT;
3613         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3614             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3615                 hotplug |= BXT_DDIC_HPD_INVERT;
3616
3617         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3618 }
3619
3620 static void ibx_irq_postinstall(struct drm_device *dev)
3621 {
3622         struct drm_i915_private *dev_priv = dev->dev_private;
3623         u32 mask;
3624
3625         if (HAS_PCH_NOP(dev))
3626                 return;
3627
3628         if (HAS_PCH_IBX(dev))
3629                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3630         else
3631                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3632
3633         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3634         I915_WRITE(SDEIMR, ~mask);
3635 }
3636
3637 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3638 {
3639         struct drm_i915_private *dev_priv = dev->dev_private;
3640         u32 pm_irqs, gt_irqs;
3641
3642         pm_irqs = gt_irqs = 0;
3643
3644         dev_priv->gt_irq_mask = ~0;
3645         if (HAS_L3_DPF(dev)) {
3646                 /* L3 parity interrupt is always unmasked. */
3647                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3648                 gt_irqs |= GT_PARITY_ERROR(dev);
3649         }
3650
3651         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3652         if (IS_GEN5(dev)) {
3653                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3654                            ILK_BSD_USER_INTERRUPT;
3655         } else {
3656                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3657         }
3658
3659         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3660
3661         if (INTEL_INFO(dev)->gen >= 6) {
3662                 /*
3663                  * RPS interrupts will get enabled/disabled on demand when RPS
3664                  * itself is enabled/disabled.
3665                  */
3666                 if (HAS_VEBOX(dev))
3667                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3668
3669                 dev_priv->pm_irq_mask = 0xffffffff;
3670                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3671         }
3672 }
3673
3674 static int ironlake_irq_postinstall(struct drm_device *dev)
3675 {
3676         struct drm_i915_private *dev_priv = dev->dev_private;
3677         u32 display_mask, extra_mask;
3678
3679         if (INTEL_INFO(dev)->gen >= 7) {
3680                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3681                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3682                                 DE_PLANEB_FLIP_DONE_IVB |
3683                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3684                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3685                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3686                               DE_DP_A_HOTPLUG_IVB);
3687         } else {
3688                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3689                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3690                                 DE_AUX_CHANNEL_A |
3691                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3692                                 DE_POISON);
3693                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3694                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3695                               DE_DP_A_HOTPLUG);
3696         }
3697
3698         dev_priv->irq_mask = ~display_mask;
3699
3700         I915_WRITE(HWSTAM, 0xeffe);
3701
3702         ibx_irq_pre_postinstall(dev);
3703
3704         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3705
3706         gen5_gt_irq_postinstall(dev);
3707
3708         ibx_irq_postinstall(dev);
3709
3710         if (IS_IRONLAKE_M(dev)) {
3711                 /* Enable PCU event interrupts
3712                  *
3713                  * spinlocking not required here for correctness since interrupt
3714                  * setup is guaranteed to run in single-threaded context. But we
3715                  * need it to make the assert_spin_locked happy. */
3716                 spin_lock_irq(&dev_priv->irq_lock);
3717                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3718                 spin_unlock_irq(&dev_priv->irq_lock);
3719         }
3720
3721         return 0;
3722 }
3723
3724 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3725 {
3726         assert_spin_locked(&dev_priv->irq_lock);
3727
3728         if (dev_priv->display_irqs_enabled)
3729                 return;
3730
3731         dev_priv->display_irqs_enabled = true;
3732
3733         if (intel_irqs_enabled(dev_priv)) {
3734                 vlv_display_irq_reset(dev_priv);
3735                 vlv_display_irq_postinstall(dev_priv);
3736         }
3737 }
3738
3739 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3740 {
3741         assert_spin_locked(&dev_priv->irq_lock);
3742
3743         if (!dev_priv->display_irqs_enabled)
3744                 return;
3745
3746         dev_priv->display_irqs_enabled = false;
3747
3748         if (intel_irqs_enabled(dev_priv))
3749                 vlv_display_irq_reset(dev_priv);
3750 }
3751
3752
3753 static int valleyview_irq_postinstall(struct drm_device *dev)
3754 {
3755         struct drm_i915_private *dev_priv = dev->dev_private;
3756
3757         gen5_gt_irq_postinstall(dev);
3758
3759         spin_lock_irq(&dev_priv->irq_lock);
3760         if (dev_priv->display_irqs_enabled)
3761                 vlv_display_irq_postinstall(dev_priv);
3762         spin_unlock_irq(&dev_priv->irq_lock);
3763
3764         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3765         POSTING_READ(VLV_MASTER_IER);
3766
3767         return 0;
3768 }
3769
3770 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3771 {
3772         /* These are interrupts we'll toggle with the ring mask register */
3773         uint32_t gt_interrupts[] = {
3774                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3775                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3776                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3777                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3778                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3779                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3780                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3781                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3782                 0,
3783                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3784                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3785                 };
3786
3787         if (HAS_L3_DPF(dev_priv))
3788                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3789
3790         dev_priv->pm_irq_mask = 0xffffffff;
3791         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3792         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3793         /*
3794          * RPS interrupts will get enabled/disabled on demand when RPS itself
3795          * is enabled/disabled.
3796          */
3797         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3798         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3799 }
3800
3801 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3802 {
3803         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3804         uint32_t de_pipe_enables;
3805         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3806         u32 de_port_enables;
3807         enum pipe pipe;
3808
3809         if (INTEL_INFO(dev_priv)->gen >= 9) {
3810                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3811                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3812                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3813                                   GEN9_AUX_CHANNEL_D;
3814                 if (IS_BROXTON(dev_priv))
3815                         de_port_masked |= BXT_DE_PORT_GMBUS;
3816         } else {
3817                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3818                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3819         }
3820
3821         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3822                                            GEN8_PIPE_FIFO_UNDERRUN;
3823
3824         de_port_enables = de_port_masked;
3825         if (IS_BROXTON(dev_priv))
3826                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3827         else if (IS_BROADWELL(dev_priv))
3828                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3829
3830         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3831         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3832         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3833
3834         for_each_pipe(dev_priv, pipe)
3835                 if (intel_display_power_is_enabled(dev_priv,
3836                                 POWER_DOMAIN_PIPE(pipe)))
3837                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3838                                           dev_priv->de_irq_mask[pipe],
3839                                           de_pipe_enables);
3840
3841         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3842 }
3843
3844 static int gen8_irq_postinstall(struct drm_device *dev)
3845 {
3846         struct drm_i915_private *dev_priv = dev->dev_private;
3847
3848         if (HAS_PCH_SPLIT(dev))
3849                 ibx_irq_pre_postinstall(dev);
3850
3851         gen8_gt_irq_postinstall(dev_priv);
3852         gen8_de_irq_postinstall(dev_priv);
3853
3854         if (HAS_PCH_SPLIT(dev))
3855                 ibx_irq_postinstall(dev);
3856
3857         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3858         POSTING_READ(GEN8_MASTER_IRQ);
3859
3860         return 0;
3861 }
3862
3863 static int cherryview_irq_postinstall(struct drm_device *dev)
3864 {
3865         struct drm_i915_private *dev_priv = dev->dev_private;
3866
3867         gen8_gt_irq_postinstall(dev_priv);
3868
3869         spin_lock_irq(&dev_priv->irq_lock);
3870         if (dev_priv->display_irqs_enabled)
3871                 vlv_display_irq_postinstall(dev_priv);
3872         spin_unlock_irq(&dev_priv->irq_lock);
3873
3874         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3875         POSTING_READ(GEN8_MASTER_IRQ);
3876
3877         return 0;
3878 }
3879
3880 static void gen8_irq_uninstall(struct drm_device *dev)
3881 {
3882         struct drm_i915_private *dev_priv = dev->dev_private;
3883
3884         if (!dev_priv)
3885                 return;
3886
3887         gen8_irq_reset(dev);
3888 }
3889
3890 static void valleyview_irq_uninstall(struct drm_device *dev)
3891 {
3892         struct drm_i915_private *dev_priv = dev->dev_private;
3893
3894         if (!dev_priv)
3895                 return;
3896
3897         I915_WRITE(VLV_MASTER_IER, 0);
3898         POSTING_READ(VLV_MASTER_IER);
3899
3900         gen5_gt_irq_reset(dev);
3901
3902         I915_WRITE(HWSTAM, 0xffffffff);
3903
3904         spin_lock_irq(&dev_priv->irq_lock);
3905         if (dev_priv->display_irqs_enabled)
3906                 vlv_display_irq_reset(dev_priv);
3907         spin_unlock_irq(&dev_priv->irq_lock);
3908 }
3909
3910 static void cherryview_irq_uninstall(struct drm_device *dev)
3911 {
3912         struct drm_i915_private *dev_priv = dev->dev_private;
3913
3914         if (!dev_priv)
3915                 return;
3916
3917         I915_WRITE(GEN8_MASTER_IRQ, 0);
3918         POSTING_READ(GEN8_MASTER_IRQ);
3919
3920         gen8_gt_irq_reset(dev_priv);
3921
3922         GEN5_IRQ_RESET(GEN8_PCU_);
3923
3924         spin_lock_irq(&dev_priv->irq_lock);
3925         if (dev_priv->display_irqs_enabled)
3926                 vlv_display_irq_reset(dev_priv);
3927         spin_unlock_irq(&dev_priv->irq_lock);
3928 }
3929
3930 static void ironlake_irq_uninstall(struct drm_device *dev)
3931 {
3932         struct drm_i915_private *dev_priv = dev->dev_private;
3933
3934         if (!dev_priv)
3935                 return;
3936
3937         ironlake_irq_reset(dev);
3938 }
3939
3940 static void i8xx_irq_preinstall(struct drm_device * dev)
3941 {
3942         struct drm_i915_private *dev_priv = dev->dev_private;
3943         int pipe;
3944
3945         for_each_pipe(dev_priv, pipe)
3946                 I915_WRITE(PIPESTAT(pipe), 0);
3947         I915_WRITE16(IMR, 0xffff);
3948         I915_WRITE16(IER, 0x0);
3949         POSTING_READ16(IER);
3950 }
3951
3952 static int i8xx_irq_postinstall(struct drm_device *dev)
3953 {
3954         struct drm_i915_private *dev_priv = dev->dev_private;
3955
3956         I915_WRITE16(EMR,
3957                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3958
3959         /* Unmask the interrupts that we always want on. */
3960         dev_priv->irq_mask =
3961                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3962                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3963                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3964                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3965         I915_WRITE16(IMR, dev_priv->irq_mask);
3966
3967         I915_WRITE16(IER,
3968                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3969                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3970                      I915_USER_INTERRUPT);
3971         POSTING_READ16(IER);
3972
3973         /* Interrupt setup is already guaranteed to be single-threaded, this is
3974          * just to make the assert_spin_locked check happy. */
3975         spin_lock_irq(&dev_priv->irq_lock);
3976         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3977         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3978         spin_unlock_irq(&dev_priv->irq_lock);
3979
3980         return 0;
3981 }
3982
3983 /*
3984  * Returns true when a page flip has completed.
3985  */
3986 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3987                                int plane, int pipe, u32 iir)
3988 {
3989         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3990
3991         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3992                 return false;
3993
3994         if ((iir & flip_pending) == 0)
3995                 goto check_page_flip;
3996
3997         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3998          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3999          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4000          * the flip is completed (no longer pending). Since this doesn't raise
4001          * an interrupt per se, we watch for the change at vblank.
4002          */
4003         if (I915_READ16(ISR) & flip_pending)
4004                 goto check_page_flip;
4005
4006         intel_prepare_page_flip(dev_priv, plane);
4007         intel_finish_page_flip(dev_priv, pipe);
4008         return true;
4009
4010 check_page_flip:
4011         intel_check_page_flip(dev_priv, pipe);
4012         return false;
4013 }
4014
4015 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4016 {
4017         struct drm_device *dev = arg;
4018         struct drm_i915_private *dev_priv = dev->dev_private;
4019         u16 iir, new_iir;
4020         u32 pipe_stats[2];
4021         int pipe;
4022         u16 flip_mask =
4023                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4024                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4025         irqreturn_t ret;
4026
4027         if (!intel_irqs_enabled(dev_priv))
4028                 return IRQ_NONE;
4029
4030         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4031         disable_rpm_wakeref_asserts(dev_priv);
4032
4033         ret = IRQ_NONE;
4034         iir = I915_READ16(IIR);
4035         if (iir == 0)
4036                 goto out;
4037
4038         while (iir & ~flip_mask) {
4039                 /* Can't rely on pipestat interrupt bit in iir as it might
4040                  * have been cleared after the pipestat interrupt was received.
4041                  * It doesn't set the bit in iir again, but it still produces
4042                  * interrupts (for non-MSI).
4043                  */
4044                 spin_lock(&dev_priv->irq_lock);
4045                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4046                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4047
4048                 for_each_pipe(dev_priv, pipe) {
4049                         i915_reg_t reg = PIPESTAT(pipe);
4050                         pipe_stats[pipe] = I915_READ(reg);
4051
4052                         /*
4053                          * Clear the PIPE*STAT regs before the IIR
4054                          */
4055                         if (pipe_stats[pipe] & 0x8000ffff)
4056                                 I915_WRITE(reg, pipe_stats[pipe]);
4057                 }
4058                 spin_unlock(&dev_priv->irq_lock);
4059
4060                 I915_WRITE16(IIR, iir & ~flip_mask);
4061                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4062
4063                 if (iir & I915_USER_INTERRUPT)
4064                         notify_ring(&dev_priv->engine[RCS]);
4065
4066                 for_each_pipe(dev_priv, pipe) {
4067                         int plane = pipe;
4068                         if (HAS_FBC(dev_priv))
4069                                 plane = !plane;
4070
4071                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4072                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4073                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4074
4075                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4076                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4077
4078                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4079                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4080                                                                     pipe);
4081                 }
4082
4083                 iir = new_iir;
4084         }
4085         ret = IRQ_HANDLED;
4086
4087 out:
4088         enable_rpm_wakeref_asserts(dev_priv);
4089
4090         return ret;
4091 }
4092
4093 static void i8xx_irq_uninstall(struct drm_device * dev)
4094 {
4095         struct drm_i915_private *dev_priv = dev->dev_private;
4096         int pipe;
4097
4098         for_each_pipe(dev_priv, pipe) {
4099                 /* Clear enable bits; then clear status bits */
4100                 I915_WRITE(PIPESTAT(pipe), 0);
4101                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4102         }
4103         I915_WRITE16(IMR, 0xffff);
4104         I915_WRITE16(IER, 0x0);
4105         I915_WRITE16(IIR, I915_READ16(IIR));
4106 }
4107
4108 static void i915_irq_preinstall(struct drm_device * dev)
4109 {
4110         struct drm_i915_private *dev_priv = dev->dev_private;
4111         int pipe;
4112
4113         if (I915_HAS_HOTPLUG(dev)) {
4114                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4115                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4116         }
4117
4118         I915_WRITE16(HWSTAM, 0xeffe);
4119         for_each_pipe(dev_priv, pipe)
4120                 I915_WRITE(PIPESTAT(pipe), 0);
4121         I915_WRITE(IMR, 0xffffffff);
4122         I915_WRITE(IER, 0x0);
4123         POSTING_READ(IER);
4124 }
4125
4126 static int i915_irq_postinstall(struct drm_device *dev)
4127 {
4128         struct drm_i915_private *dev_priv = dev->dev_private;
4129         u32 enable_mask;
4130
4131         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4132
4133         /* Unmask the interrupts that we always want on. */
4134         dev_priv->irq_mask =
4135                 ~(I915_ASLE_INTERRUPT |
4136                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4137                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4138                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4139                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4140
4141         enable_mask =
4142                 I915_ASLE_INTERRUPT |
4143                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4144                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4145                 I915_USER_INTERRUPT;
4146
4147         if (I915_HAS_HOTPLUG(dev)) {
4148                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4149                 POSTING_READ(PORT_HOTPLUG_EN);
4150
4151                 /* Enable in IER... */
4152                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4153                 /* and unmask in IMR */
4154                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4155         }
4156
4157         I915_WRITE(IMR, dev_priv->irq_mask);
4158         I915_WRITE(IER, enable_mask);
4159         POSTING_READ(IER);
4160
4161         i915_enable_asle_pipestat(dev_priv);
4162
4163         /* Interrupt setup is already guaranteed to be single-threaded, this is
4164          * just to make the assert_spin_locked check happy. */
4165         spin_lock_irq(&dev_priv->irq_lock);
4166         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4167         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4168         spin_unlock_irq(&dev_priv->irq_lock);
4169
4170         return 0;
4171 }
4172
4173 /*
4174  * Returns true when a page flip has completed.
4175  */
4176 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4177                                int plane, int pipe, u32 iir)
4178 {
4179         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4180
4181         if (!intel_pipe_handle_vblank(dev_priv, pipe))
4182                 return false;
4183
4184         if ((iir & flip_pending) == 0)
4185                 goto check_page_flip;
4186
4187         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4188          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4189          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4190          * the flip is completed (no longer pending). Since this doesn't raise
4191          * an interrupt per se, we watch for the change at vblank.
4192          */
4193         if (I915_READ(ISR) & flip_pending)
4194                 goto check_page_flip;
4195
4196         intel_prepare_page_flip(dev_priv, plane);
4197         intel_finish_page_flip(dev_priv, pipe);
4198         return true;
4199
4200 check_page_flip:
4201         intel_check_page_flip(dev_priv, pipe);
4202         return false;
4203 }
4204
4205 static irqreturn_t i915_irq_handler(int irq, void *arg)
4206 {
4207         struct drm_device *dev = arg;
4208         struct drm_i915_private *dev_priv = dev->dev_private;
4209         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4210         u32 flip_mask =
4211                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4212                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4213         int pipe, ret = IRQ_NONE;
4214
4215         if (!intel_irqs_enabled(dev_priv))
4216                 return IRQ_NONE;
4217
4218         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4219         disable_rpm_wakeref_asserts(dev_priv);
4220
4221         iir = I915_READ(IIR);
4222         do {
4223                 bool irq_received = (iir & ~flip_mask) != 0;
4224                 bool blc_event = false;
4225
4226                 /* Can't rely on pipestat interrupt bit in iir as it might
4227                  * have been cleared after the pipestat interrupt was received.
4228                  * It doesn't set the bit in iir again, but it still produces
4229                  * interrupts (for non-MSI).
4230                  */
4231                 spin_lock(&dev_priv->irq_lock);
4232                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4233                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4234
4235                 for_each_pipe(dev_priv, pipe) {
4236                         i915_reg_t reg = PIPESTAT(pipe);
4237                         pipe_stats[pipe] = I915_READ(reg);
4238
4239                         /* Clear the PIPE*STAT regs before the IIR */
4240                         if (pipe_stats[pipe] & 0x8000ffff) {
4241                                 I915_WRITE(reg, pipe_stats[pipe]);
4242                                 irq_received = true;
4243                         }
4244                 }
4245                 spin_unlock(&dev_priv->irq_lock);
4246
4247                 if (!irq_received)
4248                         break;
4249
4250                 /* Consume port.  Then clear IIR or we'll miss events */
4251                 if (I915_HAS_HOTPLUG(dev_priv) &&
4252                     iir & I915_DISPLAY_PORT_INTERRUPT) {
4253                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4254                         if (hotplug_status)
4255                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4256                 }
4257
4258                 I915_WRITE(IIR, iir & ~flip_mask);
4259                 new_iir = I915_READ(IIR); /* Flush posted writes */
4260
4261                 if (iir & I915_USER_INTERRUPT)
4262                         notify_ring(&dev_priv->engine[RCS]);
4263
4264                 for_each_pipe(dev_priv, pipe) {
4265                         int plane = pipe;
4266                         if (HAS_FBC(dev_priv))
4267                                 plane = !plane;
4268
4269                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4270                             i915_handle_vblank(dev_priv, plane, pipe, iir))
4271                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4272
4273                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4274                                 blc_event = true;
4275
4276                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4277                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4278
4279                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4280                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4281                                                                     pipe);
4282                 }
4283
4284                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4285                         intel_opregion_asle_intr(dev_priv);
4286
4287                 /* With MSI, interrupts are only generated when iir
4288                  * transitions from zero to nonzero.  If another bit got
4289                  * set while we were handling the existing iir bits, then
4290                  * we would never get another interrupt.
4291                  *
4292                  * This is fine on non-MSI as well, as if we hit this path
4293                  * we avoid exiting the interrupt handler only to generate
4294                  * another one.
4295                  *
4296                  * Note that for MSI this could cause a stray interrupt report
4297                  * if an interrupt landed in the time between writing IIR and
4298                  * the posting read.  This should be rare enough to never
4299                  * trigger the 99% of 100,000 interrupts test for disabling
4300                  * stray interrupts.
4301                  */
4302                 ret = IRQ_HANDLED;
4303                 iir = new_iir;
4304         } while (iir & ~flip_mask);
4305
4306         enable_rpm_wakeref_asserts(dev_priv);
4307
4308         return ret;
4309 }
4310
4311 static void i915_irq_uninstall(struct drm_device * dev)
4312 {
4313         struct drm_i915_private *dev_priv = dev->dev_private;
4314         int pipe;
4315
4316         if (I915_HAS_HOTPLUG(dev)) {
4317                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4318                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4319         }
4320
4321         I915_WRITE16(HWSTAM, 0xffff);
4322         for_each_pipe(dev_priv, pipe) {
4323                 /* Clear enable bits; then clear status bits */
4324                 I915_WRITE(PIPESTAT(pipe), 0);
4325                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4326         }
4327         I915_WRITE(IMR, 0xffffffff);
4328         I915_WRITE(IER, 0x0);
4329
4330         I915_WRITE(IIR, I915_READ(IIR));
4331 }
4332
4333 static void i965_irq_preinstall(struct drm_device * dev)
4334 {
4335         struct drm_i915_private *dev_priv = dev->dev_private;
4336         int pipe;
4337
4338         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4339         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4340
4341         I915_WRITE(HWSTAM, 0xeffe);
4342         for_each_pipe(dev_priv, pipe)
4343                 I915_WRITE(PIPESTAT(pipe), 0);
4344         I915_WRITE(IMR, 0xffffffff);
4345         I915_WRITE(IER, 0x0);
4346         POSTING_READ(IER);
4347 }
4348
4349 static int i965_irq_postinstall(struct drm_device *dev)
4350 {
4351         struct drm_i915_private *dev_priv = dev->dev_private;
4352         u32 enable_mask;
4353         u32 error_mask;
4354
4355         /* Unmask the interrupts that we always want on. */
4356         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4357                                I915_DISPLAY_PORT_INTERRUPT |
4358                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4359                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4360                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4361                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4362                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4363
4364         enable_mask = ~dev_priv->irq_mask;
4365         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4366                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4367         enable_mask |= I915_USER_INTERRUPT;
4368
4369         if (IS_G4X(dev_priv))
4370                 enable_mask |= I915_BSD_USER_INTERRUPT;
4371
4372         /* Interrupt setup is already guaranteed to be single-threaded, this is
4373          * just to make the assert_spin_locked check happy. */
4374         spin_lock_irq(&dev_priv->irq_lock);
4375         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4376         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4377         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4378         spin_unlock_irq(&dev_priv->irq_lock);
4379
4380         /*
4381          * Enable some error detection, note the instruction error mask
4382          * bit is reserved, so we leave it masked.
4383          */
4384         if (IS_G4X(dev_priv)) {
4385                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4386                                GM45_ERROR_MEM_PRIV |
4387                                GM45_ERROR_CP_PRIV |
4388                                I915_ERROR_MEMORY_REFRESH);
4389         } else {
4390                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4391                                I915_ERROR_MEMORY_REFRESH);
4392         }
4393         I915_WRITE(EMR, error_mask);
4394
4395         I915_WRITE(IMR, dev_priv->irq_mask);
4396         I915_WRITE(IER, enable_mask);
4397         POSTING_READ(IER);
4398
4399         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4400         POSTING_READ(PORT_HOTPLUG_EN);
4401
4402         i915_enable_asle_pipestat(dev_priv);
4403
4404         return 0;
4405 }
4406
4407 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4408 {
4409         u32 hotplug_en;
4410
4411         assert_spin_locked(&dev_priv->irq_lock);
4412
4413         /* Note HDMI and DP share hotplug bits */
4414         /* enable bits are the same for all generations */
4415         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4416         /* Programming the CRT detection parameters tends
4417            to generate a spurious hotplug event about three
4418            seconds later.  So just do it once.
4419         */
4420         if (IS_G4X(dev_priv))
4421                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4422         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4423
4424         /* Ignore TV since it's buggy */
4425         i915_hotplug_interrupt_update_locked(dev_priv,
4426                                              HOTPLUG_INT_EN_MASK |
4427                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4428                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4429                                              hotplug_en);
4430 }
4431
4432 static irqreturn_t i965_irq_handler(int irq, void *arg)
4433 {
4434         struct drm_device *dev = arg;
4435         struct drm_i915_private *dev_priv = dev->dev_private;
4436         u32 iir, new_iir;
4437         u32 pipe_stats[I915_MAX_PIPES];
4438         int ret = IRQ_NONE, pipe;
4439         u32 flip_mask =
4440                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4441                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4442
4443         if (!intel_irqs_enabled(dev_priv))
4444                 return IRQ_NONE;
4445
4446         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4447         disable_rpm_wakeref_asserts(dev_priv);
4448
4449         iir = I915_READ(IIR);
4450
4451         for (;;) {
4452                 bool irq_received = (iir & ~flip_mask) != 0;
4453                 bool blc_event = false;
4454
4455                 /* Can't rely on pipestat interrupt bit in iir as it might
4456                  * have been cleared after the pipestat interrupt was received.
4457                  * It doesn't set the bit in iir again, but it still produces
4458                  * interrupts (for non-MSI).
4459                  */
4460                 spin_lock(&dev_priv->irq_lock);
4461                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4462                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4463
4464                 for_each_pipe(dev_priv, pipe) {
4465                         i915_reg_t reg = PIPESTAT(pipe);
4466                         pipe_stats[pipe] = I915_READ(reg);
4467
4468                         /*
4469                          * Clear the PIPE*STAT regs before the IIR
4470                          */
4471                         if (pipe_stats[pipe] & 0x8000ffff) {
4472                                 I915_WRITE(reg, pipe_stats[pipe]);
4473                                 irq_received = true;
4474                         }
4475                 }
4476                 spin_unlock(&dev_priv->irq_lock);
4477
4478                 if (!irq_received)
4479                         break;
4480
4481                 ret = IRQ_HANDLED;
4482
4483                 /* Consume port.  Then clear IIR or we'll miss events */
4484                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4485                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4486                         if (hotplug_status)
4487                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4488                 }
4489
4490                 I915_WRITE(IIR, iir & ~flip_mask);
4491                 new_iir = I915_READ(IIR); /* Flush posted writes */
4492
4493                 if (iir & I915_USER_INTERRUPT)
4494                         notify_ring(&dev_priv->engine[RCS]);
4495                 if (iir & I915_BSD_USER_INTERRUPT)
4496                         notify_ring(&dev_priv->engine[VCS]);
4497
4498                 for_each_pipe(dev_priv, pipe) {
4499                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4500                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4501                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4502
4503                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4504                                 blc_event = true;
4505
4506                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4507                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4508
4509                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4510                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4511                 }
4512
4513                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4514                         intel_opregion_asle_intr(dev_priv);
4515
4516                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4517                         gmbus_irq_handler(dev_priv);
4518
4519                 /* With MSI, interrupts are only generated when iir
4520                  * transitions from zero to nonzero.  If another bit got
4521                  * set while we were handling the existing iir bits, then
4522                  * we would never get another interrupt.
4523                  *
4524                  * This is fine on non-MSI as well, as if we hit this path
4525                  * we avoid exiting the interrupt handler only to generate
4526                  * another one.
4527                  *
4528                  * Note that for MSI this could cause a stray interrupt report
4529                  * if an interrupt landed in the time between writing IIR and
4530                  * the posting read.  This should be rare enough to never
4531                  * trigger the 99% of 100,000 interrupts test for disabling
4532                  * stray interrupts.
4533                  */
4534                 iir = new_iir;
4535         }
4536
4537         enable_rpm_wakeref_asserts(dev_priv);
4538
4539         return ret;
4540 }
4541
4542 static void i965_irq_uninstall(struct drm_device * dev)
4543 {
4544         struct drm_i915_private *dev_priv = dev->dev_private;
4545         int pipe;
4546
4547         if (!dev_priv)
4548                 return;
4549
4550         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4551         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4552
4553         I915_WRITE(HWSTAM, 0xffffffff);
4554         for_each_pipe(dev_priv, pipe)
4555                 I915_WRITE(PIPESTAT(pipe), 0);
4556         I915_WRITE(IMR, 0xffffffff);
4557         I915_WRITE(IER, 0x0);
4558
4559         for_each_pipe(dev_priv, pipe)
4560                 I915_WRITE(PIPESTAT(pipe),
4561                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4562         I915_WRITE(IIR, I915_READ(IIR));
4563 }
4564
4565 /**
4566  * intel_irq_init - initializes irq support
4567  * @dev_priv: i915 device instance
4568  *
4569  * This function initializes all the irq support including work items, timers
4570  * and all the vtables. It does not setup the interrupt itself though.
4571  */
4572 void intel_irq_init(struct drm_i915_private *dev_priv)
4573 {
4574         struct drm_device *dev = dev_priv->dev;
4575
4576         intel_hpd_init_work(dev_priv);
4577
4578         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4579         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4580
4581         /* Let's track the enabled rps events */
4582         if (IS_VALLEYVIEW(dev_priv))
4583                 /* WaGsvRC0ResidencyMethod:vlv */
4584                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4585         else
4586                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4587
4588         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4589                           i915_hangcheck_elapsed);
4590
4591         if (IS_GEN2(dev_priv)) {
4592                 dev->max_vblank_count = 0;
4593                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4594         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4595                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4596                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4597         } else {
4598                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4599                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4600         }
4601
4602         /*
4603          * Opt out of the vblank disable timer on everything except gen2.
4604          * Gen2 doesn't have a hardware frame counter and so depends on
4605          * vblank interrupts to produce sane vblank seuquence numbers.
4606          */
4607         if (!IS_GEN2(dev_priv))
4608                 dev->vblank_disable_immediate = true;
4609
4610         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4611         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4612
4613         if (IS_CHERRYVIEW(dev_priv)) {
4614                 dev->driver->irq_handler = cherryview_irq_handler;
4615                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4616                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4617                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4618                 dev->driver->enable_vblank = valleyview_enable_vblank;
4619                 dev->driver->disable_vblank = valleyview_disable_vblank;
4620                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4621         } else if (IS_VALLEYVIEW(dev_priv)) {
4622                 dev->driver->irq_handler = valleyview_irq_handler;
4623                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4624                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4625                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4626                 dev->driver->enable_vblank = valleyview_enable_vblank;
4627                 dev->driver->disable_vblank = valleyview_disable_vblank;
4628                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4629         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4630                 dev->driver->irq_handler = gen8_irq_handler;
4631                 dev->driver->irq_preinstall = gen8_irq_reset;
4632                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4633                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4634                 dev->driver->enable_vblank = gen8_enable_vblank;
4635                 dev->driver->disable_vblank = gen8_disable_vblank;
4636                 if (IS_BROXTON(dev))
4637                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4638                 else if (HAS_PCH_SPT(dev))
4639                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4640                 else
4641                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4642         } else if (HAS_PCH_SPLIT(dev)) {
4643                 dev->driver->irq_handler = ironlake_irq_handler;
4644                 dev->driver->irq_preinstall = ironlake_irq_reset;
4645                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4646                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4647                 dev->driver->enable_vblank = ironlake_enable_vblank;
4648                 dev->driver->disable_vblank = ironlake_disable_vblank;
4649                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4650         } else {
4651                 if (INTEL_INFO(dev_priv)->gen == 2) {
4652                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4653                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4654                         dev->driver->irq_handler = i8xx_irq_handler;
4655                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4656                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4657                         dev->driver->irq_preinstall = i915_irq_preinstall;
4658                         dev->driver->irq_postinstall = i915_irq_postinstall;
4659                         dev->driver->irq_uninstall = i915_irq_uninstall;
4660                         dev->driver->irq_handler = i915_irq_handler;
4661                 } else {
4662                         dev->driver->irq_preinstall = i965_irq_preinstall;
4663                         dev->driver->irq_postinstall = i965_irq_postinstall;
4664                         dev->driver->irq_uninstall = i965_irq_uninstall;
4665                         dev->driver->irq_handler = i965_irq_handler;
4666                 }
4667                 if (I915_HAS_HOTPLUG(dev_priv))
4668                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4669                 dev->driver->enable_vblank = i915_enable_vblank;
4670                 dev->driver->disable_vblank = i915_disable_vblank;
4671         }
4672 }
4673
4674 /**
4675  * intel_irq_install - enables the hardware interrupt
4676  * @dev_priv: i915 device instance
4677  *
4678  * This function enables the hardware interrupt handling, but leaves the hotplug
4679  * handling still disabled. It is called after intel_irq_init().
4680  *
4681  * In the driver load and resume code we need working interrupts in a few places
4682  * but don't want to deal with the hassle of concurrent probe and hotplug
4683  * workers. Hence the split into this two-stage approach.
4684  */
4685 int intel_irq_install(struct drm_i915_private *dev_priv)
4686 {
4687         /*
4688          * We enable some interrupt sources in our postinstall hooks, so mark
4689          * interrupts as enabled _before_ actually enabling them to avoid
4690          * special cases in our ordering checks.
4691          */
4692         dev_priv->pm.irqs_enabled = true;
4693
4694         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4695 }
4696
4697 /**
4698  * intel_irq_uninstall - finilizes all irq handling
4699  * @dev_priv: i915 device instance
4700  *
4701  * This stops interrupt and hotplug handling and unregisters and frees all
4702  * resources acquired in the init functions.
4703  */
4704 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4705 {
4706         drm_irq_uninstall(dev_priv->dev);
4707         intel_hpd_cancel_work(dev_priv);
4708         dev_priv->pm.irqs_enabled = false;
4709 }
4710
4711 /**
4712  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4713  * @dev_priv: i915 device instance
4714  *
4715  * This function is used to disable interrupts at runtime, both in the runtime
4716  * pm and the system suspend/resume code.
4717  */
4718 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4719 {
4720         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4721         dev_priv->pm.irqs_enabled = false;
4722         synchronize_irq(dev_priv->dev->irq);
4723 }
4724
4725 /**
4726  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4727  * @dev_priv: i915 device instance
4728  *
4729  * This function is used to enable interrupts at runtime, both in the runtime
4730  * pm and the system suspend/resume code.
4731  */
4732 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4733 {
4734         dev_priv->pm.irqs_enabled = true;
4735         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4736         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4737 }